PARALLEL ALGORITHMS AND ARCHITECTURES FOR
BINARY IMAGE COMPONENT LABELING

Quoc Tuan Pham August 1987
CSD-870041

UNIVERSITY OF CALIFORNIA

LOS ANGELES

Parallel Algorithms and Architectures

for Binary Image Component Labeling

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in Computer Science

by

Quoc Tuan Pham

1987

© Copyright by
Quoc Tuan Pham

1987

The thesis of Quoc Tuan Pham is approved.

Wl /e

/

L/ Jack Carlyle

Eli Gafni

ol Yalbad

Sheila Greibach, Committee Chair

University of California, Los Angeles

1987

ii

TABLE CF CONTENTS

LIST QF FIGURES
ACKNOWLEDGMENTS

ABSTRACT

1. INTRCDUCTION
2. MODELS OF PARALLEL COMPUTATION
2.1. PRAM (Parallel Random Access Machine)
2.2. SIMD (Single Instruction -~ Multiple Data Stream)
2.2.1. MCC (Mesh—-Connected Computer)
2.2.2. PC (Pyramid Computer)
2.2.3. MOT (Mesh of Trees)
2.2.4. CCC (Cube-Connected Computer)
2.2.5. PSC (Perfect Shuffle Computer)
2.2.6. 2P- Blocks
3. ALGORITHMS ON PRAM'S
3.1. The Tree-Merging Algorithm
3.1.1. shiloach and Vishkin's Algorithm
3.1.2. Modifying the Tree-Merging Algorithm for
Binary Image Component Labeling
3.2. The Label Propagating Algorithm

3.2.1. Further Definitions in Digital Topology

iii

Page
vi
viii

ix

10

11

11

12

18
19

19

TABLE OF CONTENTS (continued)

2.2.2. Description of the Label Propagating Algorithm
3.2.2.1. An Algorithm to Match Pairs of Parentheses
3.2.2.2. A Detailed Description of the Label

Propagating Rlgorithm
3.2.2.3. Modifications for the General Case
3.2.3. Contour Pilling, Component Shrinking

and Component Counting Counting Algorithm

4. MAPPING PRAM ALGORITHMS INTO SIMD ARCHITECTURES

4.1. Simulation of a Class of PRAM Algorithms

4,

4,

on the SIMD Model
A Survey of Existing Component Labeling Algorithms

on SIMD Computers

. Efficient Data Movement Operations on

the CCC and the PSC

New Interconnection Networks to Support

Polyleg Algorithms

4.4.1. Embedding of the MCC in the CCC
Using Block Indexing

4.4.2. Adding the MCC Interconnection Networks
to the PSC

4.4.3. Simulation of Other SIMD Architecture

by the ECCC and the MPSC

iv

25

28

29

30

31

32

42

43

48

48

52

52

TABLE OF CON

TENTS (continued}

5. CONCLUSION

6. SUMMARY QOF CONTRIBUTIONS

REFERENCES

APPENDICES

APPENDIX 1.

APPENDIX 2.

APPENDIX 3.

FIGURES 1-24

THE TREE MERGING ALGORITHM

COMPUTING THE BOUNDARY CHAIN IN PARALLEL

FROM 3X3 NEIGHBORHOODS

THE LABEL PROPAGATION ALGORITHM

53

56

57

61

65

67

70

LIST OF FIGURES

FIGURE PAGE
1. a. 4-neighborhood. b. 8-neighborhood. 70
2. Diagram of a PRAM. 70
3. Diagram of a SIMD computer. 70
4. A mesh-connected computer. 71
5. The shuffle row-major indexing. 71
6. a. A pyramid computer with 4x4 base. 71

b. Pyramidal connections from PE(i,j,h). 71
7. A 4x4 mesh of trees computer. 12
8. A cube-connected computer of size 8. 12
9. A perfect shuffle computer. 72
10. The nested 2P-blocks of a shuffle row major

indexed computer 73
11. Pointer skippings on a linked list of length 8. 73
12. Tree Merging Algorithm on an image. 74
13. Propagating the minimum value along a cycle. 75
14. Assignment of the balanced parenthesis expression. 76
15. The Label Propagating Algorithm on an image. 76
16. The binary tree structure associated with

a string of balanced parentheses. 77
17. A binary tree with 2*8-1 nodes. 77
18. A binary image and its boundary chains. 78

vi

FIGURE PAGE

19. A pixel can appear many times in a boundary chain. 78
20. Some special cases to consider when the minimum

node of the chain is on two boundary chains. 79
21. Conversion from the coordinated (i,j} to the

corresponding block index for k=8. 80
22. The nested 2P-blocks of a block indexed computer. 80
23. Some typical 4-neighborhcods and the assignments

of boundary chain pointers. 81
24. Some typical 8-neighborhoods and the assignments of

boundary chain pointers. 82

vii

ACKNOWLEDGMENTS

I would like to thank Professor Greibach for her invaluable
thesis guidance and advices, Professor Carlyle and Professor
Gafni for serving in my thesis committee. I would like also to
thank Dr. Ashoke Deb of Memorial University and Ching-Tsun Chou

for a number of improvements in my thesis.

I would like to thank the Computer Science Department for the

generous financial assistance I received during my Master's

program at UCLA.

viii

ABSTRACT OF THE THESIS

Parallel Algorithms and Architectures

for Binary Image Component Labeling

by

Quoc Tuan Pham
Master of Science in Computer Science
University of California, Los Angeles, 1987

Professor Sheila Greibach, Chair

We consider parallel algorithms in the PRAM (Parallel Random
Access Machine) and SIMD (Single Instruction, Multiple Data Stream)
models, and SIMD architectures for binary image component labeling,

contour filling, component shrinking and component counting.

Current proposed SIMD architectures do not support efficient
algorithms for the above three global operations (for images
consisting of N pixels, the best time complexities of algerithms for
component labeling are 0(N!/2) on the mesh-connected computer and
O0(N1/4) on the pyramid computer). Current SIMD algorithms are
complex, difficult to understand and highly dependent on the topology

of the SIMD interconnection network.

ix

We first give two O(logN) time, C(N) processor PRAM algorithms
for the above operations. We then propose a general technique to map
a certain type of PRAM algorithms into two proposed SIMD
architectures with 0(log?N) time penalty for PRAM concurrent read and
concurrent write operations. In particular, we apply this technique
to the above PRAM algorithms to obtain two 0(log3N) time, O(N)
processor SIMD algorithms which are more efficient than any other

known SIMD algorithms for the above three operations.

1.INTRODUCTION

We consider 2 dimensional binary images (i.e. images whose
pixels take on values 0 or 1) of size N=n xn, n = 2K where k is an
integer. Formally a nxn binarv image B is a mapping from the array
{0,...,n-1}2 intoc the set (0, 1} of pixel values. A pixel is defined
to be a tuple (i,j) where 0<=i,j<n. The four horizontal and vertical
neighbors of a pixel are called its 4-neighbors. These and the four
diagonal neighbors are called the 8-neighbors of the pixel. Figure 1
shows these two types of neighborhoods (or adjacencies) of a pixel.
To avolid certain anomalies, we use different neighborhood types for
the pixels with value 1 (the l-pixels) and the pixels with value 0
{0~pixels) [KR]. From now on we just pick one type of neighborhood
for the l-pixels and keep it implicit in our discussion. We define a
3x23 neighborhood of a pixel to be the portion of the image consisting

of the pixel and ita 8-neighbors.

Consider a set S of pixels. The neighborhood relation on the
pixels of § induces a graph, called the induced graph of 5. In this
graph, the vertices correspond to the S5-pixels and the edges
corespoend to connections between adjacent S-pixels. We can define
concepts analogous to those in graph theory such as paths and
connected components. A digital path in S is a sequence of adjacent
S-pixels. A set of S-pixels is said to be S-gonnected if every two
pixels of the set can be connected by a digital path in S. A

S-connected component (or S-component for short) is a maximal

connected set of S-pixels. Usually the set S is taken to be the set
of l-pixels. In this case we call the induced graph of S the induced
graph of the image and drop the "S-" prefix from the terms defined
above. We call the set of l-pixels that have some 8-neighboring

0-pixels the boundary of a binary image.

In the component labeling operation, labels are assigned to
the 1-pixels such that all pixels in every component have the same
label and pixels from different components have distinct labels. In
the contour filling operation, the pixels interior to the given
boundary chains (defined in Section 3.2) representing the boundary of
the binary image are "filled" with the wvalue 1. In the component
shrinking operation every connected component i1s shrunk to a distinct
point. We must perform these basic operations as fast as possible

since they may be called repeatedly.

Let £ and g be functions from the natural numbers inte the

natural numbers. We say f(n)=Q{g(n)) (0{g(n)) resp.) if there exist
a constant K and an integer n; such that for all n>ngy, £(n)>= Kg(n)

(f{n)<= Kg(n), resp.).

We shall define the PRAM and SIMD models of parallel
computers in the next Section. For sequential processing at least
Q(N) time is reguired to label the connected components of a binary
images with N=nxn pixels [KR] since we must look at every pixel of

the image. We can label the components of a binary image by applying

a component labeling algorithm for graph on its induced graph. There
are many such O(logN} time PRAM algorithms (N is the number of
vertices in the graph or the number of pixels in the image). However,
the PRAM model is more difficult to realize than the SIMD model
because of memory contention arising from the concurrent access by
many processors to the same memory cell. The SIMD model is regarded
as more realistic in image processing. Nassimi and Sahni [N3$2] give
an O(N./2) time SIMD algorithm for component labeling on the
mesh-connected computer (MCC) using a tree data structure and two
operations called random access read and random access write on the
MCC. Miller and Stout [MS3) give an O(N!/%) time SIMD algorithm for
the pyramid computer (PC) using a similar data structure and data
movement operations between pyramidal levels. Recently, Kumar et
al.{KE] give an O(log’N) time SIMD algorithm on the mesh of trees

computer.

In Section 3, two O(logN) time, Q(N) processor PRAM algorithms
for the above operations on binary images are derived from two
different approaches __ tree merging as in [S5V] and label
propagation, a new parallel version of the raster scanning method
given in [KR]. Nassimi and Sahni [NS1] showed that on the
cube-connected computer (CCC) and the perfect shuffle computer (PSC},
two SIMD architectures, we can simulate the CR and CW operations of
the PRAM model in O(logzN) time for N processors. In Section 4, we
propose two new SIMD architectures based on the CCC and the PSC. On

these architectures, we can systematically adapt certain PRAM

algorithms, including those developed in Section 3, to corresponding
SIMD algorithms with O{log?N) time penalty. Furthermore, these new
SIMD architectures can simulate existing ones (the MCC, the PC and

the MOT) with small penalties in time.

