THE OPTIMALITY OF A*

Rina Dechter - September 1987
Judea Pearl CSD-870049



To appearn in Seatcd n NI | Spromsen- \/m,ﬂaa , 1988,
THE OPTIMALITY OF A* +

Rina Dechter and Judea Pearl

Cognitive Systems Laboratory
UCLA Computer Science Department
Los Angeles, CA. 90024-1596

ABSTRACT

This paper examines the computational optimality of A¥*, in the sense of
never expanding a node that could be skipped by some other algorithm having
access to the same heuristic information that A* uses. We define a hierarchy
of four optimality types, and consider three classes of algorithms and four
domains of problem instances relative to which computational performances
are appraised. For each class-domain combination, we then identify the
strongest type of optimality that exists and the algorithm achieving it. Our
main results relate to the class of algorithms which, like A*, return optimal
solutions (i.e., admissible) when all cost estimates are optimistic (i.e., h <h*).
On this class we show that A* is not optimal and that no optimal algorithm
exists, but if we confine the performance tests to cases where the estimates are
also consistent, then A* is indeed optimal. Additionally, we show that A* is
optimal over a subset of the latter class containing all best-first algorithms that
are guided by path-dependent evaluation functions.

1. INTRODUCTION AND PRELIMINARIES

Of all search strategies used in problem solving, one of the most
popular methods of exploiting heuristic information to cut down search time
is the informed best-first strategy. The general philosophy of this strategy is to
use the heuristic information to assess the "merit" latent in every candidate
search avenue exposed during the search, then continue the exploration along
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the direction of highest merit. Formal descriptions of this strategy are usually
given in the context of path searching problems [Nilsson, 1971., Pearl,
1984a] a formulation which represents many combinatorial problems such as
routing, scheduling, speech recognition, scene analysis, and others.

Given a weighted directional graph G with a distinguished start node s
and a set of goal nodes T, the optimal path problem is to find a least-cost path
from s to any member of I" where the cost of the path may, in general, be an

arbitrary function of the weights assigned to the nodes and branches along
that path.

By far, the most studied version of the Best-First strategies is the
algorithm A* [Hart, 1968] which was developed for additive cost measures,
i.e, where the cost of a path is defined as the sum of the costs of its arcs. To
match this cost measure, A* employs an additive evaluation function
fn)=g(n)+h(n), where g(n) is the cost of the currently evaluated path
from s ton and h is a heuristic estimate of the cost of the path remaining
between n and some goal node. A* constructs a tree T of selected paths of G
using the elementary operation of node-expansion, i.e. generating all
successors of a given node. Starting with s, A* selects for expansion that leaf
node of T which has the lowest f value, and only maintains the lowest f -path
to any given node. The search halts as soon as a node selected for expansion
is found to satisfy the goal conditions. It is known that if A(n) is a lower
bound to the cost of any continuation path from » to I, then A* is admissible,
that is, it is guaranteed to find the optimal path. A* is described in Figure 1.



Algorithm A*()
1. Putthe start node, s, on a list called OPEN of unexpanded nodes.
2. IF OPEN is empty, exit with failure; no solution exists.

3. Remove from OPEN a node, 7, at which f=g+h is minimum (break
ties arbitrarily, but in favor of a goal node) and place it on a list called
CLOSED to be used for expanded nodes.

4, If n is a goal node, exit successfully with the solution obtained by
tracing back the path along the pointers from n to s, (pointers are

assigned in Steps 5 and 6).
5. Expand node n, generating all its successors with pointers back to n.
6. For every successorn” of n:

a. Calculate f (n")

b. If n” was neither in OPEN nor in CLOSED, then add it to OPEN.
Assign the newly computed f (n”) to node n”.

c. If n’ already resided in OPEN or CLOSED, compare the newly
computed f (n”) with that previously assigned to n’. If the new
value is lower, substitute it for the old (n” now points back to n
instead of to its predecessor). If the matching node n’ resided in
CLOSED, move it back to OPEN.

7. Go to (2).
Figure 1: Algorithm A*

A Best-First algorithm uses an evaluation function f which may be any
function of the path parameters, not necessarily the additive combination of g
and h. Substituting this function in the description of A* defines the general
class of Best-First algorithms to which (among others) we compare A*. For
an elaborate discussion of best-first strategies see [Dechter 1985].

‘“Our definition of A* is identical to that of [Nilsson 1971.} and is at variance with
[Nilsson 1980). The latter regards the requirement 2 < 2* as part of the definition of A*,
otherwise the algorithm is called A. We found it more convenient to follow the tradition
of identifying an algorithm by how it processes input information rather than by the type of
information that it may encounter. Accordingly, we assii'n the symbol A* to any best-first
algorithm which uses the additive combination f = g+, placing no restriction on #, in
line with the more recent literature [Barr 1981, Bagchi 1983, Pearl 1984b]



In this paper, our aim is to examine under what conditions A*
(employing f =g +h) is computationally optimal over other search algorithms
which are provided with the same heuristic information 4 and are guaranteed
to find solutions comparable to those found by A*. As a measure of
complexity we will count the number of distinct nodes expanded by the
algorithm. Since a given node can be expanded several times, the measure
chosen is simpler to analyze and in many practical cases (see conclusions) this
measure coincides with the number of expansions.

Notation:

G - directed locally finite graph, G =(V ,E)

C* - The cost of the cheapest solution path.

C (.) - the cost function defined over all solution paths

I’ - a set of goal nodes, [V

Pn,-—nj - A path in G between node n; and nj.

P? - a solution path, i.e., a path in G from s to some goalnode ye I

c(n,n’) - cost of an arc between n and n’, c(n,n")28>0, where § is a
constant.

f () - evaluation function defined over partial paths, i.e., to each node n along
a given path P=s,n,n,,...,n we assign the value fp(n) which is a
shorthand notation for f (s ,n 12, ... 0.

g (n) - The sum of the branch costs along the current path of pointers from n
tos.

g* (n) - The cost of the cheapest path going from s to n

gp (n) - The sum of the branch costs along path P from s to n.

h(n) - A cost estimate of the cheapest path remaining between n and I".

h* (n) - The cost of the cheapest path going from n to I"

k(n,n") - cost of the cheapest path between n and n’

§ - start node
T - A subtree of G containing all the arcs to which pointers are currently
assigned.

