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1. ABSTRACT

Recently, few models were proposed to capture the notion of relevarce. Their main component
consists of a mechanism to assign truth values to a 3-place relation I(x,z,y) where x,y,z are three non-
intersecting sets of elements (e.g attributes or variables), and I(x,z,y) stands for the statement: "Knowing
Z renders x irrelevant to y." Among these models one can find the Probabilistic dependency model {1y,
the Undirected Graph ( Pearl & Paz [2]), Directed Acyclic Graph ( Pearl & Verma [3]) and Hybrid Acy-
clic Graph ( Verma [4]). An important tool in investigating these models and their expressive power is a
complete set of axioms. Such a set was found so far only for the Undirected Graph ( UG) model. In this
paper, we show that there is no finite complete set of Hom axioms for the Directed Acyclic Graph ( DAG)
models. Moreover, we compare our result to a similar result in the Embedded Multi Valued Dependency
(EMVD) model of relational databases established by Parker and Parsaye in 1980 ([5]), and independent-
ly by Sagiv and Walecka in 1982 ([6]). We point out that a stronger version of their incompleteness
theorem can be stated for EMVDs. However, a similar extension for DAGs has not been fully established
so far.

The paper is organized as follows. Section 2 reviews some previous work and the necessary ter-
minology conceming dependency theory and the DAG model in particular. Section 3 presents the con-
struction which shows that there is no finite complete set of Hom axioms for DAGs. Section 4 discusses
extensions to the incompleteness theorem. Finally, section § summarizes the results and outlines the rela-
tion between dependency models and relational database theory.

2. DEPENDENCY MODELS

To understand the need of dependency models it is most adequate to quote Pearl and Paz as fol-
lows: "Any system that reasons about knowledge and beliefs must make use of information about
relevancies. If we have acquired a body of knowledge z and now wish 10 asses the truth of proposition x,
it is important to know whether it would be worthwhile to consult another proposition y, which is not in
z. In other words before we consuit y we need to know if its truth valye can potentially generate new in-
formation relative to x, information not available from z. In probability theory, the notion of relevance is
given precise quantitative underpinning using the device of conditional independencies a variable x is
said to be independent of y given the information z if

P(x,ylz):P(xlz)P(ylz).
However, it is rather unreasonable to expect people or machines to resort to numerical verification of

equalities in order to extract relevance information. The ease and conviction with which people detect
relevance relationships strongly suggests that such information is readily available from the organization-



al structure of human memory, and not from numerical values assigned to its components. Accordingly, it
would be interesting to explore how assertions about relevance can be tested in various models of
memory and in particular, whether such assertions can be derived by simple manipulations on graphs."

In probability the predicate I(x,z.y) "Knowing z renders x irrelevant to ¥" is naturally defined as:
I(x.z.y)<—>P(x.ylz)=P(sz)P(yiz).

The definition above suggests two obvious ways of answering the query " Is I(x,z,y) true ?". The first is
to keep a list of all triplets (x,z,y) for which I(x,z,y) holds. This solution is too expensive in space. The
second, would be to keep the full distribution function P, and test whether the inequality above holds.
This is too expensive in time since, for most queries, the time required for an answer grows exponentially
with the number of variables in the system. For these reasons the use of graphical representations was
suggested.

The simplest model is the undirected graph model (UG). In UG models the relation I(x,z,y) holds
iff the variables of the set z block all paths from the set x to the set y. It was shown ([1]) that the follow-
ing axioms hold for all UG models :

(l.a) Symmetry I(x,z2,y) = I(y,z,x)

(1.b) Decomposition-
Composition  I(x,z,yw) & I(x,z,y) & I(x,z,w)

(1.c) Intersection I(x,zw,y) & I(x,zy,w) > I(x,z,yw)

(1.d) Strong union I(x.z.y) = I(x,zw,y)

(1.e) Transitivity I(x,2,y) = I(x,z,y) or I(y,z,y) where y e x\yuz
where x,y,z are disjoint sets of nodes and xy is the union of the sets X,V.

For convenience we call a statement of the form I(x,z,y) an independency statement. The seman-
tics associated with an axiom are that whenever a UG model obeys the antecedents of an axiom (after in-
stantiation of the variables) it must also obey at least one of the independency statements of the disjunc-
tion on the right hand side of the axiom. We call I(x,z,y) a single consequence of a set of independency
statements S, if every UG model that obeys all statements in S also obeys I(x,z,y).

