NETWORK-BASED HEURISTICS FOR CONSTRAINT
SATISFACTION PROBLEMS

Rina Dechter July 1987
Judea Pearl CSD-870037



To AﬂﬁmQ o Rekficial ﬁukmibto&. ,“ (jOu&oA\,\> \9%R.

TECHNICAL REPORT
R-%0
May 1987

NETWORK-BASED HEURISTICS FOR CONSTRAINT-SATISFACTION PROBLEMS *
Rina Dechter & Judea Pearl
Cognitive Systems Laboratory
Computer Science Department

University of Califomia, Los-Angeles, CA. 90024

ABSTRACT

Many Al tasks can be formulated as Constraint-Satisfaction problems (CSP), i.e., the assignment of values
1o variables subject to a set of constraints, While some CSPs are hard, those that are easy can often be
mapped into sparse networks of constraints which, in the extreme case, are trees. This paper identifies
classes of problems that lend themselves to easy solutions, and develops algorithms that solve these prob-
lems optimally, The paper then presents a method of generating heuristic advice to guide the order of
value assignments based on both the sparseness found in the constraint network and the simplicity of
tree-structured CSPs. The advice is generated by simplifying the pending subproblems into trees, count-
ing the number of consistent solutions in each simplified subproblem, and comparing these counts to de-
cide among the choices pending in the original problem.

* This work was supported in part by the National Science Foundation Grant, DCR 85-01234.



1. BACKGROUND AND MOTIVATION
1.1 Introduction

An important component of human problem-solving expertise is the ability to use
knowledge about solving easy problems to guide the solution of difficult ones [16]. Only
few works in AI have attempted to equip machines with similar capabilities [22,2].
Gaschnig [10], Guida et al. [11], and Pearl [19] suggested that knowledge about easy
problems could serve as a heuristic in the solution of difficult problems, i.e., that it should
be possible to manipulate the representation of a difficult problem until it is approximated
by an easy one, solve the easy problem, and then use the solution to guide the search pro-

cess in the original problem.

The implementation of this scheme requires three major steps: a) simplification,
b) solution, and c) advice generation. Additionally, to perform the simplification step,
we must have a simple, a-priori criterion for deciding when a problem lends itself to

easy solution.

This paper uses the domain of constraint-satisfaction tasks to examine the feasi-
bility of these three steps. It establishes criteria for recognizing classes of easy problems,
develops optimal procedures for solving them, demonstrates a scheme for generating
approximate easy models, and introduces an efficient method for extracting advice
thereof. Finally, the utility of using the advice is evaluated in a synthetic domain of ran-

domly generated problem instances.

Constraint-satisfaction problems (CSPs) involve the assignment of values to vari-
ables subject to a set of constraints. Constraint specification represents a convenient form
of expressing declarative knowledge, allowing the system designer to focus on local rela-

tionships among entities in the domain. Solving a CSP amounts to generating explicit



interpretations to knowledge given in implicit declarative form. Examples of CSPs are
map coloring, understanding line drawings, electronic circuit analysis, and truth mainte-
nance systems. These are normally solved by some version of backtrack search which, in
the worse case, may require exponential search time (for example, the map coloring

problem is a CSP known to be NP-complete.)

The following paragraphs summarize the basic terminology of the theory of CSP

as presented in [17].
1.2 Definitions and Nomenclature

A CSP involves a set of n variables Xy, ... ,X, having domains D, .. .,D,, where each
D; defines the set of values that variable X; may assume. An n-ary relation on these

variables is a subset of the Cartesian product:
p;Dlxszg---gx:Dn- (1)

A binary constraint R;; between two variables is a subset of the Cartesian product of
their domains, i.e.,

R"j o D,XD - 2)
When i =f, R;; stands for a unary constraint on X;.

A network of binary constraints is a set of variables Xy, ...,X, plus a set of
binary and unary constraints imposed on the variables. It represents an n-ary relation
defined by the set of all n-tuples satisfying all the constraints. The relation p represented
by a given- network of constraints is:

p={(x1,x2,....%) | x;eD;, and (x,-,xj)r-:R,-j‘forall ij}. €)]
A constraint is symmetric if for all x;eD; and x;eDj, if (xi.x;)€R;; then also

(xj,x;)eR ;.

Not every n-ary relation can be represented by a network of binary constraints with n



variables, and the issue of finding a network that best approximates a given relation is

addressed in [17].

Each network of binary constraints can be represented by a constraint graph
where the variables are represented by nodes and the constraints by arcs, and each con-
straint specifies the set of permitted pairs of values. Figure 1 displays a typical network
of constraints (a), where constraints are given using matrix notation (b), where the entries

"0" and "1" indicate forbidden and permitted pairs of values, respectively.

Rq2
X1 /X abc
a/0190
R2= p[ 101
R = X4 c\010
X3

(a) (b)

Figure 1 - A constraint Network (a) and matrix representation (b)

Although this paper deals mainly with binary constraints, the results are easily
generalized to non-binary cases. CSP would still be characterized by a graph in which

variables, participating in the same constraints, will be mutually adjacent.

Several operations on constraints can be defined. The useful ones are: union,
intersection, and composition. The union of two constraints between the same two vari-
ables is a new constraint that allows all pairs allowed by either one of them. The inter-
section of two constraints allows only pairs that are allowed by both. The composition

of two constraints, R, Ry3 ‘‘induces’ a constraint R 3 defined as follows: A pair



(x1,x3) is allowed by R 5 if there is at least one value x,€ D, such that (x;,x2)eR 2
and (x,,X3)€R,3. In matrix notation the induced constraint R,3 can be obtained by

matrix multiplication:

Riz=R;pRxn 4)

A partial order among the constraints can be defined as follows: we say that R;; is
tighter than R’;;, denoted R;; < R’;;, iff every pair allowed by R;; is also allowed by R”;;.
We can also say that R”j; is a relaxation of R;;. The tightest constraint between variables
X; and X is the empty constraint, denoted @;;, which does not allow any pair of values,
while the most relaxed is the universal constraint, denoted U;;, which permits all possi-
ble pairs. Note that universal constraints are not associated with arcs in the constraint
graph. A corresponding partial order can be defined among networks of constraints hav-
ing the same set of variables. We say that R ¢ R’ if the partial order is satisfied for all the
corresponding constraints in the networks. Two networks of constraints with the same

set of variables are equivalent if they represent the same n-ary relation.

Consider, for example, the network of figure 2, representing a problem of four
bi-valued variables. The constraints, (representing equalities and inequalities), are
attached to the arcs and are shown explicitly by the sets of allowed pairs. The direction of
the arcs only indicates the way by which constraints are specified. In this example, the
constraint between X, and X4, displayed in part (b), can be induced by R,3 and Ry4.
Therefore, adding this constraint to the network will result in an equivalent network.
Similarly, since the constraint R; can be induced from Ry and R3; it can be deleted

without chianging the relation represented by the network.

The process of inducing new constraints in a given network makes the constraints
tighter and tighter, while leaving the networks equivalent to each other. Montanari called

the tightest network of binary constraints which is equivalent to a given network R, The
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Figure 2 - A constraint network, constraints represented by set of pairs.
Minimal Network. The minimal network of constraints makes the ‘‘global’’ constraints

on the network as ‘‘local’’ as possible. In other words, it is maximally explicit.

Every binary CSP can be represented by a network of constraints. A tuple in the
relation represented by the network is called a solution. The problem is either to find all
solutions, one solution, or to verify that a certain tuple is a solution. The last problem is
fairly easy while the first two problems can be difficult and have attracted a substantial

amount of research.
1.3 Backtrack for CSP

The common algorithm for solving CSPs is the Backtrack search algorithm. In its prim-
itive version, backtrack traverses the variables in a predetermined order, provisionally
assigning consistent values to a subsequence (X1, . .., X;) of variables and attempting to

append to it a new instantiation of X; .1 such that the whole set is consistent. (An assign-



ment of values to a subset of variables is consistent if it satisfies all the constraints appli-
cable to this subset.) If no consistent assignment can be found for the next variable X; .,
a dead end situation occurs, the algorithm “"backtracks" to the most recent variable,
changes its assignment and continues from there. Algorithm Backtrack for finding one
solution is given below. It is defined by two recursive procedures, Forward and go-
back. The first extends a current partial assignment if possible, and the second handles
dead end situations. The procedures maintain lists of candidate values (C;) for each vari-

able X;.

