REMOVING ALGORITHM IRREGULARITIES IN THE DESIGN
OF ARRAYS FOR MATRIX COMPUTATIONS

Jaime H. Moreno August 1987
Tomas Lang CSD-870040

Removing Algorithm Irregularities in the Design of
Arrays for Matrix Computations

Jaime H. Moreno, Tomas Lang
Computer Science Department
University of California, Los Angeles

Report No. CSD-870040*
August 1987

*This research has been supported in part by the Office of Naval Research, Contract N00014-83-K-0493
“Specifications and Design Methodologies for High-Speed Fault-Tolerant Algorithms and Structures for
VLSL"™

Abstract

We address some irregularities in matrix algorithms, as part of a systematic design methodology
for arrays of processing elements (PEs) that we are researching. We propose a procedure to reduce
the number of nodes in the fully-parallel dependence graph of matrix algorithms. We identify
some irregularities which complicate such reduction of nodes and propose transformations to the
dependence graph to remove them. The graphs obtained from such transformations are suitable for
further transformations aimed towards regular algorithms or for direct implementation as arrays of
PEs. The irregularities considered are bi-directional broadcasting and non-regular interconnection
pattern between levels of the dependence graph. We use LU-decomposition, without and with
pivoting, as examples of application of our transformations. The methodology results in triangular
arrays for this computation, with better utilization than square arrays formerly proposed for it.

1 Introduction

Matrix computations are the basis for many applications in science and engineering. Examples
exist in image and signal processing, pattern recognition, control systems, among others. The
evolution in VLSI technology is making possible the cost—effective implementation of many matrix
algorithms as a collection of regularly connected processing elements (PEs).

An important problem in the design of arrays of PEs for a given algorithm is the methodology
used to derive the structure and interconnection of those arrays. Standard structures (systolic
arrays [1]) have been used for these implementations, but they might be non—optimal for a partic-
ular algorithm. Some transformational methodologies have been proposed [2], which either restrict
the form of the algorithm (i.e., a recurrence equation) or are unable to incorporate certain imple-
mentation restrictions, such as number of I/O pads, limited data broadcasting, or lower bound on
efficiency.

We are researching a general and systematic design methodology for matrix algorithms, with
the capability to handle and relate features of the algorithm and the implementation in a unified
manner {3]. We have applied a preliminary version of this methodology to the algorithms for
matrix multiplication and LU-decomposition [4]. This methodology is based on the dependence
graph of the algorithms and provides mechanisms to deal with issues such as data broadcasting, data
synchronization, interconnection structure, IO bandwidth, number of PEs, throughput, delay, and
utilization of PEs. Starting from a fully—parallel graph, in which nodes represent the operations and
edges correspond to data communications, we apply transformations to the graph to incorporate
the issues indicated above. Since the proposed methodology addresses multi-instance and single~
instance computations, some transformations exploit pipelining of data to enhance concurrency
and reduce communication requirements, while other transformations are oriented to reduce the
computation time.

Our previous work has considered algorithms which, in general, exhibit regular properties. In
this paper, we address algorithms which exhibit irregularities, such as square of a matrix, LU-
decomposition without and with pivoting, matrix triangularization, inverse of non-singular trian-
gular matrix, among others. In Section 2, we briefly review our design methodology. In Section
3, we discuss the issues involved in reducing the number of nodes in a graph, when such number
is large, and propose a procedure to perform such reduction. In Section 4, we apply the proposed
procedure to the algorithm for LU-decomposition without pivoting. In Section 5, we identify some
algorithm irregularities that complicate the design of arrays for matrix computations, in particular
irregularities that complicate the reduction of the number of nodes in the dependence graph. We
describe some transformations to the graph to remove such irregularities and illustrate the use
of these transformations by applying them to the algorithm for LU-decomposition with neighbor
pivoting.

2 A Graph-Oriented Design Methodology for Arrays of PEs

The development of systematic methodologies for the design of arrays has been actively pursued
recently. In [2], Fortes et al. review seventeen different methods for the design of algorithmically
specified systolic arrays. New methods have been proposed after that review. Fortes et al. conclude

that the most common characteristic of the proposed methods is the use of a transformational
approach, where a high—level specification of a problem is transformed into a form better suited
for implementation. Although the proposed approaches can be useful to accomplish certain design
tasks, they have limitations. The methods are, in general, unable to incorporate implementation
restrictions, such as number of I/O pads, suitable utilization of processing elements, or limited data
broadcasting. Furthermore, the algorithms considered are restricted to belong to limited classes,
such as those representable as uniform recurrence equations, program with loops, or restricted types
of dependence graphs.

