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Abstract

We develop a new computational algorithm which computes joint queue length distribu-
tions for product form queueing networks with single server fixed rate, infinite server and
queue dependent server service centers. Joint distributions are essential to calculate avail-
ability measures using queueing network modeling. This new algorithm is obtained using
the physical interpretation of the main equation in the recently proposed MVAC algo-
rithm. However, besides obtaining joint distributions, the new recursion has much simpler
characteristics than the MVAC recursion.



1 Introduction

In the past few years, several algorithms have been developed to solve product form queue-
ing network models with multiple chains [LAVESS]. Recently, Conway and Georganas
[CONW86a) developed a new computational algorithm called RECAL (Recursion by Chain
Algorithm) which has some advantages over previous published algorithms (e.g., Convolu-
tion [REIS76} ). Like Convolution, RECAL requires the computation of the normalisation
constant and suffers from the same kind of underflow /overflow problems which may occur
in the implementation of the Convolution algorithm. Subsequently, Conway, de Sousa e
Silva and Lavenberg [CONW86b| developed a new recursion which is similar in form to
that used in RECAL but does not require the computation of the normalisation constant.
This new recursion was called MVAC (Mean Value Analysis by Chain Algorithm). The
name was chosen since, like MVA (Mean Value Analysis, [REIS80] ), for networks consist-
ing only of single server fixed rate and infinite server service centers the recursion involves
only the mean performance measures of interest (mean queue lengths, mean waiting times
and mean throughput). Furthermore, as with MVA, the equations obtained have a physi-
cal interpretation. The MVAC algorithm can be extended for solving networks with queue
length dependent service centers. This extension requires the computation of the marginal
queue length distributions similarly to the MVA extension for these networks but, unlike
MVA, the basic algorithm is numerically stable. (Reiser [REIS81] proposed an extension
to the MVA algorithm which is numerically stable, but this extension is very costly.)

Both RECAL and MVAC algorithm have significantly less computational requirements
than the Convolution and MVA algorithms when the number of service centers in the
model being solved is small and the number of chains is large. One important applica-
tion which may require the solution of networks of this kind is in availability modeling
[GOYAS85). However, in availability modeling, not only mean measures or marginal queue
length distributions are required to be computed. In general, joint queue length distribu-
tions are needed as well, which precludes the use of the above algorithms for this important
application area.

Another ($hough less important) drawback of RECAL and MVAC is that both algo-
rithms involve the use of modified networks which contain special chains which visit only
one center in the network. The use of these chains obscures the description of the al-
gorithm. Unlike Convolution or MVA algorithms, intermediate steps in their recursion
produce results for the modified networks and thus these results are meaningless.

In this paper we develop a new recursion which computes the joint quene length dis-

tributions for product form queueing networks with single server fixed rate, infinite server
and queue dependent server service centers. This new recursion is obtained using the
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physical interpretation of the main equation in the MVAC algorithm. However, this new
recursion has much simpler characteristics than the MVAC recursion. The recursion will
be referred to as DAC (Distribution Analysis by Chain) since the joint queue length distri-
butions are obtained. Unlike MVAC, at step k of the recursion, results are computed for a
network which contains & single customer chains. No modifications are done in the original
network. We will also show that this recursion is cheaper than the MVAC recursion and
has the advantage of obtaining joint queue length distributions for the network, which are
important in applications such as availability modeling.

The paper is organised as follows. Section 2 outlines the recursion and presents the
main equations used. Section 3 presents the details of the DAC algorithm. An example
is also given. In section 4 we consider the computational requirements for the algorithm.
Section 5 presents extensions to the basic algorithm which may reduce computational costs
substantjally, when not all joint queue length distributions are required to be calculated.
Finally, in section 6 we present our conclusions.