Forward (x;,..., X;)
Begin
1. if i = n exit with the current assignment.
2. C; 41 <-- Compute-candidates(xy, . . . ,x;,Xi+1)
3.if C;,; is not empty then
4. x;,1 <--firstelementin C;4q, and
5. remove x;,; from C;,,, and
6. Forward(xy,...,x;,Xi+1)
7. Else
8. Go-back(xy,...,X;)
End.

go-back(xl, ese ,x,-)
Begin
1. if i =0, exit. No solution exists.
2. if C; is not empty then
3. x; <--firstin C;, and
4. remove x; from C;, and
5. Forward(xl, e ,x,-)
6. Else
7. Go-back(xy, ... ,X;-1)
End

Backtrack is initiated by calling "forward" with {=0, namely, the instantiated list
is empty. The procedure "compute-candidates(x, . . ., X;,X;4)" selects all values in the
domain of X;,; which are consistent with the previous assignments w.r.t. all applicable

constraints Rj(i+l)a JSI.



The primitive version of backtrack contains many maladies and several cures
have been offered and analyzed in the Al literature. The recent incréase of interest in this
topic can be attributed to the use of backtrack in PROLOG [15,3,1] and in truth-
maintenance systems [23,7, 14]. The terms "intelligent backtracking”, "selective back-
tracking", and "dependency-directed backtracking” describe various efforts of improving
backtrack’s performance. The spectrum of research on CSPs can be classified along the

following dimensions:

1. Improving representation prior to search: Montanari [17], considéring the task
of finding all solutions, introduced methods of achieving local consistency by
propagating the constraints and deleting pairs of incompatible values. Mack-
worth [13] extended Montanari’s work by introducing higher levels of con-
sistency for curing Backtrack’s maladies. Freuder [8] considered the problem of
finding one solution and provided a preprocessing procedure for selecting a good
ordering of variables prior to running the search. Dechter [4] introduced algo-
rithms for removing redundancies from the input constraints and exploiting the

sparseness of the resulting network.

2. Improving backtrack during search:. The various strategies here can be

classified as follows:

1. Look-ahead schemes: guiding the decision of what variable to instantiate

or what value to assign next among all the consistent choices available.

a. Variable Ordering: An attempt is made to instantiate that vari-
able which maximally constrains the rest of the search space. Usu-
ally the variable participating in the highest number of constraints

is selected [8, 20, 24].



b. Value Ordering: An attempt is made to assign a value that max-

imizes the number of options available for future assignments [12].

2. Look-back schemes: Guiding the decision of where and how to backtrack
in case of a dead end situation. Look-back schemes are centered around

two fundamental ideas:

a. Go-back to source of failure: An attempt is made to detect and
change decisions that caused the dead end while skipping
irrelevant decisions [9]. Most work on intelligent backtracking in

PROLOG is focused on such facilities [15, 3, 1].

b. Constraint-recording (learning): The reasons for the dead-end
are recorded so that the same conflicts will not arise again in the
continuation of the search. The notion of "Dependency-directed-
backtracking" developed for Truth-maintenance systems (TMSs),
incorporates both types of look-back schemes [23,7, 14]. Dechter
[6] studied the trade-offs involved, by controlling the amount of

information recorded.

Analysis of the average performance of Backtrack were reported by [18,21] and
[12], all estimating the size of the tree exposed by Backtrack while searching for all solu-
tions. Stone [25] analyzed the average size of the search tree generated when backtrack

searches for the first solution.

It seems that the parameter which received the least attention is the order by
which values are assigned to variables. Part of the reason can be that, under a fixed order
of variables, the search tree exposed by backtrack aiming for all solutions, is invariant to

the order of value selection [5]. Moreover, backtrack’s performance is uneffected by the



order of value selection (assuming no pruning), in problems having no solutions,

irrespective of the objective of the search.

In this paper we address the task of finding a single solution to CSPs. Although
this problem is easier then finding all solutions, it can still be very difficult (e.g. 3-
colorability) and it occurs frequently. Theorem proving, planning and even vision prob-
lems are examples of domains where finding one solution will normally suffice, and the
order by which values are selected may have a profound effect on the algorithm’s perfor-
mance. In the following subsection we outline a general approach to devising value

selection strategies for finding one solution to a CSP.
1.4 A General Appreach to Automatic Advice Generation

Backtrack builds partial solutions and extends them as long as they show promise
to be part of a whole solution. When a dead-end is recognized it backtracks to a previous
variable. Assuming that the order of variables is fixed, the selection of the next node
amounts to choosing a promising assignment of a value from a set of pending options,
Clearly, if the next value can be guessed correctly, and if a solution exists, the problem
will be solved in linear time with no backtracking. The advice we wish to generate
should order the candidates according to the confidence we have that they can be

extended further to a full solution.

Such confidence can be obtained by making simplifying assumptions about the
continuing portion of the search graph and estimating the likelihood that it will contain a
solution even when the simplifying assumptions are removed. It is reasonable to assume
that, if the simplifying assumptions are not too severe, the number of solutions found in
the simplified version of the problem would correlate positively with the number of solu-
tions present in the original version, and, hence, is indicative of the chance to retain at

least one surviving solution. We, therefore, propose to count the number of solutions in

10



the simplified model and use it as a measure of confidence that the options considered

will lead to an overall solution.

To incorporate this advice into the backtrack algorithm, an advice procedure
should estimate the number of possible solutions stemming from each candidate value in

C; and order their instantiations accordingly.

Section 2 provides theoretical grounds for the advice-giving scheme, establishes
criteria for recognizing classes of easy CSPs and develops algorithms for their solutions.
Section 3 describes the algorithm, introduces an efficient method of counting the number
of solutions, and report experimental evaluation of its performance. Conclusions are

given in section 4.
2. THE ANATOMY OF SIMPLE PROBLEMS
2.1 Introduction and background

In general, a problem is considered easy when its representation permits a solution in
polynomial time. In our context, since we are dealing mainly with backtrack algorithms,
we will consider a CSP easy if it can be solved by a backtrack-free procedure. A
backtrack-free search is one in which Backtrack terminates without backtracking, thus

producing a solution in time linear in the number of variables.

The feasibility of achieving backtrack-free search relies heavily on the topology
of the constraint graph. Freuder [15] has identified sufficient conditions for a CSP to
yield a backtrack-free solution and has shown, for example, that tree-like constraint
graphs can be made to satisfy these conditions with a small amount of preprocessing.
Our main purpose here is to further study classes of constraint graphs lending themselves
to backtrack-free solutions and to devise efficient algorithms for solving them. Once

these classes are identified and their solution complexities assessed, they can be used as

11



targets for a problem simplification scheme: constraints can be selectively deleted from
the original specification so as to transform the original problem into a backtrack-free
one. Furthermore, the number of consistent solutions in the simplified problem will be
used as a figure-of-merit to establish priority of value assignments in the backiracking
search of the original problem. We show that this figure of merit can be computed in time

comparable to that of finding a single solution for a class of easy problems.

Definition: ( [15] ) An ordered constraint graph is a constraint graph in which the
nodes are linearly ordered to reflect the sequence of variable assignments executed by
the Backtrack search algorithm, The width of a node is the number of arcs that lead
from that node to previous nodes, the width of an ordering is the maximum width of all

nodes, and the width of a graph is the minimum width of all orderings of that graph.

A c B B A T
i
A B c A B :
A c C '
B B A DIRECTION OF

INSTANTIATION

Figure 3 - Ordeting of a constraint graph

Figure 3 presents six possible orderings of a constraint graph. The width of node
C in the first ordering (from the left) is 2, while in the secqnd ordering it is 1. The width
of the first ordering is 2, while that of the second is 1. The width of the constraint graph
is, therefore, 1. Freuder provided an efficient algorithm for finding both the width of a

graph and the ordering corresponding to this width. He further showed that a constraint

12



graph is a tree iff it is of width 1.

