Computer Science Department Technical Report
University of California
l.os Angeles, CA 90024-1596

FAST MULTIPLICATION WITHOUT CARRY

PROPAGATE ADDITION
Milos Ercegovac September 1987
Tomas Lang CSD-870047

(Rev.May 1988)

§/i0/1988

Fast Multiplication Without Carry-Propagate Addition

Milo§ D. Ercegovac and Tomas Lang
Computer Science Department
University of California, Los Angeles

Abstract

A common scheme for fast multiplication computes the accumulated partial products in
redundant form (carry-save or signed-digit) and converts the result to conventional representa-
tion in the last step. This step requires a carry-propagate adder which is comparatively slow and
occupies a significant area of the chip in a VLSI implementation. In this paper we report a multi-
plication scheme (LRCF — Left-to-Right, Carry-Free) that does not require this carry-propagate
step. The LRCF scheme performs the multiplication most-significant bit first and produces a
conventional sign-and-magnitude product by means of an on-the-fly conversion. The resulting
implementation is fast and regular and is very well suited for VLSI. The LRCF scheme is
presented for general radix » and radix-4 implementations are described. Three different imple-
mentations are presented: one in which adders are of the signed-digit type, another in which
carry-save adders are used, and a third that improves the speed by computing odd and even par-
tial products concurrently.

1. Introduction

We describe a novel scheme for multiplication of two # -bit fractions producing an n-bit
product (the most significant half of the full 2z -bit product). A common scheme for fast multi-
plication computes the accumulated partial products in redundant form (carry-save or signed-
digit) and converts the product to conventional representation in the last step [1] . This step re-
quires a carry-propagate adder which is comparatively slow and occupies a significant area of
the chip in a VLSI implementation [2]). In this paper we report a scheme that does not require
this carry-propagate step. The basic characteristics of the proposed scheme are:

i) The recurrence uses the digits of the multiplier from most to least significant (lefi-to-
right multiplication) [3]. The multiplier can be recoded into a suitable radix-r representation to
reduce the number of steps {4].

it) The accumulated partial products are decomposed into two parts: the most significant
part and the least significant part.

iii) To produce the product, the most significant portion of the accumulated partial pro-
ducts is converted to conventional form using a variation of the on-the-fly algorithm presented in
(5], without the need of carry-propagate addition.

In the sequel, we refer to the proposed scheme as the LRCF (Left-to-Right, Carry-Free)
multiplication. The LRCF scheme can be used both for sequential and combinational implemen-
tations. We concentrate here on the combinational case, since it provides the most in speed ad-
vantages. The resulting implementation is fast and regular and is very well suited for VLSI im-
plementation.

We present the scheme for general radix r and show implementations for radix 4. Three
different implementations are presented: one in which adders are of the signed-digit type, anoth-
er in which carry-save adders are used, and a third that improves the speed by computing odd
and even partial products concurrently. We compare the LRCF scheme with conventional ap-
proaches in terms of implementation cost and delays. Error behavior and rounding of the LRCF
scheme are discussed in general, with detailed considerations given in [6].

2. The LRCF multiplication algorithm

We consider multiplication of normalized fractions in the sign-and-magnitude represen-
tation. Let X be the radix-2 representation of the normalized fractional magnitude x, such that

”n ,
x=YX;2" X;e {0,1} 2.1

i=1

and let Y be the recoded radix-r representation of the normalized fractional magnitude y, such
that

niq .
y=YY;r*t Y, e {~r/2,.,ri2} (minimally redundant)
i=0
where, for simplicity, r =29,

The LRCF multiplication algorithm is a recurrence that produces a sequence of two accu-
mulated partial products (w and p) as follows:

wlj] =r(fraction (w[j-1] +ij)) j=0,..,nlq (2:2)

Z; = integer (w =11 +xY;) (2.3)
and

pll=pli-11+Z;r™ (2.4)

The initial values are w[—1] =p{—1] =0. Note that the algorithm uses the digits of the
multiplier from most significant to least significant [3], unlike conventional multiplication
schemes which use the digits from least significant to most significant.

To show that the LRCF algorithm performs multiplication observe that the sum of partial
products after k steps satsfies:

k .
plkl+wlkixr™* 1= ¥ x¥,xr™ @2.5)
{=0

Consequently, after n/q steps we obtain

nlg .
plniqgl+wlniglxr™4 1= Yx¥ixr™ =xy (2.6)
i=0

That is, p{n/q] is the most significant part of the product while wln/q] is the least
significant part.