2 The New Recursion.

We consider closed queneing network models with multiple chains and queue dependent
service centers. The following notation will be used throughout the paper and is summa-
rised below:
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number of service centers.
total number of chains in the network.
number of customers in chain k.
population vector = (Ny,...,Nx).
population vector = (N},..., N}) for a network where k customers only
are present (from the total number of customers) and, in this case, there
are N} customers of chain 1, N¥ customers of chain 2, etc.
a specified service center visitetf by chain k.
visit ratio of a chain k customer to center j, scaled so that f;g) = 1.
mean service time of a chain k customer at center j.
0;x.Tjx = relative utilisation of a chain & customer a$ center ;.
0j5.Ay = mean throughput of chain k customer at center ;, where A, =
Af()a-
mjc(;a!n number of customers of chain k at center j.
mean waiting time (queueing time + service time) of a chain k customer
at center ;.
service rate of service center j when there are n customers present,
(1)=1.

ﬁt’én er of chain k customers at center j.
Tk, njx = number of customers at service center j.

ni1,...,Njk) = state of service center j.

fiy, ..., fy) = state of the network.
(n1y...,my) = te state of the network.
{fi : ©j=1 % = N, nj is a nonnegative integer for all j and k } = state
space of the network.
steady state probability that the network is in state & € S(N).

{# : Tjun; = TE, Ni, n; is a nonnegative integer for all j } =
aggregate state space of the network.
steady state probability that the network is in state i € S(ﬁ)
steady siate probability that there are n customers at service center j.
J-dimensional vector whose j-th element is one and whose other elements
are gero.



In this section we compute the steady state probabilities P(fi, N ) and the mean per-
formance measures A; for all chains k in the network. Similar to the MVAC algorithm, we
consider only networks such that each chain contains only one customer. We emphasize
that any network can be converted to a related single customer per chain network and the
performance measures of the original network can be easily derived from the performance
measures of the related network.

Recently Conway, de Sousa e Silva and Lavenberg [CONWB86b] developed a new recur-
sive algorithm called MVAC. For networks which include queue dependent service centers,
the algorithm computes P;j(n), the equilibrium probability that there are n customers in
service center §, Vj, Vn, and the average measures L;; and )y, V5, Vk. In that algorithm,
the network is modified such that special chains called single customer self loop (SCSL) are
added to the network. This modification to the original network obscures the description
of the algorithm. However, one of the most interesting aspects of the MVAC algorithm is
the physical interpretation of the main equations used.

In this paper we use this physical interpretation to develop a new algorithm with
simpler characteristics. The new recursion presented in this paper is done in a chain by
chain basis, similar to MVAC, However, no SCSL chains are used. We will show that if we
are given the equilibrium state probabilities of a network with k chains P*(g, N(k)) (or
P#(i%, N(k)) using the aggregate state space), the equilibrium state probabilities of a new
network which contains one more chain, i.e., P*1(f, N(k+1)) (or P**(f, N(k+1))) can
be easily calculated. We recall that we are considering chains with a single customer only.

The outline of the algorithm is presented below:

(0) Initial step, k = 1.
Take the original network and remove all but one of its chain. Find the performance
measures of this single chain network, including marginal queue length distributions.
This measures can be easily calculated by using known equations, say MVA equa-
fions.

(1) Add one more chain to the resulting network. This network has now k+1 chains. The
current performance measures can be calculated from the performance measures of
the network with k chains.

(3) k « k+1.
If k = K, i.e., if all chains of the original network were already added, then stop.
Otherwise go to step (1).



We describe the equations used in step 1 of the algorithm. Assume that the network
currently contains k — 1 chains, and we are given the equilibrium state probability that the
network is in state i = (n;,n,, .s1y), i.e., P*1(ii, N(k—1)). For notational convenience
we drop the notation N{k— 1), i.e., P1(R) = P(5, N(k-1)). From P*-1(), P¥1(n)
can be easily obtained:

PF() = 3 3 P,y (1)

=
) "

Using MVA equationa for networks with load dependent service centers [LAVES3] we
can calculate A} and LY, i.e., the throughput of the chain being added to the network
at current step k [cham k) and the average queue length of the single customer of this
chain at service center §. This is true since these performance measures depend on the
performance measures of a network with the customer of chain k removed. Therefore, we
have:

1

Az = 7 (2)
R Lwm Y
and
I = Hon Y- S0P 1) (@

Note that since all chains are assumed to have only one customer, L" is the probability
that the customer of chain k is at service center j. Using this observation, let Pi(ii | n;s =
1) be the steady state conditional probability that the network (with & smglo customer
chains) is in state il € S(N(k)) given that the single chain k customer is in service center
j. Unconditioning we obtain P*(f).

