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Abstract

Several modifications to the CORDIC method of computing angles and performing rota-
tions are presented: (i) the use of redundant (carry-free) addition instead of a conventional
(carry-propagate) one; (ii) a representation of angles in a decomposed form to reduce area and
communication bandwidth; (iii) the use of on-line addition (left-to-right, digit-serial addition) to
replace shifters by delays; and (iv) the use of on-line multiplication, square root and division to
compute scaling factors and perform the scaling operations. The modifications presented im-
prove the speed and the area of CORDIC implementations. The proposed scheme uses efficiently
floating-point representations. We discuss the application of the modified CORDIC method to
matrix triangularization by Givens’ rotations and to the computation of the single value decom-
position (SVD).

1. Introduction

Many compute-intensive applications include matrix computations that involve the cal-
culation of angles and their use in rotations. Examples are matrix triangularization and single
value decomposition (SVD) [GOLU83]. To achieve adequate throughput, parallel structures
have been proposed which are typically organized in linear, triangular, or square arrays
[GENTS1, CIMI81, AHMES2a, LUK86, CAVAS87]. The angle is computed in boundary or diag-
onal processors and broadcast to other processors for rotation. Several alternative implementa-
tions of the angle calculation and the rotations are possible. Of particular interest are the follow-
ing two:

a) The sine and cosine of the angle are computed by means of a sequence of operations
involving squaring, addition, multiplication, square root, and division. The rotation is then done
by several multiplications and additions. The main advantages of this approach is that efficient
implementations for the primitive operations are known and that redundancy can be used to im-
prove the speed [ROB58, AVI61, ATKI75]. However, it requires various different modules and
consists of several dependent computations. To reduce the delay introduced by this, it is possible
to use the on-line approach, which allows the overlapping of these dependent operations; exam-
ples of this have been presented in [ERCE87a} and [ERCE87b].

b) Directly calculating the angle using a CORDIC operation [VOLD59, WALT71] and
using the same approach for the rotation. This method has been applied to matrix triangulariza-
tion in [AHMES2a] and to the single value decomposition in [CAVA87]. It has as advantage that
a small number of operations is required and that the same module can be used for both the an gle



calculation and the rotation. However, the conventional implementation of the CORDIC module
has two disadvantages: it is slow, because it involves recurrences including carry-propagate ad-

dition and variable shifting, and area-consuming because of the need for variable shifters and
ROMs to store angle constants.

We present here a modification of the implementation of the CORDIC modules to im-
prove the speed and reduce the number of shifters. Moreover, we design special CORDIC-based
modules for the different operations, such as angle calculation, rotation, and two-sided rotation.
These special-purpose CORDIC modules have advantages in speed and area with respect to the
general-purpose modules developed by [VOLD59] and [WALT71] and used by [AHMES2a] and
[CAVAST7].

The main improvements developed in this paper are:

1) Modificaion of the standard CORDIC module for the calculation of the angle
tan~'(a/b) so that redundant addition is used. This results in a significantly faster operation than
that obtained with carry-propagate adders. Since the use of redundant addition makes the scaling
factor variable, we develop an implementation of the computation of this variable factor.

ii) The angle is transmitted in decomposed form for use in the rotations. This reduces the
communication bandwidth and eliminates the need of the angle recurrences in both CORDIC
modules.

iii) Implementation of the rotation modules using on-line additions [ERCE84, IRWI87].
This replaces the area-consuming shifters by more area-efficient delays.

Both ii) and iii) above were already introduced for the nonredudundant CORDIC case in
[ERCES87b].

To achieve good numerical properties and simplify the use of the system in a variety of
environments, it is convenient to perform the computations using a floating-point representation.
In [ERCE87a] this representation was used to implement the on-line computation of Givens’
sin/cos rotations factors. In [AHMES82b], the use of floating-point representation in CORDIC
computations is discussed. However, the approach suggested there produces a reduction in speed
because of the use of floating-point additions. Here we consider simplifications to this scheme to
eliminate the overhead.

