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ABSTRACT OF THE THESIS

‘ Object-Oriented Simulation of Pool Ball Motion
by

C, Arthur Paul Goldberg
Master of Sclence in Computer Science
University of California, Los Angeles, 1984

Professor D. Stott Parker, Chair

This thesis presents a simulation model of pool ball motion. The model
represents the positions of pool balls as they move around a pool table, collid-
ing with each other, colliding with the sides of the table, and entering pock-

ets.

The primary goal of our study has been to explore methods to speed up
the pool ball sinimlation. The simulation techniques we use work towards this

goal in two directions.

The main computational expense of a pool ball simulation is scheduling
future ba;ll collisions. Our first technique for increasing the speed of a simula-
tion decreases the number of scheduled collisions by dividing the pool table
area into sectors. We have implemented two pool ball simulation programs -
in one the pool table area is continuous, while in the other the pool table area
is divided into sectors. Experiments show that as the number of balls on the
table increase the simulation runs considerably faster with a sectored pool

table than with a pool table not divided into sectors.
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Second,. we have implemented the simulation to run on the Time Warp
[Jefferson and Sowizral 82| distributed simulation system. This is the first
large program to use Time Warp. It promises to be an important toolfor

studying the acceleration of simulation by distributed computing.
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1. Introduction

This thesis studies the simulation of pool ball motion. Simulation pro-
grams have been implemented in the object-oriented framework, which is
well suited for modeling discrete event systems. Our primary goal has been
to speed up the pool ball simulation. When we speak of speeding up a simu-
lation, we are concerned with reducing the elapsed real time of the simula-
tion, which becomes more iniportant as the number of balls increases. We
have worked towards this goal on two fronts. First, we have demonstrated
that the computational complexity of the simulation may be decreased by
dividing the pool table into sectors. Second, we have implemented the simu-
lation on the Time Warp distributed simulation system developed by

Jefferson and Sowizral {Jefferson 82] so that it may exploit the acceleratlon

of concurrent dlstrlbuted simulation.
The accomplishments of this work are

(1) We have implemented an object-oriented simulation of pool ball motion.
All essential objects on a pool table are represented: balls, cushions,

pockets and corners.

(2) Experimental results show that a significant decrease in the real elapsed
time of a simulation can be achieved by dividing the pool table into see-
tors. A sector is modeled without difficulty as a logical simulation
object. In addition, we present an analytic model that predicts an

upper bound for the optimal sector size.

(3) We have discovered that instantaneous events (such as a ball colliding
into a ball resting against a cushion) occur in a pool ball simulation and
are difficult to simulate correctly. We present a simple method for

correctly sim:..:ing instantaneous events.



(4) Our pool ball simulation is the first Iafge model implemented on Time
Warp at Rand. As such, the simulation will be an excellent research

tool for exploring the performance potential of concurrent simulation.

This thesis is divided into several major sections. The next section
presents several different approaches to the simulation of pool ball motion,
culminating with a description of our object-oriented simulation. The third
section rigorously presents the physics of collisions between pool balls. The
fourth section discusses the computational details of pool simulation, con-
centrating on modeling methods for simultaneous .eventa, which occur when
an object participates in more than one event at the same simulation time.
The fifth section presents the design and implementation of sectored simula-

tion, which is followed by a section that presents experimental results which
‘show that a sectored simulation executes faster than a non-sectored simuia—
tion. The next two sections present an analytic model of sectored simula-

tion. We conclude the thesis with a discussion of our ideas for future work.

We assume the reader is familiar with the broad outlines of discrete
eveni simulation. General discussion of simulation methodology _and

languages can be found in [Fishman 78] and [Franta 77].



2. Simulation of Pool Ball Motion

We aill know how pooi balls move around a pool table; they bounce off
each other and the cushions. Occasionally a ball enters a pocket, although

it is usually not the ball and pocket that we had intended.

This thesis describes algorithms that simulate the motion of pool balls
on a pool table. The algorithms capture the es-sentia.ls of pool ball collisions.
When a ball runs into a cushion it bo.unces back, and the direction it moves
depends on the angle with which it hit the cushion. When two balls collide
the laws of physics are obeyed. The collision conserves momentum and,
since we assume it is elastic, kinetic energy. Some of the more subtle phy-
sics of pool, such as English and friction between the ball and the table felt,
are not represented in these algorithms, but there is no fundamental reason

. why they could not be included.

There are two major temporal simulation methods, time step simulation
and discrete event simulation. In time step simulation, time advances in a
fixed increment, and the state of the entire simulation is updated at each
step. In discrete event simulation events in the simulation are scheduled in
advance and processed according to the rule ‘earliest event first’. In this
section we briefly outline pool ball simulation algorithms which use the two
major methods. We discuss the merits of each method for simulating pool

ball métion.

In these algorithms we limit our concern to represeating the physical
position of the balls as a function of time. We assume that a moving ball
will continue in a straight line at the same speed until it hits another ball,
cushion or a pocket. We are interested in events that change a ball's velo-

city.



2.1. Time Step Simulation of Pool Balls

Let us begin by looking at the time step simulation in figure 1. The
essential data in this algorithm are the position and velocity of the balls.
The ‘while loop’ runs until simulation time reaches the end of the simula-
tion. Each pass through the loop increments a pool ball’s position one time
step. Then the new positions are checked to see if a ball participates in a

collision. If two balls collide then they are each assigned a new velocity.

A time step simulation is poorly suited for simulating the discrete
motion of pool balls. We support this claim by examining the computational
complexity of this simulation. How many processing steps does it take to
run this simulation? Standard theory of computation expresses the complex-
/ity of an algorithm as a function of the size of the prbblem. In this case the
size of the problem is n, where n is the number of balls. The complexity .of
a single step of the time step simulation is O(n®), since all possible pairs of
balls are examined to determine if they collide. Expressing the computa-
tional complexity of a simulation introduces another parameter, the length

of the simulation.

¢

'fhe complexity of an entire time step simulation depends on the size of
the time step. If we let T be the length of the simulation and let Af be the
length of the time step we can state that the complexity of the entire simu-
lation is O(n2T7Al).

There are two problems with using time step simulation to simulate the
discrete motion of pool balls. First, the accuracy of the simulation is
compromised because a collision cannot be simulated exactly at the time it
occurs. At each time step the algorithm determines if a pair of balls collides
by deciding whether they overlap. There is a delay betweén the instant of

the collision and when the balls receive their new velocity, which can be



“Time step method
Data: )
size of the pool table
set of pool balls
state for each ball: position, velocity

Program:
simulate__pool _ball collisions
initialize ball states
time — 0
while{ time < end AND computing funds remain)
do
time « time + time step
_update the positions of all balls
for each ball on the table
if (the bail has entered a pocket)
then
put it in the pocket
else
if (the ball has collided with a cushion)
then
/* bounce it off the cushion */
send it off in a new direction with a new state
. endif
endif
end
for each pair of balls on the table
If (the pair has collided)
then . - -
send them off in their new directions,
with all their new data
endif
end
end

endprogram

Figure 1. Time Step Simulation Program

almost as long as the time step At



A second, related problem is that there is a tradeoff between computa-
tional complexity and the simulation’s accuracy.” The smaller the time step
the greater the complexity. However, a larger time step makes the simulation
less accurate. A significant drawback of time step simulation of pool ball col-

lisions is that there is no simple way to choose the best time step.

2.2. Event-Based Simulation of Pool Ball N.[otion

Event based pool simulation does not have the drawback of time-step

simulation just mentioned, the difficulty of choosing a time step.

The algorithm for an event based simulation is listed in figure 2. The
basic idea behind this algorithm is that all possible future collisions are
scheduled. When a ball undergoes a collision and changes its velocity, it
“cancels all other collisions scheduled for it, and schedules a new set of colli-
sions, based on its new trajectory. By trajectory we mean the ball’s speed
and direction (velocity as a vector) and its last position fix. A trajectory
determines a ball’s position as a new trajectory are scheduled before any
other collisions are processed. See section 2.4 for an informal proof that this

simulation algorithm is correct.

The data for each ball's state is the same as in the time step algorithm,
except that a ball's state also includes the time of the last position fix. The
event list is a list of future events. Each entry in the list contains the time
and a description of the event. The ‘while-loop’ runs until the simulation
time exceeds the ending time of the simulation. Each pass through the loop
processes the next event in the event list. If a collision event is found then

the new velocities of the balls involved are calculated.

What is the computational complexity of this event based simulation?

Processing a single collision may involve canceling and scheduling O(n) colli-



Data: o
Size of the pool table, placement of pockets, ete.
For each pool ball:
3(¢) position at time ¢

v velocity
Event list - a list of pairs (time, event) sorted by time.
Program:

simulate _pool _ball _ collisions
initialize ball data and event list
while (balls are still moving AND time < ending time of simulation) do
remove the next event from the event list
time «- the time of the next event
/* now process the event */
case{event type)
ball entering pocker.
take the ball out of play
collision: ‘

/* If a ball is hitting a cushion then there is one ball that
changes velocity, if there are two balls colliding then there
are two balls that change velocity. */

for each ball B that changes velocity de
change ball B’s direction
cancel all future events scheduled for ball B

by removing them from the event list
for all other balls X on the table do
if (ball B and ball X will collide)
then
- -schedule a collision between ball B and ball X
endif
end
for all cushions C do
if (ball B will hit cushion C)
then
schedule a collision between ball B and cushion C
endif
end
for all pockets P do
if (ball B will enter pocket P)
then



schedule a collision between ball B and pocket P
endif
end
end
endcase
end

endprogram
Figure 2. Event Based Simulation Program

sions, because the ball may schedule a collision with every other ball on the
table. Now consider the expense of maintaining the sorted event list. There
are at most O(n?) entries in the event list. If the list is kept as a heap then
n deletions and n insertions will cost nlogn® + nlogn® = O(nlogn). (We
ignore the cushions in the complexity calculation since we assume that their
.number is fixed and small). Letting ¢ be the number of collisions in the

entire simulation we see that its complexity is simply O(enlogn).

We cannot directly compare the computational complexity of the two
simulation methods because their complexities are not expressed with the
same parameters. However we can say that the event based simulation has
the advantage that a ball's position is recalculated only when the ball
changes velocity rather then at every time step. The average number of col-
lisions per time step is ¢A#/T. The complexities of the two simulations are
equal if the number of collisions per timestep is n/logn. If there are fewer
than n/logn collisions per time step then the event based simulation is less
comp’lbx On the other hand if there are more than nflogn collisions per-
time step then the time step is probably too coarse. Therefore an event
based simulation will most likely be more computationally efficient than a

time step simulation.



2.3. 'di:ject:briented Pool Ball Simulation

An .objéct'-oriented simulation is a specialized kind of event simulation
in which the simulation program is organized into modular software ele-
ments called objects. Objects communicate data with each other and
schedule events only via simulation messages. Object-oriented simulation
languages are exemplified by ROSS [McArthur 82] and Time Warp [Jefferson
82]. These simulation languages are the intellectual descendants of the
object-oriented programming languages Smalltalk [Goldberg and Kay 78]
and Director [Kahn 79].

