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ABSTRACT

Given a set of independencies closed under the pseudographoid axioms, an algorithm for
constructing a set of undirected graphs perfectly representing the given set of independencies is
provided and its correctness is proved. Based on this algorithm, a full characterization of
pseudographoids in terms of undirected graphs is given. A possible extension for full graphoids
is investigated and some open problems are proposed. The algorithms introduced are illustrated
with many examples. The main result of this report properly generalizes the / -mapness theorem
in the [Pearl & Paz, 1986] report.

1. Introduction

Given a basis B = {t, - * - 1, } consisting of triples #; = (x,z,y) where x,y, z are disjoint
sets of nodes over a universal set of nodes N.

The triples represent independencies: The triple (x, z,y) represents the statement that
““knowing z renders x and y independent.

Assume:

1. k =|B| = poly (| N| ) (i.e. the number of triples in B is polynomial in the number of
nodes).

2. cl,, (B) is the closure of B under the pseudographoid axioms: (zy denotes the union of

* This work was supported by the National Science Foundation Grant #IRI-8610155.



the sets z and y and similarly for zw, etc.).
s. Symmetry tx,z,y)>,z,x)
d. Decomposition :(x,zyw)—->(x,z,y)& x,z,w)
in. Intersection x,y.w)& (x,zw,y) > (x,z,wy)
u. Weak union t(x,z,wy) o (x,zw,y) |
Our goal is to develop an algorithm for representing ¢l,, (B) by a set of graphs over N such that
t ecl,,(B)iff z isacutset between x and y in some graph in the set of graphs.
2. Some Definitions:
Represent the set of nodes by a set of vertices V. V; denotes a subset of V.
G; (V;) is a graph over V.

If o, B, are elements of V; then ‘‘(ct, B) is a nonedge of G;*’ means that (o, 8) is not in the edge
set of G;.

c
For Vj ¢Vi

define (o, B) as a nonedge of G; mod V; if a. is not connected to f in G;(V;/V;) i.e. removing the
vertices V; and the incident edges from G; (V;) will render o and B disconnected.

Example.

G;(V})

V={122345356}

Figure 1



G; (V;) is the above graph. (&, B) =(1,2) is a nonedge of G; and is a nonedge of G; mod {4, 6}
but (¢, B) = (1, 2) is not a nonedge of G; mod {4].

Remarks:
° (o, B) is a nonedge of G; implies that (¢, B) is a nonedge of G; mod {V; — o ~ B}

. (o, B) is a nonedge of G; mod V; , (V; < V; — a— [3) implies that (a, B) is a nonedge of
G;. The contrary is not always true as the above example shows.

° Vi(cVycV; and (o, B) is a nonedge of G; mod V; implies that (¢, B) is a nonedge of
Gi mod Vk

Define: Given G; (V;), G; (V;) V; cV;. G; is implied by G; if every nonedge (o, B) of G; is
a nonedge of G; mod (V; — o - B).

Example.

! v 3 is implied by 1 B b
2

but

1 \/ 3 is not implied by
2

Figure 2

as (1, 3) is not a nonedge of G; mod 2 in the second case.

. Checking whether G; is implied by G; is polynomial (in the number of vertices) as is



) Any implied G; can be removed from the set of graphs representing a relation and
complete graphs are superfluous in such a set.

3. The® operation en graphs.

Given 2 graphs G;(V;) and G;(V;) let V, =V; \ V; and assume V} # 0. Define the
graph G (V) = G; B G; as follows:

1. Every edge of G; and G; over V is an edge of G (V)

2. Every pair (¢, B) over V, which is a nonedge of G; mod (V, — o — ) or is a nonedge of
G; mod (V; — o — ) is a nonedge of G

3. Every pair (&, B) to which 1 or 2 above does not apply is an edge of G,

Example 1.
1
1
6
| <% O
3 4 3 4
G; G;
1
2
4
3
Gk =G" @ Gj
Figure 3

G is not implied by either G; nor G;. e.g. (1,2,34), (1,2,3) and (1,2,4) represented in Gy, are not
represented in G; nor in G;.

Example 2.



Example 2.