2. PREVIOUS WORKS AND THE NOTION OF EQUALLY-
INFORMED

The optimality of A*, in the sense of computational efficiency, has been
a subject of some confusion. The well-known property of A* which predicts
that decreasing errors hA*—h can only improve its performance (result 6 in
[Nilsson 1980] ) has often been interpreted to reflect some supremacy of A*



over other search algorithms of equal information. Consequently, several
authors have assumed that A*’s optimality is an established fact (e.g [Nilsson
1971, Mero 1984]. ). In fact, all this property says is that some A*
algorithms are better than other A* algorithms depending on the heuristics
which guide them. It does not indicate whether the additive rule f =g +h is
the best way of combining g and A, neither does it assure us that expansion
policies based only on g and & can do as well as more sophisticated policies
that use the entire information gathered by the search. These two conjectures
will be examined, and will be given a qualified confirmation.

The first attempt to prove the optimality of A* was carried out by Hart,
Nilsson and Raphael [Hart 1968] and is summarized in [Nilsson 1971.].
Basically, Hart et al. argue that if some admissible algorithm B fails to expand
a node n expanded by A*, then B must have known that any path to a goal
constrained to go through node » is nonoptimal. A*, by comparison, had no
way of realizing this fact because when n was chosen for expansion it
satisfied g(n) +h(n) < C*, clearly advertizing its promise to deliver an
optimal solution path. Thus, the argument goes, B must have obtained extra
information from some extemal source, unavailable to A* (perhaps by
computing a higher value for 4 (n)), and this disqualifies B from being an
"equally informed", fair competitor, to A*,

The weakness of this argument is that it fails to account for two
legitimate ways in which B can decide to refrain from expanding »n based on
information perfectly accessible to A*. First, B may examine the properties
of previously exposed portions of the graph and infer that n actually deserves
a much higher estimate than 4 (n). A*, on the other hand, although it has the
same information available to it in CLOSED, cannot put it into use because it
is restricted to take the estimate k(n) at face value and only judge nodes by
the score g(n)+h(n). Second, B may also gather information while
exploring sections of the graph unvisited by A*, and this should not render B
an unfair, "more informed" competitor to A* because in principle A* too had
an opportunity to visit those sections of the graph. Later (see Figure 4) we
demonstrate the existence of an algorithm B which manages to outperform A*
using this kind of information.

Gelperin [Gelperin 1977] has correctly pointed out that in any
discussion of the optimality of A* one should also consider algorithms which
adjust their 2 in accordance with the information gathered during the search.
His analysis, unfortunately, falls short of considering the entirety of this
extended class, having to follow an over-restrictive definition of equally-



informed. Gelperin’s interpretation of "an algorithm B is never more
informed than A*", instead of just restricting B from using information
inaccessible to A, actually forbids B from processing common information in
a better way than A does. For example, if B is a best-first algorithm guided by
the evaluation function f 5, then in order to qualify for Gelperin’s definition of
“never more informed than A*," B is forbidden from ever assigning to a node
n a value fg(n) higher than g(n)+ h(n), even if the information gathered
along the path to n justifies such an assignment.

In our analysis we will use the natural definition of "equally informed,"
allowing the algorithms compared to have access to the same heuristic
information while placing no restriction on the way they use it. Accordingly,
we assume that an arbitrary heuristic function A (n) is assigned to the nodes of
G and that the value 4 (n) is made available to each algorithm that chooses to
generate node n. This amounts to viewing h (n) as part of the parameters that
specify problem-instances and correspondingly, we shall represent each
problem instance by the quadruple I = (G, s, T, k).

We will demand, however, that A* only be compared to algorithms that
return optimal solutions in those problem instances where their computational
performances are to be appraised. In particular, if our problem space contains
only cases where h(n) < h*(n) for every n in G, we will only consider
algorithms which, like A¥*, return least-cost solutions, in such cases. The
class of algorithms answering this conditional admissibility requirement will
simply be called admissible and will be denoted by A ,4. From this general
class of algorithms we will later examine two subclasses A_ gc ANd Ape. A
denotes the class of algorithms which are globally compatible with A*, i.e.,
they return optimal solutions whenever A* does, even in cases where h > i*.
Ayr stands for the class of admissible Best-First algorithms, i.e., those which,
like A*, conduct their search in a best-first manner, being guided by any
path-dependent evaluation function.

Additionally, we will assume that each algorithm compared to A* uses
the primitive computational step of node expansion, that it only expands
nodes which were generated before, and that it begins the expansion process
at the start node s. This excludes, for instance, bi-directional searches [Pohl
1971] or algorithms which simultaneously grow search trees from several
"seed nodes" across G .



3. NOMENCLATURE AND A HIERARCHY OF OPTIMALITY
RELATION

Our notion of optimality is based on the usual requirement of
Dominance.

Definition: Algorithm A is said to dominate algorithm B relative to a set [ of
problem instances iff in every instance / €, the set of nodes expanded by A is
a subset of the set of nodes expanded by B. A strictly dominates B iff A
dominates B and B does not dominate A, i.e., there is at least one instance
where A skips a node which B expands, and no instance where the opposite
occurs,

This definition is rather stringent because it requires that A establishes
its superiority over B under two difficult tests:

1. expanding a subset of nodes rather than a smaller number of nodes

2. outperform B in every problem instance rather than the majority of
instances

Unfortunately, there is no easy way of loosening any of these requirements
without invoking statistical assumptions regarding the relative likelihood of
instances in /. In the absence of an adequate statistical model, requiring
dominance remains the only practical way of guaranteeing that A expands
fewer nodes than B, because if in some problem instance we would allow B to
skip even one node that is expanded by A, one could immediately present an
infinite set of instances where B grossly outperforms A. (This is normally
done by appending to the node skipped a variety of trees with negligible costs
and very low h).