In this thesis we concentrate on object-oriented pool simulations
because this is the simulation methodology of Time Warp. Time Warp
chooses an object-oriented simulation method because it is well suited for
distributed simulation. The crucial advanmtage of the object-oriented
approach for distributed simulation is that the simulation code which
defines how an object processes messages, called the object’s behaviors, does
not access global data structures. A behavior accesses only an object’s local
data and messages sent to the object. An object-oriented simulation pro-
gram can therefore be transparently run on a distributed simulation system
(which must, of course, provide conc,urrency control underneath). We will
not discuss distributed simulation any further - the interested reader should

read Jefferson and Sowizral's Time Warp Rand note [Jefferson 82).

The procedural logic of the object-oriented pool simulation we present
next is no different from the logic of the event based pool simulation. The
essential difference is in implementation - here the communication is per-
formed via .messages, whereas the event simulation program modifies the
event list directly. An object-oriented pool ball simulation program is

presented in figure 3.



Object-orien-ted'pool ball simulation

Object States:

State name Properties

BallState Trajectory - position fix and velocity
Pocket the ball occupies
Set of planned interactions

CushionState | Position - the cushion’s endpoints
Set of planned interactions

PocketState Position - the pocket’s endpoints
Set of balls in the pocket
Set of planned interactions

‘| CornerState Position
Set of planned interactions

Object behavior algorithms:

BaliBehavior(messages, BallState)
Eliminate pairs of messages that cancel each other
CoilisionHasOccured «— False
for all messages do
CRse(message type)
NewVelocity:
identify sender of NewVelocity message as ball X
if (this ball is not in a pocket)
then
cancel all planned collisions with ball X
if (the time of a collision with ball X < the current time)
then
schedule a collision with ball X
add the collision with ball X to the set of planned interactions
eadif
endif
Collision:
identify sender of Collision message as object Z

10



CollisionHasOccured « True
case (object type of object Z)
Ball:
BallState:velocity «— BallCollision(BallState:trajectory,
ball Z’s trajectory)
Cushion: '
BallState:velocity « CushionCollision(BallState:trajectory,
cushion Z's position)
Corner:
BallState:velocity «— CornerCollision(BallState:trajectory,
corner Z's position)
Pocker
BallState:pocket «— pocket Z
endcase _
BallState:trajectory:position — current position
BallState:trajectory:fix _time « current time
remove the collision from the set of planned interactions
endcase
end
if (CollisionHasOccured)
then
cancel all planned interactions
empty the set of planned interactions
for all other balls do
send a NewVelocity message to the ball
for all cushions do
send a NewVelocity message to the cushion
for all pockets do
send a NewVelocity message to the pocket
for all corners do
send a NewVelocity message to the corner
endif

endprogram

CushionBehavior( messages, CushionState)
Eliminate pairs of messages that cancel each other
for all messages do
case (message type)
NewVelocity:
identify sender of NewVelocity message as ball X
cancel any planned collision with ball X

11



if (the time of a collision with ball X > the current time)
then .
schedule a collision with ball X
add the collision to the set of planned interactions
endif
Collision:
identify sender of Collision message as ball X
remove bail X from the set of planned interactions
endcase , :
end
endprogram

CornerBehavior - same as CushionBehavior except uses a different
algorithm to calculate collision time.

PocketBehavior - same as CushionBehavior except add to collision case:
add ball X to the list of balls in the pocket
Figure 3. Object-Oriented Simulation Program

There are four types of objects: balls, cushions, corners and pockets.
The.top of the figure tabulates the state information associated with each
object. A ball state stores the ball's velocity and a position fix; the time and
location when the ball last changed velocity. Cushion and pocket states
store their object’s position as the location of its two endpoints. A pocket
state also stores the identities of all the balls the pocket has collected.
Finally, each object stores a list of the collisions that it planned, so that if
necusarf it can cancel a collision later.

There is a behavior procedure for each of the four object types:
BsaliBehavior, CushionBehavior, CornerBehavior and PocketBehavior. A set
of messages sent to an object at a particular simulation time is processed by
running the behavior procedure of the object’s type with the set of messages

and the object’s state as arguments.

12



There are strong parallels between the different behavior procedures. [n
fact, CornerBehavior and PocketBehavior are not written out fully because
they are so similar to CushionBehavior. The differences between these two

procedures and CushionBehavior are noted at the bottom of figure 3.

In effect, the logic of this object-oriented simulation is the same as that
of the previous event based simulation, except that communication between
objects is performed via messages. There are three types of messages:
NewVelocity, Collision and Cancel. When a pool ball changes its velocity it
sends a NewVelocity message to all other objects. The NewVelocity message
contains the pool ball's new velocity. An object that receives a NewVelocity
message examines the trajectory of the ball that sent the message to deter-
mine whether the ball will collide with the object. If they will collide then
‘the object sends two Collision messages to schedule the collision. A Cancel
message is send to cancel a scheduled collision. Cancellation is needed when

a ball involved in the collision changes its velocity prior to the collision.

An aid to understanding the simulation program is the message fow
graph, shown in figure 4. The nodes of these directed graphs are objects and
the ares represent the transmission of a message from one object to a set of

other objects. The arcs are labeled with message types.

Figure 4a indicates that a ball with a new trajectory (after a collision)
sends a NewVelocity message to each other simulation object. An object is
another ball, a cushion, a pocket or a corner. An object which receives a
NewVelocity message from ball X determines whether it will collide with ball
X. If the object decides that a collision will occur then it schedules a colli-
sion by sending a Collision message to ball X and a Collision message to
itself. These two messages are illustrated in figure 4b by the arc and self-

arc, each labeled by the single word Collision. Both messages are necessary

13



NewVelocity

Ball with
new trajectory

All other
objects

Figure 4a. Ball Broadcasts NewVelocity Message

NewVelocity

Objects which
will collide with
Ball X

Ball X, with
new trajectory

Collision

Figure 4b. Objects Schedule Collisions with Ball that Changed Velocity

because each ball independently processes a Collision message to determine
its velocity after the collision. The information needed to determine a ball’s
velocity after a collision are the trajectories of both balls in the collision.
The two Collision messages are not identical - each ball receives a Collision
message containing the trajectory of the other ball. Therefore, two Collision
messages are sent per collision.

We introduce message flow graphs here because they help design
object-oriented simulations. This is clearly .not the case with these simple
graphs, but they do help design simulations whkich have more types of

objects and messages, as we shall see later.

The procedures in the object-oriented simulation which schedule colli-
sions and the procedures which compute a ball's velocity after a collision

(BallCollision, CushionCollision and CornerCollision) are presented in the

14



chapter on physics of pool ball simulation.

Thé code has been implemented and works.

2.4. Correctness Proof

In this section we present an informal proof that our simulation algo-
rithm correctly models pool ball motion. Assume that the physical collisions
are correctly modeled. Then we can be sure that the simulation is correct if
it executes the same collisions that physical pool balls would undergo. The
proof takes two steps. First, we show that a superset of all possible colli-
sions is scheduled. Second, we show that all collisions that do not physically

happen are canceled before they can occur.

The proof requires several assumptions. First, assume that an object
‘receives no other messages at the same simulation time that it receives a
Collision message. This assumption insures that the simulation time order
of events dictates their execution order. Thus, a collision is canceled ‘before’
it can occur if it is canceled at an earlier simulation time. This assumption
implies that the pool balls collide only two at a time. Second, assume that a
NewVelocity message is received and processed at the same simulation time
that it is sent. (The simulation implementation relaxes these assumptions,

and has to make adjustments to compensate.)

Whenever a ball changes velocity it notifies all other objects about its
new trajectory by broadcasting NewVelocity messages. An object that
receives a NewVelocity message determines whether its trajectory will inter-
sect the trajectory of the ball that sent the NewVelocity message. An inter-
section is a potential collision. Any object that detects an intersection

schedules a collision with the ball that sent the NewVelocity message.

16



Let the object that schedules the coliision be called the ‘scheduling
object’. The schedulic ; object sends a Collision message to itself and a Col-
lision message to the ball. The Collision messages are scheduled for receipt
at the time of the collision. When (and if) they are processed, each object
involved in the collision will change its state appropriately, and the collision

will have been executed. This comipletes the first step of the proof.

When the scheduling object sends the Collision messages it also makes
an entry in its list of planned interactions, so that it can cancel the collision.
The collision will happen if it is not canceled before the collision time. It
must be canceled if some object involved in the collision changes velocity

before the collision.

The second step of the proof has two cases, one for each object in the

collision. If the scheduling object changes velocity - in which case it must be

a ball - then it cancels the collisions which it had scheduled.! If a ball
involved in a collision that is not the scheduling object changes velocity then
the scheduling object receives a NewVelocity message from the ball. The
scheduling object will find the ball's name in its list of planned interactions
and cancel the interaction by sending collision cancellation (Cancel) mes-
sages to itsell and the ball. Because the NewVelocity message is transmitted
in zero elapsed simulation time (assumed above) the cancellation will happen
before the collision is executed. This completes the second step of the proof.
We have shown that if either of the two objects involved in a collision
changes velocity before the scheduled collision then the collision will be can-

celed.

!Note that the ball must be careful to remove the collision that just happened before it
cancels all planned interactions.

16



All that remains is to show that canceled collisions do not happen. At
the start of -all object behavior algorithms any pair of Collision and Cancel
messages that cancel each other are removed from the list of input messages.
The pairing is based upon the unique message identifier contained in each
Coilision lénd Cancel message. Thus, a canceled collision does not happen.
The proof is complete. We have shown that the collisions that occur in the

simulation are exactly those that happen on a real pool table.

17



3. Physics of Pool Ball Simulation

3.1. Scheduling Collisions

When a ball changes its velocity it may head on a collision course. The
sirgulation schedules collisions with all objects the ball will hit. There are
four kinds of objects that the ball can collide with - another ball, a cushion,
a pocket, or the corner of a pocket. This section presents the geometric cal-
culations that predict when, if ever, a ball will collide with another object.

The arguments involve simple geometry and algebra.

The trajectory of the ball is used extensively in these calculations. The

position of the ball, ?(t), is given by the vector equation
s(t) =8(t,) + (t-t,)v |
‘The time of the last position fix is t,, and the position at that time is s(¢,).
The ball’s velocity is v. If we make the substitution D =3 t,) - t,-t; then we
have a simpler expression for the trajectory, which we use extensively:
:(f) =D+ fv
Each kind of object is discussed separately. We begin with the schedul-

ing of a collision between two balls.

3.1.1. Ball Collision Time

Given the trajectories of two pool balls, we are concerned with resolving
the question: will they collide, and, if they collide, when will the collision
happen? Let the two balls be labeled 1 and 2, and let the parameters be
identified by subscripts. Thus,

8;(8) = Dy + t,v
and

89(t) = Dy + ty,v,

18



The distance separating the balls satisfies
_ (d()? = [3,(8) -2 )?
where |z| denotes the magnitude of the vector z. Let the balls' radii be r,
and r,. The condition for a collision is that the balls touch, or
d(t) =7 + rq
We want to solve for the time of the collision. (If no collision occurs then

the solution will not be real.) We need to solve
(ry + )P = [3y(8) ~s()]?

