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FOREWORD

This report presents an overview of the origins and evolution of fault-tolerant computing
during the years 1960-1986 at the Jet Propulsion Laboratory, Pasadena, California, and at the
University of California, Los Angeles, California, U.S.A. A preliminary version of this report
was presented at the Symposium on the Evolution of Fault-Tolerant Computing that was
organized by IFIP Working Group 10.4 ‘‘Reliable Computing and Fault Tolerance’’ and took
place on June 30, 1986 in Baden, Austria.

The entire text (except Appendix C) will appear as a chapter in the book ‘“The Evolution
of Fault-Tolerant Computing’’ that will be published by Springer-Verlag, Vienna, Austria in
1987. Appendix C consists of the paper ‘‘Design of Fault-Tolerant Computers’’ (reference
[Aviz 67a]) that was presented at the 1967 Fall Joint Computer Conference in Anaheim,
California. To the extent of our knowledge, this paper introduced the term ‘‘fault-tolerant
computer’” and the concept of fault tolerance into technical literature.

Algirdas AviZienis
David A. Rennels
June 5, 1987
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1. Early Efforts at JPL

The Jet Propulsion Laboratory (JPL) is a research facility in Pasadena, California, that
was founded by Professor Theodore von Karman of the California Institute of Technology as a
test site in 1936 and was supported by the U.S. Army until October 1958, when it was
transferred to the recently founded NASA, the U.S. National Aeronautics and Space Administra-
tion. The primary mission of JPL within the NASA structure is to develop unmanned inter-
planetary spacecraft and to conduct scientific investigations of the other planets of our solar sys-
tem. Unmanned investigations of the Moon by Ranger spacecraft were the first step in the series
of space exploration missions that have continued with the Mariner, Viking, and Voyager series
of interplanetary spacecraft that thus far have reached Mercury, Venus, Mars, Jupiter, Saturn
and Uranus.

Until 1958 the task of JPL was the development of guided rockets for the U.S. Army (the
Corporal and Sergeant series) that offered interesting dependability problems of their own.
Upon arriving at JPL in July, 1955 as a recent M.S. graduate from the University of Illinois, A.
AviZzienis was assigned to solve the problem of dependable guidance parameter insertion in the
new Sergeant system. The previous Corporal system employed hand-set dials within the
rocket’s guidance compartment that did not provide any verification of settings. The design for
the new Sergeant system employed a system that read a punched card in a remote command
post, transmitted the readings to control a stepping motor in the guidance compartment, and then
independently read back the settings to the command post, where they were matched against the
card to verify that the proper setting had been accomplished. This custom-tailored error detec-
tion mechanism employed relay logic for its control and identified several dependability issues
that reemerged a few years later in the context of spacecraft guidance and control computing.



Dependability issues for spacecraft computing emerged at JPL after its transfer to NASA
in 1958. A. AviZienis encountered them soon after returning to JPL from a four-year education-
al leave with a Ph.D. earned in May, 1960 at the Digital Computer Laboratory of the University
of Illinois, where he designed parts of the ILLIAC II arithmetic unit and did thesis research on
high-speed signed-digit arithmetic that did not address dependability problems. The problem
that was perceived at JPL was the need for longevity of the spacecraft computer: unmanned in-
terplanetary missions of 1 to 10 years duration were being considered, while the mean-time-to-
failure of contemporary guidance computers was measured in fractions of a year. The NASA-
specified OAOQ satellite on-board processor employed component redundancy that was not suit-
able for integrated circuits, while the SATURN V guidance computer employed a TMR CPU
and was designed for a mission length of 250 hours [Kueh 69]. Both designs from the IBM
Federal Systems Division at Owego, N.Y., provided valuable insights, but did not offer a solu-
tion to the problem of unattended operation for several years, with the critical performance
demands coming at the very end of a long mission that leads to the flyby or orbiting of a planet.

Late 1960 marked the beginning of a multi-year research effort at JPL. It was the search
for an effective solution to the problem of building a long-life onboard information processing
system for unmanned spacecraft. A. AviZienis was the only full-time researcher for the first
three years, working with the support of research group supervisor John J. Wedel, Jr. and with
expert advice on spacecraft design, guidance, control, and computing from members of JPL Sec-
tion 341 (*‘Flight Computers and Sequencers’’) and other members of JPL technical staff.

Valuable information on the SATURN V computer was gained during visits to NASA
Marshall Spaceflight Center in Huntsville, AL, and to IBM Federal Systems in Owego, N.Y.
Supporting research on the application of error detecting and correcting codes in system design
was done under a contract with the Stanford Research Institute, Menlo Park, CA., by Dr. Willi-
am H. Kautz and others. Two meetings also provided new breadth of viewpoint: a small
Conference on Diagnosis of Failures in Switching Circuits (17 talks, 54 participants) in May,
1961 at Michigan State University, and a well-attended (over 500 participants) Symposium on
Redundancy Techniques in Computing Systems held in Washington, D.C., on February 6-7,
1962. The latter consisted of 23 presentations that ranged from solid results to sketchy sugges-
tions and philosophical discourses [Wilc 1962].

2. The STAR Computer at JPL

Existing theoretical studies of the long-life problem indicated that large numbers of
spares offered a promise of longevity, given that all spares could be successfully employed in
sequence [Reed 62]. The JPL problem was to translate the idealized “‘spare replacement’’ sys-
tem model into a flightworthy implementation of a spacecraft guidance and control computer.
About one year after rejoining the JPL staff, A. AviZienis submitted on October 6, 1961 a ten-
page JPL Interofffice Memo to Henry A. Curtis, the Manager of Section 341, outlining the
design of ‘‘a Self-Testing-And-Repairing System for Spacecraft Guidance and Control’’, desig-
nated by the acronym ‘“STAR’’. The proposal was fully supported by JPL and NASA research
management, and the research effort continued for more than ten years, culminating with the
construction and demonstration of the laboratory model of the JPL-STAR computer [Aviz 71a].



3.

The above reference and many other publications have adequately documented the final
design of the JPL-STAR computer, and it shall not be detailed here. However, an interesting
view of the STAR system evolution may be gained from the October 6, 1961 JPL memo that is
reproduced as Appendix A to this paper. The memo has been used as evidence for the patent
application filed by JPL in 1967 that resulted in U.S. Patent No. 3, 517, 171, *‘Self Testing and
Repairing Computer’’, granted on June 23, 1970 to A. AviZienis and assigned to NASA, but it
has not been previously published.

The 1961-1965 interval of STAR research was dedicated to the evolution of system or-
ganization concepts and an in-depth study of error detection techniques that led to the evolution
and adoption of low-cost arithmetic error codes in the STAR design. The AN, residue, and in-
verse residue arithmetic errror codes were investigated and developed [Aviz 71b). In 1963, Al-
len D. Weeks joined the STAR effort as a logic designer and John Buchok as a senior techni-
cian. In June of 1965 David A. Rennels, then a doctoral student at Caltech, accepted a summer
position with the STAR project and worked on the design and construction of a byte-serial arith-
metic unit for ‘°‘AN’’-coded 32-bit operands with the check constant A = 15 [Aviz 73]. D. A.
Rennels rejoined the STAR project in 1966 to serve as the principal hardware designer, and later
as the main evaluator of the STAR laboratory model, conducting numerous coverage evaluation
experiments [Aviz 72], [Renn 73a].

The initial goal of the STAR design was to place the test and repair features into
hardware; however, as the design evolved, it became apparent that a hardware-software interface
had to be devised to enable the implementation of program rollbacks. To develop the software,
the STAR team recruited John A. Rohr, then a Ph.D. student and ILLIAC III software designer
at the University of Illinois. He joined JPL in September, 1967 and served as the principal
software designer to the end of the STAR project. His work produced a programming system
(assembler, loader, simulator, executive), a programming manual, test and demonstration pro-
grams, and culminated with the development of STAR rollback techniques and a system execu-
tive program that interfaced with the hardware features [Rohr 73a], [Rohr 73b]. The first pro-
gram was successfully executed on the STAR laboratory ‘‘breadboard’” model in 1969.

Publication of STAR papers was held back until the design was well defined; the first
description was presented on request at a NASA-sponsored meeting in October, 1966 [Aviz 66].
The Central Control Unit described there and later renamed as the Test-And-Repair Processor
TARP [Aviz 71a] was quite probably the first appearance of the Service Processor concept. The
characterization of the computer as ‘‘self-repairing’’ appeared to be too specific and the term
“fault-tolerant” was devised for all subsequent descriptions, beginning with a paper on
“Design of Fault-Tolerant Computers’” at the 1967 Fall Joint Computer Conference [Aviz 67].
This paper introduced the term ‘‘fault-tolerant™ and the concept of fault tolerance into technical
literature. Several technical papers dealing with various aspects of the STAR design followed
during the next six years [Aviz 68], [Aviz 71a], [Gill 72], [Renn 73b], [Rohr 73b], [Aviz 73].



Additional research efforts were initiated in 1968, with Francis P. Mathur undertaking
reliability modeling studies [Math 70a], [Math 70b], [Math 71] and George C. Gilley investigat-
ing the systematic extension of STAR techniques for the automatic maintenance of an entire au-
tonomous interplanetary spacecraft [Gill 70], [Gill 72]. An adaptation of the STAR design to a
specific application was carried out for the JPL Thermoelectric Outer Planet Spacecraft (TOPS)
that was intended for the 15-year ‘‘Grand Tour’’ flyby of four outer planets of the solar system
[A&A 70]. David K. Rubin led the effort, with support from the entire STAR team. Two ele-
ments of the STAR breadboard were designed outside of JPL. A highly reliable magnetic power
switch was developed by the Stanford Research Institute, Menlo Park, Calif., and a fault-tolerant
read-only memory was built by the M.LT. Instrumentation Laboratory, Cambridge, Mass.,
under contracts from JPL.

Regrettably, deep cuts in NASA budgets for unmanned space exploration led to the ter-
mination of the TOPS project in 1972, and research on the STAR system breadboard itself was
ended in 1973. The STAR system remained in the laboratory as a utility computer for subse-
quent research until July, 1977, when it was ‘‘mothballed’’ in a JPL storage facility. The Cali-
fornia Museum of Science and Industry requested the STAR computer for an exhibit in 1983;
however, it could not be located in storage, and its fate remains unknown.

The only apparent direct descendant of the JPL-STAR fault-tolerant architecture was the
Fault-Tolerant Spaceborne Computer (FTSC) [Burc 76]. The architecture of FISC is the joint
result of two architectural studies [Conn 72], [Stif 73]. The STAR contribution came through
the study done at Ultrasystems, Inc., Irvine, CA. [Conn 72]. The effort was directed by R. B.
Conn, while STAR designers A. AviZienis, D. A, Rennels, and J. A. Rohr served as principal
consultants in this study, sponsored by the U.S. Air Force. This study updated the STAR archi-
tecture by taking into account the increasing levels of circuit integration and combined all pro-
cessing into a single replaceable CPU. The TARP was significantly refined and designated as
the CCU (Configuration Control Unit). A second iteration of the design led to a duplication of
the CPU for improved error detection. The complexity of the CCU was reduced by using the
CCUs to monitor the pair of CPUs, and relegating to the CPUs the monitoring and recovery
management of the rest of the system.

The study done at Raytheon [Stif 73] contributed a single-error correcting and burst-error
detecting code in the memory and for bus transfers, as well as single bit-plane replacement
within a memory module by means of a ‘‘rippler’’ switch, The STAR approach to pooled
memory sparing and assignment was retained. Two *‘brassboard’” models of FTSC were built
by Raytheon and were evaluated by extensive fault injection tests [Burc 76]. However, the
design needed about 20 custom-designed and radiation-hardened LSI chips. The rapid develop-
ment of microprocessors made the FTSC single-processor custom design excessively costly to
implement for space applications, and the project was terminated before any flight-qualified
machines could be built.
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D. A. Rennels took over the lead role in fault tolerance research at JPL in 1972. At that
time, A. AviZienis initiated a major research project in fault-tolerant computing at UCLA, which
is described in the second half of this paper. He also remained in a supporting role as an
Academic Member of Technical Staff at JPL until 1981, collaborating with D. A. Rennels and
others on some of the subsequent projects that are described below. Contributions of the STAR
project were noted by the awarding of the biannual Information Systems Award of the American
Institute of Aeronautics and Astronautics in 1979 and of the NASA Exceptional Service Medal
in 1980. While both awards were given to A. AviZienis, they actually recognized more than a
decade of dedicated effort by a diversely talented group of contributors, who demonstrated the
feasibility of building fault-tolerant long-life systems for autonomous operation.

