SYNTHESIS OF CUSTOM

INTEGRATED CIRCUITS FROM
A HIGH-LEVEL BEHAVIO

RAL DESCRIPTION

Steven Hennick Kelem July 1987
CSD-870028

UNIVERSITY OF CALIFORNIA

Los Angeles

Synthesis of Custom Integrated Circuits

From a High-Level Behavioral Description

A dissertation submitted in partial satisfaction of the
requirement for the degree of Doctor of Philosophy

in Computer Science

by

Steven Hennick Kelem

1987

© Copyright by
Steven Hennick Kelem

1987

The dissertation of Steven Hennick Kelem is approved.

e,
s

- h—

Bill Mitchell

Bruce Rothschild

Vance Tyree

oy e 2

Bertram Bussell Cornrmtte o-Chair

%wéuﬂ,

" Milos Ercegovac, Cornrmttee Co-Chair

University of California, Los Angeles

1987

i

TABLE OF CONTENTS

1 Introduction........ 1
2 The ALICS Language 13
2.1 Relation of the Language to Hardware 13
2.2 Levelof Description. 13
2.3 Algorithmic Language Features 14
23.1 Dataand DataTypes 15
232 Arrays 18
2.3.2.1 Array Declarations 19

2.3.2.2 Array Denotations 20

2.3.23 ArrayOperators 20

2324 LEBOperator: 20

2325 RIBOperator: 21

2326 LWBOperator:. 21

2327 UPBOperator: 21

2328 Q@Operator:. 22

23.29 Array Element Access: 22

23210 REV Operator: 23

2.3.211 APPEND Operator: 23

2.3.2.12 PREPEND Operator: 24

23213 slicing: L 26

233 Sequences 27
234 Structures L 30
235 Unmions 30
2.3.6 Operators and Functions 31
23.7 FlowofControl 34
23.71 Conditionals 35

2372 Tteration. 36

2.3.7.3 Sequential Iteration 38

238 FlowofData 41
239 Communication 42
2.3.10 Semantics L L 42

2.4 Target Language Features 42
241 Operators 43
242 FlowofControl 43
243 FlowofData 44
2.44 Data Objects and Structuring 44

il

2,45 Communication 45
246 Storage 45

2.47 Technology-Dependent features 45

3 Synthesis. 49
3.1 Background 49
3.2 Source Language Analysis 49
3.2.1 Lexical Anmalysis 51

3.2.2 Parsing e 51

3.2.3 Determining Program Structure 54

3.3 Target Architecture L 57
3.3.1 Hierarchical Layout 57
3.32 Standard Cells, 58
3.3.3 Hierarchical Standard Cells 60
3.3.4 Power and Ground Distribution 62
3.3.5 Hierarchical Placement 66
336 n-aryTrees 67
3.3.7 Conditional Expressions 68
3.3.8. Converting Arrays to Sequences 70
3.3.9 Converting Sequences to Arrays 73
3.3.10 Sequential Iterations 75
3.3.11 Routing e 7
3.3.11.1 RiverRouting 79

3.3.11.2 Permutation Routing 80

3.3.11.3 One-to-Many Channel Routing 94

3.3.11.4 Routing for n-ary Trees 103

3.3.11.5 Routing for Conditional Expressions 107

3.4 Estimating Non-Behavioral Attributes 109
341 Area e 110
3.42 Power e 110

343 Delay e 111

3.5 Validityof the Approach, 111
3.6 Summary e e e e e e 114
4 Time Complexity of the Synthesis Method 116
41 Lexer. o i e e e e e e e e 117
42 Parser e e 117
4.3 Structure Tree Construction 117
4.4 Structure Tree Traversal, 118
45 Layout o o i i e e e 118
4.6 Wiring L 119
4.6.1 Terminology and Assumptions: 119

4.6.2 Determining Channel Height-Previous Work 120

463 Problems e 121

v

46.4 Creationofthe Wires. 123

4.6.5 SignalRouting 123
4.7 Summary e 126
Examples 128
5.1 Switching Expressions 128
5.2 Conditional Expressions 130
53 Equals 133
54 AnotherEquals 137
5.5 Two’s Complement Ripple-Carry Adder 142
5.6 Redundant-Digit Adder. 145
Conclusions 154
6.1 Contributions L 154
6.2 Limitations e 158

6.4 Conclusions e 159
References i i e 161
A Semantics for the Row Data Type Constructor and Primitive Op-

erators e e e e e e e e e e e e e e e 166

Al Introduction e 166

A2 Background e 167

A3 Representations L L 168

Ad Extensions i e e e e e 169

Ab Semantics e e e e 170

Syntax of ALICS 178

2.1
2.2
2.3
2.4
2.3
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13
3.14
3.15
3.16

LIST OF FIGURES

Syntax of an Array Declaration
Parallel Application of OR to Two Bit Arrays
Serial Application of OR to Two Bit Arrays
Syntax of a Function Definition
Syntax of a Operator Definition
Syntax of an ELIF Clause in an IF-Expression
General Form of a CASE Expression
General Form of a Parallel Expression
Expansion of Parallel Iteration,
Parallel Iteration for a Permutation
Expanded Parallel Iteration for a Permutation
Expanded Parallel Iteration for a Permutation
General Form of a Sequential Iteration
Specification of a State Machine L.
General Specification of a Moore Machine
General Specification of a Mealy Machine.
Specification of a Moore Machine Ripple-Carry Adder
Specification of a Mealy Machine Ripple-Carry Adder
Chisel SCMOS Technology File
Additional Chisel Parameters for Routable Layers Specification
Additional Chisel Parameters for Metal Migration Specification

....................

.................

............
............

Flow of Data and Control in the ALICS Synthesizer
ALICS Program Fragment
Tokens Representing the Program Fragment in Figure 3.2..
Parse Tree for the Program Fragment in Figure3.2
Grammar Rule for an enclosed clause
Structure Tree Node fora Formula
Structure Tree for the ALICS Program Fragment in Figure 3.2 . . .
Structure Representing a Simple Computation
Hierarchical Structure for a Simple Computation.
Standard Cells
Standard Cell Rows
Primitive Hierarchical Standard Cells (Two-Input XOR and Two-

Input NOR) o
Composite Hierarchical Standard Cells
Power and Ground Requirements
n-ary Tree L L
n-ary TreeLayouto

vi

3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51

3.52
3.53
3.54
3.55

4.1
4.2

Block Diagram for an IF-expression 69
Schematic for a CMOS IF-expression 69
Structure for an IF Expression Containing an ELIF Clause 70
Block Diagrams for Array to Sequence Operators 71
Schematic for Four Bits of a Shift Register 72
Timing Diagram for a 4-Bit Shift Register in Figure 3.21 73
Block Diagrams for Sequence to Array Operators 73
Schematic for Four Bits of a Shift Register 74
Timing Diagram for a 4-Bit Serial-In, Parallel Qut Shift Register in

Figure 3.24 75
General Form of a Sequential Iteration 75
Layout for a Sequential Iteration 76
A River Route with Two Bends per Wire 78
A Minimum-Height River Route 78
River Routing forann-ary Tree 79
Wide Datapath River Routing for an n-ary Tree 80
A Route-Sinister and a Route-Dexter 83
Simple-Minded Routing Strategy 84
Simple-Minded Routing Strategy Blocks Routes 3and 2 84
Simplified Routing Step 1 for x 5 in Residue 1-of-7 87
Simplified Routing Step 2 for x 5 in Residue 1-of-7 88
Simplified Routing Step 3 for x 5 in Residue 1-of-7 89
Compressed Route-Sinister and Route-Dexter 90
Routing Step 1 for x 5 in Residue 1-of-7 91
RoutingStep2 e 92
Routing Step3 L 93
Channel After Signals d, b, and a Have Been Routed 99
Channel Routing After Step 7 99
Completed Multi-Port Signal Route 101
A Channel Route for a One-to-Many Function 103
A Function Definition 103
Floor Planforann-ary Tree 104
Floor Plan for the Function in Figure 3.46 with Power and Ground 105
Another Function Definition 105
Input Wire Permutationfor %, 105
Floor Plan for the Function from Figure 3.46 with Power, Ground,

and Permuted Inputs, 106
General Form of an IF Expression 108
Floor Plan for a General IF Expression, 108
Floor Plan for a General CASE Expression 109
Manually Laid Out Ripple-Carry Adder 113
River Routing Expressed as Linesona Grid 120
River Routing with Differing-Width Wires 122

vii

3.1
5.2
5.3
3.4
5.5
5.6
5.7

5.8
5.9

5.10

5.11
5.12
5.13
5.14
5.15
5.16
3.17
5.18
3.19
5.20

A Tunction Definition Containing Switching Expressions
Layout for the ['unction Definition in Figure 5.1
Specification of a Conditional Expression
Layout for the Function in Figure 5.3
Definition of a Generic-Length Equality Operator
An Implementable Function,.
A Specification for an Circuit for Computing Equals on Two Arrays

of BITs o o .
Eight-Bit Equals Using 2-Input Nands
Definition of a Generic-Length Equality Operator Using 2, 3, and

4-Input Nands
Definition of a Generic-Length Equality Operator Using 2, 3, and

4-Input Nands (cont.)
Eight-Bit Equals Using 2, 3, and 4-Input Nands
Two’s Complement Ripple-Carry Adder
Functional Description of a Ripple-Carry Adder
A Functionally-Defined Ripple-Carry Adder
Layout For an 8-Bit Two's Complement Ripple-Carry Adder . . .

Block Diagram for a Redundant-Digit Adder
Logic Equations for the Redundant Digit Adder
Block Diagram for a Functional Three-Bit Redundant-Digit Adder .
Functional Description of a Redundant-Digit Adder
Layout for an Eight-Bit Redundant Digit Adder

viii

3.1
3.2
3.3
3.4
3.3
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1

5.1
5.2
53
5.4
5.5
5.6
3.7

LIST OF TABLES

Minimum Widths for Power and Ground Wires for Figure 3.14 . .
Lists of Ports

Listsof Ports L
Initial Heights of L1 and L2 Layers in Each Column
Heights of L1 and L2 Layers in Each Column After Step 4
Heights of L1 and L2 Layers in Each Column After Step 5
Lists of Ports after Step 5
Heights of L1 and L2 Layers in Each Column After Step 6
Heights of L1 and L2 Layers in Each Column After Step 7
Heights of L1 and L2 Layers in Each Column After Step 8
Top and Bottom Port Alignment Tests
Areas and Delays for Manually Laid-Out Ripple-Carry Adders . . .
Comparison of Areas and Delays for Automatically Laid-Out and

Manually Laid-Out Ripple-Carry Adders

..............................

.....

.....

...............

Complexity of Synthesis Algorithms Used

Areas and Delays for BIT-Array Equals Operators
Areas and Delays for BIT-Array Equals Operators
Areas and Delays for Ripple-Carry Adders
Encodings for Signed Digits
Truth Table for Redundant Digit Adder
Complete Truth Table for Redundant Digit Adder
Areas and Delays for Redundant Digit Adders

..........

..............

ix

VITA

November 12, 1952 Born, North Hollywood, California

1976 B.S. Ma.thematics-Computer Science, University
of California, Los Angeles

1978 M.S. Computer Science, University of California,
Los Angeles

PUBLICATIONS

Steven H. Kelem, 4 Compiler for Silicon: An Automatic Method for the
Translation of High-Level Algorithms into Integrated Circuit Masks, Techni-
cal Report ATR-85(8497)-1, The Aerospace Corporation (September 1982).

Robert Cuykendall, Anton Domic, William H. Joyner, Steve C. Johnson,
Steve Kelem, Dennis McBride, Jack Mostow, John E. Savage, and Gabriele
Saucier, Design Synthesis and Measurement, VLSI N Software Engineering
Workshop Report (Qctober 1982).

Robert Cuykendall, Anton Domic, William H. Joyner, Steve C. Johnson.
Steve Kelem, Dennis McBride, Jack Mostow, John E. Savage, and Gabriele
Saucier, Design Synthesis in VLSI and Software Engineering, The Journal
of Systems and Software, 4(1):7-12 (April 1984), This is a reprint of the
workshop report.

John J. Helly, Jr., William V. Bates, Mel Cutler, and Steve Kelem, 4 Rep-
resentational Basis for the Development of a Distributed Ezpert System for
Space Shuttle Control, Technical Report, NASA, Houston, Texas (May 1984).

Steven H. Kelem, A Method for the Automatic Translation of Algorithms
From a High-Level Language into Self-Timed Integrated Circuit Masks, Tech-
nical Report TR-0084A (5920-03)-1, The Aerospace Corporation (March
1985).

Steven H. Kelem, A Method for the Automatic Translation of Algorithms
from a High-Level Language into Self-Timed Integrated Circuits, IEEE Cir-
cutts and Devices Magazine, 1(2):17-19,44 (March 1985).

Steven H. Kelem, A Method for Compact Two-Layer Routing of Permuta-
tions in Less Than n® Time, Technical Report TR-0086A (2920-03)-1, The
Aerospace Corporation (February 1987).

X1

ABSTRACT OF THE DISSERTATION

Synthesis of Custom Integrated Circuits

From a High-Level Behavioral Description
by

Steven Hennick Kelem

Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1987
Professor Bertram Bussell, Co-Chair

Professor Milo$ Ercegovac, Co-Chair

This dissertation describes an innovative method for synthesizing error-free
prototype integrated circuit masks from a behavioral-level algorithmic specifica-
tion. The designer expresses algorithms and data types without having to specify
a layout for their implementation or having to rely on time-consuming methods
to obtain an implementation. The layout of the designed circuit is not explic-
itly specified by the designer, and it is determined from the algorithmic descrip-

tion. The circuits are produced quickly, but not necessarily as compactly as can

xil

be done with exhaustive, time-consuming, automatic or manual techniques. The
circuits produced are properly formed (i.e. obey the fabrication design rules) so
non-behavioral attributes such as area, speed, and power can be estimated directly
from these designs. When the data types in a design are changed, different opera-
tors corresponding to the new types are utilized and the non-behavioral attributes
of the resulting circuit change. Comparisons of these attributes are the basis for
choosing one design over others.

This method of designing digital circuits is intended to meet the needs of a spe-
cialized set of problems, namely the deéign of special-purpose computing circuits.
Such circuits typically are non-standard designs which require many iterations in
the design process to obtain a cost-effective design. Therefore a rapid-prototyping
design method, mapping algorithms given at a high level into circuit structures is
highly desirable. This work is motivated by these needs and attempts to provide

such a design tool.

xiii

CHAPTER 1

Introduction

This dissertation proposes a novel solution to a fundamental problem in the
design of special-purpose integrated circuits. Because such circuits are often non-
standard, as are the subcircuits from which they are constructed, many iterations
through the design process are needed to produce cost-effective designs. The hy-
pothesis of this dissertation 1s that the higher the level of description, the easier it
is for a designer to specify an algorithm that is to be implemented as an integrated
circuit that meets an even higher-level requirement specification. A behavioral.
functional level of description allows the designer to choose between variations on
details of a given algorithm. Using existing design methods to determine whether
a particular implementation of a functional description meets the design require-
ments is a difficult and lengthy task.

Many IC design systems translate logic or transistor schematics (or a textual
equivalent) into IC masks. Specifying these schematics is a time-consuming and
tedious process (even with the aid of a computer) and the schematic is not related
closely to the algorithm that the schematic implements. If a data type or some
other aspect of the algorithm is changed, it is often difficult to apply those changes

to the schematic without changing much (or all) of the schematic. When a designer

implements an algorithm that will be on an integrated circuit, it is important for
the designer to experiment with variations on the desired algorithm. Designers
experiment to find a form of an algorithm that will fit in the desired area of a chip,
meet the power budget for the chip, and operate at or above the desired speed.
Other possible variations on an algorithm might result in a circuit that is more
testable, fault tolerant, reliable, or temperature insensitive.

This thesis discusses a method for specifying an algorithm that will be imple-
mented on a custom integrated circuit. The synthesis process described here has
time complexity of less than n?, and so s;calaa well for large problems. The circuits
produced by this method are not as area-efficient as manually-designed circuits.
Once several variations on an algorithm are produced, a designer can select the
few that best meet the specifications and then apply more exhaustive methods to
make those variations more area-efficient.

To set the stage for the thesis, it is useful to examine the integrated circuit
design process. An integrated circuit can be described at several different levels
of abstraction. In top-down design, one starts with a very abstract description
of the desired system and then carefully refines the description until the desired
complexity is reached. The desired complexity for a complete description contains
the target primitives or predefined descriptions that contain the target primitives.
Some of the levels of abstraction for the systematic definition (refinement) of inte-

grated circuits were given in [Cuyk82,Cuyk84] and are repeated here.

Requirements: The specification of the overall performance, area, and I/O for

the circuit.

Abstract Algorithms: The behavior of the circuit without a binding for the

actual operations and data types.

Concrete Algorithms: The behavior of the circuit expressed in a machine-inde-

pendent programming language. The operators and data types are specified.
Programming: The machine language for the circuit if it is programmable.

Register Transfer: The behavior described in terms of states during which data

1s transferred between registers in the circuit.

Logic: The circuit description in terms of logic components and their intercon-

nections.

Discrete Circuit: Logic functions in terms of transistors, resistors, capacitors,

etc.

Topography: A circuit in which physical dimensions are absent, but in which

relative positioning is expressed.

Masks: Transistors are defined by the intersections of polygonal areas on masks

that are used in the fabrication process for integrated circuits.

This list stops short of the steps required for integrated circuit fabrication.
Typically a design is specified at one of these levels, and one or more designs at a

lower level is synthesized from that specification. If some of these designs meet the

requirements specification, then they can be further refined into lower-level designs.
It is difficult to know whether a component of a design at some level of abstraction
will meet the requirements specification unless it is designed down to some level
where the design attributes can be measured, estimated, or simulated. Then they
can be compared to the requirements specification. This means that integrated
circuits have to be designed down to the mask level before a designer can determine
whether the design meets the requirements. Unfortunately each transition between
layers of abstraction results in many different design alternatives. If there were only
two design possibilities at each of the seven levels, then 128 designs would have to
be created and analyzed for adherence to the requirements specification. In reality,
there are many more than two design possibilities at each level, and so the number

of designs that need to be analyzed is enormous.

Mask Topography

Several techniques have been developed to reduce the number of design options
at different levels of abstraction. At the lowest level of abstraction—the integrated
circuit mask level, several efforts of note have resulted in techniques with fewer
design alternatives for the production of IC masks. The first is the lambda-based
simplified design rules [Mead80,5equ82]. These rules have the following character-

istics.

o The number of fabrication layers available to the designer to design with is

reduced.

The interactions between fabrication layers is simplified.

The designer’s idealized masks are isolated from physical masks by the in-

troduction of a scale factor named lambda (A).

All dimensions are integral multiples of lambda.

Designs are isolated from peculiarities of individual IC manufacturers’ design

rules and fabrication lines.

Another method that has reduced the number of mask design alternatives is
the gate array. These are large arrays of gates which have been fabricated except
for the metal layers which serve to interconnect the inputs, outputs, and power.
The gates are those which the manufacturer believes will be easily incorporated
into a design. Typically the gates are as simple as transistors or multiple-input
nand or nor gates. In any case, thesc gates are prearranged in two-dimensional
arrays with space between the rows and columns for the designer-specified routing.
The set of masks for the pre-fabricated layers of the gates are the same for all of
the wafers for a gate array, and only the masks for the metal layers are customized
for a particular design. This reduces the overall cost of producing the circuits since

the cost of the pre-fabricated layers can be amortized over many designs.

Topography

A method that reduces the number of design alternatives at the topographical

level is a graphical method called sticks [Will77]. This method represents tran-

sistors and wires as thin lines instead of rectangles. Topological information is

represented in the relative positions of the elements in a design.

Logic and Topography

At the logic and topographical levels, some particular layouts are used to sim-
plify design, which has the effect of reducing the number of design alternatives.
These are Programmable Logic Arrays (PLA), Standard Cells, and Dataepaths.
PLA’s are compact structures for implementing sums of product terms. With
the addition of clocked registers, finite-state machines can be built from PLA’s.

Standard Cells that are circuits laid out with a common height but may have
differing widths. The cells are placed horizontally adjacent to one another. Cell
rows are separated by wire routing which interconnects the functions’ inputs and
outputs.

A datapath is an organization at the system layout level. This results from
the separation of data and control operators in a processor. These two sections
are created separately and then the appropriate wires run between them. Usually
all the data operators operate on the same sized data and so it is convenient to
arrange all these operators in a row, or path, with buses running above and below

the row.

Silicon Compilers

Finally, at the higher levels of abstraction, there are several translation meth-
ods called silicon compilers. These compilers translate between different levels of
abstraction. The only thing common to all of the silicon compilers is that they
take a textual representation of a design at some level of abstraction and translate
it to a design at a lower level of abstraction.

Johannsen’s Bristle Blocks compiler [Joha78] enables a designer to specify an
algorithm for defining the layout of cells and placing and routing these cells. His
compiler synthesizes only cells that can be abutted, thus avoiding the routing
problem. Cells are stretched vertically or horizontally so that the input and output
ports on adjacent cells will line up when placed next to each other.

Similarly, Johnson’s language Xi [John83] is an extension of the programminé
language C [Kern78] that allows a designer to specify algorithms for interconnecting
cells. Assignment statements correspond to bindings to signals or registers. The
output of zz is a list of cells and nets that are interconnected. This information is
fed to a place and route program which searches exhaustively for a placement of
the cells and a routing of the wires that interconnect them.

Ayres’ language RELAY (REcursive Logic ArraYs) [Ayre79,Ayre83] is a lan-
guage for describing behavior in terms of synchronous logic. RELAY, written in
the general-purpose language ICL (Integrated Circuit Language) [Ayre79,Ayre83].
gives the designer full access to the ICL language. The logical formulae in the

synchronous logic are translated into an optimized disjunctive form. From this

form, ICL is used to simulate the logic and to translate the logic into clocked PLA
structures. RELAY programs are an unusual marriage between logic and layout.
The designer needs to simultaneously specify a circuit’s behavior and its geometric
implementation.

The input to Hamachi’s language PEG (PLA Eguation Generator) [Hama85]
1s a specification of a finite state machine that is isomorphic to a Moore machine
[Moor55]. States are explicitly described. Sequential state transitions are implicit
in the ordering of the states in the specification. Non-sequential state transitions
are explicitly stated. The finite state machines descriptions produced contain only
the control and state portions of the machine.

Siskind, et al [Sisk81] produced a language and translator called MacPitts.
This language is at the register transfer level of abstraction, allowing specification
of parallel communicating processes in a Lisp-like syntax. The target architecture
is a combination of finite state machines, one for each of the parallel processes in
the source code, and a data path unit. The datatypes consist only of the integer
and Boolean types. A functional simulator detects simultaneous write attempts to
the same register.

Patel, Schlag, and Ercegovac [Pate85,5ch184,5chl86] designed and implemented
v FP, an extension of Backus’ functional programming language, FP [Back78]. This
allows the multi-level specification, evaluation, and synthesis of hardware from

an applicative language. Layouts and routing at the schematic (block diagram)

1 MacPitts is not an acronym. The name is an “in-joke” of some sort.

level or at the mask level can be obtained. The applicative language is especially
amenable to formal transformation methods. Transformations are applied to pro-
grams to reduce the overall area of a circuit and to improve routing.

Pangrle and Gajski have programs called SLICER (a state synthesizer) and
SPLICER (resource allocator) [Pang86]. SLICER transforms an algorithm speci-
fied at the register transfer or concrete algorithm level into a dependency graph.
It then performs a critical path analysis of the graph to find the longest path
through the graph. When the critical path has been found, all computations in
the algorithm are assigned to (possibly multiple) states. SPLICER then performs
a (backtracking) algorithm to allocate resources (computational elements) to the
different states. The backtracking aspect of this program might try all possible
mappings between the computational elements and the dependency graph nodes.
This program synthesizes a circuit with the least amount of resources while exe-
cuting as fast as the critical path will allow.

The system described here takes a description written in a functional language
and produces integrated mask specifications for prototyping. A fixed layout proce-
dure is executed for each construct in the language, but these procedures include
some heuristics that quickly find a viable layout. Fast routing techniques and the
hierarchical nature of the language and specifications allow circuits to be synthe-

sized quickly so that their speed, power, and area can be quickly determined.

Design Correctness

If the synthesis process is manual (or automatic but not trustworthy), then it
is necessary to ensure the process has been done correctly. This involves one of

the following techniques.

verification A formal proof that certain properties hold in the both the source

and target levels of abstraction.

validation Exhaustive simulation of both levels of abstraction and comparison of

the results.

simulation Modeling both levels of abstraction at some subset of the possible

input cases and comparison of the results.

The next chapter describes a language (ALICS—Algorithmic Language for In-
tegrated Circuit Specification) for the specification of the behavior of algorithms to
be implemented in integrated circuitry. The language is based on Algol 68 {Wijn75]
and FP [BackT78], with some features borrowed from vFP [Mesh85,Schi86]. The
data-typing features and procedural organization were taken from Algol 68. Al-
gol's general assignment operators (and main memory) were removed as in FP—
assignment through the “von Neumann bottleneck” is not an easily specified op-
eration. Ht-Jwever, well-structured assignments are reintroduced inside sequential
domains. Sequential constructs from vFP were unified into a single construct.
This construct packages sequential behavior within a domain so that it appears to

be functional from outside the domain.

10

The third chapter discusses the synthesis method. A method is given for ef-
ficiently analyzing an ALICS source program. This consists of lexical analysis,
parsing, and the transformation of these expressions into a structural represen-
tation of the program. This structure is mapped onto a tree of interconnected
cells that implement the functions in the program. A method is demonstrated
for placing cells hierarchically and for routing of functions and conditional expres-
sions. Efficient methods are defined for routing of permutations and one-to-many
mappings. These mappings are needed for the routing of signals from a function’s
formal parameters to the points where the parameters are referenced. Finally,
methods for measuring non-behavioral attributes of the designs and the validity of
this prototyping method are discussed.

Chapter four shows the time complexity of the synthesis algorithm to be n?. To
be useful, a prototyping system needs to work quickly. The time complexity gives
a good indication of how long it will take for a chip design to be synthesized from
an algorithmic description. The complexity gives a more important indication
of how much longer a larger design will take to be synthesized. A synthesizer
might operate quickly for small designs, but if its complexity is exponential and
the circuits are large, it will probably be infeasible to compare design alternatives.
Less complex synthesis algorithms facilitate faster synthesis of large designs, and
so more design alternatives can considered by a designer.

The fifth chapter illustrates the synthesis method through some examples. Fea-

tures of ALICS are demonstrated a few at a time. First some simple switching

11

expressions are expressed in the context of an ALICS program. This shows how
to declare operators and how to bind pre-defined circuitry with ALICS operators.
Next the switching expressions are included inside conditional expressions. The
third example illustrates the definition of an operator that will work on any length
operand through the use of compile-time recursion. The next example shows the
definition of an operand that makes the best use of available 2, 3, and 4-input nand
gates in order to efficiently implement a reduction tree. Finally, the definition of
new data types is illustrated with the definition of two types of adders. Simulation
of the resulting circuitry allows trade-offs to be made between the two designs.
The concluding chapter summarizes the main ideas of the method, its imple-

mentation, and its key features. Several open questions and research topics are

also identified.