We have proposed a graph-oriented systematic design methodology for arrays of PEs [3]. This
is a transformational methodology, which uses a fully—parallel dependence graph as the description
of the algorithm. In such a graph, nodes represent the operations and edges correspond to data
communications. These graphs are characterized by having all inputs and outputs available in
parallel and no loops (i.e., loops are unfolded). The graph doesn’t include synchronization of
the arrival of data to the nodes, since such synchronization is accomplished as a result of the
methodology. Such dependence graph can be used directly to derive an implementation by assigning
each node of the graph to a different processing element (PE), and by adding delay registers to
synchronize the arrival of data to the PEs (i.e., a pipelined implementation of the graph). The
resulting structure exhibits minimum delay (determined by the longest path in the graph) and
optimal throughput (for multi-instance computations), but may require complex interconnection
structure, high I/O bandwidth, and large number of units. We deal with these problems, while still
attempting to preserve the delay and throughput inherent in the dependence graph.

Our methodology consists of applying an ordered sequence of transformations to the graph,
to incorporate implementation restrictions. The specific transformations depend on the particular
parameters of interest. At each step in this sequence, we obtain a new graph (i.e., a new form
of the algorithm), which includes some implementation restriction. The final step in the sequence
consists of a direct mapping of the transformed graph onto an array of PEs.

Applications of a preliminary version of our methodology have used transformations which
incorporate a subset of the issues arising in a design. Although some of those transformations are
of general application, others are appropriate only for specific cases. We have also shown that
the application of different transformations to the dependence graph of an algorithm may lead to
entirely different architectures. Our current research is oriented towards identifying a general set
of transformations and providing a formal definition for them.

We summarize now our methodology using matrix multiplication as an example. The details
of applying the methodology to this algorithm are found in [3], [4]. The dependence graph for
multiplication of square matrices is shown in Figure 1. It basically consists of a collection of n ?
inner-product trees. From the graph, we can infer the following properties of the algorithm:

¢ Each input data element is used in n inner-product trees. This indicates that broadcasting
of input data is required.

o Inner-product trees are independent among themselves; they depend oxnly on the input data.

¢ A pipelined implementation of the graph has delay O(logn) and throughput T = 1[eval/cycle].
Such implementation requires O(n?) I/O bandwidth, broadcasting of the input data, and
O(n3) PEs.

Figure 2 shows some alternative paths available in the design of arrays for matrix multiplica-

LT | [T e P P PP Columns af ik

) TT 13 E? 1

1]
- - Elament
________ at C
Rowsa Ll
of A
; ‘

.
-
.....
""""

(0

Inner-praduct

i Fl .‘.u tree
=
C =AxB
Figure 1: Matrix multiplication dependence graph
Dependance Graph:
- IO bandwidth Q(rP)
- Broadcasting
- Number of units O)
o BWwW
Broada. Broadc.
F"Eoswant::ltl:;’o low IO util. #I/g gc&ts
PE utll.l # units /O
broade., broade.,
low IO low IO low PEs 17O wutil. o utll,
util. util., util. Bromdc.
Vo utll.l VO uril. PE utll. Vo ut.
1/©O wutil.
Array {(a) Array (b) Array (c}

Figure 2: Alternatives in the design of arrays for matrix multiplication

tion, depending on which implementation restrictions, and in which order, are considered. This is
reflected on the sequence of transformations applied to the dependence graph. Each label in this
figure indicates the implementation constraint addressed by a transformation. Different arrays are
obtained with different sequences of transformations, although some paths lead to identical arrays.
The arrays obtained from the transformations outlined in Figure 2 are shown in Figure 3.

Considering inner—product as an elementary operation, matrix multiplication exhibits the fol-
lowing characteristics:

o The same sub-algorithm (i.e., inrer—product) is applied to different sets of data.
o All paths in the fully-parallel graph have the same length.
o The interconnection pattern is the same for all instances of the sub-algorithm.