Adhering to the concept of dominance, the strong definition of
optimality proclaims algorithm A optimal over a class A_of algorithms iff A
dominates every member of A. Here the combined multiplicity of A and [
also permits weaker definitions, for example, we may proclaim A weakly
optimal over A if no member of A strictly dominates A. The spectrum of
optimality conditions becomes even richer when we examine A*, which
stands for not just one but a whole family of algorithms, each defined by the
tie-breaking-rule chosen. We chose to classify this spectrum into the
following four types (in a hierarchy of decreasing strength):

Type 0: A* is said to be 0-optimal over A relative to [ iff in every problem



instance

Iel every tie-breaking-rule in A* expands a subset of the nodes
expanded by any member of A. (In other words, every tie-breaking-
rule dominates all members of A.)

Type 1: A* is said to be 1-optimal over A relative to / iff in every problem
instance / €/ there exists at least one tie-breaking-rule which expands a
subset of the set of nodes expanded by any member of A .

Type 2: A* is said to be 2-optimal over A relative to [ iff there exists no
problem instance /e where some member of A expands a proper
subset of the set of nodes which are expanded by some tie-breaking-
rule in A*,

Type 3: A* is said to be 3-optimal over A relative to [ iff the following
holds: if there exists a problem instance / €/ where some algorithm
BeA skips a node expanded by some tie-breaking-rule in A*, then
there must also exist some problem instance /,e/ where that tie-
breaking-rule skips a node expanded by B. (In other words, no tie-
breaking-rule in A* is strictly dominated by some member of A)

Type-1 describes the notion of optimality most commonly used in the
literature, and it is sometimes called "optimal up to a choice of a tie-
breaking-rule”. Note that these four definitions are applicable to any class of
algorithms, B, contending to be optimal over A; we need only replace the
words "tie-breaking-rule in A*" by the words "member of B". If B turns out
to be a singleton, then type-0 and type-1 collapse to strong optimality. Type-3
will collapse into type-2 if we insist that /| be identical to / ». Note also that
the hierarchy is not strict, since type-1 does not necessarily imply type-2.

We are now ready to introduce the four domains of problem instances
over which the optimality of A* is to be examined. The first two relate to the
admissibility and consistency of 2 (n).

Definition: A heuristic function h(n) is said to be admissible on (G ,I) iff
h{n)<h*(n)foreveryneG

Definition: A heuristic function 4 (n) is said to be consistent (or monotone) on
G iff for any pair of nodes, n” and n, the triangle inequality holds:



h(n)ySk(n’,n)+h(n) (1)

Corresponding to these two properties we define the following sets of problem
instances:

Lip ={(G ,$,I;h) | h<h* on (G ,F)} 2

Lon ={(G ,$,I;h) | h is consistent on G} (3)

Clearly, consistency implies admissibility [Pearl 1984b] but not vice versa,
therefore, Loon S Iap

A special and important subset of [, (and L-on), called non-
pathological instances, are those instances for which there exists at least one
optimal solution path along which 4 is not fully informed, that is, k <k* for
every non-goal node on that path. The non-pathological subsets of ., and
Lcon will be denoted by [, and [y, respectively. The term
“‘pathological’’ should not connote ‘‘rareness’’; many real world problems
contain such situations when the node is very close to the goal. However, in
practice this occurs only when the node is very close to the goal.

It is known that if & < h*, then A* expands every node reachable from
s by a strictly C*-bounded path, regardless of the tie-breaking rule used. The
set of nodes with this property will be referred to as surely expanded by A*.
In general, for an arbitrary constant d and an arbitrary evaluation function f
over (G,s, T, h),weletN F denote the set of all nodes reachable by a path
from s whose f values are strictly d-bounded. For example, N gh is a set of
nodes surely expanded by A* in some instance of [ 5y .

The importance of non-pathological instances lies in the fact that in
such instances the set of nodes surely expanded by A* are indeed all the
nodes expanded by it. Therefore for these instances any claim regarding the
set of nodes surely expanded by A* can be translated to "the set of all the
nodes" expanded by A*. This is not the case, however, for pathological
instances in / ,p; N gc:h is often a proper subset of the set of nodes actually
expanded by A*. If & is consistent, then the two sets differ only by nodes for
which A(n)=C*—-g*(n) [Pearl 1984b]. However, in cases where 2 is

inconsistent, the difference may be very substantial; each node n for which



h(n)=C*—g*(n) may have many descendents assigned lower A values
(satisfying h+g<C*) and these descendents may be expanded by every tie-
breaking-rule of A* even though they do not belong to N gc:h.

In the following section we present several theorems regarding the
behavior of competing classes of algorithms relative to the set N gc:h of nodes
surely expanded by A*, and will interpret these theorems as claims about the
type of optimality that A* enjoys over the competing classes. Moreover, for
any given pair (A,l) where A is a class of algorithms drawn from

A Apr A gc and I is a domain of problem instances from

Lip.1 ZD’LCON’!-C_ON}’ we will determine the strongest type of

optimality that can be established over A relative to /, and will identify the
algorithm that achieves this optimality. The relationships between these
classes of algorithms and problem domains are shown in Figure 2. The
algorithm A** is an improvement over A* discussed in the Appendix.

Clasass of Algorithms
1,p° h scmissible
Al-
e
120 h samissibie
nonpathoiogical
1epn . h consistent
‘oon: h consistent
nonpathological Ay Age: Ay :
admissibls globally compatibie bast-first
ont,g with A®

Figure 2 - The classes of algorithm and the problem instances
for which the optimality of A* is examined.



4. WHERE AND HOW IS A* OPTIMAL?

4.1 Optimality Over Admissible Algorithms, A

ad

Theorem 1:

Any algorithm that is admissible on [ ap Will expand, in every instance
Ielcon, all nodes surely expanded by A*.