12

CHAPTER 2

The ALICS Language

2.1 Relation of the Language to Hardware

This chapter discusses the relationship of the algorithmic language ALICS (Al-
gorithmic Language for Integrated Circuit Specification) to the specification of
hardware that is synthesized. ALICS is a programming language in which an

abstraction of the desired digital behavior is specified.

The placement and routing of components on the target integrated circuit are
not specified in the algorithmic language. Instead, this information is automatically
derived from the specified behavior of each algorithm.

Each construct in ALICS has semantics that is either interpreted at compile-
time or translated into circuitry which, when activated, implements the semantics
of the constructs. The choice of which type of semantics depends not only on the

individual constructs but on the actual values in the constructs.

2.2 Level of Description

ALICS is a means for expressing the digital behavior of the circuitry that will
be built. ALICS supports hierarchical behavioral description. The lowest level

of description is that of switching expressions and a form of state-machines. The

13

highest level of description consists of the programmer-defined functions, similar to
procedures defined in the programming language Algol 68. The levels of description
result from applying the concept of modularity, which simplifies the specification
of complicated programs. Modules are specified as function declarations. These
facilitate the encapsulation of behavioral descriptions into units that are used as
primitive functions in other functions, making these new functions easier for the
designer to understand and use. This modularity, mapped into modules at the
hardware level, is useful for designers and some analysis tools, but is not essential
for the fabrication of the circuits.

The following sections discuss properties of the algorithmic language and of
the target circuit architecture. A hardware designer might want to know about
both of these if effective designs are to be produced. Knowledge of the algorithmic
language is essential because the designs will be expressed in this language. A
designer’s knowledge of the target language is not as important as is proficiency
with the algorithmic language, but, nonetheless, it is useful for the designer to

know which types of circuitry are produced.

2.3 Algorithmic Language Features

The algorithmic language is the vehicle for specifying an algorithm that will
be implemented by an integrated circuit. Before a designer can design an inte-
grated circuit effectively, the capabilities of ALICS and the translator needs to be

understood. The designer needs to know

14

which kinds of algorithms can be expressed in the language,

how to re-use previously-designed algorithms in the language,

how good the resulting designs are, and

the kinds of errors the system will catch.

The following features of a language determine which kinds of algorithms can
be expressed in the language: data objects, data structuring constructs, operators,
flow of control, flow of data, communication, and storage.

The major features of ALICS are presented next.

2.3.1 Data and Data Types

An important part of a hardware specification language is the provision for
specifying the datatypes of the entities in a design. In ISP [Barb79], the primitive
datatype is the bit. The structuring constructs provide a way of forming an array
of bits (called words) and then forming an array of words. Unfortunately for
designers, it is not possible to treat these structures as data types, and so an ISP
parser cannot detect type mismatches, except for the ones in which the number
of bits differ. Thus, assigning a 32-bit stack pointer to an 8-bit character register
would be detected as an error. However, assigning a 32-bit stack pointer to the
32-bit program counter would not be flagged as an error, even though it is unlikely
to be a meaningful operation. Loading the program counter with a 32-bit program

address addressed by the stack pointer ¢s a sensible operation.

15

These three examples can be checked by declaring the stack pointer and pro-
gram counter to be of the appropriate types in Algol 68. Algol 68 [Wijn75] has four
basic data types (or modes, as they are called in the Algol 68 Revised Report)—
integer, real, boolean, and character. The Algol 68 Revised Report makes
the assumption that Algol 68 programs will be run on machines that support
these types. When custom hardware is designed, it is often advantageous to use
various numeric representations rather than the standard two’s complement inte-
ger. These will affect non-behavioral characteristics such as speed, area, power,
testability, reliability, and fault tolerance. Therefore, it is assumed in ALICS that
the supporting hardware does not provide these datatypes since custom hardware
is designed for which there are no standard representations or sets of operators.
Instead, a facility for the definition of new datatypes is provided.

Algol 68’s provision for describing any datatype and the operators that can
operate on that datatype has been incorporated into ALICS. Once a datatype has
been defined and operators designed to manipulate the datatype, the operators
can be placed in a library for use in other designs. So while the integer, character,
and real datatypes are not built into ALICS, there is the ability to define them
when needed, or recall them from a library if they have already been designed.

The types of all functions’ actual and formal parameters are checked for con-
sistency to ensure that the proper types of values are passed to all functions. For
digital circuits, it is important not only that outputs are connected only to inputs,

but that the output types match the input types. The first consistency check is

16

specified in the syntax of ALICS and checled by its parser. Type-checking is the
second semantic consistency check performed by the ALICS parser. For example,
type-checking ensures that integer valucs are not passed to floating-point operators
without proper conversion.

The Algol 68 Revised Report avoids discussing the representations for values.
At a low-level of algorithm design, representation is of great importance. As men-
tioned before, a change in representation can result in operations that run faster,
require less power or area, are more testable, reliable, or fault tolerant than a given
implementation in two’s complement (not all at once, of course). ALICS has two
aspects to representing values, or constants. The first is how values are denoted.
The second is how a value’s representation is denoted.

Values are denoted as numbers in ASCII. The default radix is decimal, but can
be changed by prepending the number with desired radix {expressed in decimal)
and the character r. For example, the value 42 can be represented as 2r101010,
4r222, 8r52, 13r33, or 1612a.

A value’s representation is denoted as a list of the values that make up the
representation. The target representation is in the domain of digital integrated
circuits, where all values are groups of zeros and ones. This is represented in
ALICS by the BIT datatype and the structuring mechanisms that enable more
complex datatypes to be built (section 2.3.1). For example, the value 41 can be
represented in radix arithmetic as MODULUS(1,2,1,6) with respect to the moduli

(2,3,5,7), where the datatype called MODULUS can be defined to be a structure

17

of four arrays of bits. Each of the residues is represented in binary. The first array
is defined with one bit; the second, two bits; and the third and fourth, four bits
each. Another possibility for a representation of the value 41 in radix arithmetic
is MOD_OON(1,2,1,6) with respect to the moduli (2,3,5,7), where the datatype
called MOD_OON is defined to be a structure of four arrays of bits. Each of the
residues can be represented in one-of-n code. The first array is defined with two

bits; the second, three bits; the third, five bits; and the fourth, seven bits.

Defining New Datatypes

One of the most important features of this language is the support of extensi-
ble data-types. The designer can define new data types from existing data types
through the use of one of four data type constructors—arrays (collections of ho-
mogeneous types, indexed by a numerical position) (also called rows), sequences
(arrays whose elements are accessed monotonically sequentially), structures (col-
lections of non-homogeneous types), unions (alternative types), and functions (ex-
ecutable code that take values from a set of types and returns a value of a given

type).

2.3.2 Arrays

Elements in arrays are numbered both to provide access to the elements and
to provide an ordering for the elements. The numbering provides access to the

elements in the array in a logical fashion, whether numbering of the elements is

18

to be from the right or the left. What is considered a logical fashion depends
on what type of data the array is modeling and how the denotations for values
are to look like. Array indices increasing from left-to-right are more logical when
the arrays contain time or western reading-order dependent data. In arrays con-
taining weighted numeric representations such as radix number systems, the same
order is useful for fractional numbers, while the opposite ordering is more logical
for integers. A specification method and associated semantics for both of these

specification styles are presented in Appendix A.

2.3.2.1 Array Declarations

The syntax for an array declaration is shown in Figure 2.1. Where variable is

[boundpair-list) MODE variable

Figure 2.1: Syntax of an Array Declaration

the variable name; MODE is the mode (data type) from which this array is built;
and boundpair-list is a comma-separated list of boundpairs, one for each dimension
in the array. A boundpair is a pair of bounds for an array consisting of a left and
a right bound. There is no restriction on which bound should be the greater of
the two. If one of the bounds is omitted from a declaration, it is assumed to be 1.
For instance, in the declaration [4,-3:5,2:-4]BITS x the first bound is from 1 to 4,
the second from —3 to +5, and the third bound is from +2 to —4. Thus x is a

three-dimensional array of 252 BITs (4 x 9 x 7).

19

2.3.2.2 Array Denotations

Arrays of values are denoted as a parenthesized list of values that are separated
by commas, e.g., (a, SKIP, a OR b, TRUE) is a one-dimensional four-element ar-
ray of bits. The second element in this array is non-existent. Multi-dimensional

arrays of bits can be described by specifying a list of bound pairs. An example of

a two-dimensional value is

((b, 4+3, 8), (3, 5, =7), (=4, 17, =2), (0, 0, a+1)).

2.3.2.3 Array Operators

The operators for array data types are now discussed. These consist of oper-
ators which extract attributes of an array (such as its bounds), operators for ex-
tracting elements from an array, and operators for constructing larger arrays from
two arrays. The construction operators maintain the precision of the operands, as

specified by the array bounds.

2.3.2.4 LEB Operator:

The left-bound operator is both a monadic and a dyadic operator. The dyadic
version takes two operands. The first operand is the boundpair number (from the
left, beginning at one), and the second operand is an array. The monadic version

takes one operand, the array, and returns all the left bounds for the array. For the

declaration [4,-3:5,2:-4]BITS a, the following relationships hold:

LEBa = (1,-3,2)

20

1LEBa =1
2LEB a
JLEBa = 2.

li
I
o

2.3.2.5 RIB Operator:

The RIB operator is similar to the LEB operator except that it returns the

right-bound. For the declaration [4,-3:5,2:-4]BITS a, the following relationships

hold:

RIBa = (4,5 —4)

1RIBa = 4
2RIBa = 5
JRIBa = -4,

2.3.2.6 LWB Operator:

The LWB operator returns the lower bound of an array. It is similar to the
LEB operator except that it returns the smaller of the left and right bounds. For

the declaration [4,-3:5,2:-4]BITS a, the following relationships hold:

LWBa = (1,-3,-4)

1LtWBa = 1
2Ll WBa = -3
3LlWBa = —4.

2.3.2.7 UPB Operator:

The UPB operator returns the upper bound of an array. It is similar to the

LWB operator except that it returns the larger of the left and right bounds. For

the declaration [4,-3:5,2:-4]BITS a, the following relationships hold:

UPBa = (4,5,2)
1UPBa = 4
2UPBa = 5
3UPBa = 2.

2.3.2.8 @ Operator:

The @ operator is called the revised lower-bound operator, and is a dyadic
operator that creates a new copy of an array, changing only the lower-bound (not
necessarily the left-bound). The corresponding upper-bound is also modified so
that that there are still the same number of elements in the array. The first
operand is the array whose bounds will be copied and modified, and the second
operand is a one-dimensional array with as many entries as the first array has‘
dimensions. If one of the revised lower-bounds is SKIP, the corresponding bounds
is not modified. For the declaration [4,—3:5,2:-4]BITS a, a @(0,SKIP,0) has the

bounds [0:3,-3:5,6:0].

2.3.2.9 Array Element Access:

Elements of arrays can be extracted by subscripting the array. Subscripts are
enclosed in square brackets following an array and select single items from the
array. If the integer array variable ¢ has the value

((2, 4, 8), (3.9, 27), (5, 25, 125), (7. 49, 343)),

then c[1,1] = 2, and c[4,1}=T.

2.3.2.10 REV Operator:

The REV operator reverses the left and right bounds of an array. REV is both
a dyadic and monadic operator. The dyadic version takes two operands. The first
operand is the boundpair number, and the second is the array. The monadic version
of the operator reverses all the boundpairs. For the declaration [4,-3:5,2:-4|BITS

a, the following relationships hold.

REV a has bounds [4:1,5:-3,-4:2]
1 REV a has bounds [4:1,-3:5,2: —4]
2 REV a has bounds [1:4,5:-3,2:—4]
3 REV a has bounds [1:4,-3:5,—4:2]

2.3.2.11 APPEND Operator:

This operator provides an intuitive method for concatenating two arrays that
represent numbers with weighted digits. The APPEND operator creates a new
array by copying the second operand to the right of a copy of the first operand.
The resulting array has a lower bound identical to the lower bound of the first
operand. The new right bound is computed from the length of the new array
extending in the direction of the boundpair of the first argument. If the direction
of the second argument’s boundpair is different from that of the first argument,
the elemen£s of the second array argument are copied in reverse order.

For example, two arrays can be appended as follows.

(1,0,2,3) APPEND (0,0,4)@89 = (1,0,2,3,0,0,4)

23

The array (0.0,4) (with bounds [89:91]) is appended to the right of array
(1,0,2,3) (which has bounds [1:3]). The resulting array has the value (1,0,2,3,0,0, 4),
which has bounds [1:7].

Two arrays representing numbers in a weighted digit number system can be
appended as follows.

REV(1,0,2,3)@0 APPEND REV(0,0,4)@89 = REV(1,0,2,3,0,0,4)0-3

If the array represents a radix five number!, the append operation represents
appending 004 x 5% to the right of 10235. 004 x 5% is effectively scaled so that the
high-order digit (0) will be in the 5! %)osition and then added to 10235 to yield
1023.004s.

The arrays in this example are (1,0,2,3) which has bounds [3 : 0] and (0,0,4)
which has bounds {91 : 89]. The value returned from APPEND, is (1,0,2,3,0,0,4)

which has bounds [3 : —-3].

2.3.2.12 PREPEND Operator:

This operator provides an intuitive method for concatenating two arrays that
might represent radix numbers. This is similar to the APPEND operator, except
that the bounds of the second operand are preserved after the first operand is
prepended to the left of the second operand.

The PREPEND operator creates a new array by copying the first argument to

the left of a copy of the second argument. The resulting array has a right bound

1The particular radix is irrelevant to the APPEND operator.

24

identical to the right bound of the second argument. The new left bound is com-
puted from the length of the new array extending in the direction of the boundpair
of the second argument. If the direction of the first argument’s boundpair is dif-
ferent from that of the second argument, the elements of the first argument array
are copied in reverse order.

For example, two arrays, not necessarily representing radix numbers, can be
prepended as follows:

(1,0,1,1)@0 PREPEND (0,0,1)@89 = (1,0,1,1,0,0,1)Q0.

The array (1,0,1,1), (which has bo;mds [0 : 3]), is prepended to the left of
array (0,0,1), which has bounds [89 : 91]. The resulting array has the value
(1,0,1,1,0,0,1), which has bounds [96 : 102].

Two arrays representing radix numbers can be prepended as follows:

REV(1,0,1,1)@0 PREPEND REV(0,0,1)@89 = REV(1,0,1,1,0,0,1}@-3.

If the array represents a radix five number?, this represents prepending 1023
(13110) to the left of 001 x 5%2. 10235 is effectively scaled by 5% and then added
to 001 x 5% to yield 10230015 x 5%°.

The arrays in this example are (1,0,2,3), which has bounds {3 : 0] and (1,3,1),
which has bounds [92 : 89]. The value returned from PREPEND is (1,0,2,3,1,3,1),

which has bounds {95 : 89].

?The particular radix is irretevant to the PREPEND operator.

Q]
[

2.3.2.13 slicing:

Slicing is the process of extracting a contiguous portion of an array. (This is
known as a subrange in some languages.) Slicing is indicated by a list of ranges
within square brackets. A range consists of two optional integer expressions sep-
arated by a colon. If one (or both) of these expressions is missing, it is replaced
by the corresponding left or right bound. The new left and right bounds will be
in the same order that is specified in the slice. The bounds cannot be reversed if
one of the bounds is missing in the slice range.

When a slice is taken from an array, the boundpair is not adjusted automatically
so that it has a revised lower bound of 1 if a revised lower bound is not specified3.

A slice accesses a contiguous portion of an array. The middle three elements of
the array (2,3,5,7,11) can be selected with the operation (2,3,5,7,11)[2:4], yielding
the value (3,5,7). This value is an array which has bounds [2 : 4], so that the
operation (2,3,5,7,11)[2:4][3] will yield the value 5. The operation (2,3,5,7,11)4:2]
yields the value (3,5,7), which has the bounds [4 : 2]. If a bound in a slice is
missing, the corresponding left or right (or both) bound is (are) used in its place.

Thus, (2,3,5,7,11)[4:] yields the value (7,11}, which has bounds (4 : 5].

3The lower bound of a slice is automatically changed to 1 in Algol 68, but seems arbitrary.
This has the effect of extracting the slice and performing a numeric shift on the resulting value.
This malformation can be accomplished in ALICS with the revised lower-bound operator @,
defined here, if desired. In Algol 68, maintaining the array indices in a slice is awkward for the
programmer because the indices need to be specified twice—once in the slice and again in the
revised lower-bound.

2.3.3 Sequences

Sequences provide a way to access elements of an array sequentially. The
addition of time sequences to the functional language FP was discussed in [Mesh85).

Eight operators convert between arrays and sequences. The first four are nec-
essary to access the two types of array organization. The remaining four operators
can be derived from the first four, but are provided as a convenience for the de-
signer. Four operators convert between arrays and sequences. Their names reflect
the four ways to choose the first element of a sequence—leftmost, rightmost, lowest
index, or highest index. The four sequence-to-array operators reflect the four ways
to map the first element of a sequence into an array. This element can be either
the lowest numbered or highest numbered element of the array, and the element

can be in the leftmost or the rightmost position of the array.

PISOLE This monadic operator converts an array to a sequence, beginning with

the lowest numbered element. (Parallel in, serial out, leftmost element first.)

PISORI This monadic operator converts an array to a sequence, beginning with

the rightmost element. {Parallel in, serial out, rightmost element first.)

SIPOLOLE This monadic operator converts a sequence to an array. The first
element of the sequence is the first in the sequence and becomes the leftmost
array element. The left bound of the array is 1. (Serial in, parallel out.

lowest index first becomes leftmost element.)

SIPOHILE This monadic operator converts a sequence to an array. The elements

of the sequence are assumed to arrive in reverse order, that is, last element
(highest index) first. This last element of the sequence becomes the leftmost
array element. The right bound of the array is 1. (Serial in, parallel out,

highest index first becomes leftmost element.)

PISOLO This monadic operator converts an array to a sequence, beginning with
the lowest numbered element. (Parallel in, serial out, lowest numbered ele-

ment first.) This operator is equivalent to

IF LEBa <RIB a
THEN PISOLE a
ELSE PISORI REV a
FI

PISOHI This monadic operator converts an array to a sequence, beginning with
the highest numbered element. (Parallel in, serial out, highest numbered
element first.) This operator is equivalent to

IF LEBa < RIB a
THEN PISORI REV a

ELSE PISOLE a
Fl

SIPOLORI This monadic operator converts a sequence to an array. The first ele-
ment of the sequence is the first in the sequence and becomes the rightmost
array element. The right bound of the array is 1. (Serial in, parallel out,

lowest index first becomes rightmost element.) This operator is equivalent to

REV SIPOHILE a.

SIPOHIR! This monadic operator converts a sequence to an array. The elements

of the sequence are assumed to arrive in reverse order, that is, last element

28

(highest index) first. This last element of the sequence becomes the rightmost
array element. The right bound of the array is 1. (Serial in, parallel out,
highest index first becomes rightmost element.) This operator is equivalent to

REV SIPOLOLE a.

Figure 2.2 shows the bit-by-bit application of the OR function on two arrays.

The first line checks (at compile time) that the bounds of a2 and b are the same.

IF LWB a = LWB b AND UPB a = UPB b

THEN PAR i FROM LWB 2 TO UPB a
DO a[i] OR b[i] OD

Fl

Figure 2.2: Parallel Application of OR to Two Bit Arrays

If there are n elements in each array, n OR operators will be instantiated for
execution in parallel.

The parallel to serial and serial to parallel operators just introduced can be
used to reduce the number of operator instantiations at the expense of longer

execution time as is shown in Figure 2.3. The PISOLE operator converts a and

SIPOLOLE ((PISOLE a) OR (PISOLE b))

Figure 2.3: Serial Appiication of OR to Two Bit Arrays

b from parallel arrays to sequences. Each pair of elements in these sequences is
input to the OR operator, and a new sequence is produced. This sequence is input

to the SIPOLOLE operator which converts it to an array of the same size of a and

b.

29

2.3.4 Structures

The second data structuring technique names and collects non-homogeneous
types so that they can be manipulated as a single entity. Access to an individual
field in a structure is through the name of the field. For example, a floating point
number could be represented by the structure definition

STRUCT (XS exponent; FRAC mantissa),

where XS is the type for the exponent and FRAC is the type for the mantissa (pre-
sumably, XS and FRAC are defined elsewhere). A structured value is degoted by
the name of the structure type followed by a parenthesized list of comma separated
fields. For example, the data type (mode) definition,

MODE FLOAT = STRUCT (XS exponent; FRAC mantissa)
treats the value FLOAT (exl,frac) as a structure of type FLOAT. The OF operator
takes a field name and a structure and yields the value of that field. So

exponent OF FLOAT (exl,frac)

yields the value of exl.

2.3.5 Unions

A union specifies that a formal parameter’s value may be one of several data
types. The declaration
FUNCTION foo = (UNION (FLOAT, INTEGER)parm)
states that the actual parameter to the function foo may be either FLOAT or

INTEGER.

30

The type of a union is determined through the application of a conformity

clause.

CASE parm IN
(FLOAT float_parm): fl(float_parm),
(INTEGER integer_parm): f2(integer_parm)
ESAC

This construction examines the data type of parm. If it is a FLOAT, then
parm’s value is associated with float_parm and the function f1 is invoked with this
value. If it is an INTEGER, then parm’s value is associated with integer_parm and

the function 2 is invoked with this value.

2.3.6 Operators and Functions

There are three types of functions in ALICS—prefix monadic operators which
take one argument, dyadic (properly called infix dyadic) operators which take two
arguments, and functions which take zero or more arguments. The difference be-
tween operators and functions is entirely syntactic. Operators are used in infix
formulae in which the relative priorities and associativities of the operators deter-
mine the structure of the computation. Operators are syntactically less powerful
than functions, since operators can have only one or two operands. Operators are
provided as a convenience to designers who prefer to read and write infix formulae.
The parentheses in a functional expression determine the computational order.
Thus an infix formula such as

a NAND NOT b NOR ¢,

1s equivalent to the function description

31

nor2(nand2(a,not(b)),.c)

Functions and operators provide several capabilities in ALICS—most notably,
modularity and replication of values. Modularity is important because it allows
a reduction of the amount of code that needs to be written and the resulting
programs are more easily understood. Commonly used code can be written once
and then invoked as a function (module) in many places.

The second use for a function or operator is to replicate values. Functional
languages do not allow simultaneous access to components of a composed value.
For example, functional languages do n;)t allow the value (a,c) to be created from
a composed value such as {a,b,c) unless the composed value is passed to a function.
Inside the function the value is referenced by its formal parameter name (number
in FP) multiple times and the desired value computed and returned as the value
of this function.

The syntax of a function is shown in Figure 2.4. In this figure name is the

FUNCTION name (parameter-list) function-type/mode:
BEGIN function-body
END

Figure 2.4: Syntax of a Function Definition

name of the function; parameter-list is the list of formal parameter declarations;
function-type/mode is the mode, or type, of the value of the function; and function-
body is the body of the function whose value is yielded as the value of the function.
A variation on this syntax allows BEGIN to be written as (and END as).

The syntax of an operator is shown in Figure 2.5. In this figure name is the

OP name = (parameter-list) operator-type /mode:
BEGIN operator-body

END

associativity name-list;

PRIO name-list = priority;

Figure 2.5: Syntax of a Operator Definition
name of the function—which is formed from uppercase alphabetic or a symbol
formed from the characters +=-%/<>%&'~?=:|. parameter-list is the list of one or
two formal parameter declarations; operator-type /mode is the mode, or type, of the
value of the operator; and operator-body is the body of the operator whose value
is yielded as the value of the operator. A variation on this syntax allows BEGIN
to be written as (and END as). The associativity of operators is declared as
LEFTASSOC, RIGHTASSOC, or NONASSOC. The PRIO declaration is used
for assignment of a priority (also known as precedence) of one to nine to a of list
of operators. The higher the number, the higher the priority.

Operators have an additional property that functions do not have. An operator
symbol can be overloaded, as in Algol 68 or Ada [Ada83], to provide multiple enten-
dres for the symbol. This means that, for instance, the operator symbol plus-sign
can be simultaneously associated with an operator that performs integer addition,
and with one that performs floating-point addition, and with one that performs
some other function on some other type of arguments. Which of these operators is
actually invoked depends on the types of the arguments used in conjunction with

the operator symbol.

33

2.3.7 Flow of Control

Several types of flow of control (sequencing of operations) are available in AL-
ICS: sequential, parallel, conditional, and limited forms of iteration and recursion.

Control flows sequentially through composed functions. In the expression
f(g(x)), g(x) executes first. The value returned by g is then passed to the function f.
In the expression a+b*c, execution is sequential, beginning with the multiplication
and concluding with the addition, according to the relative priorities of these two
operators.

Parallel execution occurs in parallel clauses. Parallel clauses yield a vector of
values, which may appear as an input to a function. For example, in the function
call f(a+b, c+d), both additions are performed in parallel. The two resultant values
are passed to the function f.

Functions are expanded at compile-time. A separate function is created on
the chip for each instance in the functional specification. This is not always an
optimum approach since some hardware might be idle part of the time.

There are two types of iteration—parallel and sequential. Parallel iteration oc-
curs at compile time, replicating the iteration body. The bounds of a parallel iter-
ation must be determined at compile time. Sequential iteration specifies repeated
execution of the iteration body at run time. The sequential iteration construct
specifies a state machine. User-defined variables comprise the state, which can be
changed during initialization of the state and at the end of each iteration. The

state changes and iteration output are computed from user-defined functions.

34

Only a limited form of recursion is handled by this method. Recursion is
performed by interpreting functions at compile-time. Since chips have bounded
area, recursions require fixed points that are calculable at compile time. This is not
powerful enough for general recursive computations, but as is shown in Chapter 3,
is useful in generic functions (functions that return varying-length results).

Storage is available only as part of the state in the ALICS sequential construct.

2.3.7.1 Conditionals

There are two types of conditionals—one is based on a Boolean value, the
other on an integer value. The first is the IF expression, whose syntax is shown in

Figure 2.6, in which zero or more ELIF-THEN parts may be used. The semantics

IF a
THEN b
ELIF ¢
THEN d
ELSE e
Fi

Figure 2.6: Syntax of an ELIF Clause in an 1F-Expression

of this expression call for the Boolean expression a to be evaluated. If it evaluates
to TRUE, then expression b is evaluated and yielded as the value of the IF. If it
evaluates to FALSE, then the Boolean expression ¢ is evaluated. If it evaluates
to TRUE, then expression d is evaluated and yielded as the value of the IF. If
expressions a and ¢ are both FALSE, then expression e is evaluated and yielded as
the value of the IF.

The second type of conditional statement is the CASE expression. Figure 2.7

35

shows its syntax. The CASE’s selector expression, sel, is evaluated to vield a value

CASE sel IN
[1]: a,

[2]: b,

[4}: <,

[8]: d
OUSE e
ESAC

Figure 2.7: General Form of a CASE Expression

which is used as an index into the list of expressions that follow. Each expression in
the list has an associated constant expression label. If there is an expression label
matching the selector expression, then fhe associated expression is evaluated and
yielded as the value of the CASE expression. If there is no expression label that
matches the selector expression, then the expression following the OUSE keyword

is evaluated and yielded as the value of the CASE expression.