A set of axioms A is complete if for every set of independency statements, all single conse-
quences can actually be derived using only the axioms in A. The notion of completeness is important as it
guarantees that, given a set of independency statements, one can derive all its single consequences. Such
a process is desired when seeking a UG model that best matches a given set of independency statements.



The disjunctive consequences are a natural extension for single consequences. A disjunctive
consequence of a set of independency statements S is a disjunction of independency statements for which
at least one is valid in every model that obeys S. Wherever the context allows diambiguation, the term
consequence is used for either a disjunctive consequence or a single consequence.

Axioms l.a - 1.e were found to be complete ([2]), however they suffer from computational disad-
vantages since the transitivity axiom has a disjunction on the right hand side of the implication. To em-
phasize this property we refer to such axioms as disjunctive axioms. All other axioms have a single
consequence and are said to be Horn axioms. The following example shows the computational disadvan-
tages imposed by a non-Horn axiom (1.e). Moreover, it demonstrates that in some cases transitivity must
be applied in order to add a single consequence (and not only a disjunctive consequence) to a given set of
independency statements.

Example: Let S=( I(x,z,y) , [z.wy,y) , lzwx,Y) lyis a single variable not in xUyuziw) be a set of in-
dependency statements. We show that I(y,w.2) is a consequence of I that can not be derived without ap-
plying transitivity.

Using (l.e) on I(x,z,y) we get I(x,z,y) or I(v.z)y). Assume I(x,z,y). Then using (1.d) we get
I(x,zw,y). Adding the independency I(z,xw.,y) (which is in 8) and using (1.c) yields the independency
I(y,w.xz) which using (1.b) yields I(y,w,z). Now,on the other hand, assume I(y,z,y). Then using (1.d) we
get I(y.zw,y). Adding the independency I(z,yw.y) (which is in S) and using (1.c) yields the independency
ICY,w.yz) which using (1.b) yields I(y,w,z). Thus, I(y,w.2) is a single consequence of §, because it was
derived by the axioms of UG’s. It is left to show that I(y,w.z) can not be derived from S without the tran-
sitivity axiom. This is done by finding the closure of S under the axioms 1.a-1.d and verifying that
I¢y,w.z) is not in the closure. Indeed the closure is the set:

{Ix,z,y), lz.wy.y), lz.wx,p) , I(x,zw.y) , I(x,zv.y) , Kx,zwyy) , I{z,wyx,y) and symmetric images }.

This example demonstrates two important issues. The first is that in order to apply a non-Homn
axiom one needs to select each term in the disjunction separately, and for each selection reach a common
consequence. Such a process is computationally expensive because for each application of transitivity in a
derivation, two new statements need to be considered independently, and each might require the use of
transitivity once again. The second is, can we establish a complete set of Horn axioms for the UG model
by replacing the transitivity axiom with a finite set of Hom axioms, say,

Ixz,y) & I(z,wy.y) & I(z,wx,y) = I(v,w,2).

We do not have the answer for this question; however, the example above shows the computational
benefits of obtaining a complete set that consists solely of Hom axioms. The purpose of this paper is to
show that while the task of finding a complete finite set of Hom axioms for the UG model is worthwhile,
a similar task for the more complicated models (DAGs) can not be fruitful since such a set does not exist.

The weakness of the UG model lies in the restriction imposed by 1.e. This restriction prevents us
from representing non-transitive relevance relations often found in probabilistic models as well as in
common-sense reasoning. Therefore, let us consider the more refined model of Directed Acyclic Graphs
(DAG). The DAG model, is defined by specifying how truth values are assigned to the predicates I(x,z,y)



where x,2,y are three disjoint sets of nodes in 2 DAG. The motivation for this definition is beyond the
scope of this paper and can be found in [1].

Definition:

a. Two arrows meeting head-to tail or tail-to-tail at node 'y are said to be blocked by a set of vertices S if Y
belongs to the set S.

b. Two arrows meeting head-to-head at node y are blocked by S if neither Y nor any of its descendants is
in 8.

Definition:

a. An undirected path P in a DAG G is said to be d-separated by a subset of vertices if at least one pair of
successive arrows along P is blocked by S.

b. Letx,y and S be three disjoint sets of vertices in a DAG G. S is said to d-separate x from y if all paths
between x and y are d-separated by S. If such separation holds then I(x,S,y) is assigned the value true by
this model.

