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PROBABILISTIC SEMANTICS FOR

INHERITANCE HIERARCHIES WITH EXCEPTIONS

Judea Pearl

Introduction

Let I" be a collection of default statements of the form I (p, ¢) where I(p, ¢) means ‘“‘p

is typically a ¢ > and I (p, —~q ) reads *‘p is typically notagq’’.

Our task is to draw plausible conclusions from I'. This requires that we establish a clear
semantics for the meaning of each individual statement in I as well as for the absence of some
statements NOT contained in I". For example, I' = {I(a, bird), I (bird, fiy)} does not contain
explicitly the statement I (g, flies) neither I (a, —flies ) and, since every I allows exceptions, ei-
ther one of the last two statements would be logically consistent with T'. Yet, most people would
regard the absence of [ (a, —flies) as a clue for the plausibility of I (a, flies) but not vice versa;

I(a, —flies) might be accepted as a surprising fact but not as a conclusion.

The purpose of this report is to propose a probabilistic formulation that faithfully ac-
counts for people’s distinction between the plausible, the possible and the surprising. The for-
mulation is offered as yet another standard for gauging the validity of proposed non-monotonic

logics.



£-Semantics

We regard I as a set of elastic restrictions imposed on possible worlds. A world is a
complete assignment of property values to individuals. For example, the world w could be
describe by (bird (a), —fly (a), —penguin (a)) while another world, w,, may have the description

(=bird(a), fly (a), penguin (a)), possibly referring to some penguin-shaped kite.

Since some worlds are obviously more typical than others, it is natural to regard the sen-
tences in I” as a reflection of what we typically find in our experience. Our task, then, amounts
to inferring new typical patterns of experience from the partial list of such patterns encoded in T,
The inference would only be possible if I somehow restricts the sets of worlds that one regards
as typical. The most elementary restriction is between a single sentence in I, say I (p, q), and
the sets of worlds describable by the primitive predicates p and ¢q. For instance, I (p, ¢) renders
Wo={p(a), q(a)} more typical than W, ={p(a), ~g(a)}. Note that W, and W, are sets of
worlds rather than singleton worlds because I may contain other predicates beside p and ¢q. For
example, I(bird, fly) renders the set of worlds Wy={bird(a), fiy(a)} more typical than

W = {bird(a), =fly(a)}, where

W= {(penguin(a), bird(a), fly (a), (—penguin(a), bird(a), fiy(a))}

W, = {(penguin (a), bird(a), —fly(a)), (—penguin(a), bird(a), =fly (a)}

To guarantee that the restrictions I" imposes on sets of worlds reflect coherent patterns of
experience, we resort to the calculus of probability or, more specifically, to a subset of the cal-

culus that deals with extreme probabilities, infinitesimally removed from either 0 or 1. Thus, the



sentence [(a, bird) is interpreted to state that individual ¢ is almost surely a bird,
P (bird(a))=1-¢, and I (bird, fly) stands for P (fly (x) | bird (x)) = 1 ~ &, namely, given that in-
dividual x is a bird, x is very likely to have flying abilities. € is understood to stand for an
infinitesimal quantity that can be made arbitrarily small without violating the plausibility of the
inferences drawn. Categorical statements can, of course, be assigned apriori € =0. However, we
shall see that such distinction does not lead to new insights, neither do we gain by assigning each

statement a different € with its own rate of vanishing,.

The conclusions we wish to draw from I" are those extreme probability statements that
logically follow from I" via the axioms of probability theory. In the absence of any constraining
sentences in I one is licensed to assume any arbitrary probability distribution P over the sets of
worlds and, consequently, no statement about the world would be preferred to its negation. Once
we admit statements of the form / (p, g) in T, these force the global distribution P to exhibit ex-
treme pairwise conditional probabilities P(g(x)|p(x))=1—¢ and these, in turn, might force
other conditional probabilities to become extreme, thus qualifying new sentences as “‘Plausible
Conclusions’’. For example, accepting I (bird, fly) and I (a, bird) into " would render the state-

ment fly (a) plausible and —fly (a) implausible, as shown in the following derivation:

P (fly(@)) = P (fly (a) | bird(a)) P (bird (@)} + P (fly (a) | —bird (@)) P (=bird(a))
=P(fly(x)|bird(x), x =a) (1 —€) + P (fiy(a) | =bird@)) eI

=1-2e+e2+0 ()

(1) The wansition from P (fly (x) |1 bird(x), x =a)to P (fiy (x) |1 bird (x) = 1 - g will be justified in
the next subsection.