In Section 2 we present the redundant CORDIC module for the calculation of the angle.
This redundant calculation makes it necessary to compute a variable scaling factor (in contrast
with the constant scaling factor used in conventional CORDIC); the calculation of this factor is
presented in Section 3. In Section 4 we develop the on-line CORDIC module for rotation. Sec-
tions 5 and 6 present the application of these techniques to the matrix triangularization and sin-
gle value decomposition computations. Finally, we conclude with speed comparisons with the
other approaches that have been presented.



2. Redundant CORDIC for angle calculation

The CORDIC scheme [VOLDS59, WALT71] can be used to compute the angle 8, such

that
6=tan (<
an™( 5 )
This calculation is done by the following set of recurrences
Xa [f+1] =X [J] + 0}'2’_}-)‘% [/]
YaU+1l=y,01 - 0;27x, 1]
2, [j+1] = 2, [j1 + o;tan™!(27)
with
x,[01=b, y,[0l=a, 2,[0]=0
and the results being
x,[n] =K(a2+ pHVZ.  g= z[n]
where

n—1 .
K = [1(1+c?272)12
j=0

In conventional CORDIC, the value of ¢ f is obtained as

Uj=

1 if ¥, [j120
{—1 if y;[i1<0

As mentioned in Section 1, this CORDIC operation is relatively slow because each of the
n steps requires a carry-propagate addition and a variable shift. Moreover, it uses two shifters

which are quite area-consumming. We now present the two following modifications to improve
the implementation.

i) Elimination of one of the shifters by transforming the recurrences as follows. Let



wljl=2y,(j]
Then the recurrences are transformed to

XU+l =x, 01+ 0,2 % w(j]
wli+l] =2w(j1-0;x, /1)
2,11 = 2,[j1+ o;tan"'(2)

1 if wlj]20
% =141 i wjl<0

This transformation leaves just one shifter for the Xq recurrence. Moreover, note that this

form shows that the value of x [/ 1 does not change after j=n/2, that is,x[n]=x[n /2] to the im-
plementation precision.

ii) Replacing the carry-propagate addition by a redundant addition (carry-save or signed-
digit). This approach has been used previously in the implementation of other operations, such as
division and square root [ROBES8, METZ65, AVI61, ATKI75]. This requires that the determi-
nation of O; uses an estimate of w[f] instead of its fully assimilated value. To make this possi-
ble, it is necessary to produce a redundant representation of  in terms of the o;’s. This is
achieved by allowing C; to take values from the set {-1,0,1} instead of from the set {~1,1},
which is the one used in conventional CORDIC.

Ix[1]1 2172

The specific selection function depends on the type of redundant representation used. As
shown in Appendix A, for 2’s complement carry-save representation the selection function is

1 if w20
0; =40 if ¥=-172
-1 if w<-1

where W is an estimate of w [/] with a precision of 1 fractional bit,



The binary-level specification of this selection function and the corresponding switching
expressions are given also in Appendix A.

Similarly, for signed-digit representation the selection function is

1 if w212
6; =40 if w=0
~1 if w<-112

where again W is computed using 1 fractional bit of w .

The implementation of the corresponding recurrences using the carry-save approach is
shown in Figure 1. The step time corresponds to the shifter delay plus the 4-2 carry-save adder,
since the selection function is overlapped with the shifting. This step time is significantly smaller
than in the nonredundant case where carry-propagate addition is required. Depending on the
technology, the speed up should be between 4 and 6.

The resulting angle 6 can be produced in two alternative forms, as follows:

i) The angle in decomposed form is represented by the sequence of o;’s. This form is
used directly in the rotation for the triangularization case, as discussed in Section 5. In this case,
it is not necessary to implement the angle recurrence z.

ii) The angle is represented by the carry-save form. This form is used in the SVD case, as
shown in Section 6.

On-line implementation

An alternative implementation of the redundant CORDIC recurrences is to use on-line
addition [ERCE84, IRWI87] instead of parallel redundant addition. In such an implementation,
the recurrence is unfolded and on-line adders are used. The main advantage of this implementa-
tion is the replacement of the area-consuming shifters by more efficient delays, as shown in Fig-
ure 2a.