2.3.7.2 Iteration

There are two types of iteration in ALICS—one for iteration in space and one
for iteration in time. Iteration in space is specified with a parallel expression. This
construct specifies parallel evaluation of an expression, that is, the expression is
replicated and simultaneously evaluated. The syntax for a parallel expression is

shown in Figure 2.8. This expression expands to abs(a — b) + 1 parallel calls to

PAR i FROM a TO b BY +1
DO f(i) OD

Figure 2.8: General Form of a Parallel Expression

the function f, as shown in Figure 2.9. The yield is one of two possible arrays,

36

IFach

THEN (f(a), f(a+1), ..., f(b))@a

ELSE REV(REV(f(b), f(b+1), ..., f(a))@a)
Fi

Figure 2.9: Expansion of a Parallel lteration

depending on whether the left bound is greater than or less than the right bound.
The left bound of both arrays is a, and the right bound of both arrays is b,
corresponding to the FROM and TO parts of the PAR.

In Figure 2.10 a paralle] iteration is used to form a permutation of an array.

The subscript in the body of this loop is calculated by the function f. The bounds

PAR i FROM LWB x TO UPB
DO x[f(i)] OD

Figure 2.10: Parallel Iteration for a Permutation

of the iteration are LWB x (the lower-bound of x) and UPB x (the upper-bound of
x). Assuming that f(i} returns integers within the bounds of the array x, x[f(i}] will
permute element Xf() to element x;. For example, if the bounds of x are zero through
four then the iteration in Figure 2.10 expands to the clause shown in Figure 2.11.

This requires five copies of the function f and five copies of the decoding logic. If
()], xIf(1)). A{F(2)], xIf(3)), x[f(4)])

Figure 2.11: Expanded Parallel [teration for a Permutation

the function (i) is defined as (3xi) mod 5, then the the function can be evaluated
at compile time. Then the iteration in Figure 2.10 expands to the clause shown

in Figure 2.12. This requires no copies of the function f, and the permutation is

37

(x[0), x[3], x{1]. x[4], x[2])

Figure 2.12: Expanded Paralle| [teration for a Permutation

performed as a permutation royte at compile time, requiring no decoding logic.

2.3.7.3 Sequential Iteration

Meshkinpour and Ercegovac discuss additional forms for FP that allow sequen-
tial systems to be designed [Mesh85]. A generalization of these sequencing forms
allows the specification of sequential systems in the imperative language ALICS.

The general form for a sequential iteration is shown in Figure 2.13. The number

FOR var SEQ seq

DO state-initialization:
state — g(var, state)

OUT h(var, state)

oD

Figure 2.13: General Form of a Sequential Iteration

of iterations in this construct is the same as the number of elements in the sequence
seq. During the first iteration, the state-initialization code is executed, and the
variable var takes on the value of the first element from the sequence, seq. In the
second and successive iterations, a state-transition function (g in the example) of
var and the state is executed. After each iteration the output of this function
is assigned t?) state variables, and the function h of var and the state variables
is output. Variations of this form are now given to demonstrate this construct's

ability to specify a state machine, a Moore machine, and a Mealy machine.

38

A sequential iteration for a state machine is shown in Figure 2.14. This differs

FOR var SEQ seq
DO state-initialization:
state — g(var, state)

OUT state
oD

Figure 2.14: Specification of a State Machine

from the general form in that the output is the current state (or part of it). The
number of iterations in this construct is one plus the number of elements in the
sequence seq. Before the first iteration the state-initialization code is executed.
Before each iteration, the variable var ta,lkes on successive values from the sequence,
seq. After each iteration, assignment to state variables is performed and the state
is output.

A Moore machineis a sequential finite-state automaton (machine) whose output
depends only on the current state [Moor55]. The general form of & Moore machine

is shown in Figure 2.15.

FOR var SEQ sequence

DO state-initialization;
state — g(state, var)

OUT h(state)

oD

Figure 2.15: General Specification of a Moore Machine

A Mealy machine is a sequential finite-state automaton (machine) whose output
depends on the current state and the current input to the automaton [Meal55].
The general form of a Mealy machine is illustrated in Figure 2.16.

A least-significant-bit first binary adder can be defined with the Moore machine

39

FOR var SEQ sequence
DO state-initialization;
state — g(state, var)

QUT h(state, var)
oD

Figure 2.16: General Specification of a Mealy Machine

described in Figure 2.17. First a new data type consisting of a sum and a carry

MODE CARRY_SAVE = STRUCT (BIT carry, sum);
SIPOLORI
FOR pair SEQ [[BIT(PISOLE 2, PISOLE b)
DO CARRY_SAVE psum (0,0);

psum — full_add(pair[0], pair[l], carry OF psum)
OUT sum OF psum
oD

Figure 2.17: Specification of a2 Moore Machine Ripple-Carry Adder

is defined with the MODE statement. The first function, SIPOLORI, converts
the output of the FOR from a sequence of sum bits into an array that represents
the sum (except for the carry). The arrays a and b are converted to sequences
(least-indexed element first) with PISOLE operators and then combined into a
two-element array of sequences. The FOR loop assigns each element in succession
to the variable named patr. This variable (there could be more) is the state required
for a Moore machine. The body of the loop declares the variable psum. The
declaration includes the initialization of the variable. This assignment occurs only
once, before the first iteration of the loop body. In each iteration the resuylt from the
full_add function is assigned to this variable, If there is more than one assignment
in the loop body, all the assignments take effect simultaneously at the end of the

current iteration. After the assignment(s), the state is available for output. In this

40

case, only a portion of the state (the sum) is output.
An adder for binary numbers implemented as a Mealy machine is illustrated

in Figure 2.18. This adder operates almost exactly the same way as the Moore

SIPOLORI

FOR pair SEQ [|BIT(PISOLE a, PISOLE b)

DO BIT carry — 0;

carry — nand3(pair[0] NAND pair[1],

pair[0] NAND carry,
pair[1]] NAND carry)

OUT xor3(pair|0], pair[1], carry)

0D

Figure 2.18: Specification of a Mealy Machine Ripple-Carry Adder

machine adder just described. The major difference (from the standpoint of the
difference between Mealy and Moore machines) is that the output consists of a
function of the state as well as the current element from the loop’s sequence (pair).
The minor differences are that the state consists of only one bit and that the

full_add function has been expanded.

2.3.8 Flow of Data

The structures of programs written in ALICS correspond almost directly to
the topological structures that implement the programs on chips. Data flows ver-
tically through a program and the chip that implements it. In the non-self-timed
implementation, the circuits are clocked with a master clock. The clock rate is a
function of the delays between the inputs, the latches in the sequential iterations,

and the outputs.

41

2.3.9 Communication

Communication with all functions is through their inputs and outputs. The
inputs and outputs of the outermost function are connected to the I/O pins of the
chip implementing the function. The outermost function is written as a function
without an actual parameter list. The actual parameters will be the inputs to
the chip. Since an output can be of any data type, structures can be defined to

represent complex outputs from a function/chip.

2.3.10 Semantics

The language attributes discussed determine the types of algorithms that can
be expressed in ALICS. A good language and recognizer for that language not
only needs expressive features, but also well-defined, straightforward semantics
[Schw78]. These are essential if a programmer is to be able to write and understand
algorithms in ALICS. The ALICS language has several features that aid this. The
language has units that are functional and interchangeable. In the same position
that a constant can occur, so can a function parameter, a conditional, a function
application, or any unit that yields the proper type of value for that position. To

avoid repetitive descriptions, ALICS encourages hierarchical function definitions.

2.4 Target Language Features

This section lists some features of the target language.

42

2.4.1 Operators

Operators are implemented by predefined cells that are stored in a library.
The library contains the mask data and the ports locations for all the cells. An
innovative tree-structured method distributes power and ground to the cells when
they are laid out in a hierarchical method. Power and ground run vertically along

the left and right sides of each cell. The output and input ports are available on

the top and bottom of each cell.

2.4.2 Flow of Control

The method for flow of control is independent of the synthesizer as it depends
on the type of cells in the synthesizer’s library By changing libraries, it is pos-
sible to change the method of flow of control. The current library is made from
combinational logic. It is possible to malke another from self-timed combinational
logic.

The current version of the cells is implemented in combinational logic. Control
and data flow through operators is as fast as the logic executes. The flow of control
operators IF and CASE are also implemented in combinational logic as multiplex-
ors and decoders. The IF and CASE operators select one of their operands based
on the value of a clause. The delays through these operators need to be as long as
the longest delay in each of the sub-clauses. The delay for a parallel clause must
be as long as the longest of its subclauses. Each of the clauses in a parallel clause

must complete for the parallel clause to complete. Since these are implemented in

43

combinational logic, the maximum delay of all the clayses needs to be determined
for this to operate properly inside a clocked system.

If a self-timed library is constructed, the flow of data and the particular data
values will control the execution of the cells. The time delay through conditional

circuits will depend on which Paths are activated by the particular data.

2.4.3 Flow of Data

In both a combinational and self-timed implementation, the flow of data is
direct, from operator inputs through the operator body directly to the operator
output. The flow of data might be inhibited by conditional operators that do not

select all of their sub-clauses.

2.4.4 Data Objects and Structuring

Data objects are either primitive ones built into the synthesizer or defined from
the primitive ones and other defined data types. The primitive data typein ALICS
is that of Boolean values. New data types are formed from existing ones in one of
four ways—arrays, sequences, structures, and unions. An array is a numerically-
indexed collection of identical data, types. A sixteen-bit integer can be represented
as an array of Boolean values. A sequence is an array whose elements are available
sequentially rather than simultaneously. A structure is a name-indexed collection
of not necessarily identical data types. A sixteen-bit sign-and-magnitude integer

can be represented as a structure that contains a Boolean value for the sign and

44

an integer for the value. A union is a data type that may be one of several types,
but only one at a given time. Tor example, a union may specify that a certain

value can be of type integer or real, but nothing else.

2.4.5 Communication

Communication with a chip is through its input and output ports. In the combi-
national implementation, the delay through the circuit is computation-dependent.
In the self-timed implementation, inputs are presented to the input ports. When
all the data has been presented to the c-hip, the external input-data-ready signal is
strobed. The data then flows through the chip. When the outputs have been com-
puted, a output-data-ready signal is made active. Data-acknowledgment signals in

and out of the chip indicate when the chip is ready for inputs.

2.4.6 Storage

Storage is available in a limited manner in sequential loops External storage can
be connected between the inputs and the output of a function, but the description

of the storage is external to ALICS.

2.4.7 Technology-Dependent features

The synthesizer knows about many technology-dependent features. These are
necessary so that the synthesizer can produce layouts in a given technology. Chisel
[Karp83] operates in a fabrication technology independent manner by providing to

the designer functions that are independent of the given technology. This is done

45

by providing technology files that describe the particular technology. These files
describe the design rules for the particular technology. These rules describe the
minimum widths and separations for the layers in the technology. Figure 2.19
shows a representative set of the rules for the scalable CMOS technology (scmos).
Lines that begin with percent signs are comments. The first non-comment line
declares the basic unit of measurement, lambda, as 150 centi-microns. Next, fifteen
layers are defined. Each layer definition contains a descriptive name for the layer
and the CIF name of the layer. {(CIF names are restricted to four characters in
version 2.0.) The next four lines declare the minimum widths (in lambdas) of the
individual layers. After this are the specifications of minimum widths for various
combinations of layers. Following this are the minimum separations (in lambdas)
between different layers. If there is no stated separation between any given pair
of layers, they can abut without interacting. Finally, the lines that begin with
Ext specify how far a layer has to extend past some other combination of layers.
These rules include the polysilicon and diffusion extensions past transistors and
extensions around cuts between layers.

More information is needed by the synthesizer to perform its task. The follow-
ing information has been added to the technology files and additional subroutines
written to access the information. The example lines shown are for the scalable

CMOS technology (scmos).

e To perform routing, the synthesizer needs to know which layers are available

for routing. Figure 2.20 shows the entries in the scmos file that specify the

46

% process "scmos"

GLASS CO0G
NDIFF CND
PAD Xp
POLY CPG
VIA CVA
METAL1 3
PAD 50
POLY 2

8
1
3
4
2
2

Lambda 150

Layer DCUT CCA Layer DIFF CAA Layer
Layer METAL1 CMF Layer METAL2 CMS Layer
Layer NSEL CS5N Layer NWELL CWN Layer
Layer PCUT CCP Layer PDIFF CPD Layer
Layer PSEL CSP Layer PWELL CWP Layer
Width DCUT 2 Width GLASS 40 Width
Width METAL2 3 Width NDIFF 2 Width
Width PCUT 2 Width PDIFF 2 Width
Width VIA 2

Width METAL1+PCUT 2 Width METAL1+DCUT 2
Width METAL1+POLY+PCUT 2 Width METAL1+NDIFF+DCUT 2
Width METAL1+PDIFF+DCUT 2 Width METAL1+METAL2+VIA 2
Sep POLY POLY 2 Sep PDIFF NDIFF

Sep POLY NDIFF 1 Sep POLY PDIFF

Sep NDIFF NDIFF 3 Sep PDIFF PDIFF

Sep METAL1 METALLT 3 Sep METAL2 METAL2
Sep POLY NDIFF+DCUT 2 Sep POLY PDIFF+PCUT
Sep NDIFF POLY+DCUT 2 Sep PDIFF POLY+PCUT
Ext POLY+NDIFF POLY end 2 side 0
Ext POLY+PDIFF POLY end 2 side 0O
Ext POLY+NDIFF NDIFF end 0 side 2
Ext POLY+PDIFF PDIFF end 0 side 2
Ext METAL1+NDIFF+DCUT METAL1 1

Ext METAL1+PDIFF+DCUT METAL1 1

Ext METAL1+NDIFF+DCUT NDIFF 1

Ext METAL1+PDIFF+DCUT PDIFF 1

Ext METAL1+POLY+PCUT METAL1 1

Ext METAL1+POLY+PCUT POLY 1

Ext METAL1+GLASS METALL 4

Figure 2.19: Chisel SCMOS Technology File

47

routable layers.

Route NDIFF
Route PDIFF
Route POLY

Route METAL1
Route METAL?

Figure 2.20: Additional Chisel Parameters for Routable Layers Specification

¢ To avoid metal migration in too-small wires, the maximum current per cross-
sectional area, thickness, and minimum width must be available for routable
layers. Figure 2.21 shows the chisel statements needed for the metal migra-

tion calculations.

% microamps Per square centimicron (floating point)
MaxCurrent METAL1 .{

MaxCurrent METAL2 .1

% thickness of the layers in centimicrons

Thickness METAL1 100
Thickness METAL2 100

Figure 2.21: Additional Chisel Parameters for Metal Migration Specification

¢ For placement, the minimum layer width and separation between layers must

be known. This information is already present in the Chisel technology file.

¢ The per-layer boundary for each cell needs to be known. This information is
not currently available. It is approximated by the maximum bounding box

for all the layers in the cell.

* The location, layer, width, and connection direction for all cells’ ports must

be known, This information is present in the Chisel cell library.

48

CHAPTER 3

Synthesis

3.1 Background

The ALICS Synthesizer converts ALICS programs into the integrated circuit
mask description language CIT (Caltech Intermediate Format) [HonSO,MeadSO}.

The main steps for this process are shown in Figure 3.1. The large dashed box

The dashed arrows represent flow of control and the solid arrows represent the flow

of data. We now discuss in detail each block of the ALICS Synthesizer.

3.2 Source Language Analysis

The analysis of the ALICS source language is performed in three steps—lexical
analysis, the grouping together of characters into the vocabulary of the language;
and then parsing, the grouping of this vocabulary into expressions in the language;
and the transformation of these expressions into a structural representation of
the program. This structure is mapped onto a tree of interconnected cells that
implement the functions in the program.

This chapter discusses a method for traversing this structure only once in order

49

N \rplocatable

1

: Symbol

1 Table

1 power and area ,

: estimates ‘ P
1 - -

1 ll

| . ~-—. arser

| main | - P

| \ (vacc)

l A ~

| LY N ~

| LT Y ~ .
{ LT

1]

]

]

1

1

\
[CIF
\ \
\ \
LY
Y
\‘ \
power and v N
. \ cifnum
area estimates \
\
Y
L)
L]
\
\
1Y
1
Y renum

CIFl

source
rogram

| lexical
analyzer

grammar

parse-tree

manipulation

routines

semantics

ClF
placement
routines

Figure 3.1: Flow of Data and Control in the ALICS Synthesizer

50

to determine the placement of cells, their interconnections, and the distribution
and sizing of power and ground wires to those cells. This algorithm makes use of
local information as the structure is traversed, reducing the amount of information

that the compiler needs to consider at any given time.

3.2.1 Lexical Analysis

The characters in the ALICS source program are read by a lexical analvzer
(Lesk75]. Groups of characters are recognized by the lexer and represented by a
much shorter sequence of tokens. Each “key word” in the language is represented
by a unique token. Each “identifier” or “tag” in a program is represented by a
tag token, which contains a pointer to an entry in a symbol table. An example

program fragment is shown in F igure 3.2. The stream of tokens produced by the
a*b+ (c*d +e)

Figure 3.2: ALICS Program Fragment

lexer for this program is shown in F igure 3.3. There are fifty-nine characters in

tag token (a)

left operator 3 (*)
tag token (b)

left operator 2 (+)
open token ('(')
tag token (c)

left operator 3 (*)
tag token (d)

left operator 2 (+)
tag token (e)

close token (')')

Figure 3.3: Tokens Representing the Program Fragment in Figure 3.2

al

tag token (a)

left operator 3 (*)
tag token (b)

left operator 2 (+)
open token ('(’)
tag token (c)

left operator 3 (¥)
tag token (d)

left operator 2 (+)
tag token (e)
close token (')")

Figure 3.3: Tokens Representing the Program Fragment in Figure 3.2

rules. Figure 3.4 shows the parse tree for the sample program. This began as a
simple program and is now a complicated graph. The graph shows the structure
of the formula as a tertiary tree. The left and middle parts of the the graph are
€asy to understand. The right sub-formula is more complicated because of the
parenthesized sub-expression. Each level in the graph represents the recognition of
a grammar rule and its application to the rules that have been parsed below it. The
linear sequence of grammar rules appears unnecessary in the parse of the program
fragment, but each level indicates that other expressions would be possible, For
instance, the line connecting collateral clause to enclosed clause indicates that this
enclosed clause is made up of a collateral clause. The existence of this line also
indicates that (in general) an enclosed clayse might be made up of other entities.
The grammar rule for an enclosed clause is shown in F igure 3.5. This states that
an enclosed é!ause is either a choice clause, a collateral clause, or a loop clause. A
choice clause is either an IF-expression or a CASE-expression. A collateral clause

is a list of one or more units which execute collaterally. A loop clause is a loop

52

formula

— | T

formula

|
primary
|

enclosed clause
collateral clause

collateral brief clause

joined portrait ety
Joined portrait
serial lclause
ser!ies
ur!it
tertliary
fornl'aula
formula formula
formula formula formula formula formula
prirr,mry prin|1ary prirr|1ary prirrlwry prinlwary
iden{tifier idenltifier idenltifier ideml‘.iﬁer idenltiﬁer
| left | left i left left
tag operator tag operator open

tol?en prio=3 token prio=2

l
a TIMES b

l
PLUS

| !
(¢

tag operator
token token prio=3 t

TIMES

|
d

tag operator
oken prio=2

!
PLUS

tag close
token token

|
e)

Figure 3.4: Parse Tree for the Program Fragment in Figure 3.2

enclosed clause ::= choice clause;

collateral clause;
loop clause.

Figure 3.5: Grammar Rule for an enclosed clause

33

whose bounds are known at compile-time and whoge loop body instantiations are

executed collaterally. This program {ragment corresponds to the grammar rule for

a collateral clause.

3.2.3 Determining Program Structure

The parser in the ALICS Synthesizer does not need to produce an actua] parse
tree. Instead it produces a stmpler form, a structyre tree, which is related to a parse
tree. This tree represents the hierarchical (tree) structure of that program. The
grammar rules serve as templates for the recognition of ALICS programs. Each
time a rule is used in the parse of a particular Program it is placed in a directed
graph to indicate where it js used in relation to the other grammar rules. In
syntax-directed parsing, when a grammar ruje s recognized, the sernantic routine
for that rule is executed. Each semantic rule applies only to the elements of the
corresponding grammar rule and so the effects of the semantics are localized. In
this case the semantics are designed to produce the structure tree, usually with
one semantic rule for each node in the tree.

For instance, the grammar rule for the top node in the parse tree is
formula ::= formula, left operator 2, formula.

The semantics for this rule create the node shown in F igure 3.6. The node contains
fields for each of the parts of this grammar rule. There is one field that identifies
the node as a formula, pointers to the node for the operator, and the two for the

formulae. The tokens in the rule do not need to be represented in the node. They

o4

TYPE: FORMULA
cell: int8plus2
LEFT |RIGHT

Figure 3.6: Structure Tree Node for a Formula

Serve to separate the parts in the Source program and to aid in parsing. A node
for the collateral brief clayse does not contain entries for the open token or the close
token.

Each node in the structyre tree is created by the semantics for a grammar rule
for each sub-node. Each semantic rule is designed to return a pointer to the node
that it creates. So the semantics for ;n enclosed clause needs to be capable of
representing a choice clause, a collateral clause, or a loop clause.

The structure tree for the sample program is shown in Figure 3.7. Note that
there are no nodes for the parentheses,

This structure is mapped onto a tree of interconnected cells that implement
the functions in the program.

For example, an expression a*b + (c*d +e) is represented by the structure
shown in Figure 3.8. A postfix traversal of the structure yields the nodes 1, *q,
+2, and +;. The cells for these nodes are constructed in this order as the structure
1s traversed. A cell (call it cell}) that contains the cells *y and +; is created first.
Then a cell that contains the cells *,, cell;, and +, is created. The resulting
structure is shown in Figure 3.9. The dashed lines show the subcell hierarchy.

Extra space is used to make the diagram easier to read..

85

TYPE:FORMULA
cell: int8plus2

LEFT | RIGHT
TYPE:FORMULA TYPE:FORMULA
cell: int8mult?2 cell: int8plus2
LEFT [RIGHT LEFT | RIGHT
TYPE: 1D] | TYPE: ID TYPE:FORMULA TYPE: 1D
STRING: a| | STRING: v cell: int8mult2 STRING: e
LEFT { RIGHT

/ N\

TYPE: ID|| TYPE: ID
STRING: c¢| | STRING: d

Figure 3.7: Structure Tree for the ALICS Program Fragment in Figure 3.2

+1
* +
2N ZRN
b 2N
C d
Figure 3.8: Structure Representing a Simple Computation

a e

e | N
: +1 E
i |F_| |
: | +2 i :
: : — : ;
: : *9 E :
X *1 X '
: e sl Y

Figure 3.9: Hierarchical Structure for a Simple Computation

36

3.3 Target Architecture

Once the structure of the program has been determined by the parser’s semantic
routines, the structure is mapped into custom integrated circuitry. A hierarchi-
cal layout (topological structure) is described that facilitates this mapping. This
layout is novel and exposes some problems that do not occur in traditional layout
methods. A new method for cell layout is developed here to produce the layout,
and route power, ground, and signal wires.

This section describes the target layout for the ALICS synthesizer. The overall
layout method consists of methods for composing and interconnecting circuits in a
hierarchical manner. An important feature of the hierarchical construction method
1s that only a small portion of the entire circuit need be considered at each level in
the hierarchy. The topology of the cells used with this method is discussed along‘
with the types of routing used to interconnect these cells. These methods are then

related to the implementation of the source language.

3.3.1 Hierarchical Layout

One of the problems with hierarchical layout is the unsuitability of existing
layout techniques for automated hierarchical layout. In this hierarchical layout
method it is useful to treat primitive cells and cells created from primitive cells
identically. This increases software reliability by reducing the nurmber of special
cases that the software needs to accommodate. Imposing a hierarchy also reduces

the amount of information that the synthesizer has to consider at any given time.

57

The hierarchical layout method includes algorithms for routing signals and
power and ground buses. The routing of power and ground has an important
constraint that effectively restricts the routing of each of these buses to a single
metal routing layer. While it is possible for each of these buses to be routed on
more than one metal routing layer, there is a capacitive, resistive, and area penalty
in each place where a wire changes layers.

The predominant method for cell layout, standard cells, is described next, with
a brief discussion of its shortcomings for hierarchical layout. A method for design-

ing cells that overcomes those shortcomings is proposed.

3.3.2 Standard Cells

Standard cell is a term for integrated circuitry that has a fixed height that is
identical for all the cells in the library. All functional (not power or ground) inputs
and outputs to the cells are on the tops or bottoms of the cells. Figure 3.10 shows
two standard cells, a two-input XOR cell, and a two-input NAND cell, modified
from cells provided in the UW/NW Consortium cell library [UWN84]. (The figure
also contains a legend that shows the patterns that represent each mask layer.)
The power buses are 7A wide and separated by 43A. A power bus runs horizontally
across the tops of all the cells and ground runs horizontally across the bottoms of
all the cells. The power and ground buses are connected by abutting adjacent cells.
The power buses for several rows of cells are all connected on the left and ground

buses are connected on the right so that power is distributed in an interleaved,

38

0
metali poly

N W

metal2 polycontact

Figure 3.10: Standard Cells

59

non-overlapping manner. Signal interconnections are routed between, not over,
the cell rows. Figure 3.11 shows an implementation of an eight-bit ripple-carry
adder in five standard cell rows with their interconnections.

[f standard cells were used by a synthesizer, a pass through the structure that
represents the computation would be needed to flatten any hierarchy that may be
present in the design. The standard-cell method does not allow composite cells to
be created since this would violate the constant-height basis for the standard cells.
Once the standard cell rows have been determined, the amount of current required
by each cell is used in the calculation of the cumulative current across each cell
row at each cell in the row. So if three cells in a row all require one milliamp of
current, then the Vpp bus entering on the left of the row would have to be wide
enough to supply three milliamps of current to the row. Similarly the ground bus

(entering the row on the right) would have to be Just as wide.

3.3.3 Hierarchical Standard Cells

To overcome the problems with “standard cells”, a hierarchica] variation on
standard cells has been developed. The hierarchical standard cells all have the same
structure, but not necessarily the same height or width. The power wires, Vpp
and ground, are on the left and right sides, respectively, of the cells on the second
level of metal. Inputs to cells are on the bottom sides of the cells, outputs are on
the top sides, all on the first level of metal. Figure 3.12 shows several hierarchical

cells. Note that the power buses are not separated by the same distance as was

60

; ..\N\UWNNI\QNWNN\N.. 7 m\‘h\ g
<o W\

NN

=
I NBNAN

NN
SISO

N

i, - o ——

Y L Y LN

LT T AN T

Figure 3.11: Standard Cell Rows

61

required for the standard cells. The two-input XOR has 4) wide power buses which
are separated by 45A. The two-input NOR has 4\ wide power buses which are
separated by only 35A. This is a distinct advantage over “standard cells”, because
cells can be made as small or as large as is necessary. This is important so that

new cells can be added to a cell library without having to conform to a pre-existing

height restriction.

When the hierarchical standard cells are combined to form more complex cir-
cuits, a new cell is created for each subexpression in the circuit. The power and
ground lines are connected on the second level of metal {metal-2) without ever
crossing each other. The Vpp and ground wires are brought to the left and right
sides of the bounding box of each cell so that the power layout of the composite
cell corresponds to power layout of the primitive cells. If wide power wires are
needed on the left or right side of this new cell, a wide power wire is laid on top
of the existing power wires in the subcells, with the wider part of the power wire
extending away from the center of the composite cell. The signal wires, which are
on the first level of metal (metal-1), cross the power wires without shorting with

power wires. Figure 3.13 shows several cells that have been laid out hierarchically.

