INDX, A SEMI-AUTOMATIC INDEXING PROGRAM

Kris Kiyoko Takata June 1987
CSD-870020

UNIVERSITY OF CALIFORNIA
Los Angeles

Indx, A Semi-Automatic Indexing Program

A thesis submitted in partial satisfaction of the
requirements for the degree of Master of Science
in Computer Science
by
Kris Kiyoko Takata

1987

© Copyright by
Kris Kiyoko Takata
1987

The thesis of Kris Kiyoko Takata is approved.

r

Jogeph J. rfiStefa;m, il

D_G7

David G. Kay

7

////////

Daniel M. Berry, Commi ttee

University of California, Los Angeles
1987

ii

TABLE OF CONTENTS

page

1 INTRODUCTION ..ceeiiivienenerenicsseseissssssssississmessesassssssssosassasnmsssssnssssssstsssssssss 2
1.1 Index Term Definftionscccocivvviimiainimiicnisnnsnsscsssss st 3

1.2 Index Formatting Stylesueciiiimniciniisnssneissinasistiisnsassinsssnnes 5

1.3 The Manual Indexing Task ..o 5

1.4 Semi-Automatic Indexing Programs ..., 7

1.5 Motivation for the Indx Program ..., 15

2 THE INDX METHODocoivmicimenirsiiisnssnins s assssnesssssssssssssssasssmsbasssssnins 16
2.1 Description of the Method ... 16
2.1.2 The INPUL LEXT .coviiirianmmenniasanmssessissenssssinsasssisasssssss s srassssnases 18

2.1.3 Selection of phrases in the tEXEcrvennismennisni. 18

2.1.4 The optional phrase filles ...t 20

2.1.5 Description of the OUtPUL ...eceviveinienieneniimnnnnescs e 22

2.2 Comparison with Other Automated TOOIScoemrninciiiiiiiiinnins 23

2.3 Initial Expectations of the Method ..o, 26

3 THE INDX PROGRAMcviiiiicncientneiesinirstsstssssrsssesssessssssstassassasassanans 29
3.1 Design of the Indx PIOZramM ...cvverireseininensinscsesiitscsnstsissinsnseenss 29
3.1.2 The partitioning of the Programc.cvemencsinsnensniinnnneen 30

3.1.3 The data MOAUIEScocviiivrrcenicniniriire e tiere st ssass 30

3.1.4 The index MOdUuleccooiiiniiiniires et 34

3.1.5 The algorithim ..ot s 37

3.1.5.1 Finding page referencescinmmnesinesnnneenecensssns 38

3.1.5.2 Processing the optional files ..o 39

3.1.5.3 Printing the indeX ..ot 42

3.1.6 Error handling .cccecinvecnncmrintiimnesinecsnesesnasscessessesetsssssnnsneens 42

3.2 Implementation of the Indx Programc..ccoonninninncscscnnninnes 43
3.2.1 Faking packages in Pascalccvinninnenniie, 43

3.2.2 Implementation of the INdeXooivieieinincieee s 45

3.2.3 The implementation of phrases, chunks, and units ..o 49

4 THE INDXING EXPERIENCEccccooiiiinniiniismnneiennnsnsensensssssessssnianas 50
4.1 The Selection of Entries and Phrases ..., 50

4.2 Setting Up the IndX FIles ..ot 54

4.3 Checking the Indx OULPUL ..o sscsrss e eren 56

4.4 Updating the Index ... 57

4.5 Printing the Final Index ..o 59

5 AREAS OF FURTHER WORK AND CONCLUSIONScccoiiiiiiinnienanens 60
5.1 Improving the Performance of IndXcceeoviiiiiniiinninnin, 60

5.2 Additional Features of IndX ... 62
5.2.1 Increasing the number of cross referencescccoviiiveecnines 62

5.2.2 Increasing the index levels ... 63

5.2.3 Sorting SCheme OPHONS ..ovviiiiiiiiennienenie et csnsnns 63

5.2.4 An expliCit SOTLKEY ..coviviinineiiiininiiime et ssssnanas 64

5.2.5 Merging indiCesccevviminiininimieienene s nssansnssaenseaes 64

5.2.6 Keeping a combined phrase in the Indexcoueiimienecnincnens 65

iit

5.3 CONCIUSIONS tevvrerrrerrersresiseessssessnsssseassessssessssssstisssssssssmsssnsstasssssssessnsessan 65

REFERENCESctieiiseriinesssssessseansissssssssiasasssmsssssassnesestassssessatsssusssessasasssssss 69
INDEX covoveeeeeeeeceseonsssssssarsssasassersstestasesest sstrassesasssnssesessansasess saantsasesssssbsstenssnasass 71
Appendix A Ignored PRTases ...t st 74
Appendix B Indx Files and OUtPUL ... 77
Appendix C Troff Macro Definitions ... 99
Appendix D Shell Script for Updating IndiCesc.ivvmmmmrmnciscsnminnisiisissnsinnnns 102
Appendix E Manual Pages of Indx, Dedit, and Findphrasescc.coeecesssinnees 103

iv

ACKNOWLEDGEMENTS

I wish to thank the people who have helped make this thesis possible.
Christine Aguilera provided the phrase finder program, allowed the inclusion of its
manual page in the appendices, and helped solve some of my text-formatting prob-
lems. Jacquelyn Trang provided a productive work environment and was an invalu-
able source of guidance regarding the text preparation. Li-Whei Chen, Timothy
Aiken, Matthew Weinstein, Michael Lyu, and Bruce Rosen helped in various ways
with the program and the thesis preparation. Keith Abe and Professors David Kay and

Joseph DiStefano, I contributed their time to proofread the text.

Most of all, I wish to thank Professor Dan Berry for his wonderful ideas, the
helpful comments and suggestions, and for his words of encouragement. Without

him, this project could not have been completed.

ABSTRACT OF THE THESIS

Indx, A Semi-Automatic Indexing Program
by
Kris Kiyoko Takata
Master of Science in Computer Science
University of California, Los Angeles, 1987
Professor Daniel M. Berry, Chair

Creating back-of-the-book indices is a difficult task involving intelligent and
clerical processes. Programs have generally not achieved the level of intelligence re-
quired to perform the intelligent process of selecting terms for the index. Semi-
automatic indexing programs perform the clerical process of preparing entries once
the terms have been selected. The programs do not provide assistance in term deter-
mination and most require flooding the text with indexing commands. Indx differs
from other semi-automatic indexing programs mainly because it does not require the
insertion of indexing commands into the text to be indexed. The method by which
indx assists in the creation of an index is introduced and compared with the charac-
teristics of the other programs. This method includes the use of a program that aids
the term determination process. The design, implementation, and application of indx
are presented. Areas in which indx may be improved or enhanced are identified. An

index of this thesis created with indx is included as an example.

CHAPTER 1
INTRODUCTION

Anyone familiar with textbooks is also familiar with the use of the back-of-the
book indices. For finding text dealing with a given subject, it is far more useful than
the front-of-the book table of contents, which just lists, in page order, the chapter, sec-
tion, and subsection titles and starting page numbers. The index lists important terms
occurring in the text and the page numbers in which these terms actually appear or are
the subject of the discussion. The index is usually alphabetized by the spelling of the
terms. The index locates discussions of important concepts simply by knowing the
keywords of these concepts. Doing the same with the table of contents requires know-
ing under which title a term is likely to be discussed. A good index is like an inani-
mate memory, in which information is stored to be ;‘ecovered quickly and precisely

[Harr63].

While an index is very useful for the reader of a book, it is very difficult for the
author of the book to generate. It is so difficult a task that many authors hire a special-
ist to do the task. Anyone who has tried to locate all books in a given library discuss-

ing a particular subject knows that many books just do not have good indices.
It is difficult because generating an index consists of two processes,
1. one intelligent, determining the terms that are to be indexed, and

2, one clerical, finding all places where these terms appear.

The first is difficult because it is hard to anticipate the keywords that the readers look

for. If the index has too few terms, the reader will not find what he or she is looking
for. If the index has too many terms, it will be too big and unwieldy. The second is
difficult because it is boring and subject to clerical error, and subject to revision at any
time a change is made in the text. The indexer can easily fail to find some

occurrences of a term.

Thoughts turn to automating the process. However, automating the process is
difficult too. Programs have generally not achieved the level of intelligence required
for doing the term determination, artificial intelligence research notwithstanding.
Brute force generation of terms by simply taking all phrases that occur in the book
yields an index larger than the book! Programs are very good at the clerical task of
locating all occurrences of terms that actually occur as phrases in the book. However,
they cannot locate a discussion about a term where that term does not itself appear.
Thus all that can be hoped for (at least for the foreseeable future) is some clerical pro-
gram or perhaps some expert system aiding the term determination process as well as
a program doing the more mundane and error-prone task of finding all occurrences of

a term that actually appears in the book.

A number of schemes exist already. However, most attack only the location of
(possibly not all) occurrences of terms, and do nothing to help determine the terms
and find discussions about the terms that do not actually mention them. Also most
require flooding the text of the book submitted to the formatter with commands to
dump a term/page-number pair into a database for later sifting into an index; this

flooding makes it hard to read the input text.

This thesis describes a suite of tools developed at UCLA; these tools offer
genuine assistance in term determination, allow finding all occurrences of and some

discussions about terms, and provide a cleaner interface in which the text of the book

to be indexed is not flooded with indexing commands.

B The rest of this chapter defines the teminology of indexing, describes the
manual process, and discusses existing programs for assisting in index generation.
The second chapter describes the approach the suite uses and the method by which the
author exercises the suite to obtain the index. The third chapter discusses the main
program of the suite, indx, and gives a modular decomposition for it. The fourth
chapter describes the experience gained in using indx and the last chapter contains
conclusions about the indx method and program and discusses areas of further work.
This thesis is followed by an index generated with the help of these tools. Finally the
appendices give UNIX®-style manual pages for the tools and show the input neces-

sary to generate the index of the thesis. Note that the indexing suite was not applied

to the appendices!
1.1 Index Term Definitions

Most of the index entries look like the following example:
Program maintenance documentation, 11, 17, 24
The phrase ‘‘Program maintenance documentation’” is called a heading. As defined
by professional indexer G. Norman Knight, headings are the ‘‘word(s) or symbol(s)
selected from, or based on, an item in the text, arranged in alphabetical or other
chosen order’’ [Knig70]. In this thesis, headings are also referred to as entry phrases.
The numbers following the heading are references, which direct the reader to the loca-
tion in the text where the heading is discussed. These numbers are usually page
numbers, but they can also be folio, section, or paragraph numbers. The current ver-
sion of indx deals only with page numbers, thus these numbers are referred to as page

references. An index entry having this form is referred to in this thesis as a regular

UNIX is a registered trademark of AT&T.

entry.

At times, a regular entry may be further expanded under or closely related to
other entries in the index. A see-also cross reference would be added to such terms,
directing the reader to the related entries. A see-also cross reference follows the page
references of the entry, as in:

Program maintenance documentation, 11, 17, 24

See also Program design language

Other types of cross references exist to guide the reader who is unfamiliar with
the terms used in the text to the relevant entries having page references. A see cross
reference is a direction from one heading (or subheading) to an alternative heading
under which all the relevant references to an item in the text are collected. A see-
under cross reference indicates that the subject word is used under another heading.
For example, the entry ‘‘Taxation of costs, See under Costs’’ means the term ‘‘taxa-
tion”’ is used as a subheading under the heading ‘‘Costs’’ [Knig70]. For see and see-

under cross references, there are no page references.

As alluded to above, a subheading is the heading of an index entry that appears
under another index entry. An index entry found under another entry is referred to as
a subentry. At times, an index entry having subentries is referred to as a main entry.
In fact, index entries not having subentries are also called main entries, as they are on
the same level of the index. A main entry along with its subentries is referred to as a
group entry. The group entry below has a regular entry and a see cross reference as
subentries.

Program design languages

PDL, 37-40, 42
ADA/PDL, See Ada

1.2 Index Formatting Styles

There are several methods of formatting the index — entry-per-line, paragraph
or run-in, and a combination of the two. In the entry-per-line style, each heading and
subheading is placed on separate lines. The advantages of this style are that specific
points in entries are easy to find and that the relationship of aspects to one another is
more easily conveyed. This style is preferable for most texts, especially scientific and
technical ones. The paragraph style has subheadings following the heading in a para-
graph form. This style is common in social science texts, where the subentries, which
are usually events, may be presented in an evolutionary or chronological order.
Because of the natural progression of subentries as sentences in a paragraph, the sub-
entries should be listed in numerical rather than alphabetical order. A big advantage
of this style is the space it saves. It is, however, more difficult to scan this type of
index, and Eleanor Harris in [Harr65] recommends that indices having sub-subentries
be presented in entry-per-line style. The combined style borrows the good points of
each of the previous styles. Subentries are placed on separate lines and sub-subentries
are presented in paragraph style following the subentry. Thus overall, entries and sub-

entries are easily identified and some space is saved when sub-subentries are printed.
1.3 The Manual Indexing Task

The indexing task is a kind of art, as the indexer must select the terms that best
convey the contents of the text. In order to get a good and well-balanced index, the
indexer reads the text once rapidly and then a second time, more slowly, to get an
understanding of the text. While reading, phrases are underlined and possible subjects
(entry phrases) are written in the margin. After all phrases have been identified as
possible entries, the indexer must decide which of these will be in the index. Several

factors influence the selection process. First, the indexer must keep the needs of two

types of readers in mind. There are readers who have read through the book and use
the index to refer back to things read. There are also readers who are searching
through several books on the same subject, seeking specific information without hav-
ing to read the entire book. Another factor influencing entry selection is the max-
imum index length permitted by the publisher. The terms selected for the index are
written on cards or slips of paper and kept in a tray. The cards are checked by pages
to prevent useless entries in the index, that is entries having a page reference that
yields no information on the subject. Then they are alphabetically sorted and the

index is typed from the cards.

One of the unresolved issues in indexing is the type of alphabetization used.

There is no universal standard, but two of the common ones are word-by-word and
letter-by-letter. The word-by-word method is more common [Knig70] and treats the
headings and the subheadings as consisting of separate words, alphabetizing them one
word at a time. For example:

Index arrays

Index generation

Indexes, efficiency and
The letter-by-letter rﬁcthod involves treating the headings and the subheadings as sin-
gle units, alphabetizing them one letter at a time. The same three phrases above
alphabetized letter-by-letter would be in the following order:

Index arrays

Indexes, efficiency and

Index generation
No clear advantage of either has been found [Gard82]. Although alphabetizing word-
by-word seems easier to perform from the human point of view, there is a tendency
nowadays to use letter-by-letter or rather character-by-character in machine collated

indices, as it is simpler to generate and to explain to the reader. In the older styles,

numbers would be sorted as if they were spelled out and Roman numerals would be

sorted according to the values they represent, not their actual letters. However, today
there appears to be a tendency to sorting numbers by their machine collating
sequence. For further information on the indexing process, see [Coll62, Coll69,

Knig70, Harr65].
1.4 Semi-Automatic Indexing Programs

Several computer programs now exist to aid the indexer in his or her job.
Since selection of the terms in the index requires human knowledge and experience, it
is still left to the indexer. The programs do the rest of the work, sorting the entries
and printing out the index. Some need more human intervention than others in setting
up the input and further improving the output to get & nicely formatted index. All of
the programs mentioned are semi-automatic because they do not automatically decide

what should be in the index.

Several of the programs have been written for specific word processors or
document preparation programs. Index, Documate/Plus™, and Starindex™ run
with text formed using the Wordstar word processor from MicroPro, Inc. [Hard86].
With Index, a pubﬁc domain program -written by Tom Jennings, the words and
phrases to be indexed are marked by control characters unused elsewhere in the text
file. The text file contains the text and the Wordstar commands to format the text,
which may include page break commands. Index uses the page break and other com-
mands to maintain the page numbers and will count pages internally if no page com-
mands exist in the file. If Index has been run on the text file before, the text file will
contain a line beginning with *‘. . index’’ followed by the index previously created.

The creation of the index is done in a separate pass from the formatting of the text file.

Documate/Plus is a trademark of the Orthocode Corporation.

Starindex and Wordstar are trademarks of MicroPro International Corporation,

When Index is run, it removes the old index after the ‘. .index’” line, if there is
such a line, and replaces it with the new index. If no index had been previously gen-
erated, the **. . index”’ line is appended to the text file and the index is added on.
Thus, the alphabetically sorted index is at the end of the text file so that when the text
file is formatted, the index appears immediately after it. The *‘. .index’’ command
is ignored by Wordstar and is not printed. Only main entries make up the index.

Case distinctions are ignored in the sort and the entries are sorted letter by letter.

In Documate/Plus, words or phrases to be indexed in the text are preceded by
a *“...X." Cross references are defined by using *‘...R’ instead of **...X.”
These commands are ignored by Wordstar, whose commands begin with a single dot.
The page numbers are calculated from the page commands on a separate pass from the
formatting of the text. The indexer is able to have index commands in multiple files
and to merge them to form a single index. The number of the first page of each file to
be merged must be known to index the file. This may make it necessary to interrupt
printing of the files to insert the page number command with the number of the first
page into the next file to be printed. Documate/Plus would then be run on these files

to form the index, which is written to a file separate from the text file. An entry can

have four levels with this program and the last page it can refer to is page 9999.

As in Index, Starindex requires the words or phrases that are to be indexed to
be marked by a control character. Major index entries are marked by a different con-
trol character, which causes this page number to be boldfaced. There are dot com-
mands for forming a group entry. The Wordstar page length command is ignored so
that when it is used, Starindex assumes 56 lines per page. Starindex is able to merge
several files containing the document to be indexed and generates output files of the

source text with the Starindex commands and the control characters removed, a file

containing the table of contents, and a file containing the index. It is a flexible pro-
gram, allowing paragraph numbering and control of the document’s appearance in the
output files it creates. It is not able to merge indices so the entire document must be

indexed at one time.

A UNIX shell script, index, has been written by Rich Salz for indexing nroff
or troff documents [Salz86]. Phrases to be indexed are given as arguments to an index
macro call, . Ix, in the troff input text. If the phrase contains more than one word, it
must be surrounded by double quotes. index takes the document text and outputs each
macro call it encounters followed by a line containing the page numbers on which
each entry phrase was found. This output should be saved in a file. The output will
look like this:

.Ix "Binary search trees”

320, 341, 372

.Ix "Binary search trees, inserting a new element"”

335, 336, 341

.Ix "RIGHT pointers"

208, 209, 213, 214
The user of the program must define the . Ix macro to leave blank lines between main
entries, etc., and format the index with nroff or troff. Salz warns the indexer not to put

any formatting commands in the arguments of the . Ix calls since those entries will

not be sorted correctly.

A suite of awk programs to perform indexing has been developed by Jon L.
Bentley and Brian W. Kernighan [Bent86]. The programs are kept separate so that the
human indexer may use only those programs necessary for producing the desired
index. As with index, these programs were written for troff documents, but may be
altered to work with other document production systems such as T.X. The programs
are set up in a pipeline fashion, with each program performing a specific task on the

data running through the pipeline. The shell file make.index can be used to run all of

the programs. If a subset of the programs is sufficient, they may be explicitly called
on. The phrases to be indexed are arguments of .ix macro calls in the document
text. When the document is formatted with troff, the . ix lines are written to troff’s
standard error output, st derr, with the format
ix: the entry (up to nine words) tab-character page number
For example, if the macro call

.1x program design language
was on page 5 of the document, the line

ix: program design language 5
would be written on stderr, which should be redirected to a file. Then make.index
is run on the file of index commands, which outputs . XX macro calls of index terms.
Then troff is used to print the final index. The index formed with this suite of pro-
grams is quite basic in its format. Only main entries can be defined and there is no
cross referencing. Phrases are sorted by a given key or itself by default. Defining see
cross references is described in [Bent86], but the human indexer must be willing to
write additional awk routines. Unlike any of the other semi-automatic indexing pro-
grams, a phrase given in a macro call is also permuted and all of the permutations are
added to the index. Blanks between words may be replaced by a tilde (“*’) in order
to control the possible permutations. When preceded by a .tr ~ command, the
tilde shows up in the index as a blank. Also unlike the other programs, the arguments
of the macro calls may be more than simple phrases. Several constructs are provided
to enhance the entry phrase and to allow specification of a sort key. This sort key will

help the entry phrase containing formatting commands to sort correctly.