If we expand the right hand side into the expressions for vector components
we get

(ry + 12)? = ((Dy, + tvy,) ~(Dyy + tm,))2 + ((Dy, + tv;,) - (Dy, + tvy))?
.where s, is the x-coordinate of ball 1 at time ¢;,, and so on for the other
subsecripts. Combining the terms which multiply ¢, we get

(ry + r2)? = (H(vy, - v,) + Dy, - Dy,)2+(Hvy, - va,) + Dy, - Dy)°
Expanding the right hand side and collecting terms yields a quadratic in ¢,
(("!3 - 02:)2 + (vl' - ”z,)z)‘z +
2((”1: - v23)(D13 - D‘L’z) + (”l, - 02')(011 - D2'))t+

(Dls ‘023)2 + (‘DI, "D21)2 '(rl + r2)2 =0
This expression can be simplified considerably by returning to vector nota-

tion. Let Av =-t;, -, and Ad = D, - D,. Then we have,

|AY)22 + (2avAd)t + |Ad)2 - (r; + )2 =0
The roots of this quadratic are found by the wusual formula
= (-bxV BT - 4ac)/2a. The term inside the square root is

| 4 AvAd) - 4AV|H(1Ad? - (ry + 1))
Let this be 4a . There are three possibilities:

19



a<0 balls do not collide
a=0 balls just touch
a >0 balls collide

If the balls collide then there are two solutions for the collision time. The
earlier time corresponds to the actual collision time, since the later time will
be the time when the balls just touch after ‘having passed through each
other. Thus, if & >0 the balls will collide at time
— —AvAd - Va

|av|?
Given the trajectories of the two balls, this is an easy function to calcu-

late. We have implemented it in our pool ball simulation.

.3.1.2. Cushion Collision Time

Given the trajectory of a ball and the position of a cushion, will the ball
hit the cushion, and if the ball will hit the cushion, when will the collision
happen? The cushion is a straight side of the pool table. It is described by
its two endpoints, :, and -e.z . The endpoints of each cushion are labeled so
that in going from -e.z to -e'l one moves in a clockwise direction around the

table.

The pool ball is a moving round object. It has a radius r, and a known
trajectory. “The .ball will hit the cushion when it is a distance r away. See
figure 5. The cushion is given by the set of points

. _c.r-e., + {1 -a)-e.z
where 0<a<1. Let { = ¢, - ¢, be the vector for the length of the cushion.
Then, since { points clockwise around the table the unit vector pointing into
the table perpendicular to-f, which we label u , is given by

u, =101 uy =11 ,
Let R be a vector in the direction # whose length equals the radius of the
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Figure 5. Impact Parameters of Ball-Cushion Collision

ball. Then R = ru. Then the locus of points on the table at a distance r
‘from the cushion is
ae; + (1 -a)e; + R

We want to know when the ball will cross this line. Thus, we want to solve
or

(t,) + (t-t)v =ae, + (1 -a)e, + R
for t and a. As before, we define D == a(t,) -'t,-t;. Its components are D,
and D,. The solution will be valid if 0<a<1. We get one equation for each

vector component. For the x and y components they are

D, + tv, =aey, + (1 -a)e,, + R,
D, + tvy, = aey, + (1 -a)ey, + R,
We solve this pair of equations for t and then for a. For t we obtain the
solution
(623 + Rs)lg - (82! + Rg)ls + Dy’: - D:lg
vl, - v,l,
provided, of course, that v,/ - v,/,720. For a we obtain the solution
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D,U, = Dyvt + (e2y + Ry)v: "(‘2: + R:)vy
- l,v, -l,v,
provided that I,v, - ,,u,70. If 0<a <1 then the expression for ¢ is the colli-

O =

sion time for the ball with the cushion.

3.1.3. Pocket Collision Time

Like a cushion, a pocket is a straight line defined by its endpoints. A
ball enters a pocket when it crosses over the line. To determine when (and
if) a ball enters a pocket, simply set the ball's radius to zero and use the

expressions that determine when (and if} a ball hits a cushion.

3.1.4. Corner Collision Time

Corners are pla.ced at the ends of a pocket. It is not immediately obvi-
‘ous that corners are necessary - to see that they are look at figure 8. Clearly
the ball in figure 6 should not enter the pocket. It should bounce off the

end of the cushion and move down and to the right.

The cushion will not schedule a collision with the ball, since the ball
will never touch the face of the cushion. The pocket will schedule a colli-
sion, but we know that the ball should hit. the end of the cushion. There-

fore, the simulation needs a corner iject at the ends of a pocket.

If a ball is headed towards a corner, when will it hit the corner? See
figure 7.7 Let ¢ be the position of the corner. The ball will collide with the
corner when its position is at a distance of the ball's radius (r) from the
corner, or when the relation

[o(t) ¢} =+
is satisfied. If we insert the expression for the ball's trajectory and square

both sides of the expression we get
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Figure 7. Ball Colliding with a Corner

D+ fv-¢|2 =1
Evaluating the magnitude of the left hand side we get a quadratic in t



0122 + 950t + [3c)2 -2 =0
This is-solved by the standard quadratic formuls. The term inside the

square root is

4((v(d-¢))? - [o]([d=¢|? - )
Let this be 4a. The ball will collide with the corner if a >0. There are two
solutions to the quadratic and, as with the time of a ball-ball collision, the

actual collision happens at the earlier time, which is given by

—t

-v.ﬁ-c) + va

[0/?

t = -

3.1.5. Coilisions

As we have seen, a pool ball can collide into another pool ball, a
cushion, a pocket, or a corner. In each case the ball departs from the colli-
‘sion with a new velocity, which depends only on the statés of the two collid-
ing objects before the collision. In this section we present the calculations of

the post-collision velocity for each case.

The ball's parameters before the collision are its velocity v, and its
position at the last time a position fix was taken, -a'(t,). The velocity after
the collision is denoted -1;,. A position fix is taken at the time of the collision.

In the following sections we are concerned with determining -t;,.

3.2. Cushlon Collision

A ball that hits a cushion bounces back. We ignore English and strange
caroms and assume that the angle of incidence of the collision equals the
angle of reflection. We define the cushion elasticity so that the magnitude of
the velocity after the collision equals the cushion elasticity times the magni-
tude of the velocity before the collision. The cushson elasticsty is between 0

and 1. This is
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|v,] = cushion elaat;'cityl-r:'bl

_ 0 < cushion elasticity < 1
As before, the position of the cushion is defined by its two endpoints ?1 and
-3.2- If we tet T =-e'2 --e.l be a vector parallel to the length of the cushion then
we can easily define the perpendicular to the cushion, p. The components of

p are ; .

P, = ’, Py = - [3
These vectors are illustrated in figure 5. That the angle of incidence equals
angle of reflection implies
;:I. == cushion elasticity -6;1. -v.:p; = - cuéﬁ:’on eléstic:'ty _v.,,;
as figure 5 illustrates. It is straightforward to expand these vector equations

into their components and solve for the velocity after the collision. We get

L(v]) - 1,(v,p)

———
—

cushion elasticity

N 12
Lwh) + Lwp) »
Vay = L |T|2’ cushion elactisits

Should the need arise, cushion collisions incorporating more complex physi-

cal behaviors could easily be added to the simulation.

3.3. Corner Collision

A ball that hits a corner does bounce back at a predictable angle. We
assume that the ball is reflected off a line perpendicular to the line between
the corner and the ball's center. See figure 7. Let the position of the corner
be denoted _c., and the position of the ball at the time of the collision be

denoted s(¢). Then the vector, p, from the corner to the ball’s center is sim-
ply

; =..-;(t) -_c.

The vector perpendicular to ;, denoted T, has components



l.‘l’ = - py Iy =P,
Given these definitions we see that a corner collision is exactly the same as a

cushion collision. Therefore the velocity of a ball after it hits a corner is

given by the equations for the velocity of a ball after it hits a cushion.

3.4. Collision Between Two Balls
When two pool balls collide they bounce off each other. See figure 8.

We study the collision for arbitrary ball masses. Let m; be the mass of
ball 1 and m, be the mass of ball 2.

The impact happens at the point where the balls touch. Thus, the
force is along the line of centers at the time of the collision. Let -.;l(t) be the
position of ball 1 at the time of the collision and az(t) be the same for ball 2.
"Then the vector between the centers, c is simply

= aq(t) - 1y(t) _
The velocity component that is parallel to the direction of ¢ is a ball's colli-
sion velocity. The velocity component that is perpendicular to ¢ does not

effect the collision. The vector perpendicular to e, -;;, has components

Figure 8. Two Balls Colliding



R -
The impact velocity of a ball is given by v, times the unit vector ¢/|¢|.

Thus we have reduced the pool ball collision to a simple linear collision
of two masses. If we assume that energy is conserved then we have an elas-
tic collision. The final speed of two masses in an elastic collision is derived
by Sommerfeld (p. 28) [Sommerfeld 52]. For the pool balls, the final velocity
is a vector sum of the velocity along ¢ and the velocity perpendicular to e.

It is straightforward to show that the final velocities of balls 1 and 2 are

v, = ( ——— ve + pp— vgsc)e/|c|® + (vy,p)p/|p|?
Vg = (= —vme + — mzvuc)cﬂcl + (vosp)p/|p|?

This completes the section on the details of scheduling and modeling
collisions. We now examine some of the interesting event simulation aspects

of pool ball collisions.
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4. Computational Details of Pool Simulation

In this chapter we present a detailed discussion of a variety of computa-
tional details of pool simulation. The first section of this chapter discusses
initialization of the pool simulation. Then we discuss graphics produced by
our pool simulation. When an object participates in two events at the same
time we call them simultaneous events. A problem with simultaneous events
is determining their correct processing order. The third section of this

chapter discusses our use of message priorities to order simultaneous events.

Next we discuss the issue of instantaneous coilisions. This is an impor-
tant topic, since we have found that it is difficult to model events that
appear instantaneous. Lastly, we discuss a clever technique to validate the

numerical accuracy of the simulation by running it ba;ckwards_.

4.1. Simulation Initialization

The simulation starts with no scheduled events. At the beginning, the
pool balls should inform each other of their starting velocities. If each ball
informs every other ball of its velocity, as it would during the simulation,
then there is a problem. Every collision would be scheduled twice - once by
each ball involved in the collision. To avoid this problem, a ball sends its
initial NewVelocity messages only to balls numbered greater than itself. Sup-
pose there are N balls in the simulation. All balls receive an initial

NewVelocity message from ball 1, but no ball receives one from ball V.

4.2. Graphies

Plate 1 2 shows a single frame from an animation of a pool simulation.

The frame shows two pool balls on a table with five cushions, ore pocket

2 Plates, which are images of the pool ball simulation, are collected at the end of the
thesis.



and corners at the ends of the pocket. The simulation time is 0.0. Ball-2 is
about to strike Ball-1 and sink it into Pocket-1. The vector from the center
of Ball-2 is its velocity. Ball-1 has no vector because it is stationary. The
head of the vector will be the position of the ball in one time unit, if its path
is not changed in the interim. Plates 2-4 show the progress of the simula-
tion for the next few time steps. We see that by time 3.0 Ball-1 has entered

Pocket-1, as indicated by the list of balls in Pocket-1 under its label.