3. After STAR: Fault-Tolerant Distributed Systems at JPL

In the STAR computer hundreds of SSI/MSI chips were needed to make a single proces-
sor. Therefore the processor was subdivided into three simpler functional units (each with
several hundred SSI/MSI chips), and the memory was subdivided into 4096-word modules. By
1970, major improvements were anticipated in component technology, and it was clear that
single-chip processors would soon be available for flight computers. JPL spacecraft were al-
ready being designed with several independent digital controllers for command, telemetry and
attitude control processing. It could be expected that small general purpose computers would
take over these functions and also be embedded in various payload subsystems. It was clear that
the next step in computing technology would lead to distributed systems for spacecraft on-board
computing.

3.1 The Unified Data System (UDS)

The Unified Data System (UDS) project was begun in the early 1970s as an attempt to
define and breadboard a distributed computer architecture to be used on the next generation of
spacecraft. At that time the STAR investigation had been concluded, and A. AviZienis was
directing a research effort at UCLA. The principal architects of the UDS system were D. Ren-
nels, V. Tyree and B. Riis-Vestergaard. The architecture consisted of a set of computer modules
connected by a redundant set of serial busses. Computer modules were of two types, High Lev-
el Modules (HLM) and Terminal Modules (TM). This approach made an important distinction
between those (HL.M) computers which supplied shared global functions (e.g. system executive,
telemetry formatting, data analysis) and those (TM) computers which would be embedded in
spacecraft subsystems and used for local control and data handling. HLMs were connected only
to the buses, were non-dedicated and could be backed up by a common pool of spares. TMs had
specific 1/O lines to the subsystems in which they were embedded and had to be backed up by
dedicated spares which had the same custom I/O connections [Renn 76].

The spacecraft for which this system was designed operated with a synchronous execu-
tive. All activities were time-driven. Each computing function was carried out in periodic inter-
vals and all functions were synchronized much like gears on a clock. For example, a television
picture was taken every 48 seconds, another instrument would go through eight 6-seconds cycles
every picture cycle, etc.
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A number of novel features were included in the design of UDS to enhance its reliability
[Renn 78a]. A key element was to make its operation simple, predictable, and verifiable. We
observed that although the system was required to satisfy hard real-time timing constraints, the
minimum resolution on timing of inputs and outputs of various subsystems was a muitiple of a
basic period of several milliseconds. A real-time interrupt was supplied to all computer modules
to define the minimum RTI interval. Inputs were sampled and held over specified intervals (of
one or more RTIs) and all outputs were changed only at the end of the intervals. As a result,
collections of computations could be treated as atomic events in the specified time intervals.
They could be executed in any order with exactly the same results, and unused time could be in-
serted in each interval to allow an error recovery to occur without changing the input-output
characteristics of the computations. Previous spacecraft computers were interrupt driven, mak-
ing simulation expensive and the system response much less predictable because it was more
dependent on the ordering of closely timed events. This approach made the system more
predictable and simplified verification of its programs.

Another basic approach was to view the purpose of subsystem-embedded computers as a
mechanism to create virtual subsystems which simplified system interfaces and reduced timing
constraints on the buses interconnecting the computers. To guard against error propagation due
to software errors, the subsystem-embedded Terminal Modules (which were expected to be sup-
plied by subcontractors) were not allowed to initiate bus transmissions. Instead, the High Level
Modules moved data between designated memory areas in the TMs on a periodic basis and
checked on its validity. A software executive was developed by H. F. Lesh which provided
scheduling of tasks in the various computer modules. A PDL-like specification language was
used, augmented by timing constructs such as WAIT, WHEN, BACKSTART to suspend and
reactivate programs in appropriate synchronization [Lesh 76].

A distributed microcomputer breadboard was constructed and programmed to simulate a
Mariner-class spacecraft. There were two HLMs: one dedicated to spacecraft system executive
and command, and another to telemetry and control of data movement between computers. TMs
were implemented to control a flight television camera, a tape recorder, and the uplink-downlink
functions. The breadboard was demonstrated taking a picture of an image across the lab, ship-
ping it ont as a digital telemetry stream, and displaying it on a monitor. This research bread-
board was a precursor to a distributed computer system which will soon fly on the Galileo mis-
sion to Jupiter.

This research resulted in a better understanding of the system-level issues in a distributed
real-time system. The approaches used for a fault-tolerant bus system, the techniques for fault
containment, the hierarchic control strategies developed to simplify and reduce time-criticality
of intercommunications, and special features of the system executive all apply to contemporary
spacecraft systems. They were used later in the JPL Fault-Tolerant Building Block Computer
(FTBBC). Due to limited resources, the UDS design assumed concurrent fault detection in pro-
cessors but did not attempt to implement it in the breadboard. The subsequent FTBBC program
addressed this issue.



3.2 The Fault-Tolerant Building Block Computer

In the mid 1970s, Reeve Peterson of the Naval Ocean Systems Center (NOSC) was
managing a program in VLSI development, and was interested in developing circuits for fault-
tolerant systems. He was interested in the possibility of producing fault-tolerant VLSI-based
computers which could last throughout the operational life of their host systems and provide
‘‘maintenance-free missions.”” A joint program sponsored by NOSC and NASA was initiated.
An architecture was developed by D. Rennels which resulted in a breadboard of the FTBBC
[Renn 78b].

The JPL Fault-Tolerant Building-Block Computer (FTBBC) architecture was designed to
use a small set of VLSI building-block circuits to interconnect existing microprocessor and
memory chips to form Self-checking Computer Modules (SCCM). The SCCMs were designed
to contain redundant communications interfaces which allowed them to be connected with other
active and spare (SCCM) computers to form a fault-tolerant distributed system. Self-checking
(morphic) logic design was used throughout the SCCM design to provide concurrent fault detec-
tion in each SCCM computer module. Four building-block circuits were designed: (1) a
Memory Interface building block, (2) an I/O building block, (3) a Bus Interface building block
which allowed the SCCMs to be connected with similar SCCMs into a network, and (4) a Core
building block which compared the outputs of two (duplicate) processors, checked information
on internal buses for proper coding, and collected fault messages from other building blocks.
After detecting a fault the Core could initiate a program rollback to correct transient faults, and
disable the SCCM if the fault persisted, indicating a permanent fault. A breadboard SCCM was
constructed, and experimental fault insertion was carried out which verified the concurrent fault
detection capabilities of the SCCM. Faults were inserted into both the operational logic and the
check circuits by shorting randomly selected wires to ground [Renn 81].

The design used a redundant set of MIL-STD-1553A buses for fault-tolerant intercom-
munication, and a local executive similar to the UDS design was employed. I/O and software
scheduling was synchronized by a real-time interrupt as in UDS. The majority of SCCMs were
standby redundant, but the system executive function was duplicated in two SCCMs, so that if
one failed, the dedicated backup could continue system control without excessive delays and
loss of system state information. Only a single SCCM was constructed, therefore the distributed
system has not been tested experimentally. An SCCM with a backup spare was used as a base-
line fault-tolerant processor in an autonomous satellite study conducted by JPL for the US Air
Force. Fault detection mechanisms and redundant elements were added to a USAF satellite
design, and automatic recovery algorithms were written for the SCCM [Aren 83]. David Eisen-
man was responsible for much of the algorithm development and software architecture of this
system.



3.3 Current Research Issues

The FTBBC design is characterized by the use of redundancy at several levels. Spare
(memory and processor) chips can be employed within SCCMs to enhance their reliability.
Similarly, redundant I/O and memory modules can be employed within each SCCM. Fault toler-
ance is achieved by also employing spare SCCMs within the network. The use of redundancy at
several levels has been found to be necessary in order to achieve long unattended life with a
moderate amount of spare hardware. This presents difficult reliability modeling problems, since
subsystems with internal redundancy no longer have constant failure rates, and Markov models
become very large. Modeling multi-level redundant systems has been shown to be an important
new research issue. Similarly, the implementation of concurrent fault detection using self-
checking logic raises new VLSI design issues.

In the early 1980s, a program was initiated at JPL to develop methodologies to design
self-checking VLSI circuits which also are self-exercising. The goal was to develop a computer
which in addition to having concurrent fault detection, also exercises its internal circuits in such
a way as to flush out latent faults within milliseconds (concurrently with normal operation). The
approach was to modify generic VLSI circuits used in self-checking computer design and add
internal self-exercising features to expose both transient errors and permanent faults quickly.
Existing circuits for concurrent fault detection were used to detect the faults which are exposed.
A self exercising memory design was presented at FTCS-16 [Renn 86a]. Preliminary results in-
dicate that, given that concurrent fault detection is implemented, the additional use of self-
exercising design is both effective and relatively inexpensive.

In 1986, NASA support was shifted from fault-tolerant computing to the development of
a dataflow machine, so at the current time JPL is assisting other government agencies in the
development of fault-tolerant computers. This program involves assisting in program planning
and conducting small technology development activities at JPL. Current activities involve
evaluating the fault tolerance potential of several existing high-performance architectures, as
well as developing and evaluating design approaches for implementing fault tolerance in them.
An evaluation of fault-tolerance issues in Hypercube architectures was completed and alternative
design approaches have been proposed [Renn 86b].

4, Fault Tolerance and Dependable Computing at UCLA: 1962-1986
4.1 The First Decade: 1962-1972

By 1960 Professor Gerald Estrin at the University of California, Los Angeles, (UCLA)
had initiated research on the very stimulating and advanced concept of the ‘‘Fixed-plus-
Variable’* computer architecture. After a few exchanges of visits and presentations between
JPL and UCLA, A. AviZienis joined the UCLA Department of Engineering faculty and Dr.
Estrin’s project in September of 1962 and started teaching undergraduate and graduate courses
on computer system design and computer arithmetic, while also directing research at JPL. He
presented the first formal course on fault-tolerant computer design at UCLA in 1966, and this
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course has been offered annually since then. A second, advanced graduate seminar course was
established in 1975, and a seminar on fault-tolerant software was started in 1983. About 500
graduate students have taken at least one of these courses, and over 800 practicing designers and
other computer professionals have taken a ‘‘short course’ version offered annually through
UCLA Extension, and also presented in other U.S. cities, in London, in Paris, and in Tokyo.

Research activities in fault tolerance began at UCLA in late 1962, with the first Master’s
thesis ‘A Study of Redundant Switching Circuits’’ by K.B. de Graaf being completed in June,
1964, This thesis was followed by 14 more M.S. and 18 Ph.D. theses on various aspects of fault
tolerance, supervised by A. AviZienis, who also authored or co-authored over 100 publications
in this area. Several more M.S. and Ph.D. theses were supervised and papers published by other
UCLA faculty, as discussed later,

Fault tolerance research at UCLA during the 1963-72 decade was characterized by a very
effective collaboration with the STAR project at JPL. The excellent laboratory facilities and ex-
pert technicians at JPL enabled the design, construction, and evaluation of the experimental
STAR computer, while the academic environment at UCLA provided the opportunity to the
researchers to present their results and insights through the rigorous form of Ph.D. dissertations.
The STAR computer research led to the UCLA Ph.D. theses by F. P. Mathur [Math 70b], G. C.
Gilley [Gill 70], and D. A. Rennels [Renn 73a}, all directed by A. AviZienis, and the University
of Illinois Ph.D. thesis by J. A. Rohr [Rohr 73a]. The immediate supervision of this research
was delegated to A. AviZienis by the thesis committee chairman, Prof. J. A. Robertson of the
University of Illinois.

4.2 Two Early Formative Meetings

The first organizational manifestation of UCLA activities in the fault tolerance field was
initiated by A. AviZienis in 1965. It was the Workshop on the Organization of Reliable Auto-
mata, held in Pacific Palisades, California on February 2-4, 1966 and co-sponsored by the
UCLA Department of Engineering and the Technical Committee on Switching Circuit Theory
and Logic Design of the IEEE Computer Group. The organizing committee consisted of Dr.
Raymond E. Miller (IBM Research, Yorktown Heights, N.Y.), Dr. Robert A. Short (Stanford
Research Institute, Menlo Park, CA), and was chaired by Professor Algirdas AviZienis, UCLA.
The event attracted 43 participants, many of whom later formed the nucleus of the IEEE CG
Technical Committee on Fault-Tolerant Computing that was founded in 1969. Presentations
were given by 30 speakers. Texts of the talks were not published as a volume, but the workshop
speakers provided three sessions (12 papers) at the First Annual IEEE Computer Conference
held on September 6-8, 1967 in Chicago [IEEE 67]. Since a published reference to this 1966
Workshop does not exist, the program is reproduced as Appendix B to this paper.

The success of the Workshop and the continued support and interest of several partici-
pants led A. AviZienis to propose to the IEEE Computer Group (IEEE-CG) in early 1969 that a
Technical Committee on Fault-Tolerant Computing (TC-FTC) should be formed to promote
further activities in this field. The approval of the IEEE-CG Administrative Committee was
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granted on November 18, 1969. A letter from Computer Group Chairman E. J. McCluskey,
dated November 20, 1969, appointed A. AviZienis to serve as the first Chairman of the new
TC-FTC and requested him to invite the founding members. The 18 initial members were: A.
Avizienis, W. G. Bouricius, W. C. Carter, H. Y. Chang, J. Goldberg, A. L. Hopkins, E. C.
Joseph, E. J. McCluskey, E. G. Manning, F. P. Mathur (TC Secretary), G. Metze, C. V.
Ramamoorthy, J. P. Roth, R. A. Short, C. V. Srinivasan, S. A. Szygenda, C. Tung, and S. S.
Yau. The new TC met for the first time on May 5, 1970 during the Spring Joint Computer
Conference in Atlantic City, New Jersey.

