FAULT TOLERANT COMPUTING: ISSUES, EXAMPLES,
AND METHODOLOGY

David A. Rennels June 1987
CSD-870024

FAULT-TOLERANT COMPUTING:
ISSUES, EXAMPLES, AND METHODOLOGY

LECTURE NOTES
ADVANCED FAULT-TOLERANT COMPUTING WORKSHOP
BANGALORE, INDIA
JULY 20-25, 1987

David A. Rennels
University of California
Los Angeles, CA 90024, USA

Abstract

These lectures are intended to discuss a selection of
fault-tolerant computers, with emphasis on issues and tradeoffs
in the design of unmaintained systems which must provide
dependable real-time operation over long-periods of time.
Current research issues are discussed along with the problems of
developing and validating new high performance systems. The
notes are compiled from previously published survey and
research papers presented by this author. The information is
modified and rearranged for tutorial purposes and augmented
with additional presentation slides.

Fault-Tolerance Issues in Next Generation Real-
Time Systems

The third part of these lectures discuss, from the
prospective of this auathor, problems of
implementing fault tolerance in the next
generation of high performance highly parallel
computers. Emphasis is placed on long-life
unmaintained systems which have real-time
recovery requirements. Several current research
areas are discussed including: i) application of

These lectures are presemted in four parts

outlined below:

1.

Requirements and Approaches in Existing Fault-
Tolerant Systems

The first part begins with a brief history of fault-
tolerant computing. Classes of fault-tolerance
applications are identified along with their
corresponding requirements. Existing fault-
tolerant computers are discussed, emphasizing the
basic concepts employed in the design of these
systems, Tradeoffs and alternatives are
examined which are available to the system
designer in attempting to meet applications
requirements.

Real-Time Systems for Long-life Unmaintained
Applications

The second part discusses computers for long-life
unmaintained applications, focusing on previously
published research into fault- tolerant designs for
planetary spacecraft. The architectures of the JPL
STAR (Self-Testing and Repairing) Computer,
the Unified Data System, and the Fault-Tolerant
Building Block Computer are discussed.

Fault Tolerance to very high performance parallel
architectures, and ii) self- checking, self-
exercising logic.

4, Methodology of Implementing Fault-Tolerant

Systems

The final part of these lectures deals with the
methodology of implementing fault-tolerant
systems. This is a difficult problem from both the
standpoints of management and engineering. It
involves i) specifying requirements, i)
evaluating contractor performance, iii) validating
the design. ’

1. REQUIREMENTS AND APPROACHES
IN FAULT-TOLERANT SYSTEMS

1.1 HISTORY OF FAULT TOLERANT
COMPUTERS

Until the 1980’s most work in fault-tolerance was
directed at providing recovery from physical faults,
manifested either as transient errors, intermittent faults or
component failures. Many of the design techniques for
hardware fault-tolerance were developed for early relay
and vacuum-tube machines. Since they were prone to

error, techniques such as error detection codes,
instruction retry, and diagnostics were used (usually in
an ad-hoc fashion) to help these machines compute
correctly most of the time. It was not viewed as practical
to produce a computer which continued computation in
the presence of major errors and faults which are hard 1o
handle, e.g. failures in control, transient faults, etc.
There was one notable exception in Prague, where a team
led by Prof. Antonin Svoboda developed a computer
(SAPO) with comprehensive fault detection and recovery
capabilities. Due to very poor quality of available
components, (and, as he often described it, threats from
the ruling authorities) he found it necessary to build three
processors and vote their results in order to circumvent
frequent relay errors to achieve acceptable performance
[OBLO 62].

With the development of transistor machines,
component reliability was greatly improved. Automated
fault recovery was not viewed as being cost-effective
since redundant hardware and fault recovery mechanisms
would add considerably to the initial cost of the system.
Emphasis was placed on minimizing downtime when a
fault occurred by including fault detection mechanisims in
the design and providing comprehensive diagnostics to
allow a repairman to quickly isolate faulty logic and
replace it.

Research into circuit testing and fault diagnosis is
probably the oldest active area in the fault tolerance field.
By the mid 1960s effective algorithms had been
implemented for testing combinational circuits, (Roth’s D
algorithm being perhaps the best known [ROTH 67]).
The use of microprogramming allowed diagnostic
programs to be written in microcode, giving much
improved access to internal logic for more effective
testing. By the mid 1960s extensive fault-detection logic,
retries of single instructions, and microdiagnostics were
in use in many (e.g. IBM}) mainframes.

In the 1960s several applications arose for which
the potential cost of computer failure was very high, and
automatic fault recovery was needed so that computations
could continue uninterrupted in the presence of faults.
Among these applications were computer-controlled
spacecraft (which cost several hundred million dollars
each) and computer controlled telephone switching
systems. These were probably the first requirements for
fully fault tolerant systems, and they caused a new
advance in the state of the art. In addition to the
previously developed functions of fault detection and
diagnosis, these systems were required to automate the
TeCOVery process.

It was understood from the outset that there were
only a few basic conceptual approaches to implementing
hardware fault tolerance. Redundancy could be
implemented statically in a stuctural fashion where
neighboring units took over the function of failed units
much like an extra column in a building. Alternatively, an
active redundancy approach could be taken in which
faulty units were detected and spares substituted in their

place. Static redundancy took the form of cither
‘‘quadded” components connected in series-parallel
(groups of four components could operate correctly with
one failed) or triplicated modules with majority voting to
ignore a single faulty unit in the three (called TMR-
Triple Modular Redundancy). Active redundancy
required the ability to explicitly detect errors in a unit and
a fault- tolerant recovery mechanism to replace a faulty
unit with a spare and to re-establish computations.

Two early fault-tolerant space computers were
built and flown in the Orbiting Astronomical Observatory
(OAQ) satellite and the Apollo guidance system, and a
fault tolerant Electronic Switching System computer
(ESS) was developed for telephone swiiching, The
OAO computer used static quad redundancy shown
schematically in Figure la. It was one of the last
computers built with discrete transistors, and its approach
to fault tolerance was unique to that technology. Each
transistor was replaced by four in a series parallel circuit
and was designed in such a way that if any transistor
failed, the others could continue to provide the proper
logic function (KUEH 69]. This approach could not be
continued with integrated circuits, because independence
of failure could no longer be guaranteed. With all four
transistors on the same piece of silicon, a fault could
damage all of them.

The next machine, the Apollo guidance computer,
used statc redundancy for the processor and active
redundancy for the memories (design techniques which
are still useful with modern technology). There were
three processors running the same programs, and their
results were voted to mask out an error by any single
processor. Two memories were used and data was written
to both of them and encoded in an error detecting code
(see Figure 1b). If one of the memories failed, its data
would be incorrectly coded, and the processors would
then use data from the other memory [ANDEG7].

The initial ESS designs used a different approach
to active redundancy. Two computers executed the same
programs and their outputs were compared (Figure 1c).
If one failed they would disagree, and diagnostics were
executed to find which machine was faulty [TOYW 78].
Later designs use two processors each of which is
specially designed to detect its own internal faults so that
the faulty machine can usually identify itself when the
computers disagree.

»
1a) The Approach to —_— —_
"Quad" Redundancy - ry

1b) TMR Processors and
Duplex Self-Checking

Memoeries o
1¢} Duplication with
Output Comparison MEM MEM
INPUTS

rt 13
ICPU I ¥y _ ¥ CPU

QUTPUT

COMPARE

The JPL-STAR Computer (shown in Figure 2)
was developed for long unmaintained life during deep
space missions during this period [AVIZ 71al. Tt used a
fourth approach of active redundancy. The computer was
subdivided into functional units: Memory Modules
(MM), an Arithmetic Processor (ARP), a (COntrol
Processor (COP), an I/O Processor (IQP) and a Test And
Repair Processor (TARP). Each unit was designed to
detect and signal its own internal faults concurrent with
regular program execution. The triplicated Test and
Repair Processor was a simple module which served as a
hard-core recovery unit. It was charged with replacing a
faulty unit with a spare and reinitializing the system so
that computations could continue. The TARP introduced
a new hybrid form of dynamic and static redundancy.
Three TARPs operated simultaneously and their outputs
were voted. Backup spare TARPs were also provided and
two agreeing TARPs could replace a disagreeing TARP
with a spare, This architecture was finely subdivided
into small functional units, and in most cases, only one
unit of each type was powered at a time. This “‘standby
replacement’” system was chosen because of very limited
power availability on the spacecraft and the need for very
long unattended life.

Ml BUS (4}

R TEOL ' IO BUSES
BUS (3)1 =]
STATUS ROM RWM L] RWM] RWM
LINES . .)
l M-0 lausml l
TARP
CoP L LoP | MAP 10-1R

Figure 2: The JPL STAR Computer

By the end of the 1960s nearly all of the basic
forms of fault- tolerant architecture to be found in later
designs had been built and experimented with (e.g.
triplication with voting, duplication and comparison,
self-checking units, and backup sparing). These
concepts were refined and adapted to more modem
hardware and software technology in subsequent
computers.

In the 1970s, several fault-toierant machines were
developed for commercial aircraft control. Two very
advanced research machines were developed to the same
specifications by the same NASA sponsor, and were built
and tested as prototypes (the Fault-Tolerant
Multiprocessor (FTMP) and Software Implemented
Fault-Tolerance (SIFT). Simplified block diagrams of
the two architectures are shown in Figures 3 and 4. Both
systems execute three copies of a program in different
hardware and vote the results to mask faults but they do it
in very different ways. All processors in the FTMP are
clock synchronized and voting is done by hardware.
Processors in SIFT use independent clocks, and voting
and synchronization are carried out by software.

In the FTMP structure, a set of processors and
memories are connected to five redundant buses through
special redundant bus guardian circuits, Processors and
memory modules can be dynarnically assigned to be a
member of a group of three processors and three
memories which will run the same computation
(designated a triad). This is done by commanding their
associated bus guardians to communicate over specially
assigned buses. The guardian circuits in the processors
vote the three copies of data arriving from their assigned
memories, and conversely the memories’ guardians vote
on information from their assigned processors. If a bus,
processor, or memory fails there will still be two valid
copies of information at each voter, and the fault will be
masked, allowing the triad to continue. When such a
failure occurs, a different triad can sense the condition
and reconfigure the affected triad by sending commands
to bus guardians to assign a new processor, memory, Of
bus to the affected triad. In this system the common
clock had to be specially protected since its failure would
disable everything. A special redundant hardware clock
design was developed which is immune to single-point
failures (HOPK 78].

Memory Modules Processor Modules

w/ Cache 'O AGCESS
M Me P BUSSES
'/ ’
M Mc P WO ACCESS
UNITS
M Mc P 7o) I
M Mc P .
» :: 1D |t
M Imcp |
| WO e
4 4
M Mec P o |-
M | Mc P P
MEMORY
ACCESS .
BUSSES * Redundant buses and clock

* Processors and Memories Grouped in Triads

Figure 3: The FTMP Structure

The SIFT computers are totally connected. Each
computer can broadcast a message over a serial line to
dedicated buffers in all the other computers. The
computers operate with unsynchronized hardware clocks,
and synchronization occurs by a software voting process.
Each computer contains a synchronous software
executive and software voting procedures. Periodically,
the computers exchange messages containing their views
of the time and develop a consensus as to its value. As
user processes are scheduled in a time-synchronous
fashion, they are executed at approximately (but not
exactly) the same time. They send their resuits to the
other processors where a software voting procedure is
invoked to mask faults. If a computer fails and generates
disagreeing outputs, the other two ignore it [WENS 78].

3l ©
% C
=

o |-

MAIN COMPUTERS

REDUNDANT O

110

Figure 4: The SIFT Structure

In practice the FTMP architecture has two major
advantages over SIFT in dedicated real-time control
applications, It runs faster than SIFT because its voting
is done by hardware. The SIFT computers use a
significant percentage of their processing time running
the software wvoting and synchronization programs.
More importantly, the fault-tolerance features of FTMP
are necarly software transparent. Nearly any software
executive can be run on FTMP with fault recovery
procedures written to run under it. (Remember the triads
will continue to operate under fault conditions untl a
reconfiguration procedure is invoked.) SIFT, on the other
hand, is constrained to using its custom synchronous
executive which implements the fault-tolerance features.

In this authors opinion, FTMP may have been
more practical, but SIFT has probably made an equally
important research contribution. The SIFT program has
done pioneering work in proving the correciness of
software, the use of formal specifications, developing
new software voting and synchronization concepts, and
allowing for the use of selective redundancy. In the SIFT
system the processors can schedule different (non-
redundant) programs in three machines some of the time
while running highly protected triplicated programs at
other times. This type of approach has considerable
merit in commercial systems where resources can be
assigned individually to non-critical tasks, then brought
into a redundant configuration for more important uses
(such as periodically waking up a fault-tolerant
monitoring and system recovery process).

A highly redundant computing system was used
on the Space Shuttle [SKLA 76]. This system has five
redundant computers. During critical mission phases,
four execute identical programs and the control outputs of
the four are voted in the control actuators. The fifth is
used as a non-redundant backup and contains totally
different programs in the hope that if an uncorrectable
design or software error occurs in the four primary
machines, the fifth can be switched-in to replace them.
Two sets of programs have been written by different
contractors (the four are programmed by IBM and the
fifth by Rockwell). Incompatibilities between the two
sets of programs have caused check-out problems and a
delayed launch, but the system now appears to be
working satisfactorily.

Also during the 1970s more advanced fault
tolerant computers were developed for communication
switching, and the use of fauli-tolerant computing
expanded into process control for critical transportation
applications [[HAR 78].

Recently, two parallel developments have
accelerated application of fault-tolerant computing. The
first is the increased degree to which the public depends
upon computing systems, greatly multiplying the
inconvenience and public awareness of an occasional
computer fault. A failure of computing for automated
bank tellers for a large city one or two times a year, or
temporary outages of credit card checks can

inconvenience thousands, as can failure of just one
computerized ignition system on a freeway at rush hour.
The second is the enormous decrease in the cost of
computer hardware. The primary cost associated with
implementing hardware- fault tolerance is associated with
redundancy that is added to provide fault-detection and
recovery. Although the relative hardware cost of a highly
fault-tolerant computer may be several times that of a
non-fault tolerant machine, hardware prices have dropped
an even greater relative amount making fault-tolerance
cost- effective for a larger number of applications.

A number of new companies have been formed to
enter the commercial marketplace with fault-tolerance.
The best known is Tandem Computers which has grown
to a large size within a very short time by supplying this
technology to the transaction industry [KATZ 82, BARL
82]. Other companies (August Systems, Stratus,
Synapse, etc.) have since been formed to enter this
expanding marketplace and have met with varying
success.

A new and exciting area is the development of
fault-tolerant local area networks. A large amount of
redundancy is naturally available in collections of
identical machines, and the individual machines have the
built-in intelligence (with properly written programs) to
provide sophisticated recovery algorithms at very low
cost when other machines fail. It is instructive to briefly
discuss two examples, Locus and the Draper Laboratories
"]AIPS systems.

LOCUS is a network operating system which
exploits the hardware redundancy in a local network to
provide very high availability. It is running on a
distributed VAX network at UCLA and provides a
network-transparent UNIX environment. The user can
log onto any machine in the system, except when
restricted by administrative fiat, and see an identical
environment (passwords, files, mail, etc.) Files can be
duplicated at two different sites, and, as programs
execute, data is paged out to those sites. If the user's
machine crashes, he or she connects to a different
machine and continues using the system [POPE 81].
This system is based on the use of commercial hardware
with little or no hardware modifications.

AIPS is an extension of the FTMP concept to
distributed systems as shown in Figure 5. A group of
processing sites are connected through switching nodes to
a redundant intercommunication structure which behaves
like a miply redundant bus. Redundant links are
provided, and messages can be circuit switched over
different paths to provide physical damage tolerance.
Each processing site may be a Fault Tolerant
Multiprocessor (FTMP), a triplicated (TMR) Fault
Tolerant Processor FTP, a duplicated pair of processors,
or a single non-redundant machine. Each site has a local
clock which synchronizes computers at that site, but
clocks are not synchronized between sites. Hardware
voting is done throughout the system. Within a site
containing triplicated (TMR) processors, voting is

straightforward because the processors are clock-
synchronized and are executing identical programs.
Voting of triplicated data sent between processing sites
with different local clocks requires a hardware
synchronization operation, but the data skew can
probably be kept small and hardware voting is still
feasible. This design recognizes the need for selective
redundancy. In a complex system, not all processes are
sufficiently critical to justify triplicating their processors.
Thus duplex and single processors can also be included
[AIPS 84]. This system is a candidate for use on the
Space Station.

MODIFIED
FTMP

DUPLEX| |—
PROC.

| PROC. [

SIMPLEX
| PROCESSOR

® - Switching Nodes

Figure 5: A Simplified Dlagram of the AIPS System

1.2 FAULT-TOLERANCE PERFORMANCE

1deally, all fault-tolerant computing systems
should recover from all possible faults with no errors or
delay. Practical systems can only achieve limited
capabilities. We cannot enumerate all possible faults,
and economic tradeoffs further limit what capabilities are
designed into a system. In order to comparatively
evaluate fault-tolerant computers it is necessary to
establish a way to compare the requirements to which
they are designed and the performance they achieve. All
fault-tolerant systems have an objective of improved
availability, i.e. to minimize downtime. In addition, three
principal characteristics which define a space of
requirements for fault-tolerant design as shown in Figure
6. In the figure they are shown as three axes which
define (at Ieast in an informal way) a space in which
fault-tolerant designs can be compared.

TIME BETWEEN
MAINTENANCE
'y
FAULT
COVERAGE
COMPUTATIONAL
INTEGRITY

Figure 6: Fault-Tolerance Characteristics

Fault Coverage

The first axis is fault coverage. Coverage has a
qualitative component: i) which fault-types are covered,
and a quantitative component ii) how well the protection
mechanisms work in recovering from each fault-type.
For every fault-type (i) we define a quantitative coverage
parameter c(i) which is the conditional probability that
the system will recover properly, given that a fault of that
type occurs. We can define an overall average system
coverage as an average of the coverages for the
associated fault- types weighted by their probability of
occurrence.

For any fault-tolerant design it is necessary to
enumerate the fault-types that are being protected against.
One group is physical faults, which should include
transient errors (sometimes called single event upsets)
and permanent faults associated with the component
technology used. There exist a number of standard
models for predicting the rate of occurrence of random
faults which cover existing technologies and introduce
approximations to take into account chip complexity and,
to some extent, new device types. For new technologies
the system developer must estimate failure types and
rates by extrapolating from past experience and/or
developing failure physics models of new devices.

Another class of faults which may be specified are
externally induced errors caused from the surrounding
environment such as electrical noise, radiation, or
physical damage. A third class of faults are caused by
design errors (logic errors, software errors).

Coverage has been shown to be a very sensitive
parameter in achieving fault tolerance over long periods
of time [BOUR 69]. This can be easily seen since if N
faults occur, the probability of correct operation will be
bounded by c¢**N, no matter how much redundant
hardware is employed in the system.

As a system requirement, the level of coverage
reflects the criticality of the application to which the
computer is applied and what levels of performance
people are willing to accept. The SIFT and FTMP
computers were designed to a requirement that there be
less that one chance in a billion of computer failure

during any a ten hour aircraft flight (between ground
maintenance). Since there is a reasonable chance of a
fanlt occurring within that time, coverage was required to
be a nearly perfect (999999..). Other applications, such
as spacecraft control may require a smaller value of
coverage (e.g. >.98-.99) if a computer outage is not as
critical. The surrounding system may be designed with
interlocks which would prevent computing errors or loss
of computations from destroying the spacecraft, and
remote ground intervention may be possible to manually
reconfigure the on-board computer to a working
configuration should that be necessary on rare occasion.
The users of some general purpose systems might be
satisfied with reducing the average crash rate from once a
month to once a year allowing a coverage of .93,

The following paragraphs address approaches
which can be taken to achieve coverage against random
hardware errors and faults.

Triplicated Processing for High Coverage:

Extremely high levels of coverage against random
faults in hardware are very difficult to achieve. To design
for coverage of 0.999999 would require knowing with
near absolute certainty which faults will occur in practice.
This is clearly impossible, so the designers use the only
alternative available. Three computers are operated
simultanecusly and their outputs voted. Here we do not
have to know how a computer will fail, it is assumed that
no two computers will fail at the same time, and if one
fails, the correct result will appear in the output vote.

But even using a conceptually simple approach of
voting replicated units, the fauli-tolerant implementation
is difficuit. A number of complex issues arise in the
design of the “*hard Core’’ portion of these fault tolerant
systems. That hard core consists of common elements
which can result in system failure, e.g. voters,
synchronizing clocks, and communication paths between
the machines. The FTMP and SIFT programs worked out
highly redundant clocks, and voters which are inherently
fault tolerant. FTMP did this in hardware while SIFT
uses distributed software algorithms to provide the same
functions. Both systems use redundant interconnections
between computers with mechanisms to circumvent
faulty paths [HOPK 78, WENS 78].

Duplicated Processing with Concurrent Fault
Detection

There are less hardware expensive ways to
provide recovery from hardware faults -- at a
correspondingly lower value of coverage. It was shown
that a conventional computer could be made self-
checking at a cost of about an additional 10% in
hardware. With self-checking design (discussed later in
these notes) each computer has internal error detection
circuits and can signal an internal error as scon as it
occurs. Clearly two machines of this type running the
same computation could provide fault-tolerance with high
computational integrity using two conventional machines

and comparing their outputs. If they disagree, the
computer signaling an error would be ignored and the
other one would complete the computation. This would
be considerably less expensive than running three
machines and voting. The coverage is lower because the
internal checking circuits may not detect all errors, and if
two processors disagree, and neither signals a fault, the
one in error may be selected to continue the
computations.

Simplex Processing with Backup Spares

An even less expensive approach is to use standby
redundancy -- to operate each program in a single
computer which has concurrent fault-detection. Backup
spare computers are available to take over should a
permanent fault occur in the primary machine. This
results in a delay or loss of some computations if an
error or fault occurs and also results in much more
complex recovery algorithms (described below). This
approach can be expected to have lower coverage than
either the use of massive voted redundancy or the use of
duplicated self-checking processors.

Computational Integrity

The next axis is computational integrity. This has
several components: i) accuracy of computation, ii) time
delays during recovery when computation is not
available, and iii) definition and protection of critical
state information. The following addresses approaches
which can be taken to achieve computational integrity
against random hardware errors and faults.

In order to achieve complete computational
integrity (without time delays for fault recovery) it is
necessary to carty out at least two self-checked
computations or three non-self-checked computations
concurrently. (This includes replication of all storage.) If
a fault occurs in one machine carrying out the
computation, another can continue it without delay.
This is hardware-expensive and has in the past been
reserved for computers used in critical applications such
as airframe control (e.g. the SIFT, FTMP, and Space
Shuttle computers discussed above.)

Only recently, has the price of hardware dropped
to the point where this level of redundancy can be
inttoduced into commercial machines, The Stratus
Computer system uses a pair of self-checking processors,
running the same software concurrently. At a price of
,about $100 per chip, this system includes eight 68000
processors running as four self-checking pairs.

For many applications, computational integrity
requirements can be relaxed, allowing computing to stop
for a time during error and fault recovery, and allowing
some compuiations to be lost. These relaxed
requirements allow the use of less expensive standby
redundancy. Each computation is run in a single machine
which is backed up by other computers running different
computations or serving as unpowered spares. The

machine’s state is periodically saved as rollback points,
If a transient fault occurs, the computer returns to the last
rollback point to restart its computations. For a
permanent fault, provisions may be added for a different
computer to obtain the rollback state and continue the
interrupted computations. In either case the computation
is delayed.

In the JPL-STAR computer (which as previously
described used standby redundancy) the recovery delay
could take hundreds of milliseconds. This may not be a
problem in some commercial applications, but for real-
time systems the worst-case recovery time must be
accounted for in the design of the surrounding system.
For example, a spacecraft computer might be scheduled
to start a sequence of periodic commands to a subsystem
during the time that a fault recovery was in progress (or
even worse it might fail when some, but not all
commands have been sent). After the recovery the
applications programs would be required to account for
the fact that a delay occurred, and the command
generation program would have to send the command
later. This might cause other commands to be modified
to related subsystems, etc.

A standby redundant system cannot guarantee
computational integrity if inputs are lost or if outputs are
forgotten during a program rollback. It is seldom
recognized that special hardware must be included to
capture any input which occurred between the time that a
rollback point was established and a fault induced a
rollback to that point. Clearly if inputs are ignored the
computational results will be modified by the occurrence
of a fault. Similarly, outputs can not be repeated when a
rollback is attempted.

To summarize, a high degree of computational
integrity can be maintained when expensive fanlt
masking techniques are employed (TMR/Hybrid or
duplex self checking). Time delays are introduced with
the less expensive standby redundancy and, if careful
design is not employed, computational integrity cannot be
guaranteed. Probably the best solution is the selective use
of redundancy. If non-critical programs are run on single
machines, while occasional critical programs are
triplicated, a cost effective solution can be obtained. A
system is currently being developed at UCLA which will
cause critical computations to be run in triplicate on a
distributed computing facility, while the majority of
(non-critical) programs will be run in a standby
redundant fashion [AVIZ 84].

Time Between Scheduled Maintenance

The third axis of Figure 6 is Time Between
Scheduled Maintenance. Maintenance in this context is
human intervention to replace faulty components. A
fault-tolerant machine will recover from a fault by
invoking redundant hardware, but the faulty hardware
must be replaced to restore the system since the system
will ultimately fail when spare hardware is exhausted.
There are a number of applications for which
maintenance is impossible (in this case time between

scheduled maintenance is the total life of the system), and
others for which maintenance is inconvenient or
expensive (resulting in months to years during which the
system should operate without manual repair). For
example, many space computers are unrepairable. Many
military systems have severe logistic problems for repair,
as do systems at remote places. This requires special
design of long-life systems with sufficient redundancy to
survive an extended period of time with a specified level
of confidence. Often these systems are also constrained
by limited power availability and a requirement to be
fitted into a small volume.

Long life systems must employ more redundancy
than regularly maintained systems, and must use the
redundancy that they have in an efficient fashion. This
can be in conflict with the need for computational
integrity and high coverage which, as we have seen,
requires massive redundancy during operation. For
example, a long life system which requires three
operating processors must provide much more additional
redundancy to guarantee that all three processors will
survive until end of life. This is infeasible in space
applications due to power constraints and the fact that
many semiconductor technologies (NMOS, Bipolar) have
a higher failure rate when powered. (A long-life system
may be designed to operate with only one copy of a
computation being run at one time in order to require
fewer spares and leave the spare hardware unpowered for
longer life). Some coverage and computational integrity
is sacrificed to attain longer life with a given amount of
redundant hardware.

In order to use redundancy in an efficient fashion,
long-life computers are often partitioned more finely than
are frequently maintained systems, because this allows
longer life to be achieved with a given amount of
redundant hardware. For example, the FTBBC computer
developed for unmanned spacecraft at the Jet Propulsion
Laboratory, allows faulty computers to be replaced with
spares. In addition, each individual computer contains
internal redundancy which allows individual memory
modules, processors, and even memory chips to be
replaced with spares to enhance the life of each processor
~ ata small increase in hardware cost [RENN 81b].