Montanari [28] and Mackworth [22] have introduced two kinds of local con-
sistencies among constraints named arc-consistency and path-consistency. Their
definitions assume that the graph is directed, i.e., each symmetric constraint is

represented by two directed arcs.

Let R;;(x,y) stand for the assertion that (x,y) is permitted by the‘cxplicit con-
straint R;;.
Definition: ( [22] ) Directed arc (X;,X;) is arc consistent iff for any value x € D; there is
a value y € D; such that R;;(x,y).
Definition: ( [28]) A path of length m through nodes (ig,i1, - . - , i) is path consistent
if for any value xeD;, and yeD; such that R;; (x,y), there is a sequence of values
z1€D;, ..., Zp-1€D; _, such that

Riyi,(x,z1) and Ry i, (z1,22) and -~ - Ry i (Zm-1,¥). ()

R;,; may also be the universal relation, e.g., permitting all possible pairs.

A constraint graph is arc consistent if each of its directed arcs is arc consistent.
Similarly, a constraint graph is path consistent if each of its paths is path consistent.
"Achieving arc consistency” means deleting certain values from the domains of certain
variables such that the resultant graph is arc-consistent while still representing the same
overall set of solutions. To achieve path-consistency, certain pairs of values that were
initially allowed by the input constraints should be disallowed. Montanari and Mack-
worth have proposed polynomial-time algorithms for achieving arc-comsistency and
path-consistency. In [23] it is shown that arc-consistency can be achieved in 0(ek3)
while path consistency can be achieved in O (n3k>), where n is the number of variables,
k is the number of possible values, and e is the number of edges.

Theorem 1( [15] ):

13



a. If the constraint graph has a width 1 (i.e. it is a tree) and if it is arc-consistent then

it admits backtrack-free solutions.

b. If the width of the constraint graph is 2 and it is also path-consistent then it admits
backtrack-free solutions.

|

The above theorem suggests that tree-like CSPs (CSPs whose constraint graph are

trees) can be solved by first achieving arc consistency and then instantiating the variables

in any width-1 order. Since this backtrack-free instantiation takes O (ek) steps, and on

trees e=n—1, the entire problem can be solved in O (nk3) [23]. The test for simplicity is

also easily verified: it amounts to testing whether a given graph is a tree, and can be

accomplished by an O (n?) spanning tree algorithm. Thus, tree-like CSPs are easy since

they can be made backtrack-free after a preprocessing phase of low complexity.

The second part of the theorem tempts us to conclude that a width-2 constraint
graph should admit a backtrack-free solution after passing through a path-consistency
algorithm. In this case, however, the path-consistency algorithm may add arcs to the
graph and increase its width beyond 2. This happens when the algorithm disallows
value-pairs from a non adjacent variables (i.e. variables that were initially related by the
universal constraint) and it is often the case that passage through a path-consistency algo-
rithm renders the constraint graph complete. It may happen, therefore, that no advantage
could be taken of the fact that a CSP possesses a width-2 constraint graph if it is not
already path consistent. We are not even sure whether width-2 suffices to preclude

exponential complexity.

In the following section we give weaker definitions of arc and path consistency
which are also sufficient for guaranteeing backtrack-free solutions and have two advan-

tages over those defined by (28] and [22] :

14



1. They can be achieved more efficiently, and

2. They add fewer arcs to the constraint-graph, thus preserving the graph width in 2
larger class of problems.

Note that adding an arc means that when the consistency algorithm rules out a pair of

values, the implicit universal constraint must be replaced by an explicit constraint

between the variables considered.

2.2 Algorithms for achieving directional consistency
a. The case of Width-1 (Trees)

Securing full arc-consistency is more than is actually required for achieving backtrack-
free solutions. For example, if the constraint graph in figure 4 is ordered by

(X 1,X2,X3,X 4), nothing is gained by making the directed arc (X 3,X ;) consistent.

Figure 4 - Ordered constraint graph demonstrating the sufficiency of
making arc (X,X3) directional consistent.

To ensure backtrack-free assignment, we need only make sure that any value assigned to
variable X; will have at least one consistent value in D 3. This can be achieved by mak-

ing only the directed arc (X;,X3) consistent, regardless of whether (X 5,X 1) is consistent

15



or not. We, therefore, see that arc-consistency is required only w.r.t. a single direction,
the one in which Backtrack selects variables for instantiations. This motivates the fol-
lowing definitions.
Definition: Given an order 4 on the constraint graph R, we say that R is d-arc-consistent
if all edges directed along d are arc-consistent.
Theorem 2:
Let d be a width-1 order of a constraint tree T. If T is d-arc-consistent then the backtrack
search along d is backtrack-free.
proof:
Suppose that X1,X5, . . ., X, were already instantiated. The variable X; ., is connected
to at most one previous variable (from the width-1 property), say X;, which was assigned
the value x;. Since the directed arc (X;,Xj.,) is along the order d, its arc-consistency
implies the existence of a value xi such that the pair (x;,x1) is permitted by the con-
straint R;+1). Thus, the assignment of x;,) is consistent with all previous assignments.
Reasoning by induction over k proves the theorem.
g
An algorithm for achieving directional arc-consistency for any ordered constraint

graph is given next (The order d =(X1,X3,....X,) is assumed)

16



DAC.- d-arc-consistency

begin -
Fori=nto1by-1 do
For each arc (X;,X;); j<ido
REVISE(X;, X))
end
end
end

SRR D

The algorithm REVISE(X;,X;), given in [22] , deletes values from the domain D; until

the directed arc (X;,X;) is arc-consistent.

REVISE(X;.X;)

. begin
For each xe D; do
if there is no value ye D; such that Rj;(x,y) then
delete x from D;
end
end

SIS

To prove that the algorithm achieves d-arc-consistency we have to show that
upon termination, any arc (X;,X;) along d (j<i), is arc-consistent. The algorithm revises
each d-directed arc once. It remains to be shown that the consistency of an already pro-
cessed arc is not violated by the processing of coming arcs. Let arc (X;,X;) (j<i) be an
arc just processed by REVISE(X;,X;). to destroy the consistency of (X;,X;) some values
should be deleted from the domain of X; during the continuation of the algorithm. How-
ever, according to the order by which REVISE is performed from this point on, only
lower indexed variables may have their set of values updated. Therefore, once a directed

arc is made arc-consistent its consistency will not be violated.

For comparison we give the algorithm AC-3 (22], that achieves full arc-

consistency:

17



AC3
1. begin
2. Q<— {XinX)I1(X;,X;) e arcs, i)}
3. while Q is not empty do

select and delete arc (X;,X,,) from Q
5. REVISE(Xy,X )
6 if REVISE(X,,X,,) caused any change then
7 Q <— Qu{XnXy) ! (X;,Xy) € arcs ,izk,m]}
8. end

9. end
The complexity of AC-3,is O (ek*). The advantage of directional arc-consistency algo-
rithm is that it eliminates the need for looping when REVISE makes a change and hence
each arc is processed exactly once. It is also optimal, because even to verify directional
arc-consistency each arc should be inspected once, and that takes k% tests. Note that
when the constraint graph is a tree, the complexity of the directional arc-consistency
algorithm is O (nk?).
Theorem 3:
A tree-like CSP can be solved in O {nk?) steps and this is optimal.
proof:
Once we know that the constraint graph is a tree, finding an order that will render it of
width-1 takes O (n) steps. A width-1 constraint tree can be made d-arc-consistent in
O (nk?) steps, using the DAC algorithm. Finally, the backtrack-free solution on the
resultant tree is found in O (nk) steps. Summing up, finding a solution to tree-like CSP’s
takes, O (nk) + O(nk?) + O (n) = O (nk?). This complexity is also optimal since any
algorithm for solving a tree-like problem must examine each constraint at least once, and
each such examination may take, in the worst case, k% steps, especially when no solution
exists and the constraints permit very few pairs of values (see Appendix for a formal
proof of optimality).