Note that whenever we refer to DAGs, we assume the use of the d-separation criteria for I(x.z.y),
even though other criterias might pop into mind.

In addition to 1.a-1.c, DAGs also satisfy the following properties [1):

(2.d) Weak union I(x,z,wy) = I(x,zw,y)
(2.e) Weak transitivity Itx,z,y) & Kx,z2vy) - I(x,z,y) orI(y,z,y) where Te xuyiuz
(2.0) Chordality I(0,Y8,8) & I(y,0f,8) — I(o,Y.B) or I(et,8.B) where o, B, yand &

are distinct single elements.

However, a complete finite set of axioms was not found. In this Paper we prove that a complete
finite set of Hom axioms for DAGs does not exist. The proof that we present does not eliminate the ex-
istence of a finite compiete set of disjunctive axioms for DAGs, however, we give some arguments sug-
gesting that such a set does not exist.

3. NON AXIOMATIZABILITY OF DAGS

In this section we prove the incompleteness theorem. This theorem states that there is no finite
complete set of Horn axioms for DAGs with the d-separation criteria. We use two lemmas in the proof.
In the first lemma (3.1) we present a Homn axiom, called R o(n), with n antecedents, denoted S, and prove
that Ry(n) holds for all DAGs. In the second lemma (3.2) we list all single consequences of § (fornz7)
and prove that neither of them is a single consequence of any proper subset of S. The proof of the incom-



Pleteness theorem then follows using the following argument:

Therefore, the consequence of R(n) can not be derived from its aniecedents by using only the axioms in
A. This contradicts our assumption that A is complete.

We now prove the two lemmas,

Lemma 3.1: The axiom R oln):
1(Ay,A 1.43) & !(A3.A2,A4) & - I(AmAn—l'AnH) & ](AIH—I -AruAl) - I(An+l'®1AnUA 1)
holds in DAGs,

Proof (By contradiction): Assume Ro(n) does not hold. Consider a DAG that obeys all antecedents of
Rgp(n) and does not obey I(A,,,,2,4,UA 1). In this DAG, there exists a path between an element Oy pq Of
Any1 and an element B of A,UA,, that is not d-separated by . Clearly, this path does not contain a
head-to-head node. Let P=(0,,,1,B) be the shortest such path. Two cases need to be examined; B belongs
1o A} and 3 belongs to A,,.

Case 1: P=(a,,,,,0 ) where o, belongs to A. The statement / {(An+1,4,.4 ) implies that A, d-
separates the path P. P does not contain a head-to-head node and therefore, in order to block two succes-
sive arrows, an element @, of A, must reside on P. Consider the path (G,1,0). It does not contain a
head-to-head node because P does not contain such node. Hence, (a, ,; 1@, ) is a path from 4, ., 1o A A
that is not d-separated by &, This path contradicts our definition of P, because it is shorter then P,

Case 2: P=(0ty 41,0, ) where «, belongs to A,. Using similar arguments, the statement
1(Ap+1,4,_1,A,) implies that an element O, of A,y is on P. Consider the path (0, _;,0,). This path
has no head-to-head nodes, therefore the statement /(A,_,,A,_;,A,) implies that an element 0,3 0f A,
must reside on (o, _,,). Similarly, an element of each of the sets An3,Apy ...., Ay must reside on
P. Consider the path (0w 41,04) where @, is an element of A that is on P. This path contradicts our
definition of P because it is shorter then P. 0

Lemma 3.2: Let § be all the antecedents of Ro(n). Then the only non-trivial single consequences of §
for n= 7 are: 1{(Ap1.A1,4,), 1(An41.B.4,), 1(Ap41,D,A1), 1 (Ap 1, DA, A1), none of which is a
consequence of any proper subset of .

Proof: Let VALID be the set { T(A 1.4 1:4n), A, ,Q.An), ](A,H.[,G.A 1h 1A, 41 JDAL A 1}
From lemma 3.1 we know that / (Ans1.0,4,UA )isa consequence of § and the other three statements in
VALID can immediately be derived from it using decomposition (1.b) and the weak union (2.d) axioms.



