TOP-DOWN FUNCTIONAL DECOMPOSITION IN DIGITAL
PERCEPTRONS

Gabriela Adler March 1987
Jacques J. Vidal CSD-870014

TOP-DOWN FUNCTIONAL DECOMPOSITION
IN DIGITAL PERCEPTRONS:

Gabriela Adler & Jacques J. Vidal

Computer Science Department

University of California, Los Angeles

July 86

TABLE OF CONTENTS

1. INTRODUCTION

2. DECOMPOSITION IN DIGITAL PERCEPTRON SYSTEMS
2.1. Network Decomposition
2.2. Bottom-Up Decomposition
2.3. Top-Down Decomposition
2.3.1. Rationale
2.3.2. Disjunctive networks
2.3.3. Simple non-disjunctive networks .

2.3.4. Complex non-disjunctive networks

3. CONCLUSIONS
BIBLIOGRAPHY

1. INTRODUCTION

Boolean networks studied at UCLA, also known as "UCLA perceptron systems” [Vers86].

The main motivation behind the research is to design perceptron systems that not only
possess attractive functional features, but offer some advantages from hardware {and especially
VLSI} viewpoint as well.

[Moor8s, Vida8g5].

Previous work at UCLA has shown that a "flat-weave" network of 2-input boolean nodes

presented distinct advantages for implementation. Each node is a DPLM, functionally complete
that it can be "set" to any of the 16 possible boolean functions of its two inputs. (fig. 1.a.).
The use of DPLMs set the UCLA networks apart from other adjustable logic networks proposed by
other authors [Aleks83] [Arms79]. Aleksander, for example, used a RAM (Random Access
Memory) as a building block for his system. A RAM has n address lines and 27 bits of storage,
and therefore is a multiple-input complete node. Armstrong, on the other hand, uses 2-input
digita! nodes that can only implement four out of sixteen possible functions - namely, the
so-called "non-constant increasing functions”. Thus, these nodes are incomplete.

As stated before, the ULM is a functionally complete boolean node. Aside from the two
inputs, it has a 4-bit register, which stores the responses of the node to each of the four
possible binary input patterns. Naturally, n-input ULMs can be used with a 2" -bit control
register. is necessary. Such a node, however, would result in a coarser-grain distributed
memory/processing network, an indesirable feature from the point of views of implementation
ease, speed and testability.

Given the structure of the node the most striking feature of the network as a whole is its
regularity. It is a homogeneous network, i.e., all nodes are physically and functionally identical
and the network has a regular, highly interconnected topology. Furthermore the width of the
network varies linearly with depth, rather than logarithmically, as with binary trees. An

example of a 3-input DPLM network is given in fig. 1.b. This particular network is also
lgically complete. (It has been shown {Sal.86), that there exist a complete flat-weave network
of this type for any number of inputs.)

Another important characteristic of DPLM networks is a multi-layered, hierarchical
architecture. The advantages of this type of structure for vision systems are clearly stated in
[Uhr80]. As Uhr pointed out, the serial building of successive layers of "transforms” allows the
system to take successively more global looks at a given scene, and to develop continually more
abstract representations of the scene. Thus, layering is essential for variable resolution,
allowing the system to zoom in and out, looking for pertinent levels of detail.

If depth and width are interpreted as respectively a serial and a parallel dimension of the
network, it can be seen to combines the space efficiency of a purely serial systems with the
time-efficiency of parallel systems. This is a major difference between UCLM and single-layer
nets, which are strictly parallel, such as the system proposed by Aleksander[Aleks70].

From a functional viewpoint, the flat-weave UCLM network is a general-purpose system,
since it is capable in principle of realizing any and all boolean functions of its inputs.
Furthermore, it is redundant, i.e., each global function may have multiple logical
implementations on the same physical network. On the average, a function can be implemented
on the three-input network of figure 1-b in 218 different ways [Vers86], a feature that gives
such networks the potential for fault-recovery.

The multi-layered flat-weave structure makes the network hard to analyze. When a change
occurs at the output , it is not a trivial matter to determine which nodes in which layers are
responsible for the change. This is widely known as the “credit assignment problem", and it is

the central problem one has to deal to "program” the network.

The fan-out interconnections constitute another source of difficulties. As seen in fig. 1.b,
the outputs of certain nodes are inputs to more than one node above them in the hierarchy. Again,
this feature makes the analysis of the network difficult, since functional changes ocecurring in

fan-out nodes have a more global effect over the network.

In the balance of this paper, we will deal specifically with the issues of layeredness and
fan-out in the context of goal decomposition algorithms applied to the flat-weave and other
DPLM networks.