A block diagram of one step of the recurrence is shown in Figure 1. A fast implementa-
tion requires the following:

i) Use of a redundant adder (either carry-save or signed-digit [7]) to produce w[j]. This
results in a carry-free addition.

ii) Addition by concatenation to produce p {j]. That is,
pljl=concat(p [j—~1],Pj) 2.7

Since the maximum value of Z; in (2.3) is, in general, larger than r—1, to perform this
concatenation it is necessary to recode Z f and Z i+ into Pj in the range [—(r—1), (r—1)]. That is,

P; =F(Z;,Z;,)) Pe[~(r-1), (r-1)] 28)

The details of the recoding depend on the range of Z;, which is dependent on the type of
redundant adder used to produce w{j], as discussed in Sections 3 and 4.

iii) The on-the-fly conversion of the resulting signed-digit representation of p[/] into a
conventional representation M []. An algorithm to perform this conversion is given in [5]. In
contrast with the traditional approach that performs the conversion by subtracting the negative
part from the positive part (and therefore uses a carry-propagate adder), this on-the-fly scheme
forms two numbers @ [j] and &[] such that, a[f] is the converted number up to digit j and b[/]
s a U]—r'f. When a new digit Pj is produced, if it is positive or zero it is concatenated to
A [j—1] (digit-vector representing a (j—1]), while if it is negative A [/] is obtained by concatenat-
ing r~1P; 1 to B[/]. That is,

Y X
Recoder
A 4
Y—'| ald
j Wi(i-1]
' '
RER%%IEQNT (Carry-Save or Signed-Digit)
;nteggrl lr*fraction
Z Wil
z; —»
o F
Zin ‘ pP. Product Digits (signed)
) - MSD first

On-the-Fly Conversion

l

M(j]

Figure 1. One Step of the LRCF
Multiplication Scheme

concat(A[j-1], P;) if P;20
AU]={conca:(B[j-1], (r=1P;1) if P; <0 @9)

concat(A[j-1], (P; -1)) if P; >0
BU]={concat(B(_j—1],((r-1)— 1P 1) if P;<0

with the initial condition
A[-11=B[-1]1=0 (2.10)

After the last step, the most significant half of the product in conventional representation
1sMnigl=Aln/q].

The step of Figure 1 can be used to implement either a sequential multiplier or a combi-
national one. The basic schemes for these two cases are illustrated in Figures 2a-2d, respectively,
together with the corresponding conventional right-to-left approaches. The fundamental differ-
ence is shown in the timing diagram of Figure 2e: the two phases of multiplication - generation
of partial products and formation of the final result in a conventional representation - are per-
formed concurrently in the LRCF scheme and one after the other in conventional schemes.

The implementations of the LRCF scheme, shown in Figure 2, produce the most-
significant half of the product without the need of a carry-propagate addition. In contrast, the
right-to-left conventional schemes require a carry-propagate addition to obtain the most
significant half. Consequently, the proposed scheme is faster in obtaining the most-significant
part of the product, as required in many applications.

Error and rounding schemes

Since the result of the multiplication corresponds to the most-significant half of the pro-
duct, an error is made with respect to the correct product. Several rounding schemes can be used
to bound this error. The IEEE standard, for example, specifies four rounding schemes [8]. For in-
stance, for a positive product the error for truncation is in the range 0 <er <277, while for
rounding-to-nearest it is ~2""+1) <gp < 27""*D These error ranges can be achieved in the con-
ventional right-to-left schemes.

In the LRCF scheme, on the other hand, since the least-significant half of the product is
left in redundant form, the error is somewhat larger than in the conventional right-to-left scheme.
The actual range of the error depends on the type of redundant adder used, as discussed in detail
later. For example, if a signed-digit adder is used the error is in the range —27" <& <2™. This
doubling of the error might be acceptable in many applications. In cases in which a smaller error
is required, the error can be reduced by increasing somewhat the number of digits of the calcu-
lated product and then performing a truncation or rounding of this result. In fact, the additional
digits are part of the least-significant half that is in redundant form, so what is required is to as-

- S M W W oW oW W oW oW oW W = w

Y X
[Recoder |
kA
XY, | L v |
Y, Wii-1]
h 4 A
REDUNDANT | (Carry-Save
ADDER or Signed-Digit)
intager r'fraction
Z, Wi

I
=]

F

¥

Product (MS Haif)

P

P., Product Digits (signed)

- MSD first

(Least Significant Half

- not used)

Figure 2a. Sequential Implementation
of LRCF Algorithm

x, |

W
W]

) 4 A

REDUNDANT | (Carry-Save
ADDER or Signed-Digit)
Wi
Wina)
CARRY-PROPAGATE
ADDER

|

Product (MS Half) (LS Half - not used)

Figure 2b. Conventional Sequential
Multiplier

v v —

o F Redundant Adder |
5 Y — _
5 FPI—I Redundant Adder | xY;
S v —
< «—{F Redundant Adder |
e F v
5 Z
& ¢ ' e

F j¢— Redundant Adder |

MS Half of the Product LS Half of the Product
(in non-redundant form) (in redundant form

- not used)

Figure 2c. LRCF Combinational Multiplier

I v

| Redundant Adder |

xYj | ‘
| Redundant Adder |
—] v
I Redundant Adder]
— "o
4 v

| Redundant Adder | L)

Carry-Propagate

Adder
MS Half of the Product LS Half of the Product
(in non-redundant form) {in non-redundant form)

Figure 2d. Conventional Combinational Multiplier

LRCF Scheme:

Partial Product
Recurrence

On-the -Fly

Conversion

!

T

L
'
\
|
T
.
\
'
'
'
L]
.
'
\
'
!
'
|
\
'

1
L
|
L]
L]
]
]
]
L]
L}
L]
L]
\
[}
y
L]
L]
L]
\
|
|
[
]

Fin:al Product
Conventional Scheme (Most Significant Half)
Partial Product o L
Recurrence et LI
Conversion A
(CPA) T
Final Product
(Most Significant Half)

Figure 2e. Timing Comparison
Between LRCF and Conventional
Multiplication Schemes

similate these few digits with a short carry-propagate adder.