1.3 APPLICATIONS CLASSES

Critical Applications

For highly critical applicatons where the loss of
human life or expensive machinery can occur, it is likely
that massive voting redundancy will always be used. By
running three or more machines and comparing their
outputs, it is not necessary to know the hardware fault
mechanisms which occur within a module. The only
assumption required is that they will fail randomly and
independently. If only one machine fails at a time, an
output vote will deliver a correct result, and very high
coverages can be assumed. The guarantee of no
computational delays during fault recovery is often very

important. Uncertainty as to interruption of computations
can complicate design of the system which the computer
may be expected to control - sometimes with
unpredictable effects. Thus machines which use fault
masking, such as SIFT, and FTMP are the types best
suited to these applications.

Long-Life Applications

For systems with long periods of time between
scheduled maintanence, standby redundancy is attractive
where limited power is available or where the failure
rates of unpowered spares can be shown to be lower than
the failure ratc of powered units [AVIZ T1a]. But this
conflicts with the fact that coverage is lower than that
available in voted systems, and inadequate fault coverage
may limit the expected life of the system. With
inadequate coverage, it does no good to add additional
spares to extend life because a high probability will exist
that the fault-recovery mechanisms will fail.

In distributed systems, the selective use of both
voting and standby redundancy may offer the best
solution to this problem. A small hard core portion of a
system is configured using hybrid redundancy to run
critical processes and fault management functions. The
remainder of the system uses less expensive standby
redundancy depending upon the core to supply high-
coverage fault recovery to the whole system.

These long-life systems should display
implementations which are finely partitioned (e.g. the use
of spare bits in memory, spare microprocessor chips, and
redundant I/O circuits) inside of individual computers in
order to squeeze the maximum useful life out of a given
amount of redundant hardware. This was done in the
SCCM [RENN 81b].

Commercial Applications

Until! recently, commercial systems compromised
fault coverage due to an assumption that customers would
not pay for redundant processor units. For example, most
current systems are designed to handle easily detectable
processor and memory faults, but subtle transients can go
by undetected because the processor is essentially non-
redundant. In the future, we can expect to see customers
become more demanding of fault-tolerance. In this
environment we see increasing costs of maintenance calls
and interrupted service while the cost of hardware is
going down rapidly. The emergence of systems such as

.Tandem and Stratus systems have shown that fault-

tolerance can be achieved at acceptable costs and, as
people depend more heavily on these computers for
banking and commerce, this market will continue to
grow, The availability of cheap single chip processors
allows duplication or triplication of processors for
detection of all transient faults and very high fault
coverage (at least for medium performance machines).
This has been recognized and implemented in the Stratus
system [FRIE §2].

Institutional Computer Networks

Nearly all large computing systems in the future
will be distributed processors due to the simple fact that
processors have become remarkably inexpensive. Many
current systems use networks of time-shared super
minicomputers (e.g. VAXs at universities). Since their
hardware is usually off-the-shelf and relatively
expensive, hardware fault-detection capabilities are
limited and partial fault-tolerance is implemented in
software. One of the better systems of this type,
LOCUS, provides a distributed UNIX environment with a
high degree of transparency. As described previously, a
user can log on from any machine and have access to
identical services and data. Files can be automatically
maintained in the secondary storage of two machines so
that if one machine fails, the user can log onto a different
processor and resume computations [POPE 81]. These
networks rely upon a unified naming and file
management scheme which is both redundant and
consistent across the network.

The SIFT results point toward an approach which
is can be used to supply ‘‘hard’’ fault tolerance in such a
network in a cost effective fashion. It should be possible
to schedule and run selected programs in three different
machines, voting their results. This can allow crash-free
and error-free results for critical programs while allowing
most of the computations in the network to be scheduled
on single machines. A capability of this type is currently
under development at UCLA [AVIZ 84].

But a second revolution is beginning in systems
of this type. While many institutions pride themselves on
the number of time-shared super minicomputers tied
together into a network, there is a move afoot toward
collections of microcomputer workstations which often
give greater processing power to the user than the
““slice” he would get from a larger machine -- and at
considerably lower cost. For example, it has been
estimated that the annual cost of maintenance of the VAX
network at UCLA will be higher than the hardware cost
of replacing it with workstations of similar performance
(although the cost of tranferring software would probably
make such a change unfeasible). Some shared facilities
will still be needed, and they are expected to evolve
toward specialized servers which provide services not
available in workstations. Large storage systems, high-
performance numerical processors, and data base
machines will be needed as the specialized servers
within large networks of workstations. These unique
nodes will be depended upon by multiple users and
therefore need considerable fault-tolerance. Thus
research into fault-tolerant mass memory systems, special
purpose number crunchers, and data base processors
should gain additional impetus.

Ultra High Performance Processing

There exist a class of dedicated system
applications (e.g. signal processing) which need special
purpose processing functions to be carried out at
enormous speeds. Often the desired processing rates are
in the range of billions of multiplies per second. In most
of these applications, the value of individual
measurements is very small due to the large number
being taken, and an occasional error in an individual
measurement is not very important, but system
availability should be high. Here the designer is pressed
to use nearly all of the available VLSI chip area to
increase speed, and the use of silicon real estate for
fault-tolerance is viewed as highly expensive. This is a
controversial area because fault-tolerance specialists feel
that the VLSI area costs of concurrent fault detection and
other fault-tolerance features is justified. Users often do
not.

A promising approach is to implement fault-
detection locally within the high-performance system and
to rely upon external control computers (which are slow
and highly fault-tolerant) to effect diagnosis and recovery
within the high-performance front-end processors,
Proposed fault detection and isolation mechanisms have
included (1) insertion of **dummy’’ calibration data into
the input stream and having an external computer identify
this calibration data in the processed output to certify
correct operation, (2) using a "roving” duplex processor
as a checker which duplicates the function of each of
several active modules (in a pre-planned sequence and
compares outputs to verify correct operation, and (3)
using low-cost error detecting codes in all arithmetic. In
any case, it appears that a hierarchic fault-tolerance
approach is needed where special purpose, very high-

" performance parallel processors are maintained by

simpler and much more fault tolerant external processors.
Applicable fault tolerance techniques will be better
understood when VLSI layouts for these systems are
completed, and a data base of applications is better
established.

1.4 HARDWARE FAULT TOLERANCE
CONCEPTS

This section is a review of some of the basic
concepts and design issues in the implementation of
faunlt-tolerant distributed systems. System development
usually proceeds from a set of user specifications
(including fault tolerance requirements) to an architecture
concept. The architecture is then refined and partitioned
into subsystems, each with specific functions to provide.
The subsystems are then further partitioned and
protective redundancy is added in the form of fault
detection and recovery mechanisms.

a) Hierarchic System Partitioning

Complex systems are naturally paritioned at several
levels based on functions provided by specific
subsystems. A fault-tolerant system displays similar
functional partitioning, but in addition it contains
redundant components and recovery mechanisms which
may be employed in different ways at different levels. It
is reasonable to view a fault-tolerant system as a nested
set of machines {subsystems) each of which may display
varying levels of fault- tolerance. For example, at the
highest level, a distributed system may recover from a
failed computer by shifting its computations to other
machines. At the next lower level, a single computer
may be capable of replacing a faulty memory module
with a spare and switching to alternative communication
channels to circumvent a failed port, but not be able to
recover when a short occurs on the local memory-
processor bus or when its power supply fails. At a lower
level, the memory modules may be capable of replacing
defective RAM chips with spares, or the chips may
contain redundancy and be capable of tolerating certain
failures but not others.

A descriptive model must capture this hierarchic
property of systems and the way in which fault-tolerance
features are apportioned within the various levels. To
do this we will introduce the terminology of embedded
partitions, A Redundant Partition (RP) is a set of
modules which contain sufficient redundancy that if one
fails, acceptable performance can be achieved with those
remaining. (The RP may contain spare modules to
replace those which fail, or it may redistribute functions
when one fails and operate in a degraded fashion.)
Recovery from a fault within the RP may be effected
within the partition itself, or it may require require action
by higher levels within the system. An RP may be made
up of heterogeneous modules (e.g. a computer with its
communications ports and disks backed up by a similar
computer which has different disks and 1/O facilities),
and a module in one RP will often contain other nested
RPs. One example is a redundant set of computers,
where each computer contains redundant memory
modules, processors, and I/O circuits.) Figure 7 shows a
typical system which is partitioned into several levels.

BUS 1

BUS 2

1
© 1-11 152 c2 1-21 1-22 e Cn

M-11 | Mo12 | [M-13 M-21 | [M-22 | [M-23
MA, S| || ma.S(| |ImA,8 MA. S| {|MA.S]| |[MA.S ..

———l DEVICE X1
—-! DEVICE X2

Figure 7: Nested Redundant Partitions

L1: COMPUTERS , BUSES
»L2: KO PCATS,
MEMORY MCDULES

>3 SPARE BIT PLANES

In Figure 7, the highest level partition (RP) is the
intercommunications bus and its backup spare.
Typically, the computers are grouped into several
independent partitions by their dedicated interconnections
to external devices. Computers 1 and 2 with devices x1
and x2 form a redundant partition and, if no other
computers have devices similar to x1 and x2 and
therefore cannot back up their services, they are the only
computers in the partition. The computers contain two
nested redundant partitions; memory modules, and /O
ports, and the memory modules contain nested partitions
of spare bit planes (ma-memory array, s-spare).

Associated with each module is a fauli-tolerance
interface which goes along with its functional interface.
The fault-tolerance interface communicates with modules
in its own partition or higher level partitions to identify
fault conditions and local recovery actions, and it may
request recovery services that cannot be provided locally
[RENN 81a, ANDE 81]. For example, if a memory chip
fails, its memory interface unit (the next highest level)
detects this through a fault-tolerance (FT) interface and
may switch in a spare bit plane and reconstruct damaged
data automatically. If a memory module fails, its FT
interface must notify its computer of the condition, and if
the local computer cannot recover from the fault locally,
its FT interface must notify other computers. Other
computers may be required to diagnose the fault, activate
a new memory module, reload and restart the failed
computer. More will be said about FT interfaces below.

Figure 8 is an idealization of the fault-tolerance
interface needed between modules of a three level
distributed system. This type of hierarchic computer
architecture is already beginning to appear in spacecraft
and probably in industrial automation also. The lowest
level (but often the most expensive) redundant partitions
are at the electromechanical sensors and actuators for
which spares are provided. At the next level, redundant
computers are dedicated to specific subsystems (e.g.
attitude control on a spacecraft), and at the next level, a
set of redundant computers provide high-level executive
and control functions,

LEVEL 0 LEVEL 1: EXECUTIVE LEVEL
CATASTROPHIC
FAULT RECOVERY 5
COMPUTER HARDWARE Lo
S FAULT RECOVERY
MECHANISM!
L 2 — EC! ISMS
MASSIVE He
F‘A:lél\.f‘lé ay SYSTEM
RE! EXECUTIVE
MECHAN- ‘cm ! H'..
ISM SOFTWARE FOR
F3 GLOBAL FAULT
* RECOVERY
T i Fl
| L JdU]T
i [B} - [] ol w
LEVEL 2: EMBEDDED COMPUTERS F8 C/M/HI
Fi COMPUTER HARDWARE
FROM==sdl EAULT RECOVERY SUBSYSTEM
COMPUTER | MECHANISM3 OPERATIONAL

SOFTWARE

FS

SOFTWARE FOR LOCAL
DETECTION AND RECOVERY C/M . HI
OF SUBSYSTEM FAULTS —————

» -~

LEVEL 3: SUBSYSTEM
Fi C/M, HI

v

SUBSYSTEM SENSORS & ACTUATCRS
Aug for tault d I
Partitionsd with redundant spares

C/M - COMMANDS AND
MEASUREMENTS

HI - HEALTH INDICATQR

FS - FAULT STATUS

Fl- FAULT INDICATCRS

Figurs 8: Fault Tolerance Interfaces in a Recovery Hierarchy

The subsystem-embedded computers provide a
degree of fault- tolerance for their associated
electromechanical subsystems using software which can
detect anomalies and effect recovery within the
subsystem. The subsystem-embedded computers also
contain redundant partitions and be capable of locally
recovering from a number of internal computer faults,
The system executive computers provide system-level
recovery functions. If a subsystem is unable to recover
from a local error or fault or if it temporarily ceases to
operate while a component is being replaced, system-
wide recovery implications can result. For example a
spacecraft may have to re- acquire orientation in space, or
a command sequence may have to be moedified. The
system-level computers must also provide fault-tolerance
for themselves and be capable of assisting the subsystem
computers in local recovery.

Each level can be characterized by its possible
" response to various internal faults, The two primary
categories are faults that the level is designed to handle
locally, and faults beyond its range of coverage. If one
level recognizes a fault for which it was properly
designed, it can notify higher system levels in one of
three ways via its FT interface: (1) it can indicate that the
fault was recovered locally, (2) request specific help in
recovering the fault within its local level, or (3) notify
higher levels of a failure which cannot be recovered at its
level. Notifying higher levels of faults may be implicit
or explicit. If the lower level module provides outputs

encoded in an error detection code, or if it is one of a set
of duplicated or triplicated modules whose outputs can be
easily compared by the next higher level we view this as
an implicit error indication. A status signal would be
viewed as an explicit indicatot.

Much more difficult are faults which were
overlocked in the design at the partition at which it
occurred. In this case, no explicit notification will be
forthcoming when the fault occurs. Here the higher level
must employ reasonableness checks and acceptance tests
on the functional outputs of the module. This is shown in
the figure as ‘‘health indicators’. Each subsystem
should be designed so that its functioning can be checked
for reasonableness. For example, data may be specified
whose rate of change cannot exceed some specified
threshold, calibration datz may be included within real
measurements, or dummy procedures may be executed to
check data for consistency. Control flow checks (locks
and keys on procedure enay) and time-out-counters also
fall into this category. This heuristic checking can be
used to provide a second line of defense against faults
which may not be detected at the level where they
occurred.

For many dedicated systems reasonable checks of
this type can be quite powerful. For example, the attitude
control subsystems of many spacecraft execute
complicated differential equations to keep the system
pointed to the the Sun and a star. If sensors indicate loss
of pointing or excessive loss of control gas, a fault in this
subsystern is nearly certain to have occurred whether or
not it was detected locally within the subsystem.

Reasonableness checks, though useful in detecting
that a subsystem is no longer functioning, provide little
information about the cause of failure. Fault recovery at
this level can require expert systems. A recovery
algorithm may involve substituting redundant elements
(and possibly activating redundant software moedules) in a
sequence planned to optimize the chances of restoring
correct operation based on educated guesses as to what
might be wrong. Research is being conducted into on-
board systems which attempt to restore correct operation,
but go so far as to re-plan mission operational sequences
if only partial operation can be restored.

Several distributed systems using commercial
machines have very limited fault detection capability
within the computers. Thus the higher level systems
functions often employ heuristics of this type for fault
detection such as heartbeat checks and checking of time
counts in the other machines.

Muiti-level models of fault tolerance have not yet
been well developed, but this is the way that technology
is moving. The state of the art in mathematical models
to predict the reliability of fault-tolerant systems are
based on the use of Markov models whose number of
states become unmanageable when multiple levels of
redundancy are employed [NGYW 80]. The
development of performance and reliability models for
future multi-level fault-tolerant systems is a new and

badly needed area of research. The extension of fault-
tolerant computing to supply autonomous repair to
complex systems is also a relatively new research area

which will have increasing importance in the future
[AREN 83].

b} Fault Detection

If a module fails, a resulting error must be detected to
enable a recovery mechanism to take corrective action.
This is the process of fault detection. Modules at all
levels (computers, logic modules, or on-chip redundancy)
fall between two basic types. At one extreme are circuits
which can detect internal faults concurrently with normal
operation -- these we will call *‘self checking’”(SC), and
at the other extreme are modules which have no internal
fault detection capability which will be designated non-
self-checking (NSC). When used in a redundant
partition, SC modules can be operated singly, since faults
will be detected. On the other hand, NSC modules must
be at least duplicated and operate two-at-a-time with
outputs compared for fault detection. They must operate
three-at-a-time and voted if a faulty module is to be
identified quickly (or if transient faults are 1o be located).

A methodology for designing self-checking logic
has been developed, and it has been shown that a self-
checking computer can be developed at an approximate
10% increase in hardware complexity [CART 77]. The
reason for this relatively low cost is that the majority of a
computer’s logic is memory which, due to its regular
structure, can be designed to detect faults with a few
extra bits per word. Irregular logic must often be
internally duplicated and compared for concurrent fault
detection, but this makes up a small percentage of many
modern machines. An important characteristic of this
methodology is the fact that self-checking checkers have
been developed which signal faults in the checking
circuitry as well as in the operational circuits being
continually checked [CART 72]. This largely solves the
problem of ‘“‘who checks the checker?”’. Checking
signals are implemented as complementary *‘morphic’’
pairs which alternate between values 1,0 and 0,1 when no
error exists. Upon detecting an error in the circuits being
checked or in the checking circuits, these signals take on
values 1,1 or 0,0 indicating a fault has occurred. A
reduction circuit was developed so that a number of these
complementary pairs from individual checkers can be
reduced to a single self-checked pair which serves as a
master fault indicator. A useful reference on self-
checking circuits is Wakerly [WAKE 78].

One approach to implementing self checking logic
on VLSI is to duplicate circuits on the chip, with one
copy implementing the required function and the other
implementing the same function but with complementary
logic functions (every logical “*one”" in one copy would
be a logical ‘‘zero”” in the other). If these circuits are
error free, their corresponding outputs will be
complementary pairs, and a self-checking comparison can
be performed [SEDM 80].

FrZam-HAxm

AR EEGCO

The JPL Fault-Tolerant Building-Block Computer
architecture (described in the next lecture) was designed
to use a small set of VLSI building-block circuits to
interconnect existing microprocessor and memory chips
to form Self-Checking Computer Modules (SCCM). The
SCCMs contain redundant communications interfaces to
facilitate their use in fault-tolerant distributed systems on
spacecraft. Self-checking (morphic) logic design is used
throughout the SCCM design. Odd parity checks are
split into two hzlves covering portions of words being
checked to generate complementary signals, and random
logic is duplicated with the outputs of one member of a
duplex pair inverted to also generate complementary
output signals. These are reduced (using morphic "and"
logic to provide self-checking check circuits. The SCCM
is shown in Figure 9. The four building-block types are
(1) a Memory Interface building block which implements
Hamming Codes and spare chip replacement in memory,
(2) an /O building block, (3) a Bus Interface building
block which allows the SCCMs to be connected with
similar SCCMs into a network, and (4) a Core building
block which compares the outputs of two duplicated
processors, checks information on internal buses for
proper coding, and collects fault messages from other
building blocks. The Core, on detecting a fault can
initiate a program rollback to correct transient faults, and
disable the SCCM if the fault persists --indicating a
permanent fault. A breadboard system was constructed,
and faults were inserted into both the operational logic
and the check circuits by shorting randomly selected
wires to ground [RENN 81b}.

RAM or ACM
DATA + SEC/DED + SPARES
LR]

RAM
DATA + SEC/DED + SPARES

(SN

MEMORY INTERFACE
BUILDING BLOCK MiBB

MEMORY INTERFACE
BUILDING BLOCK MIBB

INTERNAL BUS {DATA/ADDRESS/ICONT} .
USES ERAOR DETECTING CODES
INTERNAL FAULT
BUS SIGNALS ARE "
wrereacel MORBHIC PAIRS
7 Bunoina
Ay CORE BUILDING BLOCK iy
[-T]:7.] — f=d BUIS BUS FAULT- -~
CODE | ARBITRA HANDUNG .
| 42 CARGEN LOGIC | RosbackFeatart 7]
L
BUS
INTERFACE
] BuLeNG
BLock cPu
mes |~ [+ PV
L[T |
avs ROLLEACK & DISABLE GUTPUTS 2}
INTERFACE i
—1 BuLBiNG E
BLOCK !
BIBS -
vwes |—| wes |—
'
1 "’
BUNOLE OF INTERNAL #AULT SIGNALS FROM ALL BB's

DMA AEQUEST/ACKNOWLEDGE LINES FROM DIEG's J‘

Figure 8: A Seli-Checking Computer Module (SCCM)

Possibly a more practical approach was taken by
INTEL in some of their chips for the 432 system, which
are designed to be duplicated and compared. Every chip
contains a set of output comparators, and a control line
indicating whether the chip is to serve as an active chip
generating outputs, or whether it is to serve as a checker.
Two chips are tied together with one designated the
active unit and the other designated the checker. Both
receive the same inputs and compute the same logic
functions but the checker chip does not output. It blocks
its outputs and compares them with what the other chip
generated, signaling an error if a disagreement occurred
[INTE 81]. In a highly competiive commercial

environment, few vendors will sacrifice performance of:

their chips by devoting a large amount of chip area to
concurrent error checking. Intel’s comparator approach
costs little in real estate or performance on the chip, and
it gives the user the option to buy two if concurrent fauit
detection is to be implemented.

In many systems circuit modules may fall
somewhere in between SC and NSC and be partially
self-checking. Many commercial computers are used in
(at least partially) fault tolerant distributed systems which
have internal detection of some (e.g. memory parity)
faults while other internal faults cannot be detected.

We will characterize the checking of modules in a
recovery partition by two parameters -- fault detection
coverage, and detection latency time. The fault detection
coverage for a given detecdon procedure is the
probability, given that a fault occurs, that it is detected by
applying the procedure. The detection latency is the time
between the occurrence of the fault and the time that the
fault is detected through observations of erroneous
results. We simplify this parameter by giving it three
values, I (instantaneous), EC (error-concurrent) and NC
(non-concurrent). Instantaneous fault detection implies
that a fault is detected when a fault first occurs, and is
impractical to achieve since many faults do not cause
signals to take on incorrect values (i.e. errors) until the
_system reaches particular states. For example, a stuck-
at-zero cell in memory causes no error while the stored
word has a zero in the faulty bit position. An error only
occurs when a “‘one’’ is stored there. Error-concurrent
fault detection (concurrent is the term used by Avizienis
and others) implies that a fault is detected before a fault-
induced logic error travels beyond its point of origin. In
many cases this requires that an error be detected within
the same clock cycle that it first appears, {although in
some designs this can be relaxed to a few cycles), and
before damaged data leaves the module. An NSC
module, having non-concurrent detection, may take many
cycles to detect a fault, and massive error propagation can
be expected before the fault is detected.

Self-checking modules exhibit concurrent, but not
instantaneous fault detection. An interesting potential
area of research is the design of self-checking and self-
testing logic which not only detects fault-induced errors,
but also flushes out faults within a guaranteed time by
exercising, during normal operation, all logic states

necessary for faults to cause detectable logic errors.
Considerable research has been carried out on test-set
generation with hundreds of papers to be found in the
literature [BREU 76). Recent research has focused on
generating tests and checking responses directly on VLSI
chip, e.g. one approach partitions the chip into small
enough logic groups that exhaustive testing can be carried
out [BOZO 80]. (Other approaches have been proposed
using probabilistic testing, generating pseudorandom test
sequences and signature analysis on chip but the coverage
of such tests are very hard to determine.)

This area can integrate the separate specialties of
VLSI logic synthesis {e.g. state assignment) design for
test and fault-tolerant architecture. If chips are made to
detect their own internal faults, and can also be made to
perform self-tests during normal operation (by
interleaving test cycles with operational cycles, or better
yet, exercising circuits that are temporarily idle) it may
be practical to build circuits which thoroughly test
themselves in a few seconds of normal operation. An
interesting question is how to mechanize state saving on-
chip with little area penalty to allow interleaving of
testing and normal operation.

¢) Fault Recovery using SC and NSC Modules

There are three common ways of providing fault
tolerance within a redundant set of modules: wiplication
and voting, duplication and comparison; and standby
replacement.

To achieve comprehensive fault tolerance using
non self- checking modules it is necessary to provide
fault detection and recovery by massive redundancy
techniques. Three NSC modules may be operated
concurrently and their outputs voted to detect and mask
out a fault in one. This approach is commonly known as
triply modular redundancy (TMR). When spares
modules can be used to replace the faulty units in a TMR
set, the configuration is designated as hybrid redundancy.
TMR and hybrid architectures were previously described
in the discussions of the SIFT, FTMP and Apollo
systems. Alternatively two NSC modules be operated
together and their outputs compared to detect faults.
Upon detecting a fault, both are commanded to run
diagnostics and the one which succeeds will be deemed
operational. The early ESS processors, used duplicated
Processors. This technique, designated duplex
redundancy (DR) sometimes fails for transient faults
since both modules are likely to pass the diagnostic and it
may be impossible to tell which contains fault-damaged
data. When a computer fails in a TMR system, the
system reverts to duplex operation, and when a duplex
system fails it is often possible to find the good unit of
the pair and continue non-fault tolerant operation with a
single machine (NMR/Simplex).

If a module is capable of detecting its internal
faults, it is possible to operate only one unit and, upon
detecting a failure turn it off and replace it with a spare or
assign its function to some other module. This approach
is known as standby redundancy (SR). This form of

redundancy was used in the JPL STAR and FTBBC
computers, because it uses minimal power and is well
suited to long unattended life [RENN 78b].

The three approaches are shown symbolically in
Figure 10 for the simple case where a single module is
redundantly protected.

VOTED
(TMR/HYBRID)
Non Self
Checking a a a "Spau
Module] d !
v v
[| [
[~ error Duplex
Self-
Checking I a a * Spare ISparo
Module
C

a) Module-Types
Standby Redundant

‘ Spare Fpnre

b) Configurations

C = comparator

V = votar

a=NSGorSC a
Computer Module

Spare

Figure 10: TMR/Hybrld, Duplex, and Standby Redundancy

From Figure 10, it is easy to see that standby
redundancy has a major advantage for long life
unmaintained systems (if unpowered equipment has a
lower failure rate) because more of the total hardware is
available as spares. It has a disadvantage of lower fault
coverage than the voted configuration, which can detect
and recover from any single fault within one module.
The Self-Checking module in a SR configuration must
make use of internal error detection techniques which
may not be capable of detecting certain cbscure multiple
error conditions such as those induced by clock and
power supply noise.

Duplex and standby redundant configurations
must make use of program rollback techniques. Since
computations may not be recoverable from the point at
which a fault was detected, it is necessary to save the
system state in the form of rollback points in programs
and, after detection and removal of a fault, return to the
most recent rollback point to recover computations. The
fault- tolerance community developed this technique for
use in non-voted computers [ROHR 73]. Especially
difficult is the problem of non- repeatable events where a
computer may generate an output to external systems and
then generate it again after rolling back. A similar
problem of this type occurs if a file is advanced by a
record, a fault is detected, and it is advanced again during
the rollback as previous code is repeated. Solutions to
these problems have been developed by the software
commmunity under the more general category of automic
transactions and stable storage [LAMP 81]. The
approach is to make it possible to back out of I/O
operations if an error is detected and a rollback or restart

initiated. When a series of external events are requested,
none are carried out until it is assured that the computer
has safely progressed to the next rollback point. The
Unified Data System system, for example, buffered all
outputs and executed them all at once when the next
rollback segment was reached (as indicated by a real time
interrupt [RENN 76].

Remapping Processes to Redundant Hardware

In distributed systems TMR, Duplex, and Standby
redundancy may be used at different sites. AIPS,
discussed in section one allows all three types to be used
in different places. TMR/Hybrid redundancy may be
used for critical processes, while standby redundancy is
used for less critical applications, thus freeing up more
processors for increased throughput.

In multiple processor systems the fault recovery
process is complicated by the process of remapping the
computations of failed processors onto different elements
which remain functional (examples are shown in Figure
11). For small systems, this remapping can be relatively
simple. For example, the JPL-STAR computer was
divided into a set of functional units, each of which had
dedicated backup spares which could be switched-in to
replace a faulty unit (Figure 1la). SIFT and FTMP are
homogeneous sitructures which allow any spare module
of a given type to be substituted for any active module of
similar type. If spares are available, the ‘‘next’’ spare is
substituted for any module of its type which fails.