The regular characteristics listed above make it possible to apply transformations to the graph
in a straightforward manner. However, regularity is not present in all algorithms of interest. There
are cases in which certain deviations exist that render the design of arrays more complex. In
particular, reducing the number of nodes in a graph is complicated by algorithm irregularities.
In the next section we discuss a procedure to perform the reduction of the number of nodes in

Rows

Columns
of B

|l‘
reglsters

I] Diagonals
I 1] of C

(a) Multiple tree architecture
Columns of B
- =9
L I

Rows of A

e -
Rows of C |

(b)Linear array of Trees

E — Serial
E Columns of B inner
- 9
product
Q o tree
CZx O— l

£ -r—;-__%ﬂ,.:-- L=l
g .s' 'Ennw
T g

{¢) Square array

V '
|

‘II;

Figure 3: Arrays for matrix multiplication

a graph. Later, we identify some algorithm irregularities that complicate the application of the
procedure and suggest transformations to the dependence graph that remove the irregularities. The
resulting graphs are suitable for other transformations, aimed towards regular graphs, or for direct
implementation as arrays of PEs.

3 Reducing the Number of Nodes in the Dependence Graphs

The fully-parallel graph of a matrix algorithm has too many nodes, so that a pipelined implementa-
tion of such graph requires too many units. Transformations to incorporate certain implementations
restrictions, such as removing data broadcasting or restricting the input/output bandwidth, may
reduce that number. However, in most cases it is necessary to reduce the number of nodes further.
We achieve this objective by grouping sets of nodes into single nodes. (Evidently, the computation
time of the new nodes is longer and the throughput of a pipelined implementation based on the
transformed graph is lower.) This reduction is complicated by irregularities in the algorithm, as
discussed later.

Reducing the number of nodes in a graph requires a criterion to group set of nodes into single
nodes. To achieve a suitable implementation, this grouping has to satisfy the following constraints:

¢ Obtain new nodes with similar computation time, so that the utilization of an array is max-
imized.
e Obtain a regular interconnection pattern among the new nodes.

To fulfill these constraints we have to consider the following issues:

i) Grouping nodes of a sub-graph reduces the interconnection requirements, since the depen-
dences between the nodes in a group are transformed into dependences within the new node.
That is, no communication path is required for those nodes. An example of this situation is
shown in Figure 4a.

i} Grouping nodes at different levels in the graph (i.e., nodes which are computed at different
time steps) preserves the delay of the computation. This is in contrast to grouping nodes
at the same level, because in such a case the path length is increased, eventually increasing
the length of the longest path in the graph. Grouping nodes at different levels is shown in
Figure 4b.

iii) Grouping sub—graphs into different nodes reduces the interconnections between the nodes of
the sub—graphs to a single connection between the new nodes. Figure 4c depicts an example
of this case. Proper selection of sub-graphs leads to regular interconnections.

iv) Selecting an equal number of nodes per sub—graph produces new nodes with the same com-
putation time. Nodes with the same computation time maximize the utilization of an array.

Consequently, we choose as criterion for grouping sets of nodes to collapse sub-paths of identical
length into single nodes, selecting them in such a way as to enhance regular interconnections. Sub-
paths of identical length are sub—graphs with nodes at different levels of the graph and with the
same number of nodes, meeting the conditions listed above.

{a) Grouping nodea of a (b) Grouping nodes at
sub-graph differant levels
P

{c) Sroupling sub-graphs into different nodes

Figure 4: Options in groupirg nodes of the graph

The following procedure satisfies the criterion:

e Annotate the nodes with their level in the graph (the level also corresponds to the time when
the nodes are used). This information is obtained by traversing the graph from inputs to
outputs. We assume the same computation time for all nodes.

e Select the length of the longest sub-path according to the desired reduction in the number
of nodes in the graph.

¢ Select sub—paths for collapsing to enhance interconnection regularity and maximize utiliza-
tion. Since high utilization is obtained when the computation time of nodes is close to the
longest node, sub—paths are selected in decreasing length.

e Serialize onto the inputs of the new nodes the data used for the different nodes which have
been collapsed.