Figure 4
In example 2, (1,4), (2,4), (3,4) are edges of G, by the first rule. (1,2) is an edge of G, since
(1,2) is not a nonedge of G; mod {3,4} and a similar situation exists for (2,3) and (3,1).

Here the G, graph is complete and is therefore superfiuous.

Remark: The construction of G, is polynomial (in the number of vertices) as is easily seen. The
above definition implies the following:

Lemma 1: If the independencies represented in G; and G; belong to cl,,(B), then the
independencies represented in G; & G; =G, belongto cl,, (B).

Proof: Any independency represented in G, of the form (o, V; —a—p,B) is either an
independency represented in G; or in G; (see rule 2 in the construction). The proof can now be
completed by descending induction and is similar to the proof of Theorem 1 in [Paz & Pearl,
1986].*

Lemma 2. If V; C V; then Gy =G; DG; is a graph over V; and is a subgraph of G;.

* In the [Paz & Pearl, 1986] paper the system studied was termed ‘‘graphoid.” As the theory developed (after the
appearance of that paper), the nomenclature was expanded and the term graphoid is now reserved for a more
restricted system obeying an additional axiom.



Proof: If (o, B) is a nonedge of G; then it is a nonedge of G; mod G; — o - B and therefore (by
rule 2) it is a nonedge of G,. Thus the set of edges of G, is a subset of the set of edges of G;.
Also, V, =V; m V; =V; which completes the proof.

Corollary 3.If G, =G; ©G, and V; < V; then G, implies G; and G; can be discarded.

Corollary 4. If G, =G; BG,; and V; =V; then G, implies both G; and G; which can be
discarded.

4. Similar Triples and Their Representation

Definition: Two triples ¢, and 1, over a set V are similar if the set of vertices represented in #,
and the set of vertices represented in 7, are equal ( the set of vertices representedint =(x,z,y)
isx (z Yy ). Similarity is an equivalence relation as is easy to see.

Lemma 5. Let T ={t; ...t} be a set of similar triples, then el,, (T') can be perfectly represented
by a single graph.

Proof: Let V; be the set of vertices represented in every triple in 7. Construct G;, a graph over
V; by removing from the complete graph over V; every edge (c, B), such that o € x;, B € y; for
some triple #; =(x;,z,y;) € T, and only those edges. The constructed graph perfectly
represents T . This can be shown as follows:

Let £, Eo..ty, tgsq--fm De a list of all triples in ¢l (T') ordered in a way such that any
t;, i >k is derived from previous triples in the list by one of the axioms. We can show now that
every triple in the list is represented in the graph by finite induction: The statement is clearly
true for z, - - - # and the truth for j >k is implied by the fact that graphs satisfy the 4 axioms,
and by the induction hypothesis. The other direction of the proof follows from Theorem 1 in
[Pear] & Paz, 1986].

5. The Set cl(W) and its Construction

Given a set of graphs

G = {G,(VI) z V,' o V}



Let W be the set

W = {Vl N Gi(Vi)e G}

Let cl (W) be the closure of W with respect to the operation of intersection. ¢l (W) is a lattice
with inclusion as a partial order.

If V; € ¢l (W), we define the rank of V;, r(V;) as follows:

If V;cV; cVjc ---cV, is a chain of maximal length in ¢l (W) then r(V;)=1. In
particular if V; is a maximal element in ¢l (W), then r(V;} = 0.

It follows from the definitions that:
1. Forany Vi e d (W) r(V;yq V| (] V| isthe number of nodes in V)

2. Vi

i Jecl(W) = V; mV e cl(W).

6. The Set ¢l (G) and its Construction

Based on cl (W) construct inductively ¢l (G) (the closure of G ) as follows.

1.  Setd(G)=9¢

2. For all maximal V; € ¢l (W) combine via the @operanon all the G;’s in G whose vertex
set is equal to V;. Let G (V;y be the resulting graph. If G (V; is not the complete graph
then set

d (G)=c (G) G (V;)

3. Fort =1,2, .F pa (Fmay is the maximal rank of an element in ¢l (W) andis< | V| ):

For all V; with r(V;)=r in cd (W): Let V;, -+ ,V; be all the immediate

predecessors of V; in ¢l (W) (V; is an immediate predecessor of V; if V; c V; and for no

V,,V; €V, cV)).