PY#) = 3 LhPHR [ na=1) (4)

=1

We now invoke a lemma used to establish the main results for the MVAC algorithm.
The lemma states that the conditional steady state distribution given that the single



chain &k customer is in a particular service center (say service center §) is equal to the
unconditional steady state distribution of a network in whick chain & is replaced by a
single chain which visits only service center j. Recall that the relative utilisation of this
chain can always be scaled to one. Formally, we have:

P | np=1) = Pi(i-T,,1,) (5)

where P*1( — I;,1;) is, by definition, the steady state probability distribution of a
network with k — 1 chains plus a aingle customer chain which visits service center § only.
Using (5), (4) can be rewritten:

PH#) = ;;L;.P'-=(n—i‘,-. 1) (®)

Observe that if we can calculate P*!( — I}, 1;) from the performance measures of
a network with k — 1 chains, the algorithm will be complete. This is the subject of the
following theorem.

Theorem 1 If service center § is infinite server (IS)

PY(#,1;) = P(i) (M
Otherwise:
41
PHR, L) = Lot ®)
where
I if center j is SSFR
1=1+— 1 if center § is queve length dependent ()
—1fg
Lwmt =D
Proof:



Equation (7) is trivially obtained since, if 5 is IS service center, the chain visiting only
J does not affect the performance measures of the network.

To prove equation (8), recall that £ = (#,, A3, ..., ;). For product form networks, the
equilibrium state probabilities are given by [LAVES3) :

1 nu

PXd,1;) = 10

64) = oy e o 1o

where G*(1;) is the normalisation constant of a network with k single customer chains and
a single chain visiting center j only. In (10) this chain has index (k + 1).

Extracting center j from the product above:

PX#, 1) =

G“ (n, + l)! L a"i“
H m(v) L! md LT ui(v) Ll nid 7!
where the second product above was obtained by: noting that center j has n; +1 customer
due to the chain that visits only this center (chain k+ 1); apyy = 0Vl # ;. Since

Gjk41 = 1,

J

n;+1
PHa,L) = @‘(ls) [m(nﬁl)[ln 1 #i(v) gnu!]

Multiplying and dividing by G*(0), i.e., the normalisation constant of the network with
k chains with the chain visiting only center j removed:

. G*0) (nj+1) B
PE1) = GH1) l‘:?":"'l) [TSLI "r'-ﬂ‘l("j ga ]

The term in brackets in the above equation is, P*(if). Therefore:

PE,Y) = E’él%mnnf +ll 1

But G*(0)/G*(1;) is the throughput of the chain which visits only center j, 7}+!
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1

G0
EF‘(L.))' =t = I 1 if center j is queue length dependent (12)

e

where the last equality uses equation (2) for the chain which visits center j only and so

a4 =90 for | #j and Aih41 = 1.
Substituting (12) into (11) we get:

P = [yt P

Finally, we note that

P.(ﬁv l:') = E Pl(ﬁv lf} =
| iy [= 0

s |= ms

where | i |= Tk, n«

Since the term in brackets in (13) is constant with the sum, (8) is proven. O

(13)



3 The DAC Algorithm.

Our main goal is fo compute the equilibrium state probability that the network is in state
i€ S(ﬂ) As we will see in the example presented later this measurement is important
for availability modeling. The first step of the algorithm requires the computation of the

equilibrium state probabilities of a network with a single chain with one customer. This
can easily be obtained by using MVA equations (2) and (8), which simplifies to:

Ih= gt Vi (14)

=1 a1
Since there is only one customer at chain 1, P(i;) = L}, V5.

The remaining steps require equations (6) and (8) which can be combined into a single
equation {since equation (7) is a particular case of (8) we use only (8) in the remaining of
the paper):

P = 3 Ut PR T) (15)
Below we present the details of the DAC algorithm.
Step 1:
Set k= 1.
Use, equation (14) to calculate L}, (and so P(i;)) for all centers j in the network.
Step 2:
Fork=2k<K:

(a) Use equation (2) to calculate A},

(b) Use equation (3) to calculate Lk Vi1 <5 < J.