When a system is designed to operate in a
degraded fashion if no spare elements are available, the
remapping process becomes more difficult and sometimes
involves complex decisions (figure 11b). It is necessary
to select computational services which may be delayed
{slowed down) or dropped altogether, and for dedicated
control systems entirely new operating modes may have

to be developed.
C ;Ill]| 1 |

CAAEEE

b) Remapping Homogeneous Computers
1,2.are processes,] are resources

EF'?F'F
alo

. n Subsystem Embedded Computers
with Subsystem- specific VO

]
8-,
]

a) Dedicated Spares

b) Link-limited Mappings 4) Non-Homogeneous Mappings

Figure 11: Remapping Processes to Redundant Hardware

This process of remapping becomes most
complex when systems contain large numbers of
PrOCEssors. Large networks 1) have limited
interconnections between processors and 2) are often
heterogeneous. Figure 1lc shows a processing network
in which the failure of links can make processors
unavailable, and the failures of processors can make links
unavailable. It is desirable to limit the number of
communications links to an individual processor for
economic reasons, but the interconnection structure must
be as redundant as possible to minimize losses when a
failure occurs. Several researchers have applied graph
theory to study the general problem of fault diagnosis and
the remapping of processes in large connection-limited
networks. Hayes has analyzed the problem by specifying
processes 1o be cammied out and physical resources as
separate graphs, and has considered the problem of
designing networks which can tolerate some number of
failures and still be capable of carrying out the required
computations. This is equivalent to finding an
isomorphism between the process and resource graphs in
the presence of failures [HAYE 76]. It may be possible to
use the automated search technigues of languages such as
Prolog to enumerate all alternative assignments of
processes and communications in partially failed
networks which still satisfy the needed performance
requirements. A considerable amount of work has also
been done on the problem of diagnosing faults in large
collections of machines[PREP 67, RUSS 75]. Kuh! and
Reddy have developed techniques by which processors in
a large unsynchronized network can diagnose failures
using distributed algorithms and come to a mutual
agreement on the availability of resources[KUHL 80].

A number of researchers have studied specific
network structures in an attempt to optimize this fault-
induced remapping process for performance, various
technology constraints, and long- life availability [GREY
84, RAGH 82).

In systems with a large number of resources, the
concept of reliability is no longer a simple question of
does it work or not. Various degraded levels of
performance are to be expected and evaluation must be
made on the basis of both reliability and performance. A
new area of performability modeling has been developed
which attempts to evaluate the functionality to be
expected from a system, considering the fact that failures
will occur at various times during its life [MEYE B81].
This type of modeling can provide comparative
evaluadon of design approaches in terms of a users
objectives -- extra services gained for a fault- tolerance
investment.

Finally, to achieve fault tolerance in very large
systems, new distributed operating systems concepts will
be needed. Functional languages and high-level data
flow concepts will apply.

d) The Need for Independence of Failures

In order for most fault-tolerant designs to work
properly, random component faults must occur
independently in the modules into which a system has
been partitioned. There are a variety of techniques for
detecting a fault in one module and effecting recovery
(either by suppressing its outputs using voting, or by
disconnecting it using switching), but few if any existing
designs can deal with the occurrence of a fault which
affects more than one module simultaneously, This need
to localize a fault to only one module leads to very
stringent design requirements which may be from a
minimum of placing modules of a redundant partition on
different chips to encapsulating each module in shielded
boxes with ground and power isolation.

A subtle problem of ‘‘lurking faults’® is
encountered. Two faults may occur independently, and at
different times, in different modules that may result in
simultaneously occurring errors for a particular common
data input. This occurrence of simultaneous errors under
these circumstances may appear to be simultaneous faults
in two modules. It is possible for a fault to occur in
logic which is seldom used, and thus not cause a
detectable error until the faulty logic is exercised. If an
undetected fault occurs in one module and lurks there
until a fault in a different module causes an unusual set of
computational states which causes the first fault to
generate an error, then errors will appear as if the
modules had experienced dependent faults. A new
requirement occurs to fully exercise and test each module
periodically in order to flush out lurking faults and
preserve independence. This area was described before
as offering interesting research opportunities because
three often disjoint disciplines are involved for optimal
solutions -- combining architecture, design of fault-
detecting logic, and design of circuit testing procedures.
Research in this area will be discussed in lecture 3.

1.5 DESIGN FAULTS: A FUNDAMENTAL
LIMIT ON FAULT-TOLERANCE?

Anumber of fault tolerant systems have been
demonstrated which can deal with random faults, but
these systems have little or no capabilities to handle
design faults. Examples of faults not covered include:
() semiconductor processing faults such as
contamination which might make all chips fail
after a period of time,

2) logic design faults in a processor or other
hardware --the most subtle ones which cause all
redundant copies to make the same mistake when
a rarely occuring data or control state is reached
are the most difficult to deal with,

(3) software faults - in most systems software errors
cause faults more often than hardware faults and,
as above, the subtle ones are difficult to test for

since they may only occur when an vnusual set of
inputs or rare timing relationships exist.

Current systems use extensive testing to attempt to
eliminate design faults, and in some cases correctness
proofs have been carried out for limited portions of
software.

Process Verification

To eliminate processing faults military and space
programs spend millions of dollars in detailed inspection
of semiconductor parts. There are rigorous and
expensive parts screening procedures defined as military
standards which must be carried out before parts are
qualified for use in many systems [MILSTD]. Both
government and privately sponsored research is being
conducted into development of test circuits for VLSI
wafers and into analysis of circuit failures which have
been found. The designer who cannot afford military
quality parts is wise to use well established parts whose
bugs have already been found through widespread use.
Even then it is advisable to get parts from different
processing batches for redundant circuit elements so as to
avoid cormrelated failures. An infinite amount of
redundancy will be unsuccessful if a system s
constructed from components which have a build-in wear
out mechanism.

Hardware Testing and Functional Verification

Most current systems make use of extensive tests
for hardware to try to uncover any design faults and
physical faults that may exist. In the past circuit
designers and testors have worked independently. With
the enormous complexity of VLSI and the limited
number of access pins for testing, it has become
necessary to include testability in the initial design. Ome
approach to testability is Level Sensitive Scan Design
(LSSD) in which internal flip flops can be tied together to
form a serial shift register to scan-in test patterns and
scan out results [EICH 77]. Another approach uses
multiplexing of internal data paths to improve external
access to internal logic [WILL 79]. Some methodologies
go so far as designing test pattern generators and
checkers on-chip [SIEW 82].

Proof of design correctness is a promising area of
research. Proving the correctness of algorithms in
hardware is considerably simpler than proving
correctness of programs because most hardware
operations can be broken into a fixed number of functions
(e.g. microprogram segments) each of which usually are
carried out in a small number of steps (clock cycles),
Software programs, on the contrary are often very long
and deal with complex data structures and external timing
relationships. Innovative research has been conducted in
this area from correctness proofs of microprograms to
modeling and proof of fault recovery processes [WENS
78, CHRI 83]. A recent project has developed a
methodology for verifying the correctness of layered
communications protocols between sets of fault tolerant
machines [GUNN 83].

Software Error Protection

Various techniques have been used for protection
against software errors in computing systems for many
years, especially in time-shared systems. Most of these
techniques often can be viewed as building firewalls
around executing processes so that they cannot damage
other users’ programs and data. The use of virtual
memory systems, privileged instructions, and
communication between user programs and the executive
via interrupt mechanisms have provided hardware
enforcement of the isolation of processes by constraining
users to only those resources granted by the operating
system,

Although proving correctness of a large and
varying set of user programs is seldom if ever done, there
has been designs of proveably correct kemnels of the
operating system. Although this approach cannot prevent
single users from failing due to software errors, it allows
other users to be protected and prevents user- induced
systern crashes [POPE 81].

Approaches to Tolerance of Design Faults

All the techniques above are directed at
eliminating design faults. Assuming that the occurrence
of these faults can be greatly reduced by extensive testing
and partial correctness proofs, there still remains the
possibility that some faults remain. There are at least
two approaches which have been taken. The first,
recovery blocks, uses modular programs, and acceptance
checks are run as the program modules execute to
determine if they are working properly. If an acceptance
check fails, a redundant (but different) program module is
executed in place of the one for which an acceptance
check failed. This approach is similar to standby
redundancy in hardware. [ANDE 81].

A second approach relys upon design diversity
and is intended to deal with design faults both in
hardware and software. A computing algorithm is
specified, independent sets of programmers write
different programs, and they are run on different
computers. At specified points, voting takes place
between the independent programs to determine if a fault
has occurred and also to mask out the fault and
reinitialize a fanlty processor and its program. As long as
any two processors with their programs are free of design
errors in any voted program block, computations will
proceed correctly, and if the faulty processor/program can
be reinitialized upon disagreement the triplicated
computations will continue. This allows faults to exist in
all three copies, so long as no two are faulty in one voted
computational block. This type of approach is quite
expensive, but is justified in life-critical applications
where fault coverage (for both design and random faults)
must be extremely high.

1.6 CONCLUSIONS

As several fault-tolerant machines have been
developed and evaluated, the art of fault-tolerant design
has been systematized, and design methodologies have
been widely disseminated (e.g. software voters,
redundant hardware clocks, and self-checking logic).
Reliability prediction models have been developed which
attempt to predict the lifetime and performance levels that
can be expected of a fault-tolerant system when it is used
many vyears into the future. Techniques have been
developed for proving correctness of portions of the
software within these machines.

Future advances of the state of the art are likely to
require a multidisciplinary approach. We have many
special interest areas relating to fault-tolerant system
development (1) VLSI fault physics, (2) logic testing and
design for test, (3) system architecture, (4) software
correctness proofs, (5) robust operating systems, (6)
reliability and performance modeling, and (7} fault-
tolerant software through recovery blocks or design
diversity. Future research into fault-tolerance will require
the integration of all these disciplines if comprehensive
and fully optimized designs are to be achieved, yet many
practitioners of these areas speak different languages.
This remains a challenge to the fault-tolerance
comrnunity.

One thing is certain. Fault tolerant computing
will provide considerable opportunities both for
entrepreneurs and researchers for the forseeable future,
The field has reached adolescence. Systems and design
techniques have been developed, yet its greatest
opportunities remain in the future,

2.0 FAULT-TOLERANT ARCHITECTURES
FOR LONG-LIFE SPACE COMPUTERS

2.1 BACKGROUND

The primary constraints on spacecraft on-board
computing systems are the requirements for long
unattended like and severe restrictions on power, weight,
and volume. Reliability is the most severe constraint
which affects the computer architecture in several ways. In
most cases only proven (5-10-year old) technology can be
used to minimize the chance of unexpected failure modes.
Parts are extensively tested and screened for reliability,
driving their cost to ten or more times those in the
commercial marketplace. Redundant processors,
memories, and input/output (I/0) circuits double or triple
the amount of hardware that is used. This is compounded
by the fact that radiation-hardened LSI devices must be
used which often have a much lower circuit density then
equivalent commercial components. Thus it can be safely
said that reliability requirements induce the majority of
costs for on-board computing. Power, weight, and volume
are severely limited, and these physical constraints become
especially severe since redundant spare modules must be
included. Thus it is very important to find hardware and
power-efficient forms of fault-tolerant computer
architectures.

This lecture will discuss the R&AD program in
fault-tolerant computing at the Jet Propulsion Laboratory
of Caltech. This NASA facility has been responsible for
spacecraft which have successfully explored the Moon,
Mars, Venus, Mercury, Jupiter, and Uranus [SCAM 75].
The JPL fault-tolerance program has had three major
research efforts which resulted in the development of
experimental breadboards. The first was the development
of a fault-tolerant uniprocessor designated the JPL Self-
Testing And Repairing (STAR) computer. This
development was carried out under the direction of A.
AviZienis between 1961 and 1972, It was aimed at the
flight technology of the early 1970’s (e.g. bipolar SSYMSI
and plated-wire memory), and the results were widely
published [AVIZ 71a]. A breadboard STAR computer was
constructed and tested in 1970-1972,

The second part of this program was started in
1973, to develop fault-tolerant distributed processing
systems, for spacecraft control and data handling. A
breadboard distributed system, designated the Unified Data
System (UDS) was implemented and tested in 1977
[RENN 76, RENN 78b].

The third part of this program was started in 1976,
to develop a fault-tolerant distributed system based on the
use of existing microprocessors, memory chips, and a
small standard set of VLSI building block circuits. A
breadboard of this system, the Fault- Tolerant Building
Block Computer (FTBBC) System was completed in 1983
[RENN 78a).

The progression between the STAR and the
subsequent distributed computing systems was motivated
by changes in the technology of digital circuits. Changes
in device technology haveé made new architectures more
attractive, as will be described in the following sections of
this paper. But device development is not static, and thus
there is reasonable probability that our current approach
will be obsolete in 5-10 years and will be superseded by a
subsequent architecture.

22THE JPL STAR (Self-Testing and

Repairing) COMPUTER

The STAR computer was designed to provide a
machine with a 10-year life to be used on long-duration
missions to the outer planets [AVIZ 71a]. To achieve this
degree of reliability it was clear that a great deal of spare
hardware would be required. The design had several
major constraints which determined our choice of a
standby redundant architecture. The most important was
that the only flight-qualified components were bipolar
small and medium scale integrated circuit devices which
offered relatively low packaging density and relatively
high power consumption. Nonvolatile magnetic memory
was also required. This colored the STAR architecture in
the following ways.

a. Severe power constraints ruled out using massive
redundancy techniques such as running two
systems and comparing their outputs or running
three systems and voting. Thus a single computer
was to be operational which contained sufficient
checking circuiry to detect internal faults. The
machine was responsible for automatically
replacing defective circuit modules with spares and
continuing correct computation.

b. Limitations on power, weight, and volume required
the use of techniques to provide fault-detection at
the lowest possible cost in additional hardware. For
example, low-cost arithmetic residue codes were
used to detect processor faults [AVIZ 71b].

c. Reliability models indicated that standby
redundancy (i.e., single active units with backup
spares) was the optimum approach to achieving
long life. Leaving the spares unpowered could help
reduce power consumption and increase their life
expectancy.

d. The use of SSI/MSI devices required a fine
partitioning of the computer system into
replacement modules. The central processing unit
(CPU), for example, required over 1,000 chips
which represented a significant failure rate. In
order to achieve the the requisite system reliability,
it was necessary to partition the CPU into four
smaller modules and supply a set of spares for each
module.

e. Since only one operational computer was provided,
it was necessary to build a special ‘‘hard core’’
module 1o diagnose faults in the computer,
automatically introduce spare modules, and to
generate the control signals that initiated software
recovery [ROHR 73]. This ‘‘hard core’” unit
{designated the Test-And-Repair-Processor
(TARP)) was a low-complexity hardware module
which used hybrid redundancy for its own fault-
tolerance [AVIZ 71a].

The resulting STAR computer architecture is
shown in Figure 12. The computer is partitioned into
seven module types designated functional units (FU)
which are backed up by spares and interconnected by two
4-wire communications buses. The abbreviations
designate the following units:

MI BUS (4)

VO BUSES

Figure 12: The JPL STAR Computer

COP Control processor; contains the location
counter and index registers and performs
modificaion of instruction addresses
before execution.

LOP Logic processor; performs logical
operations on data words (two copies are
powered).

MAP Main arithmetic processor; performs

arithmetic operations on data words.

Read-only memory; 16,384 permanently

stored words.

RWM Read-Write memory unit with 4096 words
of storage (at least two copies powered; 12
units are directly addressable).

I0-IRPInput/output processor; contains 1/0 buffer
registers, and interrupt processor; handles
interrupt requests.

TARP Test and repair processor; monitors the
operation of the computer and implements
recovery (three copies are powered).

ROM

Unless otherwise noted, one copy of each FU is
powered at a given time. There is a standard interface
between each unit and the remainder of the computer.
The FU’s communicate by means of two 4- wires buses.
These buses, designated M-I and M-O, transmit 32-bit
words as 8 bytes of 4 bits each. The various processing
modules were designed for byte-serial operation to save
hardware and thus reduce power consumption and the
probability of failure.

The STAR computer is amply documented
elsewhere so we will only summarize the salient features
of its architecture [AVIZ 71a]. The standard computer is
supplemented by one or more spares of each subsystem,
The spares are unpowered and are used to replace
operating units when faults are discovered. The principal
techniques for fault detection and recovery are as follows,
1. All machine words (data and instructions) are

encoded in error-detecting codes and fault

detection occurs concurrently with the execution
of the programs.

2. The computer is divided into a set of replaceable
functional units containing their own instruction
decoders and sequence generators. This
decentralization allows simple fault-location
procedures and simplifies interfaces.

3 Fault detection, recovery, and replacement are
carried out by special-purpose hardware. In the
case of memory damage, software augments the
recovery hardware [ROHR 73].

4, Transient faults are identified and their effects are
corrected by the repetition of a segment of the
current program; permanent faults are eliminated
by the replacement of faculty functional units
FU’s.

5. The replacement is implemented by power
switching: units are removed by turning power
off and connected by turning power on. The
information lines of all units are permanently
connected 1o the buses through isolating circuits;
unpowered units have no effect on the bus.

6. The error-detecting codes are supplemented by
monitoring circuits which serve to verify the
proper synchronization and internal operation of
the functional units.

7. The “‘hard core’* TARP is vprotected by
triplication and replacement of failed members of
the triplet (hybrid redundancy).

The most unusual module in this computer is the
“*hard core’’ TARP. This unit monitors the buses by
testing the validity of error-detecting codes. It also
monitors status messages from the various FU’s. If an
improper status message or improperly coded output to a
bus is detected from an FU, the TARP diagnoses the unit
as faulty. A program rollback is attempted and if the fault
persists, the TARP replaces the faulty unit with a spare.

The STAR computer was one of the earliest
fault-tolerant machines and thus had a significant impact
on subsequent developments in this area. The SAMSO
Fault-Tolerant Spacecraft Computer uses many of the
architectural techniques pioneered in STAR [BURC 76].
The computer-aided reliability modeling system (CARE)
developed as part of the STAR program [AVIZ 71a)
produced a model for hybrid redundancy (TMR with
spares) and has undergone subsequent development
elsewhere. This was followed by a second modeling
systern, designated RMS, used to model STAR
performance [RENN 73a). A study was undertaken to
use the fault-tolerant computer as an automated
repairman for the rest of the spacecraft [GILL 72].

Faults were injected into the STAR computer
breadboard to determine the effectiveness of the fault-
detection and recovery mechanisms. This was done by
running a numerical program with known results and
clamping randomly selected logic variables to zeros.
Successful recovery required a proper fault diagnosis by
the TARP and correct (undisturbed) computation when
the fault was released. Initial testing uncovered a number
of minor design errors which were easily corrected.
Subsequent testing demonstrated that approximately 99
percent of all injected faults resulted in proper recovery
by the breadboard [RENN 73b].

2.3 DISTRIBUTED SYSTEM APPROACHES

During the early 1970’s it became clear that low-
power (CMOS) LSI devices and single-chip
microprocessors would become available for flight use in
the early 1980’s, making possible the use of distributed
computer systems for future spacecraft. These
architectures are well suited to spacecraft computing
tasks which support a number of relatively autonomous
subsystems.

Spacecraft Distributed System Properties

There are a number of subsystems in current
spacecraft which control individual scientific
experiments. Examples are subsystems which control
radio receivers, power, data storage mechanisms,
television cameras, spectrometers, magnetometers, and
other instruments. These subsystems vary in complexity
but share the property that they contain command
interfaces and internal logic sequencers which generate
control signals and operate mechanisms to effect the
collection of data. An examination of the control logic in
these subsystems shows that, for many, it is cost effective
to replace the sequencing and interface logic with a
microcomputer - either to save chips or to establish
standardization in instrument logic designs.

Subsystem-Embedded
Modules)

Computers (Terminal

The computers which embedded in specific
spacecraft insttuments and subsystems are designated
Terminal Modules (TM) and have the following
properties:

1. TMs reside within their associated subsystem.
Since they are connected to the subsystem by a
large number of subsystem-unique L/O wires,
backup spare TMs must also be dedicated and
located within the host subsystem. The majority
of microcomputers in many spacecraft will be
subsystem embedded.

2, Redundant intercommunications buses are
required between each TM and the rest of the
spacecraft distributed system so as to avoid the
possibility of a single-point failure.

3. The intercommunications rate between most
embedded computers (TMs) and the rest of the
distributed system is relatively low. (It is assumed
that the computer network buses will only handle
engineering telemetry data and low rate scientific
information. A few instruments may generate
very high raw data rates, but this information is
handled by special telemetry paths, and only
lower- rate processed results will be used by the
computer system.) Bus communication
requirements for most subsystems, are less than a
few thousand bits per second, and in most cases,
delays of several milliseconds can be tolerated
when messages are sent between computers.
Most important is the nature of the data
transmissions, Since the majority of subsystems
operate in a periodic fashion, data movement into
and out of various TMs tends also to be periodic.
After commands are sent to establish a continuous
mode of operation, a fixed pattern of periodic data
movements can be established between the
various computer modules.

Non-Dedicated High-Level Computers (High
Level Modules)

Processing in the various TMs can be
controlled and coordinated by nondedicated high-
level computer modules (HLMs). A typical
spacecraft computer configuration is shown in
Figure 13. A set of embedded computers
designated terminal modules (TM) are controlled
by an HLM designated the Command Processor
(CP). This computer acts as a system executive.
It receives and stores commands from the Earth
and monitors the status of the other computer
modules. On the basis of the ground commands
and monitored status, it issues local commands to
coordinate and control the various other
computers in the network. A second HLM is
programmed to carry out the functon of the
Format Processor (FP). Under command of the
CP it establishes a periodic pattern of data
movements between the memories of the various

computers. It also collects telemetry
measurements from the various TM's and HLM's
and provides processing services within the
network. The high-level modules are
nondedicated, and each can be programmed to
perform any one of the required computing
functions. A common pool of spare (HLM)
computers can be employed to protect the high-
level computer modules.

COMMAND ™| TV
PROGESSOR | =
_(CP)
SCIENGE
™| INSTRUMENT
FORMAT (ONEOF N) L]
PROCESSOR
(FP)
NGINEERING
t TM | CONTROL
SPARE
ATTITUDE
™| CONTROL
SPARE
DATA
 TM| STORAGE
HIGH LEVEL MODULES
MODULATION
REDUNDANT .~ | T | DEMODULATION
INTERCOMMUNICATION
BUS STRUCTURE TERMINAL MODULES /
{6-9 WIRES) SPACECRAFT SUBSYSTEMS

Figure 13: A Typical Spacecraft Configuration

24 HARDWARE ARCHITECTURE OF
THE UNIFIED DATA SYSTEM (UDS)

The second breadboard system built at JPL was a
distributed system designated the Unified Data System
(UDS). The UDS architecture consists of a set of
microcomputer modules (HLMs and TMs) connected by
a redundant set of intercommunications buses as shown
in Figure 14.

TM’s are located within the various spacecraft
subsystemns and are responsible for control and data
gathering within their associated subsystem. The TM
contains a microprocessor (MP), memory (RAM), [/O
modules, and several bus adapters BA. The T™M
interfaces with the other modules in two ways: 1) It
receives a single Real-Time Interrupt (RTI) which is
common to all modules and which is used for timing and
synchronization, and 2) Each TM contains a BA interface
to each of several intercommunications buses. Data
words can be entered or extracted from the memory of
the TM computer using DMA techniques. Each BA can
be commanded over its bus to fetch or deposit data into
the TM memory. A TM cannot initiate bus
communications, but it actively supportis DMA
transactions into and out of its memory. An external
HLM enters commands, data, and timing information into
the memory of the TM. The TM delivers information to
the systemm by placing outgoing messages into
predetermined locations of its memory, which can then
be extracted by the HLM over the bus. The TM can be
accessed through several buses simultaneously. The
associated BA’s provide hardware conflict resolution
between competing DMA requests from different buses.

P2 - P2
HIGHLEVEL | - -
MODULES I = F'P31] |
e | 14P T MEMORY uP [MEMORY} | «« | [uP I MEMORY
> HLM) [(HLM) > (HLM)
8c| Ba]Ba |BA c] 8a{Ba [Ba]] - Bc] Ba]Ba |Ba

(N NN I N N LN N B
e)] BUSS P]

IBA!BA !BAI

" (TM)
[P vemorv] 11

BA]BA [BA . TERMINAL
MODULES
™M) | Bc- Bus
lup - MEMORY CONTROULER
BA - BUS ADAPTOR

RTI - REAL-TIME

[

|
TO SUBSYSTEM

Figure 14: The UDS Architecture

INTERRUPT

P - PRIORITY
CHAIN FORBCs

HLM’s are responsible for coordinating the
processing which is carried out in the remote TM’s, for
control of intercommunications over the bus system, and
for high-level processing such as data compression and
decision making. An HLM only communicates with
other computer modules and does not contain /O
circuitry other than its connections to the
intercommunications bus system. Each HLM consists of
a microprocessor (MP), memory (RAM), bus adapters
(BA’s), and a bus controller (BC). Each BC, which is
unique to an HLLM, can move blocks of data between the
memories of all computer modules connected to its bus
(via commands to their BA’s). The computer in the
HLM activates its BC by presenting it with the address of
a bus control table in the HLM memory. This table
specifies the source module, destination modules, data
names, and the length of the requested information
transfer. The BC initiates and controls the specified
transmission, monitors status messages to verify a correct
transfer of information, and notifies the HLM computer
when it is completed. The BC is the mechanism by
which the HLM can coordinate the processing in other
computer modules by entering commands into their
memories and reading out information to monitor
ONgoing processes.

The intercommunication bus system (IBS)
consists of several independent serial buses, each of
which provides a bandwidth of approximately 1 Mbit.
Each bus is connected to one BA in each of the computer
modules (HLM’s or TM’s) to which it is connected. In
additon, it is connected to one BC in each of several
HLM’s connected to the bus. There is a primary bus
controller (BC) assigned to each bus whose HLM has
complete control over that bus. It relinguishes control
over its bus to another HLM under two conditions: 1)
its power is turned off, or 2) its processor commands
release of the bus to lower priority BC's for a designated
time interval. Thus the set of buses may be operated
simultaneously with each bus controlled by a different
HLM or with individual buses time-shared between
several such modules.

Access to each bus by the various HLM’s is based
on a fixed hardware priority assignment between BC's.
A daisy-chain structure is utilized for each bus to
establish this priority assignment as shown in Figure 14.
Modules of higher priority signal release of a bus via its
‘‘daisy-chain,”” which then activates the hardware
necessary to allow bus access within modules of lower
priority. Thus spare modules can gain access to a bus
whose controlling HLM has failed, or if a bus fails
another bus can be shared between two controllers. The
individual buses are physically independent; each has its
own set of hardware bus access control circuits and a
daisy-chain for priority assignments. Therefore, no
central bus system controller exists as a potential
catastrophic failure mechanism. Similarly, there is no
common clock. Each bus uses clock signals generated by
the HLM which is in control.

The number of buses within the IBS may be
selected to meet mission requirements of data throughput
and redundancy. The concept facilitates reconfiguring
throughout a mission if failures occur. In the extreme, a
single remaining bus can support essential functions of a
mission.