Other rounding schemes, with different error characteristics, can also be obtained. As an
example of one of these schemes, in the Cray X-MP supercomputer a conventional right-to-left
multiplication of 48-bit operands is performed (and a 48-bit result is obtained)[9]. To reduce the
size of the carry-save adder array required, the array is limited to a width of 56 bits (instead of
06 bits). To reduce the average truncation error and compensate for the bits not computed, a con-
stant equal to 9x2736 is added. Of course, in the Cray case, since the multiplication is right-to-
left a carry-propagate addition of 48 bits is required to obtain the result (most-significant half).
This addition is not required in the LRCF scheme.

If, on the other hand, it is desired to obtain the error ranges required by the IEEE stan-
dard, two options exist:

a) Increasing by one the number of bits of the representation. That is, the left-to-right
scheme with n+1 bits has the same error range as the right-to-left scheme with » bits. This
would be a good solution for some special-purpose processors.

b) To reduce the error so that it is possible to use the standard rounding schemes with n
bits. This can be done by obtaining additional information from the least-significant portion of
the product. As an example consider the following product obtained from the left-to-right multi-
plier using signed-digit adders:

p (most significant) = 0.1001

p(least significant) = 0001 (T =-1)

In this case, correct truncation cannot be performed by just knowing the most significant
part of the product, but it is necessary to know also the sign of the least-significant portion. One
way of obtaining this sign would be to convert this portion to conventional representation. How-
gver, a carry-propagate addition would be required for this, which eliminates the main advantage
of the scheme. A better solution is to perform a partial right-to-left multiplication concurrently
with the main left-to-right one, as illustrated in Figure 3. Of course, this increases the hardware
required but it does not increase the time of multiplication. The details of this scheme depend on
the type of redundant adder used, and are discussed in the following sections and in [6].

Right-to-Left

Conventional
LRCF Multiplier
(simplified)
Multiplier
4—— sign (used in the last stage)
- Rounded/Truncated
MS Half of the Product

Figure 3. A Scheme for Correct
Round-Off Process

Example 2.1

We now Eive an example of the execution of LRCF multiplication. The additions are per-

formed in radix-4 signed-digit.

x =.11010110, = (31129 y =.11010111,

Recoded Y = 1.1121,

wl[0]=xYy Zy=0(since Ix| <land Yye {0,1}) A[-1]=B[-1]=0

;| wli-1] Zj | Piay | Alj-1]
XY x4 B{j-1]

3112 3 1 |1
=3112 0

21 =2012 21 -1 103
=3112 0.2

3| ==3212 50 -1 | 023
==12230 0.22

4 | ===0210_| © 1 | 0231
====3112 0.230

5 ====1012 | -1 0 | 02310

The final result is M [4] = A [4] = 0.2310. The error is € = w [4]x47> = —0.00001012. The
rules for obtaining P; = F(Z;, Z; ,,) are discussed in Sections 3 and 4.

O

3. Radix-4 Implementation with signed-digit addition

We now present the combinational implementation of the LRCF scheme for a radix-4

multiplication unit using a linear array of signed-digit adders [7] for the computation of w. For
radix-4 the recurrences are

wlj1=4(fraction w[j-11+1Y;)), j=0,..n12, w[-11=0, Y& {(-2-10,1,2} @b

Z; =integer (w[j—1] +x¥;) (3.2)
and
pUl=pli-11+2;47 = concat plj-1}, Pj), p[-1]=0

where P; is obtained from Z; and Z;,, by signed-digit addition {7] as described next.

(3.3)

To determine the range of Z;, observe that

Z; = integer (wlj—11+xY;) = integer (w[j~1]) + integer (x¥;) + 19 (3.4)

where 15 € {—1,0,1} is a transfer digit resulting from the signed-digit addition of the fractions of
w[j—1] and x¥;. Moreover, the most significant digit of the fraction of the signed-digit sum

wlj-2] +x¥;_; 3.5
is in the range {-3,...,3}. Therefore,

integer (wj—1]) = integer (4 x fraction (w[j-2] + ij_l)) (3.6)
is in the range {-3....,3}. Since Ix| <1 is a fraction in conventional form and the recoded multi-

plier digits ¥, ’s are in the range {-2,...,2}, integer (xY;) is in the range {-1,0,1}. Consequently,
the range of Z; is [-5,5] as illustrated in Figure 4.

The implementation consists of three parts as follows:

1) A linear array of signed-digit adders to compute the w’s. This array includes the
recoder of ¥ and the selection of the multiples of x (Figure 5a).