The application of this grouping criterion to regular algorithms such as matrix multiplication
is straightforward. In such a case, it is possible to group sub—paths of identical length without
compromising the interconnection structure of the resulting array. An example is shown in Fig-
ure 5a. However, when sub—paths suitable for collapsing do not have the same length or there are
several groupings possible (as it is the case with certain algorithms with irregularities), it becomes
necessary to evaluate the alternative grouping options. An example of this situation is shown in
Figure 5b, where O(n?) nodes in a graph are reduced to O(n). Several groupings are possible.
Grouping vertical sub-paths leads to varying computation time per node, while more irregular
groupings such as the one shown in the figure achieve the same computation time per node but
they require a complex interconnection. The selection of any of those alternatives is based on which
performance measure is most relevant, such as utilization or interconnection of the cells in an array.

Figure 5¢c shows a grouping which does not follow the procedure described above. This grouping
leads to a complex interconnection, higher bandwidth, and longer delay (i.e., computation time),
undesirable characteristics for an implementation.

In the next Section, we apply the reduction procedure to the LU-decomposition without piv-
oting, an example of an irregular algorithm.

VIR

{a) Grouping nodes in a regular graph

— TR

{b) Grouping nodes in a non-regular
graph, using the procedure

{c} Grouping nodes in a non-regular
graph, without using the procedure

Figure 5: Grouping nodes in graphs with constant and varying parallelism

4 LU-decomposition algorithm without pivoting

The LU-decomposition without pivoting for a 6 x 6 matrix is described by the dependence graph
shown in Figure 6. In this graph, there is broadcasting of intermediate results. We solve the broad-
casting problem by replacing it with data pipelining, using the methodology described in [3], [4].
The graph resulting from the application of such transformation is shown in Figure 7, which also
indicates the level of the nodes in the graph. The graph has O(n®) nodes and is characterized by
sets of sequential computations which are interdependent. An attractive result of the transforma-
tion applied is that data arrives to the nodes synchronously, without the need to add extra delay
nodes. Next, we reduce the number of nodes in this graph by applying the procedure described in
the previous section.

4.1 Reducing the number of nodes in LU-decomposition without pivoting

Due to implementation restrictions, the transformed graph for the LU-decomposition without pivot-
ing shown in Figure 7 is not suitable for implementation: input data elements are needed throughout
the graph implying large input bandwidth and the graph requires O(n?) PEs.

We address the requirement of PEs first, with the objective to reduce the number of nodes in
the graph to O(n?). For such purpose, we identify sub-paths suitable for collapsing into single
nodes according to the criterion stated in Section 3. There are essentially three groupings possible,
namely the sub-paths corresponding to rows, columns or diagonals in Figure 7. All these sub—paths
do not have the same length. Moreover, they exhibit different degree of variation in length. For
instance, there is only one diagonal sub-path of length six and eleven diagonal sub—paths of length
one, while there are six rows of length six and only one row of length one. Consequently, according
to the selection criteria stated in Section 3, we choose to collapse rows {or columns) as shown in
Figure 8. A direct implementation of this graph leads to a triangular array.

The alternative of collapsing eack diagonal sub—path in Figure 7 into a single node, and mapping
the resulting nodes to different cells in a square array, was proposed in [6]. However, the utilization
of such array is not adequate because of the variation of the number of operations per cell. For
example, the top leftmost cell has only one operation to compute, while the lower rightmost cell has
n operations. Consequently, the diagonal sub-paths do not meet the criteria we stated in Section 3,
since there is only one sub-path with the longest length. The triangular array derived above has a
utilization roughly twice better, for large n, than that of the square array.

5 Transformations for Algorithm Irregularities

We consider here certain irregular properties which are found in matrix algorithms. These properties
essentially complicate the reduction in the number of nodes and synchronization of nodes in a graph.
We use the dependence graph of the algorithm, in its fully—parallel or a transformed form, to identify
those non—-regularities. Since we advocate a graph—oriented design methodology for arrays of PEs,
we propose transformations to the dependence graph to include implementation restrictions and to
eliminate or reduce the non-regularities, leading to more regular implementations.