Since the determination of ©; requires the three most significant sbits (signed binary di-
gits) of w{/] and this value is obtained by a multiplication by two, to have a fast implementation
three sbits of w are produced per clock cycle and the on-line adder incorporates the multiplica-
tion by 2. The implementation of this on-line addition is shown in Figures 2b and 2c, where
binary signed-digit adders are used [AVIZ61, KUNI87]. To feed these adders also three sbits of
x have to be produced per clock cycle. In such a case, the shifting by 2°% is done by a combina-
tion of wiring and of delays, as shown in Figure 2d. Let us call v [] the vector formed by group-
ing the sbits of w[;] in groups of three sbits. Moreover, let v;[j] be the itk group and vX{/] the
kth sbit inside a group (k=0,1,2). Then, the delay for sbit v"[j], k=012isd, =2j +k. Con-
sequently, the number of delay cells for sbit k£, denoted by c; is
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di
“=3
and the number of the adder input to which sbit £ is connected, denoted £, , is

Ilc =dic mod 3

The resulting on-line delay of addition is one clock cycle, that is two groups of three shits
of the operands are needed before the first group of three sbits of the result is produced. Conse-
quently, the delay between the initiation of w{;] and of wlj+1] is two clock cycles. The timing
is shown in Figure Ze. Because of this on-line delay, this scheme requires more clock cycles
than the redundant parallel method. However, since no variable shifter is required, the clock
period can be smaller in the on-line case. Moreover, since the rotations are performed with on-
line recurrences, the match between both components might be better.

Floating-point representation

We now consider the modifications required for the described implementations when

Assume that the initial values for the circular CORDIC are represented in normalized
floating point as

x[01=A4,2% 12514,1 <1
Wil =y[01=4,2% 1254, <1
As in
the CORDIC recurrences if we use floating-point additions, However, we can eliminate this by
aligning just in the first iteration, as follows. From the recurrence we get,
x[11=x[0] + Ogw [0]

wll] =2(w[0] - yr [0])

It is always possible to select Oy#0 because the sign of w [0] is known. Consequently, a
floating-point addition and subtraction will produce



x[1]1=A*2¢

w(l]=24-24

where @ = max {a, ,ay) andx[1}is a normalized fraction (as required by the selection function).

After this first Step, the iterations are performed using the fractions A* and A~ The
resulting angle is correct, since it depends only on x[01/y [0]. Note that the angle is not in 2
floating-point Tepresentation; its range is

n-1 ,
Omin = tan™' @™y = 3--1) g _ X tan~1(27)
i=0

Since the maximum is larger than n/2, this produces no problem. The minimum valye
depends on n, but should be adequate for most applications.

In the triangularization application it is also necessary to compute the new diagonal ele-
ment, which is x [n]/K . When the previously described method for floating-point representation -
is used, it is nhecessary to multiply the resulting x[n] by 29,

n-1 ,
K =TI+ lc;127%)12
j=0

Since in the redundant case the set of values of O; is (-1,0,1} (in contrast with conven-
tional CORDIC where it is {=1,1}), the value of & 1S not constant. Consequently, its value has to
be computed and the compensation has to be done by actual division, since other methods, such
as the one proposed in [DELO83], depend on the fact that the scaling factor is constant. We now
describe an on-line algorithm for the computation of K. The algorithm has two steps:



i} Compute
n-1 ,
P=TI(1+lo;127%)
j=0

by the recurrence

PLj+1]1=P[jl1+ lo;1-27% P[]
with

P01=1 and P =P[n]=Pn/2)

We use an on-line implementation, which unfolds the recurrence and uses shift registers
for the delay, as shown in Figure 3. Note that only n/2 stages are needed.

ii) Compute K = P by an on-line square-root algorithm [ERCES7a].
4. On-line CORDIC rotation

The rotation of the vector M by the angle 0 is defined by

mi
111’[9][’"2
where
cos® —sin®
R18] = sin@ cos@

If the angle is known in its decomposed form, such that

n—1 .
0= 3 o;tan'(27)
Jj=0

the rotation can be performed by a (partial) CORDIC operation, consisting of the recurrences

% U+ =x[]1+0;27y,(j]

Y U+l =y,[j1-0;27x,[j]
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with the initial conditions
xr[ol =m, }’,.[0] =my

After n steps, the result is
X, [n m;
y,[n] =KR (0] m,

n-1 .
K =TI(1+ |g; |- 27%)12
i=0

where

The CORDIC operation is partial because it uses the angle produced by another CORDIC
operation in decomposed form. Consequently, no angle recurrence is needed. Moreover, the o’s
are passed in series (most significant first) so that the rotation can be overlapped with the angle -
calculation.