The UDS design is oriented toward removing
“*hard core’’ items whose failure can cause catastrophic
system failure. Intercommunications and clocks have
often presented significant problems in this area. These
are dealt with the UDS in the following ways. The buses
are made independent to avoid any common failure
mechanisms. Each computer module uses its own
internal clock, and the buses use the clock of whatever
module is ransmitting. With independent clocks in each
computer module there is also a distributed mechanism
for protecting against failure of the 2.5-ms common real-
time interrupt RTL. If two or more independent RTI
signals are generated externally, each computer can
decide whether each RTI is correct by comparing these
signals with timing derived from its own internal clocks.
If an RTI generator fails, the computers will
automatically switch to a backup, and if an individual
computer clock fails, damage is contained to the faulty
module.

System Control

Structure

Synchronization and

The UDS computers are synchronized by the
common 2.5-ms RTI. Various counts of RTI intervals
define the uniform time measurement throughout the
spacecraft. Analogous to minutes and seconds, the UDS
keeps time in frames and lines. A frame (48 sec.)
comprises 800 lines (60 ms), and a line comprises 24 RTI
intervals. These unusual values of time are chosen for
convenience because they correspond to the cycles of
instruments on a typical spacecraft. A television picture is
read-out every 48 sec. and it consists of 800 lines read-
out every 60 ms. Other instruments are synchronized to
TV lines, and telemetry sequences tend to repeat on these
intervals.

The majority of programs in the various computer
modules are self-synchronizing. Each explicitly knows
the tme counts at which various actions are to be carried
out to be synchronized with the rest of the spacecraft.
For example, a TV camera control program is designed to
start at the beginning of a frame when the line count
equals zero. An instrument which carries out 8 cycles
during a frame would contain programs which start when
the line count is a multiple of 100. Typically, commands
which change the operational mode of a subsystem can be
received at any time during its current cycle, but they will
only be acted upon at the time when the next cycle is to
begin. Thus for most commands, there is a wide time
window (0.1 sec. to tens of seconds) during which they
can be broadcast throngh the bus system and have
identical effects on their destination subsystem.

One HLM in the network serves as a system
executive and broadcasts both time counts and commands
into designated areas within the memories of the other
HLM’s and TM’s. It reads out data via the bus from
these memories needed for control decisions. Under
control of this system executive may be several additional
HLM’s which serve to control collections of TMs or
provide data control of data transfer :?nd specialized
computing services for the network. In simpler systems,
the system executive module directly controls the TM’s.

After receiving commands from an HLM, a
subordinate HLM or TM starts a set of specified
program. These programs utilize the timing information
received from the HLM 1o synchronize with the rest of
the spacecraft. For each program it has been precisely
specified at which time-counts data is to appear in their
memories, at which time-counts control signals are to be
generated, and at which time- counts processed data is o
be stored in memory for extraction by the HLM.

2.5 THE LOCAL SOFTWARE EXECUTIVE
AND SPECIFICATION LANGUAGE

A small local executive program resides in each
of the UDS computer modules [RENN 77]. This
program, which is identical in all the HL.M’s and TM’s,
communicates with user software through a set of special
language constructs. Its purpose is to synchronize a set
of concurrent programs running within the module. In
order to support several concurrent programs which
generate precisely timed results and also to support more
complex programs which are not easily segmented,
software is run in a foreground-background partition.
Each processor in the spacecraft system has a well-
defined set of foreground program segments to run in
each RTI interval. The foreground programs are run in
short segments which control and time I/0. They also
start and stop unsegmented background programs which
perform more elaborate computations which have less
stringent timing requirements.

Foreground programs are started by external
commands or by other active foreground programs.
Commands are entered into a designated area of memory
via the bus and have a standard format. The executive
periodically checks for the arrival of a command and, if
one is received, starts the associated foreground program.

A conceptual diagram of the local executive,
which resides in every computer module, is shown in
Figure 15. It is built around a scheduling table and is
entered at each RTI. Upon entry it suspends the current
background process, updates its time counter, and checks
for proper exit during the last cycle. It then checks to see
if a command has been placed in its memory and, if this
is the case, it starts an associated program segment. The
executive then checks its scheduling tables to see if any
(segmented) foreground programs have requested
reactivation at this time. (Activation can occur on the
basis of either time or a memory word reaching a

specified value.) If so, they are activated sequentially: and
each returns to the executive after a few instructions.
Upon completing the foreground, the executive returns
control to the background program.

REAL-TIME INTERRUPT

v

SAVE BACKGROUND

L 4

CHECK LAST FOREGROUND EXIT —» ERROR

¥
INCREMENT TIME

/ 3

CHECK FOR wmww————p STAAT
INCOMING COMMAND COMMAND
HANDLING
l PROGRAM

SCHEDULER ==ep START PROGRAM SEGMENTS

I \ REQUIRING ACTIVATION

PROGRAM SEGMENTS
RESTORE COMPLETION PR
BACKGROUND P4 “
WHEN BETURN
UPDATE DELETE
TABLES THIS
PROGRAM
I O

Figure 15: The Software Executive

A UDS program design language has been
developed which uses the standard constructs DO,
ENDQ, CALL, RETURN, IF, ENDIF, and ELSETF. It is
augmented with four special constructs which provide
communication with the local executive. These
constructs are WHEN, START, STOP and
BACKSTART which can be executed from any
foreground program (LESH 76]. These special
constructs are calls to the local executive to modify its
internal scheduling tables to start a program, suspend its
execution until a reactivation condition occurs, or to
deiete a program. START is utilized to activate a new
foreground program by placing its entry point in the
scheduler. WHEN returns control to the scheduler from
the active program and specifies the conditions under
which it to be reactivated. By using STOP, a program
removes itself from the scheduler, and BACKSTART is
used to initiate background programs. An example of
part of a UDS program is shown in Table 1.

TABLE 1

A Typical Foreground Program

Measure START TPROG; (Program to gather
elementary
measurements
concurrently
executed)

OQUTPUTL1,L2,L3...; Initialize the
subsystem

WHEN LINE Suspend execution

COUNT =0; until start of the next
frame.

DO FOR THE NEXT 50

EVENLINES (I =1, 50);

OUTPUT SAMPLE Get next sample of

COMMAND; data,

WHEN RTI=RTI + 1; Wait for collection
at next RTI,

INPUT DATA AND Put it away,

STORE IN BUFFER (T);

WHEN LINE COUNT Wait for next even

=COUNT + 2; line,

ENDO;

BACKSTARTPROCESS; Start a background
program 1o process
the collected data.

STOP

The intercommunications and software
approaches employed in the UDS have been developed
for near-term applications. There was no attempt to deal
with the long term research areas of software fault
tolerance. We attempted instead to make software more
reliable by simplifying its generation and testing. A
number of restrictions have been built into the UDS
network to make its operation as predictable as possible,
to increase visibility for testing. Timing incompatibilities
often represent serious problems when a number of
subsystems are connected together. We have attempted
to simplify and minimize complex timing requirements at
the intercommunications bus interface, where subsystems
supplied by diverse groups of people are assembied and
expected to work together harmoniously. Finally, if a
software fault survives the testing process in TM, we
attempt to keep its effects localized by restricting bus
access. In most cases a TM software failure will only
damage downlink telemetry from the affected subsystem.
Software reasonableness checks can be employed in the
High-Level Modules to verify that low-level dedicated
functions are being properly carried out. We offer little
protection against software faults in the HLM’s beyond
extensive validation and testing.

There is one mechanism for software fault
detection in the UDS local executive which is moderately
effective. At each RTI, control is forced to the beginning
of the local executive. Using two flags the executive
records entry and a proper exit from the foreground
partition. If control does not return properly to the
executive when foreground program segments are
executed or if a foreground segment takes too much time,
it is probable that the executive will not exit the
foreground before the next RTI occurs. At the next RTI,
the executive checks the flags to verify proper exit during
the last RTI period. If a proper exit did not occur, the
executive signals a software fanlt and executes a user-
supplied recovery routine,

2.6 APPROACHES FOR SYSTEM

RELIABILITY

The following approaches were taken in the UDS
in an attempt to to simplify interfaces between computers
and make their operation more predictable in order to
simplify testing and fault analysis.

Computer Utilization: It was our intent to
supply more computing capacity at each node (memory
and processing performance) than was required, and then
to use some of the leftover processing speed to simplify
system interfaces.

Intercommunications: The hardware investment
was made to provide a powerful mechanism for
intercommunication between computers. This was done
to releave software of the costly overhead functions of
moving intercommunications data, freeing it to perform
more of the tasks for which the subsystem is intended.
Data movements between computer memories are
hardware-controlled in a fashion similar to channels in
larger computers. Automatic status messages are
included with each message to verify proper ransmission
and to allow rapid error recovery by retransmission.

Error Confinement: The majority of computers
in the spacecraft system perform dedicated low-level
functions. These embedded TM computers of the UDS
are prevented from having the ability to arbitrarily
modify the memories of the other computers or to tie up
an intercommunications bus. If this were the case,
software errors in low-level computers could freely
propagate throughout the system. There are many ways
to achieve this fault-confinement, and we chose to restrict
bus access so that low-level computers cannot initiate
communications activity, Centralized bus control is used,
and (as will be described in subsequent paragraphs} it is
well adapted to the synchronous nature of the spacecraft
computing processes.

Minimization of Interrupts: Demand interrupts
are minimized in the UDS. Whenever possible, the
software is allowed to determine when and in what order
it interfaces with the outside world. This tends to slightly
increase the number of instructions required and limits

/O response to millisecond rather than microsecond
resoludon. But it also leads to more predictable
operation, is more easily verified, and allows for software
self-defense. If no restrictions are placed on the response
of the spacecraft computers to external stimuli, program
verification can become quite complex. There can be a
very large number of possible timings and orderings of
incoming service requests. Fortunately, most
electromechanical devices on spacecraft do not require a
response to unexpected conditions in less than a few
milliseconds. Thus we can restrict the set of possible
input states so that software can be more easily verified
and have higher reliability.

Control Hierarchy: The spacecraft control
structure is hierarchical, and this is reflected in the UDS
design. Low-level computers (i.e. TMs) in subsystems
are controlled by high-level computers (HLMs), which
may in turn be controlled by other HLMs. In order to
simplify testing and software verification, we imposed
the restriction that each computer in the system can
receive commands from only one other computer.
Control between computers was effectively limited to a
tree structure to provide simplification and a degree of
faultcontainment.

There are two types of information transfer
between computer modules. The first type consists of
commands which are sent from the controlling HLLM and
which specify the algorithms to be performed in the
controlled machine (HLM or TM). The second type of
information transfer is the movement of data between
computers. The controlling HLM also controls the
movement of data into and out of the controlled machine,
but the data can come from any of the machines under its
control. (The controlling computer can also delegate the
control of data movements to other high-level computers
under its authority in certain circumstances.)

Programs in the TMs interface with the other
computers through buffers allocated in their own
memories. These programs are invoked by commands
from the controlling HL.Ms which also has responsibility
for placing the operands which are needed in their local
memories. The programs in the TMs are self-
synchronized to process the data when they arrive and 1o
place results in their designated memory buffers for
subsequent extraction by the high-level computer.

Synchronous Communications: Control of
experiments and engineering subsystems on the
spacecraft is tightly synchronized. Subroutines in the
associated computers meet strict timing requirements in
generating control cycles for their various instruments.
This allows correlation of the resulis of various scientific
experiments and provides data at the right time 1o fit into
telemetry formats. Thus for any spacecraft operational
mode, the state and periodicity of most instrument and
subsystem cycles is well defined, as are the requirements
for data transfer between computers. This prevents
conflicts and simplifies intercommunications since no
conflict arbitration is required. The high-level computer
containing a central bus controller establishes a periodic

set of data transmissions between computers as is needed
for the particular cycles they are performing. (The few
nonperiodic functions can be treated in a similar fashion
by establishing periodic transmission of message buffers
between their associated subroutines.) Bus control is
easily verified since it is generated from a single
controller (from internal memory tables) and is highly
predictable. The cost of forcing intercommunications
into periodic data movements is a reduction of bus
response time to asynchronous tansmissions. A
computer must wait for its time-slot before
communicating with another machine. This restriction is
acceptable in the spacecraft because of the periodic nature
of its computations, and thus we have sacrificed
performance (concurrency) for increased testability.

Timing Hierarchy: 1t is often the property of
real-time systems that low-level computers provide
relatively simple functions such as generation of control
signals and the collection of data. These simple tasks
must be performed rapidly and with a high degree of
timing precision. Intermediate-level tasks, such as
spacecraft command processing, are often quite complex
and take considerable time to compute. Fortunately,
these tasks often have an even wider latitude in Hming
resolution, This timing hierarchy is analogous to local
reflexes and carefuily thought out motions in the human
control system.

We have attempted to take advantage of a similar
timing hierarchy in the spacecraft system and ease timing
requirements at progressively higher levels within the
system, Simple high-rate signal generaton with
microsecond precision is removed from software and
carried out by hardware I[/O devices. Low-level
computer programs are not required to provide timing
resolution below a few milliseconds. Additionally, the
software in the low-level subsystem computers is
designed to minimize the timing resolution required of
the high- level computers which sends thern messages
over the intercommunications buses. The goal of this
approach is to simplify expensive software and system
interfaces.

I'O Timing Granularity to Simplify Software
Modification: In the computers on board the spacecraft,
several programs must operate concurrently and generate
precisely timed control signals for their associated
subsystems, For example, the dedicated television
computer may control the readout of picture lines, sample
telemetry measurements, format picture data for readout,
and cxecute other concurrent functions which must be
precisely timed.

Tt is desirable to be able to change any one of
these programs without affecting the input and output
timing of the others. This can be achieved to a large
extent by imposing granularity on I/O. Inputs are sampled
and held for uniform (several millisecond) RTI intervals.
During these intervals, segments of several concurrent
foreground programs may be executed. Their outputs are
collected by I/O hardware and held unt! the end of the

time interval, and then all outputs are executed at once.
The program segments can be executed in any order, and
some can be removed without affecting the output timing
of the others. Programs can be added as Iong as the total
computation for any interval does not exceed the time
available. This approach simplifies simulation since the
possible order and timing of inputs are drastically
reduced in complexity. Visibility into the system is also
improved for testing, since programs are executed in well
defined steps during which inputs are held constant.
Software can be more easily modified. The cost of this
approach is reduced response time to external events. It
may require two to three time intervals, on the order of
5-7 ms, for the computer to acquire unexpected data and
deliver a response. This is acceptable for the spacecraft
application.

A six-computer UDS breadboard was constructed
using 3 HLM’s and 3 TM’s, and it was programmed to
carry out a number of spacecraft processing functions. (It
includes "flight” television camera and tape recorder
subsystems controlled by two of the TM's and two
HLMSs acting as the Command and Format Processors.)
Software tools have been written to take advantage of the
predictable, time-synchronized interactions between
modules. The breadboard can be started and run to a
given spacecraft time-count and then stopped for
inspection. The memories of the various modules can be
inspected to determine if the correct bus transmissions
have taken place and if the foreground programs are in
the correct state. This predictability has greatly expedited
software debugging and in turn accelerated program
development. The minimization of demand interrupts,
restrictions on control, synchronous communications, and
techniques for fault containment have made the system
more predictable and easily debugged.

We are satisfied with the experiences that have
occurred with the UDS system. Several major changes
have occurred in the telemetry handling of the spacecraft
simulation which caused reprogramming of several UDS
computers. These changes were made rather easily in a
matter of a few days.

The UDS breadboard assumed that concurrent
fault detection would be implemented in the various
computer modules. Transient errors would be detected
and corrected by program rollback within each computer
module (TM or HLM) and that if a permanent fault
occurred, the computers would halt and signal an error
through the bus. The demonstration breadboard did not
include these fault detection capabilities because it was
made from existing microcomputers which could not
casily be modified. The fault-tolerant bus system was a
custom design which was implemented along with the
executive software and I/O interfaces. The
implementation of concurrent fault detection was carried
out in the third JPL breadboard project, the Fault-
Tolerant Building Block (FTBBC) computer described
below.

2.7THE FAULT-TOLERANT BUILDING
BLOCK COMPUTER (FTBBC)

The JPL Fauit-Tolerant Building-Block Computer
(FTBBC) architecture is designed to use a small set of
VLSI building-block circuits to interconnect existing
microprocessor and memory chips to form Self-Checking
Computer Modules (SCCM). These modules can be
implemented as HLMs and TMs in a distributed system
and provided the concurrent fault-detection needed to
implement fault-tolerance.

Each SCCM is a small computer which is capable
of detecting its own malfunctions. It contain I/O and bus
interface logic which allows it to be connected to other
SCCM’s to form fault-tolerant, UDS-type, distributed
systems. The SCCM contains commercially available
microprocessors, memories, and four types of building-
block circuits as shown in Figure 16. The building
blocks are: 1) an error detecting (and correcting)
Memory Interface Building Block (MI-BB), 2) a
programmable Bus Interface Building Block (BI-BB), 3)
a Core Building Block (Core-BB), and 4) an 1/O Building
Block (IO- BB). A typical small SCCM consists of 2
microprocessors, 23 RAM chips, 1 MI-BB, 3 BI-BR's, 2
I0-BB’s, and a single Core-BB.

The building-block circuits control and interface
the various processor, intercommunication, memory, and
I/O functions to the SCCM’s internal bus. Each building
block is responsibie for detecting faults in its associated
circuitry and then signaling the fault condition to the
Core-BB by means of an internal fault indicator. The
MI-BB implements fault detection and correction in the
memory and also provides detection of faults in its own
internal circuitry. Similarly, the BI-BB and IO-BB
provide intercommunications and I/O functions, along
with detecting faults within themselves and their
associated communications circuitry. The Core-BB
checks the processing function by running two CPU’s in
synchronism and comparing their outputs. It is also
responsible for fault coliection and fault handling within
the SCCM.

The Core-BB receives fault indicators from the
other building-block circuits and also checks internal bus
information for proper coding. Upon detecting an error,
the Core-BB disables the external bus interface and I/O
functions, isolating the SCCM from its surrounding
environment. The Core-BB can optionally: 1) halt
further processing until external intervention, or 2)
attempt a rollback or restart of the processor. Repeated
errors result in the disabling of the faulty SCCM by its
Core-BB. Recovery can be effected by an external
SCCM which is programmed to recognize the lack of
activity from the fauity SCCM.

time interval, and then all outputs are executed at once.
The program segments can be executed in any order, and
some can be removed without affecting the output timing
of the others. Programs can be added as iong as the total
computation for any interval does not exceed the time
available. This approach simplifies simulation since the
possible order and timing of inputs are drastically
reduced in complexity, Visibility into the system is also
improved for testing, since programs are executed in well
defined steps during which inputs are held constant
Software can be more easily modified. The cost of this
approach is reduced response time to external events. It
may reguire two to three time intervals, on the order of
5-7 ms, for the computer to acquire unexpected data and
deliver a response. This is acceptable for the spacecraft
application,

A six-computer UDS breadboard was constructed
using 3 HLM's and 3 TM’s, and it was programmed to
carry out a number of spacecraft processing functions. (It
includes "flight" television camera and tape recorder
subsystems controlled by two of the TM's and two
HLMs acting as the Command and Format Processors.)
Software tools have been written to take advantage of the
predictable, time-synchronized interactions between
modules. The breadboard can be started and run to a
given spacecraft time-count and then stopped for
inspection. The memories of the various modules can be
inspected to determine if the correct bus transmissions
have taken place and if the foreground programs are in
the correct state. This predictability has greatly expedited
software debugging and in turn accelerated program
development. The minimization of demand interrupts,
restrictions on control, synchronous communications, and
techniques for fault containment have made the system
more predictable and easily debugged.

We are satisfied with the experiences that have
occurred with the UDS system. Several major changes
have occurred in the telemetry handling of the spacecraft
simulation which caused reprogramming of several UDS
computers. These changes were made rather easily in a
matter of a few days.

The UDS breadboard assumed that concurrent
fault detection would be implemented in the various
computer modules. Transient errors would be detected
and corrected by program rollback within each computer
module (TM or HLM) and that if a permanent fault
occurred, the computers would halt and signal an error
through the bus, The demonstration breadboard did not
include these fault detection capabilities because it was
made from existing microcomputers which could not
easily be modified. The fault-tolerant bus systern was a
custom design which was implemented along with the
executive software and 1/O imterfaces. The
implementation of concurrent fault detection was carried
out in the third JPL breadboard project, the Fault-
Tolerant Building Block (FTBBC) computer described
below.

2.7 THE FAULT-TOLERANT BUILDING
BLOCK COMPUTER (FTBBC)

The JPL Fault-Tolerant Building-Block Computer
(FTBBC) architecture is designed to use a small set of
VLSI building-block circuits to interconnect existing
microprocessor and memory chips to form Self-Checking
Computer Modules (SCCM). These modules can be
implemented as HLMs and TMs in a distributed system
and provided the concurrent fault-detection needed to
implement fault-tolerance.

Each SCCM is a small computer which is capable
of detecting its own malfunctions. It contain I/O and bus
interface logic which allows it to be connected to other
SCCM’s to form fault-tolerant, UDS-type, distributed
systems. The SCCM contains commercially available
microprocessors, memories, and four types of building-
block circuits as shown in Figure 16. The building
blocks are: 1) an error detecting (and correcting)
Memory Interface Building Block (MI-BB), 2) a
programmable Bus Interface Building Block (BI-BB}, 3)
a Core Building Block (Core-BB), and 4) an I/O Building
Block (I0- BB). A typical smaill SCCM consists of 2
microprocessors, 23 RAM chips, 1 MI-BB, 3 BI-BB’s, 2
10-BB’s, and a single Core-BB.

The building-block circuits control and interface
the various processor, intercommunication, memory, and
I/O functions to the SCCM’s internal bus. Each building
block is responsible for detecting faults in its associated
circuitry and then signaling the fault condition to the
Core-BB by means of an internal fault indicator. The
MI-BB implements fault detection and correction in the
memory and also provides detection of faults in its own
internal circuitry. Similarly, the BI-BB and IO-BB
provide intercommunications and /O functions, along
with detecting faults within themselves and their
associated communications circuitry. The Core-BB
checks the processing function by running two CPU's in
synchronism and comparing their outputs. It is also
responsible for fault collection and fault handling within
the SCCM.

The Core-BB receives fault indicators from the
other building-block circuits and also checks internal bus
information for proper coding. Upon detecting an error,
the Core-BB disables the external bus interface and /O
functions, isolating the SCCM from its surrounding
environment. The Core-BB can optionally: 1) halt
further processing until external intervention, or 2)
attempt a rollback or restart of the processor. Repeated
errors result in the disabling of the faulty SCCM by its
Core-BB. Recovery can be effected by an extemal
SCCM which is programmed to recognize the lack of
activity from the faulty SCCM.

EXTERNAL

BUSES (15534) REDUNDANT MEMORY
& HAMMING
BUS INTERFACE o SPARES
BUILDING BLOCKS (x4) 16BITS 8BTS
INT.
- MEMORY INTERFACE
—r " BUILDING BLOCK | Ao-T
3-STATE
BUS
CORE HAMMING
CORRECTION
BA B.BLOCK ! \NTERRUPT 4
BUS CHECK | BUS . RESET/
PROCESSOR | ARBITOR| ROLLBACK
CHECK
BA
crul |cru
e Qutput Inhibit (On Error)
Controller
paommv| BC
CHAJE 1/O-BB
——aip]
DMA /
Request -~ 1/0-B8
DMA Grant

Internal Fault Indicators

Figure 16: The SCCM

An important attribute of the building blocks in
the SCCM is that they are interconnected via the internal
processor-memory bus. They are all designed to perform
specified functions in response to read or write
commands to reserved addresses appearing on the
internal bus. The majority of addresses are used for
conventional access to RAM, however, the upper 4096
addresses are reserved for I/O functions, external bus
transmission requests, reading out error-status
information from the building-blocks, and sending
reconfiguration commands to the building blocks. For a
fetch request to a specific reserved address, the building-
block circuit which recognizes the address performs the
specified function and delivers a word of information to
the internal data bus,
.addresses deliver information over the internal data bus
to the selected building block. This is the commonly
used technique of *‘memory- mapped I/O’" and it has two
major advantages in the building-block SCCM design.
First, this approach avoids processor-specific /O
operations and thus allows the use of a number of
different off- the-shelf microprocessor in the SCCM.
Second, this approach allows access to the building
blocks by both software in the SCCM and from other
SCCM'’s via the external bus system. Using the external
bus an external SCCM can command DMA READ and

Store requests to reserved.

WRITE operations into and out of the memory of the
local SCCM. By directing DMA READ and WRITE
cycles to reserved addresses, the external SCCM also has
access to the building blocks in the local SCCM. The
external SCCM can load and read out memory via the
bus, and can also sample error status information,
command internal reconfiguration, and can even remotely
control IO in a faulty local SCCM.

The following is a brief description of the
building-block circuits [RENN 78a].

A. The MI-BB

The MI-BB interfaces a storage array (consisting
of a redundant set of memory chips) to the SCCM
internal bus. It provides Hamming correction to damaged
memory data, replacement of a faulty bit plane with a
spare, parity encoding and decoding to the internal bus,
and detection of internal faults within its own circuitry.

The MI-BB needs only be capable of detecting
errors to satisfy the requirement of an SCCM, However,
memory is the source of the largest number of failures
within the SCCM, and single-fault repair in this area will
greatly improve the reliability of the SCCM. A block
diagram of the memory interface building block is shown
in Figure 17.

SYSTEM MIBs STORGE
M SizE, ARRAY
[M SIZE, ———— 1
- {12-14) a0
Ab Lﬂ——-—"‘ ADDRESS BUS _—"-I
| . INTERFACE |
' EWAR (A1) — |
l 18 } f
- FORME [ORC, | ORE, ARC |
f SNFL4 SNC |2 |
| I
} i 1
— |
M START MEMORY
7 COMTL L. oL ol
M comlf—}’ Seenion -l NWRITE
eeer MES) |
| 1 |
I
4 | 2oy
4 | v CONTR [
|
I , '
INT oty |
’s:m [ERROR [~
| ESR, 8 co;agm - . |
ERAR, 5 ?Eegs)l ™ "AMI
{ ’ -
| B [I
I +2 & 2 41?6 F
I)] s F1'2 d I
.2 3 2 |22
} Plaby H | 'sw,’2 1 mor |
f i ¥ 1 [
TA BUS-
Dl! 1Y Eig:;oe R Inv
m INTERFACE ::‘-: s
| -————tm{sP,

* LOCAL SWITCHES

Figure17: The Memory Interface Building Block (MIBB)

The access element (AE) provides the address
parity checking and decoding required to select a memory
module. It stores and validates the incoming address by
means of a self-checking parity checker circuit. If no
errors are detected, the low-order 13 bits are sent to the
storage array where decoding is performed. (It is
assumed that the memory is packaged one-bit per chip so
that an on-chip addressing error can be detected using the
SEC/DED code.) The decoding of the three high- order
address bits is performed in duplex circuits checked by a
morphic comparator. More than one memory module
(MI-BB plus storage array) may be employed in the
SCCM. The three high-order bits are used to select
modules within the SCCM storage system. These bits are
used as ‘‘soft names’’ and are mapped into a physical
module address using a2 small duplicated associative
memory. Soft name sssignments are established by
commands over the local SCCM bus,

The error control (EC) element is responsible for
generation of Hamming code check bits and syndromes,
byte-parity generation and checking (for the SCCM
internal bus), and error analysis. The circuits used in the
EC are also self-testing. A single-bit error is corrected by
decoding the syndrome generated from the word read
from memory, in order to localize the faulty bit. The
correction is performed by complementing the faulty bit.