{c) Use equation (15) to calculate P(5i) 7 € S(N{k)).

(d) From P*(ii) and equation (1), P}{n) can be easily obtained.



The DAC algorithm as stated above yields not only the equilibrium state probability
that the network is in state % € §(N }, but also the average performance measures for chain
K (i.e., M and L} V5). It does not yields average performance measures of other chains
in the network. As we will show below, other performance measures can be calculated, if
needed. Furthermore, one can easily verify that if a center in the network (say center 1) is

visited only by customers of a single chain, say chain t, then the throughput for this chain
can be calculated by:

Eﬁm(nww
Y (19)
G

Similarly to the MVAC algorithm, the average performance measures of the individual
chaine can be calculated if we reexecute the basic step. Assume that, from the K chains
only D are distinct. We order the K chains such that the last D ones added to the
network are distinct. After executing steps 1 and 2 for 1 < k < K, we exchange labels
of the last chain with any other chain belonging to the last D chains added {say chain
k —1). Step 2 is executed for k—! < k < K —1 and steps 2a and 2b are executed for
k = K. However, we emphasise that without the relabeling mechanism the whole set of
equilibrium states probabilities are calculated, unlike MVAC. This may be sufficient for a
particular application such as availability modeling.

Example:

Consider an availability model of a computer system with two types of components,
say memory and CPU. There are three memory modules, one of them is a spare module
and two are active modules. There is only one CPU. We assume that the spare memory
can not fail if it is not being used. Furthermore, when a memory unit fails the spare unit
is immediately switched to full operation. We assume independence of failure rates. Once
a component fails it goes to a repair facility. There is only one repair man, he chooses
a component to repair at random from the repair queue and a new failure preempts the
repair of an old one. Figure 1 shows the queneing network model for this system.

In that Figure chain 2 represents the behavior of the memory modules and chain 1
represents the behavior of the CPU. Center 2 models the failure behavior of the memory
modules. Note that the queue length dependent center 2 is equivalent to a two server
service center which models the fact that only 2 memory modules can fail if 3 modules are
in good condition. Center 1 models the failure behavior of the CPU and center 3 models
the repair facility. The appendix presents the parameter values for this network and the
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cpu center 1

— |

memory  cepter 2

-
o

center 3
(repair queue)

Figure 1: An avallability mode] of a computer system.

calculations at each step of the algorithm.

Now we assume that the spare memory is being powered even if it is not in use and
thus can also fail (hot stand by). This behavior can be modeled by the same network of
Figure 1, if we alter the service rate of center 2 to include the failure rate of the spare unit.
In other words, 2(3)/822 = 2Amem + Aspers Where Agen aNd Aypere are the failure rates of
the working units and the spare units, respectively. The appendix also presents the final
resulis when a hot stand by unit is used. Note that only step k = 4 has to be recomputed
in this case.

From the example we verify the importance of the calculated measures. For instance,
the probability that all four modules are working simultaneously is simply P4(1,3,0). If we
assume that the system is operational when at least one CPU and one memory module is
operational, then the availability of the system is AV = P4(1,3,0)+P4(1,2,1)+ P(1,1,2).

11



Since the iteration requires the calculation of the performance measures with one less
“customer”, using the example we can verify, for instance, the degradation of availability
when no spare memory is used. This can be done by comparing the results of the original
network with a new network with one less memory module (which correspond to the results
of step k = 3 in the appendix). This contrasts with MVAC for quene dependent centers
or RECAL, in which only the last step gives meaningful results. Previous steps produce
results for networks with the so called self looping chains.
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4 Computational Requirements.

In this section we derive the computational cost of the DAC algorithm. We first determine
the cost when the goal is to compute the full set of joint equilibrium probability distribu-
tions. Next we derive the cost when average measures for all distinct chains needed to be
computed. Comparisons with MVAC will also be made.

We point out that significant savings can be obtained if only a subset of these prob-
abilities needs to be calculated, as we will demonstrate in section 5. In the expressions
for computational costs, we count only the operations of multiplication and division, each
having a unitary cost. The cost of additions will be ignored. We also assume that all
centers in the network are queue dependent. Savings can be obtained if we have SSFR
and/or IS centers.