=1-0(g)

Thus, we see that the conclusion fly(a) is compelled by virtue of the fact that I forces every

probability distributions P to yield P (fly(a))=1- O (g).

We can formalize this construction by defining the set of distributions Py licensed by T’
for any given &:

Tf-ﬁz{‘““”" '“>={1£ eififf(ﬁ‘ff;’)i?} .

Simultaneously, we restrict the set of conclusions that logically follow from I' to only those that

hold for every P in Pr .

Definition: A statement § =1(p, q) is said to be a plausible conclusion of T, written T, S, if

P(S)=1-0(e)forevery P e or. (1.

Having defined the validity of sentences in terms of a constrained set of probability dis-
tributions does not mean, of course, that in practice one would have to manipulate numerical
probability distributions in order to issue sound conclusions, This definition can be faithfully re-
placed by logical inference rules (Geffner, 1987), thus facilitating the derivation of new sound

sentences by direct symbolic manipulations on I

) That l"|=s S is solely a function of [, independent on €, is clear from the definition of O (g);
a function f (x, x4, - - - ) is said to be O (g) if for every arbitrarily small quantity 8 >0, one can
find another small quantity €(3) > O such that confining each of the arguments x;, x5 - to be
smaller than g, forces f (x{, x,, - - - ) to be smaller than J.



If a statement S acquires 1 — € certainty in some P e Pr. ¢ but not all, it may be advis-
able not to rule it out altogether. Rather, we may wish to indicate its possibly being true by say-
ing that § “‘is permitted by I"”’, written I' ~, §. Moreover, if a reasoning system indicates the
possibility of a set of statements {S,} simultaneously, it is important to make sure they are all

supported by the same P in P ,.

Definition: A set of statement {§,} is said to be permitted by T, "~ {S}, iff there exists
P e Pr ¢ such that P(§,)=1-0(¢) for all . I'~; (S ] parallels the default logic notion of

statements belonging to the same extension.

Definition: A statement S is said to be ambiguous, given T, if both § and its negation are per-

mitted by I".

A classical example of a statement left ambiguous by I is the ‘*Nixon diamond’’:

Pacifist

Republican Quaker

Nixon

Figure 1



Here

I' = {Quaker (Nixon), Republican (Nixon), I (Quaker , Pacifist), I (Republican , —Pacifist)}

Since P (Pacifist | Republican , Quaker) is not constrained by either P (Pacifist {Republican ) or
P (Pacifist | Quaker), there exist a P in Pr ¢ that yields P (Pacifist (Nixon)) = 1 — € and another
Pe Pr ¢ yielding P'(Pac{ﬁsr (Nixon)) = €, thus rendering the statement Pacifist (Nixon ) ambi-

guous.

This example also demonstrates the importance of representing exceptions by keeping &
small but positive. Were we to treat I as a set of categorical statements, a contradiction would
have resulted, from which any conclusion whatsoever could be derived. The e-semantic, on the
other hand, treats the conflict between Republicanism and Quakerism as a local ambiguity rather
than a contradiction; humbly indicating the need for additional information regarding properties
of Republican-Quakers, but making no claims regarding conclusions which do not critically

depend on this specific information.

However, the real power of g-semantics lies in cases where the machinery of probability
calculus can be harnessed to resolve conflicts of property inheritance. A classical example of
such cases is represented by the ‘‘Penguin triangle’” of Figure 2. Here I' comprises the sen-

tences:



bird
penguin

Tweety

Figure 2

I = {penguin (Tweety), bird (Tweety ), I (penguin , —fly), I (bird, fly), I (penguin , bird )}

It is similar in structure to the Nixon diamond except for the extra link between *‘penguin’’ and

*‘bird,”’ indicating that penguins are a subclass of birds.