The first objective of the new TC-FTC was the establishment of a technical conference,
since an open conference dedicated to the theory and design of fault-tolerant computers had not
been held since the 1962 Symposium on Redundancy Techniques for Computing Systems in
Washington, D. C. [Wilc 62]. Co-sponsorship of the new meeting and strong organizational
support was provided by JPL, and the initial International Symposium on Fault-Tolerant Com-
puting took place on March 1-3, 1971 at the Huntington-Sheraton Hotel in Pasadena, California,
with A. AviZienis serving as Symposium Chairman, and W. C. Carter as Program Chairman. A
total of 251 participants registered for the meeting, representing the following countries: USA
230, Canada 9, France 4, Japan 3, England 3, Federal Republic of Germany and Italy, 1 each.

The program consisted of 33 papers (including three from France, one from England,
and one from Japan) arranged in six sessions, and a panel discussion on diagnosis and testing
[Gill 71]. The session titles were: test generation and diagnosis, fault location and testing, reli-
ability modeling and analysis, architecture and design, error protection and recovery, and
software reliability. At the conference banquet, the distinguished space scientist and Director of
JPL, Dr. William C. Pickering, addressed the participants, outlining plans for future exploration
of the planets and noting the key role of fault-tolerant computing in this endeavour. Many parti-
cipants of the Symposium subsequently visited JPL for a tour and a demonstration of the STAR
computer that included fault injection tests during program execution,

The annual series of comprehensive symposia on fault-tolerant computing took off with
an auspicious start, and the TC-FTC began building an international membership of fault toler-
ance experts, The Call for Papers of the second annual Symposium, to be held in the Boston,
Massachusetts area on June 19-21, 1972 was distributed at the Pasadena meeting.

4.3 The Second Phase at UCLA: Scope of Activities, 1972-1986

A major new research effort in fault-tolerant computing began at UCLA in July of 1972,
when A. AviZienis became the Principal Investigator for a five-year, $887,900 research grant
““Fault-Tolerant Computing’’ from the U.S. National Science Foundation (NSF) and established
the Reliable Computing and Fault Tolerance research group that has recently evolved into the
Dependable Computing and Fault-Tolerant Systems (DC & FTS) Laboratory. Further research
grants and contracts from NSF, the Office of Naval Research, the Federal Aviation Administra-
tion, NASA, the State of California, and industry have raised the total funding received for
research support since 1972 to over $3.5 million.
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Faculty participation in research related to fault tolerance also grew steadily: beginning
with two co-investigators (Professors W. W. Chu and D. F. Martin) on the initial NSF grant in
1972, ten more regular faculty members and several visiting professors and research scientists
have taken part in research projects during the 1972-1986 period. Graduate student participation
has also been very strong. It is estimated that about 200 publications, 30 Ph.D. dissertations,
and 20 M.S. theses have resulted from the research on dependable computing and fault-tolerant
systems that has been carried out by faculty and students associated with the projects of the Re-
liable Computing and Fault-Tolerance research group and its successor, the DC & FTS Labora-
tory, established in July, 1985.

A broad range of research problems have been addressed, including fault-tolerant archi-
tectures for distributed systems, supercomputers, and real-time applications, modeling and
evaluation of fault-tolerant systems, fault tolerance in associative processors and database
machines, fault-tolerant VLSI design, arithmetic error detecting and correcting codes, design of
self-checking PLA’s, fault-tolerant computer communications, software reliability, and design
methodologies for fault-tolerant systems. Research on the tolerance of design faults by design
diversity was initiated in 1975, and has resulted in a series of N-version programming experi-
ments, as well as the implementation of the DEDIX distributed supervisory system for N-
version software, and the development of a design paradigm for diverse multichannel systems.

4.4 Methodology Research and a Design Paradigm

The specification and design of the STAR computer at JPL involved much improvisation
and experimentation with design alternatives. It became apparent that the lessons learned during
this process could serve as the foundation for a more orderly approach that would utilize a set of
guidelines for the choice of fault masking, error detection, diagnosis, and system recovery tech-
niques.

The first effort to present such guidelines appeared in the 1967 Fall Joint Computer
Conference paper ‘‘Design of Fault-Tolerant Computers’’ [Aviz 67]. This paper introduced the
concept of a *‘fault-tolerant system’’, presented a classification of faults, and outlined the alter-
nate forms of masking, detection, diagnosis, and recovery techniques along with some criteria
for choices between ‘‘massive’’ (i.e., masking) and ‘‘selective’” application of redundancy. The
design of the JPL STAR computer was used to illustrate the application of these criteria in
choosing the fault tolerance techniques for a spacecraft computer that had long life and autono-
my requirements with strict weight and power constraints. The 47 references covered the most
relevant published work to mid-1967.

The earlier book by W. H. Pierce ‘‘Failure-Tolerant Computer Design’* [Pier 65] served
as an important reference; however, it must be noted that Pierce’s definition of ‘‘failure toler-
ance”’ corresponded exactly to fault masking in logic circuits, including voting, adaptive, and in-
terwoven logic, redundant relay contact networks, and application of error correcting codes as a
masking technique. It is a definitive work on masking forms of redundancy that were known at
that time. However, neither error detection, nor fault diagnosis, nor recovery techniques were
included as elements of Pierce’s ‘‘failure-tolerant”” computers.
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The 1967 paper was the first of a sequence of publications intended to formulate an
evolving view of dependable computing as the consequence of a judicious introduction of fault
tolerance and fault avoidance during system design. Two different classes of faults - those due
to physical causes, and those due to human mistakes and oversights are considered. This evolv-
ing view has been presented in a series of papers on the techniques, scope, and aims of fault
tolerance. The key contributions to this series are: [Aviz 71c], [Aviz 72b], [Aviz 75a), [Aviz
75b], [Aviz 76], [Aviz 77c], [Aviz 78a], [Aviz 79], [Aviz 82a], [Aviz 82b], {Aviz 84b], [Aviz
86a).

The unifying theme of these papers has been the evolution of a design paradigm for
fault-tolerant systems that guides the designer to consider fault tolerance as a fundamental issue
throughout the design process. The series shows a progressive refinement of concepts and an
expansion of the scope to include the tolerance of ‘‘human-made’’ design and interaction faults.
Other recent themes are the balancing of performance and fault tolerance objectives during sys-
tem partitioning and the integration of subsystem recovery procedures into a multi-level
recovery hierarchy. Strong emphasis is also placed on the application of design diversity in all
parts of a multichannel system in order to attain tolerance of design faults. Very valuable sup-
port for this research effort has come from the author’s participation in the activities of IFIP
Working Group 10.4, and quite especially from the discussions of fundamental concepts of fault
tolerance that have been taking place since the very first meeting of the WG 10.4 in 1981. Most
specifically, the work of Dr. J.-C. Laprie has been of great value, especially through collabora-
tion during his stay as a Visiting Professor at UCLA in 1985 [Aviz 86a].

A closely related current effort is the development of a paradigm for the qualitative
evaluation of the fault tolerance attributes of complex system designs. This ‘‘inverse’” of the
design paradigm is being developed as part of the research related to the Advanced Automation
System for air traffic control in the U. S. [Aviz 87].

4.5 Fault-Tolerant System Design and Analysis

A major research effort in the design of fault-tolerant systems has been a natural conse-
quence of the design methodology research described above. Results in several areas that have
been addressed at UCLA since 1972 are summarized below,

Fault-Tolerant High Speed Systems. The emphasis in this area has been on the intro-
duction of low-cost error detection, fault diagnosis, reconfiguration, and recovery techniques
into large multiprocessor and ‘‘supercomputer’’ architectures. The results consist of three Ph.D.
dissertations [Vine 71], [Thom 77], [Bond 81], as‘well as several publications [Vine 73], [Sylv
74], [Aviz 74a], [Sylv 75], [Thom 75], [Baga 76a]}, [Baga 76b], [Thom 76], [Aviz 77a), [Aviz
77b], [Aviz 78b], [Aviz 83a], [Ragh 84]. Faculty collaborators in this effort were Profs. M. D.
Ercegovac and T. Lang. Under direction of Prof. W. W. Chu, performance and fault tolerance
of multiport memories was studied in the Ph.D. thesis of P. Korff [Korf 76]. More recently, D.
Rennels and A. Avi¥ienis have initiated a study of the issues involved in implementing fault-
tolerance in highly parallel multicomputers. Recommendations for implementing fault-tolerance
in hypercube connected systems (e.g., the JPL Hypercube) have been presented [Renn 86b).
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Associative Processors and Database Machines. Here the emphasis has been on intro-
ducing fault tolerance in a systematic manner and assessing the cost and the effectiveness. The
associative processor work includes the Ph.D. thesis by B. Parhami [Parh 73c] and related pa-
pers that considered fault tolerance issues in this class of machines [Parh 73b}, [Parh 74]. The
later database machine work, done in collaboration with Prof. A. F. Cardenas, consisted of one
Ph.D. thesis [Alav 81] and two papers [Card 83], [Aviz 84a].

Error Detection Methods. Majority of the research in error detection has dealt with
continuing investigation of arithmetic error detecting codes. Previous arithmetic code work had
introduced the concepts of ‘‘low-cost’” arithmetic codes [Aviz 64], inverse residue codes, and
multiple residue and AN codes with ‘“‘low-cost” and *‘hybrid-cost’ variations [Aviz 65], [Aviz
67b], [Aviz 69], [Aviz 71b]. Later results were: algorithms for coded operands [Aviz 73], ap-
plications to storage errors [Parh 73a], [Parh 78], coding and algorithms for signed-digit
representations [Aviz 81a], and two-dimensional residue codes [Aviz 83a), [Aviz 85a], [Aviz
86b]. Other studies considered external monitoring [Aviz 81b] and diagnosis [Ng 77c]. Further
work on arithmetic error codes was contributed by Prof. A. Svoboda [Svob 78], and a Ph. D.
dissertation on error-coded algorithms for on-line arithmetic was done by A. Gorji-Sinaki [Gorj
81] under direction of Prof. M. Ercegovac.

Design of Distributed Systems. The ‘‘building block’” approach to fault-tolerant distri-
buted system design was pioneered by D. A. Rennels [Renn 78a], [Renn 78b], [Grey 84], [Renn
86a], [Renn 86b]. Much of the work in this area has focused on fault-tolerant real-time space
systems. D. Rennels has supervised several research studies on the architectures required for the
next generation of on-board computer systems [Renn 81a], [Renn 81c], [Depa 82], [Renn 84].
In the area of ground-based distributed systems a study was completed by C. Covey under the
direction of D. Rennels which examined hardware augmentations to speed up functions for
maintaining consistency and synchronization when data is replicated at several sites [Cove 82].
The Ph.D. thesis of B. Grey examined the potential use of highly fault-tolerant shared storage
servers for large distributed systems. A preliminary architecture was completed, and highly
secure capabilities-based storage management techniques were explored [Grey 85].

Under direction of A. AviZienis, Ph.D. dissertations were done on interconnection net-
works {CheH 81], on distributed architectures for N-version software execution [Maka 82a],
[Maka 84], and on communication architectures [Ragh 82a], [Ragh 82b], {Ragh 85]. Professor
D. S. Parker directed an investigation of distributed operating system and application algo-
rithms, with emphasis on distributed concurrency control [Park 81]. The problem also was in-
vestigated in the Ph.D. thesis by R. A. Ramos [Ramo 82], {Park 82a]. A new type of network,
called the Gamma network, which is a multi-processor interconnection network with redundant
paths was introduced and analysed using redundant number systems [Park 82b], and regular net-
works were investigated [Malo 82]. Distributed communication systems were investigated
under the direction of Prof. M. Gerla. A new fault-tolerant ring architecture was developed
which consists of two interleaved rings [Grna 80a]. Computationally efficient techniques for re-
liability evaluation of a network in which both nodes and links can fail with given probabilities
were devised [Gma 79], [Gma 81b]. An extended model of distributed systems, Stochastic Petri
Nets, was developed and its properties in both discrete and continuous time as well as some
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practical applications were studied in the Ph.D. dissertation of M. Molloy, which demonstrated
the capabilities of the Stochastic Petri Net models to analyze systems for both correctness and
performance [Moll 81]. Approximations and bounds on the performance of multibus intercon-
nection schemes were derived [Mars 82). Collaborating faculty included Profs. M. D. Ercego-
vac, M. Gerla, D. S. Parker, and B. Bussell.