2) A linear array of modules TS to compute the partial products p[j]’s (Figure 5b) from
left to right. In the partial product computation (3.3), a direct addition of Z;’s would require car-
ry propagation. To perform these additions without carry propagation, Z; (with range [-5,5]) is
recoded into #;_; and s; such that

Z_,r =4tj—l + Sj 3.7
with
le; 1 1<1 and Is;1 <2 (3.8)
A possible recoding of Z; is
Z; |5 4 3 -2 -1 0 1 2 3 4 5
iy | -1 -1 -1 0 o0 0 0 0 1
LY -1 0 1 2 -1 0 1 2 - 0
Then P; =¢; +s; is the jth product digit. Because of the ranges (3.8), P; € {-3,..,3}.
Since
j .
pljl=Y P4 P; e {-3,.3} (3.9)
i=0

the partial products p [j]’s are computed by concatenation

wi2] X. X XX . X
XY X.XXX..X
Z,e—— @ 3 3 3 .. 3
wi-11 3.3 33 .0
xY; 1.3 33 . 3
Zi 4+— (). 3 3 3 .. 2

(similarly for negative values)

Figure 4. Range of Z Digits

pljl=concarpj-1l, P;) (3.10)

thus avoiding carry propagation.

3) The signed-digit representation of the product p[n/2] is converted to conventional
representation M [n/2] using a combinational variation of the on-the-fly algorithm {5,8], as
shown in Figure 5b. Instead of using the two conditional forms A and B, described in Section 2,
we keep only A together with control signals D[] associated with each A, (digit of A), to
determine whether the final digit M; is A; or (4; — 1) mod 4. The meaning of the control signals
is given in Table 3.1.

Table 3.1: Conversion Control Signals

D.[j] | Decision at level j about
value of product digit M [n/2]

U undecided
M [n/2] =AL)

n decided: no change
M [n/2] =Ap)

d decided: decrement
M, [(n/2] = (A, — 1) mod 4)

A high-level description of the conversion process is

P, if P20
A1=Pj'""d4={4+f>j if P;<0 G1b
Initially,
Diljl=u (3.12)
Fork<j,
u if Dyljl=uand P; =0
Dylj+11=4{ n if Di[j1=n or (D, [j]=u and P, >0) (3.13)
d if Dy[jl1=d or (D {j]=u and P; <0)

xYO XY1

!
=2 ; ~ RSSD- &ﬁéﬁ:ﬁbﬁﬁdd
7, +——— w1
l ‘—— sz
RSSD
Z, < lwm
G__- xY3
RSSD
Z, .
‘ ‘——— XY,
RSSD
Z, -

Figure 5a. Linear Array of Signed-Digit
Adders for Computing W's and Z's

\\\\\\\
%x\&

AAAAAAAAAA

D;j+1]

Z
A TS
:\\
sj \
A TS
T \
A
AJ+1 Z
A]+
A

Consequently, D, [j+1] depends on D[] and on the signals

1 if Pj=0 1 if PJ,-<0
2¢ro(P;)=10 otherwise S87"(})=10 otherwise 3.14)
The on-the-fly conversion of P = 20030021 into M = 20023313 is illustrated in Table
3.2
Table 3.2 Example of On-the-Fly Conversion
7| DWUl Py | Dali] Py § Dalj] Ps | DaljY Pa | Dslj] Ps | Dglj] Ps | D4lj] P7 | Dslj] Py
Ay As A, Ay Ag Ag A Ag
M, M, M M, M, Mg Mq Ms
p
1 | = 2 0
2| u u 0 0
3| u u u 0 3
4 | n n n u 3 0
51 n n n u u 0 0 _
6| n n n u u u 0 2 |
T\ n n n d d d u 2 1
8 | n n n d d d d 1 3
2 0 0 2 3 3 1 3
Consequently, the conversion part is composed of
i) The modules A that generate A ; according to (3.11), and zero (P ;) and sign(P) sig-
nals.

1) The modules D that update D, {j] according to (3.13).

111) The modules DEC that decrement A, (modulo 4) if D, [n/2] =d.

Bit-level implementation and comparison with conventional schemes

The modules and their connections are indicated in Figures 5a and 5b. Their bit-level im-

plementation is discussed in Appendix A. The LRCF and a conventional scheme are similar re-
garding the following parts: the binary-to-radix-4 multiplier recoder, the selection of multiples of
the multiplicand (¥2x, £1x, 0x), and the array of redundant adders for the accumulation of par-
tial products. These adders are composed of signed-digit adder modules [12,13,14] instead of
full-adders. According to [12], the signed-digit adders are similar in area and delay to conven-

tional carry-save adders. The principal difference is in producing the final product in convention-
al representation from a sum of partial products in redundant form: the LRCF scheme uses an
on-the-fly converter while in a conventional scheme a CPA adder is required.

Since a product of n bits is to be computed, those digits of the array that do not influence
the result can be eliminated. As shown in Figure 6, for a radix-4 recoding of the multiplier, the
first half of the array is of full precision and from then on, the number of radix-4 adders de-
creases by one per level. A similar reduction in size of the adder array can be achieved in a con-
ventional right-to-left multiplier, as done for example in the Cray X-MP processor [9], in which
case the error in multiplication is similar to that produced by the LRCF scheme.

Delay of the scheme and comparison with conventional schemes
The delay of the generation of the product is composed of the following:
i) Recoding and forming the multiples of the multiplicand.

ii) Delay to obtain the last partial product w[n/2] in the signed-digit adder array. This
corresponds to (n/2)—1 signed-digit adders.

iii) Delay to produce the last zero (P j) and sign (P j) signals.

iv) Delay to determine the value of the last D ’s.

v) Delay of digit decrementing,.

