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ABSTRACT OF THE DISSERTATION

Error Recovery in Multi-Version Software
by
Kam Sing Tso
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1987
Professor Algirdas AviZienis, Chair

In muld-version software (MVS), design faults are masked through the
consensus of results from several diverse versions. Since we assume that all versions
are likely to contain design faults, it is essential to be able to recover the state of

individual versions as they fail,

A Community Error Recovery (CER) algorithm which makes use of the
natural redundancy that exists among the diverse versions to recover failed versions
has been designed. The CER algorithm is based on two levels of recovery: Cross-
check points, which provide a consensus result for immediate masking and partial
error recovery of the erroneous results, and recovery points, which provide a complete
recovery of the erroncous states of failed versions. This provision of two levels
minimizes both the disturbance to the system and the restrictions to the

implementation of diverse versions.

The CER recovery algorithm has been implemented on the UCLA DEDIX
distributed MVS testbed. The purpose of DEDIX is to supervise and to observe the

execution of N diverse versions of an application program functioning as a fault-

xi



tolerant MVS unit. DEDIX also provides a highly transparent interface to the users,
versions, and the input/output system. The author’s contributions to the cooperative
DEDIX effort include the User Interface, Input/Output System, and the integration of

the CER mechanism into the Version Layer, Local Executive, and Global Executive.

Markov models for reliability evaluation of CER have been developed and the

results show that recovery may substantially improve the reliability of a MVS system.

A large scale experiment is being conducted at UCLA in coordination with
other institutions to determine the effect of fault tolerance techniques under carefully
controlled conditions. To assess the effectiveness of the proposed CER algorithm,
extensive testing were performed based on the five UCLA independently generated

versions. The results of the evaluation are presented and discussed.

xii



CHAPTER 1
INTRODUCTION

1.1 The Need for Dependable Software

Computers are playing an increasingly important role in our society.
Nowadays computers have been used in such critical applications as nuclear power
plant control, aircraft flight control, etc.; their failures would endanger human life and
entail serious economic consequences. In the past decades efforts were concentrated
mainly on the tolerance of hardware failures [Siew84]. Computer systems tolerating
hardware faults with a predicted failure rate of less than 107 per hour have been
designed and prototyped for aircraft flight control [Hopk78, Wens78]). However,
dependable computing requires the correct behavior of both the hardware and
software. At present software is much less dependable than hardware, and the gap is

growing as software systems become more complex.

1.2 Approaches to Achieve Dependable Software

The conventional approach to achieve dependable software is by the use of
fault avoidance and fault removal techniques. Fault avoidance is the use of structured
design and programming methodology that attempt to avoid the introduction of faults.

Systematic testing, verification and validation, and proofs of program correctness are



used to detect the occurrence of faults for removal. Regardless of the effort put into
this approach, residual design flaws have been discovered in almost all software
during operation. This suggests using the alternate approach of fauit tolerance. This
approach attempts to increase reliability by designing software to continue to provide

service in spite of the presence of faults [Aviz75].

1.3 Fauit-Tolerant Software by Design Diversity

Successful hardware fault detection and recovery techniques have been
developed employing redundant copies of hardware, data and programs. However,
these techniques cannot be applied to recover from design faults, since such

replication of hardware and software elements will only reproduce the faults.

An alternate fault tolerance approach to deal with design faults is offered by
design diversity [Aviz82, Aviz84}. In this approach, hardware and software elements
are not copies, but are independently designed from a very good (preferably verifiable,
formal) specification to meet a system’s requirements. Different designers and design
tools are employed in each effort, and commonalities are systematically avoided. The
obvious advantage of design diversity is that dependable software does not require the
complete absence of design faults, but only that those faults should not produce a

majority of similar errors.



1.4 Approaches to Fault-Tolerant Software

The increasing awareness of the need for design fault tolerance led to the
development of multi-version software at UCLA and the Recovery Block method at

University of Newcastle upon Tyne since 1975.

1.4.1 Multi-Version Software

Multi-version software (or N-version programming) makes use of the potential
advantages of design diversity, uses N (N 2 2) versions of a program which have been
independently generated from an initial specification. Programming efforts are carried
out by individuals or groups that do not interact with respect to the programming
process. Wherever possible, different algorithms, programming languages,
environments, and tools are used in each separate effort. The goal of MVS is to
minimize the probability of similar errors in the execution so that distinct erroneous

results are masked by a majority vote, as shown in Figure 1-1 [Chen78b, Aviz85c].

1.4.2 Recovery Blocks

While MVS is analogous to the hardware N-modular redundancy, the
Recovery Block scheme is similar to hardware standby sparing technique. It provides
fault tolerance by the execution of alternate modules until a result passes an
acceptance test as shown in Figure 1-2 [Rand75]. A recovery block consists of a
primary module and some alternates. The primary and the alternates represent
different algorithms for producing acceptable results, the primary block representing
the preferred algorithm. After the execution of the primary block, an acceptance test

is evaluated to check whether the results produced are acceptable. If not, the state of
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Figure 1-1: Multi-Version Software



the computation is restored to that at entry to the recovery block, and the next
alternate is tried, and so on. If the primary and all the alternates fail, then this is

regarded as a failure of the recovery block.