Step 1 of the algorithm requires J divisions. For a subsequent step k we need to
compute:

(a) M and LY, Vj, using equation (2) and (3) respectively. Note that these equations
have the common factor.
1 LI
= PFi(n-1
i .;1 pi(m) ! (n=1)

which needs to be computed only once for all service centers §. The above expressions
require 2k operations for a single value of j. Therefore, for calculating (2) and (3)
we need a total of 2J(k + 1) + 1 operations.

(b) PA() for @ € S(N). From equation (15) it is easy to see that we require 4/
operations at most, to compute P¥() for a given value of ff. Since there are (";_‘_‘1”‘)
values of /i, the total cost is:

4J(J -1+ k)
J-1

Finally, the $otal cost o} 4o of the algorithm is:

K —_
obic = J+§[2J(k+1)+1+4J(JJiT")]

4J(J'5K) +JK(K+8)+K-42-1J-1
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The first term is the dominant factor, therefore,

0})}‘0 ) 4J(J-;K)

Note that this computational cost assumes that all centers are queue dependent. The
computation may be reduced if we have SSFR and/or I8 centers.

The basic step of the MVAC algorithm has cost of4%,o:

- K (J+K J+K

which is comparable to the DAC algorithm. However, the basic step of the MVAC al-
gorithm only computes the average measures for chain K. The DAC algorithm besides
computing average measures for chain K computes all equilibrium joint probability distri-
butions.

Next, assume that we use the DAC algorithm to compute the average measures of
all chains plus the joint probability distributions. Assume also that there are D distinct
chains in the network. The subsequent steps that need to be performed have cost o}, ,c:

D-1 K-1 J__l+k
0bac & 47
b4 ;h -D44 ( J-1 )

where the approximation comes from the fact that we are using only the combinatorial
term for the cost. Therefore:

b1 J+ K- J+K-D+i-1
o B3 - (1)

_ J+K-1 J+K-1 J+K-D
- aw-n( AN L) S ER)

and so, the total cost will be opsc = oh e + 0hac-

Suppose that we have D distinct chains with N customers each, so that K = ND. If
we fix J and N it follows that as D — 0o opsc = O(D’+') which is in the same order
of the MVAC algorithm for SSFR and IS only with minimum cost, and is cheaper than
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the version for networks with queue dependent centers. We emphasise again that, unlike
MVAG, the set of joint probability distributions are calculated. If we are only interested
in the set of joint probability distributions, then as D — oo the cost is O(D’).

For availability modeling the number of centers may grow if several components of the
same type have spare units. If each set of components of the same type has at least one
spare unit, then the number of centers in the network will be identical to the number of
distinct chains. (From the example in section 3 it is easy to see why this is true.) From the
expressions obtained above, it seems that the computational costs would be prohibitive.
However, since for this kind of models the chains do not visit all centers, substantial
savings can be obtained. Assume that we have D distinct component types and one of
them (say component type t) has N; units. Some of the N; units will be spare ones. Also,
for simplicity, assume that N; = N, = N, V¢, v, and that we have only one repair center.
Therefore, J = D + 1. At step k such that k/N = M + v we have already added M
distinct chains and v units of distinct chain M + 1. Therefore, for a step 2 < k< K we
need 8(N + 1)M(v + 1) operations. (Note that L#, is different than sero for two centers
only since each chain in this model visits two centers.) Finally, the total cost is:

Tbac = s(zv—ztg)g(N'H)'
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b Extensions to the Algorithm.

In this section we make a few observations concerning the application of the algorithm
when the goal is to calculate joint distributions considering the detailed state space S(N),
i.e., when we discriminate customers from different chains at different service centers. Next
we extend the DAC algorithm $o be used when not all the joint distributions need to be
calculated and show the potential savings.

Consider the situation where P(f) are required to be determined. We invoke again the
lemma used to establish the main results for the MVAC algorithm. Equation (6) can be
rewritten to include the detailed state space:

PHi) = ?:quf""(ﬁ- L, 1)) (17)

where fﬂ, is the J K-dimensional vector in which all elements are sero except one element
at position jk which is one. Using equation (13) obtained in the proof of Theorem 1, in
{(17) we obtain:

P = ¥ HgrisrtP - T (19

The other equations used in the algorithm (equations (2) and (3)) remain the same. The
two steps in the DAC algorithm remain basically the same. Since the joint probabilities
of the detailed state space are obtained when the two steps are executed, there is no need
to reexecute step 2 again to obtain average measures for individual chains.