Fault Tolerance Aspects of VLSI Design. This research included studies of self-
checking design [OryC 73], [Sum 75], [Sum 76] and the Ph.D. dissertation by S. L. Wang on to-
tally self-checking PLAs [Wang 79], [Wang 81]. The Ph.D. thesis of M. W. Sievers explored
computer-aided design of totally self-checking logic [Siev 80], [Siev 81]. Yield-improving
designs were investigated in Ph.D. research by T. E. Mangir [Mang 81], [Mang 82]. An investi-
gation into the feasibility of a circuit-oriented approach in enhancing testability of VLSI chips
by dynamically controlled partitioning was performed as a Ph.D. thesis by V. G. Oklobdzija,
directed by Prof. M. Ercegovac [Oklo 82a], [Oklo 82b]. In 1984, D. A. Rennels initiated studies
to develop VLSI circuits which are both self-checking and provide concurrent self-testing during
normal operation. This work is being conducted with S. Chau who is nearing completion of a
Ph.D. dissertation [Renn 86a). Dr. Yuval Tamir joined the UCLA faculty in 1985 after receiv-
ing his Ph.D. at UC Berkeley [Tami 85]. His Ph.D. thesis addressed a number of problems in
the implementation of fault-tolerant VLSI circuits and their application in fault-tolerant multi-
computer architecture [Tami 83, 84a, 84b, 84c]. Recently, he has addressed recovery issues in
large multicomputer systems [Tami 87]. A study led by Y. Tamir and D. Rennels is also under
way to reduce error checking delays in high speed VLSI processors by pipelining the error
checks and providing several cycle rollback capability to compensate for delayed error signals.

Modeling and Evaluation of Fault-Tolerant Systems. Directed by A. AviZienis, early
work in this area was done by F. P. Mathur [Math 70a], [Math 70b], including the CARE relia-
bility modeling program [Aviz 71a]. Further work, including experimental evaluation of the
JPL-STAR computer and the RMS modeling system, was done by D. A. Rennels [Aviz 72a],
[Renn 73a], [Renn 73b]. A major advance in Markov modeling was contributed through the
Ph.D. dissertation of Y. W. Ng [Ng 76a], who devised an unified model [Ng 73], [Ng 73], [Ng
80], that introduced transient faults [Ng 76b], degradability, and repair [Ng 77a]. The ARIES
76 reliability modeling system (written in APL) contained all these features [Ng 77b], [Ng 78],
[Ng 80], and found wide acceptance for education, research, and in industry. The sucessors to
ARIES 76 were the ARIES 81 [Maka 82b) and ARIES 82 [Maka 82c] systems that were written
in the language C and introduced the model of a ‘‘periodically renewed”’ fault-tolerant system
[Maka 81]. ARIES 82 is still widely used in research and industry. Under the direction of D.
Rennels, several reliability models were developed by A. DePaula to deal with the use of multi-
level redundancy and systems with time-varying failure rates. These were based on recursive
integral formulations, with closed form solutions in some cases and numerical integrations in
more complex cases to evaluate systems in which Markov matrices become unwieldy [Depa 82].
A separate effort addressed the modeling of transient faults in TMR systems [Merr 75].
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4.6 Tolerance of Design Faults by Design Diversity and N-Version Software

By early 1970s significant progress had been made in the tolerance of physical faults,
and it became clear that design faults, especially as represented by software *‘bugs’’, presented
the next challenge to the researchers in fault tolerance. A research effort to attain tolerance of
design faults by means of multi-version software was started by A. AviZienis at UCLA in early
1975. The method was first described as ‘‘redundant programming’’ at the April 1975 Interna-
tional Conference on Reliable Software in Los Angeles [Aviz 75a], and was renamed as “*N-
version programming’’ in the course of the next two years [Aviz 77d]. The entire UCLA design
diversity research effort through mid-1985 has been summarized in [Aviz 85b]. The name
““Multi-Version Software’’ (MVS) is also used.

The N-version programming approach to fault tolerant software systems employs func-
tionally equivalent, yet independently developed software components. These components are
executed concurrently under a supervisory system that uses a decision algorithm based on con-
sensus to determine final output values. From its beginning in 1975, the fundamental conjecture
of the MVS approach at UCLA has been that errors due to residual software faults are very like-
ly to be masked by the correct results produced by the other versions in the system. This con-
jecture does not assume independence of errors, but rather a low probability of their concurrence
and similarity. MVS systems achieve reliability improvements through the use of redundancy
and diversity. A ‘‘dimension of diversity’’ is one of the independent variables in the develop-
ment process of an MVS system. Diversity may be achieved along various dimensions, e.g.,
specification languages, specification writers, programming languages, programmers, algo-
rithms, data structures, development environments, and testing methods.

The scarcity of previous results and an absence of formal theories on N-version program-
ming in 1975 led to the choice of an experimental approach: to choose some conveniently ac-
cessible programming problems, to assess the applicability of N-version programming, and then
to proceed to generate a set of programs. Once generated, the programs were executed as N-
version software units in a simulated multiple-hardware system, and the resulting observations
were applied to refine the methodology and to build up the concepts on N-version programming.
The first detailed assessment of the research approach and a discussion of two sets of experi-
mental results, using 27 and 16 independently written programs, obtained from Prof. D. Berry’s
software engineering class, was published in 1978 [CheL 78b]. The detailed results appear in
the Ph.D. thesis by Liming Chen [CheL 78a].

The preceding exploratory research demonstrated the practicality of experimental investi-
gation and confirmed the need for high quality software specifications. As a consequence, the
first aim of the next phase of UCLA research (1979-82) was the investigation of the relative ap-
plicability of various software specification techniques. Other aims were to investigate the types
and causes of software design faults, to propose improvements to software specification tech-
niques and their use, and to propose future experiments for the investigation of design fault
tolerance in software and in hardware.
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To examine the effect of specification techniques on multi-version software, an experi-
ment was designed in which three different specifications were used. The first was written in the
formal specification language OBJ [Gogu 79b]. The second specification language chosen was
the non-formal PDL that was characteristic of current industry practice. English was employed
as the third, or ‘‘control’’ specification language, since English had been used in the previous
studies [CheL 78b]. The detailed description of the experiment has been reported in the Ph.D.
dissertation by J. P. J. Kelly [Kell 82], and the main results have been presented in [Aviz 82c¢],
[Kell 83] and [Aviz 84b].

In parallel with the experiment, a general model for unified interpretation of N-Version
Programming and Recovery Block methods was developed. The same model allows modeling
of sequential and parallel N-Version Programming (NVP) as well as of the Recovery Block
scheme. Following this model, queueing models have been developed to analyze the perfor-
mance of the fault tolerance techniques. The average segment processing time (average
throughput) and reliability were the performance measures. The same queueing models were
used for examination of both performance measures as functions of system parameters which
include: average segment processing time, recovery rate, repair rate and segment failure proba-
bility. The obtained results and a comparison of the two fault tolerance techniques were pub-
lished in [Gma 80b], {Grna 80c].

The NASA Langley Research Center is sponsoring the NASA Four-University experi-
ment in fault tolerant software which has been underway since 1984. During the summer of
1985, the NASA experiment employed 40 graduate students at four universities to design, code
and document 20 diverse software versions of a program to manage redundancy and to compute
accelerations for a redundant inertial measurement unit. The analysis of this software currently
engages researchers at six sites: UCLA, the University of Illinois at Urbana-Champaign, North
Carolina State University, and the University of Virginia, as well as the Research Triangle Insti-
tute (RTD), and Charles River Analytics (CRA). Empirical results from this experiment will be
jointly published by the cooperating institutions after the verification, certification, and final
analysis phases are complete. While the joint results still await publication, some independent
results from the UCLA effort led by John P. J. Kelly have been reported in [Kell 86].

In the course of the experiments at UCLA it became evident that the usual general-
purpose campus computing services were poorly suited to support the systematic execution, in-
strumentation, and observation of N-version fault-tolerant software. In order to provide a long-
term research facility for experimental investigations of design diversity as a means of achieving
fault-tolerant systems, the UCLA Reliable Computing and Fault Tolerance research group
designed and implemented the prototype DEDIX (DEsign Dlversity eXperiment) system [Aviz
85c], a distributed supervisor and testbed for multiple-version software, at the UCLA Center for
Experimental Computer Science. DEDIX is supported by the Center’s Olympus Net local net-
work, which utilizes the UNIX-based LOCUS distributed operating system to operate a set of
VAX 11/750 computers. The purpose of DEDIX is to supervise and to observe the execution of
N diverse versions of an application program functioning as as fault-tolerant N-version software
unit. DEDIX also provides a transparent interface to the users, versions, and the input/output
system, so that they need not be aware of the existence of multiple versions and recovery algo-
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rithms. The prototype DEDIX system has been operational since early 1985. Several
modifications have been introduced since then, most of them intended to improve the speed of
the execution of N-version software. The first major test of DEDIX that is currently taking
place is the experimentation with the set of 20 programs produced by the NASA-sponsored
four-university project discussed earlier. At the same time, a formal specification effort for the
DEDIX is being initiated.

The past experience at UCLA has pinpointed an effective specification as the keystone of
success for N-version software implementation [Aviz 84b]. Significant progress has occurred in
the development of formal specification languages since our previous experiments. Our current
goal is to compare and assess the ease of use by application programmers of several formal pro-
gram specification methods. Presently the first choice is the Larch specification language family
[Gutt 85]. The NASA Four-University experiment software that was originally specified in En-
glish has been specified in Larch [Tai 86], and work has been initiated on specifying parts of
DEDIX in Larch as well, Valuable advice and support in the efforts have been received from
the originators of Larch, Prof, J. V. Guttag of M.L.T., Dr. J. J. Horning of the DEC Systems
Research Center, and Prof. J. M. Wing of Carnegie-Mellon University.

In an MVS system, several versions of a program are executed, usually in parallel, and
their intermediate results are compared. In this way, faults in the individual versions are masked
by a consensus. Without recovery the accumulation of failures is eventually large enough to sa-
turate the fault-masking ability, and the entire system fails. It is therefore essential to recover
these versions as they fail, and to transform the erroneous state of the failed versions to an
error-free state from which normal execution can continue. The method of Community Error
Recovery (CER) developed at UCLA in the Ph.D. dissertation of K. S. Tso [Tso 87a] makes use
of the assumption that at any given time during execution a majority of good versions exists
which can supply information to recover the failed versions. Experimental evaluation of the
CER method has been performed, using the DEDIX supervisory system and the five diverse pro-
grams written at UCLA for the NASA experiment described previously [Kell 86]. A summary
of the implementation and modeling of the CER method has been presented in [Tso 86], and a
discussion of the evaluation appears in [Tso 87b).

Related research on the NASA experiment programs {(in two completed M.S. theses) has
considered statistical data on coincident and similar errors [Dora 86], and the branch coverage
test has been applied to study various aspects of the programs [Swai 86]. In late 1986 a new ex-
periment was initiated with support from the Sperry Commercial Flight Systems Division of
Honeywell, Inc., Phoenix, AZ., in which six teams of two programmers each will use six dif-
ferent programming languages (Pascal, C, Modula-2, Ada, Lisp, and Prolog) to write a flight
control program. The goal is to study the diversity that can be attained by the use of very dif-
ferent languages.
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4.7 Reliable Software, Formal Specification, and Program Correctness

With the start of the 1972-78 NSF grant, Professor David F. Martin took charge of a
study on various aspects of attaining reliable software. This research focused on semantic and
pragmatic issues of the correct implementation of programming languages. The investigations
carried out comprised a balanced combination of foundational theoretical studies and practical
implementations. During the 1972-78 period, Ph.D. dissertations were completed and contribu-
tions were made in the areas of acyclic parallel program schemata [Hadj 75], compiler correct-
ness [Chir 76], portable translator writing systems [Heis 76], high-level microprogramming
languages and the synthesis of correct microprograms [Patt 77], and the design and proof of
correct implementation of an expression-oriented, microcomputer-based high-level program-
ming language [Clea 78].

Beginning in 1973, Professor Joseph A. Goguen conducted algebraic research on pro-
gram semantics, specification and synthesis [Gogu 79a]. Results included the development of
the basic mathematical definitions and results which underlie the algebraic approach to abstract
data types [Gogu 782], a method to introduce abstract error messages into abstract data types
and programs [Gogu 77], and the new programming specification language OBJ [Gogu 78b].
An interactive implementation called OBJ-T was done on UCLA’s PDP-10 [Gogu 79b). Profes-
sor R, Burstall from the University of Edinburgh and J. Goguen developed an algebraic
specification language named CLEAR [Burs 77].