DECOMPOSITION IN DIGITAL PERCEPTRON SYSTEMS

This paper deals with programming strategies for digital perceptron systems in general,

using the flat-weave DPLM network to illustrate the procedures .Given a desired global Boolean
function to attain, what function must the constituent elements perform in order for the entire
network to realize the global function? Or, in simple terms, it is the programming problem : "given
a function,implement it on the network™.

Note that the decomposition problem referred to above is an analysis problem, as opposed to
the classic decomposition of boolean functions [Frie75], which is a synthesis type of problem.
Here, we start with a fixed combinational architecture which must be then functionally configured
to handle a particular boolean function. By contrast, n the classical case, one constructs a special
architecture that implements a given boolean function.

In the following subsections, we will define the notion of decomposition, after which two
possible decomposition strategies will be discussed (bottom-up and top-down). The latter is a
new contribution to the problem and the object of this report.

2.1. Network Decomposition
The decomposition problem for a perceptron structure can be defined as follows:
Given: A perceptron network and a target boolean function ("goal function");
Find: An assignment of functions for each node in the network, such that the overall
network implements the given function.
More formally, if we denote by / the number of nodes in the perceptron system, by
F(x1,...xy) the boolean function implemented by the system, and by @ = { f ..., fp } the

functional set of each such node (assuming all nodes identical), then our definition becomes (see
fig. 5.1){Vers86]:

Given: A perceptron structure P and a goal function G(x1,...., X)

Find: Node functions { gj} 1<j<ly such that:

1) gje¢, for any j, where 1<j<l and
2) F(X{ys X) = G(X 5oy Xp)-

The set B = { G,gj) | 1<5<l, gjqu } is called a functional assignment .

In the algorithms to be presented, for the sake of simplicity, we will make a few assumptions
regarding the network we'll be dealing with. Namely:

1. All nodes are identical,

2. Each node has two inputs;

3. Each node is functionally complete (i.e., it can implement all 16 boolean functions of

its inputs).

The above represent just a set of simplifying assumptions, and not prerequisites for the
decomposition algorithms tdiscussed in this paper.

In the remainder of this paper, we will discuss two decomposition strategies for perceptron

systems, respectively a bottorn-up and a top-down method.

2.2. Bottom-Up Decomposition

The bottom-up decomposition approach consists of assigning responsibilities to each node of
the network in a sequential fashion, starting with the bottom layer first. Essentially, the only
requirement for such a strategy is that the child nodes are assigned functions before their parent
node. The order in which the nodes can be processed is not unique - however, which order is used
is not an issue, as long as it complies with the above rule. Thus, for the example of flat-weave
network shown in fig. 1.b, two possible orderings are (4,5,2,6,3,1) and (4,5,6,2,3,1). The latter
is a "layer-by-layer" scheme, and is purely sequential; the former, on the other hand, is more
parallel in nature since, for example, after an assignment has been made for nodes 4 and 5, both 6
and 2 could be worked on independently. Therefore, the order in which the nodes are considered
may have an impact on the overall efficiency of the algorithm.

A very general and effective bottom-up decomposition method was proposed by Rik
Verstraete in [Vers86]. Based on decomposition charts [Frie75], this method can be applied to any
perceptron structures and any goal function. For the case when the system is a disjunctive binary
tree, the method is based on the theory of decomposition of boolean functions detailed in [Curt61,
Curt63, High73, Frie75]. This is a single-path, straightforward approach.

Things become more complicated when the system is a non-disjunctive binary tree . If the

perceptron has no internal fan-out (i.e., the output of each node is connected to only one input of a
node above it in the hierarchy), then the non-disjunctive tree can be transformed into a disjunctive
tree. This would be achieved by introducing virtual variables , as shown in fig. 3. These virtual
variables are represented by "don't cares" in the truth table (or "decomposition chart") of the goal
function. Since the "don't care" entries may receive dual values (i.e., 0 or 1), any instance of the
decomposition process may result in a multitude of local assignments, not all of them leading to a
valid solution. We are thus dealing with a trial-and-error, search-oriented strategy.

The presence of fan-out nodes in a network increases the amount of search once again, since
each internal fan-out is a source of additional "don't care” entries in the function's truth table. For
details on how the bottom-up heuristic was implemented on general perceptron networks, we refer
to [Vers86].

To summarize, then, the bottom-up approach to decomposition is an inherently sequential
strategy that has been successfuly applied to disjunctive and non-disjunctive binary tree networks,
as well as general perceptron networks. Its applicability to a wide range of network structures lies,
in fact, in its own sequential nature. Indeed, the method outlined above treats the nodes one at a
time, each assignment being a local decision, independent of the structure of the remainder of the
network.