3.3.4 Power and Ground Distribution

Power (Vpp) and ground must be distributed to all on-chip circuitry. One con-

sideration for wiring these two signals is that they be wide enough to accommodate

452

T

| 364

Figure 3.12: Primitive Hierarchical Standard Cells (Two-Input XOR and Two-Input

NOR)

63

~=< T

A XXX XTRIT XS A NN ’\\\\ NN NN

NN AN IR AN
<’
AN -

VYN

Figure 3.13: Composite Hierarchical Standard Cells

the current that passes through those wires. If the current is too large, a phe-
nomenon known as metal migration occurs. Metal migration causes the aluminum
atoms in a wires to move with the electric current [W&st85,Mead80,Chow86]. If
wires are made larger than necessary, area on the chip is wasted. As a wire’s atoms
are moved out of the high current density regions, the current density (per cross-
sectional area) increases until the wire burns out (as a fuse does). By carefully
calculating the amount of current required, wires are made wide enough so that
this problem does not occur.

Figure 3.14 shows the power and ground requirements for a row of four cells
that are combined into a parent cell. Each box in the figure contains the electrical

current required for that cell. Internal to each cell (not shown) are vertical Vpp

64

4mA 2.1mA | [1.3mA | [3.3mA

4 3 2 1
Figure 3.14: Power and Ground Requirements

and ground wires on the left and right (respectively). The cell created from these
cells will also have the same Vbp and ground configuration. Internal to this parent
cell are horizontal wires that bring Vpp and ground to each cell from the power
buses on the left and right of the cell. Four points are marked along each horizontal
Vop and ground wire. These mark places where the width of the power wire may
change. The Vpp wire segments between each of these points need to carry the
current for the cell beneath the right point of this segment plus the current for
all the cells to the right of this point. So Vpp wire at point V; needs to be wide
enough to supply current to all four cells (10.7mA); the V;-V; segment needs to
carry the current for the three cells on the right (6.7mA); V,-V; carries the current
for the two rightmost cells (4.6mA); and V3-Vj carries the current for the rightmost
cell (3.3mA). Similarly the ground wire at point Go needs to be wide enough to
supply current to all four cells (10.7mA); the G1~G, segment needs to carry the
current for the three cells on the left (7.4mA); G2-Gj carries the current for the two
leftmost cells (6.1mA); and G3-G, carries the current for the leftmost cell (4mA).

The minimum width for each segment is calculated from the following formula and

65

are summarized in Table 3.1.

current

idth = mi n _width(l ,
v min(min.width(layer) maz_current_density X thickness(layer) x A)

Table 3.1: Minimum Widths for Power and Ground Wires for Figure 3.14

| Segment Current Width|
Vo— Vl 10.7mA 8

i- V2 6.7mA
Var V3 4.6mA
Va—- V, 3.3mA

Go— G1 10.7mA
Gl— Gz -7T.4mA
Gz- G3 6.1mA
Ga- G4 4.0mA

W oUn N oo e

3.3.5 Hierarchical Placement

In hierarchical placement, cells are created as the structure tree is traversed.
A tree-structured computation is mapped into a tree-structured layout. For each
node with children, a cell is created containing the parent and its children. At the
top of this hierarchy is a cell containing all the other cells in the layout. At each
level in the hierarchy, the children are placed in a row with the their tops at the
same y coordinate. The parent cell is centered above the children, with enough
space to accommodate the signal wiring between the children and the parent. A
Vpp bus is then created that connects the tops of all the Vpp ports of the child
cells and is connected to a new bus that runs vertically at the left side of the new

cell. This bus is created wide enough to accommodate all the current that passes

66

through it. Thus the Vop bus is made narrower on the right, since it supplies only
the rightmost cell. The Vpp bus for the parent cell is connected to this bus, and
the width of this bus accounts for the current consumed by the parent cell also.
A similar ground bus is then created below all the children cells. The ground bus
runs the height of the new cell on the right side.

This method is similar to the standard cell row routing because the two buses
never cross and are interleaved. The signals wires still have to cross the power
buses as was necessary for the standard cells. The advantage is that the widths of
the buses are calculated from only the current of each parent cell and its immediate
children. This information is retained as new cells are created so that the contents
of already created cells (grandchildren and further generations) do not have to be
re-examined., The resulting process requires time proportional to the number of
nodes. Coupled with the fact that the per-node calculation is not very complicated,
the entire process is fast. Another advantage is that adjacent cells do not have to
have the same height since their power buses do not have to abut. This means

that library cells can be of differing sizes, as needed.

3.3.6 n-ary Trees

Whether written as a function with arguments or as an equation with infix
operators, the main component of arithmetic expressions is represented by an n-

ary tree. In general, the function application

f(al, az, as, eay an)

67

is represented by the n-ary tree shown in Figure 3.15. Each node represents a

= | T~

ai az aj3 an

Figure 3.15: n-ary Tree

computational unit and each arc represents a data path. This tree can then be

mapped to the layout shown in Figure 3.16. In this picture, each box contains

a) ar az ... @n

Figure 3.16: n-ary Tree Layout

circuitry that implements the corresponding computational unit in the tree. The
shaded lines represent wires that connect the outputs of the circuitry implementing
the functions that are the main function’s actual parameters to the inputs of the
circuitry for the main function. If the leftmost subcell is taller than the other
subcells, the other cells are placed high enough so that a ground wire whose bottom

edge is flush with the bottom of the leftmost cell can be run underneath the cells.

3.3.7 Conditional Expressions

Figure 3.17 shows the floorplan for an IF expression. The circuitry on the bot-

68

TRUE | Mux | FALSE
Select Control] Select

THEN ELSE

Figure 3.17: Block Diagram for an 1F-expression

tom is partitioned into three parts, corresponding to the source language THEN,
IF, and ELSE parts. The multiplexor at the top of the figure is controlled by the
output of the IF-part. If the output of the IF-part is TRUE, the multiplexor selects
the output of the THEN-part; otherwise the output of the ELSE-part is selected.

A CMOS schematic of the multiplexor is shown in Figure 3.18.

Outi Olltg Olft3
!

4 | A 3 Y — T
JLJLJLZEJLJLJL

L 1 PR 1 1 1
U U~ u g L S I R U A
THEN, THEN, THEN; IF ELSE; ELSE; ELSE;

Figure 3.18: Schematic for a CMOS IF-expression

The source language allows an IF-expression with the syntax shown in Fig-
ure 2.6, where the ELIF (a contraction of ELSE and IF) can be repeated as many

times as desired. This structure is hierarchical in that the ELIF-THEN-ELSE

parts are mapped onto the IF, THEN, and ELSE parts, respectively, of the struc-

69

ture in Figure 3.17. This structure is then used as the ELSE part in an identical

structure as is shown in Figure 3.19. The IF and THEN parts are mapped into

TRUE|Mux{FALSE
Select | Ctrl { Select

- e o S .
! TRUE|Mux|FALSE :

: Select | Ctrl | Select !

THEN I ELIF :
IF | THEN ELSE |

| | ELSE |

Figure 3.19: Structure for an IF Expression Containing an ELIF Clause

the corresponding IF and THEN parts of this structure.

3.3.8 Converting Arrays to Sequences

All the elements in an array are accessible in parallel; elements in sequences
are accessible sequentially. A parallel-load shift register performs the conversion
of an array to a sequence. The cell at the end of the register contains the current
value that will be output. The conversion operation begins by loading an array
into the shift register and outputting the first element during the first clock cycle.
The remaining elements are shifted into (and output from) the end register cell
during each successive clock cycle.

There are four operators that convert from arrays to sequences, differing ac-
cording to which of the array bounds is used to select the first element in the
sequence. Two configurations of shift registers are needed to implement all four

of these operators. Block diagrams for these are shown in Figure 3.20. Which of

70

Sequence Sequence

!

- T (RN S R hadh diadid BT RIS NP PR C

RN rrrreT

Array Array
Figure 3.20: Block Diagrams for Array to Sequence Operators

these two cells is chosen depends on whether the first element of the sequence is
on the left or on the right of the array. This information is known at compile time
and so the proper configuration is chosen.

A CMOS schematic for two bits pf a cell in the shift register used for a
rightmost-element-first or highest-index-first parallel to serial converter is shown
in Figure 3.21. Two-phase static flip-flops are used in the design. These latch the
input on the high state of the clock (¢) and transfer the data from the master
flip-flop to the slave flip-flop during the clock’s low state. Static flip-flops are used
so that the clock is allowed to be slowed to make testing easier. The timing dia-
gram for an extension of this circuit to four bits is shown in Figure 3.22. The Dy
signal is the input to the third bit of the register and needs to be valid during the
time indicated. During the first clock pulse, the array values are loaded into the
register. The output of the high-order position is available during the clock’s low
state. The next three clock pulses transfer the low-order elements into the output

position.

71

LOAD’

D,

LOAD

LOAD'

Figure 3.21: Schematic for Four Bits of 3 Shift Register

72

LOAD / \

Qs FﬂsgngDléDo.
Figure 3.22; Timing Diagram for a 4-Bit Shift Register in Figure 3.21
3.3.9 Converting Sequences to Arrays
Sequences are converted to arrays using shift registers very similar to those used

for the array to sequence converters. These shift registers are serial-in, parallel-out.

Block diagrams for the two basic configurations are shown in F igure 3.23. Which

Array Array
L Lttt
f
Sequence Sequence

Figure 3.23: Block Diagrams for Sequence to Array Operators

of these two cells is chosen depends on whether the first element of the sequence
will be on the left or on the right of the array.

Figure 3.24 shows the schematic for a shift register that implements a sequence-
to-array converter. The circuitry for the serial-in, parallel-out shift register is
similar to the parallel-in, serial-out shift register. Figure 3.25 shows the timing
diagram for this circuit. The elements of the sequence are input one per clock

cycle. The shift register in the example is four bits wide, so all the values will be

73

Figure 3.24: Schematic for Four Bits of a Shift Register

74

Seq — = — ~—
p, Di . D . DL D
@ | ~Ds Dy b Do

READY : © AR
Figure 3.25: Timing Diagram for a 4-Bit Serial-In, Parallel Qut Shift Register in Fig-

ure 3.24

loaded after the fourth clock cycle.

3.3.10 Sequential Tterations

The general form of a sequential iteration is shown ip Figure 3.26. This is

FOR var SEQ seq
DO state-initialization;
state — g(var, state)

OUT h(var, state)
OD

Figure 3.26: General Form of a Sequential Iteration

mapped onto the structure shown in Figure 3.27. The clock (#) signal controls the
iterations. On each iteration the clock strobes the current element of the sequence
into the var register and the output of the multiplexor into the state register, In
the first iteration the first element of the sequence is latched into the var register
and the first indicator directs multiplexor to select the output of init into the state
register. The ¢ module then takes as input the first element of the sequence (from

var) and the output of init. The output of the ¢ module is stored in the state

73

h
A

—» state
[

MUX
l‘—’ |
init £

j p—

var
1 1
¢ Ist seq

Figure 3.27: Layout for a Sequential Iteration

76

register by the next clock pulse. The outpuyt function, A, then takes the output
of the init module (stored in state) and the first element of the sequence (from
var). At the same time the second element of the sequence i latched into the var
register for the next iteration. During all the remaining iterations the multiplexor
selects the output of the state register, which contains the output of the ¢ module
from the previous iteration. At the end of each iteration the state is available to

the output function h.

3.3.11 Routing

The previous section described how the power and ground routing is performed
hierarchically. This section discusses methods to route the signal wires with this
layout method. The three methods needed are river routing, permutation routing,

and a variation on channe] routing, called here one-to-many channe] routing. The

methods.

In all types of routing, wires need to be of a minimum width for a given tech-

wires on the same layer by a minimum separation. In the cases we consider, wires
are run vertically across a rectangular region called a channel. Circuitry lies above

and below the channel and wires are placed in the channel connecting the appro-

77

priate ports on this circuitry. A]] I/O ports under consideration lie on the top
and bottom borders of the chanpel. The channel height is constructed to be large
enough to contain all the necessary wires. One of the goals in wiring the channel
1s to minimize the channel height, given a fixed placement of cells on the top and
bottom of the channel. Figure 3.28 shows a valid routing of three signals in a
channel. If more bends are introduced into the wire between ports B; and T,, the

channel height is reduced, as shown in F igure 3.29.

21 A

Figure 3.29;: A Minimum-Height River Royte

78

3.3.11.1 River Routing

River routing is a special form of routing involving wires that are on a single
layer, adjacent, and never cross adjacent wires [Dole81). Figures 3.28 and 3.29 are
examples of river routing. This approach is useful in routing the n sub-nodes to
the parent in a n-ary tree. Figure 3.30 shows the routing for an n-ary tree (n = 4).

The parent cell is above the four sub-cells. Because the four cells are placed, left

Figure 3.30: River Routing for an n-ary Tree

to right, in the order that the values are needed by the parent cell the routing from
the subcells to the parent do not have to cross one another. Therefore river-routing
is used to connect each of the outputs of the four subcells to the parent’s inputs.
Additionally, since the datatypes of the subcells’ outputs are not restricted to
BiT’s, the wire bundles representing the outputs’ datatypes may consist of many
individual wires. All these wires can be routed using river routing, as is shown in
Figure 3.31.

IF sub-expressions are routed to the multiplexors using river-routes. Figure3.17
shows the floorplan for an IF expression. The circuitry on the bottom is partitioned

into three parts, corresponding to the source language THEN, IF, and ELSE parts.

79

Figure 3.31: Wide Datapath River Routing for an n-ary Tree

The multiplexor at the top selects the value from either the THEN part or the
ELSE part, depending on the value of the IF part. Although the figure shows
single wires connecting each of the sub-expressions to the multiplexor, these wires
may be wire bundles consisting of many individual wires that all travel in a similar

path.

3.3.11.2 Permutation Routing

In the previous sections it was assumed that the signals were available in the
order needed. This, however, is not necessarily the case. If the formal parameters
to a function are not declared in the same order in which they are referenced in
the function body, permutation routing is used to reorder the parameters from
the declared order into the referenced order. In this section it is assumed that
no parameter is referenced more than once. This restriction is removed in the
following section.

Extant literature labeled permutation channel routing [Leon85] simplifies chan-

nel routing by permuting the ports on the channel boundary. This reduces the

80

number of wire-crossings, but it does not address the routing problem. (General
channel-routing methods, such as the “greedy” channel router [Rive82] or Baker et
al [Bake83], reserve one routing layer for horizontal wires and the other for vertical
wires and thus cannot route a reversing permutation-route without having to widen
the channel. Joobani’s artificially intelligent router [Joob86] does not reserve one
direction per layer, and so can route permutations. However, the analysis required
for his method is more complex (at least n®) than is needed.

Some definitions from [Kele87] are useful:

Definition 1 (Permutation) The term permutation refers to a function that is

one-to-one and onto.

Definition 2 (Port) A port is a point on the top or bottom or the channel where
@ wire terminates. A port is associated with @ unique signal. The main goal in
routing is to create wires within the channel that independently connect all the ports

associated with each signal.

Definition 3 (Wiring permutation) A permutation applied to a set of ports on
one side of a channel is called a wiring permutation. The order of the potts on one
side of the channel is said to be permuted to yield the order of the ports on the top

of the channel.

Definition 4 (Permutation route) A permutation route is a valid routing, or

placement, of wires connecting the bottom and top ports of a channel. The channels

81

under consideration have q fired width and may vary in height to accommodate the

necessary wires,

Definition 5 (Permutation routing algorithm) The permutation routing ql-

gorithm performs any permutation-route on n signals in two layers, denoted]

and L2.

Without loss of generality, the signals are assumed to start on L1 at the top of the
channel' and end on L1 or L2 at the bottom of the channel. The ports at the top
and bottom of the channel are assumed to be Properly positioned in columng wide
enough for a wire and a contact, However the ports at the bottom of the channel
do not have to line up with the ports at the top of the channel.

A formula for the height of a channel is difficult to determine in general because
it depends on the particular permutation. The height is determined by performing
the first two steps of the algorithm and then noting the column that is the tallest.

All the wires in the permutation-route are either completely vertical or consist
of three wire parts—vertical wire that brings the signal down from a port into the
channel, a wire that brings that wire to the destination column, and another ver-

tical wire that completes the connection to the port at the bottom of the channel.

Definition 6 (Route-dexter) A route whose lower port is to the right of its

upper port is referred to as a route-dexter.

Similarly,

1With the addition of an extra row of L1-L2 contacts at the top of the channel, the restriction
of beginning with layer L1 can be removed.

Definition 7 (Route-sinister) is defined as a route whose lower port is to the

left of its upper port.

Definition 8 (Route-vertical) Routes-vertical are routes whose top ports lie di-

rectly above the corresponding bottom port.

Routes-vertical are handled the same way as routes-sinister. Figure 3.32 shows

a route-sinister and a route dexter. Shading-sinister represents one routing layer

NN N NN

SN

VAV AVEr sy

Figure 3.32: A Route-Sinister and a Route-Dexter

(L1, which is metal-1) and shading-dezter represents the other layer (L2, which
is metal-2). A black square represents a via, or contact, between the two layers.
As this figure shows, each wire consists of three parts—a vertical top and bottom
portions and a horizontal middle portion.

The choice of routing layers for the different signals is important. A badly
placed signal route could become a barrier for remaining unrouted signals. For
instance, consider a route of five signals that contains a complete reversal, The
ports on the bottom of the channel are numbered 0 through 4 from left-to-right.

The ports on the top of the channel are numbered from left to right by the per-

83

mutation function (¢ x 4) mod 5, where { s the number of the corresponding port

on the bottom of the channel.
We might try to route this permutation as follows. First, we create a route-

sinister between top-port 4 and bottom-port 1 on layer L1 (Figure 3.33). Next

0 4 3 2 1
74
0 1 2 3 4

Figure 3.33: Simple-Minded Routing Strategy

we try to create the route-dexter between top-port 1 and bottom-port 4. Because
the first route blocks top-port 1 on layer L1, we have to route the second wire on

layer L2 (Figure 3.34). The remaining ports are unroutable because both routing

0 4 < 2 1

Figure 3.34: Simple-Minded Routing Strategy Blocks Routes 3 and 2

layers are occupied for the width of the channel by the first two wires.

An efficient algorithm for performing the routing without backtracking is ex-
plained in two ways. A simplified version of the permutation routing algorithm is
explained first. The simplified version is easy to understand, but it wastes routing
area. Next, the details of a complete permutation routing algorithm are given.
The detailed version contains optimization techniques that obfuscate the underly-

ing algorithm.

84

The Simplified Permutation Routing Algorithm

The permutation routing algorithm always generates routes without any back-
tracking. Routes-sinister and routes-dexter are routed from the top of the channel
down to a free horizontal track (row), then over to the column of the bottom port
for the route and then down to the bottom of the channel.

The algorithm consists of three steps. In the first step the top two portions
(top vertical wire on layer L1, middle on layer L2) of each sinister wire are routed.
This choice of layers insures that the top vertical segments of routes can enter
the channel and not be blocked by the horizontal segments. In the second step,
the routes-dexter are brought down from the top port on layer L1 to a free row
(also called a horizontal track) and then routed rightwards, still on layer L1, to the
destination column. (To insure that a route-dexter does not block another route-
dexter, routes-dexter are selected for routing from right to left by their top ports.)
In the third step, the lower vertical segments of all the wires are routed down to the
destination ports. This last wire segment is routed on layer L1 if the destination
layer is L1 and no routes-dexter (routed on layer L1) pass through this segment.
The height of the channel is determined in this step by noting the height of the
channel if the necessary contacts were placed. After the height is determined, the
contacts are actually placed and wires drawn to connect the routes to the bottom
of the channel.

For example, consider a function whose formal parameters are (a, b, c, d, e,

f, g) and the order of usage inside the function is (a, d, g, <, f, b, ¢). The ports

85

are assumed to be in L1 in both the top and bottom of the chanpel and legally
positioned. The routes-sinister along the bottom of the channel are examined from
left to right. In this example, the routes-sinister along the bottom of the channel

are in columns 0 (a), 1 (b), 2 (), and 4 (d) and are routed, one at a time, in that

order.

1. Route a begins and ends in columpg 0. It does not have to cross any existing

routes, so a minimum-height L1 stub is brought down from the top of the

channel.

2. Route b begins in column 5 at the top of the channel and ends in colump 1
at the bottom of the channel. The L2 horizontal portion of this wire can

occupy the top (first) horizontal channel between these columns.

3. Route ¢ begins in column 3 at the top of the channel and ends in column 2
at the bottom of the channel. The L2 horizontal portion of this wire must

be placed below the first horizontal channe],

4. Route e begins at the top in column 6 and ends at the bottom i column 4.
The horizontal portion of this wire can occupy the next available horizontal
track. (For the sake of the discussion, it is placed in the third track instead

of sharing the second track.

Figure 3.35 shows the channel after the first step has been completed.
In the second step the routes-dexter are routed. A list of top-ports routes-

dexter is scanned from right to left, and the routes-dexter are determined to be

S6

Figure 3.35: Simplified Routing Step 1 for x 5 in Residue 1-of-7

routes f, g, and d. These are routed as follows:

1. Route f begins at the top of column 4 and ends at the bottom of column 5.
All the previously-placed horizonta] wires are on layer L2, s0 an L1 wire can
cross all these to reach the next available horizontal track (the fourth from

the top). The horizontal portion of this route js placed on layer L1,

2. Route g begins at the top of column 2 and ends at the bottom of column 6.
Again, an L1 wire is brought down from the top of the channel and crosses
two horizontal L2 wires (horizontal portions of routes-sinister). Route f has
to cross the horizontal L1 wire of route g, so an L1-L2 contact is needed at

the end of the partially routed route f,

3. Route d begins at the top of column 1 and ends at the bottom of column 3.
Again, an L1 wire is brought down from the top of the channel and crosses

only horizontal L2 wires (horizontal portions of routes-sinister).

Figure 3.36 shows the channel after the second step has been completed.
In the third step of the algorithm, the height of the channel is determined by

scanning all the columns and noting the maximum of their heights.

87

a d g ¢
//\\\\y\/
% 7
n 7
7 <
7 NN
=
ZZ .
1
7

a b ¢ d e f g

Figure 3.36: Simplified Routing Step 2 for x 5 in Residue 1-of-7

The height of column 0 is the height of the L1-stub.

Columns 1 and 2 require space for L1-L2 contacts below the horizontal

L1 portion of route d.

Column 3 does not require any more height than is taken by route d.

Columns 4 and 5 require space for L1-L2 contacts below the horizontal

L1 portion of route g.

Column § does not require any more height than is taken by route g.

In the final step of the algorithm the horizontal portions of each wire are brought

down to the bottom of the channel.

o Routes that had ended on layer L2, (routes b, ¢, and e) are brought on
layer L2 below the lowest L1 wire in each column. An L1-L2 contact is

placed below the lowest L1 wire or at the end of the horizontal L2 wire if

88

there is no L1 wire below it. Finally an L1 wire connects the contact to

the bottom of the channel if the contact is not already at the bottom of the

channel,

® Routes that end on layer L1 are connected to the bottom of the channel i

layer L1 if the horizontal portion is not already at the bottom of the channel.

Figure 3.37 shows the channe] after the final step has been completed.

a d g c f b e
Zg 7% f
b<\\l[)\\ ANAY

1 <4

g /

Vs /

; >>§ N 50

X o4

N SRR 7]

d >< N \

/ l Z] / Z \ > g

%

/] @ ﬁ f

a b c d e f g

Figure 3.37: Simplified Routing Step 3 for x 5 in Residue 1-of-7

The Detailed Permutation Routing Algorithm

If this algorithm were executed exactly as described above, it would run in

time proportional to the number of routes, but there would be empty space in

the channel that could be used more effectively. One could perform the simplified

89

version of the algorithm and thep reduce the height in each column by squeezing out
all the extra space. However, this would require more complicated data structures.
Instead, while the full version of the algorithm is placing the wires, it checks for the
placement of existing wires in each colump and then places new wires at the highest

possible point in each colump. Figure 3.38 shows how the routes in Figure 3.32

VISP SIISIL

% :
Figure 3.38: Compressed Route-Sinister and Route-Dexter

might look like after the optimization. As the figure illustrates, this leaves more_
room below the routes (y-coordinate, not layer) for more wires in the same space.

The example in the Previous section is now examined in detail. The routes-
sinister along the bottom of the channel are examined from Jeft to right. In this
example, the routes-sinister along the bottom of the channel are in columns 0, 1,
2, and 4. These routes are partially routed by beginning at the top of the channel.
Figure 3.39 shows the channe] after the first step has been completed. Route a is
in column 0 at the top and bottom of the channel. There js no L2 in this column,
so an L1 wire is brought down from the top of the channel far enough to avoid any
other L2 in the circuitry that might lie above the top of the channel. (There is no

L2 in this column, so a minimum length L1 wire is created.)

90

Figure 3.39: Routing Step 1 for x 5 in Residue 1-of-7

After the stub for route zero is placed, route b is considered. The port in column
one at the bottom of the channel has to be connected to the port in column five
at the top. There is no L2 wire in the.third column, so a stub in column five is
drawn down far enough to avoid L2 in the circuitry above it. Because this route
spans several columns, a contact is placed at the end of the stub and an L2 wire
is placed between the fifth and first column.

The route ¢ (which is a route-sinister) is the next one to be considered since
its bottom port lies to the right of the ones already routed. Here, the horizontal
L2 wire for route b is the lowest L2 in column two, so another horizontal L2 wire
(for route ¢) has to lie below it {route one already occupies the highest possible
row). An L1 wire is drawn from the port at the top of column three down below
the lowest L2. A contact is placed at the end of this wire and an L2 wire is drawn
to column two.

The final route-sinister is route e. This route begins in the sixth column on the
top of the channel and does not have any L2 below it. The contact is placed at
the same height as for route b. Since the L2 wire cannot run left in this row, it is

brought down to the next available row and then brought left to column four.

91

In the second step, the routes-dexter are brought down from the top port in
L1 to a free row and then routed rightwards to the column for the bottom port.

Figure 3.40 shows the channel after this step is performed. The routes-dexter are

a d c f b e

2 9 9 9 9
/\\\‘7\\\%&\,x\
77
g =
7 2
7 7z i
/e

a b ¢ d e f g

Figure 3.40: Routing Step 2

scanned from right to left, in the order of their top ports. In this example these
routes are examined in the order f, & and finally, d. Route g has to run from the
top of column four in L1, to the bottom of column five. Therefore the L1 wire
in column four must be brought down low enough to avoid the L1 in the contact
in column five. The wire is not brought down any farther at this time, nor is a
contact placed because it is not yet known that a contact is needed to allow route f
to cross route g.

Route g similarly avoids the contact in column three by running below it.

Before a route-dexter crosses a column, there is a check to see if any incomplete
routes-dexterr end in that column. The route in column five does, so a contact has
to be placed at the end of route five. This contact must be placed below the L2 in

that column from route ¢, and an L1 wire must connect the end of route five to this

92

contact. Route g can then avoid this contact by running below it and rightwards
to column six. Route d needs to avoid only the L1 in route g.