Proof:

Let /=(G,s,I',h) be some problem instance in I~on and assume that n is

surely expanded by A*, ie., neN. gC:h. Therefore, there exists a path P,_,
such that

W'eP_, ,gn)+hin’)<C* @

Let B be an algorithm compatible with A*, namely halting with cost C*in /.
G

Figure 3 - The graph G represents a new problem instance constructed by
appending to n a branch leading to a new goal node ¢.

Assume that B does not expand n. We now create a new graph G’ (see
figure 3) by adding to G a goal node ¢ with 4(¢)=0 and an edge from n to ¢
with non-negative cost c =h (n )+A, where

A=1/2(C*-D)>0 (3

and
D =max{f(n') | n'ezigh} (6)

This construction creates a new solution path P* with cost at most C*-A and,



simi. . .eously, (due to A’s consistency on /) retains the consistency (and
admissibility) of £ on the new instance /’. To establish the consistency of
in /” we note that since we kept the » values of all nodes in G unchanged,
consistency will continue to hold between any pair of nodes previously in G.
It remains to verify consistency on pairs involving the new goal node ¢,
which amounts to establishing the inequality 4 (n") < k(n’,t) for every node
n’ in G. Now, if at some node n’ we have h(n’)> k(n’,t) then we should
also have:

h(n)y>k(n'n)+c=k(n’n)+h(n)+A (7)

in violation of 4 ’s consistency on /. Thus, the new instance is also in [con-

In searching G, algorithm A* will find the extended path P« costing
C*-A, because:

f@=gn)rc=f(n)+ASD +A=C*-A < C* (8)

and so, ¢ is reachable from s by a path bounded by C*-A which ensures its
selection. Algorithm B, on the other hand, if it avoids expanding n, must
behave the same as in problem instance 7, halting with cost C* which is
higher than that found by A*. This contradicts the supposition that B is both
admissible on I/ and avoids the expansion of node n.

O

The implications of Theorem 1 relative to the optimality of A* are
rather strong. In non-pathological cases /€5y A* never expands a node
outside N gC:h and, therefore, Theorem 1 establishes the 0-optimality of A*
over all admissible algorithms relative to [5qy. In pathological cases of
I con there may also be nodes satisfying f (n )=C * that some tie-breaking-rule
in A* expands and, since these nodes are defined to be outside N. gc,;h, they
may be avoided by some algorithm BeA 4, thus destroying the 0-optimality
of A* relative to all I con- However, since there is always a tie-breaking-rule
in A* which, in addition to N. gc:h, expands only nodes along one optimal path,
Theorem 1 also establishes the 1-optimality of A* relative the entire [on
domain. Stronger yet, the only nodes that A* expands outside IigC;h are those
satisfying f (n)=C*, and since this equality is not likely to occur in many
nodes of the graph, we may interpret Theorem 1 to endow A* with "almost”
0O-optimality (over all admissible algorithms) relative to gy -



The proof of Theorem 1 makes it tempting to conjecture that A* retains
the same type of optimality relative to cases where h is admissible but not
necessarily consistent. In fact, the original argument of Hart, Nilsson and
Raphael {Hart 1968] that no admissible algorithm equally informed to A* can
ever avoid a node expanded by A* (see Section 2), amounts to claiming that
A* is at least 1-optimal relative to [ 5. Similar claims are made by Mero
[Mero 1984] and are suggested by the theorems of [Gelperin 1977].

Unfortunately, Theorem 1 does not lend itself to such extension: if 4 is
admissible but not consistent, then after adding the extra goal node t to G (as
in Figure 3) we can no longer guarantee that # will remain admissible on the
new instance created. Furthermore, we can actually construct an algorithm
that is admissible on / o, and yet, in some problem instances, it will grossly
outperform every tie-breaking-rule in A*. Consider an algorithm B guided by
the following search policy: Conduct an exhaustive right-to-left depth-first
search but refrain from expanding one distinguished node n, e.g., the
leftmost son of 5. By the time this search is completed, examine n to see if it
has the potential of sprouting a solution path cheaper than all those discovered
so far. If it has, expand it and continue the search exhaustively. Otherwise,®
return the cheapest solution at hand. B is clearly admissible: it cannot miss an
optimal path because it would only avoid expanding » when it has sufficient
information to justify this action, but otherwise will leave no stone unturned.
Yet, in the graph of Figure 4a, B will avoid expanding many nodes which are
surely expanded by A*. A* will expand node J, immediately after s
(f (J1)=4) and subsequently will also expand many nodes in the subtree
rooted at /. B, on the other hand, will expand J 4, then select for expansion
the goal node ¥, continue to expand J, and at this point will halt without
expanding node J,. Relying on the admissibility of %, B can infer that the
estimate h(J,)=1 is overly optimistic and should be at least equal to
h(J»)—-1=19, thus precluding J, from lying on a solution path cheaper than
the path (s ./ 3,Y) at hand.

Granted that A* is not 1-optimal over all admissible algorithms relative
to I op, the question arises if a 1-optimal algorithm exists altogether. Clearly,
if a 1-optimal algorithm exists, it would have to be better than A* in the sense
of skipping in some problem instances, at least one node surely expanded by
A* while never expanding a node which is surely skipped by A*. Note that

Da simple valid test for skipping a node in [ ,p isthatmax { g(n )+ h(n’) | n’} on
some path P from s tonn be larger than the cost of the cheapest solution at hand.



algorithm B above could not be such an optimal algorithm because in return
for skipping node J in Figure 2.6a, it had to pay the price of expanding J ,,
and J, will not be expanded by A* regardless of the tie-breaking-rule
invoked. If we could show that this "node tradeoff" pattern must hold for
every admissible algorithm and on every instance of [ AD» then we would
have to conclude both that no 1-optimal algorithm exists and that A* is 2-
optimal relative to this domain. Theorem 2 accomplishes this task relative to

TN

{a) (b)

Figure 4 - Graphs demonstrating that A* is not optimal.