Animated graphics are easy to generate in an object-oriented simula-
tion. The graphics output is controlled by an object called the Projector.
Let the frame time be the time between graphic displays. Every frame time
the Projector sends a message called DisplayYourself to all objects that can
be displayed. When an object processes a DisplayYoursell message, it draws

"and labels itself on the display.

4.3. Simultaneous Events

In an event based simulation an object may participate in two or more
separate -events at the same time. We call these simultaneous events. A
simultaneous event causes an object behavior algorithm to run with several
messages. For example, a ball can receive a Collision and a DisplayYourself
message together. A question naturally arises. In what order should the ball
process these messages?

The simulation system does not assign an order to the messages - it sim-
ply runs the object with the set of all messages with the same receipt time.
(In fact, the simulation system should not assign an order to simultaneous
messages since it does not know the semantics of the simulation and there-

fore cannot assign a correct order.)
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The next two subsections discuss the issues of ordering the processing
of simultaneous events of different types and simultaneous events of the

same type, respectively.

4.3.1. Ordering of Simultaneous Event Processing by Message
Priorities

It is necessary that simultaneous messages be processed in the same
message type order by all objects. We give two examples which demonstrate

that message types have to be processed in a prioritized order.

First, consider the graphics animation. We have decided that an ani-
mation frame should show the simulation state after all events up to and

“including the time of the frame. Suppose a coilision happens at time 1.0. If

“the frame is at time 1.0 then the frame will show both ball's velocities after

the collision. To enforce this constraint, each ball should process the Colli-

sion message before the DisplayYourself message.

Second, consider a ball that receives a NewVelocity message and a Colli-
sion message simultaneously. Suppose the simulation progresses as shown in

figure 9.

There are four balls, moving as shown in the ‘Before ¢’ picture. Focus
your attention on ball 1. At time ¢ ball 1 simultaneously gets several mes-
sages, including a Collision message indicating a collision with ball 2 and a

NewVelocity message indicating that ball 3 is moving towards ball 1.

If ball 1 processes the NewVelocity message before the Collision message
then no collision is scheduled between ball 1 and ball 3. This is incorrect -
and will cause ball 3 to pass directly through ball 1. The BallBehavior algo-
rithm should process the Collision message before the NewVelocity message,

discover that ball 1 is resting in ball 3's new path and schedule a collision
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Figure 9. Simultaneous Events At Time ¢ for Ball-1

between them.

These two examples demonstrate that correct operation of the simula-
tion requires that simultaneous events of different types be processed in a

particular order. How should the order be enforced?

Priorities based on message types are an effective means for ordering
sunultaneous_messaga Each object type has a list of message types (of
messages that it receives) ordered by the message type's priority. The
object’s behavior algorithm reorders the input messages by their priority
before any messages are processed. This is seen in the sectored pool simula-
tion algorithm (in chapter 6), where the second line of the BallBehavior

function is "Order messages by priority”.

The list of message types ordered by priority for BallBehavior is
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Collision
NewVelacity
DisplayYourself

(There are other message types, but this list is sufficient to illustrate our
point.) We see that the last two examples will operate correctly with this
priority list - Collision messages are processed before both NewVelocity and

DisplayYourself messages.

We have shown a priority order for three of the messages received by
BallBehavior. How would we choose a priority order for a simulation involv-
ing many more message types? If there are n types then n! orders are possi-
ble. We cannot give an algorithm but the best strategy, from our experi-
ence, is to determine the relationship between all pairs of messages (which

“will often be ‘does not matter which message is processed first’) and then
find an order that satisfies all relationships. The difficult step, of "Vcourse, is
determining the relationships since they depend on the semantics of the

simulation.

4.3.2. Processing of Simuitaneous Events of the Same Type

As we discussed in the last section, correct processing of simultaneous
messages requires that they be ordered by message type. The algorithm we
described will process multiple messages of the same type in an arbitrary

order.

For example, suppose a ball hits several other balls at the same time.
The ball simultaneously receives several Collision messages, and will process
them in an arbitrary order. Will this produce a correct simulation? Unfor-
tunately, the answer is no. The reasons for this answer are, however, quite
interesting. There are two levels at which the answer is no. First, there is a

problem that is analogous to the ‘lost update’ problem of concurrent

32



database access. Second, even if the collisions are processed in a serial
order, we find that different serial orders unfortunately produce different

final collision velocities.

We now elaborate on -thae problems. We call the entire mulitiple ball
collision an ‘interaction’. We assume that the reader is familiar with the
database concept of a trapnsaction. In the pool simulation a single collision
between two balls is a transaction. The transaction reads the velocity of
each ball before the collision and writes the velocity of each ball to complete

the collision.

In the object-oriented simulation a collision is scheduled by sending a
Collision message to each ball. The collision is executed by the independent
‘processing of the Collision messages by the colliding. ball objects. (See the
discussion in section 2.3.) Thus, a transaction involves the processing of ﬁvo
messages. Collisions that occur at distinct simulation times are processed
correctly. The corresponding transactions achieve a serial order equal to

their simulation time order.

However, multiple ball interactions cause a problem. Suppose that
Ball-2 simultaneously collides with Ball-1 and Ball-3, as shown in figure 10.

The figure shows three balls colliding in one dimension so we need only

Ball-1 Ball-2 Ball-3

Figure 10. Three Balls Colliding Simultaneously



think about their velocities along the collision axis. When two balls of equal
mass collide-in one dimension they simply exchange their velocities, as can
be derived from the equations at the end of section 3.4. If the interaction
were processed as serial collisions, as would be the case in a centralized event
simulation, then the three ball interaction progresses as shown in table 1.
The column labeled ‘Collision’ identifies the pair of balls that collide. Notice

that the interaction essehtially bubble sorts the velocities.

However, in an object-oriented simulation the results are different.
First, the collision between Ball-1 and Ball-2, and the collision between Ball-
2 and Ball-3 are scheduled. Two messages schedule éach collision. Ball-2
receives two Collision messages. One message schedules its collision with
Ball-1 and the other schedules its collision with Ball-3. If Ball-2 précessa
“these messages in the order Ball-1, Ball-2, then the entire interaction
progresses as shown in table 2. The final ball velocities in this table are not

the same as the velocities in the previous table.

The problem is that the object-oriented simulation interleaves the Ball-
1 and Ball-2 collision with the Ball-2 and Ball-3 collision. Suppose we arbi-
trarily decided to pick a serial order in which the collision between Ball-1
and Ball-2 happens before the collision between Ball-2 and Ball-3. Then
Ball-2 should send a new Collision message to Ball-3 after Ball-2 processes

the Collision message from Ball-1, since otherwise Ball-3 receives a Collision

Collision  Ball-1 Ball-2 Ball-3
Start 1 0 -1

12 0 1 -1

23 0 -1 1

12 -1 0 1

Table 1. Ball Velocities in Collision Processed Serially
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| Start

Ball-1
Ball-2
Ball-2
Bali-3
Ball-1
Ball-2
Final

Running Object

Ball-1
1

0

-1

-1

Bail-2 Ball-3

0 -1
1
-1

0
0
0 0

Table 2. Simuitaneous Collision with ‘Lost Update’

message with Ball-2's velocity from before the collision.

Regardless of the order in which Ball-2 processa the two Collision mes-
‘sages the final velocities will be incorrect. It is easy‘ to see why this is the
case when we think of a collision as a transaction with two reads and writ.es,
as shown in table 3. Transaction 1 (in normal type) is the collision between
Ball-1 and Ball-2. Transaction 2 (in italics) is the collision between Ball-2

and Ball-3. We see that both transactions read v, before either transaction

writes v, 0 there is no serial order of the two transactions.

Ball-1 Ball-2 Ball-3
Read v,
Read v,
Read v,
Write vy
Read Uy
Write Uy
Write v,
Write UL

Table 3. Two Collisions Seen as Two Transactions
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The second interesting problem with simuitaneous collisions is that
different (serial) collision sequences can produce different final velocities. We
now display a three ball collision in which the final velocities of the balls do
depend on the sequence of collisions. The initial velocities are shown in
figure 11a. The final velocities are shown in figure 11b. The solid arrows
show the final velocities when the collisions are processed in the order Ball-1
and Ball-2, Ball-2 and Ball-3, and the dashed arrows show the final velocities
when the collisions are processed in the opposite order. We can verify that
both of these collision sequences preserve momentum and kinetic energy.
The final velocities are different because of the physics of pool ball collisions.
We have shown that the pool collisions are ‘unstable’ in the sense that an
infinitesimal change in timing makes a large change in the finai collision

velocities.

Ball-1 Ball-2

Figure 11a. Initial Velocities of Collision Involving Three Balls



Figure 11b. Final Velocities of Collision Involving Three Balls
In conclusion, we have discovered that it is difficult to simulate simul-

taneous collisions of many balls.

4.4. Instantaneous Collisions

o

Let us look at the behavior of a collision in more detail. So far we have
assumed that when ‘two balls collide they instantly move in new directions.
This simple view is not physically accurate, of course, since it takes a small
amount of time for the momentum of one pool ball to be transferred to
another, but it seems like a good simplifying assumption. However, we will
show a collision, involving two balls and a cushion, which cannot be simu-

lated as an instantaneous event.

In an object-oriented simulation there is a scheduler which runs the
objects in chronological order. That is, whenever the processor becomes idle

the scheduler runs the object which has the earliest scheduled event. When
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an object runs it must process all the méssages that it receives at the
current simulation time. Therefore, a central rule of object-oriented simula-
tion programming is that a message should be sent only into another
object’s future. Otherwise, the message might arrive too late to be pro-
cessed. For example, if two pool balls collide then they should not send
instantaneous NewVelocity messages to each other. Consider a simple
scenario in which Ball-1 and Ball-2 collide. Suppose Ball-1 processes the col-
lision first. Ball-2 processes the collision after Ball-1. If Ball-2 sends a
NewVelocity message to Ball-1 then Ball-1 is cannot run since it should have

processed this new message from Ball-1 when it ran earlier.

This problem gets worse when three objects are involved in a collision.
Suppose Ball-1 is sitting next to Cushion and Ball-2 is about to strike Ball-1
‘into the cushion. See figure 12. Using our instantaneous collision model we
expect three events to happen simultaneously: Ball-2 bangs Ball—i into the
cushion, Ball-1 bounces off the cushion, and Ball-1 bangs Ball-2 back out

Ball-2 Ball-1

Cushion

Figure 12. Ball About to Strike Another Ball Resting on a Cushion
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into the table. The problem with simulating this collision is that some

object will be sent a message that is not in its future.

Let us examine in detail the messages sent in this collision. Suppose the
simulation schedules the objects in the order: Ball-1, Ball-2, Cushion. In
table 4 we show the processing of messages. The objects run in the sequence
in the first column. The rightmost two columns show messages received
and sent by an object when it runs. All messages in the table are scheduled
for receipt at the time of the collision. The last message in the table causes
trouble. It is a collision message from Cushion to Ball-1 which Ball-1 cannot

process because it has already run at the time of the collision.