A12 A13 A14 A15 A18 A11

Yy ¥ v ¥
fut2]fut1a|fu14}luis | U1 A21A31 A4t 51 A61

A22] JA23] |A24] |A25] [A28 AB A6 A64] 1AB A 66
a2 az a24|| a25 || a2é e o o I a62 || a6l i| a64 || a6s i a66
U22 IU23|IU24||U25 ||U26| l l

YY YV VY
|ngl|L42||L52||L§21

al3 |334i|aasi als ® & o a3 |a64i|a65i a66
]

=/
[as5 iiase I 64 |[a65 |[a66

]
I
&
/ ag5 || aéé

IR~
a \
P \\\
_EE:\-. .@1

broadcasting
| Uss]| us8
Aij - input matrix ﬁ
aij - updated matrix
| 66|

Figure 6: LU-decomposition graph

13

11

Uij

14

14

Lij @
[] aij |

Figure 7: LU-decomposition graph without data broadcasting

10

= wi. s Ly

Figure 8: Reducing the number of nodes in LU-decomposition

We center our attention on the following non-regularities:

a) Broadcasted data flows in more than one direction along some or all of the communication
paths (i.e., horizontal, vertical, diagonal).

b) The interconnection pattern between nodes at two levels in the dependence graph is not the
same for all nodes at those levels,

These non-regularities are described in detail in the following subsections and suitable transfor-
mations are proposed for them, so that they can be handled as part of our design methodology. We
use LU-decomposition with pivoting to illustrate the existence of the non-regularities and as target
for the proposed transformations. In each case, we present the dependence graph of the algorithm,
identify the irregularities, and describe the transformations suggested for specific irregularities.

5.1 Bi-directional broadcasting

Recently, S.Y. Kung et al. [5] have considered the design of systolic arrays for the transitive closure
and the shortest path problems, two examples of non-regular algorithms. They state that “for an
algorithm to be implemented in a systolic array, the dependence arcs in the associated dependence
graph of the algorithm should have a certain regularity.” In their analysis of the transitive closure
and shortest path algorithms, they have found that the node which is the source of broadcasting
changes its relative location within the graph and that the broadcasted data propagates in two
opposite directions. They claim that these irregularities cause problems in the design, although
they do not identify those problems. The broadcasting irregularity they have encountered is not only
bi-directional, but bi—dimensional as well. Their methodology performs a linear mapping (i.e., a
projection) to reduce the number of nodes in the dependence graph of the algorithm. Such mapping
is affected by those algorithm irregularities. It should be noted that Kung et al. have encountered

11

the irregularities in the algorithm expressed in a single assignment form (i.e., a transformed version
of the algorithm in which broadcasting has been replaced by data pipelining) and not in the original
form of the algorithm.

Broadcasting is not desirable from the implementation point of view, since it implies global
communications. Therefore, implementations normally replace broadcasting with data pipelining,.
That is, the broadcasted data flows in a pipelined manner through the cells of the array, reaching
all the destination cells along the way. Kung et al. [5] refer to this as transmittent data. Notice
that this is not the only possible way to implement broadcasting, since an alternative is to use
replication of data,

We present now a transformation to eliminate bi—directional broadcasting under certain con-
straints. This type of irregularity is found in matrix computations such as square of a matrix and
LU-decomposition with neighbor pivoting, among others,

5.1.1 Transformation of graphs having bi-directional broadcasting with independent
paths

There are two issues of interest in bi—directional broadcasting, namely the synchronization of data
flowing in two opposite directions and the influence of bi—directional broadcasting in the reduction
of nodes in the graph. Both are complicated by bi-directional broadcasting, as we show in Figure 9.
In Figure 9a, there is bi—directional broadcasting from the nodes located along the main diagonal
of the graph. Synchronizing this graph requires the addition of delay registers along the vertical
paths to the left of the source of broadcasting, as shown in Figure 9b. Adding the delays implies
inserting new nodes in the graph and the length of the columns is increased by different amounts,
so that the graph is not regular anymore (i.e., sub—paths in the graph do not have the same length).
The application of the procedure proposed in Section 3 to reduce the number of nodes in the graph
leads to low utilization of cells if the grouping is done by columns, or O(n) storage requirements in
the cells if rows (including the delays) are collapsed into single nodes.