Several macros and programs have been written by users of Tg), a document
preparation system developed by Donald Knuth at Stanford. Monsanto has come out

with IdeEx which is written in C for the VAX/VMS system [Aurb86]. It allows

10

three levels in the index (entry, subentry, and sub-subentry), and index entries and
page references may be visually highlighted. It generates a file which may be
included in the document to produce the index. A someone else [Unkn87] has writ-

ten three macros

1. to put an item in the text and in the index,

2. to put an item in the text and index in italic type, which is used for items that
are definitions,

3. and to put an item in the index but not in the text.

These macros output indexing macro calls for TEx, with the item and page number as
their arguments. These macro calls are written to a file which can be merged with
another file containing entries that have not appeared in the text, like see cross refer-

ences. The file is sorted with the UNIX sort and run through T to be printed.

A third program available for TEx documents is called texindex [Corb87]. It
sorts and combines entries of an index file set up by TEx and saves them in another
file. Tg) then must run with this file to produce the final index. Another set of mac-
ros and programs for index generation was written by Terry Winograd and Bill Paxton
[Wino80]. Index terms are given as macros in the text which when run through TEx
are used to create an index file. This file is then used by a set of INTERLISP pro-
grams to produce an alphabetically formatted index. TEx is then used to produce the
final formatted index. More than one file may be merged to form a single index and
the indexer may choose from three index styles: entry-per-line, paragraph, or com-
bined. The indexer has control over the form of the entries, being able to specify

boldfacing of pages, different types of page referencing, and any number of levels.

11

I.-ATEx, a set of T macros, also contains index generating macros [Lamp86].
A macro command to form an index is put in the text and other macros identify terms
in the text to be indexed. When T) is run on the document, a .idx file is created con-
taining macros for the index. This file must be processed to create theindex environ-
ment, which is a list of macros defining the formats of main entries, subentries, and
sub-subentries. TEx is then run on this file to get the final index, which is normally
printed in two columns. A Bourne shell script, latexindex, has been written for
LATEx on UNIX systems [Hofm86]. It helps the indexer avoid manipulation of the

.idx file by creating theindex environment. It prints the result on standard output.

Some programs have no ties to any document or word processing systems.
<<ANSWER>> [Ande83], INDEX [Gard82], *INDEX [Pasa81], and INDEXIT
[Fett86] are examples of them. <<ANSWER>> is an information management sys-
tem in which one application creates back-of-the-book indices. Electronic cards are
created using <<ANSWER>>. Fields on the cards are defined by the indexer and two
cards may be shown on the screen simultaneously, which helps the indexer form cross
references. The process of filling in the data cards and checking for similar informa-
tion entered is analogous to the manual method of typing cards, filing them, and
checking for additions and updates to them. After all the cards have been filled,
another program, <<REPORT GENERATOR>>, is used to create an ASCII file of
the entries. Via a word processor, the indexer may combine entries, move entries,
insert cross references, etc. Then the index is printed. The program runs on an IBM

PC™,

INDEX takes a file containing page numbers and the entries on each page and

combines the entries, sorting them either letter-by-letter or word-by-word, depending

IBM PC is a trademark of International Business Machines Corporation.

12

on the indexer’s preference. Other programs used with INDEX are ENTRIES, which
checks entries for certain errors and changes abbreviations to long form for sorting,
etc., and TEXTFORM®, which works on the output of INDEX to print or typeset the

index. It also forms the table of contents.

Like INDEX, *INDEX is given a sequence of page numbers and the words or
phrases selected for indexing on that page. Cross references are also entered. The
program forms the entries by combining like phrases, sorting the entries, and indent-
ing subentries. The output is a printed index having an indexer-specified line length
per column, number of lines per page, and number of columns per page. The current

version of *INDEX is written in SNOBOL.

INDEXIT users must enter a page number and the entry phrase on a single
line. This is done for each term to be indexed and the user can see 21 of these records
at a ime. Only 200 entries can exist in an entry file, making it necessary for the
indexer to sort and store entries in a file when the limit is reached, and then continue
with record entry until there are no more entries or another limit is reached. Page
references can be numbers other than page numbers, such as paragraph numbers. See
and see-also cross references are defined By setting the page reference part to 0 and
typing the reference. Like INDEX, INDEXIT allows the indexer to select the sort of
alphabetization to be used. The indexer also specifies a list of punctuation characters
to be ignored during the sorting process. The index can be four or five thousand
entries long, but limited to 160,000 characters. It runs on the IBM PC and IBM XT™,
The output of the index is simply a list of phrases followed by page numbers. It does
not indent for subheadings and does not suppress repeated headings, so that all sub-

entries are printed out with the form heading, subheading. The final formatting of the

IBM XT is a trademark of International Business Machines Corporation.

13

index is left for the indexer.

According to Linda Fetters, a freelance indexer for an indexing service, index-

ing programs should be judged by the following criteria: [Fett86]

1. Ease of entering index headings
Ability to create cross references
Ease of editing index entries
Sorting capabilities

Size limitations

Formatting capabilities

Printing effects

ol A o

Ability to cumulate indexes

Although the extent to which each of the above programs other than INDEXIT
satisfies the criteria is unknown, several comments can be made. First, although
marking words or phrases in the text is easier than entering them in separately, the
indices set up in this manner are restricted to entries occurring word-for-word in the
text. When the page number and the phrases on the page that belong in the index are
given as input or the phrases are preceded by index macros in the text, the phrases do
not have to appear in the text. The phrases can be anything the indexer wishes them
to be. Second, the ability to create cross references is desirable as noted above. A
good index would have cross references for readers unfamiliar with the terms used in
the text, having synonymons terms in the index referencing the terms used in the text.
Third, having the capability of different ways of sorting the terms is desirable since
there is no standard method. Fourth, the ability to accumulate indices would be nice
to have because index entries can be set up for sections of the text in parallel and

merged to form the entire index. This would save time although more space may be

14

needed, depending on the size of the text and the number of sections it has been bro-

ken into.
1.5 Motivation for the Indx Program

This paper discusses the indx program, another semi-automatic indexing pro-
gram. There are several reasons behind its existence. First, it has been designed and
implemented using the modern programming methods of information hiding and
structured programming. A program that finds repeated phrases in arbitrary text sug-
gests a new method of semi-automatic indexing where the phrase-finder helps the
indexer select the phrases to be indexed. The feasibility of this method via this imple-

mentation is to be determined.

15

CHAPTER 2
THE INDX METHOD

The method of producing indices with indx allows the indexer to concentrate
on obtaining the entries in the final index without initially having to know specific
page references or having to insert many markers or macro calls into the input text. It
is described and compared with the characteristics of some of the other existing

methods below. Then the initial expectations of the method are discussed.
2.1 Description of the Method

The first thing the indexer must do is select the phrases in the text that are to
have page references. These phrases are put in the phrase file. The indexer must then
set up the optional files described in Section 2.1.4 to output the index desired. The
optional files define index terms that are to be combined with each other under one
term, that are to be grouped with each other to form headings that have subheadings,
that are to have see-also cross references, that are see cross references, that are see-
under cross references, and that are to be given an alternate heading or subheading.
The files are processed in this order and the actual steps taken to create an index are

controlled by the files provided by the indexer.
For example, suppose the completed index is to contain

Alphabetic sort, See Binary search trees
Binary search trees, 320-372
LEFT pointers, 208-214

16

Pointers
LEFT, 208-214
RIGHT, 208-214

RIGHT pointers, 208-214

and the phrases for which page references are found are

Binary search trees

LEFT pointer

LEFT pointers

RIGHT pointer

RIGHT pointers
The optional files that would be needed are the combine-phrase, group-eniry, see, and
alternate-index-term files. The page references of the phrases “LEFT pointer’
and “LEFT pointers” would be combined under “‘LEFT pointers.” The
same thing would be done for “RIGHT pointer’’ and “RIGHT pointers.”
Then the ““Pointers’’ group entry would be built as defined in the group-entry file.
In it would be the definitions for copying the entry ‘“‘LEFT pointers” under the
heading ‘‘Pointers’’ and for copying the entry ““RIGHT pointers’ under the
heading ‘‘Pointers.” There are no see-also cross references to add so the file is
not given. The see cross reference is added to the index and since there are no see-
under cross references defined, the alternate-index-term file would be processed. Itis
needed to change the subheading ‘‘LEFT pointers” under the heading

“Pointers’ to ‘“LEFT” and to make a similar change for “‘RIGHT

pointers.”

The input text must be prepared as described below and the indx program is
run given the names of the files and the input text. The indexer should save the output
to a file so that it may be examined for incorrectly sorted terms and useless or techni-
cally incorrect page references. A technically incorrect page reference occurs when a

sequence of page numbers should be replaced by a span of page numbers. After the

17

troff macro calls are verified, they must be printed using the appropriate macro pack-

age to get the final index. See Appendix C for a macro package example.
2.1.2 The input text

The form of the text is much like regular text except for two things. First, all
sentence punctuation must be separated from surrounding words by at least one blank,
to allow the search of phrases. Second, the text of page # must be preceded by a line
having the sequence ~Lpn on the leftmost end. Here "L is the formfeed character. If
the original text is available as ditroff output, the program dedit (parse that as de-dit
and not d-edit) can be used to convert the ditroff output into the text acceptable by
indx. The manual page describing this program can be found in Appendix E. One of
the differences between setting up a text file manually and running ditroff text through
dedit is that all words of the dedit output will be separated from any sort of punctua-
tion by one blank, whereas text set up manually could have only sentence punctua-
tions preceded by a blank. For example, the partial sentence *‘U.S. Navy.”” could
exist in the text file as *“U.S. Navy .”” but the ditroff equivalent of the same part of the
sentence would be changed by dedit to *“U . S . Navy .”’. This is a relatively minor
detail that can be taken care of by searching for the phrase ““U . S . Navy’’ and later

changing the entry using the alternate-index-term file to *‘U.S. Navy.”’
2.1.3 Selection of phrases in the text

The phrases to be found in the text are written in a file which must always be
specified. The file of phrases contains one phrase per line. These phrases must be
sorted to speed up the initial building of the index. The UNIX sort command can be
used with the —f option to sort the index ignoring case distinctions. There must be no

phrases that are equivalent to each other when case distinctions are ignored. For most

18

phrases, case distinctioné are to be ignored when scafching the text. Certain phrases
may need to be matched exactly, so such a phrase will be flagged with a special char-
acter at the end of the line. The special character ideally should be one that is not
used in any of the phrases. It must be the first character of the file, by itself on the first
line. If it should become necessary to have a word of a phrase consist solely of the
special character, it should be preceded with the same character. That is, if ‘1"’ is the
special character and the phrase *‘Yippee !!”” must be searched for, it should appear in
the file as ‘“Yippee !!!”’. This convention is used for all of the other files as well,

regarding the separation character used to separate phrases on each line.

In order to come ﬁp with a list of phrases that will appear in the index, the pro-
gram findphrases [Agui87] may be used. Findphrases scans the input text, finding
all repeated phrases up to a user-specified number of words in length, ignoring phrases
given in an ignored phrase file. By forming a large enough file of ignored phrases,
one can end up with a meaningful list of repeated phrases. This list will contain many
if not all of the items either that should appear in the index or that suggest other
phrases that should appear in the index. This list is just a preliminary one since there
will possibly be items to be indexed that occur on only one page, and not on the list of
repeated phrases. Some of these unrepeated items may be found by using the -t

option of findphrases to obtain a list of the tokens, which generally are single words.

One could keep a list of phrases that will be ignored in the majority of texts to
be indexed, a general-purpose ignored phrases file. It would contain phrases such as
“the’’, “‘a”, “of”’, and ““is.” One of the options in the findphrases program is
to ignore all phrases that begin with a phrase in the ignored phrases file. With this
option in mind, a generic ignored phrases file has been compiled and is given in

Appendix A. The ignored phrases file would be completed by adding phrases specific

19

to the text that should be ignored. A few iterations may be needed to get the right
maximum length of a repeated phrase and a large enough list of ignored phrases to
reduce the number of repeated phrases down to a useful size, where it indicates things
to be indexed. A list of specific ignored phrases for this thesis is given in Appendix
A. The phrase files used to create the initial index and the final index are given in
Appendix B. The initial index covered an earlier version of the first three chapters of
this thesis. The final index follows this thesis. The boldfaced phrases in each of the
phrase files are those that have been directly obtained from the list of repeated
phrases. About 42% of the final index entries have come from the list. Many of the
other phrases in each phrase file have been derived from the list of repeated phrases.
That is, the list directed attention to parts of the text that should be indexed and often
suggested part of a phrase to be used in the phrase file. Merely being directed to a

part of the text helped in selecting a phrase to obtain the page reference.
2.1.4 The optional phrase files

The phrases for which page references are to be combined, the phrases which
should be grouped to form group entries, the phrases which should have see-also cross
references, see cross references, see-under cross references, and the phrases whose
entry phrase is to be changed are stored in separate files. Depending on the index

being formed, any combination of these files may be given by the indexer.

The combine-phrase file contains pairs of phrases on each line. The page
references of the second phrase are merged with the page references of the first, put-
ting the merged list under the first term. The second term is deleted from the index. It
is provided to allow concepts that are expressed by more than one phrase to be
indexed as one entry and to simulate the appearance of having a reference to a page

discussing but not actually containing a term. The second phrase will often be the

20

plural or some other form of the first phrase.

The group-eniry file also contains pairs of phrases on each line. The second
term will become a subentry of the first term, if the definition is valid. Only two levels
are provided meaning that a main entry can have a subentry but a subentry may not
have a sub-subentry. Thus, the first phrase must be a main index term. If it does not
exist, a main entry will be formed for it. There are two ways to define a subentry.
Either the subentry will be a copy of one of the main entries or the main entry will be
moved under another main entry, thus becoming a subentry. Lines ending with the
separation character of the file will have the subentry as a copy of the main entry
given by the second phrase. For example, to eventually get the following portion of
an index (in paragraph style):

programming language, 3: C, 4, 7; Pascal, 4,7, 9
the group-entry file might contain

!
programming language ! Pascal
programming language ! C

If “‘Pascal’’ should also be in the index, the group-entry file would contain

1
programming language ! Pascal !

programming language ! C
The see-also file contains pairs or triples of phrases on each line. The second
phrase will be the see-also cross reference of the first phrase. If there is a third phrase,
the index term to be given a see-also cross reference is a subentry under the heading
given by the third term. Only entries having page numbers can have such cross refer-
ences. For example, to eventually get the following entry (entry-per- line format):

Program documentation, 11, 17, 24
See also program design language

the see-also file could contain

21

Program documentation : Program design language

The see file contains pairs or triples of phrases on each line. The second
phrase will be the see cross reference of the first, which should not already be in the
index. As the see-also file, if there is a third phrase, the line describes a subentry to be
placed under the entry given by the third phrase. This group heading must exist in the
index. The see-under file is set up and handled in the same manner as the see file.

Suppose the following portion of the index is desired (shown in entry-per-line format):

PDL; See program design language
program design language, 17, 25, 27
A see file entry that would yield the macros to give the index term having the cross-

reference is:
PDL : program design language

The alternate-index-term file also contains pairs or triples of phrases, which
define alternate phrases for main and subentries, respectively. The index term having
the first phrase is taken out of the index and re-inserted in the proper position after
being given the new entry phrase (the second phrase). This is provided since certain

phrases found in the text are better represented in the index by other phrases.
2.1.5 Description of the output

As indx reads the files, the lines describing valid transactions are processed
and error messages for any invalid lines in the optional files are printed out. Whatever
is in the index at the end of the processing, even if there are illegal descriptions, is

printed out after all optional files have been processed.

22

The index terms are printed out as a series of troff macro calls. Two macro
packages are available, one for the entry-per-line style and one for the paragraph style.
The terms are alphabetized word-by-word, with the case of the letters ignored. Non-
alphabetic characters in entries are included in the sorting process, which may cause
terms to be incorrectly sorted. Strictly ASCII comparisons are made so that numbers

will appear before entries beginning with *“A.”’

The indexer may have to correct some of the order of terms as well as touching
up the page references. For one thing, indx will find every page on which a phrase is
found, while the indexer may not want this form in the index. In addition to possibly
removing some page numbers, the indexer may wish to replace a sequence of con-
secutive numbers with a range of page numbers, for example replace ‘‘3,4,5,6’" by
¢“3.6.”" These two forms are not identical because individually listed numbers means
the subject is discussed intermittently on each page, whereas a range of numbers
means the subject is discussed continuously on these pages. The program is incapable

of making this distinction so the human indexer must do it.

It would be useful to have a browser program to find entries with page number
ranges. This program would search the indx output for sequences of consecutive
numbers, display the entry, and ask for and make changes desired by the human

indexer.
2.2 Comparison with Other Automated Tools

Indx, just like the other indexing programs, must be given the phrases of the
index. However, the actual phrases for which page entries are to be found are stored
in a file instead of being marked in the text or given as macro arguments. Unlike the

other programs, indx searches the text for occurrences of the phrases to get the page

23

references. The definition of index entries via the phrase file and the optional files is
unique to indx. One of the disadvantages of having multiple files defining index
entries is that a change to a phrase in the index may have to be made not only to the
phrase file but to any of the optional files the phrase is in. This is not difficult but

rather tedious.

Indx provides three types of cross referencing. None of the other programs
seem to support see-under cross referencing. Also, there is no indication that the cross
references are verified as being entries in the index. Indx will not allow an index term
to cross reference an entry that does not exist as a main entry in the index. Also, only
entries having page references will be allowed to have see-also cross references. It is
verified that all entries referred to by a see-under cross reference be main headings of
group entries. The usage of the actual phrase in a subheading of a group referred to
by a see-under cross reference will not be verified so it is the indexer’s responsibility
to use the see-under cross reference properly. Indx will not allow check entries or cir-
cular references, in which two terms in the index cross reference each other. If such a
pair of entries is desired for the purpose of detecting and proving copyright violations,
it must be manually added to the macro calls for the index. More generally, having a
see cross reference to an index term that has a see cross reference (to any term) will

not be allowed by indx.

The sorting capabilities of indx are average when compared with those of the
other programs. The indx program implementation inherently supports word-by-word
alphabetization without ignoring punctuation. As in most of the other programs, there
probably will be phrases in the wrong order, making the human indexer responsible

for correctness.

24

The maximum size of an index in indx is unknown as it is limited by the
memory size of the machine. For any set of files, though, the total number of entries
and subentries can be approximated by summing the number of lines in the phrase,
see, and see-under files, adding the number of lines in the group-entry file which
define the subentry as a duplicate of a main entry, and then subtracting the number of
lines in the combine-phrase file. The phrase file gives the maximum number of main
entries having page numbers and the see file and see-under file together give the
minimum number of entries (main or sub) not having page numbers. One entry is
created for every subentry formed by duplicating a main entry and one entry is des-
troyed for every line in the combine-phrase file. The first reason why this sum is an
approximation is that when the group-entry file is processed, if no main entry exists in
the index for a subentry to be placed under, it is created and added to the index.
Entries formed in this manner will not have page references or cross references. The
second reason is that using the number of lines in each of the files includes the first
line which has no phrases. To calculate the exact number of macro calls in the output,
the “‘formula’’ described above should be used with one less than the number of lines
in each file. This subtotal should then be increased by the number of unique group

headings which were not searched for in the index.