To keep up with the fast recurrence step obtained in the computation of the angle when
redundant additions are used, the rotation CORDIC has also to use redundant addition, Since in
this case there is no computation of ¢’s, a suitable implementation uses an on-line version. In
this implementation, the recurrence is unfolded and on-line adders are used, as shown in Figure
4a. The main advantage of this scheme with Tespect to the parallel form is that the area-
consuming shifters are replaced by more efficient delays. To obtain an on-line delay of 1 clock
cycle, the additions should be radix 4. In this case, the interval between initiations of consecutive
iterations in the on-line circylar CORDIC is of 2 clock cycles.

As indicated before, the CORDIC operation produces a rotation multiplied by the scaling
factor K. This scaling factor is computed as indicated in Section 3. The correction by this factor
is performed by two on-line divisions, as shown in Figure 4a. The result of these divisions is in
signed-digit form; to convert them to conventional form a on-the-fly conversion is used, as
presented in [ERCE87c]. The timing of this on-line rotation processor is shown in Figure 4b.

Floating-point representation

The use of floating-point representation has similar characteristics as those discussed for
the angle. Let the initial values be

x[0]=B,2" 12<B, <1

and
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yI01=8,2% 1258, <1
As before, a floating-point addition and a subtraction produces

x[1]=B*2?

y{11=B—2%

The scaled values B* and B~ are used for the remaining iterations, producing x‘[n] and
¥'[n], so that the final results are

x[nl=x"[n]2?

y[nl=y’[n]2%

5. Application to Matrix Triangularization
The triangularization of a matrix by Givens’ rotations hag been discussed in {GOLS3).

Traditionally, this transformation was proposed for execution in a sequential computer. Recent-
ly, interest has evolved in the computation using parallel computers [SAME78] and concurrent

[AHMES2a]. We now develop an implementation using the redundant and on-line CORDIC
scheme presented in the previous sections; this improves the speed by having a smaller step
time, reduces the need of shifters, and allows the overlapping of the CORDIC rotation with the
divisions required to compensate for the scaling factor.

Givens’ rotations are used in the solution of linear equations of the form Ax =
[AHMES2a, GOLUS83). The algorithm triangularizes the mxm matrix A with a sequence of
plane rotations. The following is a sequential description of the algorithm:

Forr=1tom
Begin

Fori=r+ltom

Begin

10
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-1 .
eri «— —~tan (a,',- /arr ) a, «— (arg T aig)llz

For j=r+ltom

Begin
a; cosf,; —sind, a,;
a;j « sing,; cos8,; | | a;
End
b, cosf,; —sin®,;] b,
b;| < |sin®,; cos8,; ||b;
End

End

In [GENT81, CIMI81, AHMES82a] linear and triangular arrays are proposed to perform
the triangularization. For instance, in the linear array, shown in Figure 5, the angle 6,; is com-
puted in the leftmost processor and is transferred to the right while data is transferred both to the
left and to the right. The leftmost processor computes the angle and all other processors compute
the rotations. The scheme we propose is applicable to both types of arrays.

Implementation using CORDIC.

In [AHMERS2a] a method using CORDIC is proposed for both the computation of the an-
gle and of the rotation. The justification given there is that "the rotation is performed in no more
time than a bit-serial multiplication". However, this is not completely accurate because the
CORDIC scheme needs a variable shift and a carry-propagate addition, while multiplication
does not require such a shift and can be done with carry-save addition. Consequently, the step
time in multiplication can be made significantly smaller than for CORDIC. Moreover, additional
steps are required to compensate for the scaling factor introduced by the CORDIC rotation ( the
number, of steps for scaling ranges from 2n, if CORDIC divisions are used, to n/4 if repeated
steps are used for compensation [DELO83]). Consequently, the time of the angle calculation is
of n CORDIC steps followed by the rotation which, in the best case, corresponds to 1.25»
CORDIC steps. In both cases, the step time is determined by the shifting and the carry-propagate
addition.