2. MODELS OF PARALLEL COMPUTATION

We now define the models for parallel computation on binary
images of size {(or the number of pixels) N=nxn, where n=2k for scme
k. They are the PRAM (parallel random access machine) model and the
SIMD (single instruction multiple data stream} model. The latter
includes the two dimensional mesh-connected computer (MCC)([NS1l], the
pyramid computer (PC)[Tal], the mesh of trees computer (MTC) [KE], the
cube-connected computer (CCC) and the perfect shuffle computer

{PSC) [NS11.

2.1. PRAM (Parallel Random Access Machine)

A PRAM consists of a number of identical processing elements
(PE) or processors, each with a unique id number, and a shared random
access memory consisting of similar O(logN) bit cells where N is the
image size. Figure 2 is a diagram of a PRAM. The PE's execute
synchronously the same program in parallel. In each synchronous step
a PE can perform either a basic computation, a concurrent-read (CR)
access or possibly a concurrent-write (CW) access to an arbitrary
cell of the shared memory. In the CREW (concurrent-read,
exclusive~write) PR2M model, the CW operaticn can be performed only
if different processors write to different memory locations
(otherwise an error occurs and the machine halts). In the CRCW
{(concurrent—read, concurrent-write) PRAM, if many processors try to

write to the same memory cell, there are different write-conflict

resolution policies so that only one value is chosen and written.
Some of the many possibilities are: the mimimum value, the value of
the processor with the minimum index, the common value (all
processors must write the same value) and an arbitrary value chosen
from the write values. The time (processor, resp.) complexity of a
PRAM algorithm is the number of synchronous steps (processors, resp.)

required for the computation as a function of the input size.

2.2. SIMD (Single Intruction-Multiple Data Stream)

A SIMD computer consists of a contreller processor and a
number of processing elements (PE's) with assigned distinct ids
connected together by a fixed interconnection network. Figure 3 is a
diagram of a SIMD computer. The processing elements are simple
processors each with local memory consisting of a constant number of
0(logN) bit cells where N is the number of pixels in the image. In
each synchronous step, every PE satisfying a certain specified 0O(1)
time simple test on its local parameters and variables executes the
gsame instruction issued by the controller. The instructions each PE
can perform include the normal basic arithmetic and logical
instructions and the sending or receiving of an O(logN) bit long
message through one of its links in the interconnection network. We
can generalize this model by assuming that the controller can read
the local memory of certain PE's. This capability is used for early
termination detection of algorithms. The time (processor} complexity

of a SIMD algorithm is the number of synchronous steps (processors)

required for the computation as a function of the input size.

We classify the SIMD computers by the topology of the
interconnection networks. The followings are some existing

interconnections.

2.2.1. MCC (Mesh-Connected Computaer) [NS1l, NS2Z]

A nxn MCC is a SIMD computer with nxn processors whose ids are
{(i,9), 0<=i,j<n. The PE with id (i, j) is connected to the processors
whose ids are (i+l, j+1) (a connection exists only if the

corresponding id exists).

For image processing applications, the original image 1is
associated with at least a mesh-connected computer such that each
pixel (i, j) is associated with a PE with the id (i,Jj). Hence each PE

is connected to the PE's of the 4 neighboring pixels (see Figure 4).

2Zn alternative method to assign ids to the PE's in the MCC is

the shuffled row-major indexing scheme. Let (x), be the number =x

written in binary representation (ranging from 0 te N-1). The
shuffled row-major index of the PE (i,Jj) is the number whose binary

representation is
(i1 Jk-1 ik-2 Jx-2 --- 11 31 1o Jo)2

where (i, iy, ... 1; ip), is the binary representation of i and

(3k-1 Jx-2z ---31Jg)2 of J. The id of each PE is obtained by inter-
lacing the binary representations of its coordinates. Thus the ids
range from 0 to N-1. Figure 5 shows the shuffled row-major indexing
of a 4x4 MCC. In Section 4, we shall present yet another scheme, the

block indexing scheme, which is used to embed the MCC in the CCC.

2.2.2. PC (Pyramid Computer) [AS, Bu, Tall

The pyramid computer consists of k MCC's of sizes 2k x 2k,
2k-1 5 2k-1_ ., 21 x 21 and 1 stacked up like a pyramid (see Figure
6a) . The bottom nxn MCC contains the binary image. The PE which is
the (i,3) PE of the hth MCC (of size 2" x 2M") where 0<=h<k has as
its id the tuple (i,j,h) {(see Figure 6b). A PE in level h is
connected to its 4 son PE's on level h+l and its parent processor on

level h-1 as shown in Figure 6.

2.2.3. MOT (Mesh of Treeas)|[KE]

The MOT computer consists of a base level nxn MCC containing
the binary picture and a full binary tree interconnection for each

row and each column of the bottom MCC (see Figure 7).

2.2.4. cCcC (Cube-Connected Computer) [NS1]

The processors have ids ranging from 0 to N-1. The processor

with the id (i,p_q iy ix-3 --- i3 ig), is connected to the 2k

processors with the ids
(igx-1 i2k-2 k-3 ---43... 11 1o)2
where 0<= j <= 2k-1, ij is the negation of the bit ij. This

interconnection is the same as that of the hypercube computer (see

Figure 8).

2.2.5. PSC (Perfect Shuffle Computer) [NS1]

In the perfect shuffle computer, the PE with the id

{ipx-1 diok—2 ik-3 .- i1 1ig)2

is connected to the processors whose ids are

(iZk—l i2k_2 ik_3 - il io)z (Via the Exgh.a.ngﬁ link)
(ippp gz v.. 13 ig isx-4), (via the shuffle link)
(g dppeq dpgep dges -+ i1)y (via the unshuffle link)

(see Figure 9).

The exchange links connect pairs of processors 1 and i+l
where i is even. The shuffle connection is similar to a perfect
shuffle of a deck of N cards. The cards in the first half of the deck
are intermixed with those in the second half. More precisely, the

shuffle link connects the processor i to the processor

S(i) = (2i) if 0<=i<=N/2-1,

{(2i+1-N) if N/1l<=i<=N-1 [st].

2.2.6. 2P-Blocks

Assume the ids of the PE's of a SIMD computers are numbered
from 0 to N-1 with the assumption on N as before. We define a subset
of 2° PE's, where 0<=b<2k, whose ids have the same first 2k-b bits a
2b-block. If 0<=b<2k-1 then a 2P*l-block consists of two 2P-blocks
where the bth bits of the binary representations of the ids of the
PE's in the first block (called the left block) all equal 0 whereas
those of the second block (called the right block) 1. Figure 10 shows
a MCC with the shuffled row-major indexing and its 2P-blocks. The
divide and conquer strategy can be implemented on the SIMD model to
compute the solution to a problem as follows. In each phase, we
compute in parallel the solutions for the 2b-l.plocks and then merge
the solutions of pairs of corresponding left and the right 2°-1-
blocks into solutions of the 2P-blocks. An example of this strategy

can be found in Section 4.3.

10

3. ALGORITHMS ON PRAM's

The component labelling operation for binary images is an
instance of the general component labeling problem for graphs where
the degrees of the vertices are bounded by 4- (8-, resp.) for 4- (8-,
resp.) connectedness. With this view, in Section 3.1 we modify a
component labeling algorithm for graphs by Shiloach and Vishkin [sV]
to a O(logN) time, O(N) processor component labeling algorithm for
binary images of size N. In Section 3.2, we exploit the special
topological structure of the connected components of binary images to
develop a new O(logN) time, O(N) processor algorithm using a strategy
similar to the sequential raster scanning of horizontal rows of a

binary picture.

3.1. The Tree-Merging Algorithm

In [HCS], Hirschberg et al. develop a parallel component
labeling algorithm for graphs on the CREW PRAM model with 0 (log?V)
time, 0(V?) processor complexity where V is the number of vertices.
Improved algorithms based on variations of their strategy include
those of Nassimi and Sahni [NS2] for graphs of bounded degrees
(0({log?N) time, O(V) processors using the min value CRCW PRAM),
Shiloach and Vishkin [SV] (0(legV) time, O(V+2E) processors using
CRCW PRAM with arbitrary write conflict resolution) and Gazit [Ga]

(random O(logV) time, O({V+E)/logV) processors using the CRCW PRAM) .

11

3.1.1. Shiloach and Vishkin'as Algorithm [SV]

The algorithm uses the CRCW PRAM model where concurrent-write
is arbitrary, i.e. only one of the write values is arbitrary chosen

and written. We first need a number of definitions:

Basic Definitions
1. A rooted tree (or tree, for short) is a directed graph
satisfying:
a. There is a unique self-loop at a vertex called the root;
b. The underlying graph minus the self-loop is a tree; and
c. There is a directed path from each vertex to the root.
The height of a rooted tree is length of the longest simple
path from a leaf to the root.
A rooted star is a rooted tree such that each vertex is
connected directly to the root, i.e. a rooted tree with height

at most one.

Notations

a. In the formal definition of a PRAM, the processors can only access
the memory cells via their addresses. For convenience, we can assume
that in our parallel programming language array indexing of memory
locations is possible (as in PASCAL) since computation of the address
offset from a base address only takes 0(1l) time. Hence it is possible
to declare a global array variable A(0..(N-1)) and refer to its ith

element by A(i}). We can also have tuples of integers as indices.

12

b. We use "<-" for variable assignment. The statement "A(v) <- u"
means "assign the value u to the vth element of the array A". The
statement "A(v) <- A(A(v})"™ means "let r be the value stored at A(v),

assign the value stored at A(r) to the variable A(v)".

Let G =(V,E) be the graph whose components are to be labeled.
We assume that the vertex set V is {0,...,N-1}. We declare the global
pointer variable D(0..(N-1)). The variable D represents a conceptual
graph (changing over time) with vertices in V and and edges (v,D(V})

from each node v to node D(v).

The goal of the algorithm is to construct a pointer graph D
{on top of the original graph) in the form of a forest of rooted
stars each of which contains exactly all the vertices of a connected
component of G. Then the labels of the vertices can be obtained in

constant time from these rooted stars.