The two troff macro packages provided give the user the option to select
between entry-per-line style and paragraph style. The combined style is not necessary
for indx since with only two levels of entries, the combined style is equivalent to the
entry-per-line style. Indx is not as flexible as the Winograd and Paxton TgX macros
by which the indexer can control many parts of an individual entry. Indx formats a
basic index, which should be sufficient for most indexers. However, since the macros

are published, they can be modified to be as fancy as desired.

25

Although main page references cannot automatically be boldfaced, the indexer
may be able to print entry phrases that have special characters or characteristics. For
example, if the indexer desires the phrase ‘‘Absolute zero’’ to be italicized in the
index, he or she may have ‘‘\ fIAbsolute zero\fP” in the input text and in the
phrase file. When troff is run on the indx output, the \ £I and \ £P commands will be
interpreted and the ‘‘Absolute zero’’ entry will be italicized. An easier way to
achieve this is to find the phrase ‘‘Absolute zero’’ and then rename it using the
alternate-index-term file to ‘“‘\fIAbsolute zero\fP.”” Entries containing such
formatting commands will definitely be erroneously placed in the index and their posi-
tions must be corrected by the human indexer. This is why such commands are
advised against in Salz’s index and why the ability to specify a sort key in the Bentley

and Kernighan indexing suite is a good idea.

The entire index must be built at once. One of the problems in building the
index with sections of the text is that entries being cross referenced to may not exist in
the portion of the index being built. The program would be unable to verify cross

references without having the entire index to search.
2.3 Initial Expectations of the Method

It should be fairly easy to set up the files for the index terms once the indexer
identifies the terms to be indexed and their relationship to each other. The optional
files should be straightforward if the indexer uses each file correctly. For example, the
second terms of the combine-phrase file will be deleted from the index after its page
numbers have been added to the other term so no other optional files should contain
that phrase. The only valid way such a phrase could exist in another file is if another

phrase is renamed to this deleted phrase in the alternate-index-term file.

26

Because a subject heading is most likely to be referred to using more than one
phrase, it is expected that the combine-phrase file will be quite long. Also, because a
subject heading is most likely to be a synopsis of the phrase actually used in the text,
the alternate-index-term file should also be quite long. It is expected that most of the
definitions in the alternate-index-term file will be for subentries. Parts of the phrase
used for obtaining the page references of a subentry will probably appear redundant
when the entire entry is printed, as the group heading identifies the subject of the

entry. Thus, most subheadings would be shortened or summarized.

The amount of time needed to create the index depends on several things.
Increasing either the amount of text to be indexed, the number of phrases in the
phrase file, or the maximum length of the phrases in the phrase file will increase the
execution time. The number of phrases to be combined will also have a great
influence on the time it takes to generate an index because of the page merging that

must be done.

Depending on the phrases that eventually make up the index, there may be
some sorting problems. As mentioned in section 2.2, alphabetization is done word-
by-word. Phrases containing punctuation characters may end up slightly misplaced
since there is no way to ignore the punctuation in the sort. Those misplaced phrases
will be either inverted, since they contain commas, or contain printing sequences. An
example of this second type is the ‘‘\fIAbsolute zero\fP’’ phrase mentioned
earlier. The word-by-word sort would take ““\ fIAbsolute’ as the first word of the
phrase instead of ‘‘Absolute’’. It is the human indexer’s responsibility to check that
the index terms are sorted correctly. Only those terms containing nonalphabetic char-

acters need closer examination. These can be searched for easily.

27

The standard output should be redirected to a file so that the indexer can check
the order and the page references of the entries. It is expected that many of the page
numbers for a term may be useless, since every single occurrence of the term gets
listed. The amount of useless terms should decrease as increasingly specific phrases
are selected. Most of the indexer’s time spent on preparing the indx output for print-
ing will be ensuring that page references are meaningful and replacing a page

sequence with a range if the subject is discussed continually on consecutive pages.

28

CHAPTER 3
THE INDX PROGRAM

Indx is designed as a UNIX program which may be run alone or used as in the
following sequence:
ditroff zextfile | dedit | indx -pphrasefile | psroff -vnacropkg.
Thus, the information needed by indx is given in files whose names are arguments to
the program. The synopsis of the command is

indx -pphrase-file | -Ssee-file] [- asee-also-file] [-usee-under-file | [- ccombine-
phrase-file] [-ggroup-entry-file] [- nalternate-index-term-file [-dpgdelim]

3.1 Design of the Indx Program

Indx has been designed with the goals of understandability and modifiability.
The software engineering principles of abstraction, information hiding, modularity,
localization, uniformity, completeness, and confirmability [Booc83] have been
applied to achieve these goals. Much of the design effort has gone towards identifying
the levels of abstraction of the indx program and modularizing it in such a way as to
maximize the relationships amon g the routines of a2 module and minimize the relation-
ships among the modules. This type of modularization gives modules informational
strength. The design and some of its implementation are discussed in the following

sections.

29

3.1.2 The partitioning of the program

The partitioning of indx was achieved by taking a list of the design decisions
that were likely to change and designing one module for each decision in a way that
would hide the decision from the other modules. Thus each module would hide some
concept, data structure, or resource, which is the purpose of an informational-strength
module [Myer78]. This method was suggested by D, L. Parnas in [Parn72]. Some of
the obvious design decisions concern the index, the phrase-file, each of the optional
files, and the input text. The rest of the design’s modules concem the argument line
(of the indx command), standard output, phrases (found in all of the files, the input,
the output), objects read from the files (called chunks), and error handling. With the

exception of the error handling module, the modules have informational strength.

The next step was deciding what functions and procedures each module would
provide to allow other modules to use the hidden object, or abstract data type
correctly. Package specifications, giving the type name and the operations with their
interfaces (function and procedure declarations), were written for each module. Parts
of the specification that were poorly designed were changed as problems in the imple-
mentation process and further program specifications identified weak points. The
most frequently used modules are those related to the data from the files (including

standard input) and to the index.
3.1.3 The data modules

Many parts of the program involve reading phrases from a file. Standard input
can also be considered a file. Thus, one of the modules in the design contains routines
defined for phrases. On a lower level, phrases are made up of words separated by

blanks. Words are read from the files, but since the files may also contain other things

30

like the end-of-file marker, the entities that are read from the files are called chunks.
A chunk may be a word, an end-of-line character (eol) or an end-of-file character
(eof). A word is considered anything other than eol or eof, so that single punctua-
tions are also words. The input text, which is read from standard input, contains
words just like the files mentioned above. There also is an end-of-file marker, but
there are no end-of-line markers as they get masked over at a lower level. This allows
the input text, which is divided into lines, to be free from the concept of lines. So,
standard input is thought of as consisting of units, where a unit is a chunk that is not

eol.

Following are the package specification parts for chunk file, which
defines the usage of chunks while hiding the implementation of chunks, and
phrases, which does the same thing for phrases. They are written as Ada® pack-
ages. (However, liberties are taken with Ada notation. For example, blanks are

inserted in words for readability instead of using underscores.)

Module 3: chunk file

oren (s, f) opens the file having the name given by s and returns f as the file
descriptor.

get next chunk(c, £) gets the next chunk out of file £ and puts it into c.

cl to c2(cl,c2,1i) returns one of three characters: ’<’, *>’, or ’=’, reflecting the
relationship of chunk c1 to chunk ¢2. Ifiis true, case is ignored in the comparison.
is eof (c) returns true if chunk c is the end-of-file character and false otherwise.
is eol (c) returns true if chunk c is the end-of-line character and false otherwise,
is potential page marker (c) returns true if chunk ¢ may be a page marker
and false otherwise.

length (c) returns the length of chunk c.

char (i, ¢) returns the ith character of chunk c,

string of(c, s) putsthe string representation of chunk ¢ into string s.

set page number of (c,pg) setsthe page number of chunk c to pg.

page number (c) returns the page number of chunk c.

close (f) closes the file given by the file descriptor £,

with text io;

Ada is a registered trademark of the U. §. Department of Defense (AJPO).

31

use text io;
package chunk file is
typa chunk is private;
type in file is private;
procedure open(s: string; f: out in file);
Procedure get next chunk(c: out chunk:
f: in file);
function cl to c2(cl, c2: chunk; i: boolean)
raturn character;
function is eof(c: chunk) return boolean;
function is eol(c: chunk) return boolean;
function is potential page marker{c: chunk)
return boolean;
function length(c: chunk) return integer;
function char(i: integer; c¢: chunk)
return character;
procedure string of(c: chunk; s: out string);
procedure set page number of (c: chunk;
rg: integer);
function page number (c: chunk) return integer;
procedure close(f: in file);
end chunk file;

Module 5: phrases

clear phrase(p) initializes phrase p.

print phrase (p) prints out the chunks that make up phrase p.

add chunk to phrase (c, P) adds chunk c to the end of phrase p.

add unit to phrase (u,p) adds unit u to the end of phrase p.

freeze phrase (p) stops the changing of phrase p.

Pl to p2(pl,p2,i) returns a character reflecting the relationship of phrase p1
to p2, either ’<’,’=’, or *>’. If i is true, case is ignored in the comparison.

chunk of (n,p, c) puts the nth chunk of phrase p into c.

length in chunks (p) returns the number of chunks in phrase p.

is empty (p) returns true if P contains no chunks and false otherwise,

with output file, chunk file, text file:
use output file, chunk file, text file;
Package phrases is
typa phrase is private;
Procedure clear phrase(p: phrase):
Procedure print Phrase(p: phrase);
pProcedure add chunk to phrase(c: chunk;
P: in out phrase);
procedure add unit to phrase(u: unit;
P: in out phrase);
Procadure freeze phrase (p: phrase);
function pl to p2{pl,p2: phrase; 1i: boolean)
return character;
pProcedure chunk of (n: integer; p: phrase;
¢: chunk);
funetion length in chunks (p: phrase)
return integer;
function is empty(p: phrase) return boolean;
end phrases;

32

The chunk file routines allow operations on chunks such as comparing
two chunks. The function pl to p2 in phrases, which compares two phrases,
must use the function c1 to c¢2 to compare the phrases chunk by chunk. Phrases
consist of chunks, but the information of the makeup of chunks is kept from the rou-

tines in phrases.

Since units are nearly the same as chunks, many routines in the module for the
input text are very much like those in chunk file. The module is called text

file,

Module 4: text file

open opens standard input.

get next unit of text (u) putsthe next unit of text into u.

make unit (c,pg) makes a unit out of a chunk by adding the page number pg of
the unit to the chunk.

is page marker (u) returns true if unit u contains the page number for the fol-
lowing text and false otherwise. If true, the current page number is extracted from the
unit.

page no (u) returns the page number that unit u is found on.

is eof (u) returns true if unit u is the end-of-file character and false otherwise.
length (u) returns the length of unit u.

char (i, u) returns the ith character of unit u.

string of (u,s) returns the string part of unit u in s.

close closes standard output.

with text io, chunk file;

usa text io, chunk file;

package text file 1is
type unit is private:;
procedure open;
procedure get next unit of text (u: out unit);
procedure make unit(c: in out unit; pg: integer);
function is page marker{u: unit) raturn boolean;
function page no(u; unit) return integer;
function is eof(u: unit) return boolean;
function length{u: unit} return boclean:
function char{i: integer; u: unit)

return character;

procedure string of {u: unit; s: out string);
procedure close;

end text file;

33

The differences between chunks and units are that units cannot be ecl and
units, being from standard input, are tied to page numbers while chunks are not. Both
chunks and units represent words, which make up phrases. To avoid the difficulty of
comparing two types of phrases, units and chunks are designed to be the same thing.
Thus, chunks have page numbers associated with them. This does not make too much
sense if the chunks are from files but the page numbers are necessary if chunks are
from standard input. This is why the procedure set page number of and the

function page number exist in chunk file.
3.1.4 The index module

The largest module of the program defines the index. It contains routines to do
the following: initialize the index, set various parts of an index term, add index terms
to the index as either entries or subentries, determine the contents of an index term,
and print the index. There are routines for each of the operations the optional files
define, including combining index terms and changing the entry phrases of index

terms. The dump routines are provided for and were used to debug the code.

Module 6: index

initialize index (pgdelim, delimlength) does the necessary initializa-
tions for the index package. It is given the page delimiter which will separate pages in
the page reference part and the number of characters making up the delimiter.

add phrases beginning with this unit to index(u,m) searches
for phrases beginning with unit u and adds phrases that consist only of the unit to the
index and saves phrases that begin with u but must be matched with more units to be
read in from the text. m contains the maximum number of units that a phrase can
have.

clear index term(i) initializes index term 1.

add phrase to index term (p,c, 1) puts phrase p in the entry part of index
term 1. If c is true, the case of the phrase is to be ignored.

add page to index term(n,i) adds page n to the page list of index term 1.
add see also to index term (p, 1) adds a see-also reference to phrase p to
index term 1.

add see cross reference (P, 1) adds see cross-reference p to index term i.
add see under cross reference (p, 1) adds see-under cross reference p
to index term 1.

34

add sub entry to index term (11,12) places index term i2 under index
term i1l,

freeze index term(i) freezesindex term i from further changes.

add index term to index (i) adds index term i to the index. i is a main
index term, not a subentry.

phrase of (i, p) puts the entry part of index term 1 in phrase p.

is case to be ignored for (1) returns true if index term i has an entry
phrase for which case distinctions are not important when searching for occurrences in
the text. It returns false if exact matches of the entry phrase are to be sought.

page list of (i, 1) puts the page list part of index term i in 1,

reference of (i, p) puts the index term being referred to by index term i into =R
valid for see, see-also, and see-under cross-references.

1s regular entry(i) retums true if i is a regular index term and false other-
wise. A regular index term has an entry phrase and a list of page numbers. It may be
a main index term, the main term of a group term, or a subentry,

is see cross reference (1) returns true if i is a see cross-reference and
false otherwise.

has see also cross reference (i) returns true if i has a see-also cross-
reference and false otherwise.

is see under cross reference (1) returns true if i is a see-under cross-
reference and false otherwise.

is main entry of group entry (i) returns true if i is the main entry of a
group entry and false otherwise.

is sub entry of group entry (i) returns true if 1 is a subentry under a
group entry and false otherwise.

prepare index for further definitions does the preparations neces-
sary for processing the optional files (see, see-also, etc.).

get main index term(p, i) returns true if a term in the index has phrase P in
the entry part and false otherwise. If an index term having that phrase has been found,
it will be in i. Otherwise, 1 will be undefined.

get sub entry(p,g,i) returns true if a sub-entry, having phrase p, of the
group entry whose phrase is g exists in the index and false otherwise. If a sub-entry
has been found, it will be in 1. Otherwise, 1 will be undefined.

combine index terms(il, i2) merges the page list of the index term i2 with
the page list of the index term i1. It is meant to be used to combine main index terms
only, not sub-entries.

delete main index term(i) deletes main index term i from the index.
delete sub entry from index term (g, s) deletes subentry s from main
index term g.

COPYy entry under group entry(il,i2) forms a group relationship
between index terms 11 and 12 in which a copy of 12 is placed under 11. Thus the
entry 12 is found both under a group and as a main entry in the index.

move entry under group entry(il,i2) forms a group relationship
between index terms i1 and 12 in which 12 is placed under i1, removing it from the
main entries of the index.

change main index term entry (i, p) replaces the entry phrase of the
main index term 1 with p. ‘

change sub entry of index term (i,9,p) replaces the entry phrase of
the sub-entry i under the group entry g with p.

freeze index freezes the index from further changes.

35

print index(alt) prints the macro calls to form the index. if alt is true, the
alternate-index-term file was given and alternate entries for cross-references are
searched for when an index term having a cross-reference is printed.

dump index term(i) prints out the contents of index term i, It is provided for
debugging purposes.

dump all index terms prints out the contents of all index terms in the index.
It also is provided for debugging purposes.

with output file, chunk file, phrases, text file,
alternate index term file;
use output file, chunk file, phrases, text file,
alternate index term file;
package index is
type page list is private;
type index term is private;
procedure initialize index(pgdelim: string;
delimlength: integer);
procedure
add phrases beginning with this unit to index
(ur unit; m: integer);
Procedure clear index term(i: index term) ;
procedure add phrase to index term(p: phrase;
C: boolean; i: in out index term);
pProcedure add page to index term(n: integer;
i: in out index term):;
procedura add see alsc to index term(p: phrase;
i: in out index term);
procadure add see cross reference(p: phrase;
i: in cut index term);
Procedure add see under cross reference
{p: phrase; i: in out index term) ;
procedure add sub entry to index term
(i1,12: index term);
procedure freeze index term{i: index term) ;
Procedure add index term to index(i: index term);

procedure phrase of{(i: index term;
p: out phrase);
function is case to be ignored for(i: index term)
return boolean;
procedure page list of(i: index term;
1l: out page list);
procedure reference of (i: index term;
p: out phrase);
function is regular entry(i: index term)
raturn boolean;
function is see cross reference(i: index term)
return boolean;
function has see also cross reference
(i: index term) raturn boolean;
function is see under cross reference
{i: index term) return boolean;
function is main entry of group entry
(i: index term) return boolean;
function is sub entry of group entry
{i: index term) return boolean;

Procedure prepare index for further definitions;

function get main index term(p: phrase;
i; out index term} return boolean;

36

function get sub entry{p: phrase;
gri: index term) return booclean;
procedure combine index terms
(11,12: index term) ;
procedure delete main index term(i: index term);
Procedure delete sub entry from index term
{g,3: index term);
procedure copy entry under group entry
{i1,12: index term);
Procedure move entry under group entry
(i1,i2: index term):
procedure change main index term entry
(i: index term; p: phrase);
procedure change sub entry of index term
(i,g: index term; p: phrase);
procedure freeze index;

Procedure print index{alt: boolean) ;
procedure dump index term(i: index term);
—-= for debugging
procedure dump all index terms;-- for debugging
end index;

3.1.5 The algorithm

A rough outline of the algorithm is the following,

assign default optional file flags, page delimiter
get the arguments (* phrase-file name, ete *)
InitializeIndex(pgdelim,pgdelimlength)
if ReadInPhrases(phrasefilename,MaxUnitsInPhrase) then begin
UnitOpen (* open standard input *)
OutOpen {(* open standard output*}

GetNextUnitOfText (theunit)
if not UnitISEOF (theunit) then
if not IsPageMarker {theunit) thaen bagin
PrintErrorMsg(NoPageMark,nolinenum)
(* close standard input & output and *)
(* end program *)
end
@lse begin
GetNextUnitOfText (theunit)
while not UnitISEOF (theunit) do begin
if not IsPageMarker (theunit) then
AddPhrasesBeginningwithThisUnitToIndex
(theunit,MaxUnitsInPhrase)
GetNextUnitOfText (theunit)
aend
and

PrepareIndexForFurtherDefinitions
if gotcombine then
FormCombinedEntriesWhileValidatingTerms
(combinefilename)

if gotgroup then

37

FormGroupEntriesWhileValidatingTerms
(groupfilename)

if gotseealso then
FormSeeAlsoCrossRefsWhileValidatingTerms
(seealsofilename)

if gotsee then
FormSeeCrossRefsWhileValidatingTerms
{seefilename)

if gotseeunder then
FormSeeUnderCrossRefsWhileValidatingTerms
(seeunderfilename)

if gotalternate then
FormAlternateEntriesWhileValidatingTerms
(alternatefilename)

PrintIndex(gotalternate)

UnitClose (* close standard input *)
QutClose {(* close standard output *)
end

alsa PrintErrorMsg(NoCaseChar,errlinenum)

3.1.5.1 Finding page references

Page references for the phrases in the phrase file are found during the
AddPhrasesBeginningWithThisUnit procedure. When the phrases are read
in from the file, they are placed in the index. Then as the units of the text are read in,
the index is searched for phrases beginning with the unit. All phrases that may be in
the index are kept in a table of phrases. As each unit is read, it is appended to the
phrases in the table and these phrases are then searched for in the index. If a phrase is
found in the index, the Page number of the first unit of the phrase is added to the list of
page references of the index term. The page number of the first unit refers to the page
that the phrase begins on. Whether or not an index term is found, the phrase remains
in the table until it has reached the maximum length of the phrases in the phrase-file.
This allows the finding of embedded phrases. The index is then checked for entries
that begin with this unit read. If there are such entries, the phrase consisting of this

unit is searched for in the index. If found, its page reference is added to the index

38

term’s page list. The phrase is added to the table of phrases since it may be part of

more index phrases.
3.1.5.2 Processing the optional files

After all page references have been found, the indexer’s indication of whether
phrases should be searched for with or without case distinctions is no longer needed.
In order to process the optional files, phrases in those files must match those in the
index exactly. Thus, it is necessary to set all of the index terms to not have case dis-

tinctions ignored. This is done in PrepareIndexForFurtherDefinitions,

The contents of the optional files have been mentioned in section 2.1.4 and are
described further on the manual page in Appendix E. The first lines of the files define
a separation character of the files which is mainly used to separate phrases. Because
the indexer is free to choose this character, the situation of having a word of a phrase
consist only of the file’s separation character is rare. If it does occur though, the

indexer should immediately precede the word by the separation character.