An error analyzer collects various eror
indications such as single error, double error, and circuit
error, and they are recorded in an error status word,
which can be transmitted over the bus on system demand.

The bit plane replacement (BR) element performs
the reconfiguration of the storage array. It contains a
multiplexer circuit which can replace any bit plane in the
memory with a single standby spare. The bit to be
replaced is specified by an external command.

The data bus interface (DBI) contains a memory
data register and the three-state drivers and receivers used
to interface with the SCCM data bus. Bit inversion for
Hamming correction is performed in this register.

The memory control (MC) element receives
commands from the internal control bus which specifies
READ and WRITE operations. For addresses less than
61,440 the commands are interpreted as normal memory
operations. READ and WRITE instructions with
addresses larger than 61,440 are reserved for memory-
mapped I/O. A set of these out-of-range addresses is
reserved for commands to the MI-BB. Among these
commands are: 1) READ ERROR STATUS WORD, 2)
READ ERROR POSITION OF FAULTY WORD, 3)
READ ADDRESS OF LAST ERROR, 4) RESET, 5)
DISABLE CORRECTION, 6) READ REDUNDANT
CHECK BITS, 7) REPLACE ith BIT PLANE WITH
SPARE, and 8) SET SOFT NAME. MC element circuits
are duplicated with comparison for fault detection,

>The complexity of the MI-BB is approximately
2,000 gates. This represents a small failure rate with
respect to the memory plane and is readily implemented
as a single LSI circuit.

B. The Programmable BI-BB

The BI-BB provides the mechanism by which
information is transferred between SCCM's via an
intercommunications bus system. This external bus
system consists of several redundant buses, each of
which employs the MIL STD 1553A format. Each BI-
BB can be microprogrammed to play the role of either a
bus controller (BC) or remote terminal (designated bus
adapter (BA)) for a single 1553A bus. Several BI-BB’s
are employed in each SCCM so that each computer
module can communicate over several buses
simultaneously,

The BC and BA functions provided by the BI-BB
are much more powerful than those normally
implemented for 1553A controllers and terminals. The
BI-BB’s are capable of moving data directly between the
memories of the SCCM’s attached to a given data bus
with a minimum of software support. The controller and
adapters on a given bus operate together in a relatvely
autonomous fashion similar to the data channels on much
larger machines, as described below.

EXTERNAL SUS

INTERNAL

INTERFACE THE MILL {PROCESSOR) 8% INTERFACE

=t DC, STROBE
EXTERNAL MANCHESTER/ MEMORY DIRECT COMMAND
s NRZ ENCODE, i, ROM REG RTER - T
DECODE BuS BUFFER)
L —- [+
SERIAL -PARALLEL REG ISTERS s REG 1STERS =
CONVERSION)
STATUS REGISTER [—oim #
— -
FIFO [AR
DA CONTRCL 4
ﬂ =
N s 1L 18 N oD {CONTIOL BUS)
ATING
¢ — v 7 v becooer o Tem
BIBS INTERNAL INTERNAL BUS
[Ty U1)]
CONTROL ——_|
CONBIONS
(FROM ALUY
X, k2, (FIFD STATE) DMA BUSY .
COMMANDS
CONTROLLER
OE (DATA ERROK GN BUS) £
FAULY
HANDLER .
£s
BT =t
—
FAULT MESSAGES Fs FADLE
SIGNALS

1
Figure 18: The Bus Interface Building Block (BIBB) 1

An SCCM which acts as a HLM and controls an
intercommunications bus contains a BI-BB which is
microprogrammed to be a BC. When it wishes 1o initiate
a data transfer between the memories of the SCCM
modules on its bus, it alerts the BC.

The BC reads a control table from its host
SCCM’s memory which specifies the source and
destination of information required for the bus transfer
along with the length of the ransmission. The BC then
broadcasts the appropriate commands over the bus
system to ‘‘set up’’ the transmitting and receiving adapter
circuits. It monitors the transfer of information, records
status messages, and notifies the host computer upon
completion of the transfer.

BI-BB’s in other SCCM’s connected 1o the same
intercommunications bus are microprogrammed as BA's.
These BA's serve as remote terminals on the bus. The
BC, in setting up a iransfer, specifies one adapter as a
data source. It then specifies one or more BA’s as data
acceptors and names the data to be moved.

The Source adapter then finds and extracts the
specified information from it host SCCM’s memory
(using cycle stealing) and places this information on the
bus. Simuitaneously, the acceptor adapter(s) takes this
information off the bus and loads it into its host SCCM’s
memory via cycle stealing.

An SCCM can obtain several bus adapters to
provide an interface to a number of redundant
intercommunications buses. Communication can occur
simultaneously over as many as three buses with an
SCCM without conflict (time delays) seen on any bus. A
BA cannot initiate a bus transfer, but only responds to the
commands of a BC. Provision is made for sending
discrete commands through BA’s such as POWER ON,
POWER OFF, HALT, INTERRUPT, RECONFIGURE,
ete.

¥

A block diagram of the BI-BB is shown in Figure
18. It consists of five major elements, a Manchester/NRZ
translator, a microprogram control unit (MCU), a control
ROM, a data path element, and a direct memory access

(DMA) controller.

The Manchester/NRZ translator translates
incoming Biphase Manchester commands and data,
supplying a bus-synchronized clock, command and data
word-sync indicators, NRZ data, and parity and
Manchester-error detection signals. It will also accept
NRZ data, encode it, and output Manchester data for bus
transmission (along with the associated command and
data sync signals).

The MCU is a microprogram sequencer. A
microprogram location counter is started at one of several
fixed addresses by command sync, data sync, or a host
processor command (detection of an out- of-range
address). The location counter proceeds through
sequential addresses or branches on the basis of incoming
data, internal flags, or other internal circuit conditions.
The microprogram sequencer is programmed to generate
a unique set of address sequences for each type of
incoming bus command, data sequence, or computer
command. This output sequence is then mapped through
a control ROM to generate the detailed control signals
required to drive the data path, MCU, and DMA control
elements.

The conirol ROM maps the microprogram address
sequence into conwol signals for the various circuit
elements.

The data path section contains 1) registers
necessary to buffer addresses and data, 2) ROM to store
memory protection bounds, data keys, and table
addresses, and 3) an arithmetic logic unit for addressing

computations, This circuit is not unlike existing bit slice
processors, with the exception that
conversion registers, ROM, and several holding registers
are required for the unique bus interface and DMA
functions.

The DMA control circuit is rtesponsible for
obtaining control of the host SCCM's bus and
transferring data between the BI-BB and the SCCM’s
memory.

The fault detection techniques employed in the
BI-BB are based on parity coding to protect memory
information and duplication with morphic comparison for
most of the logic circuitry. This building block has a
complexity equivalent to approximately 10,000 gates.

C. The I0-BB

I/O requirements of host systems vary widely in
voltage ranges, currents, and timing parameters. The
approach best suited to building-block development is to
provide a standard set of functions which serve a majority
of general applications. The user is required to supply
any additional functions unigue to his applications.

To be consistent with the SCCM, all building
blocks provide memory-mapped I/O. That is, each IO-
BB must recognize its identification and the function
being requested from an out-of-range address appearing
on the host SCCM’s internal address bus. Data for
output or input is transferred over the data bus in
response to a processor write or read to the specified
address.

Candidate I/O functions are: 1) 16-bit parallel
data in and out, 2)16-bit serial data in and out, 3) a pulse
sampling circuit, 4) a pulse counter, 5) a pulse generator,
6) an adjustable frequency generator, 7) an analog
multiplexer with A/D converter, and 8) a high-rate DMA
channel. The density of VLSI technology is sufficiently
high that a number of I/O functions can be supplied on a
single chip. The specific function which is required can
be activated by connecting pins. This approach can
reduce the inventory of different I0-BB’s to one or two,

The fault-detection techniques employed in the
IO-BR’s are straightforward. Where bus information is
preserved, parity checking is employed, and other
functions are protected by internal duplication with
morphic comparison. Input and output short-circuit
protection must be provided when two dedicated SCCM’s
are cross-strapped; i.e., their inputs and outputs are
connected together. Otherwise a shorted I/O connection
can inactivate a redundant set of SCCM’s.

serial-parallel.

D. The Core-BB

The Core-BB is responsible for 1) detecting CPU
faults by synchronizing and comparing two duplex
CPU's, 2) collecting fault indications from itself and
other building blocks, and 3) disabling its host SCCM
upon detection of a permanent fault.

Two options are provided for attempted recovery
from transient faults. These are: 1) stop at first fault
indication; wait for outside help; and 2) roll back at first
fault indication; stop if the fault recurs.

Specific functions of the Core-BB are listed
below: 1) compare two CPU’s for disagreement; 2)
parity encode CPU output for SCCM internal bus
transmission; 3) check parity on the internal bus; 4)
recognize Core-BB commands which can be sent from an
external module via a bus adaptor to a Core out-of-range
address (these are commands to halt and inhibit outputs,
restart, and enable outputs of the SCCM); 5) allocate the
internal tristate bus amongst several DMA requests from
the BC, BA, and I/O; 6) detect internal faults within the
core module; 7) collect internal-fault indications from all
building blocks within the SCCM; 8) disable SCCM
output under faunlt conditions; 9) provide rollback/restart
compatibility for optional transient fault recovery; and
10) halt computation on recurring faults.

The Core-BB consists of three elements as shown
in Figure 19. The processor check element serves three
functions: 1) to compare the outputs of two
synchronous processors, 2) to encode and check internal
bus parity, and 3) to recognize and decode commands
sent to the Core-BB through the internal bus. It contains
self-checking parity checkers, a duplex command decoder
and morphic reduction trees.

CORE BUILDING BMLOCK

CONTROL {TOF, START, STEP

SWITCHES X RESET ROLLAACK

MAAA MANUAL AND "
EXTERNAL -
comanes FAULT HANDLER ELEMENT CONTROL CLOCK IN
MODULE .
Copmot Ipurigx | recovERy sEQuENCER e
aus | COMMARNDS | {DUPLEX) c_ SySTem
: [reser
:m‘fﬁ TAULT SYMCHRGNIZER .
—1 DUPLEX] > RESTAX
e (i") 1 (e
L7 2
(23] +CMD, IFAULT ﬂcmu,s‘ — g
4 FORME] | +FORME t > gq
l RS {8-MORPHIC num .
Tk cMP (MAND) -8
CHECK wee, X — —
RN *recq Temr, D0
\ PARITY 1 STATUS " X,
COMMAND | creck /| REGISTERS 35
DECODE 1 Gen " | (exkom [t " :
ST |oan Lo PiGRITY | [PRIORITY
COMPARE | & peehi vER{ | RESOLVER
{MAND) b RS
COMPARE
{MAND} 1 [} i T o
k \‘ AR, -R%,
4 qcy) Lag} F18 Lo8 e :momk\.u; “
. ARBLTOR
) I | l— MAND} MORPHIC (SELF-CHECKING)
of "o ” o & DTN CIRELIT, WIGH 15 A
r ” MODLLer voDues MULTIANPUT MORPHIC-AND

RESET
RESTART

[=

*INCLUDES INTERFACE MSI

Figure 19: Core Building Block
Block Diagram

The bus arbitration element accepts morphic bus
request signals from the various DMA controllers on
other modules. It obtains release of the bus by the
processor and grants access to requesting building blocks
on the basis of hardware priority. The bus available
signal is sent as a morphic indicator to each requesting
module. The internal circuits of this element are duplexed
and are compared with a self-checking comparator.

The fault-handier element accepts morphic fault
indicators from the other building blocks and from within
the Core-BB. It reduces these to a single 2-wire master
fault indicator which indicates a fault somewhere in the
computer module. This fault indicator disables the bus
controller and output drivers, isolating the SCCM from
the rest of the system. Duplex recovery sequencers are
employed to implement optional transient recovery
sequences. They are checked with a self-checking
comparator.

Principal characteristics of the SCCM design are
summarized below:

Implementation of Error and Fault-Detection
Error and fault detection are carried out in several ways.
Regular structures, such as data paths are protected with
low-cost error detecting codes. Error correction is also
provided in memory using Hamming SEC/DED codes.
Irregular logic structures represent a relatively small
fraction of the complexity of the SCCM (in terms of
acdve chip area) and are protected by means of
duplication with comparison (e.g. microprocessor chips
are operated in pairs with output comparison). Similarly,
a number of circuits are internally duplicated within the
VLSI building-blocks and compared to verify proper
operation. Finally, the problem of ‘“Who checks the
checker?”’ has largely been solved with the development

of morphic ‘‘self-checking’’ checkers [CART 72].
Morphic circuits are used to reduce both parity checks
and comparisons of duplicated circuits into a small
number of self- checking fauit indicators.

Response to Errors and Faults The SCCM
responds to detection of an internal error by disabling its
own output capability and attempting a program rollback
which will often correct errors which are transient in
nature. If the error recurs, it is assumed that a permanent
fault has occurred, the SCCM halts, disables its outputs
and raises a “‘flag’’ (readable through the bus system)
that it is faulty. An external SCCM can detect the fault
by recognizing an absence of activity from the faulty
module or by interrogating the module through any of
several paths in the redundant bus system.
Reconfiguration commands can be issued through any of
several redundant buses.

2.8 PROCEDURES OF FAULT RECOVERY

The SCCMs were designed to be embedded as
HLMs and TMs in a UDS-type distributed syste. The
same UDS software structure is employed. We first
discuss recovery from faults in TMs and then HLM-fault
recovery,

Recovery from Faults in TMs

TMs, upon detecting an internal error, attempt a
program rollback in an attempt to recover from a
transient error condition. If this is successful, the
controlling HLM only sees a slight delay in processing
and computing continues. If the rollback is unsuccessful
and the error persists, the TM shuts down and raises an
error flag. Since a TM does not have the ability to initiate

a bus communication, it can only halt and signal an error.
Recognition of a failed TM and commands for
reconfiguration are the responsibility of a HLM.

Each controlling HLLM is responsible for polling
the various modules under its control to determine if a
module has isolated itself due to a failure. This polling
process can be carried out nearly automatically, using the
bus system every few (10-100) milliseconds. The HLM
is then responsible for issuing the reload and
reconfiguration commands necessary to replace a faulty
module with a spare or re-initialize a transient-disturbed
module.

These commands can be sent to the faulty module
through one of its several redundant BA's, which provide
the following functions: 1) power or unpower the internal
computer, 2) load or readout memory, 3) halt or start the
processor at specified locations, 4) sample error status
from the building blocks, and 5) send reconfiguration
commands to the building blocks. Since there are several
BA’s in each module which are connected to independent
bus systems, there are redundant paths for carrying out
reconfiguration. The BA’s are powered at all times, and
it is usually possible to interrogate a faulty module.

The use of memory-mapped control and /O in the
SCCM is very important in providing the capability for
external diagnosis of faulty modules. When an SCCM
fails and its internal self-checking logic disables bus
control and I/O functions, we still have access to the
internal bus of the SCCM through one of its BA’s. The
BA’s normal function allows an external SCCM to
command DMA READ and WRITE cycles on the
internal bus of the faulty module. If the specified
addresses are within the range of RAM, the external
SCCM can read or load its memory. If the address is an
out-of-range (i.e., reserved) address, the external SCCM
can directly command and read status data out of the
building blocks of the faulty module.

When an HLM detects a faulty TM, it reads out
the fault status information from its building blocks, and
can then take one of several strategies. It may attempt to
reload and restart the faulty module; or it may
immediately substitute a spare if one is available. If no
spares are available, the HLM has a final option of
directly commanding the faulty subsystem (in a degraded
mode) by sending commands directly to its I[/O building
blocks. The IO building blocks are reached by sending
out-of-range read and write requests through the external
bus to the faulty SCCM.

The requirements for fault recovery vary in the
different modules in the system. Most HLM’s and TM’s
can tolerate a program interruption of up to a few
seconds. When one of these modules develops an
internal fault, it is adequate 10 replace the module with a
spare, reload the spare’s memory, and restart the
appropriate internal programs. If several parameters are
needed which indicate the subsystem state before the
failure, they can be supplied by the controlling HLM.

The HLM periodically samples the required state
information and stores it in its memory. This information
is supplied when initializing the spare module.

Recovery from Faults in HLMs

The HLM which serves as the system executive,
and in a few cases other HLM’s, must survive a fault
without interruption in computations. In these cases a
dedicated "hot" spare is assigned that concurrently
performs identical computations to the primary module.
At each RTI the two modules perform cross checks via
the external bus to see if the other is functioning
properly. Failure of either module wiggers recovery by
the "good" module. Should either active module detect
an internal fault and disable its outputs, the other machine
continues the ongoing computations. At a later scheduled
time, the surviving machine activates a new ‘‘hot™ spare
and diagnoses the faulty module. Normally, only the
primary module generates outputs and it gathers data via
the bus for both itself and its hot spare. Under special
conditions demanding extremely high reliability, two or
more "hot" spares can be assigned to back up a critical
modules and provide a greater degree of redundant
protection.

Controlling HLM’s have three major reliability

functions to perform: computer redundancy
management, module fault diagnosis, and system
redundancy management. Computer redundancy

management is the simplest function which has already
been discussed. It consists of replacing a faulty computer
module with a spare by issuing appropriate commands
through the busing system. Module fault diagnosis
consists of interrogating the faulty module to determine,
if possible, the source of failure. In some cases, the
module may be reusable by programming around faulty
memory locatons, or not using faulty circuits (such as a
bad BA). An internal reconfiguration can, in some case,
be commanded to rectify the fault -e.g., replacing a faulty
memory module or replacing a faulty bit in memory.

System and Subsystem Redundancy Management -
Automated Repair

Systern redundancy management must be
provided by the System Executive HLM when a TM-
controlled subsystem fails or if computers in the system
run out of spares. These conditions result in the loss of
one or more subsystem functions and require that the
system enter some degraded mode of operation. Many
systemns contain a great deal of redundancy and can
function without all of their subsystems. Spacecraft and
avionics systems fall into this category because many
functional backups are provided at the system level (e.g.,
redundant experimental mechanisms and redundant
navigation equipment).

System redundancy management is implemented
as applications software in the HLM’s. [Its design is
highly application dependent and can only be
accomplished in conjunction with the design of the host
system [GILL 72].

While system redundancy is managed by the
HLMs, subsystem redundancy management is normally
carried out by software in the subsystem’s embedded
TMs. The individual TM is responsible for fault
detection in its associated electromechanical subsystem.
If redundancy is provided in the sensors and actuators of
the subsystem, TM software will be responsible for
substituting spare mechanisms to repair its host
subsystem. If no redundancy is provided or spares arc
exhausted, the TM software commands its host
subsystem to enter a ‘‘safe’” disabled state and notifies its
controlling HLM of the degraded conditions due to the
failure of the subsystem. In either case, the TM records
which devices in its host subsystem have failed and
makes this information available, upon demand, to
analyze the failure situation. In some cases, the TM may
be able to predict failures in associated equipment by
measuring drifts and making margin tests.

2.9 SUMMARY

In response to changing technology, spacecraft
computing has progressed from a single expensive
computer used as a shared resource to a network of much
less expensive microcomputers in various subsystems.
This has led to a number of new problems in fault-
tolerant system architecture. We have attempted to deal
with three classes problems: software and system
complexity, hardware fault tolerance, and implications
for L3I implementation.

The use of distributed processing in space has
been retarded to some extent by the fear, on the part of
potential users, of the high degree of complexity that can
result. We have dealt with this problem by introducing
constraints into the software, /O, and
intercommunications within the system in an attempt to
simplify interfaces and augment testability, Synchronous
communications, tree-structured control, removal of
interrupts, granularity of I/O, and the synchronous
foreground/background executive are all aimed at
increasing testability, reliability, and ease of use at some
expense in processing performance (response time and
throughput). The design is tailored to the real-time
spacecraft control and data handling problem, but we feel
that it applies to a number of other dedicated real-time
systems as well. It is unusual because we start with more
hardware capability than is needed, and accept somewhat
inefficient use of this hardware in order to achieve a more
manageable system.

The hardware fault-tolerance approach is directed
at minimizing ‘‘hardcore,’” achieving high coverage, and
providing simplicity of operatdon. As previously
described, the system uses independent
intercommunications buses and independent clocks in the
various computer modules to avoid some of these
difficult hardcore problems. FEach computer module
checks itself and can be relied upon to disable itself in
case of failure. Fault detecton is implemented in
hardware and uses self-checking circuitry. Self-checking

hardware design is currently of wide interest because it
offers high coverage and is relatively inexpensive to
implement with LSI technology [SEDM 80, CART 717].
Finally, the recovery mechanisms are simple. For most
modules it is adequate to switch to a backup spare,
followed by a reload and restart operation. Critical
functions are run by a pair of computers, each of which is
self-checking. We feel that simplicity of fault-detection
and recovery functions is important to achieve
widespread use of fault-tolerant computing. The
potential user must understand a system before he will
buy it, and fault-tolerant computing is too often viewed
as an exotic, risky technology by these users.

An important result of this program is the
determination that a wide variety of fault-tolerant
distributed computer systems can be constructed using
commercial microprocessors and memories, and a small
set of LSI building-block circuits.

3.0 FAULT-TOLERANCE ISSUES IN THE
NEXT GENERATION OF LONG-LIFE,
REAL-TIME SYSTEMS

Multicomputer systems are potentially more cost-
effective than large supercomputers for problems such as
certain classes of scientific computations, discrete event
simulation, military command, control, and signal
processing. Many of the most advanced experimental
computing systems sponsored by government and industry
fall into this class (e.g. RP3, AOSP, Butterfly, Hypercube,
Ulramax). These machines use tens to hundreds of high
speed processing nodes and can be characterized by their
interconnection structure. They fall into four general
categories: i) multiple bus connected (AOSP), ii)
collections of shared memory multiprocessors {Multimax),
iii) shuffle and exchange network-connected (Butterfly),
and iv) hypercube connected.

Fault-tolerance is a serious problem in large
systems of this type (e.g. 64-1024 processors). Due to
their high complexity and the use of very high speed
circuits, transient errors are expected to occur during long
computations, and occasionally a processor will fail.
Many of the applications proposed for these systems
cannot tolerate computational errors due to hardware
faults. With applications that involve real-time control, it
is often unacceptable for the system to be down for long
periods for recovery and reconfiguration. Often there is a
large data base of critical information that must be
protected under various fault conditions. Furthermore, in
space-borne systems repair is often impossible, so the
system must be designed for long-life and be capable of
fast self-repair.

None of the current generation of high performance
multicomputers are designed for fault-tolerance. In order
to achieve fault tolerance, it is necessary to add concurrent
fault detection capabilities within each processing node
and high-coverage fault-recovery mechanisms. Concurrent
error detection is necessary to prevent erroneous outputs
from leaving a node, thus preventing the damage from
propagating to the rest of the system and damaging critical
system state data. Confining the damage to system state is
necessary for dependable error recovery.

Over the last several years we have been examining
the issues involved in implementing fault-tolerance in
these high-performance distributed systems at both the
system architecture and node levels. The following is a
discussion of areas that we have been studying. The first
part addresses high-level system issues in implementing
fault-tolerance in highly parallel processors. It is a study
of one type of these architectures that is actively being
developed -- the binary hypercube [RENN 86a]. The
second part addresses lower level design issues of
implementing fault-tolerance in the processing nodes.
This includes implementation of building-block self-
checking computer modules as nodes in these high-speed
systems, and the use of self-checking, self-exercising logic
design to provide concurrent error detection and to rapidly
expose latent errors [RENN 86b].

FAULT-TOLERANCE ISSUES IN

LARGE BINARY HYPERCUBES

31

This section exatnines some of the issues involved
in implementing fault tolerance in hypercubes for real-time
applications. Many of these issues are similar for the other
different high-speed multicomputers listed above. The
hypercube is attractive because it provides a high degree of
connectivity while only having log N ports per processor.
This makes it possible to build very large ensembles of
machines. Intel currently has a hypercube commercially
available, and JPL is building a large very high speed
hypercube system. Before addressing fault-tolerance
issues, it is necessary to examine the hypercube
architectures.

3.1.1 HYPERCUBE DESCRIPTION AND
INTERCONNECTION STRUCTURE

In a binary hypercube there are a number K = 2" of
computers, and each is given a unique address (or
identification number) which is one of the K, n -bit binary
numbers. There is a point-to-point connection between
every pair of computers whose identification numbers are
separated by a Hamming distance of one. Several binary
hypercubes are shown in Figure 20. The size of a
hypercube grows as powers of two, Doubling a hypercube
consists of creating an identical structure and connecting
each corresponding node. This can be easily seen from the
following explanation:

Given a hypercube of n elements, a single element
has some address: 101001..10. It is connected to n
neighbors, each identified by inverting one bit in its
address (001001...10, 111001...10, etc.,). If the size of the
cube is doubled to 2**! elements, then we can view the
original cube as half of the new cube with original
addresses prefixed with a leading zero, and the new part of
the cube as the computers which have addresses with a
leading cne. If we take an element in the original cube and
the corresponding element in the new part, they have
addresses:

0101001...10 old half
1101001...10 new half

Clearly, corresponding elements in each half have
similar connections within its own half and one additional
connection to the cotresponding element in the other half
(inverting the most significant bit).

(R aeazey)
1110 1111 T T U U S |
: I VAR /R VAR ¥/

/ w?s?gc‘):h?#a?glgzs ¢ INAVNL VAIVA _\)1

AL

0111 J

A

0101

a) 2, 4, 8, AND 16 CUBES.

b} TWO 16-CUBES TO FORM A
32 PROCESSOR CUBE

Figure 20: Hypercube Structures

Figure 20a shows the expansion from two through
16 processors, and figure 20b shows a 32-element cube
composed as two 16-processor cubes (which correspond to
the layout of a Karnaugh map). Larger cubes are harder to
visualize, but a large hypercube contains within its
interconnection pattern a single two-dimensional array and
a set of two dimensional arrays connected as a three
dimensional grid. This is one reason why they are so
useful for physical simulations.

The JPL Mark 11l Hypercube

The JPL computing system is connected as a binary
hypercube which can be expanded to 1024 processors. A
typical processing node contains two M68020 processors.
one for I/O control and one operating as the main
processor. The main processor and I/O processor each
have a fast static RAM serving as a local cache, and both
communicate through a 4Mbyte dynamic RAM [JPL 85}

Each (one of log n)} /O connection contains a FIFO
buffer to receive incoming messages. The 1/O processor
can interpret incoming messages, and it can either store
them in the shared memory if addressed to the local node
or re-route them if addressed elsewhere. The main
memory bus supports 12 Mbyte/sec data rates so one can
assume a maximum of about 1 Mbyte/sec data rate worst
case on the /O links if each of 8-10 channels are receiving
messages simultaneously. Messages are passed between
computers as a sequence of 8-bit bytes. The computing
node is designed to allow a pipelined floating point chip
set to be added onto the internal bus.

3.1.2 POTENTIAL HYPERCUBE FAULT-
TOLERANCE REQUIREMENTS

The first information needed to design or evaluate a
fault tolerant machine is a specification of the errors and
faults that it must tolerate and the requirements for fault-
tolerance. For purposes of this discussion faﬂt-tolqmt
applications will be divided into two general categories:
(1) applications where maintenance is availa})le, and (2)
applications such as space systems which require very Tong
unattended life.