11



More specifically, the algorithm suggested in [AHMES2b] is as follows:

scaling factor, which can be achieved by a division using a linear CORDIC or by the repetition
of some CORDIC steps [DELO83]. The total delay is, therefore, between 1.25n and 2n CORD-
IC steps. The angle is transmitted to the rotation processors.

ii) The other processors perform the rotation by a circular CORDIC, They use the
angle produced by the angle processor. The compensation for the scaling factor is performed in
the same way as in i). The total delay of the rotation is, therefore, of between 1.25x and 3n
Problems with the CORDIC Implementation

From the previous discussion Wwe can conclude that each iteration of the triangularization
algorithm is quite slow, since it requires at least 2.25n CORDIC steps, and the delay of a step is
determined by the variable shift and the carry-propagate adder.

Implementation Using Redundant and On-line CORDIC

We now show the implementation using the redundant and on-line CORDIC operations
presented in Sections 2, 3, and 4. As in the scheme described in [AHMES2a], there are two
types of processors: the angle processors and the rotation processors. We now discuss our
scheme for these processors and their interface,

The angle processor

The angle processor computes the angle 6,; and the new diagonal element a,, using the

Consequently, the angle processor consists of the CORDIC recurrences, the on-line re-
currence for X 2, the on-line Square-root unit, the on-line divider/conversion unit, as shown in

Figure 6a,

12
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On-line rotation processor

Overall timing

The overall timing is shown in Figure 7. The time of one iteration of the triangularization
process is 3n+3 cycles (determined by the rotation). As indicated before, the step time of the an-
gle processor is two clock cycles, while for the other recurrences it is one clock cycle.

The speed of the scheme presented here compares favorably with the one of using con-
ventional CORDIC, as proposed in [AHMES$2a]. In that implementation, the number of clock
cycles is 2.25dn, where d is the number of clock cycles per CORDIC step (carry-propagate ad-
dition and shifting). For an estimated value of d=6 (to use the same clock period in both imple-
mentations), we conclude that the scheme presented here would be approximately 4.5 times fas-
ter.

possible, the time would be reduced to 1.25dn , with a speed-up of 1.8. The use of the redundant
adder is responsible for the other 2.5 speed-up factor.

6. Application to SVD

matrix is

13
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—sin® c¢osH

[cose sinG]
R(®) =

Several methods can be used to perform these rotations, in particular the two-step method

and the direct two-angle method [BRENS5]. Because of the use of CORDIC we consider here
the latter method.

With respect to the implementation, two approaches are possible: a) the computation of
cos® and sin6 by a sequence of primitive operations, such as squaring, division, and square root,
or b) the use of the CORDIC procedure for direct computation of the angles and of the rotations.
An implementation using the first approach using the two-step method is reported in [BRENSS)
and of the second approach using the two-angle method in [CAVA87]. In [CAVAS7] a com-
parison of these two implementations is made, in terms of area and time complexity.

In this paper, we illustrate the use of the redundant and on-line CORDIC schemes dis-
cussed in Sections 2,3 and 4 to improve the speed of execution of the two-angle algorithm.

Direct two-angle algorithm for SVD using CORDIC

The algorithm (Figure 8) first computes, by means of two concurrent CORDIC circular
operations, the angles

-1, C+b

9, = tan l(d-a)
-l €D
94 =tan (d+a)

Then, the two angles 6; and 0, are obtained as

6, —98,)
91 _—2...
O, +6,)
9, _,_____2_

Finally, the two-sided rotation is performed by the sequence of two CORDIC operations,

14
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Implementation

In [CAVA87] this scheme is implemented quite directly (except for the correction factor,
which is incorporated in the rotations). This results in a time of 3.25T,, each T, corresponding
approximately to n carry-propagate additions, and in an area essentially equal to two CORDIC
modules. In [ERCE87b] we proposed modifications to the implementation that improve the
speed by a factor of approximately 3.5. However, the speed is still basically dependent on the

time to perform a carry-propagate addition of n bits. Here we use the redundant adder version
presented in Section 2 to further improve the speed.