In the third step, the lower vertical segments of all the wires are routed down
to the source ports. The height of the channel is determined in this step by noting
the height of the channel if the necessary contacts were placed. After the height
is determined, the contacts are actually placed and wires drawn to connect the
routes to the bottom of the channel. Figure 3.41 shows the channel after this

step is performed. The layer last used in each route and the destination layer

t b [:]

N

N
M \’;{‘R\\h"
7
N NN
éﬁ

NN\

N 36A
27 gé
VIR KR
RN
SENEEN]
b c d e t g

Figure 3.41: Routing Step 3

at the bottom of the channel determine the layer for the wire that connects the
partial route to the bottom of the channel. In this example, it is assumed that
the destiné,tion fayer is L1. If the route ends in L1, there is no lower L1 in that
column. (Step two places a contact when a route-dexter would block an L1 wire.)
Routes a, d, and g are examples of routes that end in L1.

The remaining routes end in L2 or an L1-L2 contact. These routes require an

93

L2 wire down below the lowest L1 in that column so that a contact to L1 can be
placed. If necessary, the contact and the bottom of the channel are connected with
an L1 wire.

The height of this channel is 36\ versus 48 for the simplified approach, illus-

trating that the area is reduced significantly (25%) without a large time penalty

for doing the compression.

3.3.11.3 One-to-Many Channel Routing

Permutation routing is necessary and sufficient when there is a one-to-one map-
ping between the ports on the top and bottom of a channel. The functions defined
in the synthesis language do not necessarily have this property. Each of the formal
parameters in a function is unique. If each formal parameter is referenced only
once in the function body, a one-to-one mapping exists between the formal param-
eters and the points of reference. If, instead, parameters are used more than once,
there is a one-to-many correspondence between the function’s formal parameters

and the actual use of the parameters in the function body.

Definition 9 (Multi-ported signal) A signal associated with more than one

port on one side of a channel is called a multi-ported signal.

The one-to-many mapping is routed in two steps. First the multi-ported signals
are connected on the top side of the channel. New ports are created on these wires,

and then a permutation route is used to connect these new ports to the ports on

94

the bottom of the channel?.
An algorithm to connect the multi-ported signals that runs in n? time, where n
is the number of ports on the top of the channel, is now presented. As an example,

the ports (0-12) at the top of the channel are
dadgabecchefe

and the formal barameter order (implemented by the ports 6-6 on the bottom of

the channel) is

segments that go to the top of the channel.

1. First, a list is made of the ports associated with each signal. The first element
in each list is the leftmost port for that signal. The succeeding elements in
each list are the remaining ports for that signal in the order that they appear

at the top of the channel. The lists for the example are shown in Table 3.9,

2. A second list is made of the lists of multi-port signal in the relative order of
the positions of the first elements in each multi-port list. Table 3.3 shows

this list for the example.

2A many-to-many mapping is routed by repeating the first step on the bottom of the channel.
A permutation route can then be used to connect the signals that have to cross the channel.

95

Table 3.2: Lists of Ports

d: 0 2

a: 1 4

g 3

L: 5 9 12
e 6 10

c: T 8

f: 11

Table 3.3: Lists of Ports

— d: 0 2
a: 1 4
b: 5 9
ee 6 10 12
c 7T 8

3. The height of the highest possible occurrence of L1 and L2 in each column
is noted. It is assumed that the y-coordinate of the top of the channel is 0.
For the purpose of this example, the worst case is assumed—that there is
unrelated L2 at the top of the channel in each column. This means that the
next occurrence of L2 in each column cannot be any higher than the minimum
separation between unrelated L2 wires below the top of the channel. For
scalable CMOS, metal-2-metal-2 separation is 4X. The L1 and L2 heights

are shown in Table 3.4,

Table 3.4: Initial Heights of L1 and L2 Layers in Each Column

0 1 2 3 4 5 6 7 8 9 10 11 12
Li: ¢ o0 o o o0 0 O O O O O 0O O
L2: —4 -4 -4 —4 —-4 —4 -4 —4 -4 -4 —4 -4 -4

4. Multi-ported signals are routed by scanning this list of lists of ports as long

as it is not empty. Lists of ports are removed from this list of lists when they

96

have been routed. The first list of ports in the list is routed first. This is
route d in the example. A wire has to be routed between columns 0 and 2.
The horizontal portion of this wire must be routed on layer L2 so that the
vertical L1 wire in column 1 can pass under it. The vertical portions of this
wire should be routed on layer L1 so that it can connect to the ports at
the top of the channel and so that it can cross other, unrelated, horizontal
wires that are on layer L2. Since the highest occurrence of new L2 is at
y = —4, the horizontal L2 wire is placed with its uppermost edge at y = —4.
L1-L2 contacts are placed with their uppermost edges at this same height.
The minimum separations are then subtracted from the y-coordinates of the
lower edges in each column. The heights of each layer in each column after

this step is shown in Table 3.5.

Table 3.5: Heights of L1 and L2 Layers in Each Column After Step 4

0 1 2 3 4 5 6 7 8 9 10 11 12
Ll: -11 6 -11 0 0 0 O 0 0 O 0 0 O
L2: =12 -11 =12 -4 —4 —4 —4 -4 —4 -4 —4 —4 —4

. In an attempt to reduce the height of the multi-port routing, as many signals
are routed in each horizontal track as possible. After a signal has been routed,
the next signal chosen to be routed is the first one that begins in a column to
the right of the one just routed. After signal d is routed, it is removed from
the list of lists of ports. The list of lists then begins with signal a, which
begins in column 1, which is to the left of the rightmost port of signal d. The

first signal in the list which is to the right of the rightmost port of signal d is

97

L1:
L2:

signal b, which begins in column 5. The ports for this signal are independent
of all previously routed signals, and is routed similarly as for signal d. The

heights of each layer in each column after this step is shown in Table 3.6.

Table 3.6: Heights of L1 and L2 Layers in Each Column After Step 5

0 1 2 3 ¢4 5 6 7 8 9 10 11 12
~11 0 —-11 0 0 -11 0 0 ¢ -11 0 o o
-12 11 -12 -4 -4 —12 _j1 =11 ~11 -12 —4 —4 —4

. After signal b is routed, it is removed from the list of lists of ports as is shown

in Table 3.7. None of the remaining ports in the remainder of the list (after

Table 3.7: Lists of Ports after Step 5

a1 4
- e 6 10 12
c: 7T 8

the arrow) begins to the right of the rightmost port for signal b. (Because
the signals in the list of lists are ordered by their leftmost ports, none of
the signals above the arrow need to be considered.) As many signals have
been routed on the first horizonta] track as could be, so the list of lists js re-
examined from its beginning. The first entry in the list is signal a, beginning
in column 1. L1-L2 contacts need to be placed in columns 1 and 4, so the
arrays of L1 and L2 heights are examined The lower of the two values in each
column are ~11 and —4, for columns 1 and 4, respectively, An L2 wire is
drawn from this new contact in column 1 to column 3, and then up to the

minimum of the minimum heights in column 3 and the bottom of the new

98

d

contact in column 4. Figure 3.42 shows the channel after this signal has been

routed. The heights of each laver
d g b

in each column after this step are shown
b

L

a

7/

a [} [c e f 9

o

L1:
L2:

S S S

SN NN

Figure 3.42: Channel After Signals d, b, and a Have Been Routed

in Table 3.8.

Table 3.8: Heights of L1 and L2 Layers in Each Column After Step 6
0 1

2 3 4) 6 7 8 9 10 11 12
-11 —-18 -11 ¢ -11 -11 0 0 0 =11 0 0 o0
—12 19 —-19 -19 —12 —12 —11 -11 —-11 —-12 -4 —4 —4

Signal a is removed from the list of lists, making signal e the next signal
available for routing. It is routed in the same way that signal a was, placing
the wires and contacts as high as possible. Figure 3.43 shows the channel

after signal e has been routed. The heights of each layer in each column after

a d g a b] ¢ ¢ b] 1]
“uan Y 7 ﬁ
ST AN
ANNAANRNNN i INSNN S Taa—

Figure 3.43: Channel Routing After Step 7

this step are shown in Table 3.9.

99

Table 3.9: Heights of L1 and L2 Layers in Each Column After Step 7
0 1 2 3 4 3 6 T 8 9 10 11 12

L1: —-11 —18 -11 0 —-11 —11 -18 0 0 -11 -11 0 —-11
L2: -12 -19 —19 —19 =12 -12 -19 -18 —19 -19 —19 —11 —-12

8.

L1:
L2:

9.

After signal e is routed, its entry is removed from the list of lists, leaving
only signal c¢. Signal e ended iy column 12. Signal ¢ begins in column 7,
and so cannot be routed on the same level as signal e. As many signals have
been routed on this horizontal track as could be, so the list of lists is re-
examined from its beginning. Signal ¢ is the next (and only) signal available
for routing, Normally, this signai would be routed in the third horizontal
track in columns 7 and §; however a special condition exists. These two
ports are adjacent and so a horizontal wire can connect these two ports on
layer L1 without blocking any ports that might otherwise have lain between’
them. The heights of each layer in each column after this fina] step are shown

in Table 3.10. The routing of the multi-port signals is now complete, as is

Table 3.10: Heights of L1 and L2 Layers in Each Column After Step 8

0 1 2 3 4 5 6 7 8 9 10 11 12
—-11 -18 -11 0 —11 ~I1 -18 -9 —9 —_1] -11 0 -11
=12 -19 -19 -19 —12 —12 |9 —18 ~-19 —-19 -19 —11 -12

shown in Figure 3.44.

All the ports in the multi-ported signals have now been connected together.
Any of the columns in which a multi-ported signal lies can be chosen as

the top port for that signal. Table 3.3 shows the signals that have multi-

100

d a d g a b e c c b 8 f e
SR o o2 4.7
ASETR R O TEEETR %ﬂ
ll\ LA\\\\I ﬁ
L ANNNNN 3 AN

Figure 3.44: Completed Multi-Port Signal Route

ple top ports. The top ports chosen should be the closest ones (horizontal
distance) to the ports on tlie bottom of the channel. Since the positioning
of the bottom ports affects how long the wires are, some tests have to be
made to find these positions. This involves sliding the wires at the bottom
of the channel to minimize the horizontal portions of the wires. The total
number of positions for the wires at the bottom of the channel is given by
the binomial coefficient (z), where t and b are the number of ports at the top
and bottom of the channel, respectively. This term grows exponentially as
the t — b increases. To reduce the number of cases that need be considered,
a simplification is introduced. It is assumed that the ports at the bottom
are grouped together and can be slid from left to right. While this may not
yield the best results in all cases, this requires only ¢ — w tests and gives good

results quickly.

A good metric appears to be given by summing the differences between the
z-coordinates of the ports on the hottom and the z-coordinates of the closest
corresponding ports on the top of the channel. Table 3.11 shows the results

of shifting the bottom ports varving distances. The left part represents the

101

10.

Table 3.11: Top and Bottom Port Alignment Tests

dadgabecchefe a b ¢ d e f g sum
abcdefg. 1 45 -1 26 -3 2
.abcdefg. 0 3 4 -2 185 -4 19
..abedefg.... -1 2 3 -3 0 4 -5 18
...abcdefg. .. 1 1 2 -4 -1 3 -6 18
....abcdefg.. 0 0 1 -5 +2 2 -7 17
..... abcdefg. -1 -1 0 -6 1 1 -8 18
...... abcdefg -2 -2 0 -7 0 0 -9 20

ports on the top and bottom of the channel. The first line shows the ports at
the top of the channel. The remaining lines show the bottom ports shifted
right by one port on each succeeding line. The next seven columns show the
horizontal separations for each of the ports. The next column is the sum
of the absolute values of these separations of the seven ports. The goal is
to minimize this number, which is the sum of the lengths of the horizontal
components. This table shows that shifting the bottom ports four positions

to the right gives the minimum total horizontal separations,

Now the bottom ports have been positioned, and there are unique to ports
at the top of the channel. The permutation routing algorithm from Sec-
tion 3.3.11.2 can now be applied. This algorithm requires that each signal
be classified as sinister (definition 7 on page 83) or dezter (definition 6).
This information is obtained from the calculation in the previous step. The
sign of the horizontal separation calculated for each port indicates whether
the corresponding wire is sinister (non-negative) or dexter (negative). The

resulting route is shown in Figure 3.45.

d g a b e e
V) VI
&) § & =
NSO 7
g NEE %
REZAR p
Tl |

d e f g

Figure 3.45: A Channel Route for a One-to-Many Function

3.3.11.4 Routing for n-ary Trees

The routing methods just discussed are now applied to the placement methods
shown in Sections 3.3.6 and 3.3.7. For example, consider the function body in

Section 3.2.3 as part of the function definition shown in Figure 3.46. For the

FUNCTION f = (INT a, b, ¢, d, ¢) INT:
BEGIN a*b 4 (c*d +e)
END

Figure 3.46: A Function Definition

purpose of illustration, the formal Parameters for the function f are declared in the
reference order.

Figure 3.47 shows the general layout for the hierarchical layout of a n-ary tree.
The parent cell corresponds to the parent node. The sub-cells corresponding to

the sub-nodes are placed below the parent node with enough room for the power

103

Ri;'er-Route
v Vdd

N}
Restricted C'lannel Route

Figure 3.47: Floor Plan for an n-ary Tree

routing (Vpp) and the signal wires between the parent and the sub-cells. Below the
sub-cells lies the ground wiring. Below that lies wiring that permutes the inputs
to the sub-cells and the parent so that they are in the same order as the formal
parameters to the containing fuuctiou.i This entire complex is formed into a cell
that has Vpp on the left and ground on the right.

All the levels in the hierarchy are formed in the Same manner, always creating
a rectangular cell that has Vpp on the left, ground on the right, inputs on the
bottom, and outputs on the top.

To place the cells for the function given in Figure 3.46, the subexpression
(c*d-+e) is laid out first. The multiplier *, corresponds to subg and the adder +,
is the parent cell. In the next level up in the hierarchy, (a*b+celly), this cell is
suby. The multiplier *1 corresponds to subg and the adder +1 is the parent cell.
The layout for the complete tree is shown in F igure 3.48.

In Figure 3.46 the formal Patameters to the function were declared in the same
order as they were referenced in the function body. This allowed the routing to be
simple (no wires crossing, no change in wire order), but the formal parameters are

not always referenced in the declaration order. If, the function is altered slightly

104

Vdd Out GND

*2
*1 5

5 b o d
Figure 3.48: Floor Plan for the Function in Figure 3.46 with Power and Ground

and the order of the formal parameters is reversed, as in Figure 3.49, the same

layout becomes more difficult to route.

FUNCTION f = (INT d, ¢, b, a) INT:
BEGIN a*b + (c*d +¢)
END

Figure 3.49: Another Function Definition

A possible solution to this routing problem is to perform a channel route of the
ports on the top of the channel that effectively puts these ports in the same order
as that of the formal parameters.3 F igure 3.50 shows an input permutation for the

inputs to the cell that corresponds to %5, This cell needs inputs in the order ¢, d

Figure 3.50: Input Wire Permutation for *g

and they are made available as d, c. A permutation route is needed to put the

connections in the right order. In the hierarchical routing, it is not known which

3This discussion assumes that the cells cannot be mirrored about their y-axes, and that the
inputs to the cells are not commutative. Given enough inputs to a cell, it is possible that mirroring
a cell may make routing worse.

105

Wiring constraints will be imposed later from higher levels in the hierarchy, so the
wires are brought out in the sane positions as in the inputs to the cell.

Vdd | Out GND

d ¢ b 2
Figure 3.51: Floor Plan for the Function from Figure 3.46 with Power, Ground, and

Permuted Inputs

Figure 3.51 shows the placement and routing of cells implementing the function
shown in Figure 3.49. The routing of inputs to *;, ¢ and d had to be reversed to
match their order in the formal parameter list. The next level up in the hierarchy
(c*d+c) requires inputs that are available in the order d, c. The input ¢ has to
be merged with the inputs to the previously routed cell, d, ¢ to yield the wires in

the order d, c. This is done with the one-to-many channel-routing algorithm from

106

Section 3.3.11.3. The next sub-expression, a+b, has the inputs reversed so that at
the next level up in the hierarchy the inputs require inputs in the order b,a,d,c.
In the top level of the hierarchy, these wires are permuted to d,c,b,a, matching
the formal parameter order. These last two steps are also performed with the
one-to-many channel routing algorithm. Since there are no multi-ports in the last
two steps, only the permutation routing portion of the channel-routing algorithm
is performed.

The above discussion does not take into account the advantage of commutativ-
ity of the operators. Without exploiting- commutativity, local routing permutations
of wires to match the order of the formal parameters require no more horizontal
wiring channels than if the routing permutations were done for the entire complex
of placed cells. The vertical area required for these horizontal channels can be
absorbed in the space taken by the associated subcell if the adjacent subcell is

taller than the subcell plus the wiring permutation.

3.3.11.5 Routing for Conditional Expressions

There are two kinds of conditional expressions. These are the IF and the
CASE expressions. The former selects one of two expressions based on the value
of a Boolean expression. The CASE expression selects one of several expressions
based on an integer value.

Figure 3.52 shows the general form of an IF expression. In this expression, a

is an arbitrary Boolean expression and b and ¢ are arbitrary expressions that are

107

IF a
THEN b
ELSE ¢
Fi

Figure 3.52: General Form of an IF Expression
of the same datatype. Since the IF expression yields either the value from the
THEN part or from the ELSE part. the IF expression has the same datatype of
the THEN and ELSE parts of the expression. A floor plan for this IF expression

is shown in Figure 3.53.

Voo Out GND

Multiplexor

Figure 3.53: Floor Plan for a General IF Expression

The CASE expression selects one of several expressions based on the value of
an arbitrary integer expression.

Figure 2.7 on page 36 shows the general form of an CASE expression. In
this expression, sel is an integer expression and a, b, ¢, d, and e are arbitrary
expressions that are of the same datatype. If the selection valye (sel) matches one
of the cases (in this example, an integer between zero and three), then the value
of the associated expression is yielded as the value of the CASE. If none of the
values match, the value of the expression associated with the QUSE is yielded as
the value of the CASE. The CASE expression has the same datatype of all of jts

parts (including the OUSE part). A floor plan for this CASE expression is shown

103

in Figure 3.54,

Out GND

Multiplexor

sel

w3

Figure 3.54: Floor Plan for a General CASE Expression

3.4 Estimating Non-Behavioral Attributes

The ALICS Synthesizer creates circuitry that implements a given algorithm and
data types. In order to he usefyl as a prototyping tool, the synthesizer must be
able to provide measurements or estimates that faciliate the comparison of different
designs or provide a design quickly enough that existing estimators can be used.
Non-behavioral attributes provide a basis for comparisons [Clin84]. Generally,
designs are better if they require less area, less power, and have lower delays.
Unfortunately, changing a design so that one or more of the attributes are lowered
may raise others, The ALICS Synthesizer enables a designer to change a design
and then see the effect of the changes on the non-behavioral characteristics.

The hierarchical structure of the language and t}}e target circuitry makes it easy
to estimate these non-behavioral characteristics. The ones that will be examined

are area, power, and delay.

109

3.4.1 Area

The computation of the area of 4 circuit that implements ap Algol algorithm
is done hierarchically by the routines that place and route the circuitry. These
routines are part of the Chisel routijes [Karp33]. These routines create the CIF
descriptions of the masks and also maintain a bounding box for the circuitry created

so far. As mask entity or an already defined cell is added to a current cell. the

bounding box for the current cell is updated.

Thus the area of a circuit s estimated by creating the CIF description of the

circuit and noting the size of the bounding box.

3.4.2 Power

The power is determined by summing up the Vpp current required for each-
cell in the design and multiplying by the operating voltage. Associated with each
port in a chisel cell is the maximum current needed by (driven by) the port. The
current in CMOS circuits is determined by the charge required to charge capacitive

gates and wires. The current is given by
I =fCAv,

where f is the operating frequency, (" is the capacitance, and AV the change in
the voltage [Mukh86). The current increases proportionally with the capacitance

of gates and wires.

110

3.4.3 Delay

Data flows through the function mputs to the function outputs. If self-timed
circuitry implements the functions. then data-dependent delays will be seen. If
combinational circuitry implements the functions, then clocking data through the
circuitry will have to be done at the worst-case delay through the circuit,

The delay through the circuit can be computed through standard techniques.
A CIF file is produced by the Algol synthesizer. The features in the CIF fle are
easily converted into input for a timing simulator like crystal [OustSS.OustSS] or

an electrical simulator like spice [Vlad31,Quar86], and the timing results quickly

cbtained.

3.5 Validity of the Approach

The layout methods described in this thesis have been applied to several de-
signs. The ALICS descriptions and their layouts are shown in Chapter 5. The
translation process is shown in the next chapter to be rapid and scale well for large
designs. Most of the analysis requires time proportional to the size of the design,
but routing requires time proportional to the square of the number of wires that
need to be routed at any given time. While n? seems lengthy for large n, The
hierarchical nature of the design process reduces the number of wires that need to
be considered at any given time, so that n? is for a small n.

It is useful to find out how a manually laid out design compares with the

ones produced by the ALICS Svnthesizer. To compare the two layout methods

111

fairly, some rules have to be imposed on the manual technique. This is because
many techniques that are done manually can be performed on the cells used by
the synthesizer. For example, ALICS Svuthesizer's cells use complementary logic.
Using pre-charged logic in the manual designs would not give a valid comparison
with the automatic technique, because the use of cells with pre-charged logic is
not prohibited in the automatic method.

The rules for converting an automatically laid out design to a manual design

are as follows.

1. The transistor schematics for the primitive cells must be the same in both

layout techniques.
2. The corresponding transistor sizes must be the same in both techniques.
3. Corresponding wire lengths may differ in the two techniques.
4. The hierarchy may be flattened in the manual technique.

5. Substrate contacts may be added or removed in the manual technique, but

there must be enough contacts for the circuit to function property.

6. The power and ground wiring may have different topography in the two

techniques. This includes sharing the power buses in adjacent cells.

7. The manual technique need not restrict the placement of a cell’s inputs and

outputs to the bottom and top of a cell.

These rules were followed to manually compact the ripple-carry adder described
in Section 5.5. This design was chosen because the automatic layout appeats to
waste a lot of area. Rather than lay the cells side-to-side horizontally, the automatic
method attempts to reduce lengths of the wires that go from cell to cell. The layout
of the manual design of an eight-bit ripple-carry adder is shown in Figure 3.35.

The areas and power requirements of the manually laid-out design are shown in

Figure 3.55: Manually Laid Out Ripple-Carry Adder

Table 3.12. The corresponding areas and delays for the automatic method are

Table 3.12: Areas and Delays for Manually Laid-Qut Ripple-Carry Adders
#of | z y Area | Delay
Bits | (M) [(A) | (M) | (nSec)
1 147 | 82§ 12054 | 10.14
302 | 88 | 26576 | 14.19
457 | 98 | 44786 | 22.54
612 [98 | 59976 | 30.89
767 | 104 | 79768 | 39.25
022 | 110 | 101420 | 47.60
1077 | 110 | 118470 | 55.95
1232 | 116 | 142912 | 64.30

00~ W

given in Table 5.3 on page 145. Table 3.13 shows a comparison of these features.
The numbem- are the percent increase for the automatic design over the manual
design. For example, the automatic layout of the eight-bit ripple-carry adder is
2.58% slower (by 1.66 nanoseconds) than the manually laid-out one, but is larger

by 260% (3.6 times as large). So the automatic layout produces circuits that are

113

Table 3.13: Comparison of Areas and Delays for Automatically Laid-Out and Manualiy
Laid-Out Ripple-Carry Adders

of Delay | Area
Bits | % Increase | % Increase

1 —8.38 100

2 —-4.58 129

3 —1.15 144

4 0.39 182

5 1.27 200

6 1.85 216

7 2.27 247

8 2.58 260

less area-efficient than the manually laid-out counterparts, but the delay estimates

are comparable.

3.6 Summary

A method has been given for efficiently analyzing an ALICS source program.
This consists of lexical analysis, parsing, and the transformation of these expres-
sions into a structural representation of the program. This structure is mapped
onto a tree of interconnected cells that implement the functions in the program. A
method has been demonstrated for placing cells hierarchically and for routing func-
tions and conditional expressions. Efficient methods have been defined for routing
of permutations and one-to-many mappings. These mappings are needed for the
routing of signals from a function’s formal parameters to the points where the pa-
rameters are referenced. Because the wethods are fast, it is easy for the designer
to experiment with changes to an algorithm and data types and then measure the

non-behavioral attributes of the resulting designs. These measurements can be

114

used to select the best of several designs for more thorough examination.

The automatic layout is less area-efficient than a comparable manual layout.
However, the delay estimates obtained from the automatic designs are within a
few percent of the manual designs. This is significant because it means that this
technique is worthwhile for the design ol prototypes. Once a design with the
desired delays is obtained, the area of the design can be reduced by manual editing

or other lengthy techniques.

CHAPTER 4

Time Complexity of the Synthesis Method

The time complexity of the major portions of the Algol synthesizer, important
for creating prototypes, are discussed in this chapter. To be useful, a prototyping
_ System must work quickly. The time complexity gives a good indication of how
long it will take for a chip design to be synthesized from an algorithmic description.
The complexity gives a more important indication of how much longer a larger
design will take to be synthesized. A synthesizer might operate quickly for small
designs, but if its complexity is exponential it may be infeasible to compare design
alternatives if the circuits are large. Less complex synthesis algorithms allow large
designs to be synthesized faster and so more design alternatives cap considered by
a designer.
The complexity of the synthesizer is obtained by determining the complexity
of the different parts of the synthesizer. A picture of the flow-of-control in these
parts is shown in Figure 3.1 on page 50. The major modules in the synthesizer are

the lexer, parser, structure-tree traversal, layout, and wiring,

116

4.1 Lexer

The lexer, written in the lexical analysis language, lez{Lesk75], reads characters
from the input Algol program and partitions the characters into indivisible words
called tokens. The time taken by a ler program is proportional to the number of
characters in the input.

The symbol table created by the lexer and the parser is implemented with a
hash table. The time taken for hash table entry and retrieval is a constant if
the table is not full. If the table is full, the overflow buckets are organized in a
balanced binary tree. Entry into and retrieval from balanced binary trees is log,

of the number of items in the overflow bucket.

4.2 Parser

The parser, written in the compiler-compiler language yace[John78], reads to-
kens from the lexical analyzer and activates semantic routines when grammar rules
have been recognized. The time required to parse the input (classify tokens ac-
cording to the rules of the gramumar) is bounded by the number of input tokens
times the number of productions in the grammar. Since the number of grammar

productions is constant, parsing is proportional to the number of input tokens.

4.3 Structure Tree Construction

Construction of the structure tree is formed as the input is parsed. The tree is

a condensed form of a parse tree. The formation of each node in the tree requires

117

a constant amount of time. Entries that are made in the symbol table for function
and variable definitions require constant amount of time before the hash table fills,
and require log, of the number of itemns in the overflow bucket when a hash table

entry fills.

4.4 Structure Tree Traversal

After the complete program has been parsed and the structure tree has been
built, the structure tree is traversed to perform the layout and wiring. The time
required to traverse the tree jg proporﬂonal to the number of nodes in the tree,
since each node is visited only once.