In 1979, a three-year NSF grant ‘‘Improvement of the Reliability of Computing,’” was
received that supported the N-Version fault-tolerant software research as well as the continua-
tion of above discussed research concerned with the development of techniques for formal alge-
braic specification of semantics, and studies of techniques and tools to assure the correct imple-
mentation of programming languages. Two Ph.D. dissertations were completed under the gui-
dance of Prof. D. F. Martin. The thesis research conducted by M. Zamfir, developed a
mathematical model of concurrent computing agents, the flow net. Parallel programming
languages can also be defined in this model in the usual syntax-directed fashion [Zamf 82]. The
principal accomplishment toward correct implementation of programming languages was the
Ph.D. dissertation by R. Bigonha which produced the design of a language and system for the
modular specification of the denotational semantics of programming languages [Bigo 82].

Directed by Prof. J. Goguen, Ph.D. thesis research by K. Parsaye-Ghomi produced a
theory of higher order data types, i.e., abstract data types with higher order operations and equa-
tions [Pars 82].
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APPENDIX A

The following text is an exact reproduction of the JPL Spacecraft Computers and Sequencers
Section interoffice memorandum addressed to Section Manager Henry A. Curiis that initiated the JPL
STAR computer research project in 1961. It is the earliest existing description of the STAR concept, and
it was used as evidence to support the U.S. Patent application filed by JPL in 1967. Subsequently, U.S.
Patent No. 3, 517, 671 **Self Testing and Repairing Computer’® was granted to A. AviZienis (assigned 10
NASA) on June 23, 1970. Figures 1 and 2 are taken directly from the original.

JET PROPULSION LABORATORY INTEROFFICE MEMO
TO: H. A. Curtis FROM: A. A. Avizienis DATE: 10-6-61
SUBJECT: Preliminary Discussion of the Logical Design of a Seif-Testing and Repairing
System for Spacecraft Guidance and Control.

I. OBJECTIVE

The objective of this memo is to discuss the organization and logical design of a Self-Testing-
And-Repairing (STAR) system which can perform the guidance computer and sequencer functions in a
spacecraft. It is expected that the self-repair property will increase the probability of successful operation
of the system on long-term missions. It may also be a contribution in advancing the state of the art in
design of reliable computing systems.

1. CHARACTERISTICS

The following system characteristics are considered to be essential in the STAR system for
spacecraft guidance computing and sequencing:

1. Self-repair (including input and output mechanisms).

2, Evolution from presently used hardware and techniques.
3. Flexibility and growth potential.

4, Linkage with ground-based computers.

5. Gradual (**graceful’”) degradation upon accumulation of failures.

Because of the special purpose of the STAR system, it is possible to make certain
assumptions about its operational requirements and conditions. Several significant features are:

1. Speed requirement is relatively low.
2. Sequencer function as well as computing must be performed.
3. Available power is limited.

4, There may be long periods of idleness (standby).
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5. Inputs are from transducers and radio link; outputs to radio link and actuators.

6. Operation may be linked with ground-based computer or operator.

1. Program is generally fixed for one mission; missions are variable in duration and purpose.
8. Self-repair must extend to input and output devices.

9. New techniques and components (adaptation, cryogenics, etc.) may become available.

10. Length of missions and reliability requirements are going to increase.

The listed objectives and properties form the basis for the following discussion of a possible
configuration of the STAR system.

II1. SELF-REPAIR

In order to achieve self-repair in space environment, the STAR system must be capable of auto-
diagnosis or fault-masking. Auto-diagnosis must be followed by the replacement of a permanently
defective part (to be called failure) or by a repetition of the operation if the result is diagnosed as invalid
because of a transient malfunction (to be called error). Thus, errors are corrected by means of time
redundancy, and failures are corrected by means of equipment redundancy.

Fault-masking is an alternative approach: here failure or temporary malfunction of an element
does not produce an erroneous output because other (redundant) elements mask the effect of the failure.
Masking will not be effective if an error (transient malfunction) is caused by external noise.

When information is coded in an error-detecting code, failures and both types of errors (of internal
and external origin) will be detectable (subject to limitations of the code). The diagnostic (error-detecting)
equipment itself, however, should not malfunction during diagnosis. For this purpose fault-masking must
be incorporated with the diagnostic equipment. Furthermore, it must be especially protected (shielded)
against externally originated errors. Automatic time redundancy (repetition of all diagnoses with voting)
may be applicable here.

A review of above discussed characteristics leads to the preliminary choice of the organization of
the STAR system which is shown in Figure 1.

The system consists of a central Diagnostic Control and of arrays of peripheral Function Units of
several types. Each array of Function Units includes one or more reserve units; a reserve unit is chosen
when the Diagnostic Control detects a failure in the (presently) operating unit. The failed unit is
permanently disconnected and the next reserve unit is connected to Diagnostic Control.

The power consumption is least when the reserve units are stored ““cold"’; furthermore the system
will be operative as long as at least one unit in an array remains operative. These reasons relegate
““triplicated with voting’* use of Function Units to second place. The number of identical Function Units
in one array may vary according to the length of the mission, the relative importance of the unit in the
system, weight limitations, and the reliability of the type of unit used. The intemal design of the Function
Units is relatively independent of the Diagnostic Control as long as the standard format of information is
retained; this should facilitate the introduction of changes and improvements.
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IV. THE DIAGNOSTIC CONTROL

The Diagnostic Control of the STAR system performs all functions of a control unit in a
conventional computer, Furthermore, it evaluates the validity of all information which passes between the
operating Function Units and performs the self-test and self-repair sequences when invalid information is
detected.

Obviously, all information flow must be routed through the Diagnostic Control; this requirement
limits the speed of the entire system. All information must be coded in an error-detecting code; either a
uniform code must be used in all Function Units, or a code conversion must be performed by the
Diagnostic Control (conversion in the Function Unit itself is an altemative). Other failure-indicating
inputs from the operating Function Units may be useful, such as indication of power loss, etc.

The Diagnostic Control itself must be the most reliable part of the STAR system. Fault-masking
and redundancy at component level offer the most attractive approach to make it reliable. Self-diagnosis
during periods of idleness may be applicable; this, however, requires a spare control unit or complete
transfer to ground control in case of a failure.

The Diagnostic Control receives an instruction from the Fixed Storage unit and evaluates its
validity. If the validity is questionable, the instruction is obtained once more (time-redundant check for
errors); if it is still invalid, a reserve Fixed Storage unit is consulted for the instruction.

If the instruction is valid, the proper Function Unit is instructed to execute it; the result is then
brought into the Diagnostic Control and tested for validity. Again, in case of indicated invalidity, the
operation is repeated (one or more times); if the result is still invalid, a failure of the Function Unit is
assumed. The Diagnostic Control contains a switching arrangement which is now actuated and the next
Function Unit in the array is activated and connected to the Diagnostic Control. The failed unit is
permanently deactivated and disconnected.

A flow diagram of the procedure described above is shown in Figure 2. A special *‘degradation
procedure’’ is necessary when the reserve Function Units of one type are exhausted, or when no valid
instructions are available.

The Diagnostic Control is also the most likely location for the sequence generator and the clock of
the STAR system. Input, output, arithmetic, and storage functions are relegated to the Function Units. It
is desirable to keep the Diagnostic Control unit as small as possible, since it is the most vulnerable part of
the STAR system. An effort should be made to incorporate most functions into the Function Units. A
single general-purpose Diagnostic Control unit then could be used as center of many STAR systems of
varying size, capacity and purpose.

V. THE FUNCTION UNITS
The most obviously needed types of Function Units are (1) Fixed Store, (2) Arithmetic, (3)

Memory, (4) Input and (5) Output. Others may be found necessary, for instance, Clock and Sequencer, or
Scientific Data Reducer units.
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A. Fixed Siore Function Units

These units contain programs for guidance computations, and all emergency, diagnostic and other
internal procedures. Scientific data reduction program may also be contained here. The program data
(instructions) are coded for detection of errors and failures. The redundancy is in the form of reserve
units; time redundancy (repeated readout) is also to be used. An independent indication of the origin of
the instruction delivered to the Diagnostic Control may be necessary.

B. Arithmetic Function Units

The Arithmetic Function Units must have a provision to retain the error-detecting code in the
results of arithmetical operations. Furthermore, an independent indication of which arithmetic operation
has been performed is desirable with the result; in this manner improper interpretation of the instruction
by the Arithmetic unit can be detected.

C. Memory Function Units

This type of unit is used for storage of intermediate results and other non-fixed information. Two
units are likely to be used at once to avoid loss of information; an error-correcting code is an alternative.
An independent indication (to the Diagnostic Control) of the address from which (or into which)
information was delivered would avoid errors due to incorrect address decoding.

D. Input Function Units

These units are the various sensors and transducers on the spacecraft and the radio receiver. Input
data must appear in digital form and be coded in an error-detecting code. Such code may appear on shaft-
position digitizers (code wheels), etc. Validity check procedures must be available for each input, either
in form of a preliminary and terminal checkout, or by repeated measurements (by the same or different
instruments). Spare input devices should be available for self-repair.

The radio receiver is expecied to deliver coded information which can be checked for validity; a
spare receiver is desirable.

E. Output Function Units

These units are the various actuators and the radio transmitter. An independent feedback of the
output information as delivered by the output units will provide a check of their performance. Voting-
type redundancy of actuators should be considered. A spare radio transmitter is considered desirable.

VI. OTHER CONSIDERATIONS

The design of an initial breadboard Diagnostic Control and Function Units would utilize the
hardware and techniques which are most readily available, and have been used in earlier flights. There is
no conceptual difficulty in starting a design with magnetic and semiconductor elements; adaptive
switching circuits and new components may be introduced at a suitable time. The logical design of the
STAR system is relatively independent of any specific set of circuits or components.
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The separation into Function Units allows most flexibility in assembling a complete STAR
system; only the format of information must be retained. Thus, many different systems may be put
together from the set of units.

The design problem is also subdivided into: (1) development of the STAR system concept, (2)
development of the information format; (3) development of the Diagnostic Control unit, (4) development
of the various Function Units. It is necessary to consider the division of computational requirements
between Earth-based computers and the STAR system in the spacecraft. The relative reliability and
accuracy must be evaluated; however, duplicate operations with an assigned priority and comparison offer
the greatest flexibility.

The ultimate use of the spacecraft for long exploratory flights and orbiting of planets favors a
complete STAR system in the computer; however, provisions should be made to utilize ground support
and also to achieve ‘‘graceful’”’ degradation by relinquishing functions to ground computing systems if a
non-repairable failure occurs in the spacecraft STAR system.

The degradation of the STAR computer should occur in an orderly manner, according to a special
program in the Fixed Store. Preferably, control and execution of lost functions is requested from the
ground. The communication with ground may be continuous and used as a back-up check while the
STAR system is functioning properly.

The redundancy of communication equipment is implied by the above requirement; the level of
redundancy remains to be established as well as the procedure of switchover (if needed).
VII. CLOSING REMARK

The above presented concept of the STAR system has been put down on paper for the first time;

inevitably it is uncertain and too general on many important problems. However, it appears to offer an
interesting and potentially very reliable computing system for the 1965-70 period of space exploration.
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APPENDIX B

This is the program of a Workshop held on February 2-4, 1966 that served as a major stimulus for
the subsequent formation of the IEEE Computer Group Technical Committee on Fault-Tolerant
Computing in 1969.

WORKSHOP ON THE ORGANIZATION OF RELIABLE AUTOMATA

Terrace Room, Santa Ynez Inn, 17310 Sunset Blvd., Pacific Palisades, California

Sponsored by:
The Switching Circuit Theory and Logical Design Committee, IEEE Computer Group
Department of Engineering, University of California, Los Angeles

Engineering Extension, University of California Extension, Los Angeles

Wednesday, February 2, 1966
10:00 am Registration and Coffee Hour

12:00 noon Opening Luncheon

Speaker: Professor C. M. Duke
Chairman, Department of Engineering
University of Califoria, Los Angeles

1:30 pm Introduction:
‘‘On the Problem of Reliable Automata’” A. AviZienis
‘‘ A Survey of Soviet Activities in Reliability’’ R. A. Short and W. H. Kautz
2:30 pm Redundancy Theory and Techniques S. Winograd, Chairman
*“Stability of Threshold Element Nets Subject to
Common Shifts of Threshold™ A. M. Andrew
(Paper was not presented - author did not attend)
*“The Need and Means for Fault Detection in Redundant Systems’” J. B. Angell
**Reliability Estimation for Redundant Systems’’ C. G. Masters
“‘Placement of Voters in Modularly Redundant Digital Systems’’ D. Rubin
‘“Reliability, Redundancy, Capacity and
Universality in Polyfunctional Nets'’ R. H. Urbano
6.00 pm Workshop Dinner
Keynote Speaker: Professor E. J. McCluskey, Jr.