Theorem 2:

If an admissible algorithm B does not expand a node which is surely
expanded by A* in some problem instance where 4 is admissible and non-
pathological, then in that very problem instance B must expand a node which
is avoided by every tie-breaking-rule in A*,

Proof:

Assume the contrary, i.e., there is an instance / =(G ,s,I',h) € I s, such that a
node n which is surely expanded by A* is avoided by B and, at the same time,
B expands no node which is avoided by A*, we shall show that this
assumption implies the existence of another instance /' € [ ., where B will
not find an optimal solution. I’ is constructed by taking the graph G, exposed
by the run of A* (including nodes in OPEN) and appending to it another edge



(n,1) to a new goal node ¢, with cost ¢ (n,t)=D ~k, (5 .n) where
D=max{f(n’) ln’e A_chjh} 9)
and &, (n’,n) is the cost of the cheapest path from n” to n in G,.

Since G contains an optimal path P* _y along which k(n")<h* (n")
(with the exception of y and possibly s ), we know that because ties are broken
in favor of goal nodes A* will halt without ever expanding a node having
f(n)=C+. Therefore, every nonterminal node in G, must satisfy the strict
inequality g (n)+h (n)<C+.

We shall first prove that I’ is in [ ,p,, ie., that h(n’) <h*An’) for
every node n” in G,. This inequality certainly holds for n’ such that
g(n)+h(n") 2 C* because all such nodes were left unexpanded by A* and
hence appear as terminal nodes in G, for which h* (n")=cc (with the
exception of v, for which h (y)=h *1(Y)=0). It remains, therefore, to verify the
inequality for nodes n’ in N, gc,m for which we have g(n)+h(n) <D.
Assume the contrary, that for some n’ € N gc_,_h we have h(n")y>h*;{n"). This
implies

h(ny>k,(n’.n)+c(n,t) (10)
=k,(n’n)+D —k,(s,n)

2k, (n'n)+k,(s,n)+h(n")—k,(s,n)

or
ky(s.n)>k,(n"n)+k,(s,n") (11)

in violation of the triangle inequality for cheapest paths in G,. Hence, I’ is in
Lap-

- Assume now that algorithm B does not generate any node outside G, .
If B has avoided expanding » in /, it should also avoid expanding » in I”; all
decisions must be the same in both cases since the sequence of nodes
generated (including those in OPEN) is the same. On the other hand, the
cheapest path in /" now goes from s to n to ¢, having the cost D<C+*, and
will be missed by B. This violates the admissibility of B on an instance in
I op and proves that B could not possibly avoid the expansion of n without

generating at least one node outside G,. Hence, B must expand at least one
node avoided by A* in this specific run. a



Theorem 2 has two implications. On one hand it conveys the
discomforting fact that neither A* nor any other algorithm is 1-optimal over
those guaranteed to find an optimal solution when given A<h*. On the other
hand, Theorem 2 endows A* with some optimality property, albeit weaker
than hoped; the only way to gain one node from A* is to relinquish another.
Not every algorithm enjoys such strength. These implications are
summarized in the following Corollary.

Corollary I: No algorithm can be 1-optimal over all admissible algorithms
relative to [ o, but A* is 2-optimal over this class relative to [ AD-

The fact that Theorem 2 had to be limited to non-pathological instances
is explained by Figure 4b, showing an exception to the node-tradeoff rule on a
pathological instance. Algorithm B does not expand a node (/1) which must
be expanded by A* and yet, B does not expand any node which A* may skip.
This example implies that A* is not 2-optimal relative to the entire / AD
domain and, again, this begs the questions whether there exists a 2-optimal
algorithm altogether, and whether A* is at least 3-optimal relative to this
domain,

The answer to both questions is, again, negative; another algorithm that
we shall call A**, tumns out both, to strictly dominate A* and to meet the
requirements for type-3 optimality relative to / AD- A** conducts the search
in a manner similar to A*, with one exception; instead of fn)=g(n)+h(n),
A** uses the evaluation function:

f(n)=max{g(n')+h(n')ln’ on the current path ton} (12)

This, in effect, is equivalent to raising the value of % (n) to a level where it
becomes consistent with the h’s assigned to the ancestors of n [Mero 1984].
A** chooses for expansion the nodes with the lowest f value in OPEN
(breaking ties arbitrarily but in favor of goal nodes) and adjusts pointers along
the path having the lowest g value. In figure 4a, for example, if A** ever
expands node J, then its son J, will inmediately be assigned the value
f 1) =21 and its pointer be directed toward J ,.



it is possible to show (see Appendix) that A *¥* is admissible and that in
non-pathological cases A** expands the same set of nodes as does A*,
namely the surely expanded nodes in N ,gh- In pathological cases, however,
there exist tie-breaking-rules in A** (hat strictly dominate every tie-
breaking-rule in A*. This immediately precludes A* from being 3-optimal
relative to / , 1, and nominates A** for that title,

Theorem 3:

Let a** be some tie-breaking-rule in A** and B an arbitrary algorithm,
admissible relative to / Ap- If in some problem instance 7 1€Lap, B skips a
node expanded by a** then there exists another instance /,e/ AD Where B
expands a node skipped by a**,

Proof:
Let

SA=n1,n2,....nk,J (13)
and

SB =n1,n2,....nk,K (14)

be the sequences of nodes expanded by a** and B, respectively, in problem
instance /€1 ,p,, ie., K is the first node in which the sequence Sy deviates
from S§,. Consider G,, the explored portion of the graph just before a**
expands node J. That same graph is also exposed by B before it decides to
expand K instead. Now construct a new problem instance /, consisting of G,
appended by a branch (J,t) with cost clt)=FfU )-g(J), where ¢ is a goal
node and f(J) and g(J) are the values that a** computed for J before its
expansion. [ pis alsoin/ AD because 4 (7)=0 and C (/,t) are consistent with
h(J) and with the & s of all ancestors of J in G, . For if some ancestor n; of J
satisfies A (n;) > h* (n;) we will obtain a contradiction:

8(";)+h(n,-)>g(n,-)+h*(ni) (15)
=8 +k,(n; J)+c (U 1)
28()+c )

=f(J)Emgx [g(nj) +h(nj)]
J

Moreover, a** will expand in 7 2 the same sequence of nodes as it did in / 1
until  J is expanded, at which time ¢ enters OPEN with
f@)=max[g()+ c(J.t), f()] =f(/). Now, since J was chosen for



expansion by virtue of its lowest f value in OPEN, and since a** always
breaks up ties in favor of a goal node, the next and final node that a** expands
must be ¢. Now consider B. The sequence of nodes it expands in / 5 is
identical to that traced in /, because, by avoiding node J, B has no way of
knowing that a goal node has been appended to G,. Thus, B will expand K
(and perhaps more nodes on OPEN), a node skipped by a**.