Assume I(x,z,y) is an arbitrary non trivial independency statement not in VALID. We will show
that I(x,z,y) is not a consequence of S by constructing a DAG that obeys § and does not obey I(x,z,y).
Without loss of generality assume that the A;'s are singletons, A;={a;} i=1..n+1 and that these are all the
nodes of the DAG (It is enough to contradict the axiom for any assignment of A;'s). Also w.l.o.g, x and y
can be considered as singletons due to the decomposition axiom:

1(xy,2,y10y2) 5 [(x1,2,51) & [(x1,2,y3).
Namely, if I (xy,z,y ) is not a possible consequence then neither is I(x,z,y) where x,y are any sets contain-
ing x, and y, respectively. For any assignment of x,y,z, our task is to construct a DAG that satisfies all
the n antecedents of R o(n) but violates I(x,z,y).

Assume x=A j» Y=A;, j<k and examine the statement / (A;.2,A;) for all z and for all possible
values of j and k. We will say that j and k are consecutive if abs{j-k mod(n+1)]=1. All subscript expres-
sions here will be taken modulo n+1. For example: k=j+1 when j<n+1 and k=1 when J=n+1. Also, to
clarify the figures, we label the nodes i)j,.. instead of a;,a; ... .

case 1: j and k are not consecutive.
examine the following DAG :

J ‘ﬂ by Rk n N+t

OO...

Figure 1
1{A;,A;_1,A;41) holds for all i because i and i+1 are always disconnected.
However, the proposed conclusion 7 (A j»2Ag) is false for any set z (including &),
because j and k are connected with a direct link.

case 2: j and k are consecutive.

subcase 2.1: Z contains a variable i, i not consecutive to either jork.
Examine the following DAG:

E ]
T

Figure 2



1(Aj,z,A;) is clearly false. Yet, all independencies in S hold because i
is not consecutive to either j or k.

subcase 2.2: Z is a subset of A; ;U Ay, .
subcase2.2.1: Z=A; U A,
Construct the DAG of Figure 3 where i is an arbitrary node other then j-2,...k+1 k+2.

Such an i always exists for n>7. Once again, S holds, but / (A jrAj-1\ AR Ay 1S false,
because A;_y \ Ay, activate a path (§, k+1, 1, j-1, k) between j and k.

00 - 3% oo 0

' C L R _/hti\R+2 ¢

D
*

Figure 3

subcase2.2.2:7=A, ..
The DAGs of Figures 4 and 5, realize S & —7 (A;,A;41,Ay for the cases 2<j<n,
and j=2 or j=n+1, respectively.

3
&
-

Figure 5
In case j=n, I (A;,A¢.1,Ax) reduces to / (A,,A 1,A,,;) which is 2 member of VALID.




subcase2.2.3: Z=4,_,.

For j=1 the DAG of Figure 5 realizes § & (A1.4,41.42), while for all other values
of j, the statement 7 (A j»Aj-1,4,) is a trivial consequence because it is amemberof S.

subcase 2.2.4: Z= O

For j<n the DAG of figure 4 realizes § & —/ (A;,2,Ay), while j=n and j=n+1 yield
1(Ay,D,Ay1) and I (A, 41,D,A ), which are in VALID.

So far, we have shown that all single non trivial consequences of § are listed in VALID. To
complete the proof, we have to verify that every statement in VALID requires all n antzcedents of Rg(n),
that is, cannot be inferred from any proper subset of §.

Consider the statement / (An.A|,AnL) that belongs to VALID. Let S’ be a proper subset of S.
The following DAG satisfies any §’ not containing / (Ap+1,4,,41) but does not satisfy the consequence

1(An,A1,An 1)
/ \
O ®© ® -.. ® @
\

Figure 6

The other possibility is that / {(An+1,An,4 1) is included in §’ but one or more of the first n-1 in-
dependencies is not. Define m to be the maximal i such that /(A;,,4;,4;,7) is not in §”. Again, the fol-
lowing DAG satisfies $? but not the consequence /(A,,A{,A 1)

Figure 7

Following similar arguments, the other three statements in VALID, can also be shown to require
all n antecedents of R 5(n). O



4. EXTENSIONS OF THE IN COMPLETENESS THEOREM.

The non existence of a finite complete set of Hom axioms for DAGs, still leaves us with the ques-
tion of whether the DAG model is axiomatizable at all. Like the UG model, it might be the case that, one
could establish a finite complete set of disjunctive axioms for DAGs. Such a set, though, would most
likely be computationally intractable and would be useful only as a theoretical too] for studying the pro-

Conjecture: There is no bounded set of disjunctive axioms for DAGs with the d-separation criteria.

Although, we have not been able to prove this conjecture in general, it can be shown to hold for a
large subset of disjunctive axioms.