We can view the connected components as a partition P of the
set V. The algorithm first puts each vertex in a rooted D-tree, i.e.
we start out with the finest partition of V: the processor associated
with each node v set its D(v) wvariable to v. In each iteration of the
algorithm, the rooted D-trees are repeatedly merged with their
"adjacent™ rooted D-tree(s) (rocted trees representing other subsets
of the same components) such that the new induced partition is
coarser but remains at least as fine as than the component partition

P. This tree merging operation is called tree hooking which can be

13

defined formally as follows.

2. Let T and T' be two distinct rooted trees in the pointer graph
D, r the root of T and v a vertex in T'. The operation "D(r) <- v" is
called the hooking of T into T'. It connects the (old) rocot r of T to

the node v in T'.

To guarantee that only a logarithmic number of steps are
required to obtain the final partition P in the form of a forest of

rooted stars we need to intermix the mergings of rooted trees and

the pointer skipping operations defined as follows.

3. The pointer skipping operation on the pointer graph induced by
the variable D(v)'s is the operation:

For all v in V do in parallel D(v} <- D(D{(v)).
Before this operation, each node v points to node D(v). After the
operation, each node v points to the node to which the node D(v) used

to peint.

We assume that the assignment is carried out only if the right

hand side is not nil. If the pointer graph is a linear linked list
(rooted tree, resp.) of length (height, resp.) L then after [logy,,L]

jumps ([x] denotes the ceiling of x), every vertex (except the last
one) points to the last node (the root, resp.). Figure 11 illustrates

the pointer skipping operation on a list of size 8.

14

An Informal Description of Shiloach and Vishkin's Algorithm

[sV]

Initialization:

For all v do in parallel D{(v) <- v;

The algorithm performs the following iteration at most

{log;y,,N}+2 times ({x} denotes the floor of x):

Iteration s:
(Let D, denote the value of D after the sth step)

1. Perform a pointer skipping on D.

2. Hooking trees into smaller vertices of other trees: Each

vertex i that pointed to the root r at the end of the previous
iteration (hence whose pointer D(i) unchanged in step 1)
checks whether it has a neighbor j (in the original graph)
pointing to a vertex with a smaller id. If so it tries to hook
its tree onto that neighbor's tree by setting the root's
D-value to the neighbor's id:
if D,_,(i) = D (i) (= r) then
for every edge (i,]) of G de

if D_(j) < r then D (r) <- D {(J);

Here two processors are required for every edge in the graph G

{one for each direction) and the processors associated with

15

the edges perform arbitrary CW to resolve the case where many

edges try to write to the same D(r) variable.

3. Hooking stagnant trees: A tree is stagpnant in the sth
iteration if it has not been changed in the first two steps of
this iteration (i.e. it is already a star so there 1s no
change by the skipping operation or it was not hooked onto
another tree and no other tree was hooked ontec it) and its
root is called a stagnant rogot (it is possible for a root to
know whether it is stagnant if in steps 1 and 2 every
processor that changes its pointer writes an appropriate value
to a special variable of the new node it now points to). Every
vertex pointing to a stagnant root checks whether it has a
neighbor j pointing to a vertex of another tree. If so, it
tries to hook its tree onto the node Jj points to. Here the
processcors associated with the edges in the original graph
(i, 3) do the necessary computation to find out stagnant roots

and to hook stagnant trees.

4. Perform another pointer skipping on D.

Shiloach and Vishkin [S§V] prove the correctness and the

logarithmic time complexity of the algorithm by a series of 12

lemmas. The following is a sketch of their proof.

16

a—- The pointer graph obtained at any point during the
computation is a forest of rooted trees since the followings hold.

1. If there is a simple path between two vertices then it is
unique since the outdegree of every node is exactly 1.

2. A leaf (a vertex with indegree 0) never obtains a child
because of the hooking rules in step 2 and 3.

3. Two vertices pointing to two different stagnant roots after
step 2 are not adjacent in the original graph, or else one of the
roots would have been hooked to the other ome.

4. If a rooted tree is stagnant after step 2 of an iteration
then its roct is at height at most 1 after steps 2 and 3 because it
is already a star (there is no change after step 1) and in steps 2
and 3 no other tree can be hooked onto any of its nodes.

5. If a vertex points to another vertex with larger label
after steps 1, 2 or 4 then it is a leaf in the pointer graph after
steps 1, 2 and 4 respectively since a node acquires a larger father
only in step 3 and then the pointer jump in step 4 turns it into a
leaf.

b- If a root does not change during an entire iteration then
its tree contains all the vertices of a connected component and so
remains stagnant to the end of the computation.

c—- If a rooted tree changes in the sth iteration (if a tree
hooks onto another tree then it ceases to be a rooted tree on its
own) then the number of nodes in the tree is at most (3/2)%°! times

the height of the tree. Hence the rooted trees are merged together at

a rate that guarantees termination after {log;,,N}+2 steps.

17

3.1.2. Modifying the Traee-Merging Algorithm for Binary

Image Component Labeling

The component labeling operation on a binary image can be
reduced to the component labeling problem on its induced graph.
Shiloach and Vishkin's component labeling algorithm requires a
processor for each vertex and two processors for each edge of the
graph. Since the vertices of the induced graph have bounded degrees
(for the O0-pixels: =zero, for the 1l-pixels: at most 4 in
4-neighborhood adjacency and at most 8 in 8-neighborhood adjacency),
we need only one processor per vertex (pixel). This "vertex”
processor can do the works of the processors associated with the
outgoing edges from the vertex since all the "edge™ processors
perform similar tasks in each step. Hence we only need 0O(V)
processors instead of Q(V+2E) processors in the general Shiloach and
Vishkin's algorithm. The complexity term only increases by a constant
factor. Algorithm 1 in Appendix 1 is a detailed description of the
modified component labeling algorithm for the binary images. Figure

12 shows how Algerithm 1 works on a binary image.

18

3.2. THE LABEL PROPAGATING ALGORITHM

In this section, we derive a new parallel version of the
component labeling algorithm similar to the method of propagating
labels from boundaries of connected components and raster scanning as
suggested in [KR]. In Section 3.2.1 we introduce the necessary facts
in digital topology. Then we present the Label Propagating Algorithm

in Section 3.2.2.

3.2.1. Further Definitions in Digital Topology

In Section 1, we introduce the concepts of neighborhood types.
Because of certain anomalies (see [KR]), we have to use different
neighborhood types for the 1-pixels and the set of 0O-pixels. Consider
the set of 0-pixels and its components (with respect to 4-(8-, resp.)
neighborhood if we use 8-(4-) neighborhood for the l-pixels). We
define the background of the binary image to be the union of the
0-components whose (O-pixels are connected to the border of the image.
Other 0O-components (if exist) are called the holes of the image. The
boundary of a binary image is the set of l-pixels adjacent to some
0-pixels. The boundary of a (connected) component is defined
likewise. It is the union of two types of sets _ the outside
boundary and the inside boundary. The outside (inside, resp.)
boundary consists of 1l-pixels adjacent to the 0-pixels of the
background (a hole, resp.). A connected component has one outside

boundary and zero or more inside boundaries.

19

Consider the pattern of pixels

1 1

1 1
in 4-neighborhood adjacency and the patterns of pixels

1 0 0 1 1 1 11

1 1 1 1 1 0 0o 1
in 8-neighborhood adjacency. They induce subsets of R? (in which we
embed the image grid) in the forms of a square and triangles,
respectively. The above patterns of pixels in each connected
component C of the image induce a subset (or region) P(C) of R2 in
the natural way. As in plane set topology, P(C} has an outside
boundary and some inside boundaries each surrounding one of P(C)'s
holes. The outside {an inside, resp.) boundary of P(C) contains the
some outside (inside, resp.) boundary pixels. It is well-known that
the boundaries of P{C) can be represented by a collection of oriented
curves so that the outside (each inside, resp.} boundary is a
clockwise (counterclockwise, resp.) oriented curve. These oriented
boundary curves induce a directed graph B{(C), called the boundary
chains of C, on the set of boundary pixels. B{C) consists of a
clockwise oriented cycle called the oyutside boundary chain of C and a
number of counterclockwise cycles called the inside boundary chains
of C. The outside boundary chain contains some outside boundary
pixels and surrounds all the pixels of C. Each inside boundary chain
contains some inside boundary pixels and surrounds a hole of C. (Qur

method of representing the boundary of a component by a pointer

20

structure is similar to Freeman's chain codes [Frl.) Figure 18 shows

a component and its boundary chains.

We call a (boundary) pixel singular if it appears more than
once on the outside boundary chain or if it appears on more than one
boundary chain. It is possible, to compute the outgoing and incoming
links of the boundary chain at a boundary pixel by only looking at it
3x3 neighborhocds. Appendix 2 shows how this can be done. Since there
is a finite number of possible 323 neighborhoods, it is obvious that

the time complexity to compute the boundary chains is O(1l).

There are many technical points concerning the structure of
the boundary chains in the most general case. We first present the
label propagation algorithm for simple cases and then show the

necessary modifications for the general case.

3.2.2. Description of the Label Propagating Algorithm

Imagine a component in a binary image to be like a continent.
We can think of its holes as lakes and its outside boundary as the
coastline. It is possible that there are other components inside a
hole (just as islands in a lake). Each of these nested compcnents, in

turns, has its own coastline and lakes.

For each component, we first propagate the minimum coordinates

of the pixels on each boundary chains along the whole chain. Then we

21

propagate horizontally from left to right the minimum label of the
outside boundary chain to other pixels in the component. In our
analogy, a continent is systematically explored by first exploring
along the coastline and all the lake shores and then the land mass

from West to East.

First we consider the simplest case where there is no thin
line in the image and no two boundary chains touch each other (i.e.
there is no singular pixels). In this case, every boundary pixel has
in-degree and out-degree equal to 1 in the induced graph of the
boundary and the maximum length of a boundary chain is N. After
O(logN) steps, each consisting of a pointer skipping and a
propagation of the larger coordinates aleng the pointers, every node
on each boundary chain receives the same label (namely the
lexicographically minimum of the coordinates of the pixels on the
chain) and because of the disjointness of the boundary chalns, nodes
from different boundary chains receive different labels (see Figure

13).

If it is known a priori that there 1s no hole in the induced
graph, i.e. the image consists of solid figures with no thin line,
then in 0{(l) time we can set up the linked lists of the form 11..11
of length at most n as follows. Every l-pixel sets a pointer to its
East-neighboring l-pixel (if exists). Hence each of these lists
represents a run of consecutive 1l-pixels from a left ({outside)

boundary pixel to the corresponding next right (outside) boundary

22

pixel of a component. After O(logn) pointer skippings, every pixel in
each of such lists has its peointer set to the last element of the
list on an outside boundary and then reads and uses the last

element’s label as its component label.