Computation of 8, and 0,

We present an implementation that uses redundant CORDIC operations to calculate the
angles 6; and 6,, with the resulting improvement in speed because of the smaller addition time.

This implementation has been discussed in Section 2. The resulting angles are represented by the
o’s as follows:

n-1 .
8, = ¥ oftan”'(2)
i=0

n-1 .
8; = ¥ oftan~1(2™)
i=0

The ©;’s are computed by the CORDIC unit shown in Figure 1. To compute both angles

concurrently requires two CORDIC units. To reduce the amount of hardware, it is possible to
pipeline one unit.

Computation of ©; and 6,

Then the angles 6; and 8, have to be computed. The simplest way to do this is to com-
pute ¢/ and o7 directly from of and 6. The corresponding relations are

o’ +of
=T

resulting in the following table:

15



of of | 6/ of
1 1 b 1
1 1/2 172
1 -1 1 ¢
0 1 12 -12
0 0 0 0
0 -1 -12 12
-1 1 -1 0
-1 0 -12 -112
-1 -1 0 -1

In contrast with the implementation discussed in [ERCES87b], it is not possible to use
directly these values of o/ and o/ for the rotations because of the values +1/2, which do not lead
to a simple rotation step. Because of this, we have to use these values to compute another

decomposition with the digit set {-1,0,1). That is, we compute the sequences of y; and ! such
that

n—1 . n-1 .
6= ¥ oftan '@y = T yhan'27) ol ={-1,-120,12,1} v ={-1,0,1

i=0 i=0
n—-1 3 n-1 ,

8, = ¥ o/ tan"'27) = ¥yl tan27) of =(-1,-1/2,0,1/2,1} ¥ ={-1,0,1}
i=0 i=0

We now describe the computation of the y,-’ ; the computation of ¥/ being identical (we
will skip the superscript to simplify the notation).

We want to perform the computation on-line [ERCE84, IRWI87], in order to overlap it
with the computation of the angles 8, and 8,, and with the rotation. To do this, we define the
residual

, . J+p Apmmin L i
2[j/1=2 (X 0;tan” 27) - 3 y;tan” " (27))
i=0 i=0

where p is the on-line delay. This results in the recurrence,
2[j+1] = 2z [j1 + 6., 2 tan™1(2°0*P)) —y, 2/ tan~' (277 ))

with initial condition
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-1 . ,
2[0] =" 6,2 tan~1(2%)
i=0

To simplify the selection function, we decompose this recurrence into two by defining

wlil=z[j1+0;,,2 tan™}(2U*7))
so that
z[j+1]=2w[j] - ;-2 tan"(2 7))

_ Note that the multiplication by 2/ is not achieved by shifting, rather the constants
2/ tan~1(27/) are stored in the ROM (instead of tan ' (27)).

To use carry-save adders for these additions, it is necessary to perform the selection of 04
using an estimate of w. In Appendix B we determine a selection function using two fractional
bits of w and an on-line delay p=2. This function is

1 if w212
%, =10 if -12<w<1/4
-1 if w<-3/4

The implementation of this module and its timing is shown in Figure 9. Since the carry-
save adders have a small delay, the delay of the ROMs might be the determining factor in the
step time of this recurrence. To reduce this delay, the ROM can be replaced by a shift-register
array.

On-line two-sided rotation

The left-angle rotation is done by an on-line circular CORDIC operation, as discussed in
Section 4.

The right-angle rotation is also performed by an on-line circular CORDIC. The timing of
Figure 10 shows that this right-angle rotation begins when all digits of the inputs have already
entered the left-angle rotation unit; consequently, it is possible to use the same unit for both rota-
tions.