In comparison, in a conventional right-to-left multiplier the delay corresponds to i) and
it) above plus a carry-propagate addition. Consequently, the scheme presented here is faster by
the difference in delay between the carry-propagate adder and the sum of the delays iii) to v)
above. Since the CPA delay is at best O (log , n) logic levels and steps iii) to v) can be imple-
mented in a couple of levels, this difference is significant, especially for larger operand preci-
sion. To reduce the total delay, the last step of the LRCF scheme can be optimized for speed.

Example 3.1

To illustrate the implementation we show an example of an 8x8 bits multiplication. The
additions are performed in radix-4 signed-digit.

x =.11010110, = 3112, y =.11010111,= 3113, Recoded Y =1.1121, w[0]=xYo Zo=0 (50=0)

10

J WU-—I_] Zj 1j- §; Pj—l Alj-1) D{j-1j
IYJ'4-I

13112 301] 1|1 u
=3112

21 2012 21 0 12 -1 |13 du
=3112

3| =3212 51 1 1] -1 | 133 ddu
==12230

4 | ===0210_| 0| O 0 1 | 1331 ddnu
====3112

5| ==10121]-1] 0 |-l 0 13310 | ddnuu

Decrement digits of A[4] according to D{4]: M[4] = 0.2310

Check: 3112 x 3113 = 2310 + .00001012 (radix-4)

Error and rounding schemes

As mentioned in Section 2, for a result of n fractional bits, the error in the LRCF scheme
is

2" < Error <27 (3.15)

This error is larger than what is allowed by the rounding schemes in the IEEE Standard
[8]. However, it is suitable for many applications.

To perform the IEEE rounding it is necessary to determine the sign of the signed-digit
remainder (this corresponds to the least-significant part of the product) and to identify the case
when this remainder has value 0 (for getting unbiased rounding-to-nearest). Two possibilities ex-
ist for obtaining these values, namely

i) Use a sign-detection and zero-detection circuit. The corresponding network is simpler
than a carry-propagate adder, but corresponds roughly to the computation of a carry-out signal.
A possible fast implementation consists of a network of log,n levels, where & is the maximum
fan-in of the gates. The delay of this network can be avoided by using the next option.

ii) The sign can be computed concurrently with the left-to-right multiplication by a

simplified right-to-left multiplication. The details of the implementation, as well as the use of the
obtained values in the alternative rounding schemes, are given in [6].

11

1

signed-digit 3
adder

10

11

12

Figure 6. Reduced Width of Signed-Digit Adder Array

4. Radix-4 Implementation with Carry-Save Adders in the Multiplication Array

A second possible implementation of the LRCS multiplier uses a linear array of carry-
save adders for the computation of the w’s . The advantage of this implementation with respect to
that presented in the previous section is that a carry-save adder is composed of full adders, which
might result in a simpler implementation than using signed-digit adders. We now describe the
computation of s and ¢ for this case.

In this case xY; is represented in the 2’s complement system, so that the corresponding
sign extension when ¥; is negative has an influence on the already computed digits Z;. To avoid
the recomputation of these digits, instead of extending the sign, when x¥; is negative a value 2 is
subtracted from the present digit (Figure 7a). The resulting expression for Z i is

Zj = integer (w[j—=1]+ q) — 2xsign (Yj) =u;— 2xsign (Yj) (4.1)

where g is x¥ without the sign extension.

The range of Z; is now from +8 to -2 (Figure 7b). This range is suitable for the use of
signed-digit concatenation for p [f]. However, the implementation can be simplified by scaling
the multiplicand into the range x! £1/2 (this is achieved by dividing the multiplicand by 2 and
adding one more recurrence step). In this case (Figure 7¢) the range of Z; is from 7 to -1 and the
expression to compute it is

Zj = uj - sign (Yj) 4.2)
where
uj =2(PS_1[j-11+ PC_i[j -1+ PSolj-11+ PColj-1] + PCylj] (4.3)

assuming that the carry-save form of w[j]is (PC[j], PSTjD.

As discussed in the previous section, to perform the computation of p{j+1] using
signed-digit concatenation, we recode Z{/] into ¢;_; and 5; so that

Zj =4tj—l+sj (4.4)

. L[<
and 17; +5; 1<3

We now present a possible recoding. As shown in Figure 8, the TSA block computes #;_,
and s; and has as inputs PS_,[j-1], PC_,[j-1], PSqlj—1}, PColj—1], PCylj], sign(¥;). The
specific recoding function is selected to simplify the implementation. To make ¢;_; dependent
only on u g (and not on sign (Y;)), the recoding is done in two steps as follows:

12

111, .. 1 x.XXXXX

I[OX. XXXXX......
-2
(a)
XXXXXX &+ v e PS[j-1]
XXXXXK v e v e e PC[j-1]
OX.XXXX . ot v et ij

Figure 7. Zj ranges

TSA Block

2bit g pog

T S —— SignY;
tj—l) j .
D, (j-1] | from previous
stage
to next stage
S_]—].
sign(P;.1) 4
_ A
zero(P: {}
Y v l -
D
18 A\
: Aj
D, (]

Figure 8. Bit-Level Implementation of TSA Block

i) Calculate ¢;_; and a temporary s; such that
—_ 4

The corresponding table is

1y 0 1 1 1 2 2
5i 0o 1 - - 1 2 -1
ii) Subtract sign (Yj), 50 that
ol o ‘
5; =§;—sign (YJ) (4.6

which produces a s; in the range -3 to 1. Since the range of ¢; is 0 to 2, the property of carry-free
addition is satisfied.