During the traversal of the structure tree, the nodes are interpreted, The in-
terpretation of a node might involve iteration, function expansion, or recursion
expansion. The number of iterations and levels of recursion is program-dependent,
must be finite, and has to be analyzed on a program-by-program basis. Interpre-

tation of each of the nodes requires constant time.

4.5 Layout

Layout is performed while examining each node in the structure tree. Each
type of node has a corresponding layout template. The layout of each template is
computed in time proportional to the number of subnodes plus one for the node

itself,

4.6 Wiring

4.6.1 Terminology and Assumptions:

W The total number of wires in the river route,

wiring order The wiring order is assumed to be from bottom-to-top and left-to-

right, for the purpose of discussion.

wire bundles Bundles are groups of adjacent wires in a river route that can be
routed in a similar manner, either from lower-left to upper-right (bundles-
sinister) or from lower-right to upper-left (bundles-dexter). Wires that run
straight across the channel without any bends are degenerate cases of both
types. All bundles consist of adjacent bottom ports that need to be routed
to adjacent top ports in the same order. Bundles-sinister consist of pairs of
connected ports where the top port of each pair lies above and to the right of
the bottom port, Adjacent bundles alternate between bundles-sinister and
bundles-dexter and can be routed independently. Adjacent bundles of the
same type are merged to form a single bundle. Each wire in a bundle-sinister

consists of a list of points whose and y coordinates increase monotonically.

w The number of wires in » bundle. w < ¥

119

b; The number of bends in wire ; in a bundle, This counts bends to the right and

bends up (see Figure 3.29).

4.6.2 Determining Channel Height-Previous Work

Dolev, et al[Dole81), discuss method for determining the height of a channel
in O(w) time. This method, and its shortcomings, is summarized in the following

paragraph.

Wires and ports are represented by lines that lie on a fixed grid (see

Figure 4.1}, where the grid size is the sum of the minimum wire width

’ TI T2 T3 T4 ’

’ 182 B, B, l
Figure 4.1: River Routing Expressed as Lines on a Grid

and minimum wire separation. The channel width is determined by
calculating a conflict number W(i, j) for all pairs of ports B; and T,.

(B; and T; indicate the z coordinates of port B; and T;, respectively.)

The conflict number indicates how many wires pass between the pair
of ports and contribute to the height of the channel. If the ports are
far enough apart, or directly above one another, then they do not con-
tribute anything to the height of the channel. If they are close enough,
l7 ~ i 41 wires must pass horizontally between the ports. W (s, j) =0

in the following cases:

i=j and T;= B, (4.1)
i<j and T,—i< B,] (4.2)
i>) and T,-i> B, -] (4.3)

In all other cases the conflict number Wi(i,j)=li~j| +1.

To find the minimum channel height, they let ¢; be the smallest
¢ < 7 such that B;—T; < j—i(orjif no such t). j is then incremented
from 1 to n, searching c; (starting at ¢j — 1) and computing Wie;, 7).

This process requires O(w) time.

4.6.3 Problems

The preceding method does not work if some of the wire widths are different. In
practical cases, some of the wires wiil have to be created wider than others in order
to accommodate higher electrical currents or lessen voltage drops [Chow86] (see
Figure 4.2). If the grid size in a channel is enlarged to accommodate the largest
wire in that channel, the method will still require O(w) time, but will require an

unnecessarily large channel.

1 Port Bj r
2 B,

Figure 4.2: River Routing with Differing-Width Wires

To produce a minimum-height channel. it is necessary to do additional work.
We will denote the z coordinate of the left and right sides of a port B; by B
and Bj.. The width of the Jth wire is W,. The wire separation is s. The above

equations become;
i=j and By+W;<Q,
and Tj;+ W, < B, (4.1)

1<j and Ty+W—(B; — W) (Z Wk)+(z—j+1)3. (4.2')
k

=i+1

=i41

t>7 and Tu+ W, - (B, - W) (Z Wk) +(t -7+ 1)s. (4.3)
k

In all other cases the conflict number W{z, ;) is given by

Wi, j) = (Z iVL) +{(t—74+1)s.
k=1+1

The search for the largest c; proceeds as above.

Because of the summations in these equations, the time to determine the chan-

nel height is actually O(w?).

4.6.4 Creation of the Wires

The creation of the wires in 4 river-route involves determining the channel
height (the wires run from the bottom to the top of the channel). This is ac-
complished in time proportional in O(w?). The number of bends in each wire is
determined by the number of bends in the wire to its immediate left and above it.
The maximum number of coordinates created is proportional to w?, and therefore,

$0 Is the time required.

4.6.5 Signal Routing

The binding of formal parameters to actual references inside function bodies is
performed by routing wires from a celi’s inputs to the input ports on the subcells
that need the parameters. Routing is performed in a channel that lies below the
subcells. Inputs to the function are at the bottom of this channel and correspond
to the function’s formal input parameters, each of which must be unique. The
mapping of input parameters to reference order is a one-to-many mapping. The
ports at the top and bottom of the channel are on the metal-1 layer so that the
wires connected to these ports can pass underneath the power and ground wires
which are on the second metal layer, metal-2.

This routing is done in two steps. First the signals with multiple ports at the
top of the channel are connected together. For each of the signals with multiple
top ports, one of these ports is chosen as a destination port. Then permutation

routing is used to route what is now a one-to-one mapping.

The complexity of connecting the signals with multiple ports at the top of the
channel will be examined first. To perform this routing requires the construction
of the signal name to port list mapping, ordered by leftmost port for each signal,
which is implemented as a lisi of port lists. This list is built in time proportional
to the number of ports. The ports at the top of the channel are ordered by their
positions along the z-axis. Associated with each port is a signal name which is
an index into what will become the Ijst of port lists. This list is initially empty
and each listhead (one for each signal) is empty. Each listhead is associated with a
signal and contains a pointer (which is initially NIL) to the first port in the list and
a pointer (also initially NIL) to the last port in the list for that signal. There are
pointers to the first and last listheads for the signal port lists, which are initially
empty.

The construction of the list of port lists is performed by scanning the ports at
the top of the channel from left to right. This requires time proportional to the
number of ports. The signal name associated with each port is used as an index
into the listheads for the lists of ports for each signal. If the listhead is empty, a
new listhead is appended to the end of the list of listheads. An entry for the port
is then appended to the list pointed to by the listhead. Since pointers to the end
of the list of listheads and to the end of the lists of signal ports are maintained,
this operation requires constant time. Thus the creation of these lists is performed
In time proportional to the number of ports.

The next step is the determination of how far to shift the bottom ports so

that the total length of the horizontal portions of the wires is minimized (sec-
tion 3.3.11.3, step 9). The shuple approach taken involves shifting the collection
of bottom ports as a unit and using the position with the smallest total horizontal
wire length. The number of comparisons that have to be made is between none (if
* there is a one-to-one correspondence between ports on the top and bottom of the
channel) and the difference betweern the number of ports on the top and bottom
of the channel times the number of ports on the top of the channel, which goes to
O(n?) in the limit.

The final step is the permutation route between the one-to-one mapping of
ports created in the previous step to the ports at the bottom of the channel. The
permutation routing algorithm shown in section 3.3.11.2 divides the routes into two
classes-routes-sinister and routes-dexter. Routes-sinister are routed in a manner
similar to river-routing (section 3.3.11.1), except that the vertical portions of the
wires are routed on the first routing layer and the horizontal portions on the second
layer. Routes-dexter are then routed on the first routing layer, passing under the
horizontal portions of the routes-sinister. In the process of routing the wires, each
successive wire has to be routed so that it avoids the corners of the preceding wires.
River-routing requires time proportional to the square of the number of routes.

Thus the channel routing can be performed in the worst case in time propor-
tional to the square of the number of ports on the top of the channel.

Permutation routing requires a channel no wider than that required for n wires

(with contacts) and no higher than that required for n wires (with contacts).

125

One-to-many mappings contain a permutation route and a many-to-one route.
At most, half of the ports can be multi-ported. Therefore a many-to-one route
requires at most 7 horizontal wires, since one horizontal wire is required for connect
each multi-ported wire. The actual number might be less than this because multi-
ported wires may share the same horizontal track when they do not interfere with
each other. The permutation route js placed south of the many-to-one route, so
that it does not interfere with it, and therefore the maximum total area 1s the sum
of the areas of these two routes. For a maximum height (2) many-to-one route a
permutation route of % wires, which requires height 2, is needed. Thus the total
height is O(n).

General channel routing is performed with a many-to-one mapping at the top
and at the bottom of the channel with a permutation route in between. This.
produces a channel no wider than that required for n wires (with contacts) and no
higher than O(22), since the maximum height of each many-to-one channel route

is § and the maximum height of the channel route is also 2.

4.7 Summary

The time complexities of the synthesis algorithms are summarized in Table 4.1

The symbols are defined as follows.
¢ The number of characters in the source program.

t The number of tokens in the source program (< c¢).

Table 4.1: Complexity of Synthesis Algorithms Used
Lexing | O(c + log,)
Parsing | O(t)
Structure Tree Construction O(t x log, t + log, &)
Structure Tree Traversal Olt)
Layout | O(t)
River Routing | O(w?)
Channel Routing | O(w

H The number of hash buckets in the symbol table.
h The number of overflow buckets in the symbol table (¢ — H).
w The number of wires to route.

It is difficult to relate these numbers to one another. For example, the number
of wires in a channel, w, is not directly related to the size of the structure tree or
the number of tokens or characters in the source program. While it is difficult to
characterize this synthesis process, the squared terms probably do not dominate
the complexity. This is because these terms depend on the number of wires in

individual channels, not the number in the entire circuit.

CHAPTER 5

Examples

This chapter contains examples of several designs using ALICS. These examples
illustrate the ability to express algorithms in ALICS. These algorithms have been
laid out using the methods in Chapter 3. The area and speed are shown for each
of these so that variations on the designs can be compared.

First some basic switching expressions are presented. Then, some designs for
some equality function are presented. This illustrates the use of compile-time
conditionals and compile-time recursion in the specification of a function of varying
length operands. Two methods of performing addition are given and the area,

power, and speed compared.

5.1 Switching Expressions

The basic component of an ALICS program is a switching expression. This
involves Boolean operators on a function’s inputs. A sample function is shown in
Figure 5.1 This example is a complete one, in that it contains everything needed
to compile it. The entire program is enclosed in a BEGIN-END block. The next
three lines define the operators NOR. NAND, and XOR. They are functions, each

requiring two BITs and yielding a BIT value. The function body is defined as an

BEGIN
OP NOR = (BIT a, b) BIT : CODE "nor2”:
OP NAND = (BIT a, b) BIT : CODE * nand2”
OP XOR = (BIT ,, b) BIT : CODE "xor2”:
LEFTASSOCIATIVE NOR, NAND, XOR:
PRIO NOR = 2:
PRIO XOR = 2;
PRIO NAND = 3;
FUNC switch = (BIT ¢, d, e) BIT :
(c XOR e) NOR d NAND e;

switch
END

Figure 5.1: A Function Definition Containing Switching Expressions

external cell by using the token CODE. That is, NOR is defined as an external
cell named nor2. Presumably this name is descriptive, implying that it computes
the nor function of two inputs (although this is not necessarily so). The three
operators are defined as being left associative. The priorities of the operators are
defined in the next three lines. The higher the number, the higher the priority, or
precedence, of operator. Next the function named switch is defined as requiring
three BIT inputs and yields a BIT value. The function body is on the next line.
Because NAND has a higher priority than NOR, the function is equivalent to
(c XOR ¢) NOR (d NAND e).

Finally, the name of the function switch without any arguments implies that this
function is the yield of the block (not the value of the function, but the function
itself). This means that the inputs and output of the block are synonymous with

the inputs and outputs of the overall function, which will become the inputs and

129

outputs of the chip. The layout of this function after the specification has been

run through the synthesizer is shown in Figure 5.2

IS AN B

NN
a /
S S S S i

1026

18/

Figure 5.2: Layout for the Function Definition in Figure 5.1

5.2 Conditional Expressions

Figure 5.3 shows the specification of a conditional expression. The correspond-
ing layout is shown in Figure 5.4. Note that there is permutation routing at the
bottom of the channel that puts the input parameters in the proper order for their

use within the circuitry.

130

BEGIN
OP NOR = (BIT a, b) BIT : CODE "nor2";
OP NAND = (BIT a, b) BIT : CODE "nand2":
OP XOR = (BIT a, b) BIT : CODE "xor2";

LEFTASSOCIATIVE NOR, NAND, XOR:

PRIO NOR = 2;

PRIO XOR = 2;

PRIO NAND = 3;

FUNC ifchip = (BIT j, a,f d,b,i, h, g c, e)BIT:
IFaNOR b
THEN c NAND d
ELIF g NOR h
THEN i NAND j
ELSE e XOR f
Fl;

ifchip
END

Figure 5.3: Specification of a Conditional Expression

131

m
T Lz
1
{ o
[i
N fu]
N
q
\mm/ _
N fa .
N
A/L
q
ZmD2
h=
N
PRI~
f 7Tel 0 ®
S N N N U N N . —
T 1
. - :
N7 7 3

Layout for the Function in Figure 5.3

Figure 5.4:

132

5.3 Equals

While ALICS contains an equality operator (=) and the ALICS Synthesizer
will produce circuitry for this function, it is sometimes useful for the designer
to redefine (or overload) this operator for certain data types. This is necessary
when equality is not defined as bit-by-bit equality, as in interval arithmetic, or
comparisons of stacks. This, however, is not the purpose of this example, but
instead this shows the definition of an operator that works on operands of varying
length. This is done by the function defined in Figure 5.5. For single-bit operands,
a primitive comparison function {inverted exclusive OR) is called. For an array of
operands the array is divided in half, and the equality routine is called twice in
parallel with these half-sized arrays. The values returned by these two invocations
are ANDed together. These invocations might involve further recursions and AND
operators.

The question “Which operations are performed at compile time and which
produce circuitry?” might come up. The answer is that the operations that can
be performed at compile time are, and the rest are translated into circuitry. As
it stands, the = operator in Figure 5.5 cannot be implemented because the sizes
of the operands are not known. (If a size were chosen arbitrarily, it might be
exceeded inr some application.) The function in Figure 5.6 can be implemented
because the sizes of the operands are known. They are both arrays of BITs of
size eight. To produce a circuit with its inputs corresponding to the function’s

inputs, this function is invoked without an argument list. This implies that the

133

/* Define AND as the inversion of NAND. */

OP AND = (BIT a,b) BOOL:

BEGIN

NOT (2 NAND b)
END

/* Define = for BITs. */
OP = = (BIT a,b) BOOL:
BEGIN

NOT (a XOR b)

END

OP = = ([] BIT c.d) BOOL:
BEGIN

iFLWBc=LWBd

ANDIF UPBc=UPB d

THEN /* The precisions of the two arrays are the same. */
IF LWB c = UPB d
THEN /* Use the BIT comparator function. */
c[LWB ¢] = d[LWB d]
ELSE /* Else divide the work recursively
and AND the results. */
(c[UPB ¢ : ceil((UPB ¢ + LWB ¢)/2)]
= d[UPB d : ceil((UPB d + LWB d)/2)])
AND (c[ceil((UPB ¢ + LWB c)/2) -1 : LWB ¢]
= d[ceil((UPB d + LWB d)/2) -1 : LWB d))

Fl

ELSE /* The precisions of the two arrays are different. */

Fi
END

Figure 5.5: Definition of a Generic-Length Equality Operator

FUNC equals8 ([7:0]BIT a,b) BIT:

BEGIN

a=>b

END

Figure 5.6: An Implementable Function

134

inputs and the outputs of the function are bound to the inputs and outputs of the
circuit. An outline of the complete definition of the chip is given in Figure 5.7

(these definitions have already he given).

BEGIN
Definition for AND.
Definition for =,
Definition for equals8.
equals8

END

Figure 5.7: A Specification for an Circuit for Computing Equals on Two Arrays of BITs

The translation of this specification is performed as follows. During the parsing
of this program the three definitions are saved. The fourth line of the program is
the last functional unit of the BEGIN-END block, and so it is the value yielded
by the block. The function body for equals becomes the body of the block. This
is the expression

a=bh.
Since this block is the outermost one in the specification, the inputs (a and b) and
outputs of equals are the inputs and outputs of the circuit/chip. Continuing the
expansion of this function, = needs to be expanded. equals’ values a and b are
bound to the operator ='s formal parameters ¢ and d, respectively. The operator
= is not irnélementable in isolation, but in this context the sizes of its operands

are known. This means that the following substitutions can be made.

IWBe = 0

135

LWBd = ¢
UPB ¢
UPBd =

These substitutions cause the lines

IF LWB c = LWB d
ANDIF UPB ¢ = UPB d

to become

IF0=0ANDIF7 =7

Since 0 and 7 are integers, the = operator for integers is invoked. This does not
correspond to the = operator defined in Figure 5.5, which operates only on arrays
of BITs, so the built-in = operator is invoked. The operands (0 and 7) are compile-
time constants, so this function is evaluated at compile time and replaced with the
following,
IF TRUE ANDIF TRUE.

Similarly, the operands of ANDIF are known at compile time, and evaluate to
TRUE. Thus the THEN part is evaluated and the ELSE part is ignored.

The inner IF is then evaluated. Since LWB ¢=0 is not equal to UPB d, the inner
ELSE expression is evaluated. The ELSE expression simplifies to the following.

a[7:4] = b[7:4] AND a[3:0] = b[3:0]

The operands for the = operators in this expression are arrays of BITs, and so the

same equals operator is called recursively causing the ELSE expression to become

(af7:6] = b[7:6] AND a[5:4] = b{5:4]) AND
(a[3:2] = b[3:2] AND a[1:0] = b[1:0])

and on the next iteration,

136

((a[7:7] = b[7:7) AND a[6:6] = b[6:6]) AND
(al5:5] = b{5:5] AND a[4:4] = b[4:4]})) AND
((a[3:3] = b[3:3] AND a[2:2] = b[2:2]) AND
(a[1:1] = b[1:1] AND a[0:0] = b[0:0])).

This expression involves the = operator on one-element arrays of BITs so the =
operator is invoked eight more times at compile time. At this point the inner IF
expression in the = operator evaluates to TRUE. This causes the above expression

to become

((a[7] = b[7] AND a[6] = bj6]) AND
(a[5] = b[5] AND a[4] = bJ4]})) AND
((a[3] = b[3] AND af2] = bj2]) AND
(a[1] = b[1] AND a[0] = b{0])).

This expression involves the = operator on BITs. This expression is expanded one

more time to yield

((NOT(a[7] XOR b[7]) AND NOT(a[6] XOR b[6])) AND
(NOT(a[5] XOR b[5]) AND NOT(a[4] XOR b[4]))) AND
((NOT(a[3] XOR b[3]) AND NOT{a[2] XOR b[2])) AND
(NOT(a[1] XOR b[1]) AND NOT(a[0] XOR b[0]))).

No further substitutions can be made on this expression because none of the values
of the BITs of a and b are known at compile time. The layout for an eight-bit
equals operator from this algorithm is shown in Figure 5.8. 'The areas and delays

for several sizes of BIT-array equals operators are shown in Table 5.1.

5.4 Another Equals

The equals operator in the previous section incorporates only 2-input nand

gates in the design. In this section an algorithm that also incorporates 3-input.

137

) O N

/

o L

oo ot
=

bo GHD!

Figure 5.8: Eight-Bit Equals Using 2-Input Nands

Table 5.1: Areas and Delays for BIT-Array Equals Operators

of

O~ OwUv awN

T
Bits | (\)

1 53

] Area Delay

(X) (A%) (nSec)

50 2,650 6.59
112 | 114 | 12,768 | 10.05
230|185 | 42550 | 1355
230 1185 | 42550 | 13.55
465 | 268 | 124,620 { 17.13
465 [268 | 124,620 | 17.13
465 | 268 1 124,620 | 17.13
465 | 268 | 124,620 | 17.13

138

and 4-input nands is presented. This not only produces a more compact layout,
but also illustrates a compile-time looping operator. The algorithm is shown in

Figures 5.9 and 5.10. This algorithm creates a tree of AND gates in order

FUNC and4 (BIT a,b,cd) BIT:
NOT nand4(a,b,c.d);

FUNC and3 (BIT a,b,c) BIT:
NOT nand3(a,b,c);

FUNC and2 (BIT a,b) BIT:
NOT nand2(a,b);

/* Define = for BITs. */

OP = = (BIT a,b) BOOL:
NOT (a XOR b);

Figure 5.9: Definition of a Generic-Length Equality Operator Using 2, 3, and 4-Input
Nands

to compute the AND of all the comparison operators at the leaf nodes. This
algorithm incorporates as many large (four-input) gates at each level of the tree,
but will incorporates smaller gates (three or two-input) when this will equalize the
sizes of the gates at each level. By using larger gates close to the leaf nodes, the
design will have fewer levels thag if smaller gates were used.

This algorithm is best understood by considering a few examples. The length
calculated in the FOR loop is actually one less than the number of elements in the
arrays. If the number of elements is 2, 3, or 4, then length is I, 2, or 3 and the
expression corresponding to [1], [2], or [3] in the CASE expression is evaluated.
These expressions are two-input, three-input, and four-input and gates.

If there are more than four elements in the arrays, then the number of elements

minus 1 is repeatedly divided by four until the integer portion is one, two, or three.

139

/* General-purpose equals using nand2,3,4. */
OP = = ([] BIT a,b) BOOL:
BEGINIF LWB a = LWB b
ANDIF UPBa =UPBb
THEN/* The precisions of the two arrays are the same. */
IFUPBa —LWBa=20
THEN a[LWB a] = b[LWB b] /* Use the BIT = function. */
ELSEFOR length := UPB a — LWB a
WHILE length != 0 EXEC length /:= 4
DO CASE length IN
/* Divide the work recursively and AND the resuits. */
[1}: (a[UPB a : ceil((UPB a + LWB a)/2)]
' = b[UPB b : ceil((UPB b + LWB b)/2)])
AND (a[ceil{({(UPB a + LWB a)/2) —1 : LWB a]
= bleeil((UPB b + LWB b)/2) ~1 : LWB b))
[2]: and3(a[LWB a:ceil((LWB a + UPB a}/3)—1]
= b[LWB b:ceil({tWB b + UPB b)/3)-1],
a[ceil((LWB a + UPB a)/3)
:ceil(2¥(LWB a + UPB a)/3)-1]
= b[eceil((LWB b + UPB b)/3)
:ceill(2*(LWB b + UPB b)/3)-1},
a[ceil(2*(LWB a + UPB a)/3):UPB a]
= b[ceil(2*(LWB b + UPB b}/3):UPB b))
[3]: and4(a[LWB a:ceil((LWB a + UPB a)/4)-1]
= b[LWB b:ceil((LWB b + UPB b)/4)-1],
a[ceil((LWB a + UPB a)/4)
:ceil(2¥(LWB a + UPB a)/4)-1]
= b[ceil((LWB b + UPB b)/4)
:ceil(2*(LWB b + UPB b)/4)-1],
a[ceil(2*(LWB a + UPB a)/4)
:ceil(3*(LWB a + UPB a}/4)-1]
= b[ceil(2*(LWB b + UPB b}/4)
:ceil(3*(LWB b + UPB b)/4)-1],
a[ceil(3*(LWB a + UPB a)/4):UPB a]
= b[ceil(3*(LWB b + UPB b)/4):UPB b))
ESAC
0D
Fi
ELSE /* The precisions of the two arrays are different. */
FI
END

Figure 5.10: Definition of a Generic-Length Equality Operator Using 2, 3, and 4-Input
Nands (cont.)

140

Then the corresponding expression in the CASE expression is evaluated. Each of
these expressions divides the input arrays into 2, 3, or 4 arrays of more or less equal
number of elements. These arrays are recursively partitioned and passed to 2,3,
or 4 invocations of the = operator until arrays of 2, 3, or 4 BITs are obtained.
Then 2, 3, or 4-input AND gates are used to AND together the yields of these

= operators. The layout for an eight-bit equals operator from this algorithm is

shown in Figure 5.11.

| 0 |

%]
7 &6 5 da 3 a¥l b D2 J1 o GNb!

Figure 5.11: Eight-Bit Equals Using 2, 3, and 4-Input Nands

The areas and delays for several sizes of BIT-array equals operators using this

method are shown in Table 5.2

141

Table 5.2: Areas and Delays for BIT-Array Equals Operators
#of | z y Area Delay
Bits | (M) [| (ay (nSec) |
53| 50 2,650 6.59
112 1 114 | 12,768 | 10.05
171 1 129 | 22,059 | 12.05
230 (142 | 32,660 | 14.89
289 | 205 | 59,245 | 1555
348 | 206 | 71,688 | 1559
407 1223 | 90,761 | 18.42
466 | 225 | 104,850 | 18.46

WO~ DD BN

5.5 Two’s Complement Ripple-Carry Adder

A ripple-carry adder is formed from a linear array of full-adders. Block dia-
grams for a full-adder and a ripple-carry adder made from full-adders are shown in

Figure 5.12. As is seen from the figure, the full-adder function is not used as a pure

Sum

T

Full

Adder[" 4T

|

carryout <

Sum,_, Sum,_, % Sum, Sufng
CaATTY oot~ FAn—-I - FAn—2 (-— ., -— FAl FAQ carry,.
[bn_l T b_q r b] bg
Qn—1 An.2 a ao

Figure 5.12: Two's Complement Ripple-Carry Adder

function. This is because the Sum and Carryo, outputs are not inputs to a single

function. One of the outputs (carryo,,) is an input to another full-adder, and the

142

other output (Sum) forms part of the output sum vector. However, if the definition
for the full-adder is modified slightly so that it takes all of the lower-significant bits
as input, a purely functional representation can be made. This functional program

is shown in Figure 5.13. A layout for this form is shown in Figure 5.14. In this

MODE CARRY.SUM STRUCT (BIT carry, [|BIT sum);
MODE INT_SIXTEEN [15:0]BIT:

FUNC full_add (BIT 2, b; CARRY_SUM c) CARRY_SUM:
(nand3(a NAND b, a NAND carry OF ¢, b NAND carry OF c),
xor3(a, b, carry OF ¢) PREPEND sum OF c);

FUNC ripple_carry([]BIT a, b: BIT ¢) CARRY_SUM:
/* check for terminating condition of nil BIT arrays */

IF (UPB a # LWB a) ANDIF (UPB b # LWB b)

THEN fuli_add(a[UPB a], bJUPB b,

ripple_carry(a[UPB a:LWB » —1], b[UPB b:LWB b ~1], ¢))
ELSE (¢, SKIP)

Fi

OP + = (INT_SIXTEEN a, b) INT_SIXTEEN:
ripple_carry(a, b, 0)

Figure 5.13: Functional Description of a Ripple-Carry Adder

figure, the dashed boxes represent instantiations of the new full adder function.
Instead of having three one-bit inputs (corresponding to the carry-in, the two in-
puts) and two one-bit outputs (the sum, and carry-out outputs), the functional
full-adder has two one-bit inputs representing the summands and a CARRY_SUM
input. The CARRY_SUM input contains the carry-in and all of the less-significant
sum bits. This representation of the adder is useful because its structure can be

synthesized automatically from a recursive functional description of the behavior

of the adder.