Therefore, we are faced with a clear trade-off between the generality and the performance of
this algorithm: on one hand, the locality of processing renders a scheme that is very general, i.e.,
applicable to any perceptron structure; on the other hand, this limited “look-ahead” approach results
in increased backtracking, which has a negative impact on performance. This result is not
surprising, however, since non-determinism is known to induce backtracking, thus trading
generality for efficiency.

We have thus identified two main sources of inefficiency in the bottom-up strategy, namely,
sequentiality and search . In the next subsection, we will present a decomposition strategy that
deals effectively with the former drawback of the bottom-up philosophy; and a special-purpose
solution that uses a "look-ahead" heuristic in order to prune down the search space, thus limiting

the amount of backtracking necessary.

2.3. Top-Down Decomposition
A top-down decomposition procedure is one starting with the top node of the network and

working its way downward, until each node has been assigned a "responsibility" (or a function), in

such a way that the network as a whole accomplishes the desired goal. Just like in the case of the
bottom-up strategy, the order in which these assignments take place is not essential, the only

requirement being that the parent of a node is assigned its function before the node itself.

2.3.1. Rationale

There are many differences of detail between the two decomposition strategies (i.e.,
bottom-up and top-down), which will become apparent later on in this section. There is, however,
one major conceptual difference: In the bottom-up approach discussed in 2.2, the global goal is
presented to one of the bottom_nodes of the network. Thus, nodes that are higher up in the
hierarchy have to attain a goal that is dependent upon the assignments of nodes lower in the
hierarchy. Hence, the term of residual goal . At each decision point, after a selection of a boolean
function has been made for a node, a reduction test is performed to ensure that the assignment just
selected is consistent with the global goal of the network. If the answer is positive, then a residual
goal is generated that becomes the global goal of the reduced network. These residual goals get
gradually "simpler” as the algorithm proceeds through the network in a bottom-up fashion. The net
result of this decomposition process is that the top node becomes responsible for only a srnall
portion of the entire "task”, while the bottom nodes accomplish most of the work.

The situation is reversed in the top-down approach. There, the global function to be
performed by the network is presented to the top node, which then decomposes it into subfunctions
and delegates them to the subordinate nodes. Thus, the top node is the only one that "sees" the
global goal; it may be, however, unaware of certain changes occurring in the deeper layers of the
hierarchy that don't affect it directly. In addition, once a subnetwork has been designated a goal,
any subsequent assignments internal to it are irrelevant to the operation of adjacent subnetworks.
As a result of these two features [Simo73], known as "loose vertical coupling” and "loose
horizontal coupling”, the top-down approach shows a high degree of functional independence, and
thus appears to be suitable for a parallel implementation of the network control.

Therefore, a major advantage of the top-down principle is that it lends itself to paralell
network programming. Another intuitive argument in favor of this approach is that most social
structures that are organized hierarchically, operate in a top-down fashion. The goals for an
organization are usually only known to the leader of the organization, his/her responsibility is then
to decompose and propagate them downwards through the organization, with the goals becoming
more focused in the lower levels of the hierarchy. It is this analogy that determined us to investigate
the top-down approach, as a natural way in which a hierarchical structure like the perceptron could

achieve its self-organization.

In the remainder of this section, we will look at specifically how the top-down strategy can
be implemented in digital perceptron systems, starting with simpler DPLM structures (such as
disjunctive binary trees), and ending with general DPLM networks, such as the flat-weave
structure.

2.3.2. Disjunctive Networks

a. The 4-Input Network
Let us start by considering the disjunctive binary tree of fig. 4.a and let's try to project onto

it the function G(XI,X2,X3,X4) = X]X)pX3 +X1X9Xq + X]X9X3 +X] X)Xy The decomposition chart
of this function, with respect to Aj= {xq,xy} and Ap = {x3,x4}, as shown in fig. 4.b, has two
distinct types of columns and two distinct types of rows. This implies that the decomposition chart
with respect to A5 and A1 (fig. 4.) has two distinct types of columns, as well. Therefore
[Fried75, theorem 2.3], there exists a multiple disjunctive decomposition of the function
G(XI,XZ,X3,X4) nto two functions gl(xl,xz) and go(x3,X4), ie., G(XI,X2,X3,X4) =
G'(gl(xl,xz),gz(X3,x4)), where:

gl(xl,xz) =X1Xy + X1Xg = x1<exor> X9 and

gr(x3,X4) =X3 + X4

If we now denote z= g1(x1,Xy) and zy= gp(x3,X4), and substitute z; and z; in G, then we
obtain:

G(x1,X9,X3.X4) = G'@z) =212y

Hence, the functions assigned to nodes 2,3, and 1 in fig. 4.a are, respectively, EXOR, OR

and AND. They are the result of two selection operations and one substitution operation (in
[Vers86], this operation is referred to as reduction). The test expressed by Friedman's
aforementioned theorem we will call a decomposition test . Selection led to the assignments of
EXOR and OR functions to the "child" nodes (2 and 3), while substitution resulted in the
assignment of the AND function to the "parent” node, in this case node 1. Since in a disjunctive
tree these assignments are unique (up to a negation of the function), the two selection operations
can proceed in parallel, independently of each other. If either selection is not possible, then the
entire decomposition fails. That is because of the fact that, if a functional decomposition assignment

exists for a disjunctive network, then it is unique - hence, no search is necessary.

b. The n-Input Network
Let us now consider the more general case of a disjunctive binary tree with n inputs, where
n>4 (fig. 5).The same line of reasoning applies. Since the entire network (N) is disjunctive, it

follows that the left and right subnetworks (i.e., N jand N») are mutually disjunctive. As a result,

we can treat these subnetworks, for now, as child nodes of the top node of N. So we have reduced
the n-input, multi-layered case to the former case of a bi-layered binary tree, with the only
difference that each of the bottom "nodes" now have more than two inputs. Using the scheme

described above, we can decompose function G into subfunctions gy(xq,....X{) and
gz(xi+1,...,xn) (where Xx1,...,Xj are inputs to Ny, and xj41,....X are inputs to Nj), and by
substitution determine the boolean function of the top node. Once it has been determined that g1
and g exist, and the corresponding assignment has been made to node 1, the same algorithm can
be invoked recursively for subnetworks N and Nj. Since no coordination is necessary between

N and Ny, the two decompositions can proceed concurrently, until either a complete assignment

has been found, or a "dead-end" occurred. A dead-end can happen when, at some node in the
network, the decomposition test can't be satisfied, and therefore selection is not possible. The

schematics of this recursive algorithm are shown below (S, is the "cautious selection” function

implemented in [Vers86]):

procedure DISJ (G, N);
begin if top (N) = leafnode
then assign (G, top(N))
else begin N1<—1eftchild (top(N),N);

Ny<-rightchild (top(N),N);
g1<-Sc(®1, G, top(N1), N1);
87<-S.(B5, G, top(Np), Np);

if (g1 20 and gy #0)

then begin g<-substitute ({g1.g2}, G);

assign (g, top(N));
DISJ (g1:Ny);

DISJ (gz,Nz)
end

end
end;

In conclusion, the algorithm for top-down functional decomposition onto disjunctive
networks (DNs) is deterministic and concurrent, and therefore easily implementable on a parallel
architecture. The best analogy for it would be that of a global process that, when certain constraints
are met, will spawn two or more independent subprocesses. When these subprocesses take over,
the "parent” process dies, thus becoming unavailable for generating new processes whenever the
current ones turn out to be "sterile” (by that, we mean processes incapable of generating new ones).
The only communication links necessary are those between a parent process (node) and its
immediate descendants. No communication is needed between sibling processes (nodes), or
between nodes that are several layers apart.

Which brings us to the implementation issue. It should be apparent by now, that the
algorithm described lends itself to an implementation with distributed control . In other words, each
node of the perceptron in fig. 5 could have a small controller attached, just powerful enough to
undertake the amount of processing contained by each recursive step of our algorithm. These
controllers would receive the same goal function from their parent node, run autonomously towards
achieving this goal, and report back to the parent node their results. Therefore, most of the
processing is local. There are situations, however, when a central controller, although not
necessary, would be beneficial. For example, termination signals, such as SUCCESS or
FAILURE would be more efficiently handled by the central controller. A "success” signal would
inform the central controller that the decomposition phase is over and the network is ready to
process data, When receiving a "failure” signal”, the central controller would emit an "interrupt”
signal to the network, thereby bringing any ongoing decomposition subprocesses to a halt.

In the next subsection, we intend to investigate the same top-down decomposition approach
as it applies to non-disjunctive networks (NDNs). Since the decomposition problem has a different
degree of complexity for non-disjunctive networks without internal fan-out, versus those with
internal fan-out, we will treat these two cases separately.

2.3.3 Simple Non-Disjunctive Networks

Simple non-disjunctive networks (SNDNs) are non-disjunctive networks with fan-out in
their inputs, but not in their internal structure. An example of a SNDN is given in fig. 6.