The values f and 5; are then used to compute A; and sign (P;) and zero (Pj), which are
used in the conversion. This is done as in the signed-digit case presented in Section 3.

Bit-level implementation and comparison

The implementation of the TSA block is divided into several modules as shown in Figure
8. In addition, modules A and D perform on-the-fly conversion. The bit-level implementation of
these modules is discussed in Appendix B.

In comparison with the signed-digit implementation, this carry-save case is advantegeous
because the carry-save adders (full adders) are simpler than the signed-digit adders.

Delay of the scheme and comparison

The delay of producing the most significant half of the product has the same components
as in the signed-digit implementation (Section 3) except that 3-to-2 carry-save adders are used in
the array instead of the signed-digit adders. Again, the difference in delay between the LRCF
multiplier and a conventional right-to-left multiplier is equal to the delay of the last stage and the
delay of an n -bit carry-propagate adder. As mentioned in Section 3, to reduce the total delay of
the LRCF scheme, the last step can be optimized for speed.

13

Example 4.1

To illustrate the implementation we show an example of an 8x8 bits multiplication.

x =.10101011, y =.11001001, Recoded ¥ =1.1121, Shifted X =.010101011,
PS[0]=xYy PC0]=01t_,=0 54=0

j | PSLi-1]

PCLj-1] _ _ |

XYJ uj sign (Yj) tj—l Sj Pj—l A [j“‘l] D L[—l]
1 | 010101011

000000000

==101010101 1 1 0 0 0 0 U
2 ==111111001

==00000100

====01010101 3 0 1 -1 1 0.1 nu
3 | ===10110111

====10100000

======010101 5 1 1 0 0 0.10 nuiu
4 | ======00001

z======10101

========(10 2 0 1 -2 1 0.101 nnhnu
5 s=======11

========(1

4 0 1 0 -1 0.1013 nnndu

Decrement A [4] and attach last digit: 0.1013, = 00.01 00 00 11 00,
Shift: 00.10 0001 10
Check: .10101011%.11001001=.1000011001000011

Error and Rounding Schemes

In this case, since the least significant part of the product is left in carry-save form, the
error is always positive and its magnitude is

0 < Error <271 (4.7)

Similar to the signed-digit case, this error is larger than what is required for the IEEE
rounding schemes. However, as discussed before, it might be acceptable for many applications.

14

To be able to perform the IEEE rounding schemes, it is necessary to detect the case when
the value of the redundant least-significant part is larger or equal to 27" and when it is equal to
zero. Similar to the signed-digit case, two options exist

i) To have a carry-detection and zero detection network. However, this network adds
significantly to the delay.

ii) To generate the carry and the zero signal by a simplified right-to-left multiplication
that is performed concurrently with the main LRCF multiplication. The details of the implemen-
tation of this approach, as well as the use of the values obtained in the different rounding
schemes, are described in [6].

5. Radix-16 LRCF multiplier formed by even-odd radix-4 arrays

One way of increasing the speed of a multiplication array is to increase the radix. The
even-odd scheme effectively produces the speed of a radix-16 array while maintaining the ad-
vantages of radix-4 arrays of requiring only multiples 2, 1 and 0. This type of array has been
used for the right-to-left approach with carry-propagate adder [11]. Here we extend its use to the
left-to-right scheme without carry-propagate adder. We present the scheme for the case in which
the array uses signed-digit adders; it can be readily transformed to the carry-save case.

The even-odd scheme divides the array into two subarrays, as shown in Figure 9. The

even subarray performs the addition of the x¥; with j even, while the odd subarray adds those

with j odd. Let us call w[j] the partial product for the even subarray and v[;] that for the odd
one. The corresponding LRCF multiplication algorithm becomes

w[j+2] = 16{(fraction (w[j]+ij) Jj even (5.1)

vi{i+2] = 16(fraction(v[i]+4xY;) i odd

Note the multiplication by 4 in the odd recurrence, which is needed because of the dif-
ferent weight of the corresponding x¥;. The corresponding Z’s are computed as

Z;(even) = integer (w[j] +x¥;) (5.2)

Z,(odd) = integer (v [i] + 4xY;)

From these expressions we conclude that the corresponding ranges are

13

even subarray

recode,select
& signed-digit add

RSSD -

RSSD

RSSD

RSSD

RSSD
|

RSSD

I I T R T L T T . O I R L

odd subarray

RSSD

Figure 9. Even and Odd Subarrays

IZj (even)| <18 (5.3)

1Z;(odd)| <24

Next, we produce a composite Z as

Zj =Zj(even) + ZJ+1(0dd) |ZJ I <42 (5.4)

This Z; is now recoded into ¢;_; and s;, so that the computation of P can proceed
without carry propagation. Since at each step we compute a radix-16 digit, the recoding satisfies

That is, P; =s; +1; is in the range {-15,...,15}. The resulting recoding is described in
Table 5.1.