The files chosen are based on the most commeon types of index terms (group
entries to two levels; see, see-also, and see-under cross references) and the fact that
many index terms are forms of the phrases used in the text (a combination of different
phrases; an alternative way of stating a phrase). The processing order chosen has been
partially determined by the decision to search the index when validating the lines of
each file instead of searching the given files for erroneous combinations of phrases.
An example of an erroneous combination is to have a phrase in the phrase file as a
first term in the see file. This is illegal since index terms having see cross references
do not have page references. The order is chosen to get by with as little error check-

ing as possible.

39

After the text has been read, the index consists of main entries having page
references. Since the ability to combine phrases is provided to get all of the page
references to a concept under one phrase and to simulate the occurrence of a phrase on
a page where the concept is discussed but the actual phrase does not occur, it makes
sense to combine terms that are known to have only page references. Thus combining

phrases is done first.

After phrases are combined, the index still consists of main entries having
page references. Group entries are then formed. Some of the entries will be removed
from the index and placed under another entry, thus the resulting set of main entries
will usually be the same as before (if all subentries were formed by duplicating main
entries) or smaller. It is possible for the amount of main entries to increase if new
main entries are defined during this stage. It is better to form group entries before the
cross references since cross referenced terms are main entries and all main index

terms after the group-entry file is processed will remain main entries.

Once the groups are set up, the cross references can be added. Among the
three types, terms containing see-also cross references must have page numbers. The
other two must not. So while all terms in the index are known to have page refer-
ences, the see-also file is processed. There is one exception to the rule of terms hav-
ing page numbers. In the group-entry file, if a main index term is not found in the
index, one is created. This is useful for setting up a heading which categorizes the
subentries without having to be searched for in the text. It would be acceptable in this
case for a reader to refer to the subentries and be referred to another entry for more

information.

40

The see and then the see-under cross references are added. The see file is pro-
cessed first to make the check for chain references easier. It is impossible to define
two entries that refer to each other since the cross referenced index term must exist in
the index before other terms can reference it. It is also impossible to define terms that
circularly reference themselves, as

Indexing, See Storage and retrieval

Retrieval of information, See Indexing

Storage and retrieval, See Retrieval of information
for example, since the term to be added must not already exist in the index and the
cross referenced term must exist. Without checking whether the cross referenced term
itself has a see cross reference, a chain reference would be possible, for example:

Document preparation systems, 10-12, 14, 16-25

Indexing programs, See Semi-automatic indexing

Semi-automatic indexing, See Document preparation systems
It would be more direct to have “‘Indexing programs’’ cross reference *‘Document
preparation systems.’’ Chain references are impossible to define as the check men-
tioned above is made. The see under index terms are created if the term to be added
does not already exist in the index and the cross referenced term is the main entry of a
group entry. This is the only criteria and it is left to the indexer to make sure that the

term having the see under cross reference is used in a subentry of the group.

The last step in creating the index is to change the entry phrases as defined in
the alternate-index-term file. Terms (main or sub) are removed from the index, given
the new phrase, and reinserted in the index. Main entries changed are saved in a table
so that as the index is printed, those terms having cross references to entries that have

been changed can be altered to cross reference the correct term.

41

For all of the optional files, lines defining some invalid operation cause an
error message to be printed. The message contains a description of the error, the type
of file, and the line number of the file. The building of the index continues until all

files have been processed.
3.1.5.3 Printing the index

The index is then printed as a list of nroffftroff macro calls. A macro call has

the following form:

pg refs

LI

.IX ! type "entry-phrase cross ref"
where ! is 0 for main entries and 1 for subentries, and type is either reg, also, see,
or under. A regular type macro will have a null cross reference string and see and

under type macros will have a null pg refs string.
3.1.6 Error handiing

Error checking is done in the main program and in the modules of the input
files. Two types of errors cause no index to be printed. If there is no case distinction
character in the phrase file, no phrases are read in. If the first unit of the input text is
not a page marker, the rest of the input text is not read. All definitions in the optional
files are processed if they describe legal operations, as mentioned before. Lines hav-
ing errors are flagged. The index will be printed even if these errors occur, but it will

be incorrect. It may help the indexer determine the error with the optional files.

There is one error message routine. It contains all of the error messages of the
program, which are accessed by a message number. If the line number of the file is

given, it will also be printed.

42

3.2 Implementation of the Indx Program

Indx is written with Berkeley Pascal version 2.0. The features of this version
of Pascal helped the implementation be as close to the design (written as Ada pack-

ages) as possible.
3.2.1 Faking packages in Pascal

In order to implement the set of packages given in the design, the bodies of the
routines of a package were placed in one file. Berkeley Pascal has a feature that
allows procedure and function declarations to exist in separate files from their bodies.
The declarations are placed in a file having the suffix “.h’’ and each of the routines
are declared external. The file containing the bodies and any other file that calls
these routines must have a line near the top saying ‘‘#include Silename.n.”’ For
example, the routines of the chunk file module are declared in chunkfile.h

and defined in chunkfile.p. Parts of these files are given below.

e s 3¢ 3 e e 2 e o e 2o o ofe chunkfile, by ¥ koo dokok o ook ok sk ok ok

(* package specification for CHUNK FILE *)

procedure ChnkOpen(filename:string; war f:infile):
external;
(* opens the file having the name given by *)
(* filename and returns f as the file descriptor*}

procedura GetNextChunk(var c:chunk; var f:infile);
external;
(* gets the next chunk out of file f and puts 1t%)
(* into ¢. a chunk is a word, end of file, or *)
{* end of line *)

function isEOF (c:chunk): boolean; external;

(* returns true if chunk ¢ is end of file *)
(* character and false otherwise *)

e ok 2k e 2 2k 3k ol ofe sk ojc e e chunkﬁlc.p 28 3¢ ok e e o e ke e i e o e e e ok e e ok

(* package CHUNK FILE *)

#include "globals.h"
#include "stringtype.h"

43

#include "chunktype.h" (* chunk type declaration ¥*)
#include "filetype.h"
i

$#include "chunkfile.h"

var charsaved: boolean; (* global vars of package ¥)
savech: char;

procedure ChnkOpen;
{* opens the file having the name given by *)
{* filename and returns f as the file descriptor¥)
(* it also initializes the global variables of *)
(* this package *)

begin
if filename <> ’standardinput’ then
reset {f, filename) ;
savech:= 7 ’;
and;

function isEOF;
(* returns true if chunk ¢ is end of file *)

(* character and false otherwise *)
begin

isEQF:= c.body[1l] = chr({(l)
end;

3fc 3k abe s e 3k ok e ok abe 3 e s 2 3 e ke e b e e e sfe a3 o e e o e e e ek

Any of the other modules which use the chunk file routines must contain

“#include chunkfile.h’ in order to access the routines.

Note that chunkfile.p could contain fully declared functions and pro-
cedures. That is, they would not be externally declared in chunkfile.h. These
routines would be internal, or known only by the chunk file routines. None of
the other files may use them since they are not declared in the .h file. Routines of this
sort are plentiful in the index module, and they are not in the .h file because they are
implementation dependent. The routines in .h files (in the decomposition) must be

implementation independent for a well-designed module.

Because Pascal does not support the concept of packages and cannot restrict
abstract data types to specific packages, the restriction of accessing the data types only
through their routines provided must be voluntary. For example, the phrases

module must use the chunk file module so that phrases.p must include

44

chunkfile.h and chunktype.h, which contains the type declaration for chunks
(and units). The implementation of a chunk then, is available to the routines in
phrases, so that these routines may directly refer to parts of a chunk instead of
using the chunk £1ile routines. However, it defeats the purpose of the design to do

this.
3.2.2 Implementation of the index

The index is implemented as a doubly-linked list of index terms in order to
have the ability of deleting an index term without having to sequentially traverse the
index. Deletions are done by combining index terms, by changing the entry phrase,
and possibly by forming group entries. The terms are in sorted order so that the print
index procedure begins at the head of the list and sequentially traverses it to print the

index. The index term type is a pointer to a node as depicted in Figure 3.1.

entry phrase

page references

ignore case

term type

cross reference

subentries

Fig. 3.1 An index term node

45

The entry phrase and cross reference parts are phrases and the item
labeled subentries is an index term. The page references is a linked
list of integers. The ignore case field indicates whether case is to be ignored
when searching for the index term. The term type field indicates the type of index
term; a regular entry, a main entry of a group entry, or a subentry. It also describes
the type of cross reference it contains, if there is one. The next and previous
fields, which are not labeled but are pictured on the right and left sides, respectively,

point to the index terms that succeed and precede the index term.

Figure 3.2 is a representation of an index. The particular index shown is of the
first three index terms in which the second index term has two subentries. The darkly
shaded areas indicate nil pointers. The diagonally shaded rectangle represents the
subentries part of the index term, which being an index term itself has its

next field pointing to its first subentry. The previous field, not pictured, is nil.

In order to find an index term quickly, the phrases are hashed to give a location
in the search table. The search table is an array of buckets that contain a
binary tree of index terms which get hashed to that location. Because the subentries
of an index term are linked directly to their main entries and the number of subentries
is usually small, the search table contains only main entries. Thus to find a sub-
entry, the main entry must be found and then its subentry list sequentially searched for

the desired subentry.

The hash function used depends only on the first word of the phrase. The
integer represented by the binary representations of the second through the fifth char-
acters is divided modulo 1793 (the number of search buckets) and stored in the
search table location one greater than this result. Should the word contain less

than five letters, blanks are used in place of the nonexistent letters. Index terms get

46

Fig. 3.2 Part of an index in which the
second index term has two subentries.

distributed among buckets more evenly than if they were alphabetically partitioned (as
they will appear in the final index) but this hash function may not be very good if
many phrases begin with the same word. The function is simple, though, and also
allows the program to determine easily whether a phrase in the index begins with a

certain word.

47

The decision of using binary search trees in the hash buckets as opposed to
using a linked list structure was influenced by the need to rapidly search the index.
The bulk of searching the index comes not from the processing of the optional files,
but rather from searching for phrases from the text that are in the index. During the
processing of the optional combine-phrase, group-entry, and alternate-index-term
files, deletion of main entries in the index means deletion of a node from a binary
search tree (in the search table) as well as deletion from a doubly-linked list (the
index). Binary tree deletion is a more complicated process than linked list deletion
is, however, it was anticipated that the number of searches would be far greater than

the number of deletions.

Insertions and retrievals of main entries in a binary search tree are done by
comparing the headings of the main entries to be inserted or retrieved to the heading
of a node in the tree, ignoring case distinctions. The main entries cannot be stored and
retrieved in tree locations determined by case distinct comparisons since the result of
having no match between the heading being inserted or sought and a heading of an
entry in the tree could mean one of two things. It could mean that the phrases are not
the same even if case distinctions were to be ignored or it could mean that the phrases
are equivalent if case distinctions are ignored. Thus the process of searching for a
heading involves two steps. First, a search is made for the case-ignored equivalent of
the given phrase. Then if such a heading is found, the result of the search depends on
whether the heading of the main entry is to be matched exactly or with case distinc-
tions ignored. If case distinctions are to be ignored, then the main entry has been
found. If case distinctions are to be made, the given phrase must be compared again
with the heading of the main entry, this time without ignoring case distinctions, to

determine whether or not the given phrase has indeed been found.

48

Because main entries are stored in binary search trees disregarding the case
distinctions of their headings, no phrases in the phrase file can be equivalent when
case distinctions are ignored. Even if some scheme is devised to store and retrieve
main entries having such equivalent headings, correct retrieval of a main entry having
such a heading cannot be guaranteed, since main entries can be added via the see and

see-under files, which may mess up the scheme,
3.2.3 The implementation of phrases, chunks, and units

Phrases are implemented as linked lists of chunks to avoid having a limitation
on the number of words a phrase can contain. Chunks and units are the same thing, as
mentibncd earlier in section 3.1.3. They are records consisting of four fields: body,
allupper, length, and page. The body contains the characters of the chunk,
stored as a string (a packed array of char). Allupper also contains the characters
of the chunk with all lower case characters converted to upper case. Length is the
number of characters of a chunk and page the page number on which the chunk is
found. As stated before, it makes sense to refer to the page number only for chunks
(units) read in from standard input. For chunks read in from files, page is set to zero.
The allupper field is added to support the comparison of chunks, ignoring case dis-
tinctions. Since both kinds of comparisons could be made for a phrase (ignore case
when sorting, do not ignore case when seeking an index term in the index), it is easiest

to store both the original phrase and an all upper case version.

49

CHAPTER 4
THE INDXING EXPERIENCE

The first application of indx was to form an index of the first three chapters of
this thesis. This task was split into four parts. The first and most difficult entailed
selecting the entries for the index, which will be referred to as entry selection, and
selecting the actual phrases from the text that represented them, which will be referred
to as phrase selection. The second part involved setting up the necessary files and
running indx. The third part involved checking the output for incorrectly sorted
entries and incorrect page references. After the macro calls were checked, the final

index was printed using the troff mI macro package.

The index was then updated after the completion of this thesis. It was checked

for incorrect page references and printed to give the index at the end of this thesis.
4.1 The Selection of Entries and Phrases

Being a novice indexer, the phrase selection task was very difficult despite
having the findphrases output. The list of repeated phrases aided in determining
much of the entries that should be in the index. In fact, out of the 96 phrases in the
phrase file, 63 were taken directly from the list and six were derived from the list.
Some of the phrases from the list would have been found without the help of
findphrases. These phrases, though, are obvious since they are names of things, such
as of the optional files, of the sorting schemes, of the formatting styles, and of the

other programs mentioned. These are almost always referred to using the same

50

phrase. It would have been difficult to find phrases for general discussions whose
topics should be indexed, such as the manual indexing task and phrase selection,
However, it was still necessary to read through the text to identify other entries that
should be included but were either not repeated or were described in such a way that
their significant terms were too common to be searched for. To further aid phrase
selection, findphrases could be altered to allow specification of significant phrases
which must also be sought. These significant phrases could be nonrepeated phrases.
They could also begin with a phrase in the ignored phrases file. An option to print all
phrases containing a significant phrase would also be helpful. To minimize the
amount of output, only such phrases of maximum length could be printed. Much of
the difficulty lay in how the entries were arranged — whether partially related entries
should be kept separate or placed together under one heading. This difficulty was due

to lack of indexing experience.

In order to use findphrases, a file of ignored phrases was needed. As shown
in Appendix A, the ignored phrases file was a combination of generic and text-
specific ignored phrases. The text-specific ignored phrases should include not only
phrases not meant to be indexed but common phrases that alone will not be an entry in
the index. For example, since ‘‘index’’ is such a common word in the first three
chapters, it made sense to ignore it as all of the occurrences of the phrases would not
be referring to the same concept anyway. Ignoring this word, however, caused the
references to the programs Index, index, and INDEX to be omitted from the list of
repeated phrases. Thus phrases for these three programs had to be determined manu-
ally. The ignored phrases used were determined with the intention of using the —b
option of findphrases, which causes any phrase beginning with a phrase in the
ignored phrases file to also be ignored. Care must be taken in determining text-

specific ignored phrases when the —b option is used so that important phrases will not

51

be ignored unintentionally.

Findphrases was run on parts of Chapters 1 through 3 with a maximum
repeated phrase length of five. These chapters were run through the necessary troff
preprocessors and piped through dedit into a file. The file had to be partitioned since
it was too long to be processed at once. Also to reduce execution time, the —u option,
which would have suppressed phrases that are wholely and everywhere contained in
another phrase as explained further on the manual page in Appendix E, was not used.
It turned out that it was better not to use this option. This will be explained later in
this section. Findphrases printed the input text file with the lines numbered and the
list of repeated phrases, first sorted by frequency and then sorted alphabetically. Since
the frequency with which phrases occur is not too important for the index, the alpha-
betically sorted list was mainly used. The list was scanned for possible entries and it
was easy to determine the context in which the phrases occurred by referring to the
lines listed. Because the input text included the indx page markers, it was also easy to
determine whether a phrase would give the page references desired for an entry. The
frequency listing, although it was not used at all to create the first index, may be help-
ful in suggesting subentries, as subentries are more specific than main entries and thus

will occur less frequently than their respective main entries.

An alternative of using troff and dedit for preparing the findphrases input file
is to use deroff. Deroff will output the source text with the troff commands removed.
This output should be saved in a file and is in the form accepted by findphrases. The
file is obtained faster than with troff, but a major drawback of this method is that page
markers are not present to aid phrase selection. It is also possible to use the source file
as input to findphrases. This would allow searching for phrases containing com-

mands such as font changes. Any formatting commands not contained in phrases

52

should be added to the ignored phrases file. As with deroff, the input file will not

contain any page markers.

Although the list of repeated phrases aided the entry selection and phrase
selection processes, the selections were basically done a chapter at a time since the
entire text was not scanned at once. It took a little more work to check back and forth
between the different lists for entries to be indexed. A problem was encountered when
there were too many repetitions of phrases, causing findphrases to stop. The highly
repetitive phrases were added to to file of ignored phrases and the program was res-
tarted. Due to lack of time, previous runs were not repeated with the expanded
ignored phrases file. Thus most of the lists were obtained with different ignored

phrases files.

As the entries and phrases were selected, one of the foremost priorities was to
reduce the amount of processing done by indx. This priority affected phrase selection
in several ways. First of all, the maximum number of words in a phrase was kept to a
minimum. Remember, the longer the maximum length of a phrase in the phrase file,
the longer the process of searching the text will take. As mentioned earlier, it was
advantageous that the —u option was not used with findphrases. Although the
repeated phrase list was much longer than if the option had been used, it enabled
identification of the shortest possible phrase that would yield the same page references
as the phrase for an entry in the index. For example, in Chapter 1, “‘semi - automatic
indexing’’ was defined on the very pages that the word *‘semi’ is found on. Thus,
instead of using the entire phrase consisting of four words, the word ‘‘semi’” was
used in the phrase file. Second, the number of phrases beginning with the same word
was kept to a minimum. More specifically, having phrases which were identical in the

first five letters of the first word was avoided as much as possible. This was done to

53

have the phrases distributed evenly in the search table. Thisisa consideration

only because of the particular hash function chosen.
4.2 Setting Up the Indx Files

As the entries and the phrases to give the page references were selected, they
were written on a sheet of paper with the entries on one side and the phrases on the

other. For example:

select the phrases + select the terms selection of phrases
allows finding + finds repeated findphrases program
+ findphrases
alphabetized Alphabetization schemes
letter ° letter-by-letter
word ’ word-by-word

This example shows the phrases associated with three of the entries of the index. Two
are main entries, one is a group entry. The phrases shown ‘‘added’’ together will be
combined to give the page references, and the italicized phrase shows the phrase
under which all of the page references end up. All of the phrases on the left side were
placed in the phrase file, which was then sorted using the UNIX sort. The optional
files were created using the phrases on the left side. The only files in which an entry
from the right side was used were the group-entry file, when group headings were not
searched for in the text, and the alternate-index-term file. It was very easy to set up
the files once the phrases and entry phrases were outlined as shown. One of the
phrases was missing from the phrase file, which caused several error messages to print
out on the first run of indx, but the mistake was easy to track and correct. For the

fragment of the index given above, the optional files and their contents are:

combine-phrase file:
select the phrases : select the terms

allows finding : finds repeated
allows finding : findphrases

54

group-entry file:

alphabetized : letter '/
alphabetized : word '

alternate-index-term file:

select the phrases : Selection of phrases

allows finding : findphrases program

letter ’ : letter-by-letter : alphabetization

word ’ : word-by-word : alphabetization

alphabetization : Alphabetization schemes

The files used for the first index are given in Appendix B. There are 96 phrases in the
phrase file and the following table gives the number of definitions in each of the

optional files.