Combine via the @ operation all the G;’s in ¢l (G) whose vertex set is equal to

Vi, - V; (if any), together with all the G;’s in G whose vertex set is equal to V.

Let G;(V,) be the resulting graph. If G:(V;) is not the complete graph and in
addition G;(V;) is not implied by any of the graphs G i I(Vj Ds ij(VjJ) already in
¢l (G ) then set

d(G)=d (G) Gy

end of construction O

Remarks

1. It follows from the definition that the @ operation is commutative, associative and
idempotent, (i.e. G ®G =G ) and therefore the above construction is well defined and
there is a 1 - 1 correspondence between ¢l (G ) and cl (W) (also between G and W),

2. It follows from Lemma 4 that C_#, (V;) implies all the G;(V;) in G with the same vertex set
V;.
3. If the number of elements in ¢l (W) is polynomial in| V| then the whole construction is

polynomial in| V| . (This is the case e.g. if the number of elements in G (or in W) is
logarithmic in| V| ).

We are now ready to present the Algorithm.

7. A Perfect Representation of a Pseudographoid by a Set of Graphs

Consider the following algorithm.

L. Input T ={t; - - t,} over a set of nodes N, and the 4 pseudographoid axioms. Assume
m=f(n),n=| N| (for further reference).

2. Separate T into equivalence classes T = (T, T, - - T, } of triples
3. For each T; construct a graph G;, as in Lemma 5, which perfectly represents T;.
4. Let G ={G,, - -+ G,] the set of graphs constructed in the previous step. Construct

cl (G) as described in Section 6 above.



We now have the following:
Theorem 6: The set of graphs ¢l (G ) perfectly represents the pseudographoid T .

Proof: Every cutset in one of the graphs in ¢l (G ) represents an independency in ¢l ,, (T). This
follows from the construction and from Lemma 1. We need therefore to show only that any
independency in ¢l (T') is represented in some graph in ¢l (G).

We show first that the independencies in T are represented:

By step 3 of the algorithm every independency in T is represented in some G;. By step 2 of the
algorithm, no two G;’s in G have the same vertex set. Therefore, by step 2 in the construction
of ¢l (G), all the graphs G; corresponding to maximal sets of vertices are included in ¢l (G). If a
G, in G corresponds to a nonmaximal set of vertices then, when it is processed in step 3 of the
cl (G) algorithm, it is combined with graphs in ¢l (G ) (via the ® operation), whose vertex sets
include the vertex set of G; as a subset. Therefore, the resulting G,(V;) implies G; (corollary
3), and thus all the independencies in G; are represented in 5, which is included in ¢l (G). We
have thus shown that all independencies in T' are represented in some G; € ¢l (G ).

To complete the proof, consider a triple ¢ which is not in T, but is derived from triples in

T by a chain of derivations using the axioms (s, d, in, u).

Let

tl’ t2 e tp—l’ tp =t
be the derivation chain.
For any #; in the chain, either ¢; € T or ¢; is derived from T}, j <i by one of the axioms

s, d, or u, or ¢; is derived from previous triples #;, ¢, j, k <i by the in-axiom. Proceed now by
induction to show that all triplets in the chain are represented.

Basis: ¢, must be in T and is therefore represented by the first part of the proof.
Step. Assume ¢, is represented for all s <i. If ¢; is derived from ¢;, j </ by axioms s,d,or u,

then ¢;, being represented in some graph (induction hypothesis) implies that ; is represented in
the same graph (graphs satisfy above 3 axioms with independencies corresponding to cutsets).



If #; is derived from ¢; and #, j,k <i, by the in-axiom then (induction hypothesis) ¢;
and #, are represented in some graph in ¢l (G). If ¢; and 1, are represented in the same graph,
then we are done (graphs satisfy the in-axiom). We will show that this is always the case.