To conclude, we have shown that a NewVelocity message must be
_scheduled for a time later than the collision that causes the change in velo-
city. There is no alternative. Another question naturally arises. How long
after the collision should the NewVelocity message be scheduled? Ideally,
the delay should reflect the physical system that is being modeled. In a pool
ball collision between a moving ball and a stationary ball there is # delay
between the instant when the two balls touch and the instant when the sta-
tionary ball ﬁas achieved its post-collision velocity. If we think of the balls
as compressible rather than perfectlf rigid then we obtain a consistent pic-

ture.. The moving ball comes to a rest slightly inside the stationary ball, and

Object Receives(From) Sends(To)
Ball-2 Collision(Ball-2)

NewVelocity(Cushion)
Ball-1 Collision(Ball-2)

NewVelocity(Cushion)
Cushion NewVelocity({Ball-1)

Collision(Ball-1)

Table 4. Messages Sent in an Instantaneous Collision
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the stationary ball begins moving at the same time that the moving ball

comes to rest. .

In our simulation implementation, we have chosen to delay the
NewVelocity message so that a fast moving ball compresses a stationary ball

about one percent of its diameter.

4.5. Related Work

Our study of pool ball motion was partially inspired by simulation
models of air warfare. Interactions between moving aircraft and stationary
radar presents scheduling problems similar to those encountered in the pool
ball simulation. An air warfare simulation model. called SWIRL has been
developed at Rand {Klahr 82]. It models the behavior of military objects
“such as radar and aircraft. A radar is either ground based and stationary or
airborne and moblle An aircraft, such as a bomber, will fly at constant
velocity along a straight trajectory until it arrives at a target. In SWIRL,
the entrance or departure of an aircraft from radar coverage triggers a chain

of events.

It is important for a SWIRL simulation to schedule the beginning and
end of all radar contact, since these events initiate other actions. For exam-
ple, when an attacking bomber enters a defender’s radar the bomber is
detected (it -isn't a stealth bomber) and a fighter is dispatched to intercept
the bomber. Faught and Klaht's [Faught and Klahr 81] algorithm deter-
mines if an aircraft is within a radar’s range by repeatedly testing whether
the airfcraft is in range. If it is not in range then the algorithm schedules
another test. The next test is scheduled at the earliest possible time the
objects could interact. This time exists because Faught and Klahr assume
that each object ha# a maximum velocity. The next test is scheduled for the

instant when the two objects would interact if they were headed towards



each other at maximum velocity.

This algorithm. is computationally expensive. Suppose that an aircraft
with a maximum speed of 100 mph is flying at 50 mph, directly towards a
radar 100 miles away. Then there are checks performed at the times 0, .5,
.75, ... hours after the start. This is an infinite sequence, so the aircraft
never arrives. SWIRL avoids the infinite sequence by schedulihg events only
at multiples of a time granularity. Even so, many checks may be needed to
schedule one interaction, and the number required depends exponentially on

the size of the time granularity.

The authors concede that their algorithm could be improved and pro-
| pose that a better scheduling algorithm would 1) schedule all possible future
‘interactions,. and 2) recompute future interactions wrhen an object changes
its velocity. This is identical to the algorithm that we have designed for

pool ball simulation.

Fanght and Klahr claim that this latter algorithm would prevent model-
ing “spontaneous” events, such as a bo;nber changing course without an
interaction with another object. I believe they are incorreet in principle,
although the detailed answer depends on the software structure of their
simulation. If an aircraft -chnnga its coﬁrse, for whatever réas'on, then there
must have been-an event scheduled for the aircraft -at the time of the course
change. Thus, at that time the new interaction times between all pairs of
objects could be recdfnputed. Our pool ball algorithm, applied to the air

warfare simulation, possesses several advantages over Faught’s algorithm.
(1) It does not assume maximum velocities for any objects.

(2) It calculates the exact time of interaction rather than rounding the

interaction time to a simulation time granularity.
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(3) It is more efficient computationaily since an interaction is computed

once rather than repeatedly checked.
(4) It uses no more memory than Faught’s algorithm to store future events.

The problem of scheduling an interaction between a circular area, which
may be mobile, and a trajectory arise in several different guises in air war-
fare simulation: when is an aircraft in radar range? when is a target in mis-
sile range? when does a jamming transmitter disrupt communications? It is
clear that the methodologies we have developed in the pool simulation could

be profitably applied to this problem.

4.6. Simulation Reversal

To test the numerical accuracy of the pool ball simulation we use a
‘ technique discussed by Aarseth [Aarseth 72] in his article about the simula-
tion of gra.vita.tional.motion, ‘“Numerical Experiments on the N-Body Prob-
lem". He proposes that a good test of the accuracy of numerical solutions ‘‘is
provided by the time reversibility of the equations of motion”. The pool
ball simulation can be studied using this method because an elastic collision
between two pool balls is reversible. If the collision is run backwards then
the balls leave the reverse collision with the negative of the velocity that

they entered the forward collision.

It is éa.sy to make a simulation that runs forward and then reverses
itself. Let the quitting time of the simulation be ¢q. Start the simulation at
time -g, reverse it at time 0, and run it until time ¢. An event that happens
at time -¢ in the forward part of the simulation should happen, in reverse,
at time ¢ in the backward part of the simulation. This correspondence

makes it easy to compare events between the two parts of the simulation.
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A reverse simulation is easily added to the object-oriented pool ball
simulation that we have discussed. At the start of the simulation, a message
is broadcast to all balls so they reverse their velocity at time 0. This is called
a ReverseYoursell message. When a ball processes the message it reverses its

trajectory, so the entire simulation turns around and restarts at time 0.

To implement a reverse simulation we add another branch to the case
statement in the procedure Ba.llBehavior. Figure 13 shows the code which

defines the actions of a ball that receives s ReverseYourseif message.

Since the simulation restarts at time 0, all future events must be can-
celed. This is performed in the first two lines of code of the ReverseYourself

branch.

. When ball runs at time O to process the ReverseYourself message there
may be several other collisions scheduled. We have decided that a ball exe-
cutes all events at time O before the reversal. Therefore, ReverseYourself is
assigned a lower priority than all other message types, except Displavyeu-.
self.

The only difficult aspect of the code is accounting for a ball that

entered a pocket. It must return to the table at the correct time.

4.7. 'Run'li:;l of Slmnlaﬂo_n Reversal Experiments
We have implemented the simulation reversal described above. The

code has been tested and shown to work, both for balls on the table at time
0 and balls in a pocket at time 0.

We have used the simulation reversal technique to test the numerical

accuracy of our implementation of the pool ball simulation.?

3While discussing numerical accuracy, it is appropriate to report the inaccuracy of the
SQRT function in Interlisp. We found that (SQRT 10ES8) is 10012 and (SQRT 10E10) is 1.1
x 10E5! We have used EXPT with an exponent of .5 at a substitute for SQRT.
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cuqmessage_type)

ReverseYourself
cancel all planned interactions
empty the set of planned interactions
if{the ball is in a pocket)
then |
/* The ball is in a pocket. It obtained a
position fix when it entered the pocket. */
reverse the ball’'s velocity
time ball returns to the table «— -time ball entered pocket
broadcast NewVelocity messages for receipt when
the ball returns to the table
send a ReturnToTable message to this ball for receipt when
it returns to the table
else
/* The ball is not in a pocket. */
take a position fix on the ball and reverse its velocity
broadcast NewVelocity messages for time 0
endif

Figure 13. Code for Reversing a Ball's Direction

The simulation began with the configuration shown in plate 5. The
dimension of the pool table are 400x400. The balls were placed in a rec-
tangular array, with random initial directions and initial speeds uniformly
distributed from 0 to 100. Their radii was 30. The simulation started at
time -3, and ran to time 3. There were over 100 collisions from -3 to 3. At
the end of the simulation the balls were close to their starting positions, as
can be seen in plate 8. From this experiment we conclude that the simula-

tion is numerically accurate for runs with these conditions.
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B. Sectored Simulation

The primary activities of an object-oriented simulation are sending and
processing messages. Let us consider the computational complexity of the
pool ball simulation in terms of the number of messages sent. As for the cen-
tralized event list simulation, the complexity of the object-oriented simula-
tion is O(nlogn) per collision, where n is the number of balls. Each time a
ball changes its velocity it sends a NewVelocity message to each other ball
on the table. Thus, the complexity of simulating n events among n moving

objects is n2logn.

Our intuition says that this algorithm is overly complex - only balls
which might collide soon with the ball which changed velocity should be
_examined for possible collisions. There should be no need to test for a possi-
ble collision with a ball at the far end of the pool table. How do we exploit
our intuition? Suppose the pool table is divided into sectors. Then we can
see that a ball is only concerned about hitting other balls that share a sector
it occupies. We propose that the computational complexity of the simula-
tion can be decreased by subdividing the table into sectors and considering

only collisions between balls that occupy the same sector.

A ,sectbred pool table is attractive since pool ball motion is localized -
véithin time 5t a ball moves only |vét| distance, When a ball changes velo-
city it determines if it will collide with only the other balls in its sector, not
all the balls on the table. This is a fixed number of calculations, limited by
the pumber of balls that can fit in a sector. Thus, in the best case the com-
plexity of a sectored simulation is O(logn) per collision. However, there are
additional costs. When a ball changes velocity, in addition to determining
collisions, it schedules two events - leaving its current sector, and entering

the next sector on its trajectory. These events must take place so ih.r sec-
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tors can keep track of the balls inside it and balls can keep track of the sec-
tors they occupy. The complexity of these operations will depend on the

size of the sectors and the velocity distribution of the balls.

In the remainder of this chapter we discuss the design of a sectored pool
simulation algorithm. First, we discuss the sectors, and the messages passed
between them and the balls. Then we present the object behavior algo-
rithms for sectored simulation. Lastly, we discuss the scheduling problems

of sectored simulation, and their solution.

Let us consider the design of a pool ball simulation on a sectored table
in more detail. Suppose that the table is covered by fixed, nonoverlapping
sectors. (You may want to think of a rectangular grid of sectors, since it is

.simple, but the algorithm will work for any shape. A sectored pool table is
shown in plate 7. There are four square sectors: Sector-1, Sector-2, Sectof-a
and Sector-4, and seven balls. In the middle of each sector is the name of
the sector. Under the name of each sector is a list of the balls in the sector.
For example, under Sector-3 is listed the balls in Sector-3, Ball-2 and Ball-3.
Likewise, the name of each ball is displayed in the middle of the ball, and

the sectors the ball occupies are listed under its name.)

Since both the balls and the sectors have size, a ball may occupy several
sectors and several balls may be in the same sector. Note that if the diame-
ter of the iargest ball is less than the smallest sector dimension then a ball
may occupy at most four sectors. The number of balls in a sector is simi-
larly limited.

In this simulation the significant events are collisions between balls and
the passage of balls in and out of sectors. As in the nonsectored algorithm,
all predictable future events are scheduled when a ball changes its velocity.

Therefore, to design the algorithm we ask, what future events cap be
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predicted when a ball changes its velocity?

First consider ball collisions. The ball which changes velocity must con-
sider collisions with all balls in the set of sectors that it occupies. Second,
consider sector departures. These must also be considered for all the sectors
that the ball occupies. Lastly, consider sector entrances. Sector entrances
must be considered for all the sectors that are gdjacent to the set of sectors
that the ball occupies. Accurate scheduling of sector departures and sector
entrances insures that each ball always knows the sectors it occupies and
each sector knows the balls that are on its territory. This know[edgg in turn

insures that all ball collisions are properly scheduled and executed.