The algorithm for top-down decomposition in SNDNs is an extension of the algorithm DISJ]
for disjunctive networks. Given a SNDN, it can be transformed into a DN by introducing virtual

10

variagbles in the truth table of the global function. We'll refer to the resulting network as the virtual
network of the SNDN it originated from. This mechanism, of reducing a SNDN to a DN, is
identical to the one used for bottom-up decompositions, as outlined in [Vers86]. We'll refer to this
mechanism here as relaxation , since its purpose is to "relax” a constraint, namely that of several

nodes having common inputs.

a. The 3-Input Network

Consider, for example, the 3-input network in fig. 6. By introducing the virtual variable x5,

the network becomes disjunctive in four variables. As a result, the size of the decomposition chart

associated with the new network will have twice the size of the original truth table. However, since

X9 Y=X9, half of the new truth table contains don't care entries.

Let us try, for example, to decompose onto the network S the function G(x1,X7.X3) = XX
+ X9X3, whose truth table (or decomposition map or chart) is shown in fig. 6. In the virtual
network SV, the two subnetworks of the top node contain, respectively, the inputs (xq,x9} and
{XZV,X3}; therefore, let's consider the decomposition chart with respect to Aj={x1.,x7} and

Ar={x9Y,x3} (fig. 6). Since SV is a disjunctive network, we can use the decomposition test

defined in the previous subsection. Note, however, that due to the presence of "don't cares”, a
successful test may generate more than one solution. In other words, selection is non-deterministic,

and as a result, the two operations of selecting gq(x1,x9) and gz(xz",x?,), are no longer
independent of each other: a substitution has to take place between them. In effect, the selection of

go operates on a residual truth table (GF), which is the result of substituting g into the virtual truth

table (GY). The schematics of the algorithm applied to the network S are illustrated in fig. 5.6. Note
that a successful decomposition will always result in a "collapsed” truth table (2*2 in a binary tree),
which represents the functional assignment for the top node. The general al gorithm is listed below:

procedure NONDIS]J (G, N);
begin if top (N) = leafnode
then assign (G, top(N))
else begin N1 <-leftchild (top(N),N);

Ny<-rightchild (top(N),N);
GV<-virtual (G, top(N), N);

11

g1<-SC(gl, GY, tOp(Nl), Nl);

ifgy =0

then begin g<-substitute (g1, G);
£9<-S:(D7,, top(N»), No);
if £ 20
then begin p<-substitute (g7, #);

assign (U, top(N));
NONDISJ (g1.Np)

NONDISJ (g5,N5)

end
end
end
end;

As demonstrated by the example, the top-down strategy for SNDNGs is one based on search,
since there may be more than one way to "collapse” the virtual truth table into a 2 column-2 row
truth table corresponding to the top node. The following question arises at this point: is the
decomposition test derived from Friedman's theorem a necessary and sufficient condition for
decomposability? Clearly, the condition expressed by the test is necessary : if the decomposition

chart of a given function G with respect to [Al,Az} (or {Ar,Aq }, for that matter) has more than

two mutually incompatible columns or rows, then no multiple disjunctive decompositions of G
exist [Frie75, theorem 2.3].

However, as the counterexample in fig. 5.7 demonstrates, the test is not sufficient . Let's
first make the following observation. The theoretical method used to find a non-disjunctive
decomposition only ensures that, if the test is satisfied, then G is decomposable into two functions

g1(Aq) and go(Aj); it does not, however, guarantee g1 and gy to be decomposable on the

remaining subnetworks. Thus, the test provides a criterion for synthesizing a network that will
implement a given function. Our goal, as stated previously, is that of adapting to a rigid
architecture, rather than finding an architecture that conforms to given functional constraints. For
our purpose then, the test is necessary, but not sufficient. As a result, backtracking has to take
place whenever a "dead-end" path is recognized and must be "undone”.

To conclude then, in order to increase the efficiency of the top-down algorithm, we need a
more powerful test than the current decomposition test. Ideally, such a test should consist of a
necessary and sufficient condition, whereby all possible redundant assignments could be generated
after successive backtrackings. Such a test, however, is very difficult to construct. In the next
subsection, we'll present a method of strengthening our current test, by complementing it with a

12

another, sufficient although not necessary test.

b. An Informed Search Approach

As it has already been pointed out, the test used as a basis for decomposition in the previous
section is a local, rather limited one, incurring backtracking whenever the solution being considered
turns out to be invahid.

What is needed then, is a more "informed" approach, whereby each selected function would
be subjected to a feasibility test. While the decomposition test ensures that g network that achieves
the new function (subgoal) can be found, the feasibility test checks to see if the particular network
to which this function was designated can, in fact, implement it. Thus, this is a "look-ahead" kind
of test, which assumes some degree of knowledge about the structure of the remaining network -
hence, the term informed heuristic.