O
Interestingly, if we apply DAC w.r.t. order d and then DAC w.r.t. the reverse

order we get a full arc-conmsistency for trees. We can, therefore, achieve full arc-

18



consistency on trees in O (nk?). Algorithm AC-3, on the other hand, has a worst case per-
formance on trees of O (nk3) as is shown next, Figure 5 illustrates a CSP problem that

has a chain-like constraint graph.

O\ T
NN\
NN P
NN\ T

O\ T
A A

Figure 5 - Tree-constraint network showing worst-case of AC-3
There are 7 variables, each with k values, constrained as shown in the figure. Each row
represent a variable, the points represent values and the connecting lines describe the
allowed pairs of values. Since AC-3 does not determine the order in which the arcs enter
REVISE, we will impose an ordering which will be particularly bad for it: in increasing
node index, that is, first (X,X;) then (X,,X3) etc. However, because AC-3 employs a
last-in-first-out policy, when a new arc is inserted to the queue it is given the highest
priority. Therefore, Arc (X{,X;) will be processed first, then arc (X, X3) and, since a
value was deleted from X,, arc (X,X2) will be inserted back to the queue and pro-
cessed. No change occurred and, therefore, the next arc to be processed is (X3,X4), this
will cause processing of (X,,X1) again which, in turn, causes the processing of (X,X?)
and so on. We see that each arc will be processed k-1 times resulting in a total complex-
ity of O (nk3). It has recently been found [27], that using special data structures, the gen-
eral arc-consistency on graphs can be improved to achieve performance of O(ek?). This

is done at the expense of additional book-keeping, maintaining, for each value, the
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number of values that match it in each neighboring variable. An arc may be processed
several times but the amount of processing is carefully controlled so that the total com-
plexity is reduced. The advantage of the directional arc-consistency algorithm is that it is

much simpler to implement and is more suitable for parallel implementation.
b. The case of Width-2

Order information can also facilitate backtrack-free search on width-2 problems by mak-

ing path-consistency algorithms directional.

Montanari had shown that if a network of constraints is consistent w.r.t. all paths
of length 2 (in the complete network) then it is path-consistent. We will show that direc-
tional path-consistency w.r.t. length-2 paths is sufficient for ensuring backtrack-free
search on a width-2 problems.

Definition: A constraint graph, R, is d-path-consistent w.rt. ordering d =
(X1,X3,...,X,), if for every pair of values (x,y), x€X; and yeX; such that R;;(x,y) and
for every k>i,j. there exists a value ze Xy , k >}, such that Ry (x,z) and R;(z,y).
Theorem 4:

Let 4 be a width-2 ordering of a constraint graph, R. If R is directional arc and path-
consistent w.r.t. d then it is backirack-free.

Proof:

To ensure that a width-2 ordered constraint graph is backtrack-free it is required that each
variable selected for instantiation will have some values consistent with all previously
chosen values. Suppose that X,X, . ..,X; were aiready instantiated. The width-2 pro-
perty implies that variable X, is connected to at most two previous variables. If it is
connected to X; and X;, i,j Sk then directional path consistency ensures that for any
assignment of values to X;,X; there exists a consistent assignment for Xp 1. If Xy is

connected to one previous variable, then directional arc-consistency ensures the existence

20



of a consistent assignment.
]
An algorithm for achieving directional path-consistency on ordered graphs must
manage not only the changes made to the constraints but also the changes made to the
graph, i.e., the addition of new arcs. To describe the algorithm we use the matrix
representation of constraints, with a diagonal matrix R;; representing the set of values
permitted for variable X;. The algorithm is described using the operations of intersection

and composition, writing R";; & R; for the intersection of R’;; and R;.

Given a network of constraints R = (V,E) and an ordering d = (X,X3,...,X},),
the next algorithm achieves path-consistency and arc-consistency relative to d.
DPC-d-path-consistency
begin
1.Y=R
2. fork=nto1lby-1do
(a) V i<k connected to k do
Y,',' <— Y;; & Y"k ‘ th ‘ Yki /* this is REVISE(l,k)
YV l,jSk 8.t. (X“Xk),(X',Xk)E Edo
Y <— & Y'Yy {ij
Ele E’u X1X;)
3. end
end
Step 2a is equivalent to REVISE(, k), and performs directional arc-consistency. Step 2b
starts after completing 2a for i < k. Step 2b updates the constraints between pairs of
variables transmitted by a third variable which ranks higher in d. If X;,X;, i,j<k are not
connected to X} then the constraint between the first two variables is not affected by X;.
If only one variable, X;, is connected to X, the effect of X; on the constraint (X;,X;) will
be computed by step 2a of the algorithm. The only time a variable X affects the con-
straint between a pair of earlier variables is when it is connected to both, and it is in this
case that a new arc may be added to the graph. The DPC algorithm will connect any

parent-nodes having a common successor. Note that the convenience of writing the algo-
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rithm using matrix notation does not imply that it should be implemented that way, actu-
ally, representing constraints as sets of compatible pairs of values is easier and often

requires less space.

The complexity of the directional-path-consistency algorithm is O (#°k>). The
number of times the inner loop, 2b, is executed for variable X; is at most O (a’egz(i ) (the
number of different pairs of parents of i), and each step is of order k3. The computation
of loop 2a is completely dominated by the computation of 2b, and can be ignored. There-
fore, the overall complexity is

édegz(i)ka =0 (n3i%) (6)
It is also bounded by O (DEG-ek;) when DEG is the maximum degree in the graph, thus,

for sparse networks, the complexity is linear in the number of arcs.

Applying directional-path-consistency to a width-2 graph may increase its width
and therefore, does not guarantee backtrack-free solutions. Consequently it is useful to

define the following subclass of width-2 problems.

Definition: A constraint graph is regular width-2 if there exists a width-2 ordering of

the graph which remains width-2 after applying d-path-consistency, DPC.

A ring constitutes an example of a regular-width-2 graph. Figure 6 shows an ord-
ering of a ring’s nodes and the graph resulting from applying the DPC algorithm to the
ring. Both graphs are of width-2.

Theorem §:

A regular width-2 CSP can be solved in O (n3k?)

Proof:

Regular width-2 problem can be solved by first applying the DPC algorithm and then
performing a backtrack-free search on the resulting graph. The first takes O (n3k3) steps
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Figure 6 - A regular width-2 graph
and the second O (ek) steps.
(i
The nice feature of regular width-2 CSPs is that they can be easily recognized and

therefore can also be used as targets for simplification.

A graph may have many width-2 orderings, only some of which remain width-2
after being processed by the DPC algorithm. Arnborg [1] describes a linear time algo-
rithm for recognizing regular width-2 graphs, and generating the corresponding ordering
(see also [3] ). The algorithm eliminates nodes from the graph in the following recursive
manner: If there is a node of degree smaller or equal to 2, eliminate any node having the
smallest degree, connect its neighbors in the residual graph (if they were not previously
connected), and continue. The procedure terminates when the graph is empty or when no
more nodes can be eliminated. In the former case, the problem is regular width-2 and the
elimination order provides the required ordering (in reverse). Otherwise, the graph is not

regular-width-2,

The relationship between the width of the graph and the tractability of the prob-

lem can be further generalized to higher widths and higher levels of consistencies, see
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[10]. One such extension is given in the following subsection.
2.3 Adaptive-consistency: a general strategy for achieving a backtrack-free solution.

The analysis of easy problems has two objectives. First, easy problems may serve
as sources of advice, and hence, they must be recognized and solved efficiently. Second,
the original problem itself may be categorized as "easy" or may undergo structural
transformations to admit an easy, backtrack-free solution. In such cases it is advisable to
conduct or complete the search using specialized strategies, tailored to exploit the unique
features that render the problem easy. The procedure described in this subsection,

adaptive-consistency, was devised to meet this second objective.