An algorithm for an object-oriented simulation of pool balls on a sec-
tored table is given in figure 14. There are two objects in the simulation -
balls and sectors. (Cushions, pockets and corners have been left out because
their behaviors are the same for sectored and non-sectored simulations.)
The algorithm consists of a description of the state and behavior of each

object.

In figure 15 we show the message flow graph for the sectored simulation

algorithm.

There are five types of messages, which can be categorized into two
groups. Fmst., the VelocityChange and 'NewVelocity ‘'messages (which are
labeled in italics in figure 15} convey information about a ball’s éhange in
velocity. Second, the Collision, SectorEntry and SectorDeparture messages
schedule future events, involving two balls or a ball and a sector, based on a
ball's new velocity. Note that each of these messages is sent by the object
scheduling the interaction to both itself and the other object in the interac-

tion.
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Sector simulation

Object States:

State name | Properties

Ball Position at time t

Velocity

Set of planned interactions

Set of sectors occupied

List of message types, ordered by priority

Sector Perimeter

Set of balls in the sector

Set of adjacent sectors

List of message types, ordered by priority

.Object behavior algorithms:

BaliBehavior(Messages, BallState)
Eliminate pairs of messages that cancel each other
Order messages by priority
/* Even if there are several collisions, only one
VelocityChange message needs to be sent */
CollisionHasOccured «— False
for all messages do
case (message _type)
NewVelocity for ball X:
cancel all collisions with ball X
. iff the time of a collision with ball X > the current time)
then ‘
schedule a collision with ball X
add ball X to the set of planned interactions
Collision with ball X:
CollisionHasOccured «~ True
update this ball's trajectory
remove the planned interaction for ball X
from the set of planned interactions
SectorEntry:
add the sector to the set of occupied sectors
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SectorDeparture:
remove the sector from the set of occupied sectors
endcase
end
if{ CollisionHasOccured)
then
cancel all planned interactions
empty the set of planned interactions
for all sectors the ball occupies
send a VelocityChange message to the sector
end '
endif
endball

SectorBehavior(Messages, SectorState)
Eliminate pairs of messages that cancel each other
Order messages by priority
for all messages do
case (message _type)
VelocityChange from ball X
for all adjacent sectors
send the sector a NewVelocity message for ball X
end
for all balls in this sector
if (ball £ ball X)
then

send the ball a NewVelocity message for ball X
endif
end
_cancel any planned interaction with ball X
‘NewVelocity message for ball X
if (ball X in not in the sector)
then
cancel any planned interaction with ball X
if (the ball will enter the sector on its new trajectory)
then '
schedule a SectorEntry
add the ball to the set of planned interactions
endif
endif
SectorEntry for ball X
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for all adjacent sectors
- send the sector a NewVelocity message for ball X
end
for all balls in this sector
send the ball a NewVelocity message for ball X
end
add ball X to the set of balls in the sector
L remove the interaction with ball X from the set
of planned interactions
SectorDeparture for ball X
remove ball X from the set of balls in the sector
remove the interaction with ball X from the set
of planned interactions
endcase
if (message _type = VelocityChange OR message _type = SectorEntry)
then
if{ the velocity of ball X 3 0)
then
schedule a SectorDeparture for ball X
add ball X to the sector’s set of planned interactions
endif
endif
end

endprogram

| Figure 14. Simulation Program with Sectored Pool Table

650



SectorEntry
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NewVelocity

Collision

Figure 15. Meﬁsage Flow Graph for Sectored Pool Simulation

In detail, the algorithm works as follows. When a ball changes its velo-
¢ity it sends a VelocityChange message to each sector that it occupies. Now
consider one such sector. Unless the ball is stationary, the sector schedules a
SectorDeparture for the ball. The sector sends NewVelocity messages to all
adjacent sectors and to other balls within the sector itself. The NewVelocity
messages identify the ball whose velocity changed, and contains its new tra-
jectory. The adjacent sectors receive the NewVelocity messages. If the
ball’s trajectory intercepts an adjacent sector's perimeter the sector
schedules a sector entry by sending a SectorEntry message to the ball whose

velocity changed and one to itself.
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A NewVelocity message is received by each ball that shares a sector
with the ball whose velocity changed. These balls determine whether they
will collide with the ball whose velocity changed. If a ball predicts a colli-
sion then it schedules a collision by sending a Collision message to the bail

whose velocity changed and one to itself.

In summary, information about a ball's velocity change is conveyed
from the ball to the sectors it occupies and then to the balls in these sectors
and to adjacent sectors. These balls and sectors are responsible for schedul-

ing interactions with the ball whose velocity changed.

The algorithm includes data structures and procedures for remembering
scheduled interactions and canceling these interactions, in the same way
_that interactions were canceled in the nonsectored simulation. The messages
that schedule future interactions, Collision, SectorDeparture and SectorEn-
try, may be canceled. The messages that relay the ball's changed velocity,

VelocityChange and NewVelocity, are never canceled.

5.1. Sector Entry and Sector Departure Scheduling

We have already shown how to caleulate the time of a collision between
a ball and another ball, or a ball and a stationary object. The expressions
given earlier for the collision time of these interactions clearly hold for sec-
tored simulations as well as non-sectored simulations. In addition, the sec-
tored simulation program must predict the time of sector entries and sector

departures.

The perimeter of a sector is represented by a list of its corners. The
edges of the sector connect adjacent corners in the list. A rectangular sector
has a list of five corners, since the first corner repeats at the end of the list.

The sectr departure time of a ball from a sector is the instant a ball leaving



the sector crosses its perimeter. Thus, the departure time is simply the
maximum of the times at which the ball crosses the sector's edges and
corners. This maximum is easy to calculate since it is straightforward to cal-

culate the time when the ball crosses over each edge and corner.

Conversely, the sector entry time is the time when a ball entering a sec-
tor first crosses its perimeter. This is simply the minimum of the times

when the ball crosses the edges and corners of the sector.

Representing the sector perimeter by a list of its corners has a nice

bonus - the simulation algorithms work i'or any polygon shaped sectors.

5.2. Instantaneous Messages in Sectored Simulation

~ Consider again the message flow graph (figure 15) of the sectored pool
‘ball simulation. We would like all VelocityChange and NewVelocity mes-
sages to be instantaneous. An instantaneous ﬁlessage is received at the same
simulation time that it is sent. It is sensible to want VelocityChange and
NewVelocity messages to be instantaneous because they do not schedule
future events. Rather, they convey information about the current state of
the simulation. When a ball changes velocity all objects which may need to
react to the change in velocity should be notified immediately. We now
show that it is not possible to satisfy'our desire - NewVelocity messages can-

not be instantaneous.

In an object-oriented simulation an object may receive several messages
at one instant. For example, in the pool ball simulation an object receives a
cancellation message and the collision message being canceled at the same
time. All messages received at an instant must be processed together or else
the simulation may not be correct. This is an important point. It implies

that there must not be a cycle of instantaneous messages between particular

63



objects. If there is a cycle at some simulation time ¢, then the first object in
the cycle to-run at time ¢ must later receive another message at time ¢. This
object has not run correctly at time ¢. Therefore, there must not be a cycle )
of instantaneous messages. We now give an example of a cycle of NewVelo- ‘

city messages involving two objects.

‘Sdppose NewVelocity. messages were instantaneous and consider the fol-
lowing example. Ball-1 occupies two sectors, Sector-1 and Sector-2. Ball-1
collides with another ball and changes velocity. It sends VelocityChange
messages to Sector-1 and Sector-2. Because Sector-1 and Sector-2 are neigh-
boring sectors they send each other NewVelocity messages, thereby creating

a cycle of instantaneous messages between Sector-1 and Sector-2.

. We resolve this prbblem by adding a small delay to the NewVelocity
message. Thus, it takes a little simulation time for the NewVelocity messége
to convey its information. If the time between events is greater than the
delay then the simulation is still exactly correct. Therefore, simulation algo-
rithm is correct in the limit as the delay approaches zero. On the other
han‘d, the delay introduces another problem - which we discuss in the next

section.

5.3. Ball Collision Time for Sectored Simulations

In our initial tests of the pool ball simulation balls passed right through
each other, despite our careful scheduling of collisions. For example, sup-
pose Ball-1 is resting against the side of a sector and Ball-2 hits Ball-1 just
as it enters the sector. Because of the delay in the NewVelocity message dis-
cussed in the last section, Ball-1 will not know about Ball-2 until they
already overlap. Sipce the collision would be in the past, not the future,
Ball-1 would not schedule it and Ball-2 would pass right through Ball-1.

This cannot be allowed. There needs to be strong protection in the
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simulation against balls passing through each other. We now discuss how

we implement this protection.

Recall that balls collide when their surfaces touch, and that the time of
collision, ¢, is given by the solution to a quadratic in £. A quadratic has three
possible solutions: one real double root, two imaginary roots, or two real
roots. Only if there are two real roots might there be a collision to schedule.
There are five possible relations between the two real roots and the current
simulation time - the time at which the NewVelocity message is received.

These times are shown schematically in figure 16.

Situations 1 and 2 are collisions that are over - or that may never have
happened. Situation 5 is a collision to be scheduled. Situations 3 and 4 are
problems. They may indicate a collision that just happened, so the balls

-

overlap and are moving apart, or they may indicate two balls that

en

(<)

[}

| ‘

! :
Current Time

Figure 16. Possible relations between two real
roots and the simulation time
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overlapped before receiving a NewVelocity message and will pass through
each other. -If-the latter is true, then we want to schedule an immediate col-

lision. That is, the naive algorithm:

if (two real roots)
then
collision time +« earlier of two roots
if (collision time > current simulation time)
then
schedule a collision
endif
endif

should be changed to an algorithm that prevents two balls from passing
through each other:

if (two real roots)
then
collision time «— earlier of two roots
if (collision time > current simulation time)
then
schedule a collision
else
if (later time of two real roots > current simulation time
_ AND the balls are closing)
then
schedule an immediate collision.
endif
endif
endif "

Implementing this algorithm is straightforward. The only detail that
has not been elaborated is determining whether two balls are closing on each
other. This can be found analytically by taking the time derivative of the

distance between the two balls.

It is straightforward to show that the balls are closing at time ¢, or
d’'(t) <0, if
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As(t)ant) <0
where

As(t)=a,(t)-a1)

Av(t)=,(t)-vg(t)

In most cases, scheduling an immediate collision prevents a ball entering

a sector from passing through another ball sitting on the edge of the sector.
However, if the ball entering the sector is moving very fast then it might
still tunnel through the stationary ball. How can this occur? Observe that 3
collision is scheduled if the distance between the two balls is decreasing 4
time units after their edges touch. If the moving ball is traveling so fast
that it passes through the stationary ball by time d, then the stationary ball
will not schedule a collision. Thus, for a collision to be scheduled the moving
‘ball must move slower than v, Where

Uy = (r; + ry)/d
Note, again, that in the limit as d approaches zero the simulation becomes

exact.