Scale-factor correction

Each of the CORDIC rotations produces a modification of the magnitudes [WALT71] by
the factor

17
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Figure 9: Angle Computation for SVD
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KI = H(l + (%1)22—21')1!2
and
Kr = H(l + (.Yl_r)22—2i)1/2

It is necessary to correct for these factors. Instead of performing individual corrections, it
is possible to perform just one correction using the factor

K =KI'K,

In conventional CORDIC the factors are constant (independent of the actual values of the
0;’s) because the possible values of Y; is the set {-1,1). In contrast, in this case the digit sets of
6; and 8, are {-1,0,1), so that the correction factors for each of these rotations are not constant
and have to be computed for the specific angle value. From the definition,

K =KrK, =TI+ ()27 ) 2111 + (p2-2%y12

There are several ways to calculate this scaling factor. We choose to follow the pro-
cedure discussed in Section 3. Since now there are 2n factors of the form (1+ 02-2‘2£), the on-
line implementation of P = K2 would have 2n on-line adders and delays. However, in the same
way as done for the two-sided rotation, it is possible to use twice the module discussed in Sec-
tion 3, by feeding back the output.

As discussed in Section 3, an on-line square root unit is used to calculate K = £ /2. Thep

on-line divisions perform the correction and the on-the-fly conversion to 2’s complement
representation [ERCES87c].

Overall SVD system

We now summarize the complete system. As shown in Figure 11, the diagonal proces-
sors contain the following components:

- a partial redundant CORDIC module to evaluate the angles 6, and 6, (in decomposed
form). The main components of this module are a carry-save adder and a shifter. The module is
pipelined with two stages, to compute both angles.

- an on-line module to compute the decomposition digits yf and ¥/ of the angles 0, and
0,.
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- the on-line modules to compute K}, X, , and K.

- two partial on-line CORDIC modules to perform the rotations. Again, these modules do
not require an angle recurrence, since the angle is produced in suitable decomposed form. The
main components of these modules are n on-line adders and shift registers for delaying.

- an on-line multiplication module and two on-line division modules to perform the scal-
ing correction. These dividers also convert to conventional representation.

The off-diagonal processors (Figure 12) contain the same rotation module as the diagonal
processor, one multiplier, and four division modules.

Figure 13 shows the timing of the complete system. We estimate that the operation takes

T=5n+10 clock cycles

In comparison, the implementation proposed in [CAVAS87] takes 3.25nd cycles. For the
typical value of d=6, the implementation proposed here is about 4 times faster. Moreover, it is -
1.6 times faster than the nonredundant scheme proposed in [ERCE87b].

With respect to area, we cannot make a significant comparison without actual realization.

7. Conclusions

We have presented several modifications to the CORDIC method in order to improve
speed and efficiency of its implementation. The main contributions are: (i) the introduction of
redundant (carry-free) addition to replace time-consuming conventional additions; (ii) the use of
on-line arithmetic to reduce the communication bandwidth, maximize the overlap between suc-
cessive operations, and replace area-expensive shifters by delays; (iii) the use of angles in
decomposed forms to eliminate angle accumulation recurrences. These modifications contribute
to a speedup of about 4.5 with respect to a conventional CORDIC in the Givens’ triangulariza-
tion algorithms, and to a speedup of about 4 in the SVD case. No attempt has been made at this
time to estimate the savings in the area since no VLSI realizations are done,
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Appendix A

We now develop the selection function for o; using the digit-set {~1,0,1} and an estimate
of w[j]. For this, we first obtain the selection 1ntervals L. U] of w[i1=2/y[j] so that c; =k
can be selected. The intervals for k=t1 are the same as for the standard CORDIC [WALT?I]
that is,

L1=U_1-_—0
and
Uilil=-L,[j1=2A
where
ran-1(—3 i ~1/q=(n-1)
(——-——)— Y tan " (27') +tan (2 )
U1 5

It is also shown in [WALT71] that the value
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ly+1]1 = x[j127/,

which results in the standard CORDIC when y[j] =0, is acceptable for convergence. Therefore,
we obtain

Ui+ ==-L_[j+11 2 2x[}]