143

5 _
S
1
[}]
] [}
i
=) __ !
£) ;
Se , >
“ ; "
] 1
1]
g X :
cw‘ N P
! 1
]]
[} 1
H I
1 i
€-mn e e S,
]]
t]
1]
]
. _
&] [}
£ i “\
S _
]]
]
T _
& ' !
s—— K
n “_ [
g S
mvllllTl
1
]

car

Functional
Full Adder

!
é{m_l)é%”‘yin

A(m—-1):0

Full Adder

a I Ca?“'l‘yiﬂ

Defined Ripple-Carry Adder

Figure 5.14: A Functionaily-

144

Figure 5.15 shows the mask layout for an eight-bit two’s complement ripple-
carry adder. The inputs to the adder are op the bottom, and the sum outputs are
on the top. Adders from size one to eight were designed. The sizes and delays of

these adders are shown in Table 3.3. The delays are computed by erystal.

Table 5.3: Areas and Delays for Ripple-Carry Adders
#of | z y Area Delay
Bits | (A) | (V) (A%) | (nSec)
221 | 109 | 24,089 9.29
260 | 234) 60,840 | 1354
299 | 366 (109,434 | 2228
338 | 500 | 169,000 | 31.01
377 | 6341239018 | 39.75
416 | 770 | 320,320 | 48.48
455 | 904 | 411,320 | 57.22
494 [1041 | 514,254 | 65.96

QO N pwWN =

5.6 Redundant-Digit Adder

Another form of addition makes use of a redundant digit set. This example
illustrates the use of functions which replicate values so that the designer can avoid
replicating functional units.

If, instead of using digits from the set {0.1}, the digit set {~1,0,1} is used,
adders can be designed that have limited carry propagation [Avizﬁl,BoroﬁS,Chow?S].
In particular, Chow [Chow78] gives the designs for a class of redundant binary
adders. Thesé will be the basis of the example in this section.

Figure 5.16 shows a block diagram from [Chow78] for the redundant digit adder.

The subscripts have been changed from the original so that the ith column has the

145

1
k" ¢ S —

e it
— T o —r—

b S e i, S i —
H

B =]

Figure 5.15: Layout For an 8-Bit Two's Complement Ripple-Carry Adder

146

mi_1

Miyo] Qigq a; myja;_y

Raka &k Bk
Figure 5.16: Block Diagram for a Redundant-Digit Adder

weight 2. The inputs at the bottom (I* and #*) and the sum sum* have values from
the set {—1,0,1}. The inputs at the bottom I} and k} are represented here as the
two-tuples (I, L), (k, K') and may take on values from the set {—1, 0, 1}. The sum.
sum; is represented at the two-tuple (s, S). There is a carry carry and a borrow
borrow from the less-significant stages. The carry has values from the set {0,1}
and the borrow values from the set {—1,0}. These values can be represented by
sets of Boolean values in many ways. One of these ways is shown by the encodings

in Table 5.4. The left two columns show encodings and the right column show the

sum; | Value

;’l ‘:; 3 carry, | Value borrow; [Value
0 1 1 0 0 0 0
1 0| de 1 +1 1 -1
1 1 -1

Table 5.4: Encodings for Signed Digits

value being represented. The d.c. represents a “don’t care” encoding, an encoding

147

that is not used. “Don’t care” values are not generated or input, so their use can
simplify logic.

The adder/subtracter implements the equations:
d; + borrow; = sum;

4k +carry; =2 x carryir1 + 2 x borrow;,,; + d;

Combining these equations with the encodings from Table 5.4, yields the truth

table in Table 5.5. This table contains entries labeled C', which represent coupled-

Table 5.5: Truth Table for Redundant Digit Adder

cerry, 1 Li U1k K; & [[sum carry,,, | borrow; d;
bin wal | bin wval | bin val || val || bin val | bin val | bin val
0 0|0 0 o[l0 0 0 0f ¢ Cl ¢ =CT 0 o
0 00 0O 01:.0 1 1 c C} C -=C 1 1
0 0Jj0 0 0|1 1 - -1 0 0| 1 =1 1 1
6 0|0 1 110 o nyWc ¢y c -Cclt 1 1
0 0;j0 1 10 1 1 2 1 1] 0 0 0
0 0|0 1 1)1 1 -1 0f ¢ Cc| C —-c| o o
0 0f{1 1 —-1{0 o0 o -t 0 o 1 -1 1 1
0 0|1 1 —-1|(0 1 1 o) ¢ Ccl ¢ -cy 0o o
0 01 1 —-1]1 1 =1 =2 0 o0 1 -1l 0 o
1 110 0 0olo o0 o Iy ¢ ¢Cc|lc -c|{ 1 1
1 140 0 00 1 1 2 1 1{ 0 0 0 0
I 1]0 0 0|1 1 —1 oy ¢ cCc| ¢ Ci 0 0
I 110 1 110 0 0 2 1 1) 0 0t 0 0
1 1/0 1t 10 1 1 3 1 1 0 01 1 1
Po1fe 1 1|1 1 - Iy ¢ ¢y Cc -Cct 1 1
I 11 1 =140 O o4 ¢ C| C cCt 0 0
1 11 1 =1]0 1 1 1 ¢ C| C -=-C 1 1
1 Ifr 1 =11 1 -1 -1 0 0 1 -1 1 1

don’t cares. These are entries that can be zero or one, but all the C’s must have
the same value within a row. To make the carry,,, values independent of carry,,

the entries in the top half of the table must be the same as those in the bottom

148

half of the table. This still leaves some coupled don’t care entries, whose values are
chosen to simplify the implementing logic. Table 5.6 shows the truth table after

these decisions have been made. Logic equations derived from this table using

Table 5.6: Complete Truth Table for Redundant Digit Adder

carry; | L Ly Ik K, k|l sum carry; 1 | borrow;y, d;
bin val | bin wal| bin wval val || bin val {bin wval | bin wal
0 010 0 070 0 0 0 1 1) R 0 0
0 0i0 ¢ 010 1 1 1 1 1 1 -1 1 1
0 010 0 011 1 -1 -1 0 0 1 -1 1 1
0 010 1 110 0 0 1 1 1 1 -1 1 1
0 o600 1 1{0 1 1 2 1 1§ 0 0 0 0
0 00 1 If1 1 =1 0 0 0] 0 0} 0 0
0 0)J1 1t —-1f0 o ol —1 0 0 1 -1 1 1
0 011 1 <110 1 1 0 0 0 0 0 0 0
0 0|1 1 =111 1 =1 -2 0 0 1 -1] 0
1 110 0 0(0 0 0 1 1 i 1 -1 1 1
1 1({0 0 0]0 1 1 2 1 1 0 0 0 0
1 1{0 0 01 1 -1 0 0 0| 0 0] 0 o0
1 110 1 Il0 0 o 2 1 1] ¢ 0 0 0
1 1{0 1 110 1 1 3 1 1 0 0 1 1
1 1/]0 1 Iy1 1 -1 1 0 0 0 0 1 1
1 It 1 -1{0 0 ¢ 0 0 0] 0 0] 0 0
1 11 1 =-1}0 1 1 1 0 0 0 0 1 1
i 11 1 —-1]1 1 -=-1 -1 0 0 1 -1 i 1

Karnaugh maps are shown in Figure 5.17.

This can not be expressed directly in the functional synthesis language, as
these equations are not strict functions. The block diagram in Figure 5.16 can be
reorganized as a completely functional circuit. A block diagram for a functional
three-bit redﬁndant-digit adder is shown in Figure 5.18. An n-bit redundant digit
adder (the outermost dashed box) contains a one-bit redundant-digit adder and

an n — 1-bit redundant-digit adder.

149

caryyy = TR

borrow;,, = T -I,. carry, - k; - K; - carry, - I; - L,

d; = carry, & L; @ K,

—_——
o; = borrow; + d;
sum; = borrow; @ d;

Figure 5.17: Logic Equations for the Redundant Digit Adder

g =g === g - - - 3:Bit Adder
|m2 bf Euml r

1
|
!
{
I
!
!
1
I
I
1
1
1
1
1
1
|
|
1
t
|

1 %o
Figure 5.18: Block Dlagram for a Functional Three-Bit Redundant-Digit Adder

150

A functional description of this adder is shown in Figure 5.19. The program

MODE SIGNED_DIGIT_.TWO = STRUCT (BIT sign, digit);
MODE PARTIAL_SUM =
STRUCT (BIT carry, borrow: SIGNED_DIGIT [] sum);
FUNC red adder sum(BIT d, borrow) SIGNED_DIGIT:
(d NOR NOT borrow, d XOR borrow);
FUNC red adder borrow(SIGNED_DIGIT_TWO i, ki BIT carry bar) BIT:
nand3(l.sign NAND k digit,
nand3(NOT lsign, NOT Ldigit, carry bar),
nand3(NOT k.sign, NOT k.digit, carry bar));
FUNC red adder a(SIGNEDDIGIT_TWO |, k: PARTIAL_SUM sum)
PARTIAL SUM:
(I.sign NOR k.sign,
red adder borrow(!, k, NOT sum.carry),
red adder sum(xor3(l.digit, k.digit, sum.carry), sum.borrow)
PREPEND sum.sum);
FUNC red adder([|SIGNED_DIGIT_.TWO I, k) PARTIAL_SUM:
IF (UPB a # LWB a) ANDIF (UPB borrow £ LWB borrow)
THEN red adder a(I[UPB 1], kK[UPB],
red adder(I[UPB I-1:LWB 1],
k[UPB k—1:LWB k]))
ELSE red adder a(I[UPB 1], KUPB K], (0, 0, SKIP))
FI;
FUNCTION red adder high order(PARTIAL_SUM partial)
[ISIGNED_DIGIT_TWO:
(red adder sum(partial.carry, partial.borrow) PREPEND partial.sum);
OP + = ([ISIGNED DIGIT_TWO a, b) | ISIGNED_DIGIT_.TWO:
red adder high order(red adder(a, b))

Figure 5.19: Functional Description of a Redundant-Digit Adder

first declares two new modes (data-types) that will represent the redundant digits.
The mode SIGNED_DIGIT represents signed binary digits, and contains the BIT
fields sign and digit. The other mode, PARTIAL_SUM, represents the output of
the redundant-digit adder. It contains a vector (with unfixed bounds) of signed
digits (sum), a borrow, and a carry. The latter two fields can be combined to

represent the high-order digit of the sum, but this algorithm defers this process.

151

An operator and five functions are defined. {Operators are functions whose
names can appear in arithnetic expressions as infix dyadic or monadic operators.)
The + operator is defined to add two vectors of signed digits. This is the top-leve!
operator that an algorithm designer would design. The five functions form part of
the semantics of this operator. The operator calls two functions, red adder high order
and red adder. The latter function is a recursive function that adds two signed-digit
vectors and returns a PARTIAL_SUM. This function will add any size vector of
signed digits. The red adder high order function converts a PARTIAL_SUM to a
vector of signed digits. The other threé functions, red adder a, red adder borrow,
and red adder sum are invoked whenever the output of a function needs to be
replicated. For example, the function red adder sum has two inputs, each of which
are input to two functions. It is only with the use of the named function inputs
that a value can be replicated.

The layout for an eight-bit redundant-digit adder is shown in Figure 5.20. The

areas and delays for adders of one th'rough eight bits are shown in Table 5.7.

Table 5.7: Areas and Delays for Redundant Digjt Adders

#of| z Yy Area Delay
[Bits | (M) [(M) | (A (nSec) |
1] 301] 155 46,655 6.68 |

2 416 | 391 | 162,656 | 29.17
3 533 | 636 | 338,988 | 29.97
4 650 | 903 | 586,950 | 30.89
5 767 | 1169 { 896,623 | 3181
6 884 | 1447 | 1,279,148 | 32.77
7 | 1001 | 1740 [1,741,740 | 33.77
8 |1118 |2039 |2,279,602 | 3481

152

Figure 5.20: Layout for an Eight-Bit Redundant Digit Adder

153

6.1

CHAPTER 6

Conclusions

Contributions

The following are the contributions of the thesis research:

1. A method was developed for specifying the behavior of an integrated circuit

at an algorithmic level and quickly translating the behavior into the topo-
graphical layout of custom integrated circuit masks, The translation process
is shown to be rapid, scales well for large circuits, but is area-inefficient.
The area-inefficiency is shown not to degrade the performance of the cir-
cuit so that the derived performance metrics of the resulting design can be
used as a basis for comparing designs. Special-purpose circuits are often of
non-standard design and require many iterations in the design process before
cost-effective designs are obtained. The methods shown here are effective for

rapid prototyping,

Consistent syntax and semantics for representing values by arrays and the
manipulation of these values have been defined. The semantics is indepen-
dent of the data type of the array elements. This provides a consistent

definition for built-in datatypes and all user-defined datatypes.

154

3. Features from Algol 68 and FP have been combined to form a language that
is functional in nature, but contains domains of sequentiality. These domains
are treated as functional, as changes to localized storage in each domain do
not affect the global state of a circuit. The data typing features from Algol 68
have been retained so that the types of all values can be checked at compile
time. The Algol 68 operator definition facility has been extended to allow

the specification of associativity and commutativity of operators.

4. A layout method has been designed for hierarchically composing non-uniformly
sized cells (circuits). All these cells have a common structure—power on the
left side, ground on the right, inputs on the bottom, and outputs at the top.
The composition method does not have the common-height restriction that
is present with “standard” cells. The layout method is shown to require time
proportional to the number of cells. The hierarchical nature of this proce-
dure enables ALICS Synthesizer to consider only information local to each
cell, rather than a large portion of a circuit or details internal to portions
of the circuit already laid out, and thereby is done quickly. A side-effect
of this layout procedure is that the bounding box of the circuit is updated
as each new element is added to it. Thus the area of the circuit is quickly

determined.

Because the circuit is quickly generated, existing tools can be used to obtain

the power, speed, and other non-behavioral attributes of the circuit.

155

. A time-efficient method has been designed for hierarchically routing power
and ground wires for these circuits, The sizing of these wires is performed
as cells are hierarchically constructed so that the phenomenon of metal mi-
gration is avoided. The overall routing of the power and ground wires is an
interdigitated net on a single meta] layer with no crossovers. This ensures

that the voltage drops on these wires are as small as possible.

- An extension has been made to existing river-routing methods that handles
wires of differing sizes. Existing methods assume identically-sized wires. This
extension to differing-sized wires is shown to increase the time complexity of

channel-height determination from O(n) to O(n?).

- An area- and time-efficient method for two-layer routing of wire permutations
across a channel has been demonstrated. This method has time complexity

of O(n?) and produces a channel route of area no greater than O(n?).

. An area- and time-efficient method for a two-layer routing of one-to-many
mappings across a channel has been demonstrated. This method has time
complexity of O(n?) and produces a channel no wider than that required for
n wires (with contacts) and no higher than that required for n wires (with
contacts). One-to-many mappings are necessary in routing formal parame-

ters (cell inputs) to parameter usage in a function’s body.

. A time-efficient method for a two-layer routing of many-to-many mappings

across a channel (general channel routing) has been demonstrated. This

156

10.

method has time complexity of O(n?) and produces a channel no wider than

that required for n wires (with contacts) and no higher than O(2). This

method guarantees a channel route within the given channel width and can

route any many-to-many mapping in this width.

Subroutines from the Chisel software have been incorporated into the ALICS
Synthesizer. Extensions had to be made to the chisel IC technology descrip-
tions to support the decisions needed by the synthesizer. This includes the
specification of:

e the per-port capacitance,

o the per-port electricai current,

¢ the fabrication layers for routing,

e the fabrication layers that form transistors,

¢ the sheet resistivity of the fabrication layers,

o the thickness of the fabrication layers,

¢ the maximum current density for each routing layer,

e the area capacitance to substrate (ground),

e the sidewall capacitance to substrate (ground), and

the overlap coupling capacitance.

These values are used to calculate the minimum widths of wires needed to

support a given electrical current to avoid metal migration.

6.2 Limitations

The hierarchical layout method presented here produces circuits quickly. How-

ever, the limitations of this method should be noted.

¢ The area of these circuits is often larger than would be required if the circuit

were compacted.

¢ The computational elements are ass umed to have inputs on the south side and
outputs on the north side to facilitate the functional nature of the algorithmic
language and the corresponding hit;rarchical layout and routing method. This
precludes more compact placement and routing that is possible when inputs

and outputs are not restricted in this manner,

e Sizing of transistors is not performed by the synthesizer. This could result

in sub-optimal performance.

6.3 Future Research

The following tasks need to be performed:

® The synthesizer currently (as of May 31, 1987) can place and route switching
expressions consisting of Boolean operators and conditional statements. The
implementation of the data type facility in the synthesizer has not been

completed and should be if this is to be a prototyping tool.

158

¢ The sizing of transistors is not performed by the synthesizer. This requires
flattening the hierarchy of the circuit to the transistor level, computing crit-
ical paths and then modifying transistor sizes. It is not obvious whether
flattening the hierarchy will destroy the O(n) time complexity of the layout

and the O(n?) of the routing procedures.

® Space compaction is possible if the circuit hierarchy is flattened, but this
could destroy the fast properties of the layout and routing procedures. In

general, these procedures are NP-complete.

6.4 Conclusions

The traditional placement and routing techniques have been discarded and re-
invented here in a new context. This context eschews the notion carried over from
printed circuit board layout that circuits must be of fixed sizes and separated by
fixed distances so that they can be placed and routed efficiently. This context facil-
itates design at a higher level in the design process, enabling the designer to make
decisions that have much greater impact on a design than any made at the low
levels of design. The methods described in this thesis make it possible to explore
the behavioral design space quickly. The designer expresses algorithms and data
types without having to specify a layout for their implementation or having to rely
on time-consuming methods to obtain an implementation. Because the transla-
tion process is fast, experiments can be performed in which algorithms and data

types are changed and then the non-behavioral attributes of the resulting circuits

159

compared. Once a few implementations with the desired non-hehavioral attributes
have been obtained, the circuits can be fabricated via a “silicon foundry”. If the
area of the circuits is too large, a few options are possible. For the most compact
layouts, the traditional lengthy process of compaction can be performed on the
designs so that the circuits will fit within the bounds of a chip. For less demanding
area restrictions, the CIF file produced by the ALICS Synthesizer synthesizer is

hierarchical and can be edited using a mask layout editor such as Magic.

160

[Ada83]
[Aviz61]

[Ayre79)

[Ayre83]

[Back63]

[Back78]

[Bake83]

[Barb79]

[Boro68]

[Char82]

Bibliography

Reference Manual for the Ada Programming Language (1983).

Algirdas Avizienis, Signed-Digit Number Representations for Fast Par-
allel Arithmetic, JRE Transactions on Electronic Computers (1961).

Ron Ayres, Silicon Compilation—A Hierarchical Use of PLAs, pp. 311-
326, in Proceedings of the Caltech Conference on VLSI, Caltech,
Pasadena, California (January 1979).

Ron Ayres, VLS Silicon Compilation and the Art of Automatic Mi-
crochip Design, Prentice-Hill, Inc., Englewood Cliffs, New Jersey 07632
(1983).

J.W. Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A.J.
Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J.H. Wegstein, A.
van Wijngaarden, and M. Woodger, Revised Report on the Algorithmic
Languge Algol 60, Communications of the ACM, 6(1):1-17 (January
1963). ‘

John Backus, Can Programming Be Liberated from the von Neumann
Style? A Functional Style and Its Algebra of Programs, Communicg-
tions of the ACM, 21(8):613-641 (August 1978).

Brenda Baker, Sandeep Bhatt, and Frank Leighton, An Approximation
Algorithm for Manhattan Routing, pp. 477-486, in 15th Annual ACM
Symposium on Theory of Computing, Boston, Massachusetts (April 25—
27 1983).

Mario R. Barbacci, Gary E. Barnes, Roderic G. Cattell, and Daniel P.
Siewiorek, The ISPS Computer Description Language, Technical Re-
port CMU-CS-79-137, Carnegie-Mellon University Department of Com-
puter Science (August 16 1979).

R. T. Borovec, The Logical Design of a Class of Limited Carry-Borrow
Propagation Adders, Technical Report 275, University of Illinois De-
partment of Computer Science (1968).

Philippe Charles and Gerald Fisher, A LALR(1) Grammar for ’82 Ada,
ACM Ada Sigplan Ada Letters, I1(2) (September, October 1982).

161

[ChowT8]

[Chow86)

[Clins4]

[Cohe81)

[Cuyk82]

[Cuyk84]

[Dole81]

(Hama85]

[Hon80]

[Joha78]

Catherine Chow, Logical Design of a Redundant Binary Adder, in
Proceedings of the 4th Symposium on Computer Arithmetic, IEEE Com-
puter Society (October 1978).

Salim Chowdhury, Power and Ground Routing for Semi-Custom VLSI
Circuits, Technical Report CRI-86-19, University of Southern Califor-
nia, Computer Research Institute, Los Angeles, California 90089-0781
(March 1986), Ph.D. Thesis.

Ken Cline, Mel Cutler, Carl Kesselman, and Gary York, Automated At-
tribute Optimization for VLSI Systems, pp. 106-113, in Third Annual
International Phoeniz Conference on Computers and Communications,
Phoenix, Arizona (March 1984), IEEE.

Danny Cohen, On Holy Wars and a Plea for Peace, /EEE Computer,
14(10):48-54 (October 1981).

Robert Cuykendall, Anton Domic, William H. Joyner, Steve C. John-
son, Steve Kelem, Dennis McBride, Jack Mostow, John E. Savage, and
Gabriele Saucier, Design Synthesis and Measurement, VLSIN So ftware
Engineering Workshop Report (October 1982).

Robert Cuykendall, Anton Domic, William H. Joyner, Steve C. John-
son, Steve Kelem, Dennis McBride, Jack Mostow, John E. Savage, and
Gabriele Saucier, Design Synthesis in VLSI and Software Engineering,
The Journal of Systems and Software, 4(1):7-12 (April 1984), This is
a reprint of the workshop report.

Danny Dolev, Kevin Karplus, Alan Siegel, Alex Strong, and Jeffrey
Ullman, Optimal Wiring Between Rectangles, pp. 312-317, in 15th
Annual ACM Symposium on Theory of Computing, Milwaukee, Wis-
consin (May 11-13 1981).

Gordon Hamachi, Designing Finite State Machines with PEG, 1986
VLSI Tools: Still More Works by the Original Artists Report No.
UCB/CSD 86/272, Computer Science Division, Electrical Engineering
and Computer Sciences, University of California, Berkeley (December
1985).

Robert W. Hon and Carlo H. Séquin, A Guide to LSI Implementation,
Second Edition, Technical Report, Xerox Palo Alto Research Center
(January 1980).

David L. Johannsen, Bristle Blocks: A Silicon Compiler, Technical
Report, Caltech Dept. of Computer Science (January 1978), reprinted
January 1979, Caltech Conference on VLSI, Pasadena, California.

162

[John78]

[John83]

[Joob86]

[Karp83]

[KeleBT]

[Kern78]

[Kirr83)

[Leon85)

[Lesk75]

[Mead80]

[Meal55]

[Meer8la]

[Meer81b)]

Stephen C. Johnson, Yuce—-VYet Another Compiler-Compiler, Techni-
cal Report, Bell Laboratories. Murray 1ill, New Jersey (July 31 1978).

Stephen C. Johnson. Code Generation for Silicon, pp. 14-19, in Con-

ference Record of the (0th Annual ACM Symposium on Principles of

Programming Languages. Austin, Texas (January 24-26 1983).

Rostam Joobbani, An Artifical Intelligence Approach to VLSI Routing,
Kluwer Academic Publishers {1936).

Kevin Karplus, CHISEL—An Ertension to the Programming Language
C for VLSI Layout, PhD dissertation, Stanford University (January
1983).

Steven H. Kelem, A Method for Compact Two-Layer Routing of Per-
mutations in Less Than n® Time, Technical Report TR-0086A (2920~
03)-1, The Aerospace (‘orporation (February 1987).

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Lan-
guage, Prentice-Hall, Englewood Cliffs, New Jersey 07632 (1978).

Hubert Kirrmann, Data Format and Bus Compatibility, [EEE Micro,
3(4):32-47 (August 1983).

H.W. Leong and C.L. Liu, Permutation Channel Routing, pp. 579-
584, in Proceedings of the [EEFE International Conference on Computer
Design: VLSI in Computers, Rye Town Hilton, Port Chester, N.Y.
(October 7-10 1985).

M. E. Lesk, Lex—A Lerical Analyzer Generator, Technical Report,
Bell Laboratories, Murray Hill, New Jersey (October 1975).

Carver Mead and Lynn Conway, Introduction to VLSI Systems, Addi-
son Wesley Publishing Company, Reading, Mass. (1980).

G.H. Mealy, A Method for Synthesizing Sequential Circuits, Bell Sys-
tem Technical Journal, 34(5):1045-1079 (September 1955).

L.G.L.T. Meertens and J.C. van Vliet, Algol 68+, A Superlanguage of
Algol 68 for Processing the Standard-Prelude, Technical Report, Math-
ematisch Centrumi, Amsterdam (Juni 1981).

L.G.L.T. Meertens and J.C. van Vliet, An Underlying Contert-Free
Grammar of Algol 68+, Technical Report IW 171/81, Mathematisch
Centrum, Amsterdam (Juli 1931).

163

[Meshs5]

[Moor55]

[Mukh86)

[Oust83]

[Oust85]

[Pang86]

[Pate85]

[Quar86)

[Rive82]

[Schig4]

Farshad Meshkinpour and Milog Ercegovac, A Functional Language for
Description and Design ol Dlgital Systems: Sequential Constructs, in
{EEE Proceedings of the 22nd A CM/IEEE Design Automation Confer-
ence (June 23-26 19385).

E.F. Moore, A Method [or Syuthesizing Sequential Circuits, Bell Sys-
tem Technical Journal. 34(3):1045-1079 (September 1955).

Amar Mukherjee. [n/roduction to nMOS and CMOS VISI Systems
Design, Prentice-lal]. Fnglewood Cliffs, New Jersey (1986).

John Qusterhout, A Timing Analyzer for nMOS VLS Circuits, pp. 57-
69, in Randal Bryvaut. editor, Third Caltech Conference on Very Large
Scale Integration, Computer Science Division, Electrical Engineering
and Computer Sciences, University of California, Berkeley (1983).

John Qusterhout, Using Crystal for Timing Analysis, 1986 VLSI Tools:
Still More Works by tlhe Original Artists Report No. UCB/CSD 86/272,
Computer Science Division, Electrical Engineering and Computer Sci-
ences, University of California, Berkeley (December 1985).

Barry M. Pangrle and Danjel D. Gajski, State Synthesis and Con-
nectivity Binding for Microarchitecture Compilation, pp. 210-213, in
International Conference on Computer- Aided Design (1986).

Dorab Patel, Martine Schlag, and Milos Ercegovac, vFP: An Environ-
ment for the Multi-level Specification, Analysis, and Synthesis of Hard-
ware Algorithms, in G. Goos and J. Hartmanis, editors, Functional
Programming Languages and Computer Architecture, Lecture Notes in
Computer Science, Springer-Verlag, Nancy, France (September 1985).

T. Quarles, A.R. Newton. D.O. Pederson, and A. Sangiovanni-
Vincentelli, SPICE 347 User’s Guide, Department of Electrical En-
gineering and Computer Sciences, University of California, Berkeley
(April 1 1986).

Ronald L. Rivest and Charlse M. Fiduccia, A “Greedy” Channel
Router, pp. 418-121, in AV IEEE Nineteenth Design Automation
Conference Proceedings. ILEE Computer Society and the ACM, Cae-
sar’s Palace, Las Vegas. Nevada (June 14-16 1982), IEEE Computer
Society Order No. 416 or ACM Order No. 477820.