A, Defining the Fault-Environment

To define the fault types the hypercube designers
must identify: 1) randomly occurring physical (permanent
and transient) fault-types, 2) potential external
disturbances and the resulting computer fault-types, 3)
possible design fault-types, and 4) fault-types that may
occur due to operational errors. For each fault-type,
operating environment, and for the technologies planned
for implementation, it is necessary to develop a
methodology to estimate: i) rates of occurrence, ii)
distribution in space and time, and iii) duration of the
various fault-types.

B. Defining Fauit-Tolerance Requirements

Fault-tolerance requirements which must be defined
include:

Identifying the minimal service under fault-
conditions

Identifying critical state information which must be
preserved under fault conditzons

Establishing the maximum acceptable time delays
while fault recovery is taking place

Specifying reliability, the probability that the
system can meet its service specification for the duration
of the mission. Typical space reliability requirements are
0.95 over a 5-10 year mission

C. Typical Hypercube Fault-Tolerance Requirements

A "typical" set of fault-tolerance requirements are
given for this study and are listed below:

I. There is a critical data base which must be
protected under all fault conditions, and it is expected to be
at least several hundred thousand words distributed
throngh many of the hypercube nodes. This information
must be redundantly stored to prevent its loss by a single
failure.

2. There is a real-time recovery requirement in the
range of milliseconds to several seconds.

3. Very high "coverage” must be provided in error
and fault recovery to achieve needed reliability. (Given
any error or fault in the specified set, there must be a
probability of much greater than 0.99 that it will be
recovered in the specified time and without damage to the
critical data base.

4, Very high throughput is needed, and this
requires efficient use of redundant resources. Redundant
elements shouid be put to use whenever possible, making
the general use of massive redundancy (e.g. triplication
and voting) unacceptable. For space applications a large
amount of redundancy must be carried on-board to assure
that the complex system will work for many years (when
many permanent faults are expected to have occurred).
This requires a finer partitioned design and a much more
cfficient use of redundancy than on equivalent ground
computers. This problem is compounded by the generally
lower density of radiation hardened parts required in space.
More chips are needed to do the same job.

3.1.3 CONCURRENT ERROR DETECTION
AND RAPID FAULT DIAGNOSIS

Since the goal of parallel computers is to apply as
many processors to a problem as is possible, standby
redundancy (i.. running each program in one computer in
contrast to massive redundancy approaches such
duplication or triplication and voting) is needed to
maximize the amount of hardware available for parailel
computations. For long-life unmaintained applications this
is especially important since minimizing the number of
modules needed for a working end-of- life configuration
also reduces the number of redundant spares needed to

achieve a specified reliability. Concurrent error detection
is required if rapid, dependable transient fault Tecovery is
1o be expected, and if permanent faults are to be detected
before damaged information propagates to many places
meking recovery very difficult.

a) Issues of Designing Concurrent Fault Detection (nto
the Hypercube Nodes

The current hypercube nodes only employ
SEC/DED codes in memory, but do not provide
comprehensive error detection in other parts. High-
coverage, concurrent fault detection can be added by
implementing circuits within each computer to provide
comprehensive checking. To prevent error-damaged
information from upsetting critical state information in
memory these checks must be made at nearly every clock
step. The techniques for deing this are well understood
and typically rely upon SEC/DED codes in memory, error
detecting codes on internal buses, and a mixture of coding
and/or duplication in the processor and I/O logic [SEDM
80, RENN 81bl.

In very high speed machines, this checking can
slow down the computer significantly because every cycle
must be delayed for checking to be completed. Error
checking will result in an unsatisfactory slowdown unless
special design techniques are employed. This speed
penalty can nearly be climinated by introducing pipelining
into error checking. This is already done in large
commercial processors, but it has not been done in the
VLSI microprocessor technology for hypercube-class
machines. It will require innovative new designs.

Pipelining error checking involves not waiting for
error checks and carrying out operations before checking
of the operands is complete. If an error is detected, it is
necessary to back out of those operations with erroneous
data. This is done by providing buffering and control in
the processor, memory, and IO needed to restore the node
to the state it was in before the error occurred.

b) Rapid Fault Diagnosis and Uncovering Latent Errors

In some projected environments the hypercube may
be expected to survive massive externally induced
transient faults and it will be necessary to provide the
capability of very rapid self-diagnosis in each node. After
a disruption, volatile information will be lost, and some of
the nodes may have suffered permanent faults as well. In
order to recover within several seconds or less, each node
will be required to quickly and thoroughly diagnose itself
and report its condition in order to allow reconfiguration to
a working set of nodes before restarting the computations.

If the system is expected to operate under an
externally induced high rate of transient errors, self-
exercising features will be needed to rapidly uncover latent
faults and errors (faults and errors which are in circuits not
currently being used and will only be detected later when
the circuit is called upon). These errors must be corrected
quickly before multiple errors build up, jeopardizing
recovery.

Both rapid diagnosis and self-exercising
capabilities require specialized VLSI design and are an
area of current research [RENN 86b] that will be discussed
later.

¢) Verification of Communications

Current hypercube designs implement inter-
computer communications as messages which are sent
between buffers in computer modules and relayed between
modules by software to their various destinations. This
can result in considerable latency between sending a
message and its arrival at a destination. In a fault-tolerant
environment, it is often necessary for a sending computer
to quickly verify that the message was received correctly at
its intended destination. If a computer must acknowledge
receipt of a message before sending additional ones,
latency can be increased several times over. If a message
fails to arrive or an acknowledge message is lost due to a
transient fault, the message must be retransmitied. A
time-out is needed in the sending processor for it 1o re-try
the message, and a sequence number is needed in the
receiving processor so that if the acknowledge message
was lost, the receiver will not accept the retransmission as
a new message. The whole issue of verification of
communications must be carefully analyzed in the
hypercube to determine if the latencies of error recovery
are compatible with the real-time recovery requirements of
many applications. Hardware implementations of
checking and automatic message acknowledgements are

probably essential to achieve acceptably small message
latency in a fault-tolerant system and to meet real-time
recovery requirements.

3.1.4 PARTITIONING AND ALLOCATION
OF REDUNDANCY

Several approaches have been considered for
implementing redundancy within the hypercube structure,

A. Use of Natural Redundancy Within a Hypercube
(HC)

It is necessary to have spare processors to take over
the tasks of those which have failed. One approach is to
allocate processors as spares within the existing hypercube
network. Figure 21 represents a hypercube which is
executing a number of independent processes, (A,B,C,..F)
each of which use a relatively small portion of the array.
Spares are allocated at the periphery of groups of
processors which are running these processes, If a
computer or interconnection path fails, a nearby spare is
activated and messages are re-routed to the spare, After
spare processors are no longer available (or the number of
failed communication links result in inadequate
bandwidth), the system reverts to a degraded operational
mode.

| |
—s A S F<
I/ / / Is/
';A / -
/A‘ /A‘ /Cﬁ. /E{-
=S =A lJ‘ I/E
AS /A" /T‘ /s"
D= D=
/ / /l /l
D —$
N -
S —SPARE A, B,...F—VARIOUSPROCESSES

Figure21: Allocating Redundancy Within a Hypercube

The allocation process can be highly complex in
long-life unmaintained systems where a large number of
computers fail, and groups of processes are re-located to
different areas of the cube to maximize the remaining
connectivity and communication efficiency. This approach
has the serious limitation that recovery from permanent
faults changes the topology of the machine. If a long-
life application requires most of the computers or requires
the use of most of the available bandwidth and the
hypercube’s unique interconnection structure (e.g. FFT) to
run at high speeds, this approach will not work. It will fail
because of the increasing length of re-routing messages
around failed processors and bandwidth congestion
resulting from sharing the remaining available paths.

B. Sparing to Maintain Topology and Performance in
Maintainable Systems

The following approaches have been identified to
provide tolerance of a limited number of faults in
processors and communications links while maintaining
the original performance and connectivity of the
processing network (at least until spare hardware is
exhausted). They are limited to maintainable systems
because sparing for large numbers of faults that might
occur in long-life unmaintained systems is both inefficient
and overly expensive. Design approaches for long-life
systems are discussed in a later section.

Adding Spare Nodes and Links

In this approach spare computers are added and
treated as machines in an additional dimension of the
hypercube. To be practical, this next dimension is not
fully populated, containing but a small number of spare
nodes. For example, if the basic hypercube has
dimensionality of N (2¥ processors), all of the machines
have N+1 serial ports. The extra port is redundant and is
used to reach spares as in the example shown in Figure 22.
Each of several spare processors has a set of associated
VLSI crossbar circuits attached. When a machine fails, its
neighbors address messages through the N+1th port to the
"spare dimension.” The VLSI crossbar circuits are set up
to connect the spare machine to the neighbors of the failed
machine. Several spares can be implemented as shown in
the figure by connecting their crossbar inputs in parallel.

Figure 22 is a example which shows a system with
128 processors, each having seven serial ports and an extra
"eighth" port connected to the spares via the crossbar
switches. Each port is bidirectional and contains four
wires (two request lines a bi-directional data line and a
clock line), Each spare processor contains eight VLSI
crossbar chips which connect sixteen 4-wire ports to up
to four of the seven ports on the spare computer. Each
crossbar chip requires a few thousand gates (pass
transistors and three-state drivers) and can be implemented
with less than 96 pins. (If each crossbar is connected to a
P-processor subcube of the hypercube, it is easily shown
that for any failure, at most log P ports from a single
crossbar will need to be connected to the spare computer.
This is because any failed computer in a subcube is
connected to exactly logP other computers in that
subcube. In the example P = 16 and logP =4.)

i
.-- .0. |
16x4
cee I I 6x VLSt
cr | |
L]
- : : //8 x4
. -
Xo. :
g -
< I | 1634 VLS SPARE
R cB COMPUTER
=R
. cé .,
. 1 16x4
= £ vist ||
z 7 cB
O..
16x4
see l , vLsi -
— i rd cB r—
r N
. -
[]
8 PORTS/PROCESSOR *vLSI CROSSBAR
{1 TO SPARES} {16 TO 4 FOUR-WIRE PORTS)

Figure 22: Spares Added as an Incomplete Next Dimension

FROM RCBs IN JO CCBs IN OTHER'
OTHER SUBCUBES syUpCUBES

// 3x4 Ix4
16.PROCESSOR
SUBCUBE
{ONE OF EIGHT) RCB
7x4
% % ot cca 2 | seare
— 7 COMPUTER
FROM
PROCESSORS IN
SUBCUBE

Figure 23: Sparing of a Subcube (One of Eight)

Hierarchic Sparing by Subcubes:

A hypercube with 2V processors can be viewed as
a hierarchy of 2° sub-cubes, each with 2™ processors
(where s + m =N). It is possible to provide one or more
spares for each subcube reachable, as before, through exira
ports in each processor). Figure 23 shows how this is
implemented in a 128 processor binary hypercube (W =7)
with eight subcubes (s = 3) of 16 processors (m =4). If
any processor fails in the subcube, the spare will have to
be connected to m neighboring processors in that subcube,
and one processor in each of s external subcubes to which
it is connected.

In the implementation of Figure 23, each spare
‘computer contains two crossbar switches (each
implemented as two or more chips). The Connection
Crossbar (CCB) has 2™ +5 inputs and N outputs. [t is
connected to each of the 2™ processors in its associated
subcube {via. their spare port), and it is connected to one
output of a Relay Crossbar (RCB) from each of the other s
subcubes to which its host subcube is connected.
{Remember that although there are 2° subcubes, any single
subcube is only connected to s of them.)

Each subcube contains a relay crossbar which has
2™ inputs and s outputs. The inputs are connected to all
computers in the subcube, and each output is routed to one
of the s subcubes to which it is connected. Each of the
external subcubes can establish one connection to any
single processor in the host subcube.

When a computer fails in a subcube, its CCB
connects its spare processor to the m processors in the
subcube which have connections with the failed processor,
and it connects the lines from the adjacent subcubes to the
spare processor. The RCBs in the adjacent subcubes are

commanded to connect to the processor in their subcube
which was connected to the failed processor.

The two approaches described above which use
spares in the N+1th dimension, allow spare computers to
back up any machine in the hypercube and offer i) a
simple reconfiguration algorithm, and i) low
communication delays when a failure occurs. They are
recommended for applications which allow periodic
maintenance, but are inadequate for long life unmaintained
applications where more than half of the processors may
fail over a five to ten year period.

The hypercube’s point-to-point interconnection
structure limits sharing of spare computers or
communications paths. In section 3.1.7 we will look for
alternative interconnection structures which provide much
the same functionality, but allow better utilization of
spares.

LONG-LIFE UNMAINTAINED SYSTEMS

Long-life hypercubes will be much more difficult
to design. It is necessary to add a much larger amount of
redundancy, and the system must be structured so that the
redundancy can be used in a very efficient fashion. The
system must be finely panitioned so that no single
module-type has a high probability of failure, and a typical
redundant spare part must be capable of backing up a large
number of working parts. Typical space system
requirements are a 95% probability of surviving five years
or more. In typical space systems it is necessary to more
than double the hardware (i.e. start with at least as much
redundant spare hardware as active hardware) to provide
adequate assurance of full performance at the end of
mission.

Current hypercube designs for ground-based
applications are ill- suited for long life unmaintained
environments. The individual computers have failure rates
which are too high for long life applications. In
maintained ground systems several megabytes of storage
may be implemented in each computing node using large
dynamic RAMs. In the long-life unmaintained space
environment, special radiation hardened, static devices
must be used, resulting in much lower density circuits (and
requiring an order of magnitude more parts for the same
computing capability). A space computer with several
megabytes of memory would currently have a five year
reliability of less than a few percent, making sparing for
.95 reliability impractical [MIL 217D].

Multdi-Level Redundancy

To achieve a long-life with highly complex nodes,
each computing node must be made internally redundant,
Table 1 was computed as an example using the Bouricious,
Carter, Schneider reliability model to show the
approximate end of life reliability required of a single
computer module in an array in order to achieve an array
reliability of 0.95 when 50%, 100% and 200% sparing is
employed [BOUR 71]. Coverage is optimistically
assumed to be one, and communication links are assumed
1o be fault-free, making this an upper bound. Clearly, if
adequate reliability cannot be achieved using this model,
there is no hope since the actual reliability will probably be
much less. The ratio of powered and unpowered failure
rates are assumed to be one -- which is a reasonable
approximation with low power CMOS-S0S logic.

#Active #Spares/ #Spares/ #Spares/
Computers SCR SCr SCR
16 8/.78 16/.57 32/45
32 16/.78 3257 64/40
64 3274 64/.58

*SCR End-of-life Reliability of each individual
computer required for an ensemble reliability
of 95
Reliability of Single Computer Required for an Array
Reliability of 0.95 with 50%, 100% and 200%
Redundancy

Table 1:

As a rule of thumb, we can say that each computer
of a fault-tolerant hypercube should have at least a 50-60%
probability of working at the end of mission, otherwise an
inordinate number of spares will be required.
Furthermore, if the end-of-life reliability of the individual
computers is increased, the number of spare computers
required drops dramatically. The critical question is to
determine if the individual computer modules can be built
to achieve this level of reliability at the end of five or ten
years. The answer is that either i) the computers must be
very simple to keep the component failure rate acceptably
low, or ii) if high performance computers are used, their
failure probability will be unacceptably large unless
internal redundancy is be employed within each of them,

Due to the fact that high performance computer
nodes are needed which will contain a hundred or more
chips, it is nearly certain that their failure rates will be too
Jarge to attain acceptable reliability without the use of
internal redundancy. An upper bound can be obtained by
assurning a very optimistic failure rate for a single VLSI
chip is on the order of .2 x 106 (one failure every 600
years)., A computer with 150 chips would have a
composite failure rate of 3 x 10-5 per hour, not counting
buses, power supplies, clocks etc. The expected five and
ten year reliabilities of a non-redundant computer (e-
LAMT) are:

5 Year Reliability

10 Year Reliability
.26 07

We have conducted extensive modeling studies
using ARIES wkhich show that only a moderate amount of
internal redundancy is required in typical medium to high
performance flight computers to greatly improve their
end-of-life reliability. A typical high performance
machine was modeled, and it was shown that its reliability
could be improved from .08 to .75 by adding an additional
50% redundancy to the computer. (A Hamming Code and
two spare bit planes were added to memory. The majority
of circuit complexity in a computer module is in memory,
and, due to its already fine partitioning, one can protect
against multiple chip failures with a proportionately low
increase in redundant hardware -- typically 10-20%
[RENN 81b]). This study examined the tradeoff between
employing redundancy at various levels in a muld-
computer system, and it was shown that distributing
redundancy at multiple levels, chip, functional unit, and
computer, results in greatly improved reliability for a
given amount of redundancy in a long-life unmaintainable
computing system [RENN 82, DEPA 8§3]).

Thus a long-life hypercube architecture is expected
to have computer nodes which are internally partitioned
with backup spares provided. Each computer will require
spare bit-planes in memory to replace failed chips, and
possibly spare memory modules, and CPUs. Then it will
be necessary to add a number of spare computers forming
a system with several levels of redundant protection,

3.1.5 ERROR AND FAULT RECOVERY

In a complex multicomputer structure, error and
fault recovery should be handled in a hierarchic fashion.
In general, errors and faults should be handled at a low a
level as possible to minimize system-wide disruption while
fault recovery is taking place.

Low-level Recovery: Emors and faults which can be
corrected quickly within a single node will not seriously
disrupt the ensemble of other nodes. This is already done
with SEC/DED codes in memory. It is also possible to
handle most transient faults faults locally within a
processor node using program rollback.

It is also possible to correct some permanent faults
locally within a node relatively inexpensively. Examples
are substituting spare bit planes in memory and replacing
a defective processor and I/O circuits.

Higher-Level Recovery Actions

There are errors and faults which cannot be
recovered locally within a node. These must be recovered
at a higher level -- either by a group of nodes or as a
system-wide recovery action. These fault conditions result
in loss of state within a node requiring its re- initialization
from the outside or loss of the node entirely due to an
unrecoverable fault.

i) Loss of State Within a Node - Critical state must always
be protected against single point failures. This usually
means that programs and critical memory data must be
stored in at least two nodes. Then, if a node fails, its
information is still available elsewhere. In the hypercube
this means establishing rollback points in each program
and saving the state necessary to recover computations
both in the operating module and a neighboring module.

it) Node and Link Failures

When nodes or links fail, a spare must be activated
and the programs and state information loaded into it to
restart processing.

In all cases where nodes must be reinitialized, there
will be a time delay which will affect the operation of the
whole hypercube. Typically, real-ime applications
programs in all the other nodes must be written with
alternative procedures to compensate for the time delays.
If a node has failed and a spare substituted in its place,
other nodes will have to be appraised of the change. I
spares are not available, processes will have to be
reassigned to provide degraded operation. This type of
high-level recovery with system-wide effects is best
managed by a single high- level maintenance processor (as
is done in most large commercial machines nowadays.

There are several good reasons for controlling
fault-recovery from a fault-tolerant computer external to
the hypercube processor array. First, whereas the
processors in a hypercube are designed for high
performance, a processor for recovery management can be
relatively simple, have an inherently low failure rate, and
be designed for a very high degree of fault tolerance.
Second, distributed fault recovery algorithms are quite
complex and rely upon obtaining diagnostic information
from several sources. If this is placed in the hypercube
computers, a considerable overhead is expected in these
machines as extra programs and cycles devoted to
diagnostic testing. An external centralized recovery
processor will remove overhead from the hypercube array
and can implement simpler centralized recovery
algorithms. This approach is in agreement with the
approach taken in most modern complex computing
systems in which a maintenance processor is added for

fault-recovery management. In space systems, there is
usually a separate, very reliable processor for executive
housekeeping and executive functions. Such an executive
processor is an excellent candidate for recovery
management in high performance array processors such as
the hypercube.

In the architectures described above, a maintenance
processor can be added and connected to the array
processors by a redundant set of seral low-speed
maintenance buses through which it can collect diagnostic
information, command reconfigurations, and initialize
spare units when they are activated. If self-checking
processors are employed in the hypercube array, the
maintenance processor will be explicitly notified when a
computer fails, and can execute system diagnostics,
compute recovery strategies, command reconfiguration,
and reinitialize the system to effect recovery.

3.1.6 FUNDAMENTAL PROBLEMS

Several fundamental problems have been identified
in using Hypercube structures for real-time aerospace
applications:

Efficient Use of Memory in Heterogeneous Distributed
Processing

In attempting to map heterogeneous applications
onto homogeneous computer arrays there is often a serious
mismatch. Typically, there are a variety of computations
to be performed, each requiring different speeds and
different memory sizes. Different sensors may provide
several high rate data stremmns whose processing programs
require dedicated computers to achieve adequate
throughput, but the memory size may be small for each
computer. Other processes may require less speed but
need an order of magnitude more memory to carry out
their computations.

Here we have conflicting requirements. For the
purpose of fault-tolerance we would like to have all the
computers the same so that spare computers can serve as
backup for all machines which have failed -- allowing
processes to be reassigned to any other computer when one
fails. It is also essental to keep memories as small as
possible because they represent the major proportion of the
system’s failure rate, but it is necessary to size each
computer with a maximum size memory to allow efficient
sparing.

Improving Connectivity for Sparing

System reliability is optimized if spare computers
or communication links can be used to back up a large
number of active units. We saw in the examples above
that the hierarchic approaches to sparing by adding spares
to subcubes only allows the spares to back up nodes within
their associated subcube. Many multiple failure conditions
can exist in which the existing spares are unavailable.

e ot ime COnnections Deraeen oires
d

A ACUv 2 Lns s CoralTan

ey Y

i ned amuch lower reliabiiity can
be expevied. A vrical redundanc spare part should he
vapadble nf hacking up 4 large number of working parts.
The hyoercube ™™ oomME-Io-poinl RIErCONRection structure
firmats \nare O communicarnions
eand axdmine diernative interconneciion
crovide much e same functionality, but

i OF STTATeS,

sharmng ot COTUIRTS

Reducin: ompupncation Latency for Real-Time Recovery

Message passing betwesn nodes is a relatively slow
and inefficient mechanism for replicating state information
to allow recovery if a memory or processor fails. Errers in
messages which are relaved berwesn several nodes may
also involve unacceptable latency for error detection and
recovery.

Thus we must examine alternative architectures and
interconnecuon structures to see if they can better meet
requirements of etficient hardware use, improved
connectivity for sparing. and short latency.

3.1.7 ALTERNATIVE ARCHITECTURES

One alternarive approach uses interconnection
paths with high enough bandwidth to support several
communications circuits and thus kill two birds with one
stone -- reduce the number of interconnections and make it
possible for spares to back up several working units and
improve the life extension capabilities of the spares. This
appears to be an atactive alternative if higa-bandwidth
paths are used.

In designing a system with shared communications
paths, it is necessary (0 determine the maximum rate
needed by any one "virtual" circuit using the shared path.
Given a computer module which runs at 2 mips, we can
assume that it will take at least 10 instructions (5 usec) on
the average to do anything useful with a data word coming
in. If this data is in the form of 32-bit words with 25%
overhead for addressing and checking, (and if
communications can be largely overlapped with
processing) the bandwidth at which the processor saturates
will be approximatelv 8 megabits, [f a 100 mbit shared
bus 15 available (optical serial bus or backplane bus) a
dozen processors can be supported on a single physical
path, giving them interleaved time slots to create virtual
point-to- peint communications between all of them. {Thus
maintaining a1 close approximation of the original
hypercube functionality.) Spare processors on this shared
structure can back up all the actve units, and redundancy
within the communicaton links can provide improved
reliability for very long missions.

Y Evmrie I P enna e o e e

The preceding discussion :usuties the ~epl - -
smploving muit-level redundancy, achieving
memory utilization thalance), and 1
interconnection structure which allows greater «ha
spare resources. One swep in this direction @5 to usx-
advantage of the hierarchy inhereqt 1n ihe hin
hypercube stucture. The approach ts 1o use of 4 hierar
where sets of computers are combined :
multprocessors, and then the muliprocessors are:
combined into an arrayv. Each of the processors <t has o
urigque address and from the viewpoint of appiloinons
software. this logical structure is identical o the oriooid
hvpercube. The multiprocessor can provide better memor,
utilization, By shanng memory, different processes -
VArying memory requirements will better fit into 4 <ma
memery. Also if the processors share code or laa
single copy can be kept rather than the separate cories
required in independent computers. (This also ailows
sharing of power supplies, boards, ciocks, etc. and ieads
a more efficient use of hardware. Also. since the svstem
designed for special purpose problems har are
par-onable into separate COMPpULErs, MEMOry Jenlent
prc -ms should be easily solved with caches amaches
the individual processors.)

Figure 24 shows a group of four processors 1o«
one spare) packaged as a multiprocessor for use n
processor (16 multiprocessor) hypercube. Each proce-sor
has an associated local memory of 8-16 K woerds and there
are four communications porns cennected in AvpeTUine
fashion to four of the 16 additional muitprecesors
Each port must have four umes the speed of
hypercube interconnects, and becomes maore o7 oo
because it must recognize and route messages addressed o
four processors in the module. In order 1o prevent latens
problems it is advisabie to allow messages w he
interleaved on a word-for-word basis through each pors
Again, rotice that the hypercube can still be mapped nrto
this structure, it only provides additional Hexibilite :n
communications and sparing within each muitiprocessor.
Spare processors. ports, bit-planes :

1 na

in - memory, and
memoery modules can be emploved. Pont connections e

byte-serial (e.g. 4-wires) with spares to circumvent a faied
driver or receiver.

HYPERCUBE CONNECTION TO FOUR OF SIXTEEN OTHER MULT!PRCCESSORS

O 0 =) =
-
8] SPECIAL

P

y ¢ SHARED | 2 f PURPOSE
>

PORT | PORT MEMORY | ui & PORT | PORT PROC (OPT)
zm

CACHE CACHE CACHE CACHE CACHE
SPARE
PROC. PROC. PROC. PROC. sP

Figure 24: Redundant Multiprocessor for Use in a Large Array

FOUR MULTIPROCESSORS (MP) + 1 SPARE (SPMP)
{4 PROCESSORS EACH PLUS ONE SPARE)

3 HIGH RATE LINKS TO OTHER
PROCESSOR ASSEMBLIES

d

/

REDUNDANT BACKPLANE BUS

{+ SPARES)

PORTS

REDUNDANT HIGH SPEED PORTS

Figure 25: Redundant 16 - Processor Assembly for Use in a
128-Processory Binary Hypercube

Figure 26: Connection of Processor Assemblies with Spares

This approach can be extended to an additional
level of hierarchy to provide better packaging and use of
spares and active resources. Figure 25 shows a 16-
processor assembly made up of redundantly protected
groups of 16 computers (four multiprocessors plus one or
more spares). Here we have four multiprocessor boards
plus two spare boards connected by a redundant backplane
bus. Three ports with individual standby spares connect
via. very high rate (128 mbit) links to three of the
remaining eight 16-processor assemblies (in hypercube
fashion) which make up the 128-computer system. Since
the high level cube has a small number (8) of 16-processor
assemblies a redundant processor assembly may be added
and connected to three of the others as shown in Figure 26.
If any assembly fails, message re-routing will never
require more than one additional hop.

This configuration stll provides a hypercube
structure but is much more general. Data can be routed
between processors within a 16-processor assembly
entirely by hardware, and in the worst case, messages
between any two computers in the 128 computer system
must only be forwarded through two processor assemblies.
Use of the backplane bus allows distribution of very high
rate input data to a 16-processor assembly and the flexible
routing of very high rate data through special purpose
processors that can optionally be included in the
multiprocessor modules. Now we have redundancy at
four levels: spare chips within memories, spare modules
and processors in multiprocessor modules, spare
multiprocessors, and the ability to reassign processes
within the overall hypercube. It is this type of multi-level
approach to fault-tolerance (all though not necessarily the
examples given above) that will provide both the long life
and flexibility needed for space applications.