Both arc-consistency and path-consistency can be thought of as preprocessing
procedures that install uniform levels of local consistency throughout the constraint
graph. A natural generalization of these methods is K-consistency defined by Freuder
[14]. K-consistency implies the following condition: Choose any set of K -1 variables
along with values for each that satisfy all the constraints among them. Now choose any
K™ variable. There exists a value for the K variable such that the K values taken
together satisfy all constraints among the K variables. Freuder has shown that a K-
consistent CSP having a width-(K-1) ordering admits a backtrack-free solution in that
ordering. This suggests that one should be able to preprocess a CSP for a backtrack-free
solution by passing it through an algorithm establishing X-consistency. However, since
algorithms that achieve K-consistency change the width of the graph, it is difficult to
determine in advance the level of K desired, namely, the amount of pre-processing

required to facilitate backtrack-free solution.

An alternative generalization, specifically suited for directional consistency,
would be to adjust the level of consistency on a node by node basis. We call this method

adaptive-consistency, as it lets the evolving structure of the (directional) constraint-
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graph dictate the amount of pre-processing required for each node.

Adaptive-consistency process nodes in decreasing order. Given an ordering 4,
adaptive-consistency lets each variable impose consistency armong i variables which pre-
cede it and are connected to it at the time of processing. The size of this set represents the
current width of the node. We will say that variable X; imposes i-consistency on a set of
i —1 variables if any i —1-tuple of the later is consistent with at least one value of X;. The
procedure is illustrated in figure 7. Consider the constraint-graph of figure 7a, shown in
one of its minimal-width orderings. Adaptive-consistency in the order (E,D,C,A,B)
starts at node B and, having width-1, B imposes 2-consistency on D (i.e., establishing
arc-consistency on (D,B)). The domain of D is thus tightened. When A is processed next,
it imposes 3-consistency on (C,D) (A’s width is 2) which may amount to adding a con-
straint and an arc between C and D (as in figure 7b). When the algorithm reaches node C,
C’s width is 2 and, therefore, a 3-consistency needs to be imposed on (E,D) but, since the
arc between (E,D) already exists, the effect would be to merely tighten this constraint.

The resulting graph is shown in Figure 7b.

B B
A A
¢ C
D D
E ¢ E
(a) (b)

Figure 7: An ordered graph before and after being pre-processed
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Formally, adaptive-consistency can be described by the following procedure. For
each variable, X, PARENTS(X) is the set of all predecessors of X currently connected to
it which precede it. The parent-set of each variable is computed only when it needs to be

processed.

adaptive-consistency( X ,...,X,)

1. Begin

2. forr=ntolby-1do

3. compute PARENTS(X,)

4. perform consistency(X,, PARENTS(X,))

5. connect by arcs all elements in PARENTS(X, ) (if they are not yet connected)
6. End

The procedure consistency(V,SET) records a constraint among the variables in
SET, induced by V. In other words, those instantiations of variables in SET consistent
with at least one (consistent) value of V are retained, while the rest are ruled out. To
determine consistency, the procedure considers all constraints, old and new, which were
generated up to this point by the algorithm, and which are applicable to the variables in V
union SET. A constraint is considered applicable if it involves variable V and a subset
(possibly empty) of variables from SET. In figure 7, for instance, when
consistency(C,{D,E}) is executed the applicable constraints are the input constraint
(C,E) and the recorded constraint between C and D. These two constraints will be con-
sidered to determine the set of value-pairs of (D,E) consistent with at least one value of

C.

The induced graph, generated by adaptive-consistency, is identical to the one gen-
erated by executing directional path-consistency on the ordered graph. It can be found
prior to applying the procedure by connecting, recursively, any two parents sharing a

common successor, processing nodes in descending order. When adaptive-consistency
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terminates, backtrack can solve the problem without any dead-end, simply consulting the

input constraints and those recorded by the procedure.

In general, an ordered constraint graph will be backtrack-free if for every subset
of consistently instantiated variables (X, ...,X,) there exists a value for X,,; which is

consistent with the current instantiation of (X, ...,X,).
Theorem 6:
An ordered constraint-graph processed by adaptive-consistency is backtrack-free.

Proof: Suppose that the first r variables were already instantiated, and assume X, ,; hasa
parent-set of size f, Xy,...,X,. This parent set was identified and processed by
adaptive-consistency, namely, the procedure consistency(X, 4, {X1,...,X;}) recorded a
constraint on the r variables ensuring that any t-tuple which is not consistent with at least
one consistent value of X, is ruled out. Therefore, any consistent t-tuple, which passed
this restriction, is extendible to X, ;.
a
An important feature of the adaptive-consistency scheme is that, unlike the
undirectional K-consistency method, it permits the calculation of a bound on its com-
plexity prior to conducting the search. Let W(d) be the width associated with ordering d
and W* (d) the width of the graph induced by adaptive-consistency in that ordering. The
worst-case complexity of adaptive-consistency along d is exp(W* (d)+1) since the con-
sistency procedure records a constraint on W*(d) variables induced by their common
successor, a process comparable to solving a CSP with W* (d)+1 variables. W*(d) can

be found in O(n+¢) time {35] prior to the actual processing. Let W* = m}n {W* (d)}. If

we had a way of finding the ordering that minimizes W*(d), a tighter bound,
exp (W*+1), could be given for the overall time complexity of CSPs. However, since
W* is hard to compute (an NP-complete task [2] ), W*(d*) can be used as a good upper
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bound, where d* realizes the width of the constraint-graph. The space complexity is
exp(W*(d)) since at most n constraints are added by adaptive-consistency, each involves
W*(d) variables or less, and the specification of each such constraint requires Ok wr “”)

value combinations in the worst case. For more details see [10].
2.4 Other use of network-based features

Another approach which also exploits the structure of the constraint graph and
offers a general method of improving Backwrack’s performance, involves the notion of

nonseparable components [13].

definition: A connected graph G (V,E) is said to have a separation vertex v if there exist
vertices @ and b, such that all paths connecting a and b pass through v. A graph which
has a separation vertex is called separable, and one which has none is called nonsepar-

able. A subgraph with no separation vertices is called a nonseparable component.

An O(1E|) algorithm for finding all the nonseparable components and the separation
vertices is given in {13]. Itis also known that the nonseparable components are intercon-

nected in a tree-structured manner.

Let R be a graph and SR be the tree in which the nonseparable components
C1,C3,...,C, and the separating vertices V1,V3,...,V, are represented by nodes. A
width-1 ordering of SR dictates a partial order on R, d*, in which each separating vertex
precedes all the vertices in its children components of SR. The DAC algorithm can be
applied to the resulting tree, treating each component as a compound variable. Figure 8
shows a graph with 10 nodes identified by its components and its separating vertices

together with an ordering on R which is induced by a width-1 ordering on SR..

Let SR be the directed wee associated with a given graph R. Backtrack, given

both R and SR will work on each component starting from leaf components towards the
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Figure 8- A Graph and its decomposition into nonseparable components
root component. The algorithm is described next:

Backtrack(R,SR)

begin

assign TSR « SR. /*TSR stands for temporary SR.*/
1. If TSR = @ then generate-solutions(SR).

2. letCy,...,C, be the leaf components in TSR.

3. foreach C; a leaf, do

g. perform backtrack on this subgraph C;

6

e

associate with the component C; all solutions found, denoted by pc,
delete from the domain of Pc; values which do not appear in pc,
(Pc, is the parent separating vertex of C;)
7. delete C; from TSR.
8. end.
9. goto 1.
end.
The procedure "generate-solution(SR)" will generate all the solutions by traversing the
SR tree from the root to leaves and concatenating the partial solutions found for each
component that can be "joined” w.r.t. the separating vertices. i.e. for two connected com-
ponents that share the same separating vertex all partial solutions having the same value

for that vertex can be joined. The complexity of this algorithm is O (nk") when r is the
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size of the largest component. We therefore see that if R has a decomposition into small
clusters of non-separable components then backtrack can utilize this structure and
improve its performance. The use of this decomposition is also discussed in [15]
although the solution procedure is more involved (there, the terms “separation vertices”
and "non-separable components” are named "articulation nodes" and "biconnected com-

ponents” respectively).