Before proceeding, we need the following classification of axioms. An axiom
[(x110x12,03) & (xy, X22:%23) & -0 1 (g 1,20 2, 3) = T0L1y12.913) 00 -+ IO, 11 Ym,20Ym,3)
is a functional-restricted axiom if every set y; j 18 a result of applying boolean functions on the Sets x; ;.

Namely, each i j is the result of applying the set-functions: union, intersection and negation on the X; ;'s.
For example, the weak transitivity axiom:

I(x.z,y) & I(x,zomy) = Ix,z,y) or I(v.z,y)
is a functional-restricted axiom because x, ¥y and z appear on the left hand side of the implication and ¥

can be written as (z2¥)—z where both z and 2y appear in the left hand side of the implication. On the
other hand, the transitivity axiom (which does not hold for DAGs):

I(x,z2,y) = I(x,z, )or I(y,z,y)

is not a functional-restricted axiom because yis not functionally depended on X, y and z. Such an axiom is
said to be an unrestricted axiom.

THEOREM 4.1

There is no bounded complete set of functional-restricted axioms for DAGs with the d-separation
criteria.

10



DAG that obeys S but does not obey the disjunction . Such a task is infeasible because the length of the
disjunction in r is arbitrary and an infinite number of constructions are needed.

Let A, be the set { Ok,1 A2, " Q) where 4, ; are single elements and a let
=l (x1,21,y1) or I(x3,22,y;) o - - - £ OtmsZon, Ym)
be an arbitrary disjunction of Statements using the same autributes of S, Assume that al! terms in 7 are not
members of VALID, otherwise trivialy, & is a disjunctive consequence of S,

The restriction on the axioms to be functional-restricted constrains the disjunctions n that need to
be examined, Namely, the sets x;:'s, y;’s and z;'s are all functionally depended on the A,'s. However, the
Ag’s are a partition on the nodes of &D; and therefore negation and intersection can be reexpressed in
terms of union only. Thus w..0.g, we can assume that each of the x;'s, y;"s and 2;’s is a union of some

A,’s. Moreover, due to the decomposition axiom, we can further assume that X; and y; are each equal to
some A;.

Consider the following construction of eD;;

N

M= -

AC
A'a'.

A

OO [@
O OO |
OO0 &

A |

@D; is a collection of m disconnected components Dy, one for each term in x. The nodes of each
D;, denoted N(D,), are labeled {ayiaz;, - Qne1i ). Inthe following discussion the term, Ifx,z,y)
holds in D;, means that I(xrv Dy, 2z N (D)), yrN (D)) holds in D;,

11



D, is constructed as in lemma 3.1,in such a way that S holds in D, and the i-th term of & (name-
Iy, I(x;,z;,;)) does not hold. For example, if / (xz;,y:)=I(A,,A 5:A43) then we use the DAG of Figure 1
80 that all members of S hold in D; and /(a, i-25,d3 ;) does not hold. Hence, we have used those ele-
ments which are in D; to construct a path between 4 and A3 that is d-separated by as ;. This path is also
d-separated by A 5 because all other elements of 4 5 reside in components which are disconnected from D,
(This claim is made more rigorous in lemma 4.1),

This construction is made possible because the X;’s. y;'s and z;’s are each a union of some 4,’s
and therefore have elements in each component D;. These elements are needed to establish a path, entire-
ly within D; that is not d-separated by z;.

For example, assume that [(x),z1,y,)= I(Ay41.{a22},A() (Note that zy is not functionally
depended on the Ag’s). For this term our construction is not adequate. The elements of D, are not
sufficient to realize § and =l (@n41 ) »d332,4a 1), because 1(@nay 1 J,ay ) (and 1{A,41,D,A})) is a conse-
quence of S. therefore, a link must be drawn between Dy and D,. This destroys the disconnectness of
the components D; and therefore, as is shortly shown, no longer can we prove that ®D; obeys S. It
should be emphasized, though, that for each disjunction 7 even, when such terms are present, it is easy to

We now prove that ®D; satisfies S and not n. For this purpose, we present the following lemma
{the proof is given latter),

Lemma 4.1: LetDbe a DAG that consists of m disconnected components D; and let V; be the nodes of
D;. Then, the following two statements are equivalent.

(a) I(x,2,y) holds in D

(b) Forevery i, the projection of I(x,z,y) on D; holds, namely, the statement / (xV; , zV, YNV, holds
in D,‘.