Martine Schlag, Ertracting Geometry from FP for VLSI Layout, Tech-
nical Report CSD-340043, UCLA Computer Science Department (Oc-
tober 1984).

[G1

(Schlg6)

(Schw78]

[Sequ8?2)

[Sisk81]

[Swif26]

[UWN84]

[V1ad81]

[West85]

[Wijn65]

[WijnT75]

[Will77)

Martine Denise Francoise Schlag, Layout From a Topological Descrip-
tion, PhD dissertation. UC'LA Computer Science Department (July
1986), CSD-360039.

Richard Schwartz, An Aviomatic Semantic Definition of Algol 68, PhD
dissertation, Computer Science Department, University of California,
Los Angeles (July 1978), UCLA-ENG-7838.

Carlo H. Sequin, Generalized IC Layout, Technical Report, Computer
Science Division. Electrical Engineering and Computer Sciences, Uni-
versity of California, Berkeley, Berkeley, California (January 6 1982).

Jeffrey Mark Siskind, Ray Roger Southard, and Kenneth Walter
Crouch, Generating Custom High Performance VLS Designs From
Succinct Algorithmic Descriptions, Technical Report, MIT Lincoln
Laboratory, Lexington, Massachusetts (December 21 1981).

Jonathan Swift, Gulliver's Travels, Benjamin Mott, London (1726),
(original title: Travels into several Remote Nations of the World. By
Lemuel Gulliver).

VLSI Design Tools Reference Manual, UW/NW Consortium, Univer-
sity of Washington, Seattle, Washington 98195, release 2.1 edition (Oc-
tober 1 1984), TR-84-08-07.

A. Viadimirescu, Kaihe Zhang, A.R. Newton, D.O. Pederson, and A.
Sangiovanni-Vincentelli, SPICE Version 2C User’s Guide, Depart-
ment of Electrical Engincering and Computer Sciences, University of
California, Berkeley {August 10 1981).

Neil Weste and Kamran Eshiraghian, Principles of CMOS VLSI Design:
A Systems Perspective, VLS{ Systems Series, Addison Wesley, Reading,
Massachusetts (October 1985).

A. van Wijngaarden, Orthogonal Design and Description of a Formal
Language, Technical Report, Mathematisch Centrum, Amsterdam (Oc-
tober 1965).

A. van Wijngaarden, B.J Mailloux, J.E.L. Peck, C.H.A. Koster, M.
Sintzoff, C.H. Lindsey. L.G.L.T. Meertens, and R.G. Fisher, Revised
Report on the Algorithmic Language Algol 68, Acte Informatica, 5(1-
3) (1975).

John Douglas Williams, ST/CKS—A New Approach To LSI Design,
PhD dissertation, MIT Computer Science Dept. (June 1977).

165

APPENDIX A

Semantics for the Row Data Type Constructor and Primitive

Operators

A.1 Introducticn

This appendix provides the setautics for a flexible way to implement ar-
rays. An extension to the semantics defined for Algol 68 is presented that uni-
formly models weighted number systems and character strings. It is a mod-
est proposal for a truce in the war between the Big-Endians and Little-Endians
[Cohe81,Kirr83,Swif26].

If an array holds (western) characters. it is logical that the characters be num-
bered beginning with zero or one and that the numbering of the characters increase
from left to right, modeling the direction of western reading. Thus in an array of
characters denoted by (one-origin) "this is a character array", the first char-
acter is t and the 25th character is y.

If a linear array contains numbers that are periodic data, the indexing of el-
ements usually increases from left to right, corresponding to left-to-right reading
and increasing time.

If a linear array holds bits (or otlier numbers), the logical numbering scheme

depends on which number system is heing modeled. If a linear array of bits repre-

166

sents radix-two integers, then it is togical that the bits be numbered beginning with
2zero and that the numbering increases from right to left. This numbering scheme
models the powers of the radix at each bit position in the array. Thus if an array of
bits is denoted by (1,0, 1,0,1,0). theu the Ist bit (leftmost) is 2 1, and the 6th bit
(rightmost) is a 0. A radix-two integer can be denoted by REV(1,0,1,0,1,0)¢0,
where @0 changes the lower bound from | to 0. REV reverses the left and right
bounds so that the Oth hit {rightmost) is a 0, and the 5th bit (leftmost) 1s a 1.
If a linear array of bits represents radix-two fractions, then it is logical that the
bits be numbered beginning with —1 and that it decreases from left to right. This
numbering scheme models the powers of the radix at each bit position in the ar-
ray. Thus in an array of bits denoted by REV((1,0,1,0,1,0)0-6), (denoting

the value £2), the —1th bit (2-') is a 1 and the ~6th bit (27%) is a 0.

A.2 Background

Algol 68 has a data-typing mechanism called rows which is the Algol term for an
array. Rows may have multiple subscripts, each with a pair of bounds. Algol 68
bounds are numbered from lelt to tight in a multiply-dimensioned array. Each
boundpair is declared as lower-bound, colon, upper-bound. If the lower-bound is

missing, it defaults to one. For exainple,

167

[-5:3.0:7INT a,b; Declares two two-dimensional integer arrays called a
and b. Fach array contains seventy-two integers. The

first lower-bound of a s —3. the second lower-bound

is 0.
In Algol 68, values are represented by denotations. For example,
42 Is the integer denotation for the nurnber forty-two.
4r222 Is the integer denotation for the number forty-two in

radix four.

(0.2,0,9) Is a row-of-integer denotation. The bounds are [1:4], and

the nine is the fourth integer in the row.

(0.2,0,9)Q4 Is a row-of-integer denotation with a revised-lower.
bound. The bounds are [4:7] and the nine is the seventh
integer in the row. (There are no elements in this array
corresponding to positions one through three.)

A.3 Representations

In its present form, Algol 68 can represent only the left-to-right indexing
scheme. One can easily modify the lower bounds of rows teo achieve zero-based
or any arbitrary base for indexing. [1:8]BIT and [8]BIT represent rows of BITs
with the same lower bound of one. [0:7]BIT represents a row of BITs with a lower
bound of zero, Algol 68 can represent only low-to-high subscripts as left-to-right
denotations.

This is unfortunate, because it cannot accormmodate an important representa-

tion scheme. The high-to-low subscripts, represented by left-to-right denotations

163

are natural for representing radix number systems. In this representation, the
high-order-digit is on the left. This vepresentation also makes it possible for the
subscript to be the same as the power of the radix at each digit position (E.g. the

0 subscript corresponds to the weight 2, three to the weight 23.)

A.4 Extensions

This section describes extensious to Algol 68 that allow both representation
schemes and are easy to implement. The left-to-right or right-to-left ordering al-
lows stylistic differences in nuneric representations and introduces minor semantic
differences (improvements?). This is useful because it enables a programmer to
express data in whichever style is more readable.

The extensions are as follows:

¢ The lower and upper bounds in a boundpair are renamed. Instead of calling
the two components of a boundpair the lower and upper bounds, they are
called the left and right bounds, E.g. [7:0] represents subscripts increasing

from right-to-left and [0:7] represents subscripts increasing from left-to-right.

¢ A row with a boundpair of [7:0] is represented internally the same way as s
a row with a boundpair of [0:7]. The subscripting procedure is identical for

both types of rows, and assignments between these two types are simple.

* The operators LEB and RIB are tntroduced and refer to the left or right

bound, respectively.

169

¢ The lower bound LWB of a boundpair becomes min(LEB, RIB), and the

upper bound UPB becomes max({LEB, RIB).

® An empty row is denoted by a boundpair of SKIP. (SKIP is a special token

that represents a void value for all modes.)

* The slice specified by the houndpair (a.b] is almost the same as the slice [b.a].
The row elements that are selected are the same; however the slice boundpair

becomes the new boundpair unless explicitly modified by a revised-lower-

bound.
¢ Missing slice bounds are replaced by the corresponding LEB or RIB.

¢ Row denotations begin with the 1 index on the left, increasing to the right.
The operator REV reverses the items in a row. For example, to denote the
number 42 in radix 2 as an array of bits, one could write: REV (1,0,1,0,1,0)@0.
This is stored internally at (0.1,0,1,0,1)@0. The LEB is 5 and the RIB is 0.

Thus the Oth bit is a 0, and the 5th bit is a 1.

A.5 Semantics

This section defines the semantics of the row operators. The semantics are

given for a single-dimension row. The multi-dimension cases follow similarly.

row of mode: A row of a given mode M with integer left-bound b and right-

bound rb is a value from the domain INT| x INT; x M*. INT is a value

170

from the domain of integers. M* denotes zero or more values of mode M. A

row of mode M is written only in this section as (16, b, M*).

row denotation: A row denotation, written as (v, v, .++, Un), becomes the

value (1,7, (v, vy, «++y v,)). The left-bound is one; the right-bound is n,

the number of values in the row denotation.

LEB operator: The left-bound operator is both a monadic and a dyadic operator.
The dyadic version takes two operands. The first operand is the boundpair
number (from the left, beginning at one), and the second operand is a row.
The monadic version takes one operand, the row, and yields an array value
consisting of all the left-bounds for the array. For a single row r, (16, rb, M),

LEB r returns /.

RIB operator: The right-bound operator is similar to the LEB operator except

that for a single row r, (ib, b, M*), RIB r returns rb.

LWB operator: The lower-bound operator returns the lower bound of a row. [t

is similar to the LEB operator except that for a single row r, (16, b, M),

LWB r returns min(/5, rh).

UPB operator: The upper-bound operator returns the upper bound of a row.
It is similar to the LEB operator except that for a single row, (I, rb, M),

UPB r returns max(ib, rb).

171

@ operator: The revised lower-bound operator is a dyadic operator that creates
a new copy of an array, changing only the lower-bourd (not necessarily the
left-bound). The corresponding upper-bound is also modified so that that
there are still the same number of elements in the array. The first operand is
the array whose bounds will be modified, and the second operand is a one-
dimensional array with as many entries ag the first array has dimensions. If

one of the revised-lower-bounds is SKIP, the corresponding bounds are not

modified.

(6,76, M*)Q@ rlb = IF Ib < (b
THEN (rlb, rb — I + rlb, M*)
ELSE (16 — b + rlb, rlb, A7+)
Fi

subscript; Subscripts are enclosed in square brackets following a row to select

single items from the row. Subscripts are operators from the domain

(INT; x INT, x M*) x INT — M U error.

For a row r, (Ib, rb, M *) and a subscript s, The value of rls] is:

IFIb <rb

THENIFIb<s<rb
THEN el(M, s-Ib)
ELSE subscript_out_of_bounds
Fi

ELSE IFrb<s<Ib
THEN el(M, s-rb)
ELSE subscript_out_of bounds
Fi

Fi

172

where the function el(r,i) extracts the ith element of the zero-origin array r.
The semantics of el are independent of representations for R and implemen-

tation methods for the extraction.

REV operator: The REV operator reverses the LEB and RIB of a row. The first
operand is the boundpair number and the second is the array. The monadic

version of the operator reverses all the boundpairs. For a row r, (b, 7b, M=),

REVr = (rb, b, M").

APPEND operator: This operator provides an intuitive method for concatenating
two rows that represent radix numbers. The magnitude of the first argument

is preserved as the second argument is appended to the right of the first

argument.

The APPEND operator creates a new row by copying the second argument
to the right of a copy of the first argument. The resulting row has an LEB
identical to the LEB of the first argument. The new RIB is computed from
the length of the new row extending in the direction of the boundpair of
the first argument. If the direction of the second argument’s boundpair is
different from that of the first argument, the elements of the second row

argument are copied in reverse order.

173

(15, by, (v1,...,vy)) APPEND (b, rha, (wr, ..., w,)) =
IF lbl S T'bI
THEN IF b, < rb,
THEN (1, by + rb, — by +1,(vy,... ' Uy Wiy oey wh))
ELSE (lby,rby + 1, — rha + 1, (vy,. .., Uy Wny ..., W)
Fl
ELSE IF i, < rb,
THEN (rd,, b, + rb, B+ 1, (Vmy-. ., vy, w,,.. S wy))
ELSE (rby, by + 1B — oy + 1, (v, ..., vy, Wny.. ., w))
FI
F!

For example, two rows, not necessarily representing radix numbers, can be

appended as follows.

(1,0,1,1)@0 APPEND (0,0,1)@10] = (1,0,1,1,0,0,1)@0

The row (100,102,(0,0,1)) is appended to the right of row (0,3,(1,0,1,1)). The

resulting row has the valye (0,6,(1,0,1,1,0,0,1)).

Two rows representing radix numbers can be appended as follows.

REV(1,0,1,1)@0 APPEND REV(0,0,1)@100
= REV(1,0,1,1,0,0,1)@—3

If the array represents a radix five number (Note that the particular radix is
irrelevant in to the APPEND operator.), this represents appending 001 x 51%
to the right of 10115. 001 x51% is effectively scaled so that the high-order digit

(0) will be in the 57! position and then added to 10115 to yield 1011.001;.

The rows in this example are (3,0,(1,0,1,1)) and (102,100,(0,0,1}). The value

returned from APPEND is (3,-3,(1,0,1,1,0,0,1)).

174

PREPEND operator: This operator provides an intuitive method for concatenat-
ing two rows that represent radix numbers. This is similar to the APPEND
operator except that the magnitude of the second argument is preserved after

the first argument is prepended to the left of the second argument.

The PREPEND operator creates a new row by copying the first argument
to the left of a copy of the second argument. The resulting row has an RIB
identical to the RIB of the second argument. The new LEB is computed
from the length of the new row extending in the direction of the boundpair
of the second argument. If the difection of the first argument’s boundpair is
different from that of the second argument, the elements of the first argument

Yow are copied in reverse order.

(by, vy, (vy, ..., Vn)) PREPEND(/5,, rba, {un, ..., w,)) =
IF lb; $ T‘bz
THEN IF l’bl S Tbl
THEN (b, — b, + by —1,7by, (vy, ... » Vs W1, .0, wy))
ELSE (b, — b, + rhy = 1,7by, (v, .. “3 Uy Wny ooy wy))
Fl
ELSE IF %, < 15,
THEN (rb; — rb, + by — 1,1, (vy, ... » Uty Wnyoow, wy))
ELSE (rby — by + rb, — Llbg, (Vmy. .., vy, wy, . . Sy uwr))
Fl
Fi

For example, two rows, not necessarily representing radix numbers, can be

prepended as follows:
(1,0,1,1)@0 PREPEND (0,0,1)@100 = (1,0,1,1,0,0,1)@0.

The row (0,3,(1,0,1,1)} is prepended to the left of row (100,102,(0,0,1)). The

resulting row has the value (96,102,(1,0,1,1,0,0,1)).

175

Two rows representing radix numbers can be prepended as follows:

REV(1,0,1,1)@0 PREPEND REV/(0,0,1)@100
= REV(1,0,1,1,0,0,1)@-3.

If the array represents a radix five number (Note that the particular radix is
irrelevant in to the PREPEND operator.), this example represents prepend-
ing 10115 (13115) to the left of 001 x 5'%. 10115 is effectively scaled by 5193

and then added to 001 x 5 to yield 10110015 x 5%,

The rows in this example are (3,0,(1,0,1,1)) and (102,100,(0,0,1)). The value

returned from PREPEND, is (106,100,(1,0,1,1,0,0,1)).

slicing: Slicing is the process of extracting a contiguous portion of a row. (This
is known as a subrange in some languages.) Slicing is indicated by a range
within square brackets. A range consists of two optional integer expressions
separated by a colon. If one (or both) of these expressions is missing, it is
replaced by the corresponding left or right bound. The new left and right
bounds will be in the same order that are specified in the slice. The bounds

cannot be reversed if one of the bounds is missing in the slice range.

When a slice is taken from a row, the boundpair is not adjusted automati-
cally so that it has a revised lower bound of 1 if no revised lower bound is
specified. (This is done in Algol 68, but does not seem necessary. This has
the effect of extracting the slice and performing a numeric shift on the result-

ing value. This can be accomplished with the revised-lower-bound operator

Q if desired.)

176

For a rowr, (Ib,rb, (v1,...,vs)), a slice is represented by r[l:r]. The resulting

value is:

IF(b<I<rANDIF b <r<rb)
ORIF (Ib > 1> rb ANDIF b > r > rb)
THEN (er(vmin[l,r), sy ’b‘mx(t.r)))
ELSE subscript_out_of_bounds

Fl

177

APPENDIX B

Syntax of ALICS

The following is the syntax for ALICS. It is based on two gramars for Algol 68
from the Amsterdam Mathematisch Centrum [Meer81b,Meer81a), modified so that
a parser could be produced from it by yacc[JohnT8]. It is written in a form that
is a combination of BNF [Back63] and a van Wijngaarden grammar({Wijn65]. The
syntax is that of BNF, and the style is from vWg, being easier to read than BNF
grammars. A preprocessor has been written that converts this grammar with
semantics written in the style of yacc and converts it to the form for yace.

The productions are in alphabetic order except for the production for the distin-
guished symbol of the grammar, compilation input, which appears first. A grammar
rule consists of four parts—a left hand side, a colon, a right hand side, and a pe-
riod. The left hand side is a grammar symbol, which is denoted by a word that
may include spaces. Grammar symbols that end in the work token, generally are
terminal symbols of the grammar and may not appear on the left hand side of
a grammar rule. The right hand side consists of one or more alternatives, each
separated by semicolons. Each alternative is a (possibly empty) list of grammar
symbols separated by commas.

There are 205 grammar rules (including the alternatives). This is small com-

178

pared to the 400 or so that are needed for an Ada' parser[Char82).

productions

compilation input:
initialization, particular program.

assignation:
identifer, becomes token, unit.

associativity declaration:
left associative token, operator list;
non associative token, operator list;
right associative token, operator list.

bold else part:
bold else token, serial clause;
bold else if token, serial clause, bold then part,
bold else token, serial clause.

bold in part:
bold in token, case part list.

boeld out part:
bold out token, serial clause;
bold ouse token, serial clause, bold in part, bold out token,
serial clause.

bold then part:
bold then token, serial clause.

brief if or case clause:
open, serial clause, brief in part, brief out part, close token;
open, serial clause, brief in part, close token.

brief in part:
stick token, case part list.

brief out part:
/* The following should be:
stick token, serial clause but can’t be due to ambiguities.

*/

L Ada is a registered trademark of the U.S. Government-—Ada Joint Program Office.

179

brief in part;
stick colon token, serial clause, brief in part, brief out part.

by part:
by token, unit.

call:
primary, collateral brief clause.

case clause:
bold case token, serial clause,
bold in part, bold out part, bold esac token;
bold case token, serial clause, bold in part, bold esac token.

case part:
serial clause; -
specification, serial clause.

case part list:
case part;
case part, and also token, case part list.

cast:
declarer, enclosed clause.

choice clause:
brief if or case clause;
case clause;
if clause.

code:
code token, denoter.

collateral bold begin:
bold begin token.

collateral brief clause:
open, joined portrait ety, close token.

collateral c¢lause:
collateral bold begin, bold end token;
collateral bold begin, joined portrait, bold end token;
collateral brief clause.

180

common declaration:
associativity declaration:
commutativity declaration;
identity declaration;
mode declaration;
operation declaration;
priority declaration.

commutativity declaration:
commutative token, operator list;
non commutative token, operater list.

declaration:
ldecety common declaration.

declarative:
declarer, parameter joined definition;
declarative, go on token, declarer, parameter joined definition.

formal parameter list or structure definition
declarative pack:
open, declarative, close token.

declarer:
bold mode token;
procedure declarator;
rows of declarator;
structured with declarator;
union declarator.

declarer or code:
declarer;
code.

do part:
do token, serial clause, od token.

enclosed clause:
choice clause;
collateral clause;
loop clause.

181

eXecC part:
series.

for part:
for token, series;
par token, series.

formal procedure plan:
declarer;

open, joined declarer Pack, close token, declarer.

formula;
formula, left operator 0, formula;
formula, left operator 1, formula;
formula, left operator 2, formula;
formula, left operator 3, formula;
formula, left operator 4, formula;
formula, left operator 5, formula;
formula, left operator 6, formula;
formula, left operator 7, formula;
formula, left operator 8, formula;
formula, left operator 9, formula;
formula, left operator 10, formula;
formula, nonassoc operator 0, formula;
formula, nonassoc operator 1, formula;
formula, nonassoc operator 2, formula;
formula, nonassoc operator 3, formula;
formula, nonassoc operator 4, formula;
formula, nonassoc operator 5, formula;
formula, nonassoc operator 6, formula;
formula, nonassoc operator 7, formula;
formula, nonassoc operator 8, formula;
formula, nonassoc operator 9, formula;
formula, nonassoc operator 10, formula;
formula, right operator 0, formula;
formula, right operator 1, formula;
formula, right operator 2, formula;
formulé, right operator 3, formula;
formula, right operator 4, formula;
formula, right operator 5, formula;
formula, right operator 6, formula;
formula, right operator 7, formula;
formula, right operator 8, formula;

182

formula, right operator 9, formula;
formula, right operator 10, formula;
right operator 0, formula;
left operator 0, formula;
nonassoc operator 0, formula;
right operator 1, formula;
left operator 1, formula;
nonassoc operator 1, formula;
right operator 2, formula;
left operator 2, formula;
nonassoc cperator 2, formula;
right operator 3, formula;
left operator 3, formula;
nonassoc operater 3, formula;
right operator 4, formula;
left operator 4, formula;
nonassoc operator 4, formula;
right operator 5, formula;
left operator 5, formula;
nonassoc operator 5, formula;
right operator 6, formula;
left operator 6, formula;
nonassoc operator 6, formula;
right operator 7, formula;
left operator 7, formula;
nonassoc operater 7, formula;
right operator 8, formula;
left operator 8, formula;
nonassoc operator 8, formula;
right operator 9, formula;
left operator 9, formula;
nonassoc operator 9, formula;
right operator 10, formula;
left operator 10, formula;
nonassoc operator 10, formula;
formula, of token, formula;
primary.

from part:
from token, unit.

identifier:
tag token.

183

identity declaration:
declarer, identity joined definition;
procedure token, identity joined definition,

identity definition:
identifier, operator, ldecety source.

identity joined definition:
identity definition;
identity joined definition, and also token, identity definition.

if clause:
bold if token, serial clause, bold then part, bold else part,
bold fi token;
bold if token, serial clause, bold then part, bold fi token.

indexer:
trimscript;
indexer, and also token, trimscript.

initialization:
/* empty */.

Jjoined declarer pack:
declarer;
joined declarer pack, and also token, declarer.

Joined portrait:
serial clause;
joined portrait, and also token, serial clause.

joined portrait aty:
/* empty */;
joined portrait.

ldec source choice:
relational, length dencter, colon token, unit or code.

ldec source choice list:

ldec source choice;
ldec source choice list, and also token, ldec source choice.

184

ldecety common declaration:
common declaration;
ldec token, common declaration.

ldecety source:
unit or code;

choice token, open, ldec source choice list, close token.

length denoter:
denoter;
other tao token, denoter.

longs:
long token;
longs, long token.

loop clause:
repeating part;

to part, repeating part;
by part, repeating part;
by part, to part, Tepeating part;
from part, repeating part;
from part, to part, repeating part;
from part, by part, Tépeating part;
from part, by part, to part, repeating part;
for part, repeating part;
for part, to part, repeating part;
for part, by part, repeating part;
for part, by part, to part, repeating part;

for part, from part, repeating part;
for part, from part, to part, repeating part;
for part, from part, by part, repeating part;
for part, from part, by part,to part, repeating part;
for part, seq part, repeating part;
for part, seq part, bold out part, repeating part;

mode declaration:
mode token, mode joined definition.

mode definition:
bold tag token, operator, declarer or code;
sizes, bold tag token, operator, declarer or code.

185

mode joined definition:
mode definition;
mode joined definition, and also token, mode definition.

open:
open token.

operation declaration:
operator token, operation joined definition;
operator token, formal procedure plan,
operation joined definition.

operation definition:
operator display, operator, ldecety source.

operation joined definition:
operation definition;
operation joined definition, and also token,
operation definition.

operator:
bold tag token;
other tao token;
left operator 0;
left operator 1
left operator 2
left operator 3
left operator 4
left operator §
6
7
8
9

’
.
»
.
H]
.
»

-

left operator
left operator
left operator
left operator
left operator 10;
nonassoc operator
nonassoc operator
nonagsoc operator
nonassoc operator
nonassoc operator
nenassoc operator
nonassoc operator
nenassoc operator
nonassoc operator

.
2
.
¥

e e s

. e

e W e

0O~ p WO

-

186

nonassoc operataor 9;
ronassoc operator 10;
right operator 0Q;

right operator 1:
right operator 2;
right operator 3;
right operator 4;
right operator 5;
right operator §;
right operator 7;
right operator 8§;
right operator 9;
right operator 10,

—

Operator display:
operator;
undefined operator;
choice token, open, operator list, close token.

operator list:
operator;
undefined operator;
operator list, and also token, operator;
operator list, and also token, undefined operator.

parameter joined definition:
identifier;
parameter joined definition, and also token, identifier.

particular program:
enclosed clause.

prelude:
declaration;
prelude, go on token, declaration.

primary:
call;
cast;
denoter;
enclosed clause;
identifier;
Primary, brief sub token, indexer, brief bus token.

187

Priority declaration:
priority token, pPriority joined definition.

priority definition:
/* operator, equals token, digit token. */
operator display, operator, denoter.

Priority joined definition:
Priority definition;
Priority joined definition, and also token, priority definition.

Procedure declarator:
Procedure token, formal brocedure plan.

relational:
operator.

repeating part:
do part;
while part, exec part, do part.

revised lower bound:
at token, wunit.

routine text:
declarer, colon token, unit or code;
declarative pack, declarer, colon token, unit or code.

TOW rowver:
/* empty */ ;
unit, colon token, unit;
unit;
colon token.

rower.
T'ow rower;

rowver, and also token, row rower.

rower bracket:
brief sub token, rower, brief bus token.

rows of declarator:

188

rower bracket, declarer.

seq part:
unit.

serial clause:
seéries;
prelude, go on token, series.

series:
unit.
/* series, go on token, unit. %/

shorts:
short token;
shorts, short token.

sizes:
shorts;
longs.

skip token:
bold skip token;
tilde token.

specification:
/* The syntax of this is changed slightly to:
1. make it easier to parse.
2. allow for specifications other than modes
(in place of choice using integral and choice using boolean).
*/
rower bracket, colon token;
brief sub token, declarer, brief bus token, colon token;
brief sub token, declarer, identifier, brief bus token,
colon token.

structured with declarator:
structure token, declarative pack.

tertiary:

formula;
nil token.

189

to part:
downto token, unit;
to token, unit;
upto token, unit.

trimscript:
/* empty »/;
unit;
colon token;
colon token, revised lower bound;
colon token, unit;
colon token, unit, revised lower bound;
unit, colon token;
unit, colon token, revised lower bound ;
unit, colon token, unit;
unit, colon token, unit, revised lower bound;
revised lower bound.

union declarator:
union token, open, joired declarer pack, close token.

unit:
assignation;
routine text;
skip token;
tertiary;
tertiary, is not token, tertiary;
tertiary, is token, tertiary.

unit or code:
unit;
code.

while part:

until token, series;
while token, series.

190