The computational cost increases since the state space that needs to be searched in-
creases. In general, at a step k, the computation cost depends on the number of customers
of each distinct chain up to that step, i.e.:

D (J—1+nt
o(k) o '
® =1 ("75")
where n¥ is the total number of customers of *distinct® chain i at step k. Note that the
product is the number of states in S(N(k)).

Depending on the particular problem, the cost could be much larger than or even
identical to the cost of the original DAC algorithm. For instance, in the example of section
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3, it is easy to verify that the detailed state space E(ﬂ) has the same number of states
than the aggregate § (.ﬂ ) at each step k of the algorithm.

Example:
Consider a distributed architecture system as illustrated in Figure 2.

CPU CPU
Bus
Gontfoller Cont;oller
| |
data 1 d
d:ta 3 ata 1 data 2

Figure 2: A distributed architecture system.

In this system, one of the CPU’s is spare and critical data (d, and ds) is replicated.
The queueing model for this system is shown in Figure 3, where the chains visiting the IS
center represent the bus, controller 1, controller 2 and disks 1, 2 and 3.

We assume that all data is available if there is a path between the operational CPU
and both data items d; and d;. Therefore, to determine the probability that the data is
available we need to calculate { P*(n,, fis,n3)}, which requires equation (18).

Next we present results that may be used to reduce the cost of the DAC algorithm
when the goal is to calculate a subset of the joint queue length distributions. Assume
that in step k of the algorithm we need to calculate P*(f;,,...,fs,) where the set {k;}
represent indexes of the service centers in the network. It is easy to show that, similarly
to equation (17), we have:
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Figure 3: The queueing model of the aystem of Figure 2.
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P‘(ﬁh, ces ,ﬁl') = P L?.P‘—l(ﬁjn cavy ﬁ,’ - Tj, ves ,ﬁh, l,‘)
Juik}

J
+ L}.P""(ﬁ.,, ceey iy, 15) (19)
ko)

where 1, is the K-dimensional vector in which all elements are sero except one element at

position k which is one. It remains to be computed P*-'(iy,, ..., fis,, 1;) Vk. For that we
need the following coroliary.

Corollary 1 If service center j is infinste server

P‘(ﬁp,,...,ﬁ.,,l;) = P¥ily,,...,f,) (20)
Otherwnse:
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P‘(ﬁh,-..,ﬁﬁ.,l,‘) =
”—j?,*},%l—l;ff”‘l“"(ﬁa.,-.-,ﬂ..) je{kl<igy (21)

[ .11 . .
";0 ﬁjf;ﬁjfﬁlp(ﬁll’ vos ,ﬁ‘.., ﬂ,') f] ¢ {k‘}l <1<y (22)

i

Proof:

The proof follows directly from Theorem 1. First we note that:

R
P.(ﬁlu"-:ﬁhlli) = f) P‘(illl)

witn
where § is the K-dimensional vector in which all elements are sero, S = T, T,

160}

.+« La,,. and the set {u,} has no intersection with the set {k;}, 1 <r<m1<i<w.
Therefore, the sum is over all possible combinations of customers of different chains at
center I, Vi & {k;}. Using equation (13):

Rk
P!(ﬁiu"'!ﬁinlf) = i:ﬂ

£
\'l‘?h}

[yt P (9)

We have to consider two cases:

(a) je{k}1<i<w.