The problems outlined above can be eliminated if all computation paths to the left (or right)
of the source of broadcasting are independent (i.e., they are disjoint), as it is the case in Figure 9a.
In such a case, it is possible to move the independent computation paths to the other side of the
node source of broadcasting so that the bi—directional data flow is eliminated. The result of this
type of transformation is shown in Figure 9c.

The transformation outlined above allows to deal with dependence graphs that exhibit bi-
directional broadcasting, but not bi—directional and bi—dimensional data flow simultaneously. We
are currently looking into systematic transformations for graphs that exhibit both properties.

In the next sub-section, we present the algorithm for LU-decomposition with pivoting which
exhibits bi-directional broadcasting.

5.1.2 LU-decomposition algorithm with neighbor pivoting

The LU~decomposition algorithm is an example of Gaussian elimination, which requires division by
the diagonal elements of the matrix. Unless the matrix is well conditioned, Gaussian elimination

12

(a) Graph with bi-directional (b) Synchronizing the graph
broadcasting

W= Delay

Source of data

Broadcasting path
Computation path

(c) Removing bi-directional broadcasting

Figure 9: Independent computation paths with bi—directional broadcasting

13

procedures require pivoting for numerical stability. The strategies suggested to cope with this
problem are complete or partial pivoting. However, neither of these two schemes is amenable to
parallel computation since they require global communications. Gentleman and Kung [8] proposed
another scheme, called neighbor pivoting, where the pivot is selected as the largest element between
two neighbors. They used this approach to devise a systolic array for matrix triangularization.
They claim that neighbor pivoting is stable and that numerical experiments have confirmed so. We
use this pivoting scheme for LU-decomposition as an example of the type of irregularities that are
found in matrix computations. We make no specific statements regarding the suitability of this
scheme from the numerical point of view.

The LU-decomposition computation with neighbor pivoting is described by the dependence
graph shown in Figure 10. In this version of the algorithm, pivots are selected as the largest of a
diagonal element and the element in the next row and same column. That is, at iteration k the pivot
is chosen as maz(ag i, ar+1,%). If the chosen pivot is element axi &, rows k and (k + 1) must be
exchanged. This graph exhibits broadcasting of intermediate results and varying parallelism similar
to the case without pivoting, but it has the additional irregularity of bi-directional broadcasting.
In fact, the selection of the pivot must be broadcasted in both directions in each row: to compute

the remaining elements u;; (j > ¢), and to exchange previously computed elements I; ; (¢ < j), if
necessary.

In a similar manner to the case without pivoting, we first remove broadcasting from the graph
and replace it by data pipelining. The resulting graph is shown in Figure 11. Notice that the
arrival of data to the nodes in this graph is not synchronized. Next, we apply transformations to
this graph to deal with bi—directional broadcasting.

5.1.3 Bi-directional broadcasting in LU-decomposition with pivoting

In Figure 11, the sources of bi-directional broadcasting are the nodes used to compute the elements
#;;. The broadcasted data is the signal indicating whether the corresponding rows have to be
exchanged or not, depending on the pivot selected. The computation paths which perform the
exchange of elements [; ; (i.e., the vertical computation paths to the left of nodes computing u; ;)
are independent. Therefore, as indicated in section 5.1.1, it is possible to move these independent
paths to the right of the source of broadcasting in such a way that the bi—directional data flow is
transformed into uni—directional. This transformation is shown in Figure 12. The resulting graph
has broadcasting in only one direction. However, the interconnection pattern between levels of the
graph is non-uniform. Further transformations to solve this irregularity are discussed next.

5.2 Non-uniform interconnection pattern

Another type of irregularity in matrix algorithms occurs when two levels in the dependence graph
have non—uniform interconnection pattern. That is, nodes at two levels are interconnected with a
regular pattern excepting some interconnections at the boundaries of the level which are not the
same. An example of this kind of irregularity is shown in Figure 13a. Non-uniform interconnection
pattern between levels of the dependence graph complicates the collapsing of sets of nodes into
single nodes, because sub—paths in the graph do not have the same structure.