Tn what will follow, an example of how such a heuristic works will be given. The example is
a 3-input complete SNDN, which resulted from a 3-input GPP by replicating its fan-out node (fig.
9.a). The feasibility test is based on a set of rules, derived empirically and then proved to be valid.
They are given here without proof:

Let T be the truth table associated with a given global function G. Then:

1. If T has only one type of column (i.e., all columns are identical), then G is decomposable
onto exactly one layer (i.e., the bottom layer);

2. If t has two distinct types of columns, then G is decomposable onto at most two (i.e., 1 or
2) layers;

3. If T has three distinct types of columns, then G is decomposable onto at most three (i.e., 2
or 3) layers;

4. Tf T has four distinct types of columns, then G is decomposable onto exactly two layers.

As an example, the truth table in fig. 9.b would necessitate the entire network to implement it
(since it has 3 mutually incompatible columns), while the truth table in fig. 9.c can be implemented
on a subnetwork of the top node (having only 2 mutually incompatible columns).

Note that the above set of rules applies to the example SNDN only. Depending on its
structure, each network would have a different set of rules as part of the feasibility test. An
interesting issue for future research is that of finding a general set of such rules, applicable to any
perceptron structure,

In our informed search algorithm, we'll use a slightly modified version of these rules. The
revised rules are represented in the diagram of fig. 10. Clearly, they express sufficient (though not
necessary) conditions for decomposability; thus, we obtain a szrict subset of the set of all possible

13

network configurations corresponding to a given global function. In this sense, the informed search
algorithm is similar to the adventurous algorithm for bottom-up decomposition [Vers86]: by
neglecting some correct assignments, it reduces the size of the search tree. The program for the

informed search algorithm is listed below:

procedure INFORMED (G,N);
begin if top(N) = leafnode
then assign (G, top(N))
else begin N <-leftchild (top(N), N);

Ny<-rightchild (top(N), N);

GV<-virtual (G, top(N), N);

g1<-sc (QI, GV, tOp(Nl), Nl);

test_if_feasible (gq, Ny, feasiblel);

if feasiblel

then begin g<-substitute (g1, GV);
g2<-S;. (@3, 8, top(N2), N2);
test_if_feasible (g5, N», feasible2);

if feasible2
then begin pL<-substitute (g7.8);

assign (|, top(N));
INFORMED (g1, N1);

INFORMED (g5, Ny)

end
end
end
end;

¢. An "Optimized” Heuristic
Let's again consider the 3-input complete SNDN in fig. 9.a. We can now effectively use the

14

previous rules (1-4) towards an optimized heuristic. The optimization not only results in time
savings, but also yields a minimal solution. A solution is said to be minimal if, given a global
function and a perceptron network, the number of nodes that are assigned non-trivial functions via
decomposition, is minimal (by "non-trivial” we mean those boolean functions other than LEFT and
RIGHT - also known as fransparent functions). The merit of a minimal configuration is that it
makes the network less prone to failure: since fewer nodes are operational to begin with, the
probability of node failure is smaller (if by "failure” we mean the degradation of a node into a
"transparent” one).

How do we accomplish a minimal configuration? The idea is to "push” the global goal
function as far into a corner of the network as possible. One way to accomplish this, is to simply
reverse the order between the feasibility test and the selection process in the informed search
algorithm outlined above. As usual, the algorithm will start at the top node of the network, with a
given goal function G. At the begining of each decomposition step, the function’s "place"” in the
network is established by using rules 1-4, on which the feasibility test is based. For example, a
function whose truth table has two mutually incompatible sets of columns will be "routed" directly
to nodes 2 and 3, which will then simultaneously attempt the decomposition. Nedes 2 and 3 may,
or may not be able to both assume the new function (however, at least one of them will), If they
do, then we get duplicate implementations of the same function, within the same network - hence,
redundancy . The algorithm is recursive, so that each new offspring of a function is "pushed" as far
downward as possible, thus taking full advantage of the redundancy of the network by realizing
multiple internal "versions" of a given function. The optimized algorithm is outlined below:

procedure OPTIMIZED (G, N),
begin if top (N) = leafnode
then assign (G, top (N))
else begin feasible<-true;
N1<-N;
while feasible do
begin N<-Ny;
N <-leftchild (top (N), N);
test_if_feasible (G, Ny, feasible);

end;
Ny <-rightchild (top (N), N);

GVY<-virtual (G, top(N), N);
g1<-S¢ (@1, GY, top(Ny), Ny);
g<-substitute (g1, G¥);

g2<-S¢ (D9, 9, top(Np), Np);

15

u<-substitute (g7, 8);

assign (1, top(N));
OPTIMIZED (g1, Nq);

OPTIMIZED (g5, No)

end
end;

d. The n-Input Network

The decomposition strategy outlined in 2.3.3 (a) can be applied recursively to a generic
n-input (n>3) SNDN. The idea is the same as in the case of an n-input disjunctive network.
Namely, within each recursive step, we can view the respective network as a 3-node network, in
which the bottom nodes are represented by the descendant subnetworks of the top node (fig. 11).