We use this lemma in two ways. First, by our construction, every member of S satisfies (b) there-

fore every member of § holds in ®D;. Second, each term T; of i has one component in which T; does not
hold and therefore T; does not hold in @D;. Hence, % does not hold in @&D;.

described earlier, shows that x is not a disjunctive consequence of any proper subset of §. Thus, the ax-
iom R (n) is irreducible to a chain of functional-restricted axioms of lower arity thenn. 1

Proof of lemma 4.1: Define x;=xnvV,, Yi=ynV; and z;=zAV;. Note that since V; are partitioning the
nodes of D, we have XSG, Y=y and z=_yz;.
i i i

12



(a)=x(b): Assume I(x,z,y). We prove that I(x;,z;,y;) holds for all i. Due to the decomposition ax-
iom /(x;,z,y;) also holds. That is, z d-separates all paths between x; and y;. It remains to show that also z;
d-separates these two sets. Two cases need to be examined; first, if a path is d-separated because the ex-
istence of an element of z on it. Then, this element must also be a member of z; because D; is a discon-
nected component. Second, if a path is d-separated because none of the elements of z reside on it then the
removal of some elements of z leaves this path d-separated.

(a)e=(b): Assume [(x;,z;,y;) holds for all i. Let u,v be two sets each contained in a different
disconnected component of D. Then clearly, for each set w the statement I(u,w,v) holds in D. In particu-
lar, assign u=x;, w=z; and v=z; ji. The statement / (x;,2;,2;) holds for every j, j#i. Using the composition
axiom we obtain 7 (x;,z;,(\_z;) y;). Applying the weak union property we obtain I (x;\zi.y:) which

j# i
reduces to /(x;,z,y;). We now use the assignment u=x;, w=z and v=y; j=i to obtain I (x;,z,y;) for every j,
j#i. Using composition we obtain / (x;,z,y). This statement holds for every i, therefore applying the com-
position axiom again, we obtain that I(x,z,y) holds. O

Note that, in other words, lemma 4.1 states that when a reasoning system based on DAGs is com-
posed of components that are not relevant to each other, then the reasoning can be done separately in each
component.

The next lemma shows that the construction of theorem 4.1 is made possible only because we
restricted the allowed axioms and thereby restricted the domain of disjunctions of independency state-
ments that need to be examined. In other words, there is no way to construct an operator & that produces
from a sequence of arbitrary DAGs G;, a DAG for which an independency statement holds iff it holds for
each G;. This lemma is a restricted version of a theorem by Fagin ([9]). The original theorem is stated in a
more general terminology that is useful for both relational database theory and Dependency models
theory. We supply only the proof of the part that we use, because it is closely related to the construction
of of theorem 4.1,

Lemma 4.2: Let S be a set of independency statements. The following properties of S are
equivalent.

(a) There is an operation & that maps indexed families of models into models, such that if ¢ is a indepen-
dency statement in S, and if R; :ie/ are models, then ¢ holds for @<R; : iel > iff ¢ holds foreach R;.

(b) Whenever L and o; :iel are subsets of S, then 6y or G, or - -+ ©, is a consequence of I iff exists
an i such that g; is a consequence of I.

Proof:
(a)=(b): By contradiction assume G, or G; or - - - G, is a consequence of I and that each o; is
not a consequence of Z. Then for each o; there exist a model R; that obeys I but does not obey o;. Con-

sider the model @R;. This model obeys X but does not obey any o;, contradicting our assumption that
G, or Gy or -+ - G; is aconsequence of Z. [J
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5. CONCLUSIONS

In this paper we have shown that there exist no finite complete set of Hom axioms for DAGs. we
extended this theorem to cover a subclass of disjunctive axioms, which we call functional-restricted ax-
ioms. This result can be classified as a "negative” result, since the existence of a complete set of Homn ax-
ioms in relational database lead in the past to important results. In [10] (as well as in [5] ) such a set is

base researchers to construct a relational database model from a given set of constrains ([8]). This is
equivalent to the problem of finding a UG (or DAG) that best satisfies a given set of independency state-

The similarities between relational database theory and dependency models theory were inten-
sively used in this paper. We have used a similar construction of Parker and Parsaye in establishing
theorem 3.1. Lemma 4.2, due to Fagin, was found useful in clarifying the difficulties we encountered try-
ing to prove the incompleteness conjecture. These similarities motivate a search for a more general set-
ting in which results from database theory can be stated side by side with results from dependency models
theory. In such a setting results from both fields become readily available for each other. A step towards

14
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