In this case the term is brackets in the equation (23) can be shifted outside the two
sums:

P"(ﬂ;.,...,ﬁ;,,l,-) = ”,.n,;:-_{_ll .,.,9+1 E Pi(ﬂ)
Vl‘(.t)

and, since the sum above is for all states #; such that [ ¢ {k;}, equation (21) is
obtained.
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(b) jE{k}1<i<v.
In this case, the term in brackets in equation (23) can be shifted outside the sum
when [ # j only. Therefore:

P.(ﬁll‘l" -3 Tk, 1!') =

i 4+ 1
= Lm0t L P@-

Vigihg), i

1 e B+l - A
= ,»,H n;om"w_l)wi;‘ip(mw“!ﬁ""“’)

where we broke T4, into two sums: ):f,,. and Tja,j=n,- Equation (22) follows from
the equation above. O

It is easy to see that equations (20), (21) and (22) can be simplified in the case we
are using the aggregate state space where only the number of customers at each center is
recorded. In this case:

o For I8 centers:

Pi(“in---’“i-:li] = Pl(ng,y...,M,) (24)

e Otherwise:

P'(uh,...,m,,, 1,') =

E’g‘;%fﬁlpi(n.‘,...,m,) j € {k} (25)
- "“..Z:., P maam) 5 () (26)

Equations (21), (22) (or (25), (26)) can be combined with equation (19) to obtain a
single equation equivalent to (15). In case of using the aggregate state space we have:

P(iay,,...,70,) =



J/; ;fh,;p*-l(n.l,...,nf —1,...,m%,)

je{i;}

J k—(m,+ ik, ) pi-t
+ Lyt ~n ng, 27
u{;ﬁ‘} k' § n,- anJ ( Ryy ooy Bk, B — ) ( )

Example:

Consider the example of section 3 and assume that the only measure that needs to
be calculated is the probability that the CPU is working, i.e., P#(1). Since this example
is used to demonstrate the use of equation (27), we assume that the steps for k = 1,2,3
remain the same. For step 4 we have:

M, LY, 74 1 < j < 3, are calculated as previously shown. Using (27) to calculate
P{(1):

P)1) =  Li,nP}(0)
+ I }‘: —?’—)—P'(l,n,— 1)

lll’-'l

+ Lir Z nyP2(1,ny — 1)
08894

The example above illustrates the use of equation (27) but does not illustrate the
savings that may be obtained. To illustrate the computational savings, let us assume that
the goal is to calculate P;(n;) 1 < j < J. In this case, the computation remains the
same up to step k = K — J + 1, i.e., the marginal joint queue length distributions need
to be calculated (PX-7+1(n,,...,n;)). However, from this step up to k = K, not all the
joint distributions need to be calculated. At step k=K -J +1+1, 1 <1< J~1the

computations are:
-1+8\( J
om0

The combinatorial term ( ; ,) gives all the combinations necessary for determining
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P*(ny,,...,n,) where vy = J — [, and the first combinatorial term assumes that the total
number of customers in centers k;,...,k, ig 5, 0 < ¢ < k. Therefore:

mal( 513

Comparing the above cost with the cost obtained in section 4 for step k (the cost is for
calculating, at step k, the total joint queue length distributions), we see that we use the
previous algorithm up to step k, — 1 such that, for step k.,

(7552 (506

Then, for steps k, < k < K we use the steps outlined above, i.e., equations (27). For
example, if £ = 12 and J = 8, k, == 10. Therefore in the last three steps we calculate the
performance measures using equation (27).

Similar savings can be obtained when we consider the detailed state space (i.e., distin-
guish customenrs in their chains), and we leave out the details for conciseness.
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6 Conclusions.

We developed a new recursion for solving queneing network models with single server fixed
rate, infinite servers and queue dependent server service centers, which we call DAC. The
asymptotic growth of the computational cost of DAC is the same as MVAC for networks
with 88FR and IS centers only and is cheaper than MVAC for (a) networks with queue
length dependent centers and (b) if the measures of interest are joint marginal queue
length distributions. Furthermore, unlike MVA or MVAC, the algorithm calculates the set
of joint marginal queue length distributions, which is essential for availability modeling.
The recursion of this new algorithm is much simpler than the recursion of MVAC. At each
step, measures are obtained for a network with one more customer. No fictitious chains
are introduced. Like MVAC, DAC is numerically stable.

We introduced extensions to the basic algorithm. These extensions include the cal-
culations of joint probabilities when customers are discriminated according to the chains
they belong. We also obtain expressions which significantly reduce computational costs
when only a subset of the queue length distributions are needed. Examples which illustrate
the applicability of the algorithm were presented. Finally, we point out that: (a) average
performability measures [MEYES0] can be calculated from the joint distributions of queune
length by assigning a reward (which represents a measure of performance) to each state
of the availability model, and (b) sensitivity analysis (which is important for availability
modeling [GOYAS6]) can be done, if we use the results presented in [DeSO84] and the
results of this paper.
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Appendix.