Let ¢; be represented in the graph G;(v;)

Let 7, be represented in the graph G, ((V})

and Let Vj M Vk = Vi

Set ; =(x,zw,y)andlet &, B be any verticesa e x, Be y. Then<ct | zw | [3>G}_ , or
(o, B) is a nonedge of Gj mod {z \yw].
IfG,(V,) is a graph in ¢l (G) such that {x \yz \ywy/cV, and Gp = Gj B G, for some
graph G, in ¢l (G) then, by the definition of @ (a, B) is a nonedge of G, and since ¢, B are
arbitrary vertices in x and y, we know that Ly is represented in G‘D (Vp ).

Set V; =V; \ V. There is a graph G;(V;) in cl (G) which is derived from V; via a
sequence of ® operations in which each intermediary graph G, includes in its vertex the set

{x \yz\ywyyJ. Therefore ¢; is represented in each intermediary G, and also in G;.
Similarly #, is represented in G; and the proof is now complete.

8. An Example
Let T ={(27,1,35689), (12348, 67,9), (127, 8, 369), (8,27, 469), (6, 4, 28),(68,4,9) }.

The resulting ¢l (W) is given below, ordered by inclusion:

10



(12356789} (12346789

~— — T\,

{1236789} {246789}

)
\%67*89} {2468}/ \4689
N, =,
{268} {689} {468/
\

\{68}
Figure 5

Starting from the 6 graphs defined by T (a different graph for every triple) the ¢l (G ) can
be constructed according to the given algorithm.

The resulting set of graphs is shown below. The graphs resulting from the algorithm and

corresponding to the sets {268}, {689}, {468} and{68] are implied by previous graphs in the
family and are therefore omitted.

11



SET GRAPHS

5
Graph G ; : Corresponds tothe set {123 567 89}

[\
Q0

6

Graph G, : Corresponds to the set {12346789)
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S

Graph G5 : Corresponds to the set {12367 8 9}
G is derived from G ® G, and the third triple in T .

Graph G, : Derived from G, and the fourth triple in T

13



9O

8
2
7
®
6
Graph G5; G5=G38 Gy
9
2e 8
4  X4) 4 6

Graph G ¢ and G ; both derived from G 4 and the last 2 triplets in T

9. A Complete Characterization of Pseudographoids

The construction in Section 7 provides a complete characterization of pseudographoids.

The characterization is stated in the following:

Theorem 7. For any given pseudographoid T (’given’ as specified in Section 1), one can
construct a set of graphs closed under the @ operation and such that t =(x,z,y)e T, if and

only if z is a cutset between sets of vertices x and y in some graph G; in the set of graphs.

14



Conversely, given a set of graphs G = {G;(V;) : V; €V } closed under the & operations,
the set of cutset triples {<x|zly>¢, : G; € G } is a pseudographoid (i.e. the set satisfies the
pseudographoid axioms).

The proof of this theorem follows directly from the construction in Section 7.

Corollary 8: Every non-extreme probabilistic model can be perfectly represented by a family of
graphs closed under the @ operation.

Notice that the converse is not necessarily true e.g. if the set of independencies is not closed
under contraction. Notice also that for single graphs the opposite holds i.e. for every single
undirected graph there exists a probabilistic model perfectly representing its set of
independencies, but not the other way around [Geiger, Section 4, 1987].

10. Some Remarks.

L. In the [Paz & Pearl, 1986] paper, the concept of /-mapness has been introduced for
pseudographoids. It was shown there that for every pseudographoid T a minimal (single)
I-map graph Gr can be constructed such that any cutset in Gp represents some
independency in T, but not the other way around.

The theory developed in this report is a proper extension of that theory. e.g. for
the example in Section 8, the minimal /-map would be the complete graph on the
vertices { 123456789 which is a trivial and vacuous /-map of the given relation.
Here we were able to perfectly represent that relation by 7 graphs.

2. The number of graphs in the family of graphs constructed in Section 7 for a given
pseudographoid depends on the number of elements in the set cl(W) where
W ={V; :G;(V;ye G} and closure is with regard to the intersection of sets (see Section
5). If that number is polynomial in IN| (see Section 1), then a polynomial algorithm will
result for the membership problem (i.e. finding for any given triple ¢ whether
tecl, (T)).

The structure of ci(W) is very simple and straightforward, and can easily be
determined before any further computations (see Section 3).