5.4. Sectored Simulation Initialisation

The simulation starts with no scheduled events. In the beginning a
pool ball must learn about the velocity of other balls in its sector. If each
pool ball'sends a VelocityChange message to its sector, and the sector sends
NewVelocity messages to each ball then there is a problem - every ball colli-
sion would be scheduled twice. To avoid this problem a ball sends a Veloci-
tylnitialization message to its sector. The sector has a list of the balls
within it. When the sector receives a Velocitylnitialization message from a
particular ball it sends NewVelocity messages to only the balls that follow
the particular ball in the list of balls in the sector. This method transmits

exactly one NewVelocity message between each pair of balls, so that each
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ball collision is scheduled exactly once.
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6. Experimental Results

In this section we present the results of experiments that compare the
computational complexity of sectored and non-sectored pool simulation.
The results demonstrate that as the number of balls increase, a sectored
simulation runs faster than an identical non-sectored simulation. In fact, in
experiments with a large number of balls the non-sectored simulation cannot
run because it requires too much memory, whereas the sectored simulation
runs successfully. In this section we first discuss the parameters of the

experiments, and then we present their results.

The parameters of the experiments were chosen so that the ball motion
would closely resemble the motion of atoms in a gas. Random ball motion
_provides a good initial test of the performance of our pool simulation pro-

grams.

The starting situation of one simulggigg:__is‘shown in plate 8. All simula-
tions discussed in this section use a square table with four cushions and no

pockets (which is how the game often appears to mel).

Balls are placed in a grid pattern, as shown in the plate. The units of
length are arbitrary and could be scaled without influencing our conclusions.
The unit we use is conveniént for plotting the simulation on the Xerox SIP
1100 (Dolphin) display. A ball has radius 30. The length of the table is 50
times the number of balls along the side. For example, a simulation with 6
by 8 balls uses a 300 by 300 table. Each ball is assigned a random initial
direction, and an independent random initial speed sampled from a uniform
distribution between 0 and 100. All simulations run from time 0 to time 4.
Plates 9 to 13 show the progress of a 38 ball sectored simulation from time 0

until time 4.
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The results from our simulation experiments are shown in tables 5 and
8. Two parameters vary, the number of balls and the sector size. Table 5
shows the total number of simulation messages in the simulation, whereas
table 8 shows the elapsed time of the simulation. Each entry in both tables

reports the result of one simulation.

To improve the statistical validity of the experiments we considered
running several Simulations with different random number seeds for each
case, but the long duration of the simulations with many balls made this
impossible. However, for some experiments with a small number of balls we
ran several simulations with different random number seeds and found little
variation in the number of messages and elapsed time. For example, for the

non-sectored simulations each experiment was run with six different seeds.

Number of Messages
Sector Size
Balls | \) Sectors 200 150 100 50 25
4 6832 - - 1001 1827 3445
16 4938 | 7677 - 2366 6549 11831
368 17313 - 13942 | 11492 | 13837 -
64 mo - - | 17801 | 21330 mo

Table 5. Message Count of Pool Ball Simulations

Elapsed time (sec)

Sector Size
Balls No Sectors 200 150 100 50 25
4 580 - - | 1114 | 1807 | 4088
16 4540 | 5956 - 5562 8426 | 18564
36 38575 - | 15926 | 13097 | 20234 -
64 mo - - | 36256 | 68843 mo

Table 6. Elapsed Time of Pool Ball Simulations



The mean and standard deviation of the number of messages and elapsed
time are shown_in table 7. The small size of the standard deviation indi-
cates that it is safe to rely on the results of single experiments for the more

lengthy simulations.

The results in table 5 show that sectored simulations can use fewer mes-
sages than non-sectored simulations. Each entry in the table is a total of all
messages involved with the logic of the simulation (but not collecting statis-
tics or running the display). The sum includes messages of type Veloci-
tyChange, NewVelocity, SectorDeparture, SectorEntry, Cancel and Collision.
There are two important observations to make about the data. First, for

_simulations with 38 or more balls the sectored simulation employs fewer
messages than the non-sectored simulation with the same number of balls.
lIn fact, the non-sectored simulation was not able to run with 84 balls. (The
entry ‘mo’ indicates a simulation that encountered memory overflow on the
Dolphin and could not be completed.) The 84 ball non-sector simulation did
not even get started before it ran out of memory. The initialization requires
that each pair of balls exchange a message. The initialization could not
finish because the virtual address sbace allocated on the Dolphin was not

large enough to hold all 2048 messages.

Messages Elapsed Time
Balls | Mean _SD__ Mean 5D

4 452 109 545 59
18 3850 708 3538 612
36 | 14293 | 1412 | 26338 | 5903

Table 7. Mean and Standard Deviation of Message Counts
and Elapsed Time
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The second important observation is that the speed of the simulation
depends on sector size. For both 18 and 36 ball simulations the fewest mes-
sages are used when the sector size equals 200. The tradeoffs are that as the
sector size becomes small, excessive effort is spent processing sector entries
and departures, whereas as the sector size becomes large there are many
balls in a sector and each velocity change is broadcast to a large local popu-

lation.

Finally, examine table 8, which reports simulation elapsed time. For
simulations with fewer than 15,000 messages the average time per message is
about a second. However, as the number of messages climbs the time per
message increases. We attribute the increased time per message to increased
virtual memory paging. Since the non-sectored simulation schedules more

‘messages it uses more memory and incurs paging delays with fewer balls in
the simulation. Thus, the 38 ball sectored simulation runs nearly 3 times as
fast as the non-sectored simulation, although it sends only 309% fewer mes-

sages.

While discussing memory use it is appropriate to recall our discussion
about canceling messages at the end of section 1.3. We pointed out that an

advantage of implementing cancellation in the simulation system is that it

allows immediate reclamation of the storage for both messages.* Currently,
there is no cancellation function in the Time Warp system so cancellation
was performed by the simulation objects themselves and message space was
not reclaimed until after the cancellation message and the message being
canceled were received. A lesson that our experimerits teach is that memory

management is important in object-oriented simulations.



8.1. Influence of Sector Size

Let us study our experimental results from another angle. Consider the
total count of messages send, broken down by message type. Table 8 reports
the count of each message type in the simulations reported in table 5. Exa-
mining message counts confirms our intuition regarding the tradeoffs that

effect the selection‘of optimal sector size.

As the sector size decreases we expect the number of SectorEntry and
SectorDeparture messages to increase since a ball path will cross more sec-
tors, which we see in the data. In addition, the count of VelocityChange
messages rises, because the average number of sectors occupied by a ball
when it changes velocity increases as the sector size decreases. We expect
fewer Collision messages since decreasing the secior size decreases the
number of collisions that are scheduled and then canceled. Our expectation

is confirmed by the data in table 8.

A decrease in sector size h»2< 1 more complex influence on the count of
the other two message types, NewVelocity and Cancel. Since the most
numerous message type is NewVelocity, let us try to predict its count. A

NewVelocity message is broadcast by a sector to balls in the sector and

Message counts by type for 38 bails
Message type Sector size
No sectors 150 100 50
SectorDeparture - 1080 1208 1952
SectorEntry - 480 680 1282
VeloeityChange - 341 373 609
Collision : 2880 1746 1280 1070
Cancel 2304 2616 2404 3092
NewVelocity 12129 7679 5549 5832

Table 8. Number of Messages Tabulated by Message Type
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adjacent objeéts when a ball in the sector changes velocity and when a ball
enters the sector. Thus the number of NewVelocity messages, #(NewVelo-

city), is approximately given by

#(NewVelocity) =
(number of balls in a sector 4+ number of adjacent objects) *
(#(VelocityChange) + number of actual sector entries)

(We denote the number of messages of type MessageType by #(Message-
Type).) As sector size decreases, the first term in the product decreases, but
the second term increases. Let us find expressions for the four counts in the
last approximate expression. #(VelocityChange) is given in table 8 The

number of actual sector entries can be estimated by

number of actual sector entries = ¢ * total ball path length / sector size

where the total ball path length is the total distance traveled by all balls in
the simulation, and the sector size is the width of a sector. We have multi-
plied by a constant ¢ because a ball has dimension-and may cross several
sectors when it travels a sector length. For sectors that are not unreasonably
small ¢ is about 3, but the exact value, which is not important to this dis-
cussion, depends on the sector and ball sizes. The number of adjacent

objects is exactly 4 for all sectors.

The average number of balls in a sector can be estimated by

number of balls in a sector =
average number of sectors occupied by a ball *
(number of balls in the simulation/number of sectors)

This estimate is actually low, since collisions are more likely to occur in
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crowded sectors. What we really would like here is the expected number of

balls in a seetor when a ball changes velocity.

Finally we can estimate the average number of sectors occupied by a

ball by

average number of sectors occupied by a ball =
#(VelocityChange)/number of actual collisions

We have carried out these calculations using the data in table 8. The
results are reported in the spreadsheet table 9. The data in table 9 were cal-
culated for a simulation with the parameters:

Number of balls = 38

Total free path = 7749

Number of collisions.=— 278
Table dimensions = 800x600

The results nicely validate our model. The estimate for #(NewVelocity) is

within 20% of the actual number of NewVelocity messages in all cases.

We find that studying these tables has improved our intuition for
selecting a good sector size. In the next section we extend these ideas to an

analytical model of message traffic.

Number of Sectors 4 9 38
VelocityChange 341 373 609
Estimated sector entries 155 232 485
Sectors occupied by a ball 1.23 1.34 2.19
Estimated balls per sector 11.0 5.4 2.2
Estimated NewVelocity messages | 7459 5671 6648
Actual NewVelocity messages 7679 5549 5832

Table 9. Sprea:i:~:zet for Estimating Number of NewVelocity Messages
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7. A Model of Message Counts in a Sectored Pool Simulation

We- have shown that dividing the pool table into sectors can decrease
the number of messages send in a pool simulation. This result naturally pro-
vokes the optimization question, what sector configuration generates a simu-
lation that sends the fewest messages? Assuming, for simplicity, a square
table and square sectors of equal size the question becomes, what size sector
is optimal? In this section we formulate a simple model which shows that an
optimal sector contains 8 balls or fewer on average, depending on the

number of collisions in the simulation.

Let F be a function giving the number of messages in a simulation. F is
a sum of the number of messages of each type. Let #(MessageType) denote

_the number of messages of type MessageType. Then

F=#(Collision) + #(Cancel) + #(NewVelocity) +

#(SectorEntry) + #(SectorDeparture) + #( VelocityChange)
where we have organized the sum such that message types in the first row

will be more numerous as the sector size increases, while the message types
in the second row will be less numerous as the sector size increases. Since F
is a sum of increasing and decreasing functions of the sector size we expect

that F will have a minimum as a function of sector size.

Now let us define parameters for the simulation. Let the dimensions of
the pool table be the unit square. Time units are arbitrary. We define the

parameters

N  number of balls

V  ball speed

s sector width

m  number of ball velct)_city changes
10n

We assume that N is constant and all balls travel at speed V. The

definition of m means that when two balls collide m increases by two.