Chairman, Switching Circuit Theory and
Logical Design Committee, [EEE Computer Group



7:30 pm

8:00 am

9:00 am

12:30 pm

2:00 pm

5:30 pm
6:30 pm

8:00 pm

Theory of Diagnosis

*‘Methods for Finding Fault Detection and Diagnostic Tests'’

**Minimization of the Number of Fault Detection Tests"’

‘“Evaluation of Computer Self-Test Process by Software Simulation™”

‘*Fault Diagnosis in Combinational Networks"’
** Algorithms for the Diagnosis of Automaton Failures’’

Thursday, February 3, 1966
Breakfast

Application of Coding and Automata Theory
*‘Reliability of Sequential Machines’’
‘“Error Codes for Arithmetic Operations™’
**Memory Failures in Automata’’

‘*‘Coded Redundancy in Logic Nets™’

“I: On Active Self-Comecting Systems;
II: On Error Correction in Memory Systems™’

‘‘Functional Coding in Redundancy Techniques®’
Luncheon

Redundant and Self-Diagnosing Systems

** A Diagnosable Arithmetic Processor"’

‘Study of Aerospace Computer Concepts'’

‘‘A Self-Diagnosable Computer”’

**On Self-Diagnosis of Large, Multi-Processor Computers’’
** An Algorithmic Approach to Self-Diagnosis’’
*“Self-Checking Microprograms’”

Social Hour
Dinner

Ad Hoc Discussion Groups

R. A. Short, Chairman
D. B. Armstrong
H.Y. Chang

J. W. Hirsch

W. H. Kautz
J.P.Roth

W. W. Peterson, Chairman

J. A. Brzozowski
H. L. Garner
J.F. Meyer

C. L. Sheng

C. V. Srinivasan

S. Winograd

R. E. Forbes, Chairman
A. AviZienis

M. Ball and F. H. Hardie
R. E. Forbes

E. Manning

R. A. Marlett

R. W. Heckelman
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Friday, February 4, 1966

8:00 am Breakfast

9:00 am Multiprocessor and Replacement Systems R. E. Miller, Chairman

‘‘Improving Reliability by the Practical Application
of Selected Redundant Techniques®’

“‘Network Schemes for Combined Fault Masking and Replacement’’
“*Some Aspects of Self-Repairing Automata’

‘‘Evaluation of Logical and Organizational Methods for
Improving the Reliability and Availability of a Computer”*

‘*Some Techniques in Designing Computer Subsystems
for Automated Maintenance and Reliability’”

*‘On a Study of Self-Repairing Digital Computers’’

12:00 noon Closing Remarks:

‘‘ A Review and an Extrapolation’’

12:30 pm Adjournment

Workshop Participants

Dr. R. Alonso, M.LT. Instrumentation Laboratory, Cambridge, Massachusetts
Prof. J. B. Angell, Stanford University, Stanford, California

Dr. D. B. Armstrong, Bell Telephone Laboratories, Inc., Murray Hill, New Jersey
Mr. M. Ball, IBM Space Guidance Center, Owego, New York

Prof. J. A. Brzozowski, University of California, Berkeley, California

Dr. H. Y. Chang, Bell Telephone Laboratories, Inc., Holmdel, New Jersey
Mr. C. Disparte, Hughes Aircraft Company, Culver City, California

Mr. W. A. England, Honeywell, Inc., St. Petersburg, Florida

Prof. G. Estrin, University of California, Los Angeles, California

Mr. R. E. Forbes, IBM Space Guidance Center, Owego, New York

Prof. H. L. Ganer, University of Michigan, Ann Arbor, Michigan

Mr. J. Goldberg, Stanford Research Institute, Menlo Park, California
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APPENDIX C

Design of fault-tolerant computers

by ALGIRDAS AVIZIENIS
University of California

Los Angeles, California, and

Jet Propulsion Laboratory
Pasadena, California

Causes and symptoms of logic faults
in digital systems

Reliable performance of hardware has been a require-
ment for digital systems since the construction of the
first digital computer. Improper functioning of the logic
circuits in a digital system is manifested by logic faults,
which are defined for this paper as “permanent or
transient deviations of logic variables from the values
specified in design.”

Permanent faults are caused by physical changes in
the components of a logic circuit which permanently
alter the logic function specified by the designer. The
most common permanent faults are the determinate
faults of “stuck on zero” and “stuck on ong” types.
Less frequent is the indeterminate or “stuck on X" fault,
in which the logic variable assumes both “zero” and
“one” values improperly during a sequence of opera-
tions. Faults also differ in their extent: a local fault
affects only one logic circuit, while a distributed (or
catastrophic) fault occurs when one failure creates faults
in several logic circuits of the same system.

Transient faults are caused by temporary changes
in the propertics of logic circuits, which lead to devia-
tions from the specified values of logic variables. Such
transient faults also belong to one of the above listed
categories. They are caused either by external influences
{electromagnetic interference, noise in power supply,
etc.) or by temporary circuit malfunctions (overheat-
ing, overload conditions, etc.). External causes may
simultaneously induce many faults throughout the sys-
tem, therefore independent occurrence cannot be as-
sumned for all transient faults.

At the system level a logic fault is manifested as an
error in the program being executed by the system.
Two types of errors may be distinguished. A word error
occurs when a computer word (data word or instruc-
tion) is altered by a fault. A description of the altera-
tion is called the damage partern of the fault. A logic
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error occurs when an individual logic variable, which
is not a part of a structured word, is altered by a fault.
Examples of such variables are the various control
signals in a computer. A logic error alters the algorithm
being executed in some undersirable manner.

The present paper is concerned with the introduction
of fault-tolerance in order to increase the reliability and
availability of a digital system. We say that a system is
fault-tolerant if its programs can be properly executed
despite the occurrence of logic faults. All above dis-
cussed types of faults and errors need to be considered
in the design of a fault-tolerant computer. Theoretical
studies of fault-tolerance need a clear identification of
the types of faults and/or errors which are to be toler-
ated.

Protective redundancy for fault-tolerance

Reliable performance of digital systems is usually at-
tained by the systematic application of two techniques.
The first is the selection of highly reliable components
and the use of proven methods for their interconnection
and packaging. The second technique is an extensive
verification of the logic design, of the programs. and
of the finished hardware, first by simulation and later
by diagnostic and functional tests under expected en-
vironmental conditions. In spite of these reliability as-
surance techniques, the system may still fail during use
because of uncontroilable or undetected faults. These
are caused by undetected design errors, random fail-
ures of components or connections, and externally in-
duced malfunctions during the operation of the system.

The effects of logic faults can be eliminated by the
introduction of protective redundancy into the system.
A computer system contains protective redundancy if
faults can be tolerated because of the use of additional
components or programs, or the use of more time fot
the computational tasks. These additional components,
programs, and time are not required by the system in
order to execute the specified tasks as long as faults
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do not occur. The techniques of protective redundancy
may be divided into two major categories: massive (also
called masking) redundancy and selective redundancy.

In the massive (masking) redundancy approach the
effect of a faulty component, circuit, signal, subsystem,
or system is masked instantancously by permanently
connected and concurrently operating replicas of the
faulty element. The level at which replication occurs
ranges from .individual circuit components to entire
self-contained systems. Theoretical studies of massive
redundancy were initiated in January 1952 by John
von Neumann in a series of five lectures at the California
Institute of Technotogy.' Other pioneering contribu-
tions in this field are due to C. J. Creveling,® and to E.
F. Moore and C. E. Shannon.” The subject has at-
tracted considerable attention in the past decade, and
four principal techniques of massive redundancy may
be distinguished among the published studies. These
techniques are: :

1. Replication of circuit components: e.g., “quadded”
diodes, resistors, transistors, duplicated connec-
tions, etc.**

2. Replication or coding of logic signals: use of
multiple channels and voting elements,"** re-
cursive nets,*’ interwoven logic,"’ variation-toler-
ant coded threshold element nets."

3. Adaptive logic elements, e.g., voters with vari-
able-weight inputs.”

4. Replication of entire systems with comparison or
voting at system level.'t11

The category of selective redundancy encompasses

redundancy techniques which fall outside the defini-
tion of massive redundancy. Since instantanecus mask-
ing is excluded in the selective technique, it is necessary
to detect the presence of a fault. Subsequently, the fault
is made harmless by a corrective action. The tech-
niques of fault detection fall into two major categories:

1. Concurrent diagnosis by the application of error-
detecting codes and special monitoring circuits.
Detection occurs while the system is being
used_ll.ﬂ.lﬁ.l‘l’.ls

2. Periodic diagnosis using diagnostic hardware and/
or programs. Use of the system is interrupted for
diagnosis,'#-20.21.22.23

A variety of approaches exists in the implementation
of both methods:; furthermore, combinations of both
techniques have been successfully employed.*

A corrective action which eliminates effects of the

fault must follow the detection. The four principal tech-
niques of correction are:

1. Correction of errors by the use of error-correcting

codes and associated special purpose hardware
and/or software (including recomputation},'™!**

2. Replacement of the faulty element or system by
a stand-by spare.?52%9
3. Replacement as above, with subsequent main-
tenance of the replaced part and its return to the
stand-by state 282830
4. Reorganization of the system into a different
fault-free configuration which can continue the
specified task.?!3%38
It must be emphasized that the preceding classifica-
tion of protective redundancy techniques is intended
to facilitate a systematic approach to the study of fault-
tolerant systems. In most practical cases a mixture of
these techniques has been proposed or used in order
to attain fault-tolerance. The references which are cited
in this section contain fundamental contributions to
the theory of protective redundancy, and have been
chosen to serve as illustrations of the various approach-
es. However, this is not an exhaustive listing of all
relevant contributions, and the reader is referred to
bibliographies in the cited references for further papers.
Especially the book by W. H. Pierce’ and the recent
study by J. Goldberg, et al..* contain very extensive
bibliographies on protective redundancy. The latter
study includes numerous references to Russian publica-
tions in this field as well as reviews of various tech-
niques.

State of the art in the design of fault-
tolerant computers

The continuing increases in the speed and com-
plexity of digital systems accelerate the demand for
fault-tolerance. The cost of uncorrected errors is es-
pecially severe in large time-shared computer service
systems and in situations in which a computer controls
a very valuable system, and is not accessible to human
repair. Examples are a real-time control computer and
a spacecraft computer controlling an interplanetary mis-
sion. A second critical requirement for fault-tolerance
exists when human lives may be affected by computer
errors, e.g., in military defense systems and in control
of high-speed transportation or of medical systems.

The most immediate solution in such critical applica-
tions has been the replication of entire systems,' 1?1
frequently backed up by transfer of control to a human.
operator or to a separate, less precise backup system.
The replication at system level becomes extremely cost-
ly when very large and fast systems(e.g., time-shared
“computer utility” systems) must be replicated. Fur-
thermore, occurrence of independent faults in two or
more replicas is more probable as the systems become
more complex or as the required unattended lifetime
is increased. The need for lower cost of protective re-
dundancy and for longer mean life values of protected
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systems has stimulated studies of other methods of
fault-tolerance.

In the early stages of development attention had been
directed toward massive redundancy at the lowest level
—the replication of individual components {resistors,
transistors, etc.).*™* The principal example of its prac-
tical application is the primary processor of the Orbiting
Astronomical Observatory.* The use of component re-
dundancy has been limited by design difficulties and by
new developments in component technology. The design
of logic circuits becomes very difficult because the
circuits must function correctly under wide variations
of component values, caused by shorting or opening
of individual components. The change from discrete
components to integrated circuits has largely invali-
dated the assumption of independent component failures.
Without it, the advantages of component redundancy
are lost.

Considerable effort has been continuously directed
toward practical use of massive triple modular redun-
dancy (TMR) in which logic signals are handled in three
identical channels and faults are masked by vote-taking
elements distributed throughout the system.™** Studies
have considered optimization of voter placement and
analyzed the gain in reliability or mean life of a TMR
system.***** [n the most important application to this
date, the guidance computer for the Saturn V spacecraft
launch vehicle has been designed employing TMR
techniques in its arithmetic and control sections.** This
large-scale application of TMR may be expected to pro-
vide a practical assessment of its effectiveness.

TMR and related types of massive redundancy at
the level of logic signals offer both obvious advantages
and some serious drawbacks in a general comparison
to selective redundancy. The principal advantages of
massive redundancy are:

1. The corrective action is immediate and “wired-
in,” while it is delayed and may require switch-
ing in selective redundancy.

2. During operation there is no need for fault detec-
tion, which is essential in selective redundancy.

3. All parts of the system are equally protected;
unprotected “hard core” elements may exist only
at interfaces with other systems. In most selective
redundancy schemes a “hard core” exists in the
system, ‘

4. The conversion of a non-redundant design to a
massively redundant one is relatively straightfor-
ward, while more novel design techniques are
demanded by the introduction of selective re-
dundancy.

Compared to massive redundancy, the selective form

requires several additional features: a system ability to
tolerate interruptions for repair and to execute a “roll-

back” for error correction, sophisticated diagnosis
methods, protection for the “hard core,” and trade-off
studies between time, program, and hardware replica-
tion. The advantages of selective redundancy over the
massive form are, however, also very significant in most
applications:

1. Power is required by only one copy of each re-
placeable item.in a replacement system; all parts
require power in the massive form.