File # of definidons
combine-phrase 29
group-entry 43
see-also 4
see 2
see-under 7
alternate-index-term 48

As expected, the alternate-index-term and combine-phrase files contained many more
definitions than the other files. However, the group-entry file also contatned many
definitions since many group relationships were formed for this index. The majority
of the definitions in the alternate-index-term file were for renaming subentries, also as

anticipated. Out of the 48 definitions, 37 of them were for subentries.

The individual files used as input to findphrases were concatenated and given

as standard input to indx and the output collected in another file.

35

4.3 Checking the Indx Output

The file was checked for correct sorting of phrases and correct page references.
None of the entries were sorted in the wrong order since none contained any format-
ting commands. The page reference check was time-consuming since all of the refer-
ences had to be looked up to verify their usefulness. Setting up editors in multiple
shell windows would ease the checking process as the human indexer can simultane-
ously view the macro call being checked, the indx input text, and any of the indx files.
If there was a subsequent page reference to the next page, a check was also made to
see if the sequence should be replaced by a range. Keeping a record of the phrases
and the pages on which they were inspected and chosen for indexing would have
made the page reference check considerably faster, especially for the more common
phrases which may supply extraneous page references. There were several-page-long
runs which were replaced by ranges, but most of the corrections stemmed from
removing useless page references. This is partially due to the method of finding all
occurrences of a phrase, but with a better selection of phrases, the amount of useless
page references should decrease. One disadvantage of having separate lists of
repeated phrases is that a phrase selected from one of the lists may be good for one
part of the text, but will bring in other useless page references when the entire text is
used. For example, ‘‘semi’’ as mentioned earlier was sufficient to give the page refer-
ences for the definition of semi-automatic indexing found in Chapter 1 of the thesis.
Later in Chapter 3, ‘‘semi’’ appears as part of an example, which resulted in an
extraneous page reference. In fact, more extraneous page references have been gen-

erated for that entry in this chapter.

56

4.4 Updating the Index

The index described so far has not been included in the appendices since it was
of the first three chapters of an earlier version of this thesis. The general method
described here was used to update the first index to obtain the index found at the end
of this thesis. For some yet unknown reason, this chapter was never successfully pro-
cessed by findphrases. Thus phrase selection for the entries of this chapter were
determined without a list of repeated phrases. The last chapter was run through
findphrases with the same options as before. A slight deviation from the method
described above was also tried. As each chapter was scanned, desired and tentative
entries were written down, again along one side of the sheet. Phrases from the text
were written opposite these entries as a first guess. Then the list of repeated phrases
was scanned to finalize the phrases selected for each of the entries. Lines containing
useless entries for a given phrase were identified on the list to help the page reference
verification process done later. Phrases already selected to build the first index were
searched for on each of the new lists and if they were found, those occurrences were
checked for useless page references as well. The opposite was also done. Phrases
selected to index this part of the thesis were searched for on the other lists. If any
were found, the occurrences were checked to see whether or not they were useless.
The lists were also scanned for terms that may have been missed when reading
through the text. It seemed that skimming through the text first to jot down possible
entries and phrases before looking at the repeated phrases list was easier than begin-

ning with the list. The entries seemed to be more balanced this way.

After selecting the phrases for the fourth and fifth chapters, indx was rerun on
the entire text. Several results of the method were discovered while checking the page

references. Updating the text often caused indexed discussions originally on one page

57

to be split among two pages. If the phrase selected to obtain the original page refer-
ence does not appear twice in such a location that both page references will be
obtained, another phrase from the ‘‘missing’’ page must be selected for that entry.
This is not very desirable but cannot be avoided at the moment. The opposite situa-
tion may occur as well. Discussions once split over two pages may end up being on
one page. If more than one phrase is used to obtain the page reference and one of the
phrases does not add in other page references for the entry, it may be deleted from the
phrase and the combine-phrase files as it will no longer be contributing any new line
numbers for the entry. Having extra phrases will prolong the execution of indx, but
having several extra phrases is better than having too few. It was also found that
phrases once specific enough to obtain page references for a given entry could become

too general if the textual additions contained many trivial occurrences of the phrase.

The ability to run the entire text at once through findphrases would have
helped make new phrase choices if they were needed. The UNIX program grep was
also used to help determine whether a phrase would provide the correct page refer-
ences. It was especially helpful for indexing Chapter 4 since there was no list of
repeated phrases for the chapter. It was very helpful for determining whether a phrase
which begins with a phrase that was ignored by findphrases should be used in the
phrase file.

A method of updating the index after revising the book has been suggested by
Daniel M. Berry [Berr87]. The Revision Control System [Tich82] is used to keep old
versions of the repeated phrases list which may be compared with a newly generated
list using diff. The difference identified will indicate whether changes need to be
made to the phrase and the optional files to update the index. Should the difference in

lists be mainly composed of the same phrases found on different lines, this method

58

will have saved a lot of time over redoing the index from scratch. A shell script that
may be used to accomplish this revision process is given in Appendix D. This shell
script was not used since the entire thesis was too long to be run through findphrases
at one time. The method of using diff to compare old and new phrase lists for a given
part of the thesis would have been used had the changes been extensive, but since
most of the changes were stylistic ones, findphrases was not rerun on these parts.
Hindsight revealed that given even minor changes, it may be very useful to rerun

findphrases as the secticning of the text into pages will be changed.
4.5 Printing the Final Index

The output file was then run through troff with the mI macro package defined
for the entry-per-line format as provided in Appendix C. The first index contained 87
macro calls altogether, which equaled the number calculated as described in Section
2.2. That is, 96 (phrase) + 2 (see) + 7 (see-under) + 0 (group-entry duplicating terms)
- 29 (combine-phrase) + 11 (group-entry, group headings added) = 87. The current

index contains 115 subentries and entries.

The phrase file and the optional files used to generate the index are given in
Appendix B. The boldfaced phrases in the phrase file are those that were taken
directly from the lists of repeated phrases. Also given in that appendix are the macro

calls output from indx and the macro calls used to generate the current index.

59

CHAPTER 5
AREAS OF FURTHER WORK AND CONCLUSIONS

The indx program was designed to provide the indexer with enough options
for creating a good index. As is true of most programs, there are several areas in
which indx may be modified to improve its performance and to provide additional

features.
5.1 Improving the Performance of Indx

The two major areas where improvement directly affects the performance of
indx are the page merging routine used in combining phrases and the hash function
used to distribute the index terms among the binary search tree buckets of the
search table. The page merging routine implemented is not the usual kind of
merge routine in which several lists are merged to give a new list. The merged list
replaces the original page list of the first term on a combine-phrase file line. More
specifically, the page references of the second list that are not already present in the
first list are inserted into the first list. The page lists are scanned from the beginning
and should the end of the first list be reached before the end of the second list during
the merging process, the remainder of the second list is appended to the first list. Note
that in this case, the remainder of the list is copied and added to the first list instead of
being moved over. This way, the page list of the second term remains intact,
although, by the definition of combining phrases, the second term will be deleted from

the index after the page lists are merged.

There probably is a more clever and faster way of merging the two lists, which
once implemented would decrease the execution time for combining phrases. An
efficient routine is desirable here since combining phrases to form entries will be one

of the most frequent operations, even for a small index.

The hash function used is very simple and easy to calculate. It was chosen
mainly because it avoided having to retrieve all of the chunks of a phrase. It is partic-
ularly advantageous to have the function depend on the first word only since the
existence of a heading that begins with a certain word can be easily determined with
its help. The hash function would provide access to the only binary tree that might
contain an index heading beginning with the given word. Were the hash function
dependent on the entire phrase, this would not be possible without either searching the
index directly, thus bypassing the search table, or adding some data structure by

which this information would be obtained.

Despite these advantages, the hash function does not distribute the index terms
evenly among the buckets of the search table when many groups of index terms
begin with the same five characters, or more specifically, have the same second
through fifth characters. It is not unreasonable to expect that several headings of an
index will begin with the same word. As the number of headings that get hashed to
the same location increases, the time to delete one of those headings will also
increase, whether it be through its combination with another entry, its relocation under
another entry, or its removal in the process of renaming the entry. Thus, as larger
indices are produced, the advantages of the current hash function would be
outweighed by the disadvantage of managing large binary search trees. A slightly
more complicated but better distributing hash function should be used despite having

to add a table structure for determining whether any index entry begins with a given

61

word.
5.2 Additional Features of Indx

Several features that would be nice to have available became apparent after
examining other semi-automatic indexing programs and after using indx to form the
first draft of the index for Chapters 1 through 3. Additional features may include:
allowing any number of cross references, having more levels of entries available,
being able to choose between the word-by-word or the letter-by-letter sorting
schemes, having a separate sort key if desired, being able to merge indices, and allow-

ing the second term in a combine-phrase file definition to remain in the index.
5.2.1 Increasing the number of cross references

Although having one entry to cross reference is usually sufficient, there are
times when a second or even a third heading should also be cross referenced. The
changes necessary would be confined to the index module, the cross reference
modules, the error module, and the macro used to print the final index. In the
index module, the cross reference field of an index term must be
changed to accommodate more than one phrase. The procedure bodies of add see
also to index term, add see cross reference, add see under
cross reference, clear index term, and print index must also be
changed. In the cross reference modules, having a second cross reference for an index
term will no longer be viewed as an error. The . IX macro definition must be altered
appropriately. Note that the changes needed lie cntirqu within the bodies of the pro-
cedures, so that the procedure and function interface§ of all of the affected modules

remains unchanged.

62

5.2.2 Increasing the index levels

The vast majority of indices desired could be built by indx if the number of
index levels possible were increased to three. Having more than three levels would
probably not be worth the effort to implement since four or more levels is quite
uncommon in indices. The current index term data type is capable of handling
sub-subentries since the subentries field of the index term is an index
term. However, many changes must be made to the design. More routines may be
added to the index module, such as add sub subentry to subentry and
change sub subentry, or existing routines redesigned to accommodate sub-
subentries. The format of the group-entry file must be changed as well as the formats
of the cross reference files and the alternate-index-term file. The amount of error
checking needed in each step of the index-building process will increase. The rou-
tines to print the index and the .IX macro definition must also be changed to allow

for a third level of entries.
5.2.3 Sorting scheme options

indx would also be more complete if it provided the indexer with the choice of
sorting entries word-by-word or letter-by-letter. A letter-by-letter sort is quite
involved given the current implementation of phrases. Perhaps the phrase type
should be enhanced to facilitate a letter-by-letter sort, just as a chunk is implemented
to support comparisons with or without case distinctions equally well. Another argu-
ment, perhaps —ox for ‘‘order’” where x is either w or 1, would be used to indicate the
sorting scheme preferred. Function pl to p2 would have to be modified for this

improvement,

63

5.2.4 An explicit sort key

As used in the Bentley and Kernighan indexing programs, having the ability to
explicitly define a sort key guarantees that the index terms will be sorted correctly
even though they may contain formatting commands, punctuation characters, or
digits. Incorporating this feature involves expanding the index term data type to
contain the sort key of the entry. Sorting would then be carried out on this field. The
sort key would have to be defined somehow in the phrase file, separated from the

phrase by the special character of the file.
5.2.5 Merging indices

indx may be very useful if parts of an index could be created and merged to
form a complete index. This would allow the creation of indices on a chapter-by-
chapter basis, whereby indices of each chapter are merged to form the index. The
merging would be performed by another program to preserve the function of indx,
however indx would have to be modified in order to allow for merging. One of the
modifications needed would be to remove the verification that the cross referenced
entries exist in the index. This verification would have to be dropped since it is con-
ceivable that the part of the index being generated is not self-contained, that is an
entry may cross reference another entry which will be defined in another part of the
index. This is a very important check to prevent errors in an index. Perhaps the
merge program could be accommodated by adding another argument to indx by which
the indexer may indicate that cross references should not be verified. The verification
may later be carried out during the merging. In addition, verification that chain refer-

ences or circular references do not exist should also be done at this time.

5.2.6 Keeping a combined phrase in the index

While using indx to build the initial index of this thesis, the option of keeping
the second term of a combine-phrase file definition rather than having it automatically
deleted became desirable. Just as the group-entry file allowed an entry to become a
subentry while remaining a main entry, the ability to use a phrase to supply page
references to more than one phrase was found to be handy. Currently, if such a situa-
tion existed, another phrase must be chosen to yield the same page numbers. This
puts an additional burden on the human indexer and causes the existence of more

index terms than necessary.

The decomposition of the index module will need no changes since com-
bine index terms only combines the page references of the given terms, leaving
the second term intact. It does not delete the second index term. Form combined
entries while validating terms first combines the index terms and then
deletes the second term for each definition given in the combine-phrase file. So this
procedure would have to be changed to either combine or combine and delete. The
combine-phrase file could be set up like the group-entry file, with the lines ending
with the separation character of the file describing a combination only, not a combina-

tion and deletion.
5.3 Conclusions

The indx program has been successfully used to create the index of this thesis.
The method as a whole is simple to use once the difficult task of selecting phrases and
entries is done. This must be done for all semi-automatic indexing programs but
instead of entering them in the source text which will decrease the readability of the

text file, they are entered in the phrase file.

65

The novel idea of using different files to create the various parts of the index
may at first seem more involved than the other programs especially since what is
automatically done by the human indexer when inserting indexing macros in a text
must be explicitly defined in the combine-phrase and alternate-index-term files. How-
ever, there are several reasons for storing all the information about the index in
several files than having parts of the index scattered among the text. First, should the
human indexer wish to change the heading of a term, the various places in the text
where the macro is given must be searched for and changed, whereas with indX, the
phrase must be changed in a few short files. In many cases, the only phrase that
would need changing would be in the alternate-index-term file. Second, it seems that
it would be easier to track down discrepancies in the index when all definitions are
organized in specific files. Third, it is easier to remove index terms from the index by
deleting the appropriate lines of the files involved. Fourth, as discussed earlier, one
can calculate the total number of entries by the number of definitions in the files.
Also, it would be easier to restructure the index. For example, pulling several main
entries under one group or breaking up a group entry into several main entries are
accomplished by changing one line in the optional files for each entry involved
instead of changing each occurrence of the indexing commands to be altered in the
source text. In general, changes may be made to the index without having to touch the

text file.

indx helps the human indexer create good indices to the extent that cross refer-
ences in the index will be valid and the annoying chain reference in which the reader
is directed from one entry to another to yet another without having any page refer-
ences to look up is disallowed. It also relieves the indexer of having to know the page
references for a given entry as the phrases are searched for in the text. This charac-

teristic however, means that it takes longer for indx to get the macro calls comprising

66

the index than the other programs which simply extract embedded commands and
merge like entries, or which are given the page numbers and the entries on each page.
It is also necessary for the human to spend some time eliminating useless page refer-
ences. Using specific phrases that are as short as possible will reduce the amount of

checking needed.

In regards to the design method and the implementation, indx is an example of
a program modularized in such a way as to confine each design decision to one
module. The modularization chosen and the Pascal implementation of the Ada pack-
ages enhanced the readability and understandability of the code. The design aided the
coding process as many procedure bodies consisted mainly of using the routines
exported by the other modules. The design should reduce the changes that would be
necessary to implement any of the enhancements discussed earlier in this chapter.
However, as with all modifications proposed, the positive and negative impacts of
adding each feature must be examined in detail before any decision to add a feature is

made.

The process of creating indices using indx is enhanced with other tools. Some
of these tools exist, such as dedit and findphrases. Dedit prepares source text in
ditroff output format for use by indx. The dedit output has also been shown to be use-
ful as input to findphrases. Findphrases has been shown to aid in the phrase selec-
tion process. It was found to be especially helpful in identifying phrases that would
locate discussions of concepts not having specific phrases to represent them. In order
to improve its usefulness, findphrases needs to be able to search through the entire
text at once so that separate lists will not have to be cross checked manually. The

shell script in Appendix D can be adapted and used for updating indices.

67

Other tools do not exist yet. Additional options to findphrases would make it
more useful for indexing. An option to list all phrases may help the indexer in identi-
fying phrases for index entries, but there may be too much output for the human
indexer to sift through. Other options are to list all significant phrases and to list all
phrases containing significant phrases. The significant phrases would be provided in a
file similar to the ignored phrases file. The browser program suggested earlier would
aid the page reference check specifically in the conversion of a sequence of page

numbers into a range of numbers.

Indx performs the clerical process of the indexing task, finding the page refer-
ences of entries and arranging the entries in the desired order, without cluttering the
text being indexed with indexing commands. This program, along with its existing
tools provide much help to the person creating an index, but the indexing task remains

a highly intellectual one.

68

[Agui87]

[Ande83]

[Aurb86]

[Bent86]

(Berr87]

[Booc83]

[Coll62]

[Coll69]

[Corb87]

[Fett86]

[Gard82]

{Hard86]

[Harr65)

REFERENCES

Christine Aguilera, personal communication regarding
findphrases, 1987.

Charles Anderson, ‘‘<<ANSWER>>: an ’off-the-shelf’ program
for computer-aided indexing,”’ The Indexer, Vol. 13, No. 4,
October 1983, pp. 236-238.

Richard L. Aurbach, ‘‘re: IdeEx,” TUGboat, Vol. 7, No. 3,
1986, p. 187.

Jon L. Bentley and Brian W. Kernighan, ‘‘Tools for Printing
Indexes,”” Computing Science Technical Report, No. 128, AT&T
Bell Laboratories, October 1986.

Daniel M. Berry, personal communication, 1987.

Grady Booch, Software Engineering with Ada, Menlo Park, CA:
The Benjamin/Cummings Publishing Co., 1983.

Robert Collison, Indexing Books, New York, NY: John De Graff,
Inc., 1962.

Robert L. Collison, Indexes and Indexing, Tuckahoe, NY: John De
Graff, Inc., 1969.

Jonathan Corbet, electronic mail message re: texindex program,
Jan 29, 1987.

Linda K. Fetters, ‘‘INDEXIT: An Economical but Limited Index-
ing Program,”” DATABASE, Vol. 9, No. 5, October 1986, pp. 54-
56.

Ron Gardner and Eve Gardner, ‘‘Computer-aided indexing with
SPITBOL and TEXTFORM,”’ The Indexer, Vol. 13, No. 2,
October 1982, pp. 115-119.

Paul Hardy, ‘‘Computer-aided indexing of technical manuals,”
The Indexer, Vol. 15, No. 1, April 1986, pp. 22-24.

Eleanor T. Harris, A Guide for the Preparation of Indexes, Santa
Monica, CA: The Rand Corporation, 1965.

69

[Hofm86]

[Knig70]

[Lamp86]

[Myer78]

[Oste87]

[Pam72]

[Pasa81]

[Salz86)
[Tich82]

(Unkn87]

[Wino80]

Thomas Hofmann, “‘re; latexindex " TUGboat, Vol. 7, No. 3,
1986, p. 186.

G. Norman Knight, in Training In Indexing, G. Norman Knight,
Ed. Cambridge, MA: The M. I. T. Press, 1970.

Leslie Lamport, IAT. Y User’s Guide & Reference Manual, Read-
ing, MA: Addison-Wesley, 1986.

Glenford J. Myers, Composite/Structured Design, New York, NY:
Van Nostrand Reinhold Co., 1978.