O

Note that the special evaluation function used by A**

f(n)y=maxqg(n)+h(n’) | n”on P,_,  was necessary to ensure that the

new instance, /,, remains in / .. The proof cannot be carried out for A*
because the evaluation function f(n)=g(n)+h(n) results in c(J,t)=h(J),
which may lead to violation of A (n;) £ h*(n;) for some ancestor of J.

Theorem 3, together with the fact that its proof makes no use of the
assumption that B is admissible, gives rise to the following conclusion:

Corollary 2: A** is 3-optimal over all algorithms relative to [ AD-

Theorem 3 also implies that there is no 2-optimal algorithm over A 4
relative to [ ,,. From the 3-optimality of A** we conclude that every 2-
optimal algorithm, if such exists, must be a member of the A** family, but
figure 4b demonstrates an instance of [ ,r, where another algorithm (B) only

expands a proper subset of the nodes expanded by every member of A**.
This establishes the desired conclusion:

Corollary 3: There is no 2-optimal algorithm over A 4 relative to [ 4y
4.2 Optimality Over Globally Compatible Algorithms, Ay

So far our analysis was restricted to algorithms in A 4, i.e., those which
return optimal solutions if A(n)<h*(n) for all n, but which may return
arbitrarily poor solutions if there are some n for which h(n)>h*(n). In
situations where the solution costs are crucial and where & may occasionally
overestimate A * it is important to limit the choice of algorithms to those which
return reasonably good solutions even when h>h*. A*, for example, provides
such guarantees; the costs of the solutions returned by A* do not exceed C* +
A where A is the highest error A*(n )—h (n) over all nodes in the graph [Harris
1974] and, moreover, A* still returns optimal solutions in many problem



instasices, i.e., whenever A is zero along some optimal path. This motivates
the definition of A gc» the class of algorithms globally compatible with A*,
namely, they return optimal solutions in every problem instance where A*
returns such solution.

Since A, is a subset of A4, we should expect A* to hold a stronger
optimality status over A ., at least relative to instances drawn from [ ,,. The
following Theorem confirms this expectation.

Theorem 4:
Any algorithm that is globally compatible with A* will expand, in problem
instances where h is admissible, all nodes surely expanded by A*.

Proof:
LetI =(G,s,I',h) be some problem instance in [ Ap and letnode n be surely
expanded by A*, i.e., there exists a path P,_, such that

gn)+h(n)<C* foralln’e P,_, (16)

Let D = max{ fnYln'e Ps_n} and assume that some algorithm BeA

fails to expand n. Since I € [ 4, both A* and B will return cost C*, while
D <C+.

We now create a new graph G’, as in figure 3, by adding to G a goal
node ¢ with £(¢:")=0 and an edge from n to ¢’ with non-negative cost
D-g(P,_,). Denote the extended path P;_,_,» by P*, and let
1"=(G’',s,'Ut’,h) be a new instance in the algorithms’ domain. Although h
may no longer be admissible on /’, the construction of /” guarantees that
f(n")<D ifn” € P*. Therefore, there will always be an OPEN node with
f(n)<D and, algorithm A* searching G’ will find an optimal solution path
with cost C, <D . Algorithm B, however, will search /” in exactly the same
way it searched [; the only way B can reveal any difference between / and I’
is by expanding n. Since it did not, it will not find solution path P *, but will
halt with cost C *>D , the same cost it found for / and worse than that found by
A*. This contradicts its property of being globally compatible with A*.

a



Corollary 4:
A¥*is 0-optimal over A ;. relative to [ ;.

The corollary follows from the fact that in non-pathological instances
A* expands only surely expanded nodes.

Corollary 5:
A* is 1-optimal over A_ gc relative to [ , .

Proof:
The proof relies on the observation that for every optimal path P* (in any
instance of [ ,p) there is a tie-breaking-rule of A* that expands only nodes
along P* plus perhaps some other nodes having g(n) + h(n) < C», i.c., the
only nodes expanded satisfying the equality g(n)+h(n)=C=* are those on
P*. Now, if A* is not 1-optimal over Ay then, given an instance /, there
exists an algorithm BeA ;. such that B avoids some node expanded by all
tie-breaking-rules in A*. To contradict this supposition let A * be the tie-
breaking-rule of A* that returns the same optimal path P* as B retumns, but
expands no node outside P* for which g(n) + A(n)=C*. Clearly, any node
n which B avoids and A * expands must satisfy g(r) + h(n) <C* We can
now apply the argument used in the proof of Theorem 4, appending to n a
branch to a goal node ¢, with cost ¢ (n,t")=h(n). Clearly, A ¥ will find the
optimal path (s,n,t”) costing g (n) + h(n) < C*, while B will find the old path
costing C*, thus violating its global compatibility with A*.

O
4.3 Optimality Over Best-First Algorithms, A,

The next result establishes A*’s optimality over the set of best-first
algorithms which are admissible if provided with h<h*. These algorithms
will be permitted to employ any evaluation function fp where fis a function
of the nodes, the edge-costs, and the heuristic function 4 evaluated on the
nodes of P, i.e.

fp B f(siming....n)=Ff(n}, fcrn )b (R} | mieP). (17)

Lemma 1:
Let B be an admissible Best-First algorithm using an evaluation function fg
such that for every (G .s ,I',h) € Loy fp satisfies:



fP‘_,=f(s,n1,n2,...,y)zC(P‘-‘) WeT. (18)

Where P/ as any solution path in G. If B is admissible on / AD- then
N gC:h cN f(;*. That is, the set of nodes reachable from s by a path whose

g+h values are strictly less then C* is contained in those who are reachable
by a path whose f values are strictly bounded by C*.