Early inheritance systems (e.g., FRL [Roberts and Goldstein, 1978] and NETL [Fahlman,
1979]) have resolved the conflict between I (penguin, —fly) and {I (penguin , bird), I (bird, fiy)}
by appealing to the ‘‘shortest path™ criterion, which correctly prefers the direct conclusion
I(penguin,—fly) over the inferred sentence I(penguin,fly). However, as observed by
Touretzky [Touretzky, 1984], the *‘shortest path’* criterion does not always provide the desired
preference of more specific defaults over less specific defaults. For example, Tweety inherits
both the default “*fly > from ‘“bird’’ and ‘‘—~fly’* from ‘‘penguin’’ along paths of equal length.
We shall now demonstrate how the desired conclusions follow directly from the -semantics at-
tributed to T, making no reference to topological considerations neither to intuition about sub-

class specificity.



Our problem is to determine the range of
P [fly (Tweety )| bird (Tweety), penguin (Tweety)] permitted by the sentences in I" or, more
abstractly, we wish to examine the degree to which the probability P (f 15, P ) is constrained by

the inputs:
P(flb)=1-¢, P(fip)=e, P{lp)=1-&c.
Conditioning P (f |p) on both b and —b, one obtains
PUp)=P Ip,b)PBIp)+P(fip,—b)[1-Pbip)]

2P(f Ip,b)P & Ip)

Thus,

P(flp) & _
P(flp,b)< PGl = 1_8—0(8)

and

P(—f1p,b)=1-0¢(g).

We see that the conclusion —fly(Tweery) can be issued with almost certainty, ie.,
[l=¢ I(Tweety , —fly), even if penguins are not a strict subclass of birds. All that is required is
the probabilistic condition P (b Ip) =1 — ¢ which is secured by the sentence I (penguin , bird),

meaning that exceptions in the form of non-bird penguins are rather rare.

This is a slight generalization of a well known result in probability theory stating that,
while P (x |y, z) is, in general, unconstrained by P (x {y) and P (x |z), the one exception is when

one of the conditioning arguments subsumes the other, say y —z, in which case



P(xly,z)=P{(xly). Translated to the graphical descriptions of Figures 1 and 2, this result
states that ambiguities among conflicting defaults can be resolved if a direct arrow exists
between the tails of the corresponding conflicting arrows. Whenever such an arrow exists (e. g,
penguin — bird in Figure 2), ambiguities are resolved in favor of the property labeling the tail
of the arrow (e.g., ‘‘penguin’’ in Figure 2). Whenever the two tails, b and P, are not connected
directly, the ambiguity can be resolved if the required condition Tk I(p,b), (or, alternatively,
Tl=¢ I (b, p)), can be inferred from indirect paths between b and p, applying the criterion recur-
sively. Otherwise, if neither T'l=./(p, b) nor Tk 1(b,p) can be derived, ambiguity remains,

while if both prevail, I is inconsistent.

This criterion constitutes the probabilistic basis of Touretzky’s ‘‘inheritance distance’’
[Touretzky, 1984] and the recent ‘‘skeptical’’ algorithm for inheritance reasoning by Horty,
Tho@sson and Touretzky [1987] which rectifies the deficiencies of the ‘‘shortest path’® heuris-
tic. The probabilistic justification of this criterion renders a refined version of the skeptical algo-
rithm sound relative to the e-semantic introduced. A detailed description and a soundness proof

of this algorithm will be given elsewhere [Pearl, in preparation].

It is not hard to show that the network of Figure 2 yields another plausible conclusion,
I(bird, —penguin ), stating that when one talks about birds one does not have penguins in mind,
i.e., penguins are exceptional kind of birds. It is a valid conclusion of I" because every P in P .
must yield P(p 1) =0 (g). Of course, if the statement 7 (bird, penguin) is artificially added to
I, inconsistency results; as € diminishes below a certain level (1/3 in our case), P . becomes
empty. It can be shown that if I is acyclic and all arrows emanate from positive properties (i.e.,

precluding /(-p,q)), then I' is consistent iff it does not contain coflicting pairs



{fIp,q) & I(p,~q)}. Algorithms for testing consistency in general inheritance networks will

be discussed elsewhere.