2. The replacement switch provides fault isolation
between subsystems; such isolation is essential in
the case of catastrophic failures. Massive redun-
dancy usually assumes independent failures of
logic elements; such independence requires isola-
tion which is difficult to provide for batch-fabricat-
ed integrated circuit packages. The entire batch
may possess the same defect; also, mechanical or
thermal damage is likely to affect an entire pack-
age, rather than single logic circuits.

3. All spares can be utilized in selective redundancy;
in the massive form a majority of faulty elements
in a given region leads to system failure.

4. The designs of individual replaceable blocks may
be altered, and the number of spares may be ad-
justed to a given requirement without changes in
the system design in the case of selective redun-
dancy; such changes are more difficult in the mas-
sive case.

5. The replication in massive redundancy frequently
leads to increased fan-out and fan-in requirements
for logic elements, or to increased tolerance limits
in circuit design; such problems are avoided in
the selective case.

6. Permanent connection of the redundant elements
makes the initial check-out more difficult to im-
plement in systems with massive redundancy;
special circuits and system outputs are necessary.

7. Massively redundant systems with voting require
synchronization of the separate channels at the
voting elements; they also are susceptible to
transient external influences (e.g., sparks) which
alter logic signals in a majority of channels with-
out leaving permanent damage. The delayed oc-
currence of diagnosis in the selective case allows
detection of such transient changes in signals.

The most developed techniques of selective redun-

dancy are fault detection by periodic diagnosis and the
application of parity and similar error codes*™ to detect
or correct errors in data transmission and storage. The
periodic diagnosis techniques have progressed from ex-
clusively software implementations to software com-
binations with special-purpose hardware™* and to stud-
ies of system design methods which facilitate their self-
diagnosis.®® An extensive bibliography on periodic
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diagnosis has been compiled by Breuer.* Except for
parity checking, there have been relatively few studies
of concurrent diagnosis in an entire computer including
the processors,'” or in a generalized logic net.'s'®

Theoretical results on general models of Teplacement
systems demonstrate gains in reliability and mean life
for both unmaintained *** and maintained®-*% cases.
More recently there have been proposals for designs
of computers as replacement systems. The following
sections of this paper present a replacement system
with concurrent diagnosis® which is presently being
constructed. Reorganization of a system upon fault
detection has also been discussed in recent publica-
tions;****** however, much work remains to be done in
order to arrive at complete system designs and to derive
measures of expected effectiveness.”™*

In conclusion it is noted that the rapid development
of integrated circuit technology is causing a shift of
emphasis from massive to selective redundancy tech-
niques in which functional units of a system are replace-
able as single elements. It is also possible that massive
redundancy will find a new application in large-scale
integration, serving to mask manufacturing defects and
thus increasing the yield of the manufacturing process.

Design considerations for a fault-tolerant
spacecraft computer

Theoretical studies of selective redundancy, and
specificaily of replacement systems, indicate that a
significant increase in the availability and in the mean
life of a digital system may be attained without the high
cost of complete replication and concurrent.operation
of several copies of a system. The challenge to the
designer at the present time is to create computer sys-
tems which translate the theory into a working system
which uses state-of-the-art components, meets current
performance requirements, and attains the theoretically
possible gains in reliability.

The choice of a method or of a combination of
methods of redundancy for a particular computing
system is influenced by the intended application. The
present section considers the application of protective
redundancy to a guidance and control computer for an
unmanned interplanetary spacecraft. The computer may
also be employed for the onboard processing of sci-
entific data when guidance computation is no in prog-
ress. The guidance computer is required to survive
space voyages to other planets which range up to several
years in duration and to perform approach guidance
and control computations at the end of the voyage. Con-
tinued control of the spacecraft after arrival, processing
of scientific data collected, control of the landing and
operation of a capsule, and guidance for a return voyage
may also be required. Course corrections are to be

computed one or more times during the mission; con-
siderable time is available for this task. The computing
at launch and in early stages of the mission may be
performed or supported by computers on the ground
and in the launch vehicle, The very long communica-
tion distances and possible occultation of the spacecraft
make Earth-based support ineffective at the destination
planet. The computations which are required at a re-
mote destination present the most demanding problem
to the spacecraft guidance and control computer.

The design of a spacecraft computer must be per-
formed within the strict constraints of the available pow-
er, weight, and volume. The existence of these con-
straints indicates an advantage for selective redundancy,
which does not necessarily require power for the spare
replicas and which offers protection with the minimum
of one spare for each operating element. An evaluation
of relative advantages of the massive and selective
redundancy approaches has led to the choice of selec-
tive redundancy for fauit-tolerance in a spacecraft
guidance computer which is being developed at the Jet
Propulsion Laboratory. It will be called the “JPL
Self-Testing And -Repairing” (abbreviated JPL-STAR)
computer in this paper. The performance requirements
demand a certain computing capacity at the end of a
long voyage, and there are no requirements for 2 higher
computing capacity at an earlier time during the mis-
sion. Under these conditions, a fixed-configuration re-
placement system possessing the required capacity is
preferred over a reorganizable or “degradable” system
which has a minimal configuration of the same capacity.
The replacement system is a simpler solution, since it
avoids the programs, switches, and control hardware
which perform the reconfiguration and resulting re-
scheduling of operation.

A replacement system provides to the user one stand-
ard configuration of functional subsystems which has
the required computing capacity. The standard comput-
er is supplemented by one or more spares of each sub-
system. The spares are held in a standby condition and
serve as replacements of operating units when perma-
nent faults are discovered. The presence of spares im-
poses additional requirements on the selectively re-
dundant system. In addition to the ordinary-functions
of a computer, the system must incorporate some means
of fault detection, a recovery procedure for the case of
transient faults, a replacement procedure and a switch
for the case of permanent faults, and a checkout proce-
dure for all spares before the mission. The standard
configuration itself must be designed as an array of
self-contained functional subsystems with clearly de-
fined interfaces for replacement switching. The hard-
ware or software which controls the recovery and/or
replacement must be fault-tolerant as well.
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Early in the design fundamental choices must be made
between hardware and software implementations of the
fault detection and recovery procedures. The current
generation of aerospace computers almost exclusively
uses software techniques, supplemented by hardware
for parity checking of data storage and transfer. The
continuing decrease in the size and in power require-
ments of integrated electronic circuits, as well as the
vulnerability of software techniques in the case of mem-
ory failures, led to the choice of a hardware implementa-
tion of fault detection and recovery in the JPL-STAR
computer. The experimental breadboard Model I JPL-
STAR system is expected to provide valuable opera-
tional experience about such an extensive use of hard-
ware techniques in a replacement system. An actual
hardware design rather than simulation was chosen in
order to explore the circuit aspects of switching, fault
detection, isolation of faulty subsystems, and recovery
from transient faults,

Fault detection in digital circuits is implemented
either by periodic or by concurrent diagnosis. The
currently most common approach is periodic diagnosis
which utilizes a diagnostic program stored in the mem-
ory. Computation is periodically interrupted and the
diagnostic program is executed. Detection of a fault
initiates the replacement procedure; the program is
“rolled back” to a point preceding the previous (suc-
cessful) diagnosis period. Errors in computation which
have been caused by transient faults remain unde-
tected in this approach. The diagnosis program itself
is vulnerable to faults in the memory system. The cost
of diagnosis consists of the storage used for the diagnos-
tic program, of the time consumed by its execution
and of the time needed for repair and repeated execu-
tion of the program segment which was run after the
last diagnosis. Such time costs are very severe in re-entry
and landing programs for guidance and control which
require real-time computing. The alternate diagnosis
method is concurrent diagnosis in which error-detecting
codes and monitoring circuits are employed to show
the presence of faults. The execution of every instruc-
tion is checked immediately; instead of the stored diag-
nostic program, the cost is in hardware and consists
of the logic circuits which perform the code checking
algorithm and the other monitoring circuits. Errors
due to transient faults are detectable, and the im-
mediate detection of a fault permits a relatively short
rollback of the program. For these reasons concurrent
diagnosis has been chosen for fault detection in the
JPL-STAR computer. The simplest and most costly
error-detecting code (100% redundancy) is the com-
plete duplication of program and data words. Errors
are indicated by the disagreement of two words; fur-
ther diagnosis is needed to pinpoint the faulty source.

Parity and other more complex codes which detect
errors in the transmission of digital data have a lower
redundancy, but are not suitable for the checking of
arithmetic operations. In order to apply a uniform
code in the entire system, arithmetical error-detecting
codes were selected as a means of concurrent diagnosis
for the JPL-STAR system. An extensive theoretical
investigation of the effectiveness, cost and applicability
of arithmetic codes was conducted prior to the system
design of the JPL-STAR computer.'™’" The results
showed the existence of a class of low-cost codes with
sufficient effectiveness of error detection for concurrent
diagnosis. The code-checking circuits are supplemented
by monitoring circuits which verify the synchronization
of operation for the various subsystems. Other circuits
compare duplicated critical functions of the subsystems
and measure important circuit parameters (e.g., read
and write currents in memory units). The monitoring
circuits are included in order to detect the faults which
are not always indicated by the code checking algorithm.

Recovery and replacement procedures require both
software and hardware contributions. Consistently with
the choice of hardware for fault detection, the JPL-
STAR computer employs hardware implementation to
the furthest possible degree in these procedures as well.
The most fundamental hardware consideration in a
replacement system is the method of switching and the
nature of the switch which implements the replacement
operation. The reliability of the switch is a limiting
factor in the estimates of reliability for the entire sys-
tem. Furthermore, the switch must provide complete
isolation in the case of catastrophic failures occurring
in the part of a computer which is to be replaced. The
principal alternatives in the choice of a switching method
are information switching and power switching. A
study of switching techniques* has led to the conclusion
that the switching of power to replaceable units offers
strong isolation against catastrophic failures and mini-
mizes the number of switches requiring extreme reliabil-
ity. Furthermore, the data transmission speed within
the computer is not affected by the circuit properties
of the switch. A magnetic power switch for the JPL-
STAR computer which is an integral part of a replace-
able unit has been designed and constructed. The switch
is a part of the unit's power supply and is designed to
fail asymmetrically—in an open mode.

The use of a power switch requires that all unpow-
ered copies of a replaceable unit should be permanently
attached to the data transmission busses of the system.
As a consequence, an unpowered unit is required to
produce only logic signals of value “zero” on all of its
output lines. Furthermore, all input and output lines
of every replaceable unit are isolated from the busses
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in order to prevent shorting of a bus by a short inside
the unit.

Organization of the JPL-STAR computer, model I

The preceding section has outlined the principal
alternatives which were considered in the choice of
fault-tolerance techniques for the JPL-STAR comput-
er. An experimental breadboard Model I of the JPL-
STAR computer has been designed and is presently
being constructed. The main objectives of the Mod I
STAR computer are to gain experience with the hard-
ware aspects of a replacement system and to conduct
experiments with fault detection and recovery pro-
cedures. The performance specifications of the Mod I
STAR computer are similar to those of many present-
generation aerospace computers; they have not been
matched to any specific application. The fundamental
choices in fault-tolerance techniques are as follows:

1. All machine words {data and instructions) are

encoded in an error-detecting code.

2. The computer is subdivided into several replace-
able functional units.

3. Fault detection, recovery, and replacement are
carried out by special-purpose hardware; soft-
ware techniques may be added later to provide
additional fault-tolerance features.

4. Replacement is implemented by power switching:
units are removed by turning power off, and
connected by turning power on.

5. The information lines of all units are permanent-
ly connected to the busses through isolating cir-
cuits; unpowered units produce only logic *zero”
outputs.

6. The error-detecting code is supplemented by

" monitoring circuits which serve to verify the
proper synchronization and internal operation of
the functional units.

The Model I employs a 32-bit word length for its
operands and instructions. Machine words are trans-
mitted between the functional units in four-bit bytes,
that is, in a series-parallel mode. The functional units
contain their own sequence generators and possess
identical input and output connections. A typical func-
tional unit is shown in Figure 1. The “Info. Input”
and “Info. Output” lines are connected to information
busses. They receive and send coded machine words,
one byte at a time. The “Switch Control” line supplies
the “change position” command to the power switch,
while the present switch position is shown by the
“Switch Status” line. The other control input lines sup-
ply a “Clock” pulse train input, a synchronization test
signal (“Sync™), and a “Reset” signal which places
the functional unit into a standard state. There are also
three more status output lines. The “Active” signal
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UNIT POWER INPUT
INFORMATION ' INFORMATION
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CONTROL INPUTS FROM COU STATUS QUTPUTS TO CDU

Figure 1—Typical JPL.STAR computer functional unit

indicates that at least one Info. Qutput line has an
active (logic “one”) output. The “Complete” signal
occurs at the end of every subalgorithm being per-
formed by the unit. The “Internai Fault” signal occurs
when the internal monitoring circuits of the unit detect
an abnormal condition. All status outputs are connected
to the Control and Diagnosis Unit (CDU). The CDU
also generates the four control input signals. The CDU
initiates all recovery and replacement actions on the
basis of the status signals reecived from the powered
functional units in the system.