Preliminary reliability models have been made of
this hierarchic structure. The approach is to work
backwards. Using combinational models, the required
reliability of a 16-processor assembly is determined to
achieve the systern reliability (of 0.95). Then the
multiprocessor board reliability is determined to achieve
the needed processor assembly reliability. Then sizing and
use of internal redundancy within the multiprocessor is

chosen to meet the needed level of reliability,

3.2 SELF-CHECKING SELF-EXERCISING
DESIGN IN PROCESSOR NODES

This section addresses lower level design issues of
implementing fault-tolerance in the processing nodes. It is
clear that concurrent error detection is needed in
processing nodes of highly parallel multicomputers. Self-
checking design techniques can be employed to provide
concurrent error detection, as was discussed above in the
SCCM. Although they detect errors when they occur,
self-checking designs cannot detect fault conditions which
exist but have not produced a detectable error. (An
example is a word in memory that has not been accessed.

Another example is a "stuck-at-one" bit in a register which
currently contains a one but will fail when a "zero" is
stored there.)

This section describes one result of ongoing
research into the design of self-checking computers which
are capable of exercising themselves during normal
operation in order to uncover latent faults very rapidly.
The approach is unusual in that it is carried out from the
prospective of the system architect. The generic
structures which are commonly used to build self-checking
processors and memories are examined along with typical
VLSI layouts (e.g. memory arrays and interfaces, CPU
data paths, microprogrammed controllers, various self-
checking checkers). Techniques are introduced to
interleave self-testing with normal program execution
cycles at a rate which has minimal impact on circuit layout
and speed of ongoing computations (typically a 5-10%
slowdown). The results obtained so far indicate that if
self-checking features are already in place, additional
hardware mechanisms can be added at relatively low cost
which enable the computer to test itself during normal
operation.

A self-exercising memory design is presented
which allows single-bit errors to be detected and corrected
within milliseconds. Furthermore, extensive tests for stuck
and shorted cells as well as memory disturb tests are
carried out many times per second. Modeling results are
presented which show this approach to be highly effective
in very high-transient environments. Self-testing
approaches in a preliminary design for the data path
portions of the CPU are briefly discussed.

Self-exercising self-checking design has several
important applications. High transient fault rates are
expected due to radiation in some space applications where
errors must be "flushed out” very rapidly to avoid multiple
error buildups which jeopardize fault-recovery. For ultra-
reliable applications such as those planned for SIFT and
FTMP, the need for rapid removal of latent faults is
needed to achieve extremely high levels of coverage that
are needed [WENS 78, HOPK 78]. Finally, if a machine
can fully exercise itself during the first second or two of
normal operation, acceptance testing is built-in. In space
applications, acceptance testing is a very large expense
which can be reduced by more effective self-tests within
flight computers and associated subsystems. The type of
design described here is planned for the next generation of
the FTBBC computer previously reported.

321 A SELF-CHECKING SELF-
EXERCISING MEMORY ARCHITEC-
TURE

In many computers used for flight and real-time
control, the random access memory system is often the
most complex component part, containing many more
active circuit elements (transistors) then the rest of the
computer. Therefore the majority of transient and

permanent faults are expected there, and this is the area
where self-exercising self-testing logic can be most
effectively used. It is common to employ SEC-DED
codes in memory for single error correction. The codes

only are applied to words which are read out, so it requires

additional software tests in conventional machines to
"flush out” latent faults in words not often exercised by
application software. These tests can be scheduled as a
background processes and may take many minutes to
complete.

By taking advantage of the 2-1/2D structure of
modern RAMS, and adding a modest amount of additional
logic, tests can be implemented in hardware and executed
about a thousand times faster. This testing can be
interleaved with normal processing with very small speed
penaldes. Transient faults (sometimes called single-event
upsets) can be detected and corrected within milliseconds
after they occur. Permanent faults, including stuck-at-
one, stuck-at-zero, coupling (e.g. shorts) between
neighboring cells, and some pattern sensitive faults can
also be quickly detected (within tens of milliseconds) after
they occur,

Memory System Organization

This approach applies to memory systems which
employ individual memory chips organized as N one-bit
words. This is typical of most modern memory chips
which contain 16Kx1, 64Kx1, or 256Kx1 bits. It is
assumed that the memory system is structured to contain
M+P bit words, with M information bits and P parity bits
to implement 2 Hamming SEC/DED code. Each bit
position in all words is stored in separate chips so that any
single chip failure will at most damage one bit in any
word.

A block diagram of such a memory system is
shown in Figure 27. An additional Memory Interface
Building Block (MIBB) circuit is used for control and to
provide Hamming code encoding, decoding and single
error correction, If a single error is found in a word being
read out, the MIBB corrects the error and stores the
corrected value back into the memory, A MIBB of this
type has been developed at JPL and reported previously
[RENN 78a]. (The JPL design, which has been
implemented, can also substitute spare bit planes [groups
of chips holding a particular bit in all words] for ones that
have failed.)

In the approach presented below, both the memory
chips and MIBRB are augmented with additional circuitry to
provide concurrent self testing and self-checking. This
approach takes advantage of the fact that large memory
chips externally organized as N one-bit words are
internally organized as a square array of memory cells.
There are typically SQRT(N} rows and SQRT(N) columns
as shown in Figure 28. When a single bit is read from the
memory chip, one whole row of SQRT(N) bits is read out
of the memory array internal to the chip, but only one of
these bits is selected to be output from the chip. For
example, in a 16K memory there are 128 rows of 128 bits
each, there are 128 sense amplifiers and an internal data
register of 128 flip-flops. The high order half of the
address bits select a row which is read out internally within
the memory, and the other half of the address bits are used
to select which bit of the row is to be read out (on READ)
or modified for a STORE operation. For a store operation,
the selected row is read out into an internal data register,
the bit selected to be stored is set to the value being input
for storage, and the whole row is written back to the
memory array. This structure is essential in dynamic
RAM, because it allows all bits of the chip to be read and
restored in SQRT(N) read cycles.

Nx1 BIT MEMORY CHIPS [EACH HAS ONE BIT OF WORD}
M INFORMATION BITS

ADDRESS
7O CHIP

PPARITY BITS

CONTROL BUS

LINES

PATA.

MEMORY INTERFACE BUILDING BLOCK
HAMMING CODE CORRECTION, CONTROL OF MEMORY CHIPS

MAIN DATA BUS

MAIN ADDRESS BUS

TO PROCESSOR AND 1/0

Figure 27: The Memory System

-~ MEMORY CELL

N — CELLS
N ’ ROWS
COLLINS
n/2
HIGH ORDER N=2"
ADDRESS
BITS
SELECT ROW

ADDRESS
IN
+/N BIT DATA REGISTER
[+ SENSE AMPLIFIERS,
FOR DYNAMIC RAM)
ni2 LOW ORDER ADDRESS
BITS SELECT BIT-IN ROW
ONE BIT DATA IN/OUT
Figure 28: Memory Chip Organized as a Square Array
- oo
; J_ - k- S 4
n/2 - . 2 H B
UPPER WALF HIGH ORDER P - "‘3_ = ‘r:: :f_
ADDRESS - B = ¥
ADDRES —L BITS : p— —§— —$—$—
SELECT ROW b
o &
Fual i Fe .‘:(
= | = N & S A
|]
+/N + 1BIT DATA REGISTER
{+ SENSE AMPLIFIERS,
FOR DYNAMIC RAM)
INITIATE — IPER'MUT!ATION Llocml: L
CHECK CYCLE .
{NEW PIN) CONTROL INVERT ODD, EVEN, NONE
INTENAL L 1 117 | I I
PERMUTATION CMD 2 FAULT INTERNAL ROW-PARITY CHECK/GEN |
INTERNAL FAULT 2
REGEN. PARITY 1 1 1 [T] L 1 T T
n/2 LOW ORDER ADDRESS
LOWER HALF ADDRESS BIT SELECT BIT-IN ROW

ONE BIT DATA IN/OUT

Figure29: RAM Chip Including Checking and Permutation Logic

Modification to RAM Chips for Self-Exercising
Features

The novel design features of the memory chips are
described below:

(A) Two parity bits are added to each row of
memory cells internal to the memory chips, one parity bit
is used to check all odd numbered bits in the row, and the
other parity bit checks all even bits in the row. This
results in two additional columns in the memory array as
is shown in Figure 29, and a two (odd and even- bit) parity
checkers attached to the data register on the chip.

(B} The chip can be commanded to perform a
CHECK CYCLE (typically taking less than a
microsecond) during which a row of the memory array
(specified by the most significant half of the address) is
read out into the data register, the parity is checked, and
the data bits are stored back into the row either unchanged
or with one of three permutations:

i) Store Row without Change

ii) Store Row with Odd bit positions inverted
iii) Store Row with Even bit positions inverted
iv) Store Row with All bits inverted.

If a parity error is detected, an internat fault signal
is sent to the MIBB, indicating that an error has occurred.
During a check cycle, the memory can be commanded to
Regenerate Parity (RP). In this case, both parity bits are
re-computed over the selected row. (Note that the even and
odd positions in a row, each typically consist of an even
number of bits. Therefore when a group of (even or odd)
bits are inverted, the associated parity bit remains the
same).

(C) During normal (processor and /O initiated)
reads, a row (selected by the upper half of the address bits)
is read into the data register, and one bit (selected by the
lower half of the address bits) is read out. No internal
parity checking is done, and this read can be viewed as
identical to that done in conventional memory chips.
[Note that the SEC/DED code over alt chips will detect

and correct faults on normal reads, thus internal checking
is neither required nor used -- it would slow down the
memory.] If DRO technology is used, the row is then
stored back into the memory array unchanged.

(D) During normal write operations, the
corresponding row is read out, the selected bit modified
and the row re-stored back into the memory array. If the
bit being stored is different from the bit originally
contained in the memory, the associated (odd or even)
parity bit is inverted. If the least significant bit of the
address is zero, the even-bit parity is updated; if the LSB is
one, the odd- bit parity is updated.

It is important that these special features be added
to memory chips with minimum changes from their current
design. A preliminary design indicates that the parity
checks and inversion logic can be added to an existing
memory chip with very little increase in area and in a way
which does not disturb the layout (pitch) of the data
register and memeory array. The parity checks use a dual-
rail logic design shown in Figure 30 which was used in a
CMOS-50S self- checking BIBB design previously
published [SIEV 82]. The additional inverters necessary
to permute data are only a slight modification of a typical
data register design, adding pass transistors to cross-couple
outputs.

It is also important not to significantly increase the
number of pins needed on a memory chip. Therefore, the
following technique of multiplexing pin functions is
proposed which allows these special functions to be
provided with only one additional connection pin. The
additional pin conveys the command to execute a check
cycle. Since the check cycle only needs to have a row in
the storage array specified, the upper half of the address
pins are used to specify that row address -- and the lower
half of the address pins are available for other uses. Since
most memory chips of this type have at least 12 address
lines, this leaves six or more pins for use in the check
cycle. The following use is suggested:

DATA

a a9 a a@ | a

REGISTER

da | a @ Q 0

EVEN

f e
HT{ H 1 +
4

N,

PARITY

Figure 30: Parity Check Circuits (Simplified)

Low Order Address Bits During Check Cycle

1,2 - Inputs- Specify the permutation to use in storing back
the selected row (Q0-store unchanged, 01-invert the odd
bits in the row, 10-invert even bits, 11- invert all bits)

3,4 - Qutputs- Are used as a morphic (self-checking)
internal fault signal. If no parity error is detected these
lines will output 1,0 or 0,1. If a parity error is detected,
these lines will output either 1,1 or 0,0. (The two parity
checks on odd and even bits of a row are generated
morphically and combined with a morphic-and
gate.[CART 72].)

5 - Input- Indicates that parity should be recomputed when
the row is written back to storage. (This is done to
initialize parity in each memory row. If an error occurs in
a parity bit, this is the only way to correct it.)

3.2.2 DESCRIPTION OF MEMORY SYS-
TEM OPERATION

Memory system operation and checking is
controlled by the Memory Interface Building Block
(MIBB) as described below:

A, Sweep Testing to Detect Faults and Recover
Transients

Periodically, after every K (K is a software
programmable number of) memory cycles of regular
program execution the MIBB signals the processor that the
memory system is busy for several hundred nanoseconds
while each memory chip is commanded by the MIBB 10
perform a CHECK CYCLE. A row number {generated by
the MIBB) is presented to the chips on the high order
address lines, and each memory chip reads out the
specified row and performs a parity check to see if it still is
correct. A fault is signaled to the MIBB by any chip in
which an error is detected. During each check cycle a
different row is read out and checked, allowing the whole
memory array to be checked in SQRT(N) check cycles,
We will designate a sequence of SQRT(N) check cycles
which covers the whole memory (starting ar row 0 and
ending at the last row) as a memory SWEEP, If scan
cycles are performed every 10 microseconds, processing
speeds will be slowed down by less than 10% and a
memory sweep can typically be completed in 2.5
milliseconds (if 65K RAM chips are used). If the memory
is dynamic RAM, check cycles can be carried out as part
of the normal refresh cycle, only introducing delays of
parity checking.

B. MIBB-Directed Correction of Transient Errors

If a parity error is detected in reading out a column
within any chip, an internal error signal is sent to the
MIBB controiler. This indicates that one or more of
SQRT(N) bits in a the row are in error. The High Order
{row)} Address bits sent to the memory chips (FIOA) during
the check cycle in which the error was indicated are saved
by the MIBB. This is the address of the row in error.

From the prospective of the memory system, this means
that one or more words in a corresponding page of
SQRT{N) words contains an error, but it does not indicate
which one(s} contain the error. Therefore the MIBB goes
into a second "information recovery mode” before
continuing any additional check cycles. This is described
below:

Upon receiving an internal error indication from a
chip, the MIBB generates a second (special) RP check
cycle to the sazne HOA to regenerate the parity bits, and
insure that each parity bit is consistent with the data in the
row whether the data is correct or incorrect. (The error
could be in the parity bit itself, and this can only be
corrected by regenerating the parity bits.) It then initiates
a sequence of normal read and write operations to
externally correct (using the Hamming Code) every word
whose addresses lie in the faulty row. These read
operations are requested every 10 to 20 processor cycles
and interleaved with normal processing. A sequence of
addresses with high order part equal to HOA, and low
order part incremented from 000.00 to 111..11 are sent to
the memory. At each address a read is performed and, if
needed, a Hamming code correct and write cycle are
performed. Thus, each word {corresponding to a single
bit in the faulty row) is read out from all the memory
chips, corrected externally using the Hamming code, and
stored back into the memory chips. All single event upsets
within a row (SQRT(N)) of a single chip should be
corrected within a few milliseconds using this technique,
and most multiple errors will be corrected as well (since
they are likely to be single errors in different words.)

After this "information recover mode"” is completed
the MIBB sends an interrupt to the CPU. By interrogating
a status register in the MIBB, the software can find out
which memory chip signaled the fault and caused the
information recovery cycle. The MIBB then continues its
original sweep, initiating check cycles for other rows.
Repeated information recovery cycles (fault indications)
initated by the same chip indicate a permanent fault, and
the CPU may command its replacement with a spare, when
bit-plane replacement is implemented in the MIBEB [RENN
81b}. The information recovery mode requires SQRT{N)
read operations and write operations for those bits in error.
Therefore it typically takes slightly longer than a single
memory sweep since only one error is expected in most
cases. If a memory sweep takes S time when no rows are
found with errors, it will require:

X=S+NS when N different rows signal an

A typical sweep with a single row in error would
result in the following events in a memory system using
16Kx1 Static RAM chips internally organized as a
(128x128) array.

Time Operation Addresses Checked/Corrected
10usec. Check Cycle 0 0-127 No Error
20usec, Check cycle 1 128-255 No Error
30 usec. Check Cycle 2 256-383 Fault
40usec. Special Check Cycle 256-383 Regenerate Parity
50usec Read 256 Correct Store 256
T0usec Read 257 Correct Store 257
2610usec Read 383 Correct Store 383 *

- 2620usec. Check Cycle 3 384-511 No Error
2630usec. Check Cycle 4 512-639 No Error
3870usec Check Cycle 127 16256-16383 No Error

(Correction of errors using dynamic RAM chips is
slightly more complicated because it is necessary to
continue read restore cycles while data correction is being
carried out in order to assure that all data will be restored
within a specified decay time. In this case check cycles are
continued and interleaved with correction cycles, Since
this straightforward, it will not be discussed here.)

C. Permuting Data for Permanent Fault Detection

As mentioned above, logic is provided in each
memoty chip allowing data read from a row during a check
cycle to be stored back either unchanged or in one of three
permuted forms: a) odd bits complemented, b) even bits
complemented, and ¢) all (even and odd) bits
complemented. We now show how these permutations
can be used to provide extensive memory testing.

When the memory is initially loaded, the data is
stored in non- permuted form. Ininally, the MIBB carries
out 2 memory sweep with special Regenerate Parity (RP)
check cycles in order to initialize the parity bits in all rows
in the memory chips. This is followed by memory sweeps
executing regular check cycles as described above.
During the check cycles of each sweep, the MIBB will
specify either no change or a permutation for writing rows
back to memory. During any single sweep, one
permutation may be chosen for all even rows and one
permutation (either the same or different) may be chosen
for odd rows. One of the four options below is chosen for
writing back even rows, and one (possibly different) is
chosen for writing back odd rows.

{2) Invert Odd Bits
(4) Invert All Bits

(1) No Change,
(3) Invert Even Bits,

The following examples are instructive in showing
how a series of permutations can be used to test for
specific fanlts.

a) Stuck at OneiStuck at Zero Cells - If a cell is stuck at the
same value as the data stored in it, there will not be an
error until an attempt is made to store the other value (one
or zero) that it is incapable of storing. To detect this type
of fault, two sweeps are carried out which invert all bits in

the memory. During the first sweep, data is checked in the
true form while being written back in complement form.
In the second sweep, complemented data is readout and
checked while it is stored back in memory in true form.
Thus each cell is required to take on both one and zero
values and the on-chip parity check is used to verify that
this took place.

b} Coupling (e.g. shorts) Between Cells - this is the
situation where a cell is sensitive to the value in a
neighboring cell. For example in a case of shorting, a cell
might always take on zero when a specific neighbor
contains zero, but work correctly when the neighbor
contains one. With a series of permutations it is possible
to make each cell take on both one and zero and to have all
of its neighbors to take on the opposite values than they
would have in a non-permuted form. In the example
below, the underlined bit has eight neighbors in the
memory array. We assume that it is in an even numbered
row and an odd bit position within the row. The first
sweep inverts all bits in odd rows and inverts even bits in
even rows, leading to the second bit pattern in which all
neighboring bits are inverted. The second sweep inverts
only odd bits in even rows, causing the third pattern (all
bits inverted). The third sweep repeats the permutation of
the first sweep (inv. odd rows and even bits in even rows),
resulting in the fourth pattern below in which the test bit is
inverted and the neighbors restored to their original values.

Unpermuted Cells

/ eoe coe eoe¢ eoe
o 100 011 011 100
e 001 - 100 -5 110 = 011
o 110 001 001 110

A fourth sweep repeats the permutation of the
second (inverting odd bits in even rows) to return to the
unpermuted form, Thus, in four sweeps taking from 10-20
milliseconds, we have performed a form of disturb test on
all bits of the memories which lie in even rows and have
odd positions within the rows. All neighboring bits have
taken on their opposite values, and the bits under test have
been inverted while holding their neighbors the same.
Thus each pair of (1) the bit under test, and (2) each of its
neighbors have taken on all four possible values 1-1, 1-0,
0-1, and 0-0.

The test above only checks bits which lie on odd
positions within even rows (1/4 of the memory array). It
can be easily seen that three similar sequences of four
sweeps exist which will also test all bits on:

(1) even rows, even bit positions
(2) odd rows, even bit positions
(3) odd rows, odd bit positions

Thus a sequence of no more than 16 sweeps will
allow a this short test to be performed on all cells in the
memory. This typically requires about 40 milliseconds.

D. The Relationship Between Error Checking and
Testing Using Data Permutations

Checking for transient errors and single event
upsets is unaffected by the way that data may be permuted
in the memory. The parity checks are performed in
exactly the same way, regardless of how the memory data
is permuted. Since the data fields being checked are an
even number of bits, the associated parity bits remain
unchanged when (the odd or even) data bits are
complemented within a row. When a parity error is found,
the MIBB performs a series of read and store cycies o
correct the words corresponding to the faulty row (as
described above). This is done using regular read and
write commands. When normal read and write operations
are performed, the word read out will either be true or
bitwise inverted (depending upon whether that cell
position in all memories has been inverted or not). The
MIBE must provide correction by inverting complemented
words to obtain the correct read-data, and by inverting
words words to be stored if the destination cells are
expected to hold inverted data. This is explained below.

E. Correction of Permutations for Read/Write
Operations

The MIBB maintains a list of permutations in a 4-
bit-at-a-time shift register (see Figure 31), and each new
permutation (B) is specified as four bits in the following
form:

ADDRESS TO MEMORY CHIPS

invert odd bits in even rows
invert even bits in even rows
invert odd bits in odd rows
invert even bits in odd rows

bl:
b2;
b3:
b4:

Each time that a new sweep is started the shift register is
advanced to obtain new permutations for that sweep -- b
and b2 are used to control write back when check cycles
are performed on even rows. Similarly, 43 and b4 are
used to control write back on odd rows.

The MIBB also maintains two four-bit scoreboards
Old State (OS) and New State (NS). As a sweep
progresses, the rows which have had check cycles have the
new permutation, while those not checked yet have the old
permutation. The scoreboards indicate which bits are
inverted and which are not in the in the changed and not-
yet changed rows of the memory chips. (A zero indicates
not inverted and a one indicates inverted). The format of
each scoreboard is shown below:

odd bits of even rows are inverted
even bits of even rows are inverted
odd bits of odd rows are inverted
even bits of odd rows are inverted

sl:
§2:
s3:
s4:

Each time a new sweep is started, a new permutation is to
be generated, and the NS scoreboard is updated simply by
taking:

$=SXORB.

The old value of NS is transferred to the Old State (OS)_
scoreboard.

MSHALF LS. MALF DATA WORD 4
(PERMUTATION CODE FOR FROM TO
CHECK CYCLES) MEMORY MEMORY
2 »l DATA REGISTER {—
L— a
SELECT |—b ¥
o?_ [.
COUN- COUN- ¥ 1
TER TER L t TRUE/COMPLEMENT
4
Y I 4
coM. 1 XOR NS [
1 PARE 4 ™ mw HAMMING ENCODE/ | |
‘ 28 DECODE
¢ 28
4| Ba ». b ARE THE LEAST
o ﬂ H:SI:A 0s [SIGNIFICANT BITS OF
- THE ROW AND COLUMN
M. SIG. t.sic.| | Tion | SCOREBOARDS | L ADDRESSES
a c
sosnese son | Ly Ao o5 "
FROM PR
OCESSOR 44 1 PERMUTATION
i

DATA TO/FROM PROCESSOR

Figure 31: The Memory Interface Building Block

When the processor generates a read or write
address, the MIBB checks to see if it should use the old
state or new state in determining whether or not to
complement data being read out of or stored into memory.
The high order bits of the address are compared with the
address of the last row for which a check cycle has been
performed (compare block in Figure 31). If the address
from the program is greater than the current addresses
being modified by check cycles, then the permutation has
not yet been updated. Therefore the OS scoreboard is used.
If the address is lower, the NS scoreboard is used.

When a read or write is performed, the least
significant bit of the address indicates whether an odd or
even bit is being addressed within a row. The least
significant bit of the most significant half of the address
indicates whether an odd or even row has been selected.
Therefore these two bits are used as an index to the
appropriate scoreboard to determine whether or not the
data word (being fetched or stored) is to be inverted.

3.2.3 SUMMARY OF SELF-EXERCISING
MEMORY

This method is a simple but powerful way to
provide memory systems which continuously test
themselves during normal operation. This allows
automatic recovery from very high rates of single event
upsets, and exposes latent permanent faults very quickly
that might otherwise upset recovery in fault-tolerant
computers. This automatic seif-testing feature can be
used as built-in acceptance testing to determine if the
memory system is free of faults. This guick testing is
especially important in some applications where a set of
computers may be exposed to massive transient
disturbances {and some resulting permanent faults) and be
expected to recover very rapidly. The first requirement
after such an event is to quickly determine if hard failures
have resulted in some of the machines. Thus each machine
must exercise itself very quickly to determine if it can be
used for subsequent computations. This rapid memory
checking, and similar hardware-implemented processor
testing (currently being studied) is necessary to meet
requirements for quick recovery.

The cost is modest in increased circuit complexity,
and speed penalties are also small. The above description
demonstrates that this system can be built using well
known design techniques and requires straightforward
changes to existing chip designs.

3.2.4 EXTENSIONS OF SIMILAR TECH-
NIQUES TO PROCESSOR DESIGN

A typical processor consists of one or more sets of
data paths and controllers. Our current focus is on generic
datapath structures. The two major parts are a register
array and an ALU. The register array can be expected to

become much larger in future processor chips using RISC
architectures or on-chip caches to better match on-chip and
off-chip communication speeds [PATT 80). This larger
array will become more subject to single-event upsets and
the resulting latent errors. Interleaved memory testing
similar to that described above can be implemented in the
processor as well.

For the combinational circuits (e.g. ALU) testing
can be carried out by inserting test vectors into the
datapaths and selected control levels. As in memory, the
philosophy is to insert test vectors into the combinational
logic interleaved with normal microcycles. One approach
that can be taken is a modification of LSSD scan registers
[EICH 77]. At the two inputs to the ALU, a serial-to-
parallel shift register is instailed. This register can be
loaded serally from off-chip and does not affect the
datapaths when being loaded (allowing normal
computations to continue while it is being loaded). When
loading is complete, 2 cycle is initiated which injects the
test vectors onto the data path lines. These test cycles
can be initated by the microprogram and inserted,
whenever possible, when the data paths under test are not
being used (e.g. during an instruction fetch).

In order to provide for an efficient VLSI layout, the
test vectors can be maintained in the microprogram ROM.
When the microprogram commands a new test cycle, the
next test word is read into a parallel-to-serial register and
sent bit-serially 1o the data path chips via two extra pins
(data and serial clock). After 30-40 clock (micro)cycles
for loading the test is carried out during the following
microcycle.

If the data paths are designed to be self-checking
the mechanisms to verify the tests are already built-in.
Our approach is to use parity codes for fault-detection in
the registers, and to duplicate and compare the ALU.
Thus, if the test exposes a fault in one ALU, it will
disagree with the other one and a fault will be signaled.

The self-exercising self-checking processor is still
under development. A self-checking self-exercising data
path section of a processor has been completed, and
current work is focusing on the microprogram control
section.,

40 METHODOLOGY OF IMPLEMENT-
ING FAULT-TOLERANT SYSTEMS

When a complex system is designed, it is important
that a methodology be used to assure that dependability is
engineered into the system from its outset and to assure
that the resulting design meets the specified requirements.
Fault-tolerance cannot be retrofitted as an ad-on function
and work properly.

4.1 THE DEVELOPMENT PROCESS

The development process is typically carried out in
five stages as shown in Figure 32. These are:

'1. System Requirements Definition: fault tolerance
requirements are identified, and preliminary planning is
carried out for the next Stages.