The Principle of Mediated Inheritance

The e-semantics defined above is sufficient to guarantee that any issued conclusion is tru-
ly dictated by I. However, it does not capture all the assumptions people make in normal
discourse. It turns out that probability theory permits such a rich set of distributions in each
P ¢, that many expected conclusions would cautiously be proclaimed *‘ambiguous’’ by the sys-
tem describe thus far. For example, consider the statements ‘birds are winged-animals™ and

“‘winged-animals fly’’ encoded as

T ={I(bird, WA), I (WA, fiy)}.
(2)

In ordinary discourse we would expect to draw the plausible conclusion S = I (bird, fly), yet, the
g-semantic defined in (1) would not sanction S as a legitimate conclusion of I'. The reason is
that - . as defined in (1) also contains a distribution yielding P (fly |1bird) = €, just in case bird-
ness constitutes an impediment to flying. That I' should contain such a distribution is clearly
seen by replacing “‘bird” with ‘‘penguin’’; a world in which penguin constitutes an exception to

flying and in which

T = {I (penguin, WA) I (WA, fiy)}
3

holds, certainly exists. Indeed, we cannot expect a reasoning system to issue the conclusions
Tk, I (bird, fly) and r k= I (penguin , —fly ) unless additional information is supplied regarding

birds, penguins and their flying abilities. In the case of penguins, we expect the knowledge base

10



to contain an explicit statement making flying penguins an exception, i.e., 7 (penguin , —fly) as in

Figure 2, while in the case of birds we expect to use a default assumption that, unless stated oth-

erwise, birds should inherit the property ‘“fly’” via the intermediate predicate ‘WA ’’. This as-

sumption, which might be termed *‘mediated inheritance,”” corresponds to the celebrated proba-

bilistic assumption of conditional independence and is best described using graphical terminolo-
(PMY(; r45¢ )-

8Y If we map the properties and statements in T, respectively, to the vertices and arcs of some

network, then the mediated inheritance assumption can be formulated by requiring that, in addi-

tion to satisfying (1), every P € Pr , should also be a Markov field relative to T".

Definition: P is said to be a Markov field relative to I" iff whenever Z is a set of vertices (predi-

cates) separating p from ¢ in I then

Plglp,Z)=P(qZ)
(4)

For example, the network corresponding to I in (2) is shown in Figure 3

birds winged-animals (WA ) fly
e > o > o
Figure 3

and, since Z = {WA } separates ‘““fly’’ from ‘‘birds,”’ (4) translates to

P(fly(x)IWA (x), bird(x)) =P (fly (x) I WA (x)).

The meaning of such assumption is fairly clear; the flying properties of an individual x, known
to be both a bird and a winged animal are solely determined by the flying property of the mediat-

ing class ‘‘winged animals’’. The same argument should apply to I in (3) except that in this

11



case we expect the exceptional feature of penguins to be captured by an explicit statement

I (penguin , —fly), yielding the network I of Figure 4,

penguin winged-animals fly
W
Figure 4

where “‘penguin’’ is no longer separated from “‘fly*’.

It is easy to show that if P, is further restricted by the assumption of mediated inheri-

tance then the networks corresponding to I' and T yield the expected conclusions, i.e.,

Tl I (bird, fly) and T |=, I (penguin , —fly).

The derivation of I' = I (bird, fly) is as follow:

P(f1b)=P(f1b,WA)P(WA Ib)+P(f |b,-WA)P(—WA |b)
=P(f IWAYP(WA Ib)+P(f |b,-WA)P(-=WA iIb)
=(l-eXl-e)+P(flb,-WA)e

=1-0{)

The penguin triangle still yields the same derivation of P (fly I penguin) = € as before be-
cause no subset of vertices (e.g., WA) separates ““fly’’ from “‘penguin’’. The Nixon diamond,
on the other hand, will remain ambiguous because, although the set Z = {Quaker , Republican }

separates ‘‘Nixon’’ from ‘‘Pacifist,”’ P {Pacifist | Quaker , Republican } remains unconstrained

12



by P (Pacifist | Quaker) =1 - g and P (Pacifist | Republican) = &.