The algorithm can be implemented either sequentially, or in parallel, by using decentralized
control. The relaxation, selection and substitution procedures would be executed by each node
controller sequentially; however, once a node has generated subgoals for its successor networks,
the top nodes of these subnetworks can work concurrently towards achieving them. When
backtracking occurs, only the selection and substitution steps need to be undone, since there is only
one way to "relax" a given non-disjunctive network into a disjunctive one. In order to execute either
the informed or the optimized heuristic, the controllers must have extra processing power to be able
to perform the feasibility test.

Will the top-down approach discussed so far work on a more complex, highly interconnected
network? We'll attempt to answer this question in the following subsection.

5.3.4. Complex Non-Disjunctive Networks

So far we have seen how the top-down methodology works on disjunctive and
non-disjunctive networks without internal fan-out (SNDNs). We started by constructing an
algorithm for the disjunctive case, and then used it as a "building block™ for the simple
non-disjunctive case. In the process of doing that, we made use of relaxation, a general technique
whereby a constraint is temporarily suspended to facilitate processing; once a solution set of the
"relaxed" (or virtual) problem is found, the constraint is reconsidered in order to determine the
subset of solutions to the initial (actual) problem. In our case, the constraint consisted of fan-out
inputs, and to relax this constraint we had to introduce virtual variables. We say that we have
replicated the fan-out inputs,

The networks considered in this subsection have internal fan-out, and may or may not have
input fan-out. An example of a complex non-disjunctive network (CNDN)-or a graph network -is

16

the flat-weave network discussed previously (fig. 1.b), which has both internal and external
fan-out. For this class of networks, we can use the same approach as for SNDNs. Namely, since
any CNDN can be "relaxed” into a SNDN by replicating the fan-out nodes, we can then apply any
of the algorithms for SNDN:s to the relaxed network. Thus, in this case the constraint consists of
fan-out nodes , and to relax it we are introducing virtual nodes (fig. 9.a).

So far, then, the strategy for CNDNs closely parallels that of SNDNs. There is, however,
one major difference: having to "collapse” the virtual network back onto the real physical structure.
In other words, both the fan-out node (#5 in GPP's case), and its clone (#5Y) must have the same
functional assignment,

In summary, the strategy for top-down decomposition in a CNDN consists of the following
three steps:

1. Relaxation of the initial CNDN into a SNDN;

2. Decomposition of the global function onto the SNDN;

3. Satisfaction of the internal fan-out constraint.

The algorithm is, again, recursive with each recursive phase being comprised of the above
three processing steps. In what follows, we'll illustrate the algorithm as it applies to a 3-input GPP,
with emphasis on the constraint satisfaction process.

a. The 3-Input Network

Let us again consider the 3-input network of fig. 1.b. This "tightly-knit" structure does not
readily lend itself to analysis, for the following reason: when trying to decompose a function onto it
in a top-down fashion, functional assignments impressed from the top node downward are
countered by an upward flow of consequential changes. In other words, the fan-out node (#3)
introduces additional functional interdependencies between nodes 2 and 3, that cannot be predicted
at the time these nodes get resolved. The two decomposition subproblems cannot work
independently from one another, because they would typically try to assign different functions to
their common nodes (in this case, node 5). A solution to one subproblem constrains the solution to
the other, and thus a large amount of coordination is necessary.

Therefore, a first step towards decomposition would be to relax the fan-out constraint, by
replicating node 5; the result would be a SNDN like the one in fig. 9.a. We can now apply any of
the algorithms discussed in 2.3.3 to the relaxed (virtual) network TV. However, none of these
algorithms guarantees a solution with identical assignments to nodes 5 and 5Y. Hence, we now

have to reconsider this constraint, as follows:

17

Let us denote by f5 and f5V, respectively, the assignments of nodes 5 and 5Y. There are two
possibilities:

1. f5 =fs".

In this case, the decomposition already satisfies the constraint, and therefore it is a valid
solution.

2. f5 * fsv.