Leon Osterweil, ‘“‘Software Processes are Software Too,”’ 9th
International Conference on Software Engineering, Computer
Society Press of the IEEE, 1987, pp. 2-13.

D. L. Parnas, “‘On the Criteria to be Used in Decomposing Sys-
tems into Modules,”’ Communications of the ACM, Vol. 15, No.
12, December 1972, pp. 1053-1058.

Jay M. Pasachoff and Nancy P. Kutner, ‘““Computer assistance in
indexing with *INDEX,'” The Indexer, Vol. 12, No. 4, October
1981, pp. 173-174.

Rich Salz, “‘INDEX,”’ in Mirror Systems, 1986.

Walter F. Tichy, ‘“‘Design, Implementation, and Evaluation of a
Revision Control System,”’ Proceedings of the 6th International
Conference on Software Engineering, IEEE, September 1982.

Unknown, electronic mail message re: TEx indexing macros, Jan
29, 1987.

Terry Winograd and Bill Paxton, An Indexing Facility for TeX.
July 17, 1980 .

70

INDEX

Algorithm of indx 37-38
Alphabetization problems
ASCIH order 23
numerals 6
special characters 13, 17, 23, 24, 26, 27, 64
Alphabetization schemes 1, 6, 23
letter-by-letter 6
word-by-word 6
Alternate-index-term file, See under Optional files
Chain references 41, 64
Check entries, See Circular references
Checking indx output for
alphabetic order, See Alphabetization problems
page references 23, 28, 56, 57, 68
see-under cross references 24,41
Chunks
design 30-32,33, 34
implementation 4344, 49
Circular references 24, 64
See also Chain references
Combine-phrase file, See under Optional files
Creating the thesis index 57-59
Cross references 4, 14
see 4, 10, 11, 13, 22, 24, 34, 35, 36, 39, 41
see also 4, 13, 16, 21, 24, 35, 40
see under 4, 16, 24, 34, 35,39, 41
dedit 18,29, 52,67
Determining size of the index 25
ditroff 18, 29
Enhancing the features of indx
merging indices 64
more cross references 62
more entry levels 63
redefine combined phrases 65
sort key identification 64
sorting scheme option 63
Entry phrase 3, §, 22, 26, 34, 35, 46
See also Heading
Error handling 22, 42
findphrases program 15, 19, 50-52, 67
aid in phrase selection 50, 53
ignored phrases file 19, 20, 51, 53
improvements suggested 51, 6768
preparing input file 52-53
Formatting final index 25, 59
Formatting styles
combined 5, 11, 25, 65
entry-per-line 5, 11,23
paragraph (run-in) 5, 11,21,23,25
Group entry 4, 8, 17, 35, 36, 37, 66

71

Group-entry file, See under Optional files
Heading 34, 6, 13, 16, 17, 21, 22, 27, 40, 4849, 66
Improving indx’s performance
hash function 4647, 60, 61
See also Search Table
page merging routine 27, 6061
indx design 29-30, 67
modifiability of 67
indx method 16-18, 26-28, 50, 57, 59, 65
advantages of 66
disadvantages of 66-67
indx tools
browser program 23, 68
dedit 18,29, 52,67
findphrases, See findphrases program
grep 58
updating shell script 58-59, 67
Main entry 4, 21, 24, 35, 36, 40,41, 42, 46, 48-49, 52
Manual indexing task 3
Optional files
alternate-index-term 17, 18, 22, 26, 27, 36, 41, 5455, 66
combine-phrase 17, 20, 2627, 58, 60, 65
group-entry 17, 21,40, 54
see 22,25,39,41
see-also 21, 22,40
see-under 22,25
separation character 19, 21, 39, 65
Qutput of indx 18, 23,42
See also Formatting final index
Page reference 3, 4, 6, 16, 17, 20, 23, 26, 2§, 34, 38-39, 46,
56-358
Phrase file 16, 18-20, 24, 27, 38, 42, 49, 50, 53, 58, 59, 65
special character 19
Phrases
design 30, 32
implementation 44, 49
Preparing input files 18-22, 26, 54—55, 65
Preparing input text 18, 42
Regular entry 4, 35, 36
Search Table 4648, 54, 61
Searching the index, See Search Table
See file, See under Optional files
See-also file, See under Optional files
See-under file, See under Optional files
Selection of phrases §, 15, 16, 50-53, 57, 67
aid for, See under findphrases program
difficulties in 51, 53
for indx 20, 50-53
Semi-automatic indexing
criteria for programs 14
definition of 7, 15
motivation for 2
Semi-automatic indexing programs
*INDEX 12,13
<<ANSWER>> 12
awk index tools 9-10
Documate/Plus 7, 8
INDEX 12
Index 7-8
index (with troff) 9, 26
INDEXIT 12, 13-14
Starindex 7,8

72

See-under file, See under Optional files
Selection of phrases 5, 15, 16, 5053, 57, 67
aid for, See under findphrases program
difficulties in 51, 53
for indx 20, 50-53
Semi-automatic indexing
criteria for programs 14
definition of 7, 15
motivation for 2
Semi-automatic indexing programs
*INDEX 12,13
<<ANSWER>> 12
awk index tools 9-10
Documate/Plus 7, 8
INDEX 12
Index 7-8
index (with troff) 9,26
INDEXIT 12, 13-14
Starindex 7,8
with ATy 12
with T 9, 10-12, 25
Sorting ofEénLries 6-7,14,23,24,27,63,64
See also Alphabetization schemes
Storage and retrieval
of main entries 4648
of subentries 46
Subentry 4, 5,21, 25, 27, 34, 35, 40, 41, 42, 46, 52, 63
Table of contents 1
The index
design 34-37
implementation 4548
See also Search Table
Units
design 30, 31,33,34
implementation, See under Chunks
Updating an index 57-59

73

APPENDIX A

Ignored Phrases

This appendix contains the lists of generic and text-specific ignored phrases

used for the findphrases program run on sections of this thesis. The ignored-phrases

file used is a concatenation of both lists. Neither list is comprehensive as there were

phrases that should also have been ignored appearing on the list of repeated phrases.

The list of generic ignored phrases may be expanded as desired.

List of Generic Ignored Phrases
for findphrases —b option

a
ability
able
about
above
added
adding
addition
advantage
after

all

allow

also

an

and
another
any
appear

give
given
gone
good

has

have
having
he

her

here

his

how
however
identified
if
important
in
including

74

rest
same
say
several
she
should
shows
since
size

SO

some
specific
still
such
suppose
supposed
taken
than

are

as

asking

at
available
be
because
become
been
beginning
being
both

but

by

can
certain
come
consist
contain
containing
contains
define
definition
describes
describing
desired
determine
discussed
do

does

each
easily
either

end
enough
example
exhibiting
exist
existing
exists
finally
finds

first
following

individual
into

is

it

its

itself
kind
know
large
like
make
many
may
maybe
means
mentioned
more
most
must
necessary
need
needed
new

no

not

now

of

often

on

one

ones
only

or

other
others
out

pair
paper
placed
possibly
precede
preceded
prepared
presented

75

that

the
their
them
then
there
therefore
these
they
things
this
thought
through
thus
times
to

too

two

up

us

use
used
uses
using
various
was
way

we

well
what
whatever
when
where
whether
which
whose
will
with
without
would
write
written

for processed

found processing
from provided
get provides

List of Thesis-specific Ignored Phrases
for findphrases —b option

[N

[N 7% R S

a
absolute zero
add
added

b

blank
book

c

calls
cards
change
char
character
chnkopen
chunk
clear
close
contains
copy
costs
declaration

declared
delete
discussed
dump
end
entry
example
exist

file

form
found
fourth
freeze
getnextchunk
i

index
indexer
indexes
indices
initalize
iseof
itemns
length
line

list
majority
make
move

n

76

navy
open

p .

pairs
phrase
phrases
prepare
procedure
quite long
reference
retrieval of information
s

section
sense

set
storage and retrieval
string
support
term

texts
triples

u

unit
yippee
zero

[

)

~

Files for the First Index

The Phrase File
: Module 3
* INDEX Module 4
< < answer Module 5
actual phrase Module 6
algorithm nonalphabetic
allows finding Page reference
alphabetized page references
alternate - paragraph ,
ASCITI paragraph or
automating paragraph style

called chunks
Chain references
chunkfile
chunkfile . p
Circular references
combine -

combined

combined style
create cross
criteria

dedit

ditroff

documate

doubly

else PrintErrorMsg
end index

entry -

Entry phrase

entry phraseaes
error

file of phrases
find a subentry
findphrasas

finds repeated
four fields
generate it
generate the index
group -

Group entry

phrases (found
phrases . p

phrases are implemented
punctuation

range

Regular entry
related

retrievals of

Roman numerals

Salz

Search Table

Search Table contains
sea@ - also cross

saa - also fila
see - under cross
sea - under file
see and

sae cross

sea file

selaect the phrasas
select the terms
semi

separation character
sorted

sorting

special character
Starindex

subentries

Subeantry

78

Heading

headings and
incorrectly sorted
Index :

INDEX takes
INDEXIT

LATE\ (*x

letter ’

main entries

Main entry

Tabla of contents
TE\ (*x

the input text

the phrase file
troff macro calls
troff macro packages
unfamiliar

units are

word ’

79

The Optional Files Used for the First Index

combine-phrases file:

algorithm : else PrintErrorMsg

allows finding : findphrases

allows finding : finds repeated
called chunks : chunkfile

called chunks : Module 3

combined : combined style

create cross : related

create cross : unfamiliar

end index : Module 6

Entry phrase : entry phrases

four fields : chunkfile . p

generate it : generate the index
Heading : headings and

incorrectly sorted : nonalphabetic
incorrectly sorted : punctuation

Main entry : main entries

Module 5 : phrases (found

Page reference : page references
paragraph style : paragraph ,
paragraph style : paragraph or
phrases are implemented : phrases . p
retrievals of : Search Table contains
see cross : see and

select the phrases : select the terms
sorting : sorted

Subentry : subentries

the phrase file : file of phrases
units are : Module 4

units are : the input text

group-entry file:

Alphabetization problems : ASCII
Alphabetization problems : incerrectly sorted
Alphabetization problems : Roman numerals

80

alphabetized : letter '

alphabetized : word *

Checking indx output for : actual phrase
Checking
Chunks :
Chunks :
cross

indx ocutput for range
called chunks

four fields

create see - also cross

create cross see - under cross
create

Formatting styles :

cross see Cross

combined

entry -
paragraph style

alternate -

Formatting styles
Formatting styles
Optional files :

Optional files : combine -
Optional

Optional

files : group -

files : see - also file
files : see - under file

files :

Optional
Optional
Optional

see file

files : separation character
Module 5

phrases are implemented
automating

Phrases :
Phrases :

Semi-automatic indexing :

Semi~automatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-automatic

indexing
indexing
indexing
indexing
indexing
indexing
indexing
indexing
indexing
indexing
indexing
indexing

Storage and retrieval :

Storage and retrieval :

The index :
The index :

the phrase file : special character

Units :

see-also file:

doubly
end index

units are

: criteria

: semi

programs
programs
programs
programs
programs
programs
programs
programs
programs
programs

* INDEX

< < answer
documate
Index

INDEX takes
INDEXIT
LATE\ {(*x
Salz
Starindex
TE\ {*x

find a subentry

retrievals of

81

doubly : Search Table : The index

Entry phrase : Heading

sorting : alphabetized

troff macro calls : troff macro packages

see file:

alphabetic order : Alphabetization problems : Checking indx output for
Check entries : Circular references

see-under file:

.
H

Alternate-index-term file : Optional files
Combine-phrase file : Optional files
Group-entry file : Optional files
implementation : Chunks : Units

See file : Optional files

See—-also file : Optional files

See-under file : Optional files

alternate-index-term file:

sorting : Sorting of entries

select the phrases : Selection of phrases

allows finding : findphrases program

generate it : Manual indexing task

letter ’ : letter-by-letter : alphabetized

word ' : word-by-word : alphabetized

alphabetized : Alphabetization schemes

semi : definition of : Semi-autcmatic indexing

automating : motivation for : Semi-automatic indexing
criteria : criteria for programs ; Semi-automatic indexing
* INDEX : *INDEX : Semi-automatic indexing programs

< < answer : <<ANSWER>> ; Semi-automatic indexing programs

82

documate : Documate/Plus : Semi-automatic indexing programs
Salz : index (with troff) : Semi-automatic indexing programs
TEN(*x : with TE\(*x : Semi-automatic indexing programs
LATE\ (*x : with LATE\(*x : Semi-automatic indexing programs
INDEX takes : INDEX : Semi-automatic indexing programs

entry ~ : entry-per-line : Formatting styles
paragraph style : paragraph {run-in) Formatting styles
See Cross : see : create cross

see - also cross : see also : create Cross
see - under cross : see under : create cross
create cross : Cross references

the phrase file : Phrase file

alternate - : alternate-index-term : Optional files
combine - : combine~phrase : Optional files
group -~ : group-entry : Optional files

see file : see : Optional files
see -~ also file : see-also : Optional files

see - under file : see~-under : Optional files

ASCII : ASCII order : Alphabetization problems

Roman numerals : numerals : Alphabetization problems
incorrectly sorted : special characters :; Alphabetization problems
range : page references : Checking indx output for
actual phrase : see-under cross references : Checking indx output for
algorithm : Algorithm of indx

error : Error handling

troff macro calls : Output of indx

treff macro packages : Formatting final index

called chunks : design : Chunks

four fields : implementation : Chunks

Module 5 : design : Phrases

phrases are implemented : implementation : Phrases

end index : design : The index

doubly : implementation : The index

units are : design : Units

retrievals of : of main entries : Storage and retrieval
find a subentry : of subentries : Storage and retrieval

83

Files for the Final Index
The Phrase File

* INDEX

< < answer

a minimum
abstraction
actual phrase
algorithm

allow for merging
allows finding
allupper
alphabetized
alternate -
approximated

are word -

ASCII comparisons
automatically deleted
automating

awk

browser program
calculate

called chunks
Chain references
changes been extensive
chapters were run
check back
checking the page
chunk file
chunkfile . p
Circular references
combine -
combined
combinaed style
craate cross
criteria

dadit

deroff

design decisions
difficulty laid
ditroff

documate

84

LATE\ (*x

letter method

main entries

Main entry

merging

mI

minor changes
modifications proposed
Module 5

Module 6

nonalphabetic

novel idea

obtain the index found
on one side

Page reference

page reference check
page references
paragraph ,

paragraph or

paragraph style
partitioned since
phrase selection
phrases (found
phrases . p

phrases are implemented
printed using

program modularized
punctuation

range

Regular entry

related

repeated phrases aided
retrievals of

revision control

Roman numerals

Salz

scheme

search tablea

searching for a heading
second cross

doubly

else PrintErrorMsg
enabled identification
end index

antry -

Entry phrase

entry phraseas
erroneously placed
arror

eventually get the following
expected that many
extraneous

file of phrases
find a subentry
find an index
findphrases
findphrases needs
finds repeated
from the list
generate it
gaenerate the index

grep
grep was
group -

Group entry

hash function
Heading

headings and
ignored phrasas
incorrectly sorted
increased to three
Index

INDEX takes
INDEXIT

individual files
indx helps
involves expanding

85

sea - also cross
sea - also file
sea - under cross
see - under file
sea and

see Cross

saa fila

selact the phrases
select the terms
semi

separation character
set up

shell script
should save
significant phrases
sorted

sorting

special character
spend some time
standard input can
standard input is
Starindex
subentries
Subentry

Table of contents
takes longer

TE\ (*x

the input text

the method

the phrase file
troff macro calls
troff macro packages
unfamiliar

units are

updating the index
used in a subentry

The Optional Files Used for the Index

combine-phrases file:

actual phrase : used in a subentry
algorithm : else PrintErrorMsg

allows finding : findphrases

allows finding : finds repeated
allupper : chunkfile . p

calculate : approximated

called chunks : chunk file

chapters were run : the input text
combined : combined style

create cross : related

create cross : unfamiliar

deroff : partitioned since

difficulty laid : check back

end index : Module 6

Entry phrase : entry phrases
findphrases needs : significant phrases
from the list : a minimum

generate it : generate the index
Heading : headings and

incorrectly sorted : erroneously placed
incorrectly sorted : nonalphabetic
incorrectly sorted : punctuation

Main entry : main entries

Module 5 : phrases (found

novel idea : indx helps

obtain the index found : changes been extensive
obtain the index found : grep

Page reference : page references
paragraph style : paragraph ,
paragraph style : paragraph or

phrase selection : select the phrases
phrase selection : select the terms
phrases are implemented : phrases . p
program modularized : abstraction
program modularized : design decisions
range : checking the page

range : extraneous

range : page reference check

86

repeated phrases aided : enabled identificaticn
retrievals of : find an index
retrievals of : searching for a heading
3ee cross : see and

set up : eventually get the following
set up : individual files

set up : on one side

shell script : revision control

sorting : sorted

Subentry : subentries

takes longer : spend some time

the method : expected that many

the method : printed using

the method : should save

the phrase file : file of rhrases

troff macro packages : mI

units are : standard input can

units are : standard input is

updating the index : minor changes

group-entry file:

allows finding : deroff

allows finding : findphrases needs

allows finding : ignored phrases

allows finding : repeated phrases aided
Alphabetization problems : ASCII comparisons
Alphabetization problems : incorrectly sorted
Alphabetization problems : Roman numerals
alphabetized : letter method

alphabetized : are word -

Checking indx output for : actual phrase

Checking indx cutput for : range

Chunks : allupper

Chunks : called chunks

create cross : see - also cross

Create cross : see - under cross

create cross : see cross

Enhancing the features of indx : allow for merging
Enhancing the features of indx : automatically deleted
Enhancing the features of indx : increased to three

87

Enhancing the features of indx :
Enhancing the features of indx :
Enhancing the features of indx :
Formatting styles : combined
Formatting styles : entry -

Formatting styles : paragraph style

involves expanding

scheme

second cross

Improving indx's performance : hash function

Improving indx’s performance : merging
indx tools : browser program
indx tools : dedit :
indx tools : grep was
indx tools : shell script

: alternate -

Optional files
Optional files
Optional files
Optional files
Optional files
Opticnal files
Optional files

phrase selection : difficulty laid

: combine -

: group -

: see - also file

:+ see - under file

see file
: separation character

phrase selection : from
Phrases : Module 5
Phrases : phrases are implemented

the list

program modularized : modifications proposed

Semi-automatic
Semi~automatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-autcmatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-automatic
Semi-automatic

indexing
indexing
indexing
indexing
indexing
indexing
indexing
indexing
indexing
indexing
indexing
indexing
indexing
indexing

Storage and retrieval :

Storage and retrieval :

The index : doubly

The index : end index
the method : novel idea
the method : takes longer

automating

criteria

semi
programs * INDEX
programs : < < answer
programs : awk
programs : documate
programs : Index
programs : INDEX takea
programs : INDEXIT
programs ; LATE\ (*x
programs : Salz
programs : Starindex
programs : TE\{*x

find a subentry

retrievals of

88

the phrase file : special character
Units : units are

see-also file:

Circular references : Chain references
doubly : search table : The index
Entry phrase : Heading

hash function : search table : Improving indx’s performance

sorting : alphabetized
troff macro calls : troff macro packages

see file:

alphabetic order : Alphabetization problems
Check entries : Circular references
findphrases : allows finding : indx tools
Searching the index : search table

see-under file:

aid for : allews finding : phrase selection
Alternate—-index-term file : Optional files
Combine-phrase file : Optional files
Group-entry file : Optional files
implementation : Chunks : Units

See file : Optional files

See-also file : Optional files

See-under file : Optional files

alternate-index-term file:

89

Checking indx output for

algorithm : Algorithm of indx

ASCIT comparisons : ASCII order : Alphabetization problems
Roman numerals : numerals : Alphabetization problems
incorrectly sorted : special characters : Alphabetization \

problems
letter method : letter-by-letter : alphabetized
are word - : word-by-word : alphabetized

alphabetized : Alphabetization schemes

range : page references : Checking indx output for

actual phrase : see-under cross references : Checking indx \

output for

called chunks : design : Chunks

allupper : implementation : Chunks

obtain the index found : Creating the thesis index

see cross : see : create cross

see - also cross : see also : create cross

see - under cross : see under : create cross

create cross : Cross references

calculate : Determining size of the index

second cross : more cross references : Enhancing the features of indx
increased to three : more entry levels : Enhancing the features of indx
scheme : sorting scheme option : Enhancing the features of indx
involves expanding : sort key identification : Enhancing the features)\
of indx

automatically deleted : redefine combined phrases : Enhancing the \
features of indx

allow for merging : merging indices : Enhancing the \

features of indx

error : Error handling

ignored phrases : ignored phrases file : allows finding

deroff : preparing input file ; allows finding

findphrases needs : improvements suggested : allows finding
repeated phrases aided : aid in phrase selection : allows \

finding

allows finding : findphrases program

troff macro packages : Formatting final index

entry - : entry-per-line : Formatting styles

paragraph style : paragraph (run-in) : Formatting styles

merging : page merging routine : Improving indx’s performance
modifications propesed : modifiability of : program \

modularized

program modularized : indx design

novel idea : advantages of : the method

takes longer : disadvantages of : the method

90

the method : indx method

shell script : updating shell script : indx tools
grep was : grep : indx tools

generate it : Manual indexing task

alternate - : alternate-index-term : Optional files
combine - : combine-phrase : Optional files
group - : group=-entry : Optional files

see file : see : Optional files

see - also file : see-also : Optional files

see - under file : see-under : Optional files

troff macro calls : Output of indx

the phrase file : Phrase file

Meodule 5 ; design : Phrases

phrases are implemented : implementation : Phrases

set up : Preparing input files

chapters were run : Preparing input text

search table : Search Table

difficulty laid : difficulties in : phrase selection

from the list : for indx : phrase selectiocn

phrase selection : Selection of phrases

semi : definition of : Semi-automatic indexing

automating : motivation for : Semi-automatic indexing
criteria : criteria for programs : Semi-automatic indexing
awk : awk index tools : Semi-automatic indexing programs

* INDEX : *INDEX : Semi-automatic indexing programs

< < answer : <<ANSWER>> : Semi-automatic indexing programs
documate : Documate/Plus : Semi-automatic indexing programs
Salz : index (with troff) : Semi-automatic indexing programs
TEN\ (*x : with *{TX : Semi-automatic indexing programs
LATE\ (*x : with *(LT : Semi-automatic indexing programs
INDEX takes : INDEX : Semi-automatic indexing programs
sorting : Sorting of entries

retrievals of : of main entries : Storage and retrieval
find a subentry : of subentries : Storage and retrieval
end index : design : The index

doubly : implementation :; The index

units are : design : Units

updating the index : Updating an index

91

LIX
CIX
LIX
IX
LIX
LIX
JIX
LIX
LIX
JIX
LIX
IX
IX
LIX
LIX
LJIX
CIX
IX
LIX
JIX
JIX
JIX
LIX
a2,

LIX
IX
IX
JIX
CIX
LIX
CIX
CIX
CIX
JIX
IX
IX
LIX
48,

JIX
LIX

The Untouched Output of indXx for the Index

reg "Algorithm of indx™ "37, 38" ""

reg "Alphabetization problems" "" "¥

reg "ASCII order" “23v ™"

reg "numerals"™ "&" ""

reg "special characters" "13, 17, 18, 23, 24, 26, 27, 50, 64" ""
reg "Alphabetization schemes™ "1, 6, 23, 55" ""

reg "letter-by-letter” "6" ™"

reg "word-by-word" "6" ""

under "Alternate-index-term file" ™™ "Optional files”
reg "Chain references" "41, 64" "

see "Check entries" "" "Circular references"

reg "Checking indx output for™ ™" ™"

see "alphabetic order®™ "" "Alphabetization problems”
reg “"page references™ "23, 28, 56, 57, 68" ""

reg "see-under cross references" "24, 40, 41" "“

reg "“Chunks™ "™ ""

reg "design®" ™30, 31, 32, 33, 34, 36, 43, 44, 45" ""
reqg "implementation™ "“43, 44, 48" "

also "Circular references™ ™24, 64" "Chain references"
under "Combine-phrase file™ "" "Optional files"

reg "Creating the thesis index"™ "57, 58, 59" ""

reqg "Cross references" "4, 14, 30, 51" ""

reg "see" "4, 10, 11, 13, 16, 17, 20, 22, 24, 34, 35, 36, 39, 41, \
9, ez2n nn

reg "see also" "4, 13, 16, 17, 20, 21, 24, 35, 40" ""
reqg “see under"™ "4, 16, 17, 20, 24, 34, 35, 39, 41" "©
reg "dedit" "18, 29, 52, &I "

reg "Determining size of the index" "25, 61, 66" ""
reqg "ditroff" “18, 29, &7 "®

reg "Enhancing the features of indx" "™ ""

reg "merging indices"™ ™64" "©

reg "more cross references™ "62"™ "¢

reg "more entry levels"™ "g3" ""

reqg "redefine combined phrases™ "65" ""

reg "sort key identification"™ "£4" "

H H R H BB HOOOOREPE.SEKRODOOSDORRORIEPRPEREOOOORRORHHOOC

reg "sorting scheme option" "49, 63" "»

0 alsc "Entry phrase" "3, 5, 9, 10, 13, 20, 22, 26, 34, 353, 41, 45, \
54" “Heading"

0 reg "Errer handling" "2, 10, 22, 3¢, 39, 42, 54, 62, 63" ""

0 reg "findphrases program" "15, 19, 50, 51, 52, 53, 54, 55, 57, 58, \

92

59,

LIX
JIX
-IX
.IX
+IX
LIX
IX
LIX
LIX
-IX
LIX
IX
31,

LIX
LIX
JIX
JIX
LIX
-IX
LIX
.IX
LIX
.IX
-IX
LIX
LIX
LIX
LIX
42,

LIX
.IX
.IX
55,

.IX
62,

SIX
-IX
CIX
.IX
LIX
-IX
IX
26,

67

1
63
1
65

1
1
1
1
1
0
0
27

r 68" vw
reg "aid in phrase selection" "50, 53n n»

reg "ignored phrases file" "19, 20, 51, 53, 8w nnu

reg "improvements suggested" "51, 67, 68" m»

reg "preparing input file" "52, 53w wn

reg "Formatting final index™ "25, 50, 5gn wow

reg "Formatting styles®™ "m nn

reg "combined" "5, 11, 16, 17, 20, 25, 27, 40, 54, 65" ww
reg “"entry-per-line" "5, 11, 21, 22, 23, 25, 29, 42, 59n um
reg "paragraph (run-in)® "5, 11, 21, 23, 25™ nu»

reg "Group entry" "4, 8, 17, 35, 36, 37, 41, 46, 54, 66™ »n
under "Group-entry file" ww "Opticnal files®

reg "Heading™ "3, 4, 5, 6, 13, 16, 17, 21, 22, 27, 40, 48, 49, \

1’ 62' 66" "

reg "Improving indx’s performance® "r ww

also "hash function® "46, 47, 54, 60, 61" "Search Table"

reg "page merging routine" "27, 60, 61, 64m nn

reg "indx design" 29, 30, 67w nw

reg "modifiability of" mg7n ww

reg "indx method" "3, 16, 17, 18, 26, 28, 50, 56, 57, 59, 65" m»
reg "advantages of" mggn aw

reg "disadvantages of" "66, €7 wn

reg "indx tools" "n ww

reg "browser program" "23, 68" v

reg "dedit" 18, 29, 52, g7" wn

see "findphrases™ "« "findphrases program"

reg "grep" "58" nn

reg "updating shell script™ "9, 12, 58, 59, 7" nw

reg "Main entry" "4, 8, 9, 10, 12, 21, 24, 25, 35, 36, 40, 41, \
r 48, 49, 52, 54, 65, g ww

reg "Manual indexing task” "3, 59" ne

reg "Optional files"™ »w nn

reg "alternate-index-term"” "17, 18, 22, 28, 27, 36, 41, 48, 54,

, GB™ nm

reg "combine-phrase™ "17, 20, 25, 26, 27, 48, 54, 55, 58, 59, 60,
, 66" uwm

reg "group-entry" "17, 21, 25, 40, 48, 54, 55, 59, 63, 65" mnw
reg "see" “22, 25, 39, 41 ww

reg "see-alsoc" "21, 22, 4Qn wn

reg "see-under™ "22, 25% muw

reg "separation character” "19, 21, 39, g5" un

also "Qutput of indx" "18, 23, 42-= "Formatting final index"

reg "Page reference" "3, 4, 6, 11, 13, 18, i7, 20, 23, 24, 25, A\
r 28, 34, 38, 39, 40, 45, 46, 50, 52, 53, 54, 56, 57, 58, 60, 65,

93

\

\

66,

LIX
50,

LIX
LIX
LIX
LIX
.IX
54,

LIX
42,

LIX
LIX
LIX
LIX
LIX
.IX
.IX
57,

LIX
LIX
LIX
LIX
LIX
IX
LIX
LIX
LIX
LIX
LIX
CIX
.IX
.IX
JAX
IX
.IX
IX
LIX
.IX
18,

LIX
LIX
LIX
LIX

67' 68" nn
0 reg "Phrase file"“ "16, 18, 20, 24, 25, 26, 27, 38, 39, 42, 49,
53, 54, S5, 58, 59, 64, 65" ""

1 reg "special character™ "19, 64" "*
0 reg "Phrases" "" "7

1 reg “"design"™ ™30, 32w "

1 reg "implementation™ 44, 49" ""

0 reg "Preparing input files" "9, 11, 14, 16, 18, 21, 22, 2&, 40,
55, 65" nn

0 reg "Preparing input text" "2, 16, 17, 18, 1%, 26, 30, 31, 33,
52n ww

reg "Regular entry"™ "4, 35, 36, 46" "©

reg "Search Table™ “46, 48, 54, 60, 61" "©

see "Searching the index" "" "Search Table"

under "See-also file"™ "" "Optional files"™
under "See-under file™ "™ "Optional files"
reg "Selection of phrases" "5, 15, 16, 50, 51, 52, 53, 54, 55,
g7 uwn
1 under "aid for" "" "findphrases program”
1 reg "difficulties in"™ "51, 53" "
reg "for indx™ "20, 50, 51, S3" "¢
reg "Semi-automatic indexing™ "" "©

0
0
0
0 under "See file" "" "Optional files"
0
0
0

reg "criteria for programs" "14, 41" "7
req "definition of™ "7, 10, 15, 41, 53, 56, 62, 65" ""

reqg "motivation for" m2" ""

reg "Semi-automatic indexing programs”®™ "™ "¢

reg "*INDEX" "12, 13" "~

reqg "<<ANSWER>>" "12" w»

reg "awk index tools™ "9, 10" ""

reg "Documate/Plus"™ "7, 8" ""

reg "INDEX" "12" ""

reg "Index" "3, 5, 6, 7, 8, 11, 46, 51, 57, 59 "

reg "index (with troff)"™ "%, 26" "~

reg "INDEXIT" "12, 13, 14" "

reg "Starindex™ "7, 8" "¢

reg "with *(LT" ™12" ""

reg "with *(TX" "9, 10, 11, 12, 25" "

0 also "Sorting of entries™ "6, 7, 8, 9, 10, 11, 12, 13, 14, 17,
232, 24, 27, 45, 49, 50, 52, 54, 56, 62, 63, 64" "Alphabetizaticn
0 reg "Storage and retrieval™ "™ ""

1 reg "of main entries™ "46, 48" "©

1 reg "of subentries"™ ™4™ "

R I S e L = T -

\

\

schemes*™

0 reg "Subentry" "4, 5, 11, 12, 13, 21, 22, 25, 27, 34, 35, 40, 41, \

94

42,

JIX
LIX
LIX
.IX
JIX
JAIX
.IX
.IX

45, 46, 52, 55, 59, &3, &5" "7

S H = O PO O

reg "Table of contents" "i, 9%, 13" ""

reqg "The index" "" ™"

reqg "design® "“34, 37" "

also "implementation" "45, 48" "Search Table™
reg "Units" """ ""

reqg "design" "30, 31, 33, 34, 49+ "*

under "implementation" "" “Chunks"

reqg "Updating an index" "“57, 58, 59" "©

95

IX
OIX
LIX
LIX
LIX
LIX
JIX
LIX
LIX
IX
.IX
.IX
LIX
LIX
LIX

.IX
LIX
LIX
LIX
LIX
LIX
.IX
LIX
IX
JIX
LIX
LIX
. IX
LIX

IX
LIX
.IX
CIX
IX

O O O KPP B B HRMOODOOHKRPMOOOOORHFOKREKMEREOOOOHKIEROIRHROO

The troff Macro Calls to Form the Index

After Removing Useless Page References and Replacing Page Sequences

reg "Algorithm of indx" "37-38" "
reg "Alphabetization problems"™ ™" ""

reg "ASCII order" ™23™ "©

reg "numerals" "e" "

reg "special characters" "13, 17, 23, 24, 26, 27,
reg "Alphabetization schemes™ "1, 6, 23" ""

reg "letter-by-letter" 6" ""

reg "word-by-word" "&" "%

64"

under "Alternate-index-term file™ "" "Optional files"

reg "Chain references" "41, 64" ™"
see "Check entries" "" "Circular references"
reg uchecking indx Output form nwr uw

see "alphabetic order™ ™" "Alphabetization problems”

reg "page references™ "“23, 28, 56, 57, 68" ""
reg “"see—under cross references" "24, 41" ™"
reg "Chunks™ "™ ""

reg "design™ "30-32, 33, 34" ""

reg "implementation"™ "43—44, 49" "¢

also "Circular referencesa"™ "24, 64" "Chain references"

under "Combine-phrase file" "" "Opticnal files™
reg "Creating the thesis index“ "57-59%" ™

reqg "Cross references" "4, 14" ™"

reg "see" "4, 10, 11, 13, 22, 24, 34, 35, 36, 39,
reg "see also" "4, 13, 16, 21, 24, 35, 40~ "
reg "see under" "4, 16, 24, 34, 35, 39, 41" "»
reg "dedit" ™18, 29, 52, &7 "7

reg "Determining size of the index™ "2Z5™ ""

reg "ditroff"™ "18, 29" ™"

reg "Enhancing the features of indx™ "™ ""

reg "merging indices™ "é4" "

reg "more cross references" "“62" "

reg "more entry levels™ "63" ""

reg "redefine combined phrases" "65" "

reqg "sort key identification" "64" ™"

reg "sorting scheme option" "“63™ "©

41“

also "Entry phrase" "3, 5, 22, 26, 34, 35, 46" "Heading"

reg "Error handling" 1122' 42w wn
reg "findphrases program™ "15, 19, 50-52, &7" ""
reg "aid in phrase selection" ™50, 53" ™"

96

LIX
LIX
IX
LIX
LIX
LIX
IX
OIX
LIX
LIX
IX
IX
CIX
LIX
IX
LIX
JIX
JIX
JIX
LIX
JIX
IX
JIX
LIX
LIX
IX
LIX
JIX
LIX
66"

IX
IX
LIX
IX
LIX
IX
JIX
LJIX
46,

CIX
65"
LIX
LIX
LIX

reg "ignored phrases file" "19, 20, 51, 530 n»

reg "improvements suggested”" 51, 67-68" ™"

reg "preparing input file™ "52-53" ""

reg "Formatting final index" "25, 53" "*

reg "Formatting styles” "" ""

reg “combined" "5, 11, 25, 65" ™"

reqg “entry-per-line" "5, 11, 23" "»

req "paragraph (run-im)" "5, 11, 21, 23, 25" ""

reg "Group entry® "4, 8, 17, 35, 36, 37, 6&" ""

under "Group-entry file™ "™ "Optional files"

reg "Heading" "3-4, 6, 13, 16, 17, 21, 22, 27, 40, 48-49, 66" "~
reg "Improving indx’s performance” "" ""

also "hash function™ "46-47, 60, 61" "Search Table"”

reg "page merging routine™ ™27, 60-61" ""

reg "indx design® "29-30, 67" "©

reg "modifiability of" "“&7" ™"

reg "indx method"™ "16-18, 26-28, 50, 57, 59, 65" ""

req "advantages of" "66" "™

req "disadvantages of" "66-67" ™"

reg "indx tocls™ "" ""

reg "browser program" "23, 68" "©

reg "dedit™ "18, 29, 52, 67" ""

see "findphrases" "" "findphrases program”

reg "grep" "58" "©

reg "updating shell script" ®"58-59, 67" ""

reg "Main entry" "4, 21, 24, 35, 36, 40, 41, 42, 46, 48-49, 52" "¢
reg "Manual indexing task®™ "3" "

reg "Optional files»™ "™ ""

reg "alternate-index-term" "17, 18, 22, 26, 27, 36, 41, 54-55, \

RO OO KR RMERRRERORROEREOHREHFEBROOOCOERIEREROO R

-
=
-
4

reqg "combine-phrase™ "17, 20, 26-27, 58, 60, 65" ""

reg "group-entry" ™17, 21, 40, 54" "¥

reg "see" “22, 25, 39, 41" "¢

reg "see-also" "21, 22, 40" "©

reqg "see-under™ "22, 25" ""

reg "separation character™ "19, 21, 39, 65" ""

also "Qutput of indx" "18, 23, 42" "Formatting final index"

0 reg "Page reference" "3, 4, 6, 16, 17, 20, 23, 26, 28, 34, 38-39,
56-58" v

0 reg "Phrase file" "16, 18-20, 24, 27, 38, 42, 49, 50, 53, 58, 59,

O R KB H H B R

1 reg "special character"™ "19™ ™"
0 reg "Phrases“ " Hwn
1 reg "design"™ "30, 32 "¢

97

LIX
LIX
LIX
LIX
LIX
IX
.IX
.IX
LIX
LIX
LIX
LIX
LIX
.IX
.IX
JIX
LIX
LIX
LIX
.IX
LIX
- IX
. IX
IX
LIX
LIX
.IX
.IX
LIX
LIX

O e R B R R R R HE HO R HHOPR P OOOOC OO OOO R

0

reg "implementation™ "44, 49" "%

reg "Preparing input files™ "18-22, 26, 54-55, 65" ""
reg "Preparing input text”™ "18, 42" ""

reg "Regular entry™ "4, 35, 38" ""

reg "Search Table" "46-48, 54, 61" ""

see "Searching the index” "" "Search Table"

under "See file" ™" "Optional files"

under "See-also file™ "" "Optional files™

under "See-under file™ "" "Optional files"

reg "Selection of phrases" "5, 15, 16, 50-53, 57, 67" ""
under "aid for™ "" “findphrases program”

reg "difficulties in"™ "51, 53" ""

reg "for indx" "20, 50-53" "»

reg "Semi-automatic indexing®™ "™ ™"

reg "criteria for programs" "14" "™

reg "definition of"™ "7, 15" "“

reg "motivation for" 2" ""

reqg "Semi-automatic indexing programs®™ "" "7

reg "*INDEX" "12, 13" ""

reg "<<ANSWER>>" "12" ""

reg "awk index tools"™ "9-10" "7

reg "Documate/Plus™ "7, 8" ""

reg "INDEX" "12» "n

reqg "Index"™ "7-8" "™

reg "index (with troff)" "9, 26" ""

reg "INDEXIT" "12, 13-14" "

reg "Starindex" "7, 8" ""

reg "with *{rLT" "12" "*

reqg "with *(TX™ "9, 10-12, 25" ""

also "Sorting of entries" "6-7, 14, 23, 24, 27, 63, 64" \

*Alphabetization schemes"

LIX
LIX
LIX
LIX
LIX
JIX
JIX
LIX
LIX
LIX
JIX
LIX

0

O e

(=2 A N = - =

reg "Storage and retriewval"™ ™" "7

reg "of main entries® "46-—48" ""

reg "of subentries™ "46" ""

reg "Subentry" "4, 5, 21, 25, 27, 34, 35, 40, 41, 42, 46,

reqg "Table of contents” "1" ""

reqg "The index™ """ ""

reg "design" "34-37" ""

also "implementation™ "45-48" "Search Table"
reg "Unitsg" """ ""

reg "design" "30, 31, 33, 34" ""

under "implementation™ "" "Chunks"

reg "Updating an index" "S7-59" "

98

52,

63" \

APPENDIX C

Troff Macro Definitions

This appendix contains troff macro definitions for printing out an index in the

entry—per—line style and the paragraph style. The entry—per—line macro definition

was used to format the index. A header file and possibly a trailer file should be

defined to set up other quantities such as point size and line length.