2. Selection of Design Approach: general fault tolerance
strategies are identified, alternate designs are evaluated,
and an approach is selected.

3. Preliminary Design: initial design and evaluation.

4. Detailed Design: final design and evaluation; definition
of prototype experiments.

5. Build and Test: experimental verification of fault
tolerance.

—8l— 82 .53 -S54 55
START SRD SDA PD3E DDAE {BUILD) TEST
—l— 12— — 10— 2~ T-1/2)

APPROXIMATE TIME SCALE iN YEARS
SRD - SYSTEM REQUIREMENTS DEFINITION

SPECIFY: COMPUTATION MODEL AND REQUIREMENTS FOR PERFORM ANCE
AND FAULT-TOLERANCE

SDA - SELECT DESIGN APPROACH

PERFORM ARCHITECTURE TRADEQFFS (FROM SET OF ALTERNATIVES)
SELECT ARCHITECTURAL APPROAGCH AND FAULT-TOLERANCE STRATEGY

PD&E - PRELIMINARY DESIGN AND EVALUATION

SPECIFY PRELIMINARY HARDWARE AND SOFTWARE DESIGN
PROVIDE PERFOAMANCE AND FAULT-TOLERANCE EVALUATION

OD&E - DETAILED DESIGN AND EVALUATION

PROVIDE A COMPLETED HARDWARE AND EXECUTIVE SOFTWARE DESIGN
PROVIDE REFINED ANALYSIS OF PERFORMANCE AND FAULT-TOLERANCE
PROVIDE A PLAN FOR A FEASIBILITY (BRASSBOARD) DEMONSTRATION

TEST - DEMONSTRATE AND EVALUATE

CONSTRUCT AND DEMONSTRATE BRASSBOARD COMPONENTS

DEMONSTRATE APPLICATIONS PROGRAMS

CONDUCT EXPERIMENTAL EVALUATION OF FAULT-TOLERANCE
DURING OPERATION

Figure 32; The Development Procass

Stage 1: System Requirements Definition

This first stage lays the groundwork for subsequent
architectural tradeoff studies and the design and
development of the computing system. The first step is to
document the types of computations to be carried out and
to derive dependability and fault-tolerance requirements.
Objectives are to:

a) Identfy computing functions required, study
data flow, develop a computational model.

b) Identify fault-tolerance requirements of
reliability, lifetime, recovery time, and critical state
information.

¢) Identify fault types, rates, and their dependence
on technology and the environment.

d) Perform initial system partitions, identify
alternative architectures, allocate functions to
partitions, perform preliminary performance
evaluation.

e) Specify initial allocation of reliability
requirements to system partitions (to meet system
goals).

Stage 2: Selection of Design Approach

The objective of this stage is to conduct tradeoffs
between alternative architectures in order to select a design
approach which best meets the requirements determined in
Stage 1. Each alternative architecture should be partitioned
into blocks with applications processing allocated to the
partitions. Fault-tolerance mechanisms (detection, sparing,
recovery) must be postulated and a reliable estimate made
of their effectiveness. The design approached must then
be modeled and compared. The selected approach should
exhibit integrated fauit-tolerance and performance
concepts (as opposed to a collection of ad-hoc
mechanisms) and the unity, simplicity, and completeness
of a well-thought-out design concept.

The definition and evaluaton of the selected
architecture should inciude:

(1) a block diagram (partitioning) of the selected
architecture,

(2) allocaton of applications processing to the
partitions,

(3) allocation of redundant sparing,

(4) error detection mechanisms used in each
partition, including the various encodings for error

detection and correction. Their location and
placement and an estimate of their coverage,

(5) error containment strategies,

(6) a description of error and fault recovery
mechanisms, (including switching out of faulty
units, systemn reconfiguration and the restoration of
error-damaged data) and estimates of their
effectiveness (coverage)

(7) software executive strategy and method for
preserving critical information during fault
TECOVErY.

(8) design features to support initial testing and
periodic diagnosis and an estimate of their
coverage.

Analysis and simulations should be provided to
verify that the architecture can perform the required
computations, and preliminary models should be
developed for evaluating the reliability of the proposed
design. The models should include estimated failure rates
and coverages in the various partiions as parameters and
should incorporate degraded performance as redundant
equipment is exhausted. These preliminary modeling
results should provide assurance that the architecture will
meet the performance and fault-tolerance requirements
identified in stage 1. An analysis should be provided
which predicts the sensitivity of the approach to fault rates,
coverage estimates, and the allocation of reliability values
to modules. ’ '

Stage 3: Preliminary Design and Evaluation

The objective of this stage is to perform a detailed
architecture definition and more accurately predict its
performance and fault- tolerance. This should result in a
detailed block diagram of both hardware and executive
software components and an accurate behavioral
specification and interface definition of each block. At this
level of design, an accurate instruction-level (ISP)
simulator should be produced and used to develop the
system executive software and selected applications
programs. The blocks should be defined to sufficiently
fine granularity that their internal logic, fault modes, error
manifestations, and detection techniques can be accurately
predicted. A thorough analysis of all fault-tolerance
mechanisms should be carried out. This design will be
used to provide much more accurate simulations and
estimations of coverage for reliability modeling than was
possible at Stage 2.

At this stage it is extremely important to carefully
verify the soundness of the design before proceeding to
final design and implementation of VLSI and applications
software. Therefore extensive analysis of faults and their
resulting error patterns, and the actions of the error
detection recovery mechanisms is essential to establish
accurate parameters for reliability modeling. At this stage
plans should be made for the detailed design,
implementation, and verification which shall be conducted
in the remaining development stages.

Stage 4: Detailed Design and Verification

The objective of this phase is to complete a detailed
design of the computer system including design of custom
chips, packaging, executive softiware and a set of
applications programs. The fault- tolerance properties of
the design must be carefully modeled and verified using
accurately determined fault-tolerance parameters of the
system. The reliability predictions at this stage (after
breadboard experiments to validate them) must inspire a
level of confidence necessary to justify construction and
use of the computers in their intended application,

Completion of the detailed logic, executive
software (including fault-management procedures) and a
representative set of applications programs allows a very
thorough analysis of the fault- tolerance of the design.
The instruction-level behavioral simulator must now be
extended to provide logic and circuit level simulations in
all of the hardware modules in the system. The coverages
and times associated with error detection and fault (and
error) recovery mechanisms must be carefully determined
by exhaustive circuit analysis and extensive fault
simulations. A final reliability model must be produced
based on the results of these analyses and simulations.
Validation can only be carried out through a computer-
aided analysis of the design. Final development and
experimentation with a breadboard system can be used to
partially verify this analysis, but the limited ability to test
VLSI hardware makes it impossible to obtain sufficiently
accurate results to validate its operation by
experimentation alone.

Stage 5: Build and Test

The objective of this stage is to build and test a
feasibility model to experimentally verify its performance
and fauit-tolerance. The brassboard must be capable of
tunning applications programs and recovering
satisfactorily from experimentally inserted faults. A
comprehensive set of experimental tests must be
conducted to validate the computer-aided fault simulation
results of Stage 4 by showing that the simulated fault-
detection and recovery procedures accurately reflect what
happens in the brassboard. (If not, either errors must be
corrected in the brassboard design or the simuladon
models must be corrected.) When these modeling and
analytic results are reconciled, the reliability models based
on these results can be used with an increased degree of
confidence in their predicion of the dependability
properties of the design.

4.2 MODELING AND VALIDATION

Modeling and verification must be carried out at
each stage of the development process. A model of the
design is created as shown in Figure 33, and is used to
predict its reliability. The computer system being
designed employs a number of fault-tolerance mechanisms
for error detection and fault recovery. These mechanisms
are reflected in the model both structurally as states and as
parameters which indicate coverages, latencies, and
recovery times that determine transitions between states in
the model. In the early stages of system design (e.g. stage
2 and 3 above) it is only possible to approximate the
structures and parameters used in the model because the
design is not yet complete. The designer must estimate on
the basis of experience what the parameters (e.g. failure
rates, recovery times, coverages) will be. In the early
stages, modeling is essential to make tradeoffs between
alternative approaches and to determine the performance
bounds that must be met in the final design if satisfactory
dependability is to be achieved.

As the design process proceeds, the design is
increasingly refined, and the model must be
correspondingly refined also. Finally, at stage 4, the
design is complete, parameters can be carefully
determined, and the model is then used for system
validation. It is used to predict the ultimate reliability that
will be achieved when the system is placed into operation.

Validation of a system involves determining
existing fault-tolerance properties of the system (in the
form of parameters derived from measurement or analysis)
and using mathematical models to predict its future
performance after it is deployed. The design is evaluated
by 1) enumerating the fault-set, 2) describing how the
design deals with each fault-type, and 3) characterizing the
fault handling procedures with estimates of coverage,
delay times and system-wide effects of faults and errors.
Analytic models (e.g. Markov, simulations, timed petri-
nets, and combinational models) use the system structure,
estimates of failure rates, and estimated coverages and
delay times to estimate the system'’s reliability.

Validation involves two distinct types of expertise,
systern architecture and mathematical modeling. There
are two fundamental issues that must be addressed: i) the
fidelity of the model, and ii) the ability to accurately
determine the parameters it uses as inputs, Both need
substantial improvement beyond the current state- of-the-
art to validate the next generation of multicomputers.

THE REAL SYSTEM

FAULT-

ACTUAL
SYSTEM

DESIGN

DEPENDABILITY
PROPERTIES

TCLERANCE
TECHNIQUES

F.T. PROPERTIES

TESTABILITY, DIAGNOSABILITY

’
SYSTEM I ;
MODELS PREDICTED

DEPENDABILITY
g . PROPERTE

PARTS FAILURE RATES (PREDICTIONS)

THREAT MODEL —] MODELS RELIABILITY
—> (e.g. ARIES,

FAULT CLASS COVERAGES _| caRE3, SURF) READINESS

AND LATENCIES SAFETY

RECOVERY DELAYS

Figura 33: The Modeling and Validation Process

Mathematical Reliability Prediction Models

A number of computer-aided mathematical
modeling systems exist which use Markov, Petri-Net, and
combinational models to predict performance, and
reliability. Some of the best ones are ARIES, SURF, and
CARE3. Monte Carlo and other simulation procedures
are also applicable. These models have been used to
verify the reliability of existing fault tolerant computing
systems. They are applicable to the verification of current
computing subsystems, but new extensions are needed to
existing models to allow them to handle the much greater
levels of complexity expected.

A typical reliability model consists of:

(1) the states that the system can be in - A
state consists of a unique combination of working
and failed hardware and software modules, and the
operational mode that the system is in (normal
operation or one of several recovery modes).

(2) the probability of making a transition
from each state to another state as a function of
time - This is based on transition rates derived from
fault probabilities and “coverages" determined
from the design. The transition from one state to
another is initiated by a change of operational
mode, completion of a recovery procedure (if the
state was a recovery state) or the occurrence of a
fault (which can occur either during normal
operation or during a recovery state.) There is a
coverage parameter (c) associated with each
possible transition which indicates the probability
that the fault-tolerance mechanisms work as
expected, and expected transition rates are
multiplied by c. With probability "1-¢" the fault
may not handled properly and the transition goes to
a different state associated with failure of the
recovery mechanism. These models can then be
simulated (or in some cases solved analytically) to
estimate reliability.

There is a need to develop better reliability models
because existing models do not adequately predict the
future behavior of complex distributed systems. For
example, in highly parallel multicomputers redundancy can
be employed most effectively at several levels, spare chips
in memory, spare memory modules within processors, and
spare computers. This results in a large number of
dependent failure modes. Existing Markov models do not
deal well with systems in which there are a large number
of dependent failure modes because the number of states
becomes very large, nor do they deal adequately with large
systems whose failure rates are time- varying.
Simulations are too expensive and cannot be adequately
generalized. Thus with the current state of modeling it is
necessary to make simplifying assumptions to make the
models tractable which compromise the fidelity of the
results,

Making advances in modeling is a hard problem
whose future is unpredictable because both complex
mathematics and new ideas are required.

Matching Models to Reality

In order to use a reliability prediction model, it is
necessary to abstract many properties of the system being
modeled. A model uses, after all, a gross simplification of
the actual system to predict its future. The parameters that
it uses are typically single-number averages of complex
physical phenomena that may occur individually in
millions of different ways. The modeling results are very
sensitive 1o these parameters such as the assumptions of 1)
what faults will occur, 2) what their rates of occurrence
are, 3) latencies and coverages for fault detection in each
class, 4) latencies and coverages for recovery.

There is a tendency for designers to use the
inherent complexity and sophistication of mathematical
models to justify their results. Often this obscures the fact
that: i) fault modes are not accounted for, ii} the model
omits important system states, or iii) uses sensitive input
parameters which cannot or have not been adequately
measured. One can easily see from experience that a
simple model applied correctly will often give more honest
results than a state- of-the-art model improperly applied.
But the casual observer will often choose the more
complicated model because of its apparent sophistication.

The only way to properly validate these machines
is to develop a stringent discipline in documenting the
requirements, assumed fault set, assumptions made in the
design, and the details of the design itself. As a computer
is developed it proceeds through stages of successive
refinement (PMS, ISP, Logic, Electronic), and modeling
must be applied at all levels to determine that the design
decisions are leading to a correct result. As the design
proceeds and is refined, the parameters for modeling can
be determined more accurately, and the modeling
predictions become more accurate as the model is also
refined. It is essential that the system description, and
models be precisely specified at each stage of design so
that independent evaluation {e.g. by a sponsor) is possible.

There is a need to integrate evaluation/validation
tools with CAE/CAD tools, used by designers. These
augmented CAE/CAD tools are essential to obtain accurate
simulation and analysis of a system design to measure
realistic fault-tolerance parameters (fault- coverages,
latency) and perform experiments to validate assumptions
employed in performability models.

Especially needed are CAE/CAD tools which
provide multi-level description of a system and multi-level
fault simulations. Commercial design tools only provide
fault-simulation at the lowest level. Extensive fault
simulation is needed to obtain accurate modeling
parameters - several orders of magnitude more processing
than is used for test generation in non fault-tolerant
systems. This can only be done with a finite amount of
computing power by combining low-level modeling of a
small portion of a system and less computation intensive
behavioral modeling of the rest of the system to observe
higher recovery functions. Research is needed to define
the common design databases needed to integrate multi-
level design tools, verify consistency of specifications at
different levels, and provide multi-level fault simulations.

[AIPS 84]

[ANDE 67]

[ANDE 81]

[AREN 83]

[AVIZ 71a]

[AVIZ 71b]

[AVIZ 84]

[BARL 82]

[BOUR 69]

[BOUR 71]

References

Advanced Information Processing
System (AIPS) System Specification,
prepared for Johnson Space Center by
the C. S. Draper Laboratory,
Cambridge Mass.,, May 15, 1984.
(Distribution Limited)

Anderson, 1., and Macri, F,, ‘‘Multiple
Redundancy Applications in a
Computer,” Proc. 1967 Ann. Symp.
Religbility, Washington D.C,, pp.
553-562, Jan 1967.

Anderson T, and Lee, P., Fault
Tolerant Principles and Practice,
Prentice Hall International, 1981.

Arens, W,, and Rennels, D., “A
Fault-Tolerant Computer for
Autonomous Spacecraft,”’ Proc. 13th
Int. Symp. Fault-Tolerant Computing,
Milan, Italy, June 1983, pp. 467-470.

AviZienis, A., et. al, *‘The STAR
(Self-Testing-And Repairing
Computer: An Investigation into the
Theory and Practice of Fault-Tolerant
Computing™’, IEEE Trans. Computers,
Vol. C20, No. 11, pp. 1312-1321, Nov,
1971.

AviZienis, A., ‘‘Arithmetic error
codes: Cost and effectiveness studies
for application in digitala system
design,”’ [EEE Trans. Computers, vol.
C-20, pp. 1322-1331, Nov. 1971.

AviZienis A., and Kelly, I, *‘Fault
Tolerance By Design Diversity:
Concepts and Experiments,”’
Computer, August 1984,

Barlett, J., ““‘A NonStop Operating
System,”” in Computer Structures
Principles and Examples, ed.
Siewiorek, D. et. al., McGraw Hill,
1982, pp. 480-485.

Bouricius, W., et. al., “"Reliability
Modeling Techniques for Self
Repairing Computer Systems,’’ Proc.
24ith National Conf. of the ACM, 1969.

Bouricious, W., etal., ‘‘Reliability
Modeling for Fault Tolerant
Computers,”’ JEEE Trans. Computers,
Nov. 1971, pp. 1306-1311.

[BOZO 80]

[BREU 76]

[BURC 76]

[CART 72]

[CART 77]

[CHRI 83]

[EICH 77]

(FREL 82

[GILL 72]

[GREY 84]

[GUNN 83]

Bozorgui-Nesbat, S., and McCluskey
E., *‘Structured Design for Testability
to Eliminate Test Pattern Generation’”,
Dig. 10th Int. Symp. Fault Tolerant
Computing, IEEE Computer Society,”
1980, pp. 158-163.

Breuer, M,, and Friedman, A.,
Diagnosis and Design of Reliable
Digital Systems, Computer Science
Press, Potomic, Maryland 1976.

D. Burchby et al., ‘‘Specification of
the fault-tolerant spacebomne
computer,”’ in Proc. 1976 Int. Symp.
Fault-Tolerant Computing {Pittsburgh,
PA), pp. 129-133, June 1976,

Carter W, et. al, ““Computer Error
Control By Testable Morphic Boolean
Functions- a way of Removing
Hardcore,”” Dig. Second Int. Symp.
Fault-Tolerant Computing, Newton
Mass., June 1972, pp. 154-159.

Carter, W, et. al., “‘Cost Effectiveness
of Self-Checking Computer Design,”
Dig. 7th Int. Symp. Fault-Tolerant
Compuring, Los Angeles, pp. 117-123,
June 1577.

Christian, F., *‘A Rigorous Approach
to Fault Tolerant System
Development’’, IBM Research Report
RJ 4008 (45056), Sept. 1983,

Eichelberger, E., and Williams, T., ““A
Logic Design Structure for 1.SI
Testability,”” Proc. 14th Design
Automarion Conf., June 1977, pp.
462-468.

Fretburghouse, R., *“Making
Processing Fail Safe,’”” Mini-Micro
Systems, May 1982, pp. 255-264.

Gilley, G. C, *“A fault-tolerant
spacecraft,”” in Dig. 1972 Int. Symp.
Fault-Tolerant Computing (Newton,
MA), pp. 105-109, June 1972.

Grey, B., et. al., “*A Fault Tolerant
Architecture for Network Storage
Systems,’” Proc. I14th Int. Symp.

‘Fault-Tolerant Computing, Orlando,

Fla., June 1984,

Gunningberg, P,
Redundancy Management
Implemented by Protocols in
Distributed Systems,”” Dig. Int. Symp.
Fault Tolerant Computing, Milan, June
1983, pp. 182-185.

“Voting and

[HAYE

[HOPK

[[HAR

76]

78]

78]

[INTE B81]

[JPL 85]

[KATS

[KUEN

[KUHL

[LAMP

82]

691

80]

81}

[LESH 76]

[I\./EEYE 81]

[MIL.

217D]

Hayes, J., **A Graph Model for Fault-
Tolerant Computing Systems,’” IEEE
Trans. Computers, Vol. C-25, No. 9,
September 1976, pp. 875-884.

Hopkins, A., “FTMP - A Highly
Reliable Fault-Tolerant Multiprocessor
for Aircraft,”’ Proc. IEEE, Vol. 66,
No. 10, pp. 1221-1239, October 1978,

Thara, H., et. al, ‘‘Fault-Tolerant
Computer System with Three
Symmetric Computers,”” Proc. IEEE,
Vol. 66, No. 10, pp. 1160-1177,
October 1978,

‘“The Intel 432 System Summary,”’
Intel Corp., Aloha, Oregon, 1981

*‘Hypercube Research Project Mark 11T
Core Engineering Notebook,”” Report
JPL D-2431, Jet Propulsion
Laboratory, Pasadena, CA, June 3,
1985.

Katzman J., ““The Tandem 16: A
Fault-Tolerant Computing System,’” in
Computer Structures Principles and
Examples, ed. Siewiorek, D. et al,
McGraw Hill, 1982, pp. 470-479.

Kuehn, R.J., “*“Computer Redundancy:
Design, Performance, and Future’,
IEEE Trans. on Reliability, Vol. R18,
No. 1, Feb 1969, pp. 3-11.

Kuhl, J., and Reddy. S., ‘‘Distributed
Fault Tolerance for Large
Multiprocessor Systems,’” in FProc.
Seventh Annual Symp. on Computer
Architecture, pp. 23-30, May, 1980,

Lampson, B., ‘*Automic
Transactions,’” in Distributed Systems
Architecture and Implemenration, An
Advanced Course, Springer Verlag,
1981.

Lesh, H. F., and P. Lecoq, ‘‘Software
techniques for a distributed real-time
processing system,’” in Proc. IEEE
National Aerospace Electronics Conf.
(Dayton, OH), pp. 290-295, May 1976.

Meyer, J., “‘Closed Form Solutions of
Performability,”” Dig. Eleventh Int
Symp. Fault Tolerant Computing,
Portland, Maine, June 1982, pp. 66-71.

Military Handbook, ‘‘Reliability
Prediction of Electronic Equipment,”’
MIL-HDBK-217D, DoD, Washington,
D.C. January 1982.

[MILSTD]

[NGYW 80]

[OBLO 62]

{POPE 81]

{PREP 67}

[RAGH 82]

[RENN 73a]

[RENN 73b]

[RENN 76]

[RENN 78a]

[RENN 78b]

U.S. Military Standard MIL-M-38510,
Class S Parts.

Ng, Y, and Avizienis A., ‘A Unified
Reliability Model for Fault-Tolerant
Computers,”” IEEE Trans. Computers,
Vol. C29, No. 11, Nov. 1980, pp.
1002-1011.
Oblonsky, J., “A Self Correcting
Computer’” in Digital Information
Processors, W. Hoffman, ed,
Interscience Publishers, New York,
1962, pp. 533-542.

Popek, I, et al, “LOCUS, A
Network Transparent, High Reliability
Distributed System,’’ Proc. 8th SOSP,
Monterrey CA., Dec. 15-17, 1981,

Preparata, F., Metze, G., and Chien,
R., *'On the Connection Assignment
Problem of Diagnosable Systems,”
IEEE Trans. Computers, Vol. EC-16,
No. 6., December, 1967, pp. 848-854.

Ragavendra, C., et. al., ‘‘Reliability
Optimization in the Design of
Distributed Systems,’” Proc. Third Int.
Conf. on Distributed Computing
Systems, Miami, Fla. October, 1982,

Rennels, D. A., and Avifienis, A.,
“RMS: A reliability modeling system
for self-repairing computers,”’ in Dig,
1973 Imt. Symp. Fault-Tolerant
Computing (Palo Alto, CA), pp. 131-
135, June 1973,

Rennels, D. A., “‘Fault detection and
recovery in redundant computer using
standby spares,”” Tech. Rep. UCLA-
ENG-7355, Univ. California, Los
Angeles, June 1973.

Rennels D. A., et. al,, *“The Unified
Data System: A Distributed Processing
Network for Control and Data
Handling on a Spacecraft,”” Proc,
NAECON, Dayton, Ohio, pp. 283-289,
May 1976.

Rennels, D. A., Avifienis, A., and M.
Ercegovac, ““A study of standard
building blocks for the design of
fault-tolerant distributed computer
systems,”” in Proc. 1978 int. Symp.
Fault-Tolerant Computing (Toulouse,
France), June 1978,

Rennels D. A., ‘‘Architectures for
Fault-Tolerant Spacecraft Computers,””
Proc. IEEE, Vol. 66, No. 10, pp.
1255-1268, October 1978.

[RENN 8la]

[RENN 81b]

[RENN 82]

[RENN 84]

[RENN 86a]

[RENN 86b]

[ROHR 73]

[ROTH 67]

[RUSS 75]

{SEDM 80]

Rennels D. A. et. al., Fault Tolerant
Design Considerations for Future
Spacecraft Systems, UCLA Computer
Science Department Report, prepared
for the Aerospace Corp., Aerospace
Library Call No, A81-04858, October
1981.

Rennels, D. A., AviZienis, A, and
Ercegovac, M., Fault-Tolerant
Computer Study Final Report, JPL

Publication 80-73, Jet Propulsion
Laboratory, Pasadena, California,
Febrary 1981.

Rennels, D. A. et.al,, *‘Fault Tolerant
Design Considerations for Future
Spacecraft Computer Systems,”

UCLA Report Prepared for the
Aerospace Corporation, El Segundo,
CA, Aecrospace Library Call Number
AB1-04858, October 2, 1981.

Rennels, D. A., *“‘Fault-Tolerant
Computing: Concepts and Examples,”*
IEEE Trans. Computers, December
1984, pp. 1116-1129.

Rennels, D. A., “'On Implementing
Fault-Tolerance in Binary
Hypercubes,”” Dig. Int. Symp. Fault-
Tolerant Computing, Vienna, June
1986, pp. 344-349.

Rennels, D. A, and Chau, S, A
Self-Exercising Self-Checking
Memory Design,”” Dig. Int. Symp.
Fault-Tolerant Computing, Vienna,
June 1986, pp. 358-363

Rohr, J., *‘STAREX Sclf-Repair
Routines: Software Recovery in the
JPL-STAR Computer,” Dig. Second
Int. Symp. Fault-Tolerant Computing,
Palo Alto, CA., Tune 1973,

Roth I, et al, “‘Programmed
Algorithms to Compute Tests to Detect
and Distinguish between Failures in
Logic Circuits,”” [EEE Trans. Elec.
Computers, EC-16, October 1967, pp.
567-580.

Russell, J., and Kime, C., “*System
Fault Diagnosis: Closure and
Diagnosability with Repair,”” IEEE
Trans. Computers, Vol C-20, No, 11,
November 1975, pp. 1078-1088.

Sedmack, R., and Liebergot, H.,
**Fault Tolerance of a General Purpose
Computer Implemented by Very Large
Scale Integration,”” [EEE Trans.
Computers, Vol. C-20, No. 6, June
1980, pp. 492-500.

[SIEV 82]

[SIEW 82]

[SKLA 76]

[TOYW 78]

[WAKE 78]}

[WENS 78]

[WILL 79]

Sievers, M. and Rennels D, A., “*An
LSI Totally Self-Checking Memory
Interface,”” Proc. IEEE International
Symposium on Circuits and Systems,
Rome, Italy, May, 1982, pp. 1176-
1179.

Siewiorek D., and Swarz R., The
Theory and Practice of Reliable
System Design, Digital Press, 1982,

Sklaroff, I, ‘‘Redundancy
Management Technique for Space
Shuttle Computers,’” IBM J. Res. Dev.,
Vol. 20, no. 1, pp. 20-28, Jan. 1976.

Toy, W., “‘Fault-Tolerant Design of
Local ESS Processors,”” Proc. IEEE,
Vol. 66, No. 10, pp. 1126-1145,
October 1978.

Wakerly, I., Error Detecting Codes,
Self-Checking Circuits and
Applications, New York: North
Holland, 1978.

Wensley, J., “*SIFT: The Design and
Analysis of a Fault-Tolerant Computer
for Aircraft Control,”" Proc. IEEE,
Vol. 66, No. 10, pp. 1240-1235,
October 1978.

Williams, T., and Parker, K., **Testing
Logic Networks and Design for
Testability,”” Computer, Vol. 12, No.
10, October 1979, pp. 9-22.