The properties of tree-structured constraint-graphs can also be used to guide the
ordering of variables. A scheme which promises several possibilities is based on the fol-
lowing observation: If, in the course of a backtrack search, we remove from the
constraint-graph the nodes corresponding to instantiated variables and find that the
remaining subgraph is a tree, then the rest of the search can be completed in linear time
(e.g. by the DAC algorithm presented before). Consequently, the aim of ordering the
variables should be to instantiate as quickly as possible, a set of variables that cut all
cycles in the graph. Indeed, if we identify m variables which form such a cycle-cutset,
The entire CSP can be solved in at most O(k"‘nkz) steps; we simply solve the trees
resulting form each of the k™ possible instantiations of the variables in the cutset. Thus,
in graphs where m is small, enormous savings can be realized using simple heuristics for

selecting small cycle-cutsets. For a detailed evaluation of this approach see [11].

The two approaches, non-separable components and cycle-cutset, can be com-
bined as follows: Separate the graph into nonseparable components, and solve each com-
ponent using the cycle-cutset scheme. If the size of the largest component is r and the
largest cycle-cutset in any component is m, then the combined algorithm has the com-
plexity O(n -r-k™*2). It should be interesting to experimentally compare this approach

with adaptive-consistency, which also requires exponential space.
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2.5 Summary

1. This section analyses several topological features of constraint networks that
render them amenable to backtrack-free solution. These features can be used
either as sources of advice to universal problem-solving schemes such as back-
track or as pointers to invite specialized problem solving strategies when certain

conditions are matched.

2. The introduction of directionality into the notions of arc and path consistency
enabled us to extend the class of recognizable easy problems beyond trees, to

include regular width-2 problems.

3. Using directionality we were able to devise improved algorithms for solving
simplified problems and to demonstrate their optimality. In particular, it is shown
that tree-structured problems can be solved in O (nk?) steps, and regular width-2

problems in O (n3k3) steps.

4, We have introduced a new scheme called "adaptive-consistency" which renders
any CSP backtrack-free and requires time and space complexities of

O(exp (W* (d*))) which can be determined in advance.

5. We have shown how the tree processing algorithm can be applied to general CSPs
by separating the graph into its connected components and using the cycle-cutset
method within each component. CSPs can be then solved in O (nrk™2) when r is

the size of the largest component and m, (m<r), is the size of largest cycle-cutset.
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3. ADVICE-GENERATION
3.1 Description of scheme

Rewrming to our primary aim of studying easy problems, we now show how
advice can be generated using a tree approximation. Suppose that we want to solve an n
variables CSP using Backtrack with X 1-X2,...,X, as the order of instantiation. Let X ;
be the variable to instantiate next, with x;1,%2,...,x; the possible candidate values.
Ideally, to minimize backtracking we should first try the values which are more likely to
lead to a consistent solution but, since this likelihood is not known in advance, we may
estimate it by counting the number of consistent solutions that each candidate admits in
some approximate, easily solved problem, We generate a tree-like relaxation of the
remainder of the problem (ie. the problem induced by the previous instantiations) by
deleting some of the explicit constraints given, then count the number of solutions con-
sistent with each of the & possible assignments, and finally use these counts as a figure of

merit for scheduling the candidate values for assignment.

In {8] we discuss ways of generating minimal spanning tree (MST) approxima-
tions, and justify two alternative heuristic measures for the arcs® weights. The weights
used in the experiments described here is the number of compatible value pairs in the
constraint represented by the arc. The MST could be generated during search, in which
case for each value assignment a new tree, with arc-weight’s based on the restrictions
imposed by past instantiations, would be determined. This would require O(n2) opera-
tions (the cost of generating an MST), to each node in the search space. Instead we sim-
plify the implementation by generating a fixed MST for each level in the search prior to
search. After ordering the variables in decreasing order of their degrees, the MST for
each level is computed, based on the structure of the residual problem starting from that

level. The complexity of generating the various trees in this way is O(n3) and is
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independent of the size of the search space.

The Advised Backtrack algorithm (abbreviated ABT) uses an advising pro-
cedure to select a value for the next variable. The selection of value for the i variable
is done as follows: For each of the remaining variables all the values that are not con-
sistent with previous instantiations are eliminated (temporarily, for the current advice
generation), Using the tree precomputed for level i, the number of solutions consistent
with each candidate value is computed, considering only constraints present in the tree.
The advising procedure returns to backtrack the set of candidates with their associated

counts and backtrack then chooses the one with the highest count,

Consider, for example, the 8-queen problem where the task is to assign 8 queens
to the board such that queens will not attack one another (figure 9a). A trace of running a
regular-backtrack’s on this problem is given in figure 9b, where rows, (representing vari-
ables), are instantiated in the order (d,e,c.f,b,g,h,a), and queens are assigned from left to
right. (This order was chosen to accentuate backtrack’s maladies). The number of back-

tracking points in this trace is 11.

decftbgha
h 2 5 436
9 1
f 8 1
o 6
d 7 1
6
¢ 7 1
b 6
a j 8 36
1 2 345 67 8 1
16

(a) 3647

(b)

Figure 9: A trace of 8-queen problem by regular backtrack
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When ABT solves this problem it assigns the first three rows, d,e,c queens on
cells 8,1,5, respectively. In order to choose a value for the next row, f, the remaining
subproblem is consulted, involving the variables, f,g,h.a,b. Figure 10a represents this
subproblem showing the cells compatible with past assignments. The first task is to sim-
plify the problem by generating a spanning tree. The weights associated with each con-
straint are computed based on the number of compatible value-pairs between any two
rows (figure 10b) and the minimum spanning tree is accordingly given in figure 10c.
(This computation is performed prior to the search). On this simplified problem, (consid-
ering only the constraints among the pairs (f,g) (g,h),(f,b),(b,a)}, the number of solutions
associated with each candidate value of f, are computed, yielding 3 solutions compatible
with f=3, 10 solutions compatible with f =7 and 12 solutions are compatible with f =4.
These counts are returned to backtrack which chooses the assignment f =4 as the most

promising guess. Using ABT on this problem instance, no backtracking was required.

(»)

Figure 10: Advice-generation for the 8-queen

Note that the advising procedure and backtrack are completely separated, namely,
there is no flow of information from advice to backtrack beside the priority of values. For

instance, if in the course of counting the number of solutions, certain values could be
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pruned by counting algorithm, these values should not and were not pruned, by back-
track. The reason is that conclusions of the advising procedure reflect the restrictions
imposed by instantiating the first i -1 variables, once those are changed, the restricted
subproblem would change as well. Nevertheless, more complex interaction with back-
track could be used to advantage, for example, considering future instantiations sug-
gested by the tree and checking whether they satisfy the entire set of constraints.
Another possibility would be to maintain a table of currently consistent values for each
variable and, rather than recomputing the consistent values of future variables with each
invocation of advice, to update the table when a new assignment occurs. In the experi-

ments reported, however, such interactions were not considered.

We shall next show how counting the number of consistent solutions can be

embedded within the d-arc-consistency algorithm, DAC, on trees.

Any width-1 order, d, on a constraint tree determines a directed tree in which a
parent always precedes its children in d (arcs are directed from the parent to its children).
Let N (x; ) stand for the number of solutions in the subtree rooted at X; consistent with
the assignment of xj; to X;. Consider a node X; with all its successor nodes as in figure
11. Looking first on the relation between X; and a specific child node X, it is clear that
the value x; can participate in a solution with each compatible value of X, no matter
what values are assigned to variables in the subtree rooted at X.. Therefore the number of
partial solutions consistent with xj;, in the subtree rooted at X, is a sum of those contri-

buted by each compatible value of X,.. Namely:

N(x; | in the tree rooted at X,) = 3 N(x) )]
{xq€ D\ Rp(xp,xa)}

Since the partial solutions coming from different successor nodes can be combined in all
possible ways, the number of solutions in the subtree rooted at X; will be their product.