Proof:

Let I=(G,s,I',h) € [ op and assume n ellgc:h but n éI_V__cé‘, i.e., there exists a
path P;_, such that foreveryn’e P, _,

gp(n)+ h(n") < C*and for some n ‘eP,_, fgn")2C+.

Let
Q = max {g(n Y (n ')} (19)
Qp = max {fg (n ')} (20)
n‘eP, ,

Obviously: Q < C* and Qp >C* = Qp>0. Define G’ to include path P,
with two additional goal nodes ¢,t, as described by figure 5. The cost on
+Q

82 , the cost on edge (n,t)) is Q—gp,_(n), t; and ¢, are
assigned £ ’=0 while all other nodes retain their old #. I'=(G’,s," U {tt5},h)
€ [np since W', n’eP,_,, g(n)+h(n)<Q which implies that
h(n")<Q —g (n")=h*;(n").

edge (s,t,) is

Qg + Q t2
2 Q-g {n}

Ps—n
t
= 5 n 1
¢= o—o .G—GZO

| ————
P

Figure 5 - A graph showing that any admissible best-first algorithm
must assign f 5 (n }<C* to every node n along P,_,.

Obviously the optimal path in G’ is P;_, with cost Q. However, the
evaluation function f 5 satisfies



05 +Q
fa=CP, )= === <, @

Therefore, B, as a Best-First algorithm, will expand ¢, before expanding »
implying that B halts on the suboptimal path P;_,,, thus contradicting its
admissibility.

.
Theorem §:

Let B be a Best-First algorithm such that f satisfies the property of Lemma
1.

a.  If B is admissible over / ,, then B expands every node in N gc,,,‘h.

b.  If Bis admissible over I s, and f is of the form:
fp,_(n)=F(gp_(n), h(n)) (22)

then F (x,y)sx+y.

® tq
gp(n) h(n)

Figure 6 - A graph demonstrating that an admissible best-first algorithm
cannot assign to any node a value f(n) =F[g(n),h(n)] greater then g(n) = h(n).

Proof:

a. A Best-First algorithm that satisfy the property of lemma 1 must
expand all nodes in Nf.". This is so because immediately before the
algorithm terminates it expands a goal node whose fz value is equal to
the cost of the path (due to condition (18)) and this cost is no smaller
then C*. Therefore all paths strictly bounded by C* must have been

selected for expansion before. From that and from lemma 1 it follows
that an admissible B expands all the nodes in N f:h

b. Assume to the contrary that there is a path P and a node ne P such that



Fgp(n)h(n))>gp(n)+h(n) (23)

Let a=F (gp(n),h(n)), a,=gp(n)+h(n). Obviously,

a 1+a 2
2

nodes s,7,¢,¢ and edges (s,7), (r,ty), (s 5) with costs C(s,r)=gp(n),

al+az
Clrtd=h(n), C(s.ty)= 5 Let I=(G ,s,{t,t5},h) where h(s)=0,

h(r)=h(n)and h(t,)=h(t,)=0. Obviously! e [ Ap- However,
+a

Ay < <aj. Let G be a graph as shown in Figure 6 having

fo(r)=FEpyhm)=a;> =2 cc(s )= faty  (24)

implying that B halts on solution path P;_,, again contradicting its
admissibility.
O

Corollary 6:
A* is 0O-optimal over Ay; relative to / 7, and 1-optimal relative to Lon-
A** is 1-optimal over Ay relative to [ ,y.

.

An interesting implication of Part b of Theorem 5 asserts that any
admissible combination of g and k, h<h+*, will expand every node surely
expanded by A*. In other words, the additive combination g+h is, in this
sense, the optimal way of aggregating g and 4 for additive cost measures.

The O-optimality of A* relative to nonpathological instances of [ AD
also implies that in these instances g (n) constitutes a sufficient summary of
the information gathered along the path from s to n. Any additional
information regarding the heuristics assigned to the ancestors of n, or the
costs of the individual arcs along the path, is superfluous, and cannot yield a
further reduction in the number of nodes expanded. Such information,
however, may help reduce the number of node evaluations performed by the
search (see [Martelli 1977, Bagchi 1983] and [Mero 1984]. ).

4.4 Summary And Discussion
Our results concerning the optimality of A* are summarized in Table 1.

For each class-domain combination from Figure 2, the table identifies the
strongest type of optimality that exists and the algorithm achieving it.



Domain
of
Probilem

Instances

Class of Algorithms

Admissible Globally Compatible Best-First
if h=h” with A*
Ald Agc Ay

Aamissible A*" is 3-optimal A" is 1-optimal A" is 1-gptimal

|

AD No 2-optimal exists | No O-optimai exists | No O-optimal exists
Admissible

ang A" is 2-optimal

nonpathologicai

IZ0

No t-optimal exists

A°* is Q-gptimal

A" is Q-optimat

Consistent A" is 1-optimal A" is 1-gptimai A* is 1-optimal
Icon No 0-optimal exists | No 0-optimal exists | No 0-optimal exists
Consistent

nonpatholagical

Icon

A® is J-gptimal

A* is Q-optmai

A® is Q-optumal

TABLE1




The most significant results are those represented in the left-most
column, relating to A 4, the entire class of algorithms which are admissible
whenever provided with optimistic advice. Contrary to prevailing beliefs A*
turns out not to be optimal over A,; relative to every problem graph
quantified with optimistic estimates. There are admissible algorithms which,
in some graphs, will find the optimal solution in just a few steps whereas A*
(as well as A** and all their variations) would be forced to explore arbitrary
large regions of the search graphs (see Fig. 4a). In bold defiance of Hart,
Nilsson, and Raphael’s [Hart 1968] argument for A*’s optimality, these
algorithms succeed in outsmarting A* by penetrating regions of the graph that
A* finds unpromising (at least temporarily), visiting some goal nodes there,
then processing the information gathered to identify and purge those nodes on
OPEN which no longer promise to sprout a solution better than the cheapest
one at hand.