Now suppose that there are holes, hence inside boundary
chains. We would like the pixels on the boundary chain to find out
whether they are on an inside or an outside boundary chain. The
strategy is te use the coordinates (0,0) as the reference point and
one elected node on each chain to find out the orientation of the
whole chain. Every minimum pixel on each boundary chain can determine
whether it lies on an outside (the local orientation is
counterclockwise) or an inside (clockwise, resp.) boundary chain by
looking at its incoming and outgoing links in the boundary chain
[WBR]. Every boundary pixel can find cut whether it lies on an inside
or an outside boundary chain by consulting the corresponding minimum
pixel on the chain. Hence in a constant number of steps (after the
computation of the mimima of the chains), every pixel can find out
whether it is on an inside or outside boundary chain of a component.
If so, it can further find out whether it is on the left (West) side
or on the right (East) side (or neither} of the boundary chain by

looking at its East and West neighbors.

If it is known a priori that there is no l-pixel inside any

hole, i.e. ne island in any lakes, then we can set up in O{(1l) time

the linked lists representing horizontal runs of pixels of the form

23

10..01 of length at most n, where the first 1 is on a left inside
boundary pixel and the second on the corresponding right inside
boundary pixel on the other side of the lake. Apply the pointer
skipping operation O{logn) times, the beginning 1's can find ocut the
coordinates of the correspending ending l1's, i.e. the horizontal
bridges over the lakes have been constructed, and the rest is the

same as before.

If there are components nested within components (see for
example Figure 14), a more novel approach is required to set up the
correct lists of horizontal runs of 1l-pixels. We want to set up
linked lists the form 1...1%1...1%1...1%1...1 where each "1..1"
corresponds to a horizontal run of consecutive l-pixels of a
connected component beginning at a left outside (right inside, resp.)
boundary pixel and ending at the next corresponding left inside (left
inside or right outside boundary pixel, resp.), and each star denotes
a bridge over the across a hole {(and over the islands in the hole) of
the component from a left inside boundary pixel to the corresponding
right inside boundary pixel on the other side of the hole (see Figure
14). After O(logn) pointer skippings every node in each of the list
will point to the last node on a right outside boundary position and
can read the correct component label there. Figure 15 illustrates how

the algorithm works.

It remains to show how to set up the stars efficiently in

0(logN) time. We associate a left (right, resp.) parenthesis to each

24

of the left (right, resp.) inside bank pixel and a '#' to other
pixels. Therefore assigned to each row of the binary image is a
string in the alphabet {{,},#} such that the left and right
parentheses are balanced (see Figure 14). The problem of matching the
corresponding left and right banks (i.e. setting up the stars) is

then reducible to the problem of matching pairs of parentheses.

3.2.2.1. An Algorithm to Match Pairs of Parentheses

Bar-On and Vishkin [BV] give an algorithm using a binary tree

structure to solve the following problem:

Matching Palrs of Parentheses:

Given a string w of balanced parentheses of length |w|= n
stored in memory locations 0... n-1 (one character at each location).
Compute in parallel, for each left parenthesis the position of its

matching right parenthesis.

Without loss of generality, we can assume that n is a power of
2. The algorithm requires 2n-1 processors and uses a data structure
in the form of a complete binary tree with height [logn] and the n
symbols of the string w stored from left to right at the leaves. We
allocate a (leaf) processor to each parenthesis and (n-1) processors
to the internal nodes of the binary tree. Figure 16 illustrates the
binary tree and the assignment of processors for a string of length

le.

25

First, the levels of nesting of the parentheses can be

computed as follows. (Let L(0..n) be a array variable.)

1- For each leaf i, assign to L(i) the value +1 (-1, resp.) if

location i contains a left (right, resp.) parenthesis; and

2- Compute the prefix sum L(i}), 0 <= i < n, on the values v,
i.e. for the parenthesis at location i, we compute the sum of all the
numbers v(j) where (<= j <= i. Basically, we can do so¢o using the
above binary tree structure in two phases each in O(logn) steps. In
the first phase, the values are passed up in parallel, level by
level, from the leaf level to the root level. The values received
each internal node are added together and the sum is sent upwards. In
the second phase, the values are passed down in parallel, level by
level, from the root level to the leaf level. Each internal node adds
the wvalues it received from its parent and its left child and then

send the sum (zZero, resp.) down to the right (left, resp.)} child.

3- If a leaf i contains a right parenthesis then it adds 1 to

the variable L(i).

Now L(i) is the level of the nesting of the ith parenthesis.

Example: For the string (((Yy ()Y)y)Yy ())}, the level of

nesting computed as above is

L: (1,2,3,3,3,4,4,3,2,2,2,1} .

26

4~ Note that the position of the matching right (left, resp.)
for the left (right, resp.) parenthesis at position i is the smallest
(largest, resp.) j such that j>i (j<i, resp.) and L(i)= L(Jj). We then
compute in O(logn) time for each internal node j the two values

MINLEFT (]j) and MINRIGHT({(j) where

MINLEFT{j) = min{L(i)| i is a leaf node of the subtree rooted
at j and position i contains a " ("}
MINRIGHT(j) = min{L(i)| i is a leaf node of the subtree rooted

at j and position i contains a "™)"}.

The computations of the MINLEFT and MINRIGHT wvalues are
similar te the computation of the prefix sum. However only the first

phase with minimum computation instead of summation at each internal

node is necessary.

Each leaf processor then uses the above values to search in
parallel with other leaf processors for the position of the matching
parenthesis. Consider the left parenthesis at location i loocking for
its matching right parenthesis at location j. (Note that all leaves
between i and j have L-values greater than L(i).) It is searching for
the first leaf Jj to its right with L(i}=L(j) by performing the
following actions:

-~ Find the least common ancestor ancestor k of i and j by
climbing up the tree from the leaf i to the first node whose right

child k satisfies MINRIGHT(k) <= L(i); k must be an ancestor of j.

27

- Move down the tree from node k to j, always to the left if
possible: if we are at a node with left child g and right child h

move down to g if MINRIGHT (g) <= L(i), otherwise move down to h.

The time complexity of this search is O(logn) since each leaf

processor moves up the tree at most once and down at most once.

The above algorithm can be adapted to our purpose as follows.

- It is easy to generalize the algorithm to string of balanced
parentheses on {{(,),#]} where the # characters of the string are
ignored.

- Instead of using 2n-1 processors for strings of size n, we
can use only n processors by assigning to each processor a leaf and
at most a distinct internal node. The complexity of the algorithm
increases only by a constant factor. Figure 17 shows how this can be
done for n = 8.

- Bach row of the binary image iz associated with a separate
binary tree. The matching of pairs of parentheses is done in parallel

for all the rows.

3.2.2.2. A Detailed Description of the Label Propagating

Algorithm

We assign a processor PE{(u,v) for each pixel (u,v}. Algorithm

2 in Appendix 3 is a detailed description of the Label Propagating

Algorithm for the simple case.

28

3.2.2.3. Modifications for the General Case

Here we show how to modify the Label Propagating Algorithm for

the general case where there exists a singular pixel.

A pixel can be on a boundary chain up to 8 times ({see Figure
19) . Hence the length of a boundary chain is at most 8N. Furthermore
a pixel can appear on as many as 4 different boundary chains. It is
easy to modify Algorithm 2 to accommodate these two types of possible
repeated occurrences (each PE splits up to 4 conceptual PE's and has
to simulate as many processors as reguired by its repeated
occurrences). Using pointer skipping and the propagation of the
larger coordinate along the links, in

O(log(8N)) = 0(log(23t2k)) = 0(2k+3) = O(logN+3)
steps, we can make sure that all the nodes on each boundary chain get
the same label and nodes from different boundary chains have
different labels. We can also incorporate early termination detection
to find out when further pointer skipping will not change the pointer

structure.

The determination of the orientations at the minimum points of
the boundary chains can be also modified for the general case. The
only complication arises when a boundary chain passes through the
minimum point more than once and the rule for determining the
orientation gives ambiguous answers (for example, one local segment

gives the answer "counterclockwise™ and ancther "clockwise"). Again

29

in this case the problem is resolved by conceptually splitting up the
singular ncde and letting it acts appropriately and independently for

each of these chains (See Figure 20}.

The time complexity of this component labeling algorithm is

O{logN) and the processor complexity is O(N).

3.2.3. Contour Filling, Component Shrinking and Component

Counting Algorithms

The Label Propagating Algorithm can be modified easily into
other algorithms for related operations with similar complexity.
Recall that in the contour filling operation, given a collection of
boundary chains representing the components of a binary image, we
would like to recover the original binary image. We Jjust set up
linked lists of horizontal runs of pixels of the form 10...01, where
the first (last, resp.) 1 is a left outside or an right inside
{(inside left or right outside, resp.) boundary pixel, and propagate

the 1's along the elements of these lists.

A parallel component shrinking algorithm can be obtained by
applying a component labeling algorithm and then setting the values
of all l-pixels with component labels not equal to their own
coordinates to 0. Using a tree like computation we can count how many
l-pixels remain after this conversion hence obtain an algorithm for

component counting.

30

4. MAPPING PRAM ALGORITHMS INTO SIMD ARCHITECTURES

The abstract CR and CW operations in 0(1l) time facilitate the
design and analysis of parallel algorithms on the PRAM model. However
in practice, it is easier to build the interconnection network of a
SIMD machine than the shared memory of PRAM. On the other hand, it
is quite difficult to come up with SIMD algorithms in an ad hoc way
for the particular topclogy of the interconnection network. In
Section 4.1, we give a method to map the two PRAM algorithms
developed in Section 3 into SIMD architectures by simulating the CR
and CW operations by the RAR and RAW operations on the SIMD model.
In Section 4.2, we give a brief survey of existing SIMD algorithms
for component labeling. In Section 4.3, we present Nassimi and
Sahni's algorithms for the RAR and RAW coperations on the CCC and the
PSC. Finally in 4.4, we propose two SIMD architectures based on the
CCC and the PSC. On these two architectures we cobtain SIMD component
labeling algorithm with current best time complexity using the

simulation method in Section 4.1.