3. As the number of subsets of a given set is exponential (in the cardinality of the source
set), it might be the case that the cardinality of the resulting family of graphs, perfectly
representing a pseudographoid given by a polynomial base, is exponential. If this is the
case we might still use the algorithm in order to get as good an approximation (in the 7 -

15



mapness sense), as time or space allows. It is clear from the definition of the algorithm
that every time an iteration is performed successfully, a better /-map approximation is
achieved.

11. Possible Extensions.

The construction described in Section 7 can possibly be extended to full graphoids, i.e.
systems which obey, in addition to 4 pseudographoid axioms, the contraction axiom

c:(x,zy,w)& (x,z,y)> (x,z,yw).
We believe that the algorithm presented below will ultimately provide such an extension, but
additional investigation is need in order to provide a complete proof of our claim.

Contraction Algorithm for 2 graphs

Given 2 graphs denoted by R (red) and B (blue), for convenience.
Let Vpp and Egp be the set of vertices and edges, correspondingly, common to both graphs, let
Ve, Eg, Vg, Ez denote the monochromatic vertices and edges correspondingly.

Assume that (x,zy,w) is represented in R and (x,z,y) is represented in B. If
contraction applies to these two premises then there must be two vertices in Vpp, say @ and b,
such that

1. aex.,bey
il. (a,b)isanedge in Ep

iii. (a,b)isanonedgein B mod Vgp—a —b.

Explanation: All connections between x and w in R must pass through z and y and some must
directly connect through y. Otherwise they connect directly through z only and (x,z,yw) 1s
already in R. This explains ii. Now, since (x,z,y) is represented in B and x,z,y € Vgp, we
must be able to separate x from y by Vg —x — y. This leads to the first step in the algorithm.

Step 1. For R, list all pairs (a, b), a, b € Vpp, satisfying condition ii. and iii. above, and do the
same for B (i.e. list pairs (a,b):(a,b) is an edge in Eg and is a nonedge in R mod
Vgp —a —b). If both lists are empty abort. No new independencies are implied. The next step

will be explained in the sequel.

Step 2. For R, for any listed pair (a, b) do the following:

16



2.1 If either (a, VBR -a, VR - VBR) or (b . VBR - b, VR - VBR) 1s GCI'CSCH[Cd in R , then
disconnect g from b inR.

22 If(a,Vgg —a,U;) andfor (b, Vgp — b, U,) is/are represented in R for some nonempty
set(s) Uy, Uy 5 Vi — Vg then

2.2.1 If only on of the above independencies is represented, say the first, construct a
new graph which is the subgraph of R on the vertices Vgp WU and disconnect a
from & init.

2.2.2 If both independencies are represented in R and (Vg WU ) C (Ve WUy or
(Vgg WU,) € (Vgp wU,) then proceed as in 2.2.1 with the subgraph of R
constructed over the largest subset of the sets Vg W U7 and Vg W U5,

2.2.3 If both independencies are represented and the condition in 2.2.2 does not hold
then construct 2 subgraphs of R, one over the subset of vertices Vgp U U, and
the other over the subset of vertices Vgp U U, and disconnect @ from b in those

subgraphs.

3. If neither condition 2.1 nor condition 2.2 hold for the pair (a, b) ignore that pair
and proceed to the next pair.

Apply the same procedure to B.
Explanation:

If the condition in 2.1 holds with (a, Vg —a, Vg —Vpp) say, then, since (a, b) satisfies
condition iii. of the listed pairs we have also that (a, Vgg —a — b, b) is represented. We must
now represent the implied new independency (a,Vpp —c —b, (Vg —Vgg) U b). This is
achieved by disconnecting a from b in R. If one of the conditions 2.2 holds then disconnecting
a from b in R would create an independency of the form (a, Vg —a — b, (Vi — Vpg) U b),
which is not the independency implied by the contraction in this case. New graphs must
therefore be constructed, subgraphs of R (to preserve the closure under intersection) in which
the new independencies will be represented. If an independency in B of the form (a,z, b) is to
be combined with an independency in R to initiate a contraction, then that independency must
be represented in B modulo Vg and, due to the fact that graphs are closed under strong union
we must also have that (a, Vgg —a —b, b) is represented. Therefore, it is reasonable to assume
that the procedure will take care of all the contractions implied by the two graphs. As long as
there is an independency implied by contraction and not represented, some (2, b) pair will show
in Step 1 of the algorithm which will be disconnected (in some graph) when the algorithm is
completed. The algorithm is illustrated by examples in the next section.
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Remarks.