Therefore, N () satisfies the following recurrence:
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Figure 11 - Schematic computation of number of solutions in trees.

N@op= T N (xa) ®
* {ch,, is a child cfX,} {IdE ‘)c t ch(xjhxd)} <

From this recurrence it is clear that the computation of N (x;) may follow the exact same
steps as in DAC: simultaneously with testing that a given value X;; is consistent with each
of its children nodes, we simply transfer from each child of X j to x;; the sum total of the
counts computed for the child’s values that are consistent with x;;. The overall value of
N (x;) will be computed later on by multiplying together the summations obtained from
each of the children. The computation starts at the leaves, initialized to N =1, and
progresses towards the root. Each variable performs the countin g only after all its child’s

nodes computed their counts as in the counting procedure COUNT that follows.

The COUNT procedure contains the arc-consistency algorithm using REVISE
described earlier and performs the calculation according to the recurrence (8) above. The
algorithm terminates when the root is assigned counts for all its values. The COUNT pro-
cedure is defined for a parent node Vp and all its children., Vy,..,V,. Notice that
COUNT could be implemented without explicitly performing arc-consistency (line 3 can

be deleted). A value that gets the count of "0" can be eliminated.
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COUNT(V,,V},Va,. . .,V,)

. begin

For each (V,,V;) do
REVISE(V,,V})
For each v ;& D, (for each value of V) do
"l(vps)= z N ()

Vit Rpi(Vpe . Vi)

[SY

end
For each v,;e D, do

N(vps) = Id ni(Vps)

end.
0.end

1;V, a chi

i~ b RN S

Like REVISE, line 4 takes k2 steps, and therefore, for each parent node, V,, pro-
cessing takes kz-a'eg (V) steps. Thus, the counting for all the n variables in the subtree,
sums up to O (nk?), not increasing the complexity of the directional arc-consistency by

more then a constant.

In the remainder of this section we compare the performance of Advised Back-
track (ABT) with that of Regular Backtrack (RBT) analytically, via worst case analysis,

and experimentally, on randomly generated problems.
3.2 Worst case analysis

An upper bound is derived for the number of consistency checks performed by the two
algorithms as a function of the problem’s parameters and the number of backtracks per-
formed. A consistency check occurs each time the algorithm checks to verify whether a

pair of values is consistent w.r.t. the corresponding constraint.

Let B, and By be the number of backtracks, and C4 and Cg the number of con-
sistency checks performed by ABT and RBT, respectively. The problem’s parameters
are n, the number of variables, k, the number of values for each variable, | E|, the

number of arcs, and deg, the maximum degree over the variables in the graph.
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The number of backtracks performed by an algorithm is equal to the number of
explicated leaves in the search tree. We assume that
Number of nodes expanded = o-B ©)
approximately holds for some constant o.. (This truly holds only for uniform trees where

« is the branching factor.) Therefore we use the number of backtracks as a surrogate for

Y

the number of nodes expanded. Let c4 and cp be the maximum number of consistency

checks performed at each node by ABT and RBT, respectively. We have:

C SB'E (10

First consider RBT. The number of consistency checks performed at the i  node
in the order of instantiation is less then k-deg (i). That is, each of this variable’s values
should be checked against the previous assigned values for variables which are connected
to it. This yields:

11
CR Sk-degBR ( )

The ABT algorithm performs all its consistency checks within the advice genera-
tion phase. For the i *A variable , a tree of size n—i is generated. The consistency checks
performed on this tree occur in two phases. In the first phase, for each variable in the tree,
the values consistent with the previous assignments are determined. The number of con-
sistency checks for a variable v in the tree equals k-w(v), where w(v) is the number of
variables connected to v which were already instantiated. Therefore, for all variables in

the tree, we have

kY wlv)SkIEIL. (12)

Ve iree
(Were we to use the tables of current values suggested earlier, this number would be
reduced to O(nk)). The second phase counts the number of solutions. We have showed

that counting takes no more then (n—i)+? steps which is bounded by nk?. Hence,
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13
Ca S (k- |EY +nk?)B, (13

B
We now want to determine the ratio —54- for which it will be worthwhile to use
R
Advised Backtrack instead of Regular Backtrack and, as a first approximation, will treat
the upper-bounds (11,13) as tight estimates. In other words, even though
(14)

CasCp
is not implied by
2 {15)
(k- |E1 +n'k”)yBy <k-deg'Bp,
we take (15) as an indicator for the utility of ABT. From (15) we get
Bg _ |EI nk
—_— ey
B, ~ deg M deg ' (16)
and, using
|E|
deg <n, an
(16) holds when
By nk
—_ _
B, _n+deg . (18)

Thus, ABT is expected to result in a reduction of the number of consistency checks only

if it reduces the number of backtracks by a factor greater than (n+7':3%). Therefore, the

potential of the proposed method is greater in problems where the number of backtrack-

ings is exponential in the problem size.
3.3 The utility of advice-generation

Test cases were generated at random using four parameters: the number of vari-
ables n, the number of values for each variable &, the probability p; of having a con-
straint (an arc) between any pair of variables, and the probability p, that a constraint
allows a given pair of values. Two performance measures were recorded: the number of

backtrackings (B) and the number of consistency checks performed, C. The latter being
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an indicator of the overall running time of the algorithm. What we expect to see is that
the more difficult the problem, the larger the benefits resulting from using advised Back-

track.

Two classes of problems were tested. The first, contatning 10 variables and 5
values, were generated using p; = p,=0.5, and the second with 15 variables and 5 values,
generated using p1=0.5 and p»,=0.6. 10 problems from each class were generated and
solved by both ABT and RBT. For both algorithms, variables were instantiated in
decreasing order of their degrees. The order of value selection was determined by the
advice mechanism in ABT and at random in RBT. Therefore, while ABT solved each
problem instance just once, RBT was used to solve each problem several (five) times to

account for variations in value-selection order.

Figures 12 and 13 display performance comparisons for both classes of problems.
In figure 12, the horizontal axis gives the number of backtrackings performed by RBT,
the vertical axis gives the number of backtrackings performed by ABT, and each point
represent one problem instance. The darkened circles correspond to instances from the
first (easier) class while empty circles correspond to instances of the second (harder)
class. We observe an impressive saving in B when advice is used, especially for the
second (harder) class. Figure 13 compares the number of consistency checks. Here, we
observe that in many instances the number of consistency checks in ABT is larger than in
RBT, indicating that, in these cases, the extra effort spent in "advising", was not

worthwhile,

These results are consistent with the theoretical prediction of the preceding sub-
section. If we substitute the parameters of the first class of problems in (18) we get that
B, should be smaller than Bp by at least a factor of 20 (25 for the second class of prob-

lems) to yield an improvement in overall performance. Many of the problems, however,
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were not hard enough (in terms of the number of backirackings) to achieve these levels.
In appendix II we give an average analysis of RBT performance for this class of prob-
lems and, indeed, we observe that, on the average, these problems are linear in n, i.e.

easy to solve.

Figure 14 compares the two algorithms in only those problems that tumed out to
be difficult; it displays the number of consistency checks associated with instances
requiring at least 70 backtrackings in RBT. We see that the majority of these instances

were solved more efficiently by ABT than RBT.

As a result of these findings we concluded that the "advising” scheme was too
sophisticated for the tested problems, i.e. it produced very good advise at too high a cost.
In order to reduce this costs, the following scheme was devised: instead of generating
advice based on a full spanning tree of the remaining problem we trimmed the tree to
contain only a fixed number , /, of variables. The number of consistent solutions was
counted in the same way, based only on this partial tree. This approach enabled us to test
ABT using a wide range of advice strength, starting from a strong advice by considering
all nodes in the tree, through the weakest possible advice, considering just one node (pro-

viding no useful information).