31

4.1. Simulation of a Class of PRAM Algorithms on the SIMD

Model

Suppose that in a PRAM algorithm, the following conditions

are satisfied:

1- For an input of size N, the algorithm requires N processors

and a finite number of array variables A,, A,, ..., A, where ¢ is a

cr
constant independent of N, and the array indices are in the set
{0,...,N-1}; and

2— In each synchronous step, each processor PE(i) can only

perform the CR or CW operation on the same array variable
Aj(f(L(i))), where j is in {1,...,c¢}, L{(i) is PE(i)'s local memory

state and £ is a function computable (at each processor) in constant

time.

(The two algorithms in Section 3 satify the above two conditions and
these conditions define a reasonably large class of PRAM algorithms.)
Then on a SIMD computer with N processors with ids {0,...,N-1}, we
can run the PRAM algorithm as focllows. For each 1, 1l<=i<=¢, we

allocate in the local memory of each SIMD processor PE(i) space for
the variables A, (i}, A,(i) ..., A, {i). Note that we restrict the size

of the local memory of every SIMD PE to a constant number of O{logN)
bit locations. The SIMD PE's can write and read data to and from the
local memory of each other by routing data through the

interconnection network. The PRAM CR and CW operations on the shared

32

memcery can be simulated on SIMD architectures by the two operations
called Random Access Read (RAR) and Random Access Write (RAW) defined
as follows. (As in the PRAM model, we assume that in the SIMD model
it is possible to declare a global array variable A{(0,...,N-1}) and to
refer to the local "component"™ of A at the ith processing element as

A(i).)

Definitions [NS1]

1. RANDOM ACCESS READ {(RAR{S, D}):

Let 8 and D are two declared array variables. S5 contains
the read destinations. D contains the data to be read. Each
processor PE(i) is to receive the value of the variable
D{S{i)} held in the local memory of the processor PE(S(i}). If
S5(i) = o then PE(i) is not to receive any wvalue from any
processor.

2. RANDOM ACCESS WRITE (RAW(S,D)):

Let S and D are two declared array variables. S contains the
write destinations. D contains the data to be read. The
processor PE(i} is to transmit the wvalue of its local variable
D(i) to the processor PE(S(i)}. If S(i) = = then PE(i) is not
to write to any processor. Conflicting writes to the same PE
may be resclved by picking the min write wvalue or the write

value of the PE with min index.

Since it is not feasible for large N to connect every pair of

PE's directly, to perform the RAR and RAW operations we must route

33

data through the interconnection network. If the RAR (RAW, resp.) is
exclusive (similar to ER and EW on the PRAM) and every processor want
to read (write resp.) then it can be reduced to the sorting operation
on record with the processor indices as keys. For example, to do
exclusive RAW we set up the records [S(i), D(i)} at PE({i), 0<= i< N,

and sort them on the field sS(i).

If many PE's try to read or write to the same local variable
of a PE and sorting alone will not work because of the conflicting
reads or writes. Nassimi and Sahni [NS1l] showed that RAR and RAW in

the general case can be implemented using the following operations:

1.SORT(R,K): (Sorting R on its key field K)

Each processor PE(i) contains the record variable R{i) with
key field K(i), 0<= i < N. Following the sort operation, the
records R({i)'s will be rearranged in the processors such that
the processor PE(j) contains the record R with the jth largest

K-field.

2. RANK(T,r) : (Ranking on the tag T into r)

This operation is similar to the prefix sum. Each processor
PE(i) has a tag variable T{i) and is selected if its tag
equals 1. The operation rank assigns to the wvariable r{i) of
each processor PE(i) the number of selected processors among

the processcrs PE(0), ..., PE(i-1).

34

3. CONCENTRATE (R,r): (Concentrate the records R on the rank r)
Assume that the processors contain the variable r(i)'s
containing the ranking on a tag variable T. A concentrate
operation on the record R moves the record R(i) to the

processcr PE{r(i)).

4, DISTRIBUTE(R,d): {(Distribute the records R on d)
Let R(i), d(i), be variables in the processor PE{i} such that
0<=d(i)<d(j)<N if 0<=i<j<N. The distribute operation routes

each record R(i) of PE(i) to the processor PE{(d(i)}.

5. GENERALIZE(R,d): {(Generalize R on d)
This operation is similar to the distribute operation except
that the processors PE{d(i-1)+1),...,PE(d(i)-1) alsoc receive

the record R(i) (we assume that 4d(-1)=0).

Nassimi and Sahni's method is best illustrated by means of an

example. Given the above subalgorithms, The RAR(S,D) operation is

carried out as follows [NS1].

- We start out with the following configuration:

i 0 1 2 3 4 5 6 7
5 2 6 2 o 5 6 e 6
D a b ¢ d e £ g h

35

~ Each processing element PE(i) sets up the record

G(i) = [8{i), T(i)=i, F(i)=1]
where S(i) contains the id of the PE whose D-value is to be
read. T(i) marks the origin of the record R(i} before the

sorting in the next step.

- Sort(G,S): Sort the G-records on the first key with ties
being resoclved on the T-values. The value e« 1is considered to
be the infinite wvalue. During the sorting, if for some i and
j, S{i)=S8(j) and T(i)<T(j) then Flag(i) is set to 0 so that
after the sorting only records with distinct wvalues have
nonzerc flags. Each PE keeps the new S, T and F values of the

G-records they received. The new configuration is as follows.

i 0 1 2 3 4 5 6 7
T 0 2 4 1 5 7 3 6
s 2 2 5 6 6 6 o oo
F 0 1 1 0 0 1

D a b ¢ d e £ g h

- We then rank the processors with F-value of 1. The rank
values will be stored in the variable r. The resulting

configuration is as follows.

36

T 0 2 4 1 5 7 3 6
8 2 2 5 6 6 6 o oo
F 6 1 1 0 0 1
r 0 1 2
D a b ¢ d e £ g h

- For each PE{i}) with F-value 1, we define a new record G' as
follows.

G' (i) = (x(i), U(i)=1i, s(i))

— CONCENTRATE (G',r). The new configuration is as follows.

i 0 1 2 3 4 5 6 7
T 0 2 4 1 5 7 3 6
S: 2 5 & .

U 1 2 5

D a b c d e £ g h

- Each PE{(i) receiving a G'-record sets up the record

G" (1) = (S(i), V(i)= i).

- We then perform DISTRIBUTE(G",S) and obtain the following

configuration:

37

T 0 2 4 1 5 7 3 6
s 2 5 6
v 0 1 2
D a b ¢ d e £ g h

Note that a PE receives a G"-records iff it contains a value
to be read by another PE. We now uses T, U, V to route these

values to the reading PE's.

~ BEach PE(i) receiving a G"-record sets up the record
R{i) = (K(i)=D(i), V(i)).
Perform CONCENTRATE(R,V), i.e. concentrate the D-values on the

return addresses V(i) 's.

i 0 1 2 3 4 5 6 7
T 0 2 4 1 5 7 3 6
v 0 1 2 .

K c £ g

u 1 2 5

D a b c d e £ g h

- Perform GENERALIZE({K, U): generalize the read values using

the return addresses U(i) 's.

38

T 0 2 4 1 5 7 3 6
K c ¢ £ g g g
D a b ¢ d e £ g h

- Perform SORT(K,T). We have routed the read values to the

appropriate reading PE's.

i 0 1 2 3 4 5 6 7
K c g ¢ £t g g
D a b ¢ d e £ g h

Similarly, RAW(S,D) can be carried out as follows.

- Each processor PE(i) sets up the record
R(i) = (s(i),T(i)=i,D{i),Flag(i)=1]
where S{i) is the destination id of the write and D(i} is the

value to be written.

- Sort the above records on the S-field. Whenever a comparison
is done for two records with the same S-value, the one with
smaller T- (D-, resp.) value sets its flag to 0 if min-index
(min-value, resp.) concurrent-write resolution is desired.
(Other types of write-conflict resolutions can be achieved by

modifying the sorting algorithm accordingly.)

39

- Rank the processors with nonzero flags and concentrate their

R-records (obtained in the sort) the on the ranking values.

~ Distribute on the S(i)} keys and we have routed the write

values to their specified destinations.

The time complexities of RAR and RAW are the time complexity
of the most time consuming suboperation. In certain special cases of

RAR and RAW, we do not have to carry out certain substeps.

Examples:

1- Distinct PE's read from (write to, resp.) te different
processors and every PE reads from a PE. This is almost similar to ER
(EW, resp.). Since the 3 vector is a permutation of (0 1 2 ... N-1)
we only need to perform two (one, resp.) sorting operations to route
the data to the correct destination. The first one is to reach the
right destination of the read operation. The second is to bring back

the obtained read value.

2. Termination detection: Every processor that detects a
change in value of a variable in a phase of the computation changes
its detection variable to 1 from the initial value 0. Then we do a
suffix sum operation {(similar to the computation of the nesting of
level of parentheses in Section 3.2.2.1). In our extended SIMD model,

we assume that the controller has access to the local memory of

40

PE(0). Hence after the suffix sum the controller can find out if
there is any selected processor or any variable that was changed

before the suffix sum operation.

The above algorithms for RAR and RAW provide us a uniform and
powerful tool for data communication on the SIMD model to simulate CR
and CW in the class of PRAM algorithms defined above. In the
following sections we shall give a brief survey of existing SIMD
architectures and algorithms for the operations of interest and
propose two new architectures which support these operations with

C{log3N) time, O(N) processor algorithms.

41

4.2. A Survey of Existing Component Labeling Algorithms on

SIMD Computers

Recall than N=nxn is the size of the image. The 2 dimensional
MCC is wvery efficient for local operations such as boundary
computations. The PC is further quite efficient for computing the
minimum, the maximum, the average pixel values (for gray images),
multiresolution operations [Ro3, Ta2] and other operations. These two
SIMD models have motivations from natural biological vision systems
[HR, Tal, U]. However they are not efficient and are difficult to
program for global operations such as component labeling, contour
filling and component shrinking. The 0Q(n) parallel MCC algorithm
developed in [NS2] and the 0(nl/2) PC algorithm in [MS3] use the
routing techniques similar to that of [NS1l. It is easy to see that a
global operation in a MCC must take Q(n). For the PC, a heuristic
argument based on the movements of 0(n?/2) data elements from the
left half of the base picture MCC to the right half though a cut of
O(nlogn} links requires about £ (n/logn) time. In fact there is a
more precise formulation of a lower bound for the pyramid computer in
[MS3]. Recently Kumar et al give an 0{log®n) component labeling
algorithm on the MOT computer. However in this architecture it is
easy to see that the bottleneck at the roots of the binary trees
prevents an efficient implementation of the pointer skipping

operation used in the contour filling.