Formulating the assumption of mediated dependency in probabilistic terms endows the
topology of inheritance networks with meaningful semantics, open to public discussion and scru-
tiny. In particular, it clearly highlights the significance of links missing from these networks and
it explains why, contrary to logical deduction, induced links ought to be treated differently than
those found originally in I" [Sandewall, 1986]. The next subsection unleashes the detective

powers of probability theory to uncover another tacit assumption underlying inheritance reason-

ing.

The Principle of Positive Conjunction

The two assumnptions introduced so far, e-semantics and mediated inheritance, still lack

one ingredient necessary for producing all the plausible conclusions we desire. Assume we have

two positive paths leading from p to g via the intermediate nodes r and s, as in Figure 5.

s

Figure 5

The assumption of mediated inheritance dictates

13



P(qlp)=P(qlr,s,q)P(r,slg)+0(g)

=P(qlr,s)1-e)+0(g)

Yet, since bare probability theory imposes no restriction on P(g Ir, s) given P(g !r)=1—-¢ and
P(gls)=1-¢, Pr . may contain a P with arbitrary small P (g |r, s). Thus, we face a para-
doxical situation where the presence of multiple inheritance paths between p and ¢, instead of

reinforcing the natural conclusion I (p, ¢), actually causes us to reserve judgement.

This skeptical behavior of probability theory is not totally without reason. While it ap-
pears paradoxical in the interpretation p = birds, r = have —wings, s = have —feathers , q < fly,
it is certainly justified in the interpretation: p =any man,r =who marries Ann,
§ =who marries Sue, q =will be happy since bigamy is occasionally regarded as an impedi-
ment to happiness. Nevertheless, since such cancellation effects are relatively rare, it makes
sense to institute the following default principle: In the absence of information to the contrary,

assume

I(r,g)el' & I(s,q)eI'=>P(glr,s)=1-¢
&)

This principle is tacitly assumed by all systems of multiple inheritance [e.g., Touretzky (1986)]
by permitting two non-preempted paths from p to ¢ to sanction the conclusion I(p,g). It
reflects the attitude that cancellation is a rare occurrence. Moreover, the diagrammatic language
of inheritance networks does not permit one to express the existence of cancellation (e.g., the bi-
gamy example); hypernetwork are needed for that purpose, corresponding to semi-normal de-

fault rules in default logic [Etherington and Reiter, 1983].

14



We now combine the 3-principles above by stating a weaker condition for a statement to

qualify as a conclusion of T.

Definition: A staternent § =I(p, ¢) is said to be a plausible-conclusion of T, written T" |=E S,if

P(S)=1-0()foreveryP e Pr ¢ Where:

eremppiro o= 1E DT

P is Markov relative to T, and

ITuw)el & Iyv,w)e T => P(wlu,v)=1—e} (6)

Identical conditions for Py ¢ should be used in the definitions of permitted and ambiguous con-

clusions,
Discussion

Inheritance hierarchies represent one of the simplest form of nonmonotonic reasoning
and yet, as Sandewall [1986] has observed, ‘‘the combined structure, multiple inheritance with
exceptions, offers a number of unpleasant and challenging surprises’’. Research in the past ten
years has been guided by a collection of clever, intuition-loaded examples and has led to the
development of algorithms that cover, more or less, the examples accumulated. In the absence

of a more global guiding principle, Sandewall goes as far as proposing ‘‘that we consider such

15



collections of structure types as the definition of the semantics, for the time being.”

One result of lacking a more principled semantics is that it took over five years
[Touretzky, 1984] to discover that the *‘shortest-distance’’ heuristic used by earlier systems
[Roberts et al. (1977), Fahlman (1979)] occasionally produce implausible conclusions. Current-
ly available remedies are still incapable of distinguishing some ambiguous conclusions from
plausible ones. For example, the ‘‘skeptical’’ algorithm of Horty et al. [1987], would issue
statements predicated on Nixon’s not being a pacifist (Figure 1) with the same conviction as

those predicated on penguins not flying (Figure 2).