Let us begin the analysis by making the simplifying assumption that no
collisions between balls occur. Let us also assume that the table is so large
(V<<1) that boundary effects at the cushicns are negligible. Therefore
m=0, no collisions are scheduled and there are no Collision messages. Since
a ball never changes velocity there are also no Cancel messages and no Velo-

cityChange messages. -

#(Collision) = #(Cancel) = #(VelocityChange) =0

The total distance all balls travel during the simulation is NV7T. A ball
crosses into a new sector every sector distance traveled, approximately. (The
average sector crossing distance could be refined by averaging over all ways
to cross a sector, but this stochastic analysis is not necessary for our argu-
ment.) Two SectorEntry messages are sent for each'sectqr entered, one to
‘the sector itself and one to the ball entering the sector. Thus

#(SectorEntry) = 2NVT/s
The number of SectorDeparture messages equals the number of SectorEntry
messages, SO
#(SectorDeparture) = 2NVT/s
Since the pool table is the unit square there are 1/s® sectors on the table.
The average number of balls in a sector is therefore N/(1/s*) = Ns>.
NewVelocity messages are sent to all balls in a sector when a ball enters the
sector and to the sector’s 4 adjacent sectors when the ball enters the sector.
Thus, if we assume that the balls are uniformly distributed then
#( NewVeloesty) = (NVT/s)(Ns® + 4)

We have given expressions for all types of messages, so now we can sum
them to obtain F

F ={(NVT/s)(Ns® + 8) (Y
The minimum of F occurs at s = 2v2VN, or, alternatively, where the aver-
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age number of balls per sector, Ns?, equals 8. Thus, we have the result that
if there are no collisions a simulation sends the fewest messages if there are

eight balls per sector.

This is an attractive result. On reflection we realize that we have
obtained an upper dound to the optimal sector size. To see this consider the
effect of introducing collisions into the model. This will increase the count
of Collision, Cancel and NewVelocity messages which, as we saw above, will
tend to decrease the optimal sector size. It will not change the count of Sec-
torDeparture or SectorEntry messages. (Although introducing cgllisions will
increase the #(VelocityChange) its increase will be oversha.d_owed by the
increase in #(NewVelocity)). Therefore, a sectored pool simulation should

not have more than eight balls per sector on average.

We now show that this statement is validated by our experimental
results. Table 10 reports the count of messages in our experimental simula-
tions, modified to show average number of balls per sector rather than sector
size. Table 10-shows that for all simulations the fewest messages are sent
when there are an average of four balls per sector. In the 16 and 36 ball
simulations we see that a simulation with more than 8 balis per sector sends
more than the minimum number of messages. Thus, these experimental

results do not contradict our statement that 8 balls per sector is an upper

Balls per Sector

Balls in Simulation 18 0 4 ) 1/4

4 - - 1001 1627 3445
16 | 7877 - 5368 6549 | 11831
38 - | 13942 | 11492 | 13837 T
64 - - | 17801 | 21330 mo

Table 10. Message Count of Pool Ball Simulations



bound on the optimal sector size.

Figure 17 plots F as given in equation 1 versus sector size for four
values of N: 84, 32, 16 and 8.

:

F (messages)

:

Figure 17. Messages as a Function of Sector Size - No Collisions

The curves shown assume that VT=1, which means that on average a ball
crosses the table once during the simulation. Figure 17 also shows a curve
connecting the minima of the set of F curves. The curves confirm that F

has a minimum.

Now suppose that collisions happen, m>0. Let #(Cancel, Message-
Type) denote the number of messages that cancel messages of type Message-
Type. Whenever a ball changes velocity its previously scheduled sector

interactions are canceled and new ones are scheduled. Thus we can write



#(SectorEntry) = 2NVT/s + 2m
#(Cancel,SectorEntry) = 2m
#(SectorDeparture} = 2NVT/s + 2m

#(Cancel,SectorDeparture) = 2m
When a ball changes velocity a NewVelocity message is sent to each ball in

the sector and to the 4 adjacent sectors. Assuming as before that balls are
uniformly distributed so the number of balls per sector is Ns? we can write
#(NewVelocity) = (NVT/s)(Ne® + 4) + m(Ns® + 4)
The number of messages of the other message types is given by
#( VelocityChange) = m
#(Collision) = 2m
#(Caneel,Collision) =0

“Therefore, the total number of messages is given by

F = (NVT/5)(Nes* + 8) + m(Ns* + 15) (2)
We take the derivative of F and set it equal to 0.

NVT(N -8/3%) + 2mNs =0
The analytic solution to this cubic in s can be obtained, but it is so complex

that it provides no insight into the value of s that minimizes F.

Figure 18 plots F as given in equation 2 versus s, assuming that VT=1
and m=N, which would occur if each ball participated in one collision dur-

ing the simulation.
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Figure 18. Messages as a Funection of Sector Size - With Collisions

Comparing this figure with the Previous one shows that increasing the
number of collisions decreases the value of s which minimizes F, just as we
predicted. It is also worth noting that for this example 8 balls per sector, as
indicated by the curve of minima from figure 17, remains a good sector size

choice.

This Qéétion has presented a simple mode] of message traffic in the pool
simulation. The main result has been that the pool table should be divided

into sectors so that there are fewer than 8 balls per sector on average.
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8. Conclusions

8.1. Coping with Instantaneous Interactions

One lesson we have learned from this work is that it is difficult to use
an object-oriented simulation system to model instantaneous interactions.
We have already presented an example of an instantaneous interaction - the
situation in which one ball sits by a cushion and another ball hits it, dis-

cussed in section 4.3.

In this section ‘we present three main points. First we explain why
object-oriented simulation exacerbates the modeling of instantaneous
interactions. Second, we present several examples that explain it is neces-
sary to model instantaneous interactions. And third, we present our tem-

" porary solution to the problem.

8.1.1. Instantaneous Interactions and Object-Oriented Simulation

In a message passing simulation system events are ordered in time by
message timestamps. Programming an instantaneous interaction is difficult
because the simulation system cannot allow an object to run twice at any
given simulation time. The problem is that running an object twice at a
given simulation time can produce an incorrect simulation. The resuits can
be incorrect because an object that runs several times at a given simulation
time to process all the messages scheduled for that time may produce
different simulation results than an object that processes all of the messages

at once.

For example, suppose a Ball object in the pool simulation receives a
Collision message and its corresponding Cancel message. If it processes both
messages together the ball cancels the collision. However, if the ball first

receives and separately processes the Collision message, then it simulates the
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collision - which is incorrect. When the ball later receives the Cancel mes-

sage there is-no matching Collision message to cancel.

In a centralized event queue simulation, instantaneous interactions are
not a problem because an object can run one more than once at a given
simulation time. The constituent events in an instantaneous interaction are
ordered by the procedural sequence of the simulation. For example, the
situation in which one ball sits by a cushion and another ball hits it, dis-
cussed in section 4.3, is easy to simulate instantaneously in a centralized
simulation - the events are 'procused in their physical order, although they

all occur at the same simulation time.

The same approach cannot be used in a message passing simulation,
_because the second collision between the two balls occurs at the same simu-
lation time as the first collision. The simulation system must not allow the

second collision to be scheduled after the first collision has been processed.

8.1.2. Instantaneous Interactions Are Commeon

. Instantaneous events are not unique to pool ball simulations. Using our
experience with the pool simulation, we now argue that simuiation designs
will frequently include instantaneous events. We have wanted instantaneous
interactions for two reasons.

First, although a physical pool ball collision actually takes finite time,
the duration of the collision is extremely small compared with other time
periods in the model. Therefore we chose to assume instantaneous collisions.
By anaiogy we infer that most modelers of discrete event systems will try to

simplify their modeling task by making similar assumptions.

Second, we have invented objects, the sectors, which do not physically

exist on the pool table. As we have seen, the sectors were introduced to
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accelerate the simulation. Because sectors are independent of the physics of
the ball interactions, interactions involving sectors, such as ball entries and
ball departures, should be instantaneous. We feel that simulation design tac-
tics will often encourage invention of objects to accelerate a simulation or
simplify its design.

For example, consider a multi-user computer system, which can be
modeled by a closed queueing network. Suppose the computer system
enables a user to create a background task which requests service indepen-
dently of commands entered at the user's terminal. This computer system
can be modeled by a queueing network in which one customer ‘spawns’
another customer. In this model it is pedagogically convenient to imagine a
‘spawning’ service center with service time zero {Goldberg 83]. When a cus-

‘tpmer enters the spawning service center the customer is immediately
released and another customer is immediately produced. Suppose that this
model is simulated. We again find an instantaneous event - in this case, the

service of a customer at the ‘spawning’ service center.

The last two examples have shown that it is reasonable to expect that

simulation designs will frequently include instantaneous events.

8.1.3. Tentative Solution

We have developed a technique for programming instantaneous events
in a message passing simulation system. We analyze a graph of message
transmissions between the objects involved in an instantaneous interaction.
If an object can receive a message at the event time after already running at
the event time theﬁ there is a cycle in the message transmission graph which
must be broken. We break the cycle, at an ad hoc place, by introducing a
small delay into one message. In the limit as the delay goes to zero the simu-

lation is exact. However, the delay introduces another problem - there is a
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small gap in time where some of the events in the instantaneous interaction
have occurred but others have not. This can introduce additional problems, -
as we saw in the case of a ball entering a sector at the point where a ball
rests on the perimeter. We were able to solve this problem in the pool simu-
lation, but in general the problems introduced by the short delay technique

are difficult and appear to demand clumsy solutions.

Our experience indicates that the above technique is less than satisfac-
tory. Adding a slight delay to a message that should be instantaneous solves
one problem by creating another. Our conclusion is that a more satisfactory
methodology for programming instantaneous interactions in object-oriented

simulations is needed.

-8.2. Contributions of This_Work

(1) We have demonstrated that pool ball motion lends itself to object-
oriented simulation. We have implemented two types of pool simula-

tions, simple (non-sectored) and sectored.

(2) We have shown that a correct simulation can be implemented in which
| the pool table is divided into sectors that relay messages between balls.
Provided a sector always knows which balls intersect its area and a ball
always knows which sectors it occupies, then sectors can relay messages
so that the simulation correctly schedules and executes all ball colli-

sions.

(3) Our experimental results show that dividing the pool table into sectors
can accelerate simulation. In our experiments sectored simulation with
38 or more balls were faster than corresponding non-sectored simula-

tions.
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(4) Our analytic results indicate that a pool simulation will run most

quickly if there are fewer than eight balls per sector on average.
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Plate 1. A Computer Graphics Picture of the Pool Simulation

78



PODL BINALATION AT 1.0
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POOL SINULATION AT 2.9

~1°ﬂ'z— - -

Cuznion=1

Corner-2

Cushion-3

Cushion-§

Cushion=4,

Plate 3. Pool Simulation at Time ~ 2.0
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POOL STIULATION AT 3.8
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POOL SINMULATION AT 3.9
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Plate 3. Pool Simulation at Start of Reversal Experiment
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POOL 3IMULATION AT 3.0

"Plate 6. Pool Simulation st End of Reversal Experiment
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POOL SIBULATION AT 3.8
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POOL SINULATICN AT 0.0
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Plate 9. 36 Ball Sectored Pool Simulation
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POOL SINULATION AT 1.0
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POOL SINULATION AT 2.0
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POOL SINULATION AT 9.8
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Plate 12. 36 Ball Sectored Pool Simulation
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POOL SIBULATION AT 4.8
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Plate 13. 36 Ball Sectored Pool Simulation
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