For the modified redundant CORDIC we need to determine U and L. >From the previ-
ous expression, it is possible to select 6; = 0 whenever the resulting

lw[j+1]1 <2x[f]
Consequently, from the recurrence

wlhi+l1=2(wljl1-o;x[j D

we obtain
Uolil=-Loli1=x[j]

Using these intervals we now determine a selection function that is suitable for using an
estimate W[/ ] of w[/]. To be able to do this, it is necessary to have an overlap between the inter-
vals for -1 and 0 and for 0 and 1. This can be achieved by normalizing x [/], that is making

x[j121/2

>From the description of the operation for floating-point representation, it can be seen
that it is possible to have x[1] normalized. Moreover, from the recurrence for x[j] we can
deduce that

x[+=x[jl+0o;wlj]2¥ 2x[f]
Consequently,
x[j12x{1121/2 for j=1

We now obtain a suitable selection function. Since the actual relation between w and w
depends whether carry-save or signed-digit redundant addition is used, we treat these two cases
separately.
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i) Carry-save case

In this case the values are represented in 2’s complement, so that the relation between W
and w is

wljl-27"" < [j1 < w[j)
where the estimate is computed by assimilating ¢ fractional bits of w.

If M (k) [m (k)] is the largest [smallest] value of w[;] for which a quotient value of k is
chosen, we have

mE)<SWSMKE) - o; =k
m(k+1) =M (k)+2™ (since t fractional bits are used in selection)

mE&)2L,, MKk)sU, -2
These relations are illustrated in Figure A1. Introducing

Ug=-Lo=1/2 (to make the selection independent of x[j))
and

Ll = U—l = 0
results in the following inequalities:

M@©)<1/2-27""1

M©0)2-27 (since m(1)=M@Q)+27 20)

m(0)=-1/2

m(0) £ 27" (since M(-1)=m(0) - 27* £ 271y
This results in

max(-1/2,~2"Y < M(0) £ 1/2 - 27+

-12<m@) <-2"

23



These expressions are satisfied for =1 and M (0) = m (0) =—1/2. The resulting selection
function is

i) Signed-digit case
In this case, the relation between W and w is
wlil-2"¢ <w[jl<swlj]+2"
where W is computed using ¢ fractional bits of w .

Using the same notation as in case i) we get,

mk)SW SMKE) — o, =k
mk+1)=M(k)+2™ (since t fractional bits are used in selection)

mk)yzL, +27° ME)sU, -2
These relations are illustrated in Figure Al.b. Again, as in case i) introducing

Ug=-Ly=V12 (to make the selection independent of x{j])
and
Li=U_=
results in the following inequalities:
M@O0)<12-27
M@©)2-2" (since m(1)=M©0)+2~ 20)
m@z-12+2"

m(0)<-2"" (since M(=1)=m(0) - 27* < 27+

24



These expressions are satisfied for r=1 and M (0) =m(0) =0. The resulting selection
function is

1 if w212
;=40 if w=0
-1 if w<-112

Appendix B

We determine now the selection function of the on-line determination of the component
Y; of 6;. The corresponding recurrences are

2[j+1] =2(w[j] - v;2/ tan~}(27))
wlil=z[j]+0;,,2 tan”} (2707

We now determine the intervals [L,,U, ] of w[/j] so that z[j+1] remains bounded when
chosing y;=k . From the recurences we obtain,

Uy -2 tan (270 = 2(U,, - k-2/1an™1(27)

Uy +2 tan”' @) = 2, — kY an (27))
Making k=1 in the first we get,

Uy=22tan1(27) - 2/ tan 1 (270*P))
Consequently,

L, =2 tan" (2 U+

Up=2tan"}(27) - 2 tan 1 (27U*7))

L0="U0
U-l =—L1
L =-U,
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Since these intervals depend on j and we want a selection function independent of j, we
determine the corresponding bounds. We get

L,g27
Up2n/4—tan }(27P)

To get a positive overlap (U > L) we need p 2 2. Using p=2, we get
Ly<272

Ug22!

Since the overlap is of 272, it is possible to use an estimate of w with two fractional bits.
A suitable selection function is

1 if w2112
Yj= 0 if -12sw <1/4
-1 if w <-3/4
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