Can the more powerful nonmonotonic logics, such as circumscription and default
theories, be of assistance to inheritance hierarchies? This prospect seems to be hindered by two
hurdles. First, available nonmonotonic logics have semantic problems of their own. They cap-
ture a person’s intuition about how he/she is disposed to react to any local chunk of information
but do not guarantee that the sum total of these dispositions would lead to desirable, formally
specified net results. Second, they do not incorporate the implicit assumptions underlying the
unique structure of inheritance systems as built-in features of the logics. For example, formulat-
ing inheritance systems in semi-normal default rules [Etherington and Reiter, 1983] requires la-
beling each default rule with the names of all its exceptions. The natural rule 7 (bird, fly) of Fig-

ure 2 should be written as

bird(x): fiy(x) & —penguin(x)
fy(x)

meaning, if x is a bird then, unless it leads to a contradiction to assume that x flies and that x is

not a penguin, asserts that x flies. As Touretzky [1984] and Sandewall [1986] pointed out, the

16



need to write exceptional cases explicitly into the inference rules that may be affected by them,
is very impractical; the very point with non-monotonic reasoning and exception links is that we

should not have to perform that chore.

Formulating inheritance hierarchies in normal default theory [Etherington, 1987) proper-
ly handles implicit exceptions but, since the theory generates multiple extensions, one must ap-
peal to Touretzky’s ‘‘inferential distance’’ in order to sort plausible conclusions [e.g.,
I (penguin , —fly), Figure 2] from implausible ones [e.g., [ (penguin, fly), Figure 2]. This still
leaves plausible and some ambiguous conclusions indistinguishable, unless one is willing to en-

list and intersect all ‘‘credulous’’ extensions.

The probabilistic semantics offered in this report promises to overcome some of the
difficulties mentioned. First, it bases its decisions on denotational rather than operational seman-
tics. Second, plausibility criteria are formally defined and are not subject to subjective disputa-
tion. Third, it explicates the assumptions underlying inheritance reasoning and renders them em-
pirically testable. Fourth, it leads to derivational algorithms whose correctness can be verified

formally.

Some readers may object to the very idea of basing common-sense reasoning on proba-
bility calculus. The usual argument is that ““typicality’’ has nothing to do with frequency of oc-
currence, it is more of a mental disposition along the line of ‘‘In the absence of any information
to the contrary, assume the form ... *’ [Brachman, 1985]. Thus, why should dispositions be com-

bined like frequencies?
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True, if one is utterly determined to confine oneself to covert mental dispositions, ob-
livion to how they come about, one is welcome to treat the sentence ‘P (fly |bird)=1-¢" just
as such, meaning that in the absence of information to the contrary, Tweety’s birdness evokes
readiness to presume it can fly. Fortunately, the sentence also offers us the option of occasional-
ly going one step further and relating the readiness evoked to our external experience,

confirming that, indeed, most birds do fly.

In other words, what probability theory offers, that alternative logics of mental disposi-
tions have so far ignored, is to connect such dispositions to their experiential origin (e.g., fre-
quency of events) and, more importantly, to propose a calculus of dispositions that mirrors the
features of that origin. Since the latter is open, well understood, coherent and free of contradic-

tions and/or surprises, the hope is that conclusions drawn from such calculus will follow suit.

It is true that *‘typical’’ is not the same as ‘‘usual’’ and that the two are different than
“likely’”. But the differences do not mask the overriding commonality of these quantifiers.

Consider, for example, the four sentences:

L. Elephants typically have trunks (¢ — 1)

2. Trunk-animals nommally love honey (t — k)

3. Elephants usually hate honey (e — —h)

4, Most trunk-animals are elephants (t — ¢)

No matter how one chooses to distinguish the ‘‘most’’ from the ‘‘typical’’ and the ‘‘usual’’ from

the “‘normal,”’ intuition dictates that the first three statements convey an exception while the

18



four convey a contradiction. The fact that probabilistic semantics, unlike other nonmonotonic
logics, formally captures this intuitively sound distinction, demonstrates that even simplistic reli-
ance on frequency interpretation might some time payoff. Additional payoffs lie in providing
clear formal guidance as to what conclusions we wish to draw and whether the algorithms pro-

posed deliver the results expected.

It is hoped, therefore, that the probabilistic semantics proposed in this report will play a

useful role in the development of common-sense reasoning systems.
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