a. We assume that R and B belong to a family of graphs closed under the @ operation and
the algorithm should be applied for all such pairs of graphs. The two algorithms (the one
in Section 7 and this one ) should be applied in repeated succession until a family of
graphs closed under both intersection and contraction is achieved.

b. If the set of vertices of vertices of one of the graphs R and B is a subset of the other set
of vertices, say Vg < Vp, then Steps 1 and 2 should be applied to the graph R only. This
follows from the following observations. Assuming that B =R @® B (both graphs belong
to a set closed under the @ operation), any edge of B (a, b) which is a nonedge of R has
the property that (@, b) is not a nonedge of R mod (Vg —a — b) and therefore the edge
(a,b)in B does not satisfy the condition iii. of the listed edges for B.

c. While combining 2 particular graphs is polynomial, the whole algorithm might be
exponential. Still it is sure to terminate and we believe that it is correct (no
independency is destroyed since no edges are added and edges are removed creating new
independencies as long as this is possible. But the number of graphs on a fixed number
of vertices is finite). Moreover one does not have to carry the algorithm to the end, and
each time an iteration is successfully applied, a better approximation is achieved.

12. Examples.

1. Let B and R be the graphs below

B R
V

a C a C 4
° P

b, p b

b2 b2

by ¢——=»4
by

Assuming that the graphs belong to a family of graphs closed under the @ operation, the family
must contain also the following graph:

18



. o . P Y =B®R

Step 1 of the contraction algorithm for B and R will result in the following lists.

For B :(a,bs). For R :{(a,by),(a,b;y) ,(bybs). Applying Step 2 to B we get that
(a,c bibyba, v p) is represented in B (Sept 2.1). Therefore we must disconnect a from b in
B resulting in the following new B.

a c bl b2 b3
~— P o °

Applying Step 2 to R we get

For the pairs (a, b;) and (a, b):

(a,c bbobs, u g)isrepresented (Step 2.1). We must therefore disconnect @ from b, and b,.
For the pair (b, b3):

(b3, bybyc a,u)and (by, b, by, c a,u g). Condition 2.1 is satisfied for the second pair and
therefore we must disconnect b, from b4 The resulting new R (after all three edges have been
disconnected) is

a c b, bsy b3 q
. ° ° *~————o

Notice that the ® operation on the new graphs will result in the same third graph we had before.
The set is now closed under both intersection and contraction.

2. Let B and R be the graphs below

19



6
1 6
7 2 5
4
: 7 -

Since Vp c Vg and R =B O R ( the reader is urged to check ), we need consider only B for the
steps of the algorithm.

There is only one edge of B produced in Step 1, namely (6,4).
Applying Step 2 to this pair we get
(6,2574,¢)and (4,2567, 1)

The case here is 2.2.1. We must create a subgraph of B by eliminating the vertex 3 from it, and
incident edges, and disconnect in it edge 6 from 4, resulting in

1 ®0

7 e ® 4

The two original graphs together with this new one constitute the closure of the original two
graphs under both intersection and contraction.

13. Problems for Further Study
L. Provide a full formal proof of the algorithm is Section 11 and provide a full
characterization of graphoids in terms of undirected graphs.

2. Characterize families of UGs (undirected graphs) of polynomial size, representing
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pseudographoids or graphoids. Find and study useful or interesting such families.

[Pearl & Verma, 1987} have studied the representation of Independencies in Directed
Acyclic Graphs (DAGS). If is known that both directed and undirected graphs obey all
the 5 axioms of graphoids. What happens if a family of DAGs (instead of a single DAG)
is considered as a possible model for representing an independency relation?

Is it possible to represent a polynomial size set of DAGs, closed under the graphoid
axioms, by a polynomial size set of UGs closed under the same axioms? Is the converse
possible? What about a single DAG (UG) versus a family of UGs (DAGs)?
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