Entry—per-line Style definition

de IX

AFN$1>0 .in +(30*" N\ 1u)u

. \" indent a little for every sub-level

An +3n
\" left margin in case line is too long and must be continued
\" on the next line

i-3n

. \" left margin for the entry

Je N$2'see’ WEIN\WISeeNPA WSS

el\\
ie ™\82'under’ N3N\ WISee underNPAWNSS5

. el \\

WEANS4

. \" entry phrase & page refs

if "\$2%also’ \[\

. br

\WiSee alsoWNPANNENN)

in-3n

. \" move margin back to line up with starting of the entry

AEWN$1>0 .in -(30*\$ 1u)u

99

\" get back to original margin of main entries

Paragraph Style Definition

The following lines should be placed in a header file:

ar PLO \"initialize level number of previous index term
nr TP O " initialize type of previous index term to regular
ds CR" \"initialize cross reference of previous index term
in+3n \" a trailer file must undo this indentation

The following is the paragraph style definition:

de IX
AEWS1=1N\A
. ieN\n(PL=0:
el
ie "N32'see’ \$3, WISeeWP W35 ¢
el\[\
ie "2$2'under’ W3, \ISee underNP W$5'¢
. el \[\
W3, W
. if "\$2’also’ \&.(\ISee alsoWP NS5\
AFWS1=0\[\
ie Wi(PL=0\[\
i Wa(TP A\
ie Wn(TP=1 \&. \\fISee alsoWP W (CR\c
el\[\
ie W(TP=2 \&. WISecNPAWW{CR\c
el \&. W1See underNP \W* (CR\AN
. el\" do nothing
N

ti-3n
\" move further left for main entry
ie \\$2'reg’ \[\
nr TPO
\' TP = 0 for regular entry
ie N$47 83\
el W83, Wh4\\}
el\[\
ie "N\$2’also’ \{\
nr TP 1
\'" TP = 1 for see-also entry
ie N4 W83
el N33, N84\
el\[\
ie "\$2'see’ \[\
nrTP 2

100

\" TP = 2 for see entry

W3\
. el \[\
nr TP 3
. \" TP = 3 for see-under entry
W]
. ds CRNS\J\)
. \" save cross reference for later printing
.r PLNS1

\" save level number

101

APPENDIX D

Shell Script for Updating Indices

This appendix contains a shell script which may be used or adapted to update
already existing indices formed with indx and findphrases. The script below is in

effect a process program [Oste87].

EDITOR= your favorite editor
FPHARGS= options for findphrases
BOOK= list of files making up book in order
PREPASSES= pipe of prepasses
MACROS= name of macro package, e.g., X for -mx
INDXARGS= options for indx
DEVICE.DRIVER= ditroff device driver
INDEXMACROS= macros for formatting index
if 't e RCS/phrase.list,v then
findphrases $(FPHARGS) 5(BOOK) > phrase.list
¢i ~1 phrase.list
Cp phrase.list term.list
@echo Dear Author: the term.list file is now a copy of phrase.list
@echo edit it to a real list of terms!
$(EDITOR) term.list

else
findphrases $(FPHARGS) ${BOOK) > phrase.list
rcsdiff phrase.list >g changes
¢i -1 phrase.list
@echo Dear Author: the changes file shows the changes to the
@echo phrase.list
@echo edit term.list to reflect the contents of changes
${(EDITOR) term.list

ti

/bin/cat $(BOOK) | $(PREPASSES) | dtroff -m$ (MACROS) > book.dt
dedit book.dt| indx $ (INDXARGS) > index

3 (DEVICE, DRIVER} book.dt

troff -m$(INDEXMACROS) index

102

APPENDIX E

Manual Pages of Indx, Dedit, and Findphrases

This appendix contains the manual pages for the indx, dedit, and findphrases
programs discussed in the thesis. They explain the usage of each program, identifying

all of the options available.

103

INDX (1) UNIX Programmer’s Manual INDX (1)

NAME
indx — create an index for an arbitrary text

SYNOPSIS
indx —pphrase-file [—ssee-file] { —asee-also-file] [—usee-under-file] [~ccombine-phrase-file
1[—ggroup-entry-file | [—nalternate-index-term-file] [—dpgdelim |

DESCRIPTION

Indx generates calls to troff macros to create an index containing the terms specified by the
user, of the standard input, which is written to standard output. The input must be in a general
format where all words and sentence punctuations are separated by blanks and virtual page
numbers are provided on a separate line preceding the text that belongs on the page. This page
number must be immediately preceded by a formfeed character ("L} followed by a lowercase p
and starts on the leftmost end of the line, If a file to be indexed is in ditroff output format, the
program dedit(1) can be used to convert the file into the format expected by indx.

The output contains calls to troff macros of the form
IX [type "entry-phrase” "pg refs" "cross ref"

where [is zero for main entries and one for subentries, and type is either reg, also, see, or
under. A reg type macro will have a null cross ref string and see and under type macros will
have a null pg refs string. These types of index terms are described below. The page refer-
ences will be separated by the pgdelim string given in the -d option. If this page delimiter
includes blanks, it must be enclosed in quotes with each blank of the delimiter preceded by a
backslash. Should a backslash be desired as part of the delimiter, it must also be preceded by a
backstash. If it is not specified, the default delimiter *, " will be used. Two .IX macros exist to
print the index in one of two styles. In the entry-per-line style, each entry (main or sub-) is
placed on a separate line. In paragraph style, sub-entries are listed after the main entry and
separated by semi-colons. Several special types of index terms may be specified in addition to
the regular index term, which consists of a phrase as it appears in the phrase-file followed by
the list of page numbers on which the phrase appears. These special types are generated by
the optionat files, which are discussed later.

nn

The phrase-file contains all phrases for which page numbers are to be found. These phrases
are searched for as word-for-word occurrences in the text input. There is one phrase per line
and the phrases must be alphabetically sorted. Any phrase whose page numbers will be listed
in the index should be in the phrase-file, whether the page numbers will be under that specific
phrase, under another phrase, or both, The first line of the phrase-file should have one charac-
ter, which will be used to flag phrases in which case distinctions are to be made when search-
ing for occurrences. All lines ending with this character will have phrases that are case-
sensitive. Should this special character be needed as a word of a phrase, the character should
be doubled. More generally, if any of the words consist only of this special character, it
should be immediately preceded by the special character. The same property applies to the
separation characters of the optional files. If a phrase does not exist in any of the other files, it
will be a regular index term having an entry phrase exactly the same as the phrase in the
phrase-file. If a phrase does exist in one or more of the other files, it may or may not be a reg-
ular index term, depending on which of the other files it appears in.

104

INDX (1} UNIX Programmer’s Manual INDX (1}

The remaining files mentioned in the synopsis have the following general form: the first line
consists of a character referred to as the separator character and the remaining lines contain
phrases separated by the separator character. There must be at least two phrases on each line
for each file. The first phrase will be referred to as the first term and the second phrase as the
second term. If there is a third phrase, it will define the main entry of a group entry, Thus, all
lines in these files having three terms correspond to index terms that are sub-entries. As in the
phrase-file, phrases must be given exactly as they are to appear in the index.

The see-file contains See cross-references. The first and second terms appear in the index, but
the first term will not have any page numbers listed. Instead, a reference to the second term
will be made:

See second term.

If there is a third term, the index term containing the see cross-reference will be placed under
the group given by the third term. An index term may have only one cross-reference.

Suppose the following portion of the index is desired (shown in entry-per-line format):
PDL.; See program design language

program design language, 17, 25, 27

A see-file entry that would yield the macros to give the index term having the cross-reference
is:

PDL : program design language

The see-also-file contains See also cross-references. The first and second terms appear in the
index and have their page references listed. The page numbers for the first term are followed
by a reference to the second term:

See also second term.

If there is a third term, the index term that will contain the see-also cross-reference must be a
sub-entry of the group given by the third term. An index term may have only one cross-
reference,

For example, to eventually get the following entry (entry-per- line format):

Program maintenance documentation, 11, 17, 24
See also program design language

the see-also-file could contain

Program maintenance documentation : program design language

The see-under-file contains See under cross-references. The first and second terms appear in
the index, but the first term will not have any page numbers listed. Instead, a reference to the
second term, which is the main entry for a group of entries, will be made:

See under second term.

This is to be used when the first term is actually used under a different heading. There can be
a third term on a line, as described for the see-file. As with the other types of cross-references,

105

INDX (1) UNIX Programmer’s Manual INDX (1)

an index term can have only one cross-reference.

For example, a see-under file containing:

program maintenance documentation : documentation
would yield a macro corresponding to the index entry

program maintenance documentation, See under documentation

The combine-phrase-file contains pairs of terms for which the first term will list, in addition to
its own page references, the page references of the second term. The second term will not
appear in the index. This may be used to index plurals along with their singular references, for
example, to list the page references of program design languages under the index term
program design language. There can be only two phrases per line, since phrases will be
combined before group-entries are created.

The group-eniry-file groups sub-lerms with terms. The second term will be the sub-term of the
first term. A maximum of two levels for a group term can be defined, thus the first term cannot
be a sub-term of a group. There can be only two phrases per line in this file. If the main term
is not found in the index, an index term for it will be inserted and the group relationship esta-
blished. When the second term is grouped under the first term, it will be no longer be a main
term. If it is desired that the second term remain as a main term in the index, the second
phrase must be followed by the separator character of the file.

For example, to eventually get the following portion of an index (in paragraph style):

programming language, 3: C, 4, 7; Pascal, 4, 7,9
the group-entry-file might contain
'

programming language ! Pascal
programming language ! C

If Pascal should also be in the index, the group-entry-file would contain
!

programming language ! Pascal !
programming language ! C

The alternate-index-term-file pairs terms that appear in the text with their corresponding index
term, which may or may not appear in the text. This option is provided to list entries defined
in the phrase-file under a different term, which may, for example, be inverted: INDX, manual
page of instead of manual page of INDX. The first term is the term in the text and the second
term is the index term to be used. Lines in this file may have three phrases, defining an entry
change for a sub-entry.

Indx will build all regular index terms defined by the phrase-file and then will process the
optional files in the following order: combine-phrase-file, group-entry-file, see-also-file, see-
file, see-under-file, and alternate-index-term-file.

106

INDX (1) UNIX Programmer’s Manual INDX (1)

As an example, suppose the completed index is to contain
Alphabetic sort, See Binary search trees

Binary search trees, 320-372
inserting a new element, 335-341

Binary trees, 203-207

Insertion
binary trees, 335-341

LEFT pointers, 208-214

Pointers
LEFT, 208-214
RIGHT, 208-214

RIGHT pointers, 208-214
The following files would be needed:
phrase-file

.

Binary trees

Binary search trees

insert the element z

LEFT pointer :

LEFT pointers :

RIGHT pointer :

RIGHT pointers :

z into a binary tree

z into an existing binary tree

combine-phrase-file

LEFT pointers : LEFT pointer

RIGHT pointers : RIGHT pointer

z into a binary tree : insert the element z

z into a binary tree : z into an existing binary tree

group-entry-file

Binary search trees ; z into a binary tree :
Insertion: z into a binary tree

Pointers : LEFT pointers :

Pointers : RIGHT pointers :

alternate-index-term-file

LEFT pointers : LEFT : Pointers

107

INDX (1) UNIX Programmer’s Manual INDX (1)

RIGHT pointers : RIGHT : Pointers
z into a binary search tree : inserting a new element : Binary \
search trees
z into a binary search tree: binary trees : Insertion
see-file

-

Alphabetic sort : Binary search trees
Something like the following would be generated:

IX 0 see "Alphabetic sort" "" "Binary search trees"

IX 0 reg "Binary search trees" "320, 321, 333, 335, 348, 367" ""
JIX 1 reg "inserting a new element” "335, 337, 338, 339, 341" ""
JIX 0 reg "Binary trees" "203, 204, 205, 206, 207" ""

IX0 reg "Insertion” "" ""

IX 1reg "binary trees™ "335, 337, 338, 339, 341" ""

IX 0 reg "LEFT pointers" "208, 210, 211, 214"

IX0 reg “Pointersn n"wn onw

JIX 1 reg "LEFT" "208, 210, 211, 214" "

JX 1 reg "RIGHT" "208’ 209’ 211, 213, 214!! "mnn

IX 0 reg "RIGHT pointers” "208, 209, 211, 213, 214" ""

Note that the page references from the program are pages on which the exact phrase occurs. It
may be the case that the subject is continuously discussed from one page occurrence to the
next, even past the last page of the reference list. It is the indexer’s responsibility then to
replace these lists with the ranges. Thus, the completed index would be as given above.

SEE ALSO
findphrases(1) may be used to obtain a list of phrases that would probably appear in the index.

It creates a table of phrases that are repeated in an arbitrary text. Using it should decrease the
time and effort required to obtain a list of index terms,
dedit{1) may be used to convert ditroff output to the input text format.

troff(1) may be used to format the text and the index. The mI macro package contains the
macros for indexing.

108

DEDIT(1) UNIX Programmer’s Manual DEDIT(1)

NAME
dedit — extract pure text and page numbers from ditroff output

SYNOPSIS
dedit [—olist 1 { file]

DESCRIPTION
Dedit extracts pure text and page numbers from ditroff(1) output, paying atiention to the end-
of-word and end-of-line markers and ignoring movements. If a file name is not given, the
standard input is used as input. QOtherwise, the contents of the file is used as the input. The
output is written to standard output.

The -0 option is used to print only the pages enumerated in /isz. The list consists of pages and
page ranges, eg. 7-11, separated by commas. The range n- goes from n to the end; the range -n
goes from the beginning to and including page n.

Dedit is intended to prepare text in ditroff output format for use in the indx(1) program, which
will create an index for the text.

SEE ALSO
dtrofi(1), indx(1)

109

FINDPHRASES (1) UNIX Programmer’s Manual FINDPHRASES (1)

NAME
findphrases — find repeated phrases in an arbitrary text

SYNOPSIS
findphrases [~nnumber | —ppunctuation-keyword-file [—xignored-phrases-file]
[—mmulti-tokens-file] [-u] [-b1[-si[-t]1[—-v1[—=<]

DESCRIPTION
All files mentioned in the synopsis provide their data in what is referred to as free format
subject to particular restrictions to be described for each case. In free format, the items of the
file may be entered zero or several per line with a mixture of blanks and tabs before, in
between, and after the items. Obviously, no item can include a blank, a tab, or a newline.

The —m argument is optional and if present provides a number number serving as the
maximum length phrase (to be described later) to be tallied. If this argnment is not present, if it
does not supply a number, or if the supplied number is outside the reasonable range of greater
than zero and less than or equal to 50, then number is taken as 10.

The punciuation-keyword-file contains in free format a list of those characier strings to be
taken as punctuation/keywords (see below). The optional ignored-phrases-file contains one-
per-line a list of phrases to be ignored in the tallying (see below). In each line, the tokens (see
below) are in free format. The opticnal multi-tokens-file contains in free format a list of those
character strings consisting of more than one symbolcharacter (see below) which are o be
taken as multi-tokens (see below).

No assumptions are made about the standard input, thus it may be an arbitrary text. The
program parses the text into words and symbolcharacters. These in turn are formed and
classified into tokens and punctuaton/keywords based on the information provided by the
punctuation-keyword-file and, when the —m option is present, the multi-tokens-file.

First some definitions are necessary:
Whitespace: blank, tab, newline, beginning-of-file, end-of-file
Wordcharacter: letter, digit, _

Symbolcharacter: any printable character which is neither a wordcharacter nor a
blank

Word: any sequence of wordcharacters delimited on each side by whitespace or a
symbolcharacter

Punctuation/Keyword: whatever is in the punctuation-keyword-file, the
symbolcharacter strings are called punctuation and the wordcharacter strings are
called keywords

Multi-token: whatever is in the multi-tokens-file

Token: any word, symbolcharacter, or multi-token which is not listed in the
punctuation-keyword-file

Sentence: list of tokens delimited on each side by punctuation/keyword
Phrase: one or more consecutive tokens occwrring within one sentence

The main job of this program is to tally the occurrence of all phrases in all sentences, The
maximum length phrase that has to be considered is that of number tokens. If the ignored-
phrases-file is provided, then the phrases given in the file are to be ignored in the tallying. If

110

FINDPHRASES (1) UNIX Programmer’s Manual FINDPHRASES (1)

the —b option is used along with the ignored-phrases-file, then phrases which begin with an
ignored phrase are also ignored in the tallying.

The standard output consists of:

a copy of the input as is, with the lines numbered and the punctuation/keywords
overstruck two times (i.e., printed three times in place) so that they can be spotted
easily,

a frequency ranked table of the repeated phrases. i.e., those appearing more than once
among the sentences; that is the entries of the table are given in order of decreasing
frequency, and

an alphabetically ordered table of the repeated phrases.
In the two tables, the entry for a repeated phrase consists of:

a sequence of asterisks indicating the phrase’s frequency as a percentage of the
maximum frequency; in this one asterisk represents 10%,

the actual number of occurrences of the repeated phrase,
the repeated phrase itself, and
a list of the numbers of all lines containing the beginning of the repeated phrase.
In printing the repeated phrase itself in a table entry, the underscores, i.e., **_"", are printed as

blanks. This means that an underscore can be used immediately preceeding or following a
word that looks like a keyword to prevent it from being considered a keyword.

Note that the definition of ‘‘phrase’ is independent of the number of times it occurs in the
sentences. An ignored phrase is simply one to be ignored in the tallying but not in seaching for
phrases. A phrase which contains an ignored phrase which itself is not ignored is to be tallied.
When the ~b option is present, a phrase which begins with an ignored phrase is not to be
tallied. A repeated phrase is one whose final tally is greater than one. Only the repeated
phrases show up in the tables of the output.

LR I T L3

Typically, the ignored-phrases-file will contain so-called noise phrases such as “a’’, “‘an’’,
“the™, ““of*’, **of the”’, etc. plus any useless phrases found in previous runs of the program.

One particular configuration of the files is as follows:

Punctuation-keyword-file: ; [] abort accept access all and array at begin body
case constant declare delta digits do else elsif end entry exception exit for
function peneric goto if in is limited loop mod new not null of or others out
package pragma private procedure raise range record rem renames return
reverse select separate subtype task terminate then type use when while with xor

Multi-tokens-file: *% 1= <= >= [= . <> << >>

This configuration is suited for finding repeated phrases in Ada™ (Ada is a trademark of the
U. S. Department of Defense.) or in an Ada-based program design language.

If the ~u option is present, then only the unique phrases that are not wholely and everywhere
contained in another phrase are listed in the tables of the output. In addition to the already
specified output, if the —s option is present, then all the sentences are listed; if the —t option is
present, then all the tokens are listed; if the —v option is present, then the output is verbose
with the punctuation/keywords listed, and when the —m, and respectively the —x, option is

111

FINDPHRASES (1) UNIX Programmer’s Manual FINDPHRASES (1)

present, the multi-tokens, and respectively the ignored phrases, are listed. If the —c option is
present, then upper and lower case distinctions are to be applied in determining whether a
phrase is in a sentence. The default is to ignore case distinction in the comparisons.

112