Figures 15 and 16 summarize the performance of this variable advice scheme.
The x-axis displays the strength of the advice, i.e. the parameter /. The left vertical axis
gives the number of consistency checks and the right vertical axis gives the number of
backtracking. Figure 15 displays average performances w.r.t. problems in class 1 while
figure 16 gives the results on problems from class 2. Empty dots indicate the average
number of back.trackings, full dots indicate the average number of consistency checks.
We see that the amount of backtrackings reduces exponentially with /. This suggest that

even slight improvement in the implementation of this scheme (e.g. making the advice
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scheme dependent on different levels) would be worthwhile. The amount of consistency
checks has a minimum at a relatively weak level of advice. In the first class of problem
the advice based on just two nodes gave the best performance (on the average), namely a
simple lookahead of just one level was the best choice. In the second class of problems
with n=15 an advice based on 3 nodes was the best. In both cases the best performance of
ABT was indeed better then RBT’s performance. We conjecture therefore, that problems

in this class will need only weak advice to enhance their performance considerably.

In conclusion, advice should be invoked with an appropriate strength. One needs
therefore, a way of recognizing the difficulty of a problem instance prior to solving it.
Knuth [21] has suggested a simple sampling technique to estimate the size of the search
tree. These estimates can be used to tailor the advice strength to the expected size of the
tree. Smaller problems should be guided by cheap and weak advice (e.g. based on partial

trees) and harder problems by a stronger advice (based on full spanning trees).

Experiments related to the ones reported here were also performed by Haralick et.
al [20]. Their three lookahead schemes: "full-lookahead”, "partial-lookahead” and
"forward-checking" can also be viewed as heuristics which are generated from simplified
models. Since the task considered was finding all solutions, the heuristic information was
used to prune, rather than order values. (The order of values is irrelevant in this case).
The full-lookahead scheme considers the whole remaining problem (no elimination of
constraints) and uses a relaxation algorithm, arc-consistency, to prune values. Partial-
lookahead is limiting the relaxation procedure even further by doing only directional
arc-consistency. The procedure forward-checking is the closest to our scheme. It can be
viewed as a simplification of the remaining problem into a star-shaped tree, where the
current variable is the center of the star. In other words, only constraints between the
next variable and its successors were considered, and a directional arc-consistency was

performed on this relaxed problem. The experimental results of [20] (evaluated on
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queen problems and random problems having compiete graphs) reinforce our conclu-
sions, namely, the weakest heuristic procedure, forward-checking, yields the best overall

performance.
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4. CONCLUSIONS

The central theme of this paper is that easy problems often advertise their simpli-
city via salient features of their constraint networks. These features can be useful either
as sources of heuristics advice for guiding universal weak methods such as backtrack, or
as triggering mechanisms for invoking specialized methods, tailored to the identified

structure of the problem.

The easiest class of constraint-satisfaction problems are characterized by tree-
structured constraints, and these can be solved in O(nk? steps using the directional-arc-
consistency algorithm introduced in Section 2.2. The next recognizable class comprises
regular width-2 problems, solvable in O(rn3k3) steps using directional path consistency.
The hierarchy can be generalized to regular width-K problems, which can be recognized
in O(nX*2) and solved in O(kX) steps. An adaptive scheme is introduced in Section 2.3
where the level of X is adjusted on a node by node basis, according to conditions prevail-
ing during the search. Other features advertising problem simplicity are nonseparable-
component and cycle-cutset decompositions. A method is introduced for solving such

problems in O(ark™) steps where r is the size of the largest component and m is the size

of the largest cycle-cutset (over all components).

Section 3 demonstrates a scheme of approximating general CSPs by easy, tree-
structured models and introduces an efficient, O(nk?) method of extracting advice
thereoff. Experiments testing the utility of the scheme on random problems revealed that
advice generated by examing full spanning tree approximations is too precise, i.e., it
helped backtrack avoid all but few deadends but at a rather high cost. Coarsening the
advice by examining only partial trees led to improved overall performance. For the
class of problems tested, the optimal advice was generated by consulting only 2-3 nodes

ahead but, in harder problems, it appears feasible to adopt the level of advice to the com-

49



plexity of the problem at hand, thus reaching an optimum balance between the cost of

extracting advice and the benefits it provides.
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APPENDIX I: Lower bound to the complexity of tree-CSP

We will show that any algorithm that solves tree-CSP with n variables and k
values may require in the worst case (n-1)k? steps. We assume that the basic step of the
search algorithm consists of testing the consistency of a pair of values. The algorithm
terminates with the first solution found or by concluding that no solution exist. The proof
uses an oracle which, for any given algorithm, creates a problem instance on which that

algorithm must spend (n—1)k? steps.

Consider tree problems that have a star structure as depicted in the figure 17.

Figure 17 - A star constraint-tree

Xy is the center variable and X,,...,X,_; are all connected to it. Let v represent an
arbitrary value of the center variable. The idea is to have the oracle answer the tests so
that, for each v, it will not be possible to conclude the existence of a consistent solution
without checking v against all possible values of all the peripheral variables. Since there
are (n—1)k such values for each value of X, this will prove the claim.

Oracle specification:

At any point of time, the information available to the algorithm (and the oracle) consists
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of three sets of pairs: positively determined, negatively determined and undetermined. In
response to the query R (X;,x,Xo,v)? (testing if the pair (x,v) is consistent) the oracle

responds as follows:

a. If for X; and v there are still undetermined pairs (X;,y,Xg,v) , y #x, the answer is

"NQ", else
b. the response is "YES" unless

c. v in X ¢ has a positively determined matching value in each of the other n -2 vari-

ables (excluding X;). In which case the answer is again "NO",

This oracle creates a problem instance with no solution so that any algorithm will
have to check all pairs of values. Notice that case (b) is executed w.r.t. v and a specific
variable X; only when all the pairs in X; and v were determined. After this there is one
positive match to v in X; and all the other pairs are negatively determined. Therefore,
when case (c) is executed with regard to value v of X all the values which are connected
to v are determined and there are exactly one matching value to v in each of the other

variables. Part (c) ensures that there will not be a full solution consistent with v.

Suppose that the claim is not true, i.e., that the algorithm halts while there are still
undetermined pairs. Let v be a value of X which participates in one or more c&' these
undetermined pairs. Any variable X; whose values were all determined w.r.t v must have
a positive match with v ( due to case (b)). For all other variables we make the undeter-
mined pairs positive, thus creating a problem instance that has a solution which the algo-
rithm fails to detect. This yields a contradiction.

a

52



APPENDIX II: Average case analysis

Given a random CSP generated with the parameters p, and p,, the probability,
Q, that a pair of values is consistent is:
Q=1-p1+p1p2 (19
The average number of nodes expanded when backtrack looks for one solution, denoted
by E (B,,.) is smaller then the average number of nodes expanded if backtrack looks for
all solutions, denoted by E (B,y). i.e.
E (Bone)SE(Bar) 20)
We will therefore, find a bound to E (B,,.) by bounding E (B,;).
Given a fixed order of variables’ instantiation, the probability that the j* value in the
sequence is consistent with all the previous j—1 values is Q™. Therefore, the probabil-

ity that a node at depth / in the search tree will be expanded is: (see also [20] )

{-1
pax2)=0 ? @D

where X is a random variable indicating the length of a consistent set of values. Since the

number of possible nodes at level [ is k*, we get:

n 1-1 n -1 !
EBa)=3k0Q * =F*kQ * ) (22)
i=1 1=1
Let / ax be the level in the search tree that has the maximum average number of nodes.
Replacing each term in (22) by the highest, we get:

Uo=1) Lonmx

2 (23)
EBausn(k-Q )
! max can be found by differentiating the function:
-l 24
f=k'g * 9
yielding
Ink 1
oIk 1 25
L max InQ ) (25)

If 1,,.x < n we have:



1
{(—— + c (M (k,0)
E(Bun)=0 (n-(kc®2.Q 2 ° ) (26)

where
c(ffc.Q)=ﬂ1 @n

g

For fixed &£ and Q we see that, asymptotically, the average complexity is linear in n. For a

fixed Q and varying k we have:
_]1 (28)
In—
EBu)=0mk*@ =0k 2 &")=0 k")
No wonder, therefore, that most instances generated by our model were not too difficuit.

On the average these problems are linear in #n and Ok ’"*) in k.
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