The block diagram of the JPL-STAR Model I com-
puter is shown in Figure 2. It is a fixed-point, binary
computer suitable for spacecraft guidance applications.
Information words are transmitted on two busses in
bytes of four bits each. The choice of the byte mode
reduces the size of busses and simplifies the checkers,
which are diagnostic hardware for error detection in
the transmitted information words, An expansion to
parallel operation is straightforward and will increase
the computing speed at the cost of larger busses and
more complex checkers. The replaceable functional
units of Model I are:

a main arithmetic processor (MAP);
a control arithmetic processor {(CAP);
a 16K read-only memory unit (ROM);
up to 12 read-write memory units,
(RWM);
an input/output (buffer) unit (IOU);
a logic processor (LOP);
an interrupt unit (IRU);
a system clock unit (SCU);
two bus checkers (CH1, CH2);

10. a control and diagnosis unit (CDU).
Properties of these functional umits are summarized
in the next section.
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Figure 2—JPL-STAR model I computer block diagram

All information words in the JPL-STAR computer
are encoded in an error-detecting code, In the case of
numerical data words and addresses of instructions the
code must be preserved during arithmetic operations.
The two principal methods of arithmetic encoding are
product (or “An”) and residue codes.!®'"** In order
to gain a better understanding of the relative virtues
of these two methods, both are employed in the Model
I: preduct coding for numeric operands, and residue
coding for addresses. Figure 3 shows the formats of
numeric operands and instructions.
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(a) NUMERIC OPERAND WORD
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(b) INSTRUCTION WORD
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Figure 3—JPL-STAR modet I computer word formats

The numeric operands (Figure 3a) are 32 bits long
binary productcoded numbers with the check factor
15. Binary numeric operands x (28 bits long) are
multiplied by 15 to obtain the product coded 32-bit
operands 15x. The check factor 15 has been found
to be especially effective in the case of series-parallel
transmission and computing in bytes of 4 bits length."
The checking algorithm computes the modulo 15 residue
of coded words which are transmitted on the busses.
A zero residue (represented by 1111) indicates a
coded word; all other values indicate a fault in the
functional unit which delivered the word to the bus.

The 32-bit instruction words (Figure 3b) consist
of a 12-bit operation code and a 20-bit address part.
The address part is encoded in the residue code with
the check modulus 15. An address part consists of a
16-bit binary address a and a 4-bit check symbol c(a).
The check symbol c(a) has the value

c(a) = 15 — ialls
where | a | s is the modulo 15 residue of a. The check-
ing algorithm computes the modulo 15 residue of an
address and adds it (modulo 15) to the check symbol
c(a). S

A zero sum (represented by 1111) indicates a2 prop-
erly coded address part. The residue code is prefer-
able for address parts over the product code because it
is separable, and the address a is available to the mem-
ory address decoding circuits in its ordinary binary
form. It is important to note that the “one’s comple-
ment” 15 — | a] . rather than the residue | a | s itself
is used as the check symbol c(2). In this case the
fauit-detection effectiveness in byte-serial operation re-
mains the same as for product-coded operands, while
the use of | 4|, as a check symbol gives a lower ef-
fectiveness. Furthermore, the bus checking algorithm
is the same for product-coded operands and for address
parts—it is simply a modulo 15 summation of all bytes
and a test of the result for the zero value represented
by 1111.

The operation code is divided into three bytes of
four bits each. The operation code bytes are protected
by a 2-out-of-4 encoding, which leaves six valid words
in a four-bit byte. Such coding is most efficient for
short words and is acceptable in a computer because
operation codes are not subjected to arithmetic opera-
tions. It is evident that their validity must be tested by
a separate checking circuit. since it cannot be verified
by the modulo 15 checker (which is bypassed by the
operation codes). The separation of the operation code
into three separately encoded bytes facilitates the de-
coding and validity testing of op. codes received by
the functional units. The 2-out-of-4 encoding gives a
total of 216 distinct combinations for operation codes.
The indication of index registers which are to be used
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must be contained within the-operation code. Since the
Model I contains two index registers, every indexable
operation code requires three distinct combinations,
while non-indexable operations require only one each.

It is apparent that residue encoding with the check
modulus 15 can be applied to the numeric operands
and to the operation codes as well as to the address
parts. Such use of a uniform residue code has the ad-
vantages of code separability and of identical check
algorithms. In the case of operation codes, a modulo
15 residue-coded 12-bit number provides 256 distinct
combinations. On the other hand, the 2-out-of-4 coding
for individual bytes of the operation code permits valida-
tion and use of individual bytes. The choice of three
different methods of encoding in the Model T was
motivated by the need to gain detailed insight into
their relative merits and shortcomings.

One instruction cycle is executed by the Model I
JPL-STAR system in three steps. In the first step,
the address of the instruction is sent from the Sequence
Register in the Control Arithmetic Processor to the
memory units; the transmission of the address is tested
by the Bus Checker. In the second step, the addressed
memory unit broadcasts the operation code and ad-
dress to all functional units. The appropriate units
recognize the code, accept the address, and initiate
execution. In the third step (if needed) the instruc-
tion is executed, a result is placed on the bus and ac-
cepted by the destination unit. The Bus Checkers test
every word on the busses for proper encoding.

Functional units of model I

The replaceable functional units of the computer
have a standard format for their output words and have
the same internal communication lines, as shown in
Figure | and described previously. The Input/Output
and Tnterrupt units also have external communication
lines to the spacecraft. Brief descriptions of the func-
tional units are given in this section.

The Main Arithmetic Processor (MAP) accepts the
operands and delivers the results as 32-bit product-
coded binary numbers. All arithmetic control is con-
tained in the MAP; an input consists of an operation
code (add, subtract, multiply, divide) followed by a
coded operand, and the output is a coded result fol-
lowed by a 2-out-of-4 Condition Code byte, indicating
either one of three singularities (sum overflow, quotient
overflow, zero divisor) or the type of a good result
(positive, zero, negative). The good result codes are
used by the CAP as data for conditional jump instruc-
tions. All partial and final results are delivered to the
Bus Checker #2. A breadboard model of the MAP
has been constructed and tested.* Tt is believed to be

the first complete arithmetic processor for product-
coded operands.

The Control Arithmetic Processor (CAP) contains
two Index Registers (IR), the Sequence Register (SR),
the Condition Code Register (CCR), and an adder.
When the 16-bit index word x from the IR is added
to an address a, its 4-bit check symbol ¢(x) is added
modulo 15 to c(a). The indexed address and the new
check symbol go past the Bus Checker #2 to the input
lines of the memory units. The incrementing (by one)
of the current address s in the SR is performed in
exactly the same manner, with 1 added to s and 14 =
2(1) added modulo 15 to ¢(s). The incremented address
is returned to the SR. The presence of the Condition
Code byte in the CAP permits fast execution of condi-
tional jump instructions.

The Logic Processor (LOP) performs the bit-by-bit
logic operations, shifts, and code conversions on input
operand words. It contains the Logic Accumulator
(LAR) and the Mask Register (MR). The arithmetic
coding is removed from the operand before the opera-
tion, since arithmetic codes are not preserved during
logic operations: The final result is again encoded;
provisions exist for both product and residue codes. The
LOP is therefore capable of encoding input words,
removing code from output words, and executing con-
versions between product and residue codes. A four-
bit adder is included for encoding and decoding opera-
tions. Functioning of the LOP is checked by operat-
ing two copids concurrently and comparing all results.

The Read-Only Memory (ROM) unit contains the
permanent programs and the associated constants for
a given mission. The experimental model provides 2"
words of 32 bits each, using a “braid” assembly of
transformers and wires for the permanent storage of
binary information.”” The ROM also contains all neces-
sary peripheral electronics: the op. code, address, and
output registers, access circuits, drivers, sequence con-
trol, and monitoring circuits. All output words from
the ROM are delivered past Bus Checker #1. The
Model I IPL-STAR computer includes complete repli-
cas of the ROM as replacements; the replacement of
peripheral electronics without discarding the core and
wire assembly is being studied.

The Read-Write Memory (RWM) units are self-con-
tained 4096 word modules with the same peripheral
electronics as the ROM. Direct addressing is provided
for 64K words, including the 16K ROM; this permits
up to 12 RWM units. Each RWM unit has three modes
of operation, In the standard mode a2 RWM unit rec-
ognizes its own wired-in unit address, and is con-
nected to both input and output busses. In the auxiliary
mode, a RWM unit stores and assumes the unit ad-
dress of another umit, to be called its main unit. The
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auxiliary unit stores the same input words as its main
unit. When the main unit reads out a word to the bus,
the auxiliary unit reads out the same word internally
and compares it to the word which is on the bus. If
the words disagree, the auxiliary unit signals a compari-
son error to the CDU. A “reverse” djagnostic command
causes a reversal of roles between an auxiliary unit
and its main unit. The third mode of RWM operation
is the relocated mode, which utilizes a stored unit ad-
dress, but otherwise is identical to the standard mode.
A RWM unit is placed into or released from the auxil-
iary .or relocated mode by special instructions which
are directed to its wired-in unit address. The auxiliary
mode permits a redundant storage of machine words in
one, two, Oor more separate units with continued com-
parison of readout supplementing the Bus Checker. The
relocated mode permits a replacement of a failed RWM
unit by a spare with the same unit address. The choice
of employing redundant storage is left to the user.

The Interrupt Unit (JRU) and the Input-Output
Unit (IOU) serve as interfaces with the external world.
The ICU contains buffer registers for receiving and
delivering machine words, The IRU receives commands
from an outside operator and service requests from
other parts of the spacecraft system. An interrupt is
effected when the IRU places a properly coded instruc-
tion word on the bus, preempting the delivery of the
next instruction specified by the Sequence Register. The
details of interface protection remain to be established
for specific spacecraft systems; in general, complete
duplication will serve under most conditions.

The System Clock Unit (SCU) contains counters
needed for the sequencing and timekeeping functions of
the computer and the spacecraft. Counter settings are
coded machine words. The SCU generates an internal
interrupt request when a preset count has been reached.

The two Bus Checkers (CH1 and CH2) serve to
check all machine words which are being transmitted
on the busses for validity of encoding. The checking
of arithmetic codes requires a four-bit Check Sum
Accumulator (CSA) and a four-bit modulo 15 adder
(with an end-around carry) which adds the bytes being
transmitted to the word in the CSA, An error-status
line to the CDU indicates whether the CSA contains an
acceptable word (1111). The checking of the non-
numeric 2-out-of-4 operation code bytes is carried out
by a separate logic circuit which also has an error
status line to the CDU. The relatively small size of the
Bus Checkers makes their duplication quite practical
for fault-tolerance.

The Control-Diagnosis Unit (CDU) issues the con-
trol signals for timing and for replacement. It also ini-
tiates the recovery actions when a fault is indicated by
status outputs of the powered functional units and bus

checkers. In normal operation, the internal timing o
the units is initiated for every instruction with the
“Sync”signal and is tested by reception of the “Com.
plete” signal. A copy of the current instruction it
stored in the CIR register within the CDU and provide:
the data to verify all “Active” and “Complete” signals
and the Bus Checker status signals. The CDU alsc
contains the Rollback Point Register {RPR) which it
loaded with an address under program comntrol. Wher
a fault is detected from the status signals, computing
is “rolled back” to the instruction at this address anc
repeated in order to correct a transient fault. If a per-
sistent fault is indicated by the same unit, a replace-
ment is carried out, and the program is resumed at the
rollback point. Software diagnosis may be employed
to provide additional data on permanent faults. Periodic
updating of the RPR is the responsibility of the pro
grammer, For catastrophic transient faults (e.g., brief
power loss) the CDU contains a wired-in “Restart”
procedure.

The CDU acts as the “hard core” of the system and
requires immediate fault-tolerance. The Model I STAR
computer maintains four powered CDU copies. The
CDU outputs are determined by a majority vote of
three units; in the case of a disagreement, the minority
unit is at once replaced by the operating fourth unit,
and a new spare CDU is brought in and synchronized
with the other powered units to act as an operating
spare. Because of the four unit requirement, design
effort has been concentrated on reducing the CDU to
the least possible complexity. Experience with Modei I
is expected to yield further insights into this problem
and to lead to modifications of the CDU design,

The performance of the JPL-STAR computer must
be measured against an equivalent non-redundant com-
puter. The important parameters are complexity, gain
in mean life, and types of faults which can be tolerated.
The first design objective has been the ability to
tolerate a wide range of faults, including catastrophic
{multiple dependent) transient and permanent faults in
the functional units. The gain in mean life is being
investigated by means of simulation (hardware and
software) as well as by mathematical methods. The
results of these studies will be reported upon comple-
tion of construction and hardware simulation.
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