42

4.3. Efficient Data Movement Operations on the CCC and the

PSC

On the CCC and PSC we can perform the sorting of N elements in
0(log?N). The CCC (PSC, resp.) sorts by emulating the mergesort
network of Batcher [Bal (the perfect shuffle network of Stone

[Kn,St], resp.}.

Nassimi and Sahni [NS1] have shown that the rank, concentrate,
distribute and generalize operations can all be done efficiently in

O(logN) steps using the divide and conquer strategy on the 2P-blocks.

Examples:

The following is a brief description of Nassimi and Sahni's
algorithms [NS1] for the RANK, CONCENTRATE, DISTRIBUTE and GENERALIZE

operations on the CCC.

1. The RANK Operation.

The rank of a selected record R in a block is the number of
selected records in the same block which reside in the PE's with
smaller indices. We compute the rank independently and in parallel
for the 2P-blocks. The block B consists of left (L) and right (R)

2b-blocks (see preliminaries). The rank of S in B is:

43

— the rank of 8 in L if § is in L;

- the rank of S in R plus the number of selected records in L.

Converting this recursion into an iterative version, we have

the following program for the rank operation on the CCC:

procedure Rank{SEL,H);
{procedure to rank the selected records in the N PE's}
{Initially, SEL(i)=1 if the record in PE(i) is selected;
at the end, H(i) contains the rank of i if PE(i) is selected]
{PE(i) executes the following program:}
H(i) <= 0; S(i) <- SEL(i):
for j:= 0 to b-1 do
begin {compute the rank for the 23*1 blocks}
{i® is the number obtained by negating
the bth bit of i)
T(i{3) <- s$(i); {done via a CCC link}
if iy, the 3P bit of i is 1 then
{update the rank in the right blocks}
H{i) <- H(i)+T(1i):
S(i) <- s({i) + T({i):
{get the number of selected records
in the 23+*! blocks}

end

if SEL(i)=0 then PH{(i) <- undefined;

44

2. The CONCENTRATE Operation

The procedure CONCENTRATE(G,r} moves the record G{i) from
PE(i) to the r(i)th PE. r contains the rankings (in the block) as
determined by the rank operation. Concentration is performed in logW
phases. In the pth phase, the G-records are moved within the
2P-blocks so that each PE's index and the rank of the G-record
residing in it agree in bits 0,...,p. We make r(i) a field of G(i} so

it is routed along with G(i).

procedure CONCENTRATE (G, r)
{ concentrate the G-records on the r-values }
{ r is a field of G }

for b:= 0 to logN-1 do
if (r{(i) is defined) and (r(i),<>i,) then
G(iftP)) <- G(i);

aend; { concentrate }

3. The DISTRIBUTE(G,d) Operation

The distribute cperation performs the routing of the R-records

in reverse the direction of the routing of the ranking operation.

45

procedure Distribute(G,d)
{ concentrate the G-records on the d-values}
{ d is a field of G satisfies the property stated

in the definition of DISTRIBUTE}

for b:=logN-1 down to 0 do
if (d(i) is defined) and (d{i),<>i,) then
G(iiP)) <- G(i);

end; { concentrate }

4. The GENERALIZE cperation

GENERALIZE is similar to DISTRIBUTE except that it must decide
when to make a copy of the generalized records at the PE's aleng the
routing. Nassimi and Sahni ([NS1] show that this can be done in
constant time in each of the logN phases (similar to DISTRIBUTE) by
some comparisons of the ids of the PE's and the d-values on which we

generalize.

The complexities of the above algerithms is O(logN) time, O(N)
processor where N is the number of processors involved in the
computation. Nassimi and Sahni [NS1] also give similar algorithms
with the same time and processor complexities for the above

operations on the PSC.

46

The time complexities of the RAR and RAW operations on these
two SIMD architectures are therefore O(log?N). In the next section we
shall develop new SIMD architectures to take advantage of these

results.

47

4.4. New Interconnection Networks to Support Polylog

Algorithms

Using the above simulation of CR and CW by RAR and RAW on the
CCC or the PSC in 0{log?N) SIMD time we can run the component
labeling algorithms in Section 2 in 0{log3N) SIMD time using N SIMD
PE's. Although the local neighborhood computations can be done using
the RAR and RAW on the CCC or the PSC, we would like to have in the
SIMD computer the links of a MCC containing the image. The two
proposed SIMD interconnections are very simple: the first one is a
CCC with an embedded MCC; the second is a MCC with additicnal 3 PSC
links {(the exchange, shuffle and unshuffle links of the PSC) per PE.
We call the former a ECCC (Embedding Cube-Connected Computer} and
the latter a MPSC (Mesh and Perfect Shuffle Computer). Each PE
possesses two alternative ids: its coordinates and the corresponding
shuffled row-major index (see Section 2} or block index (see below).
The conversions between these types of ids are 3just simple bit

operations which can be hardwired into the system.

In both cases, for practical image sizes, compared to the MCC,
the numbers of additional links are reasonably small and compared to
the PC and the MOT there is no increase in the number of processors.
Links are cheaper to build than processors. The links of the CCC in
the ECCC and the added links of the PSC in the MPSC can be used for
the simulations of the PRAM CR and CW operations by the RAR and RAW

operations of SIMD computers. Local operations can be done in 0O{1)

48

time using the mesh part of the interconnection network. Hence the
PRAM algorithms in section 2 can be systematically translated into
the ECCC and MPSC algorithms and will have (SIMD) O(log?N) time and

O (N) processor complexities.

4.4.1. Embedding of the MCC in the CCC Using Block Indexing

If we can index the PE's of a MCC in such a way that every two
4 neighbors' ids differ in only one bit position then we can embed it
in the CCC in a natural way. We can build the CCC architecture so
that each node knows which of the logN links in the CCC are links to
its 4 neighbors in the MCC. Alternatively, we devise an indexing
scheme called block indexing which satisfies the property stated

above.

In the block indexing scheme, we assign indices to the

elements of an array as follows.

- We assign the 0th bits of the ids along each row of the
array according to the sequence
0110011001100
- We assign the 1lst bits of the ids along each column of the
array according to the sequence

0110011001100

- We assign the 2nd bits of the ids along each row of the

49

array according to the sequence
0011110¢0111100111100
- We assign the 3rd bits of the ids along each column of the
array according to the sequence
001111001111 00121100

and so on (see Figure 22).

This process produces an indexing such that the array is
hierarchically subdivided into 2b_hlocks (as defined before) where
0<=b<N and neighboring array elements have indices differing in
exactly one bit position. Furthermore, the conversions between the
{(i,§) coordinates and the block indices can be done in parallel
efficiently by boolean circuits with constant depths and O(logn)

widths.

For example, consider the computation of the block index of
the element (i,j) of the array. The (2s)th bit I, of the index is
computed from the binary representation of i as follows.

I,, = the exclusive or of the sth

5

and {(s+l)st (if exists) bit of i.

The (2s+l)st bit I,.,; of the index is computed from the binary
representation of j as follows.
I, = the exclusive or of the sth

and {(s+1)st (if it exists) bit of j (see Figure 21).

50

We can run Algorithm 3 to set up the links of the embedded MCC

in the EMCC.

ALGORITHM 3. Embedding the block indexed MCC in the CCC.

{let B_to C(I) be the function that converts a block index to
the corresponding coordinates index and C_to_ B its inverse}

{PE(i) executes the following program:}

(1,3} <- B to_C(I):

{(i,9) is the coordinates of the corresponding pixel}
if j-1>=0 then

the link to C_to B(i,j-1) is the West link
else there is no West link;

if j+l1<n then

the link te C_to_B{i,j+l) is the East link
elgse there is no East link;

if i-1>=0 the

the link to C_to _B(i-1,j) is the North link
else there is no North link;

if i-1>=0 then

the link to C_to_B(i-1,3J) is the South link

else there is no South link;

51

4.4.2. BAdding the MCC Interconnection Network to the PSC

The MCC can be indexed by the shuffle row-major or the block

indexing scheme.

4.4.3. 8Simulation of Other SIMD Architecture by the ECCC

and the MPSC

We use the same idea as in the arrangement of m processcrs teo
function as 2m-l1 nodes of a complete binary tree. Each simulation of
a level to level data movement in the MOT or in the PC costs 0(log?N)

time for RAR or RAW.

52

5. CONCLUSION

We have shown that a c¢lass of PRAM algorithms, including
those in Section 3, can be run on the SIMD computers ECCC and MPSC
with 0(log?N) penalty for the simulation of CR and CW and no increase
in the number of processing elements. These proposed SIMD
interconnection schemes support the operations of component labeling,
contour filling and compeonent shrinking efficiently in 0(log3N) time.
The existing SIMD component labeling algorithms {for the MCC, the MOT
and the PC) will probably get 4 times more complicated when
8-connected components are to be labeled (they only give solutions
for the 4-connected component labelling) and do not give as a result

an algorithm for contour £illing.

The algorithms given in this paper may be generalized to the
case of 3D binary images. Other operations such as finding the convex
hull, detecting digital straightness can be soclved efficiently in
SIMD polylog time once polylog algorithms for them on the PRAM models

are found.

We also arrive at a paradigm for the modular construction of
SIMD architectures for low level image processing operations. The
basic interconnection network is that of a 2 dimensional MCC where
there is a PE for each pizel. We can view the PC (MOT, resp.) as a
combination of MCC's and additional processing elements and

connections in the form of a quaternary tree (binary trees, resp.).

53

In this light, we have demontrated the efficiency and
simplicity of the architectures obtained by adding links to the MCC
to form the ECCC and the MPSC. Efficient local operations can be done
on the MCC interconnection part and glcbal communications (RAR and

RAW) on the CCC or PSC parts.

In image processing applications, the bottleneck the
simulation of CR and CW by RAR and RAW is the sorting operation
because other local operatiocns require only constant time (in the two
proposed architectures). It is interesting to note that the sorting
operation which seems unnatural in bioclogical vision systems plays an
important role in our solution strategy. In a recent paper, Reif and
Valiant [RV) give an 0O(logN) time randomized parallel sorting
algorithm on a linear-sized SIMD architecture similar to the CCC.
Using this randomized parallel algorithm and the routing method of
Nassimi and Sahni [NS1l], we can have randomized parallel algorithms
for RAR and RAW data routing with O(logN} time complexity. Hence the
SIMD algorithms developed in this paper have similar randomized
versions with 0(log2N) time complexity. Alternatively, (using the
above paradigm for the modular construction of SIMD computers) we can
add to the ECCC or the MPSC links of the with 0(logN) time sorting
networks [BP,LE] to obtain SIMD architectures with O(logN)} time RAR

and RAW.