14

A1l A21 A12 A|22 A13 ;123 A4 A24
Oy vy R L Pivotn
et g
l-b ui2 U13 U14
il Yy vy vy
A1 > 222 > 223 »{ 224
i A3i2 — A3i'i Astlt L uni-directional
31 Yy vy VV\\“_,.-' broadcasting
L—~l > 432 - 233 234 | T
T 1 ¥
thl mamal
xch. U23 ' U24
v vy A
Ad1 L21 - 233 1 334
A?z A413 L AI44 L
| L41 'Y Yy Yy
' > 242 > 243 > 244
K
142 vy vy
' L 243 > 244
A J (K) J & g L V—l
xch. xch. u34
v v L43 Y
y L31 v L32 + > 244
L41 L42 L43 v
Bi-directional Ud4
broadcasting
Aij - input matrix
aif - updated matrix

Figure 10: LU—decomposition with neighbor pivoting

15

AI +11\21 Arfzz A1£ +A23 A‘!i 324 A15+ :25
1) u12 U13 U14 U15 _
3 " o
L21 az22 a23 a24 a25
F A3 $A32 A33 A34 {A 5
vy v b4 '
L31 ¥ a32 #1 a3l ¥ ad4 #1 235
™ %,L U25
al4] a35
A4t A44 A45
LA A Ty
L41 1 add ad45
vy ‘
L42 a4l 1 ad4 1 adb
Y 'y 'y 'y
xch <& xch b P U34 u3s
L43 a44 ad5
A51 A52 A53 AS4 A55
A A A A A J
L51 # a52 #| a53 a54 ® a55
'y vy 'y 'y
L52 a53 #1 ab4 a55
'y vy 'y
L53 P ab4 # a55
h 4 h 4 ¢ 4 L
xch xch xch {u4q) U45
L l L54 ass |
Aij - input matrix —¥ Computation path Bi-directional uss

aij - updated matrix

Figure 11: LU-decomposition with neighbor pivoting and no broadcasting

~-# Broadcasting path

16

broadcasting

A11 A21A12 A22 A13 A23 A14 A24 A15 A25

vy v

»/U14 » U5 Pivoling
vy L

&1 324 1 a25

.
Wl b !

:::j""‘“"“'

U23 #{ U24 ¥ U25 B

vy vy |

233 #{ 235k L2
A45

\A i

o

L4218 adl

v
L32,

A51 A52 A53
*Y VY| ¥¢v¢

L51 (] a52pt—B#a53

'woovy

L52[— ab3

Aij - input matrix
aij - updated matrix

— Computation path
g Broadcasting path
Hl Exchange

ol whrelltstfis2{isa]
v L41 L42 143

e
-

E Logic non-regular

Figure 12: Transforming bi-directional broadcasting in LU-decomposition with neighbor pivoting

17

B Oelay

(a) (b)

Figure 13: Non-uniform interconnection pattern

5.2.1 Transforming non—-uniform interconnection pattern

Our approach to solve the non—uniform interconnection pattern problem consists of replacing the
irregularity with a regular interconnection. To achieve this, we add delay registers to the irregular
boundaries in such a way that their interconnection corresponds to the same regular pattern as
the one existing for the rest of the nodes at the corresponding levels. An example of this situation
is depicted in Figure 13b. As shown in the figure, this transformation might increase the total
computation time of the algorithm (i.e., delay), but the throughput is not affected. For multiple-
instance computations, this increase in delay is not significant.

We apply next this transformation to the non—regular interconnection pattern existing in the
transformed graph for LU-decomposition with pivoting shown in Figure 12.

5.2.2 Non-uniform interconnection pattern in LU-decomposition with pivoting

In Figure 12, the interconnection of nodes computing updated values of the matrix is different
than the interconnection of nodes to exchange the elements {; ;. This is not surprising, since they
are entirely different operations. In addition, the number of nodes in the graph is O(n3). The
transformation described in Section 3 to reduce the number of nodes cannot be easily applied here,
because of the non-uniform interconnection pattern present at the boundary of the graph. Such
transformation is based upon selecting sub—paths of the graph and collapsing them into single nodes.
The irregular interconnection complicates such selection, or originates complex interconnectious.