Table 5.1: Odd-Even Recoding

Condition tiy s

1Z; tmod 16 < 14 integer (Zj/16) remainder (Z;/16)
|Z;Imod16 214 and Z; >0 | integer(Z;/16)+ 1 remainder(ZjIIG)— 16
IZj tmod 162 14 and Z; <0 | integer (Z;/16)—~ 1 remainder (Z;/16) + 16

The computation of P; is shown in Figure 10. The on-the-fly conversion to conventional
representation is performed by a radix-16 version of the implementation presented in Section 3.

6. Summary

We have reported a multiplication scheme (LRCF) that eliminates the need for a carry-
propagate adder. The scheme performs the multiplication most-significant bit first and produces
a conventional sign-and-magnitude product (most significant half) by means of an on-the-fly
conversion, performed concurrently with the generation of accumulated (redundant) partial pro-
ducts. The scheme is presented for general radix r and radix-4 implementations are described.
Two implementations using a linear array of redundant adders are presented, one using signed-
digit adders and the other with the carry-save variety. The decision on which one to use depends
on technological constraints. We also present an implementation that improves the speed by
computing odd and even partial products concurrently.

16

Zj(even) Z;,, (odd)

‘b

Sin TS
| T |
Pi,

(to on-the-fly conversion)

Figure 10. Computation of Pj in even-odd case

We estimate that, for a multiplier of 64 bits, the scheme we described produces a reduc-

tion of about 10 gate levels with respect to a conventional scheme using a carry-lookahead
adder.

We performed an error analysis of the implementations and indicated a way of imple-
menting the rounding schemes included in the IEEE standard. We conclude that some additional
hardware is required for the implementation of these rounding methods. This hardware is not
necessary in applications that allow a somewhat larger error than that specified by these round-
ing schemes.

References

1. K. Hwang, Computer Arithmetic, John Wiley and Sons, 1978.

2. M. Uya, K. Kaneko, and J. Yasui, "A CMOS Floating-Point Multiplier", IEEE Journal of
Solid-State Circuits, Vol. SC-19, No.5, October 1984, pp. 697-701.

3. A. Avizienis, "On a flexible implementation of digital computer arithmetic,” Information Pro-
cessing 1962, C.M. Popplewell, Ed., North Holland, 1963, pp. 664-670.

4. AD. Booth, "A signed binary multiplication technique,” Quart. Journal Mech. and Appl.
Math., Vol. 4, Part 2, 1951, pp. 236-240.

5. M.D. Ercegovac and T. Lang, "On-the-Fly Conversion of Redundant into Conventional
Representations”, IEEE Transactions on Computers, Vol.C-36, No. 7, July 1987, pp.895-897.

6. M.D. Ercegovac and T. Lang, "Fast Multiplication without Carry-propagate Addition, UCLA
Computer Science Department Report, 1986.

7. A. Avizienis, "Signed-Digit Number Representation for Fast Parallel Arithmetic”, IEEE Tran-
sactions Electronic Computers, Vol. EC-10, September 1961, pp. 389-400.

8. J.T. Coonen, "An Implementation Guide to a Proposed Standard for Floating-Point Arithmet-
ic,” Computer, January 1980, pp. 68-79

9. Annon., "Cray X-MP Computer Systems", Four-Processor Mainframe Reference Manual,
HR-0097, Cray Research, Inc., 1985.

10. M.D. Ercegovac and T. Lang, "Alternative On-the-Fly Conversion of Redundant into Con-

ventional Representations,” UCLA Computer Science Department Report No. CSD-860027,
Nov. 1986.

17

11. J. Iwamura et al., "A 16-bit CMOS/SOS Multiplier-Accumulator,” Proc. ICCC82, pp. 151-
154, 1982,

12. S. Kuninobu et al., "Design of High-speed MOS Multiplier and Divider Using Redundant
Binary Representation,” Proc. 8th. Symposium on Computer Arithmetic, 1987, pp. 80-86.

13. Y. Harata et al., "High-Speed Multiplier Using a Redundant Binary Adder Tree," 1984 IEEE
International Conference on Computer Design, 1984, pp. 165-170.

14. J.E. Robertson, "A Systematic Approach to the Design of Structures for Arithmetic", Proc.
5th Symposium on Computer Arithmetic, 1981,

18

Appendix A: Bit-Level Implementation of Signed-Digit LRCF Scheme

We now discuss a bit-level implementation of some of the modules, to convey an idea of
the complexity of the implementation.

(1) Binary signed-digit adder

The radix-4 LRCF scheme, described in Section 3, leaves the choice of signed-digit
adder open. We implement the adder array using radix-2 signed-digit modules because of their
simpler implementation. Several designs of signed-digit adders have been presented in the litera-
ture [12, 13, 14]. The particular signed-digit adders used in the multiplication array are quite
simple since one of the inputs (the multiple of the multiplicand) is in conventional representa-
tion. A suitable implementation, described in [12], is shown in Figure Al. It uses the following
code for signed-bits: -1 =11,0=10,and 1 =01.