Another problem of interest is to derive parallel algorithms

with optimal speed-ups, i.e. parallel algorithms whose product of the

54

time and processor complexity terms is of order O(N), the time
complexity of the optimal sequentizl algorithm for component labeling
cbtained by applying the depth first search algorithm to the induced

graph of the image.

55

6. SUMMARY OF CONTRIBUTIONS

The followings are the contributions of this thesis.

1. The Label Propagating Algorithm (O{logN) time, O(N} processor on
the PRAM model), a new parallel version of the sequential component

labeling algorithm by the raster scanning method.

2. A paradigm for the simulation of 2 large class of PRAM algorithms
which includes the Tree Merging and Label Propagating Algorithms on
the SIMD model with O(log?N) time penalty where N is the input size

and the number processors involved in the computation.

3. The block indexing used to embed the MCC in the CCC.

4. A paradigm for the modular construction of interconnection
networks of SIMD computers (which are efficient for image processing

applications).

5. A number of efficient SIMD architectures that support efficient
component labeling, contour filling and component shrinking
algorithms with O(N) processor complexity and 0(log?N) or 0(log’N)

time complexities.

56

REFERENCES

[AS]

(Ba]

[BF]

[Bul

(BV]

{Du]

(Fr]

[Ga]

Ahuja, N., Swamy, S., Multiprocessor Pyramid Architectures for Bottom-Up Image

Analysis, Multiresolution Image Processing and Analysis, A. Rosenfeld (ed.), pp. 38-39.

Batcher, K.E., Sorting Networks and their Applications, Proc. of the 1968 Spring Joint

Comp. Conf. (Reston, Va., April), AFIPS, 307-314.

Bilardi, G., Preparata, F.P., A Minimum Area VLSI NetWork for O(logn) Time Sorting,

IEEE Trans. on Computers, TC 34, No4, April 1985.

Burt, P.1., The Pyramid as a Structure for Efficient Computation, Multiresolution Image

Processing and Analysis.

Bar-On, 1., Vishkin, U., Optimal Parallel Generation of a Computation Tree Form, ACM

Trans. on Prog. Lang. and Systems, vol.7(2), April 1985.

Dubitzki, T., Wu, A., Rosenfeld, A., Parallel Computation of Contour Properties,

University of Maryland TR- 848, Dec. 1979,

Freeman, H., Computer Processing of Line-Drawing Images, Computing Surveys, vol. 6,

no.1, March 1974.

Gazit, H., An Optimized Randomized Parallel Algorithm for Finding Connected Components

in a Graph, 1986 IEEE FOCS.

57

[HR] Hanson, AR, Riseman, E.M., Preprocessing Cones: a Computational Structure for Scene

Analysis, TR-74C-7, U.of Mass., Amherst, MA,

[HCS] Hirschberg, D.S., Chandra, A.K., Sarwate, D.V., Computing Connected Components on

Parallel Computers, CACM, August 1979, 22(8).

[KR] Kak, A., Rosenfeld, A., Digital Image Processing, Academic Press.

[KE] Kumar, P.V.K., Eshaghian, M.M., Parallel Geometric Algorithms for Digitized Pictures on

Mesh of Trees, IEEE 1986 International Conference on Parallel Processing.

{Kn] Knuth, D., The Art of Computer Programming, vol.3, Sorting and Searching.

[Le] Leighton, T., Tight Bounds on the Complexity of Parallel Sorting, IEEE Transaction on

Computers, TC 34, No.4, April 1985.

[MS1] Miller, R., Stout, Q.F., The Pyramid Computer for Image Processing, 1984 IEEE

International Conference on Computer Vision and Pattern Recognition.

[MS2) Miller, R., Stout, Q.F., Geometric Algorithms for Digitized Pictures on a Mesh-Connected

Computer, IEEE Trans PAMI, PAMI-7(1985).

[MS3] Miller, R., Stout, Q.F., Data Movement Techniques for the Pyramid Computer, SIAM

Journal of Computing, 16(1), February 1987.

58

[NS1]

[N52]

[RV]

[Rol]

[Ro2]

[Sa]

[St]

[SV]

[Si]

Nassimi, D., Sahni, Sartaj S., Data Broadcasting in SIMD Computers, IEEE Transactions on

Computers, TC-30(2), February 1981.

Nassimi, D., Sahni, S., Finding Connected Components and Connected Ones on a Mesh

Connected Parallel Computer, SIAM Journal of Computing, 9(4), Nov. 1980.

Reik, J., Valiant, L., Logarithmic Time Sort for Linear Size Networks, JACM, Feb. 1987,

34(1).

Rosenfeld, A., Connectivity in Digital Pictures, JACM 17(1), 156-160 (1970).

Rosenfeld, A., Some Useful Properties of Pyramids, Multiresolution Image Processing and

Analysis, pp. 2-5.

Samet, H., The Quadtree and Related Hierarchical Data Structures, Computing Surveys,

16(2), June 1984.

Stone. H., Parallel Processing with the Perfect Shuffle, IEEE Transactions on Computers,

C-20(2), Feb. 1971.

Shiloach Y., Vishkin U., An Oflogn) Parallel Connectivity Algorithm, Journal of

Algorithm, vol. 3, pp. 57-67, 1982.

Siegel, H.J., Interconnection Networks for Large Scale Parallel Processing: Theory and Case

Studies.

59

[St]

[Tal]

[Ta2]

[WBR]

Stout, Q.F., An Algorithmic Comparison of Meshes and Pyramids, Evaluation of

Multicomputers for Image Processing, Academic Press, 1986.

Tanimoto, S.L., Hierarchical Approaches to Picture Processing, Ph.D. dissertation,

Dept. EE. and CS, Princeton 1975,

Tanimoto, S.L., Sorting, Histogramming and Other Statistical Operations on a Pyramid

Machine, Multiresolution Image Processing and Analysis, pp.136-147.

Thompson, C.D., Kung, H.T., Sorting on a Mesh-Connected Parallel Computer, CACM,

204), April 1977.

Tucker, L., Labeling Connected Components on a Massively Parallel Tree Machine, 1EEE

Conference on Computer Vision and Pattern Recognition, June 1986.

Uhr, L., Laver "Recognition Cone” Networks That Preprocess, Classify and Describe, IEEE

Trans. on Computers, TC. 21, 758-768.

Wu A., Bhaskar, S.K., Rosenfeld, A., Parallel Processing of Region Boundaries, University

of Maryland TR-1573, Nov. 1985.

60

APPENDIX 1. THE TREE-MERGING ALGORITHM

We assume the followings:

1. The binary image is stored in the array B in the shared
memory such that the cell B(i,j) contains the value of the pixel
{i,3), 0<=i,j< n.

2. We associate the processor P(i,j) with each pixel {i,J),
0<=i, j< n.

3. Furthermore, we need two variable s and s' and an array
Q(i,j) for termination detection , 0<= i,Jj < n. During the algorithm,
Q always satisfies:

0(i,3)= s if after the second step of the sth iteration, a new

vertex points to (i,3j) and Q(i, j)< s otherwise.

We use the c¢oordinates (i,3j) as possible labels of the
connected components. The output of the algorithm is an array L
containing the component label of the pixel (i,3j), 0<= i,j< n.
Algorithm 1 is a detailed description of the component labeling for
the binary image B. Figure 12 shows how Algorithm 1 works on a binary

image.

61

ALGORITHM 1.

BINARY COMPONENT LABELING BY THE TREE-MERGING METHOD

0. Initialization:

s <-1; 8« 1;

for each "vertex" (i,j) do in parallel

begin
allocate processor P(i,j) to "vertex"(pixel) (i,j);
L(i,j) <- (ij); Q) <- 0;

end;

while s = s’ do {step s}
for each "vertex" (i,j} de in parallel

begin

1. CR L(L(ij)) into L(i,j); {skipping on the array L}

if L(i,j) was changed then CW s to Q(L(i,j});

2.1f B(i,j)= 1 and L(i,j) was not changed in step 1 then
{(i,j) poinis to a root}
begin
let (u,v) be such that
L(u,v) =min { L{x,y): L{x,y)<L{i,j) and (x,y) is a neighbor of (i,j)};
if (u,v) exists then
{the tree {u,v) points to a vertex smaller than the root of the

tree of (i,j), hook the tree of (i,j) onto the tree of (u,v)}

62

begin
CW L{u,v) to L{L(i,i});
{many such (i,j) may write concurrently
into L{L(i,j)), however only one will succeed}
CW s to Q(L{u,v));
end;

end;

3.if L{,j)=L(L(i,j)) and Q(L(i,j))<s then
{(1,j) points to a stagnant root}
begin
{the tree of (i,j) is stagnant}
let (u,v) be such that
L(u,v) = min { L{x,y): L(x,y)<>L{i,j) and (x,y) is a neighbor of (i,j)};
if (u,v) exists then
{iry to hook the tree of (i,j) onto the tree of (u,v)}
CW L(u,v) to L(L(i,j));

end

4. CR L(L(i,j)) into L{ij); {do a second skip}

5. if Q(i,j)=s then CW s+1 to s;
8 < §'+1;
{ if there is a non-stagnant tree, s' is updated otherwise s' will be less than s
the algorithm terminates}

end {for};

63

Note that in step 2 and 3, each processor (i,j) does the works
of the processors associated with its outgoing edges in Shiloach and
Vishkin's algorithm. Instead of the arbitrary CW by the processors
associated with the edges outgoing from the vertex (i,Jj), the minimum

of the write values is computed and written by the processor (i,73).

In steps 1 and 2 of Algorithm 1, if there is a change at a
node (it points to a new node or a new ncde points to it) then the
iteration number is written (concurrently) into its Q wvariable. In
step 5, if there has been no change in steps 1, 2, 3 and 4 then s is
not updated and the testing at the while head in the next iteration

results in (s<s') being true and the while loop terminates.

64

APPENDIX 2. COMPUTING THE BOUNDARY CHAINS IN PARALLEL

FROM 3X3 NEIGHBORHOQODS

If there is no singular pixel then it is easy to orient the
edge of G to turn it into the boundary chains of the image. In this
case, every boundary pixel has degree 0 or 2 in the induced graph C
of the boundary of the image. In the latter case, only local
information on the 3x3 neighborhood of each boundary pixel is needed
to assign consistently the orientation of the edges of C to form the

boundary chains (which are disjoint).