For instance, if we want to collapse rows of the graph as done before, we find that the parts
of the rows exchanging the elements [; ; are connected to many other rows (i.e., nodes to exchange
elements [, ; in one row are connected to O(n) rows of the graph). This implies a large fan—in for
the collapsed nodes exchanging the elements /; ;. On the other hand, pipelined flow of elements [, ;
and u;; towards the exchange nodes requires the synchronization of data arrival to those nodes,
task which is not straightforward with the graph as shown. Consequently, given the irregular
interconnection pattern, it is not possible to collapse rows of the graph as done previously for the
case without pivoting. Moreover, attempting to partition the graph into a regular and a non-
regular portions, grouping the nodes in them separately and combining the resulting parts, faces

18

a0 a
vi I celay

Figure 14: Regular interconnections in LU-decomposition with neighbor pivoting

@ Exchange

the same problems just mentioned.

We apply now the transformation to deal with non-regular interconnections proposed above.
We transform the irregular pattern into a regular one by adding delay registers to the boundary
paths, namely the ones used to exchange the elements /; ;. These registers are connected with the
same structure as the other nodes, as shown in Figure 14. The arrival of data to the nodes of this
graph has also been synchronized. It turns out that the task is accomplished without difficulty,
resulting in a graph with a regular interconnection pattern.

The new graph is regular, therefore suitable for grouping nodes. We apply now the procedure
proposed for such task in Section 3. The resulting graph, shown in Figure 15, is regular and can
be mapped directly into a triangular array.

6 Conclusions

We have addressed the existence of some irregularities in matrix algorithms, as part of a design
methodology for arrays of PEs that we are researching. This methodology consists of the systematic
application of transformations on a fully-parallel graph describing the algorithm, to fulfill restric-
tions required for an implementation. We have identified some of those irregularities and proposed
transformations to the dependence graph to remove them. The graphs obtained as a result of the
proposed method are suitable for further transformations aimed towards regular algorithms, or for
direct implementations as arrays of PEs. In particular, they are suitable for a procedure which
reduces the number of nodes in the graph. The irregularities considered here are bi-directional

19

Figure 15: Regular (triangular) array for LU-decomposition with neighbor pivoting

broadcasting and non-regular interconnection pattern between levels of the dependence graph.

We have used the LU-decomposition, without and with pivoting, as example of application of
our methodology to non-regular algorithms. Such application has resulted in triangular arrays for
this computation, with better utilization than square arrays formerly proposed for it.

We have described the features of a few basic transformations. Their application has allowed us
to show that it is possible to incorporate implementation restrictions and those irregularities as part
of a systematic design method. However, these transformations are not an exhaustive collection for
all possible irregularities and matrix computations. In addition, it seems that there are cases where
transformations specific to a given algorithm are needed. The objectives of the our current research
include the identification and formal definition of a larger set of transformations, for a more varied
class of matrix algorithms. The ultimate goal of the proposed research is to provide the designer
with a collection of transformations, which are systematically applied to a target algorithm. In
this way, the design process becomes a search, in the space of solutions available through the
transformations, for the alternative which offers the best cost—performance trade—offs.

References

[1] H. Kung, “Why systolic architectures?,” IEEE Computer, vol. 15, pp. 3746, Jan. 1982.

[2] J. Fortes, K. Fu, and B. Wah, “Systematic approaches to the design of algorithmically speci-
fied systolic arrays,” in International Conference on Acoustics, Speech and Signal Processing,
pp. 300-303, 1985.

[3] J. Moreno, “A proposal for the systematic design of arrays for matrix computations,” Technical
Report CSD-870019, Computer Science Department, University of California Los Angeles, May
1987.

20

[4] J. Morenoand T. Lang, “Design of special-purpose arrays for matrix computations. Preliminary
results,” To be published in SPIE Real-Time Signal Processing X, 1987.

[5] S. Kung, S. Lo, and P. Lewis, “Optimal systolic design for the transitive closure and the shortest
path problems,” IEEE Trans. Computers, vol. C-36, pp. 603-614, May 1987.

[6] D. Moldovan, “On the design of algorithms for VLSI systolic arrays,” Proceedings of the IEEE,
vol. 71, pp. 113-120, Jan. 1983.

[7] H. Kung, “Let’s design algorithms for VLSI systems,” in CALTECH Conference on VLSI,
pp. 65-90, 1979.

[8] W. Gentleman and H. Kung, “Matrix triangularization by systolic arrays,” in SPIE Real-Time
Signal Processing IV, pp. 19-26, 1981.

21