This type of decomposition does not satisfy the constraint, therefore the algorithm has to
backtrack for an alternate solution, as follows:

a. Assign f5 to node 5%;

b. Apply decomposition to the right subnetwork of node 1;
c. If decomposition was successful, then a solution has been found; EXIT.

d. If decomposition failed, then repeat steps (a)-(c) for function £ 5¥ and node 5;

e. If decomposition failed again, then backtrack to the second layer and generate new
subgoals for nodes 5 and 5Y;

f. Go to step (a).

We can speed up this last phase of each decomposition subproblem by taking advantage of

parallelism. That is, f 5 and fSV can be generated, substituted in the sibling subnetwork, and then

subjected to the decomposition test, all in a concurrent manner. The average time needed for
satisfying the constraint would thus be reduced by a factor of two.

b. The n-Input Network

For an n-input network like the 5-input graph network of fig. 12 which has multiple fan-out
nodes, the approach becomes orders of magnitude harder.

Each node inside the highlighted area of the network, being a fan-out node, is a contention
element. As we advance with the decomposition process towards the bottom of the network, the
coordination scheme between these nodes becomes increasingly complex. The reason being, that
the deeper a layer is within the network, the more fan-out nodes it has. As a result, any change in
any of these nodes would have a "ripple" effect throughout the entire layer, causing the sibling

nodes to adjust accordingly. Additional research is needed in this direction.

18

3. CONCLUSION

This paper has explored an important issue related to the adaptation and control of perceptron
systems, namely functional decomposition in boolean networks. A new approach has been
proposed. The general algorithm presented, proceeds in a top-down fashion and is complementary
to the bottom-up approach implemented by Rik Verstraete [Vers86]. As was the case with the
bottom-up approach, the fan-out connections (external and internal) were identified to be the main
source of difficulty in developing an efficient strategy. As a result, the decomposition algorithm
was very straightforward on disjunctive networks but became more complicated when applied to
non-disjunctive networks with external fan-out. Search ibecomes necessary because of the "don't
care” entries in the virtual decomposition chart, Finally, approach was extremelly inefficient in the
case of non-disjunctive networks with both external and internal fan-out, due to the large amount to
coordination required by the presence of overlapping nodes.

Thus, because fan-out connections introduce redundancy in the network, the more such
connections a structure will have, the more search will be required by the decomposition algorithm.

Another "side-effect” of fan-out connections, which again has a negative impact on the
performance of decomposition algorithms, is the constraints they bring along with them. As has
been shown, each fan-out node represents a contention point for the nodes directly above it, and
this conflict must always be resolved before the decomposition process can continue. Thus, the
more "contention” (or overlapping) nodes exist in a perceptron system, the more sequential will the
top-down decomposition process become, due to the interdependencies they introduce. We
demonstrated this point by showing in section 2.3.4 how the decomposition approach proposed for
SNDNs can be applied within reasonable performance limits, to a CNDN with only one
overlapping node; however, when trying to apply this same approach to a general CNDN (i.e.,
with multiple overlapping nodes), its inefficiency became immediately apparent.

What are, then, the characteristics and potential advantages of the top-down strategy?

First], the algorithms proposed here have exploited the advantage of decomposing a function
onto a network with "large" nodes - meaning nodes with a large number of inputs. It has been
argued [Vers86], that whenever the node or subnetwork being assigned responsibility is only a

19

little smaller in size than the whole network, the problem is simpler than when the node is much
smaller. We have taken advantage of this feature by recasting the problem onto a 3-node network
equivalent to the initial network (subnetwork), at each step of the decomposition process.

Second, the algorithms presented in section 2.3 mirror, to some degree, the parallel structure
inherent to perceptron systems. Sequential processing is still present ifor non-disjunctive networks,
but it is limited to resolving local conflicts, while the decomposition as a whole remains largely
parallel. As a direct result of parallelism, distributed control becomes possible; limited
communication would have to take place between adjacent local controllers, or between the
controllers and the environment (or a central controller), to resolve assignment conflicts or to
transmit termination signals, respectively.

Lastly, a partial solution has been offered to the issue of coordinating local assignments with
global requirements imposed by the structure of the network. The informed search algorithm
introduces a more focused search strategy, by incorporating this global knowledge into a compact
set of rules, used at each node to decide which residual goals are implementable on the remaining
network. The optimized heuristic carries this idea even further, by deciding, based on these rules,
which part of the network should implement the global goal, as well as any intermediary subgoals
generated during the decomposition process. Although the availability of global information at the
node level would apparently speed up the search, as a result of reduced backtracking, it is also true
that the amount of incurred local processing would increase accordingly. It is not clear at this time,

whether the advantage of a more focused search outweights the increase in local processing.

20