In the general case, we obtain the boundary chains from G by
assigning to each edge of G 0, 1 or 2 directed edges. The graph
induced by the boundary chains is Eulerian. A pixel can appear in at
most 4 distinct boundary chains. Difficulties arise because of (using
the analegy in Section 3.2) thin lines or "choke points™ in the
image. We assign to the boundary pixels the links in the boundary
chain as follows. We "magnify" the image so that pixels now have
substantial size and thin lines or choke points have sufficient mass
so that we can assign the orientation in the simple case. A pixel
appearing in a thin line or being a choke point is split up into a
sufficient number of nodes for the distinct boundary chains it lies
on. This is sufficient to ensure that the outside boundary chain of
every component is computed as a closed path and each inside boundary
chain surrounds only one hole. Figure 23 (24, resp.) shows how this

is done for a number of cases of 3x3 4-(8-, resp.)} neighborhoods (the

65

assignment of incoming and outgeing links is for the center l-pixel).

We match the incoming and outgoing links as indicated.

66

APPENDIX 3. THE LABEL PROPAGATION ALGORITHM.

ALGORITHM 2. BINARY COMPONENT LABELING BY LABEL PROPAGATION

PE(u,v): {j: a controller's variable; B(u,v), O<=u,v<n: the binary image;
BND(u,v), W(a,v), N(u,v), L(u,v): variables associated with pixel (u,v);

The algorithm terminates with L(u,v) containing the component label of pixel (u,v).

}
0. L(u,v) <- (u,v);
1. Construct boundary chains for regions of 1-pixels;

{Now each PE corresponding to a pixel on a boundary
chain has BND(u,v) set to true (and false otherwise) and

N(u,v) set to the id of the next PE on the same chains}

{propagate min labels along boundary chains}
for j:= 1 to 2k do if BND(u,v) then
begin
2, CW L(u,v) to L'(N(u,v));
{pass the label (u,v) to the next PE, only EW is necessary }
3. L(u,v) <- min(L(u,v), L'(u,v});
{get the minimum label}
4, CR N(N(u,v)) into N(u,v);
{skip over the next PE}

end;

67

Compute the inside boundary, outside boundary information

for each boundary pixels.

{Set up the stars representing links across holes}

if B(u,v)=1 and the East neighbor is a 0 and (u,v) is on an inside
boundary then set W(u,v) to'(;

else

if B{u,v)=1 and the West neighbor is a 0 and
{u,v) is on an inside boundary then set W(u,v) to)

else set W(u,v) to '¥;

Apply the generalized parentheses matching algorithm.
Now if W(u,v) contains a left parenthesis (left bank)
then N{u,v) contains the location of the matching

right parenthesis (right bank).

{set up the horizontal linked lists}
if B(u,v)=1 and East neighbor is a 1-pixel
then set N(u,v) to the id of the East neighbor

else N(u,v) <- (u,v);

{find the end of the list}
for j;=1tokdo
if B(u,v)=1 then

CR N(N{u,v)) to N{u,v);

68

{skip over the next PE}

9. if B(u,v)=1 then CR L{N(u,v})) to L(u,v);

{read the label of the boundary pixel at the end of the list}

69

+ K

Figure 1. a. 4-neighborhood. b. 8 neighborhood.

PE PE 1

!

SHARED RANDOM ACCESS MEMORY

Single Intruction Stream

Figure 2. Diagram of a PRAM. .

Multiple Data Stream

Controller
with

Program

/pgo<—--»

PEl [@&——pt Inter
connection

|

| Network

|

Figure 3. Diagram of a SIMD computer.

70

01 45
2 3 6 7
8 9 12 13
1011 14 15

Figure 4. A mesh connected computer. Figure 5. Shuffled row-major indexing.

/N

Figure 6 a. A pyramid computer with 4x4 base.

((i/2},1[3/2),h-1)

/ (i, j~1,h)

(i‘l,j,h)H (irjyh)H {i+1ljfh)

(i,3+1,h)

(2i,249,h+1) (2i41, \h+1)

(2i,23+1,h+1) (2141, 2541, h+1)

Figure 6b. Pyramidal Connections from PE (i, j, h).

71

Figure 7. A 4x4 mesh ot trees computer.

6] 110 71 11

oo [4 5 [1on

2 3] on
010

o]

000) 001

Figure 8. A cube-connected computer of size 8.

Figure 9. A perfect shuffle computer. The unshuffle links are opposite to the shuffie links.

—» shuffle link m— exchange link

72

3

—‘v?o?&.0.6.‘0‘?#0?.?.’.&.@.4.0.o.+‘.-bfo.’4fo?6‘.;?1-?6%?4.’4’-%?-&' tatet, '0?-‘ L R T S s s)

P
5

0

ZHTTTITILINILL LR LR
::\ LT T T N T T IO T (T \:::
)] 0100 N
3\ lmumumumumumnmumnu \~ TGO \&
£ (%]
§ 0010 0 a
;\munnmmnmuumumuunmm \mmumunmmumunmmmmn
£ PR \. s drer et e
A"Q;".tjlgo"o;4"_0"0;0;4;0"05&;4;0;0'0 """""""""""" 0;0;0;#;0;0‘#;"".‘0‘0'0""0'0;'-'.1-.“

LR

!

o

A

LK

ummmmmmmmmmmmmm

mumumumumumumumnm

2

o

N

ENE 1010 101

\.yumumumumnmumnmuml IMHNHMHMHNHMHMHMH
‘

vvv

5

-.’ L5 S S NSNS RN MR, 5
‘ |!III|IllllIHIIII|IlIIlIIlIIIIIIilIIHIIII IIIIIIiIII|IIIINIHIIHIIIII!IIllllrlllli H
5N \” 1101 \

o

0
SR

t
'II’II

Figure 10. The nested 2 b -blocks of a shuffle row major indexed computer.

»r—r—————p »—_p

/ \/\

N

Figure 11. Pointer skippings on a linked list of length 8.

73

UL ! L

S S TR SO A S R Y ' o L
u_u..__nn_....__u.w - = . P R s DU S S [i
.o ~ . p 0 ¢ 1T
y : - - b - - PR - -t S

¢ ! U ! ! b
- P - ! P
) 0 ' ror-
- S ' \\ \\\ ot
' " i o4
¢ ' !
--i- - ep - 4
. "o !
- - - -y -
‘ o
-I - F - - - o -
; ; «

- - - - - - - I G

i 1 i ‘Q ! ’
N P
A B I B S —

R I T [Y L
T - - b e pepm b e m cdod = P P DU L,
R ro ! "o b e

- - - - - - - - d - RO S ll;l.. ! ! ! !
i ' ro 1 Y, B D

b - - 4 - P ' ' o
' ¢ ﬁ_ R . w; res-

| 1 AL
1] =] R it - P

NI NN DRy N PR IE , _ q...: : .ﬁ - 4
p Pl - - - - - - - - R RV

o f) ' | ~] ' | hd] ' 1 ! !
f FerTrer-r $ s whdedodo A D fe o
' o o b !

L - - - - -4 - P | ' ¥
! ' M.) ! "~ T

- P - PR R -t ' y !
_ Fui EriEs mus
") 4 ! ¢ !

Figure 12. The Tree Merging Algorithm on an Image.

a. The image after step 1.1; b. Step 1.2, (1,6} is a stagnant root;

c. Step1.3, (1,6) hooks onto (2,5) d. Step 1.4;

e. Step 2.1; {. Step 2.2, (5,5) hooks (4,5) onto (4,2).

74

@n @n
(4.2
2
1.3 @
e @L
Q.
(L @n
1.2) GR)
.3 “2
QR4 3.9
o
.2 Q2
(1.2) 1.2
a3 Q@n
eX:) 6
e.

A @n

(12) G
4.2
1.3) “z
2.9 34
b,
12 Q2
(1.2 .2
(1.3) @D
2.9 Q.4
d.
2 2
) (1.2
1.2
(1.2) 2
2 Q2
f.

Rgure 13. Propagdting the minimum valuedalong a cycle.
a. Original boundary chain. ¢, e. Poirter skipping.
b.d. f. Propagdting the smdlier values along the poirters

1
CX oD

RAgure 14 . Assignment of the balanced parenthesis expression.
The cuts comesponds to the shings
L% L%, L. and the expression () (()).

Gy

N
s

Fgure 15. The Label Propagdating Algorthms on animage.
a. Orginal Picture. b.Setfting up the boundary chains.
c.and d. The horzortal linked lists of the connected components.

— 1.1 section ofthe [ist ~~---2-- astar orabridge overahole

76

Figure 16. The binary tree structure forthe sting " (() C () () XX) ())
and the L, MINLEFT, and MINRIGHT values ("?* denotes an undefined value).

N /5\

S.
>
>

0 1 2 3 4

(4,

Figure 17. A binary tree with 28 - 1 nodes. The numbers shows
the id numbers of the processors assigned to the nodes.

77

Figure 18. A binary image and its boundary chains.

' \ 7/

! AN

Figure 19. A pixel can appear many times in a boundary chain.

78

-

(4-neighborhood) (8-neighborhood)
c

(8-neighborhood) (4-neighborhood)

Figure 20. Some speciai cases to consider when the miminum node of the
chain is on two boundary chains.

[] a minimum node on a boundary chain

In cases a and b, the minimum node must be on an outside boundary.
In cases c and d. the minimum node decides the orientations separately
for each of the fwo touching boundary chains.

79

Inclex 4 12 10 8 é 4 2 0
bit:

19 13 11 9 7 5 3 1

Figure 21. Conversion from the coordinates (.}
to the comesponding block index for k=8.

€D Exclusive-Or Gate

1000 00 0101 0100
10 0011 o1 0110

T TR T\ T I

1010 1011 1 1111 1110

TR A FTECTETETCNTIECTE) s N e e e I
1101 1100

QIHIIIlllltllIllIIIIIIIHIlllIIIItIIEIIIIIHIIIIII;
i S N NN S N RN N NN

Figure 22. The nested 2b -blocks of .a block indexed computer.

80

Figure 23. Some typical 4-neighborhoods and the assignments of
boundary chain pointers. Other cases can be obtained by rotations.

O a O-pixel
[| a 1-pixel . A singular pixel.
p 4 don't care

81

Figure 24. Some typical 8-neighborhoods and the assignments of
boundary chain pointers. Other cases can be obtained similarly.

[] a I-pixel * denotes a singular pixel

H H

82

Figure 24 (continued)

[| a 1-pixel

83