In nonpathological cases, however, these algorithms cannot outsmart
A* without paying a price. The 2-optimality of A* relative to [ Ap means that
each such algorithm must always expand at least one node which A* will
skip. This means that the only regions of the graph capable of providing
node-purging information are regions which A* will not visit at a/l. In other
words, A* makes full use of the information gathered along its search and
there could be no gain in changing the order of visiting nodes which A* plans
to visit anyhow.

This instance-by-instance node tradeoff no longer holds when
pathological cases are introduced. The fact that A* is not 2-optimal relative to
[op means that some smart algorithms may outperform A* by simply
penetrating certain regions of the graph earlier than A* (A* will later visit
these regions), thus expanding only a proper subset of the set of nodes
expanded by A*. In fact the lack of 2-optimality in the (A4, ,p) entry of
table 1 means that no algorithm can be protected against such smart
competitors; For any admissible algorithm A ,, there exists another admissible
algorithm A , and a graph G quantified by optimistic heuristic 4 (h < A*) such
that A, expands fewer nodes than A ; when applied to G. Mero [Mero 1984]
has recently shown that no optimal algorithm exists if complexity is measured
by the number of expansion operations (a node can be reopened several
times). Our result now shows that A, remains devoid of an optimal
algorithm even if we measure complexity by the number of distinct nodes
expanded.



The type-3 optimality of A** over A 4 further demonstrates that those
"smart’ algorithms which prevent A* from achieving optimality are not smart
after all, but simply lucky; each takes advantage of the peculianty of the
graph for which it was contrived and none can maintain this superiority over
all problem instances. If it wins on one graph there must be another where it
is beaten, and by the very same opponent, A**. It is in this sense that A** is
3-optimal, it exhibits a universal robustness against all its challengers.

Perhaps the strongest claim that Table 1 makes in favor of A* is
contained in the entries related to / gy , the domain of problems in which 4 is
known to be not only admissible, but also consistent. It is this domain that
enables A* to unleash its full pruning powers, achieving a node-by-node
superiority (types O, if non-pathological and otherwise type 1 ) over all
admissible algorithms. Recalling also that, under consistent k, A* never
reopens closed nodes and that only few nodes are affected by the choice of
tie-breaking-rule (see [Pearl 1984b] ), we conclude that in this domain A*
constitutes the most effective scheme of utilizing the advice provided by 4.

This optimality is especially significant in light of the fact that
consistency is not an exception but rather a common occurrence; almost all
admissible heuristics invented by people are consistent. The reason is that the
technique people invoke in generating heuristic estimates is often that of
relaxation; we imagine a simplified version of the problem at hand by
relaxing some of its constraints, solve the relaxed version mentally, then we
use the cost of the resulting solution as a heuristic for the original problem
[Pearl 1983] It can be shown that any heuristic generated by such a process is
automatically consistent, which explains the abandon of consistent cases
among human-generated heuristics. Thus, the strong optimality of A* under
the guidance of consistent heuristics implies, in effect, its optimality in most
cases of practical interest.



APPENDIX : Properties of A**

Algorithm A** is a variation of A*. It can be viewed as a Best-First
algorithm that uses an evaluation function:

f'P’_n(n)=max{f(n’)-_-gps_n("’)+h(ﬂ’) I n’e Ps_n}

A** differs from A* in that it relies not only on the g+h value of
node n, but also considers the g+h values along the path from s to n. The
maximum is then used as a criterion for node selection. Note that A**
cannot be considered a BF* algorithm since it uses one function, f*, for
ordering nodes for expansion (step 3) and a different function g for
redirecting pointers (step 6¢c). Had we allowed A** to use f’ for both
purposes it would not be admissible relative to [ ,,, since £’ is not order
preserving.

We will now show that A** is admissible over [ , 5.

Theorem:

Algorithm A** will terminate with an optimal solution in every problem
instance where h <h*

Proof:
Suppose the contrary. Let C be the value of the path P,_, found by A** and
assume C>C*,

We will argue that exactly before A** chooses the goal node ¢ for
expansion, there is an OPEN node n” on an optimal path with f’(n") < C=.
If we show that, than obviously A** should have selected n’ for expansion
and not ¢, since f’(n") < C* < C = f’(t), which yields a contradiction.

Since A** redirects pointers according to g, the pointer assigned to
the shallowest OPEN node n" along any optimal path is directed along that
optimal path. Moreover, h<h* implies that such a node satisfies
fi(nH<Cx, and this completes our

argument.



a) For every tie-breaking-rule of A* and for every problem instance
I el Ap, there exists a tie-breaking-rule for A** which expands a subset
of the nodes expanded by A*. Moreover,

b)  There exists a problem instance and a tie-breaking-rule for A** that
expands a proper subset of the nodes which are expanded by any tie-
breaking-rule of A*,

Proof: Part a

From the definition of f” it is clear that all paths which are strictly bounded
below C=* relative to f are also strictly bounded below C* relative to f.
Therefore, both algorithms have exactly the same set of surely expanded
nodes, N¢p"=N fC;‘, and this set is expanded before any node outside this set.
Let n» be the first node expanded by A* satisfying the equality f (n*)=C*
Exactly before n* is chosen for expansion all nodes in N fC* were already
expanded. A**, after expanding those nodes also has n* in OPEN with
f(n*)=C*; there exists, therefore, a tie-breaking-rule in A** which will also
choose n* for expansion. From that moment on, A* will expand some
sequence n*,ny,n,,ng3, -+ ¢t for which f(n;) <C*. Since on these nodes
f’(n;)=C*, it is possible for A** to use a tie-breaking-rule that expands
exactly that same sequence of nodes until termination.

Part b
Examine the graph of Figure 7.
n, and n, will be expanded by every tie-breaking-rule of A* while

there is a tie-breaking-rule for A** that expands only P, _, .
O



Figure 7
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