The parameter values for the network of Figure 1 are (assuming the spare memory unit
cannot fail): J =3, a3 =5, 413 =0, ay = 0, ax = 10, ag; = 2, 653 = 1. Since we are
assuming chains with single customers, we subdivide chain 2 into 3 chains: 2, 8, and 4.
Therefore, K = 4.

o Computations for k = 1 (chain 1 is added).

P}(1,0,0) = L}, = ;1 = 0.7143

P(0.1,0) =L = 0"

P*(0,0,1) = L}, = 0.2857

Therefore:
PL(0) = P*(0,0,1); P‘(l) P‘(l 0,0)
P}0) = Pl 1,0,0) + P*(0,0,1) = 1; P}
P}(0) = P'(1,0,0); 31 P (0,0,1).

o k=2 (one customer of chain 2 is a.dded).

V4, calculate 7},

rf = 0.6833, 7§ = 1, 7§ = 0.T7T7

A} = = 0.08861
L2, = 0; L, = 0.8861; L}, = 0.1139
P%(2,0,0)=0; P?%1,1,0) =0.6320; P?%(1,0,1) = 0.06329
P3(0,2,0) =0; P3(0,1,1) =0.2532; P*(0,0,2) = 0.05063

P}(0) =0.3038, P}(1)=0.6062, P}(2)=0
P3(0) = 0.1139, P}(1)=0.8861, P3(2)=0
P§(0) = 0.6329, P$(1)=0.3165, P$(2) = 0.05063
e k= 3 (another chain 2 customer is added)

V4, calculate r},

7 = 0.5896, 7§ = 1, 1} = 0.7054

2} = 0.08758

L3, =0, L}, = 0.8758, L}, = 0.1242

P*(3,0,0) = P*(2,1,0) = P*(2,0,1) = P*(0,3,0) = 0
P3(1,2,0) = 0.5543, P3(1,1,1)=0.1109, P%(1,0,2) = 0.01109
P%(0,2,1) = 0.2217, P%(0,1,2) = 0.08869, P*(0,0,3) =0.0133
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P}0)=0.32387, P}1)=0.6763, P$(2)=0, P}3)=0
P3(0) = 0.02439, P}(1) =0.1986, P3(2)=0.7761, P}38)=0
P}(0) = 0.5543, P$(1) = 0.3326, P§(2) =0.00978, P§(3) =0.0133
e k = 4 (last chain 2 customer is added).

V3, calculate r¥,

4 = 0.5966, r§ = 0.7205, 7§ = 0.6361

M = 0.08758

L}, =0, L, = 0.8983, L, = 0.1017

P4(4,0,0) = P4(3,1,0) = P4(3,0,1) = P%2,2,0) = PY2,1,1) = P%(2,0,2) =
P4(0,4,0) =0
(1,3,0)=0.5381, P%(1,2,1)=0.1076, P%(1,1,2) = 0.02152
P4(1,0,3) = 0.002152, P4(0,3,1) =0.2163, P*(0,2,2) = 0.08609
P4(0,1,3) = 0.02582, P%(0,0,4) = 0.003442

The final results when the spare memory unit can fail (assume \,pq = 1/20) are:

e k=4
v, calculate r¥,
78 = 0.5966, 7¢ = 0.8657, & = 0.6361
A4 = 0.0762
L$, =0, L$, = 0.8802, L{, = 0.1198

P4(4,0,0) = PY(3,1,0) = P%(3,0,1) = P4(2,2,0) = P4(2,1,1) = P4(2,0,2) =

P*(0,4,0) =

P‘(l 3,0) =0.5068,  P%(1,2,1)=0.1267, P%(1,1,2) = 0.02535
P*(1,0,3) = 0.002535, P‘ 0,3,1)=02027, P*(0,2,2) = 0.1014

PY(0,1,3) = 0.03041, P4(0,0,4) = 0.004054
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