(2) Generation of i1 and s i

The variables i1 and s; are function of Zj, as indicated before. The variable Z ; has
three radix-2 signed digits, represented by six binary varables ({;,25), (£1,21), (§p.20), where
and z; denote sign and magnitude according to the code mentioned above.

The transfer signed-bit ¢;_; is represented by two binary variables, T for sign and ¢ for
magnitude. Similarly, s is represented by the binary variables (5,5) and (G,5g). The switching
expressions for these variables are obtained from the following table.

Z; | Czp Cizy Gozo | tjo | T | 55 | G5 Ogs
5 01 10 01 1 01 1 10 01
4 01 10 10 1 01 0 10 10
3 10 01 01 1 01 -1 10 il
2 10 01 10 0 10 2 01 10
1 10 10 01 0 10 1 10 01
0 10 10 10 0 10 0 10 10

-1 10 10 11 0 10 | -1 10 11

-2 10 11 10 0 10 | -2 11 10

-3 10 11 11 -1 11 1 10 01

-4 11 10 10 -1 11 0 10 10

-5 11 10 11 -1 11 | -1 10 11

19

signed-digit out

transfer out ———m transfer in

WAN; ?B:UJ

{NOT] |AND| [AND] [AND] |AND)
q: (@])

signed-digit in xh_ X;

i+1

Figure Al: Binary Signed-Digit Adder

From the table we get the following high-level expressions:

(Cz,Zz) if |Zj =3
@ny={ @O if Z =3
(LD jf Z;=-3

(€1z1.8020) if 1Z;123
(0'1,51,0'0,30)= (1,0,1,1) if Zj=3
(1,0,0,1) if Z,=-3

The corresponding switching expressions are

=000 t=z2,+12129
o=, +2y2p §;=21Z¢

op=Cot+2z129 59=29

These expressions result in simple gate networks.
(3) Addition of t; and 5; and the computation ofAj =(a.ag), zero(P;), and sign (P;)
The addition of ¢; and s5; is performed by a 2-bit signed-digit adder, obtaining P;

represented as (7 py) and (mo.p o). A; =(a1,a0), zero (P;), and sign (P;) are obtained according
to (3.11) and (3.14). We get

zero(Pj)=p1'po
sign(P;)=m +p T
a;={p,+po)p, +m)py +py" +1g)

ap=Po

20

(4) Conversion control signals

The conversion control signals, defined in Table 3.1 and (3.13), are implemented assum-
ing the following code for D, [j]:

D lj1 | 8,1 dlj]

] 11 0
n 0 0
d 0 1

(the subscript & is dropped from &’s for simplicity)

The resulting switching expressions are simple:

3,[i+11=8;{/] - zero (P;)
Bolj+11=8lj1 + 8:Lj] - sign(P;)

with the initial conditions 8, = 1 and 8, =0.

(3) Decrementers

Since A, is in the set {0,1,2,3), the decrementation required when D, =d can be per-
formed by a simple network. The final digit M, , represented by two binary variables m, and m
{again, we omit the index k out of sympathy for the tired reader), is defined by the following
switching expressions:

m, = (al @ao)'50+a150'=ala0+a150'+a1'ao'50

mgp=4ap @80

21

Appendix B: Bit-Level Implementation of Carry-Save LRCF Scheme
The implementation of the TSA block consists of the following modules:

(1) A two-bit adder. This is a standard adder that has inputs PS_,[j-1], PC_,[j-1],
PSylj—1], PColi—1], PCylj] and produces (U,, Uy, Ug).

(2) Module T: a code converter for ¢. This is used to simplify the implementation of the
A block. The code for ¢ used is

! tltO
0 00
1 -1
2 10

To obtain this code, the two most significant bits of the output of the two-bit adder
(U,U) produce (¢ 1) as follows:

11=U;
tg=U,XOR U,
(3) Module S: subtracts sign (Y ;) from sj‘-' (U Uy and produces s = 5,55 in two’s com-

plement representation. Its implementation is described by the following table, which indicates
the products required and the functions in which these products are used.

U Ugqsign
001 51
-10 So
01 §4,5p
1-0 52,8,
11 - §2,51

The values of s and ¢ are then used as in the implementation described in Section 3 to
compute A, and zero (P;) and sign(P;). The corresponding block A implements the following
table:

22

tj Sj Pj aydg Slgﬂ(PJ) ZerO(Pj)
0 0 0 00 0 1
0 1 1 01 0 0
0| -1] -1 11 1 0
01 -2] -2 10 1 0
0131 -3 01 1 0
1 0 1 01 0 0
1 1 2 10 0 0
1| -1 0 00 0 I
L -2 -1 11 1 0
1 {-3] -2 10 1 0
2 0 2 10 0 0
2 1 3 11 0 0
2 | -1 1 01 0 0
2 {2 0 00 0 1
2 1-3] -1 11 1 0

Using the codes for s and ¢ indicated before, block A is described by the following table
(which shows the products required and the functions that use them):

100528159 -11-0 --10- 10:0- -101 00-1- -1--0 -0--1

ay X X X X

ag X X
Sign’ x X x
zero X X X X X

The rest of the conversion to conventional representation is identical to that presented in
Section 3.

23