1.5 Multi-Version Software in Practice

Since its development, MVS has been applied to develop safety-critical
systems to achieve ultrahigh reliability in industry. One of the reasons for its use is
motivated by the certification process of the regulatory agencies of the respective

industries,

1. Airbus A310

Two versions of hardware and software were used with diverse
software requirements documents (from a common system specification), host
computers and instruction sets, and programming teams in the Airbus A310
slat and flap control [Mart82, Hill83]. The experience shows that using
diverse channels to test each other has been very successful. Crucial software
errors were found during the initial testing and were detected by disagreement.
Actual operations until 1983 confirmed the original MTBF (Mean Time
Between Failures) prediction of > 10,000 hours by achieving an actual MTBF
of 12,988 hours.
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Boeing 737/757/167

Two versions of hardware and software were used with diversity in
design, code, and testing for an autopilot flight director and a yaw damper
[Youn84]. The development cost of the second version of software was found

to be 60% of the first one.
German Nuclear Reactor

Three versions of software with diversity in teams, programming
languages (Pascal, Fortran, and assembly language) and testing, were used for
a nuclear reactor safety shut-down protection system [Gmei79]. The results
show that MVS proved to be a good technique for detecting ambiguities in the

specifications.
PODS

Three versions of software with diversity in teams, specification
languages (formal and informal), and programming languages (Fortran and
assembly language) were used for a nuclear reactor protection system
[Bish86]. Significantly lower failure rate has been achieved through
combining three diverse versions than the failure rate of any individual
program. The experiment found the the requirement specification caused most

of the residual faults and was the only source of common mode failure.
Swedish State Railways

Two versions of software with diversity in teams were used in a
computerized interlocking system for the Swedish state railways [Tayl81].

Successful operation of the system has been found to date.



1.6 The Need of Recovery in MVS

In multi-version software, erroneous results produced by versions are masked
by a majority vote. Since we assume that all program versions (whether in a fault-
tolerant system or not) are likely to contain some design faults, it is critical to have a
recovery mechanism that is able to recover these versions as they fail, otherwise, the
accumulation of failures may eventually become large enough to saturate the fault-

masking ability, and the entire system will faii.

1.7 Error Recovery Approaches

Error recovery is the elimination of errors from an erroneous state to return the
system to a proper state. Two approaches to error recovery have been employed:
backward error recovery restores a prior saved state; and forward error recovery
manipulates the current state to generate another state. The aim of both approaches is

to obtain a state which is free from errors, or proper [Ande81].

1.7.1 Backward Error Recovery

Backward error recovery restores a prior saved state of the system without
regard to the current state. It involves the establishment of recovery points, that is,
points in time during the execution of a process at which the state of the system is
saved for future restoration if required. A recovery point is discarded once the process

is committed, or restored if an error is detected.



There are various mechanisms that can be used to establish recovery points. A
checkpoint or roilback point [Aviz71] simply saves a complete copy of the state when
a recovery point is established. An audit trail [Bjor75} records all changes made to
the state of the process. A recovery cache [Hom74] records only the original states of

those objects which are changed after the most recent recovery point.

The advantage of backward error recovery is that it provides a mechanism for
error recovery without assessment of the faults. However, it has some drawbacks.
Not all objects are recoverable: for instance, output on a printer is not recoverable.
Also, significant memory and time overhead is incurred in the recovery point
establishment, regardless of whether a failure actually occurs; when a failure does
occur, the need for re-execution of the program module may make it unsuitable for

critical, real-time applications.

1.7.2 Forward Error Recovery

Forward error recovery manipulates the current state of the system to obtain a
new error-free state. This requires full knowledge of the nature of the fault involved
and its exact consequences. Hence, forward error recovery techniques are usually
designed specifically for each system. Nevertheless, forward error recovery can
provide simple and efficient recovery from anticipated faults [Mili85].

Common techniques include exception handling and compensation. In
exception handling, an operation raises an exception when standard service cannot be
provided. The invoker of the operation calls for an exception handler to take care of
the exception [Cris82]. An underflow exception raised by the ALU is an example

which can be handled by setting the result to zero. Compensation is an act by which



one component provides to another component supplementary information intended to
correct the effects of information that it had previously sent [Bjor72]. For example, an
erroneous transaction that reserves an airline seat may be compensated for by another

transaction that cancels the seat.

When applicable, forward error recovery is cost-effective; however, its

effectiveness depends on knowledge of the faults.

1.7.3 Discussion

Backward error recovery has been successfully used to recover from transient
faults in applications such as database management systems [Gray79). For
applications in which a default state exists, errors due to design faults that are
triggered only by some particular input patterns may also be recovered by restoring
the default state to handle other inputs. However, in MVS, backward error recovery
will not be effective, since re-executing the same version will reproduce the error.
Although design faults such as division by zero and overflow can be anticipated and
handled by forward error recovery, the class is limited and the recovery techniques to
handle them have to be designed specifically. Therefore, conventional backward and
forward error recovery techniques are not powerful enough to handle the general class

of design faults.

10



1.8 Goals of This Research
The following goals are pursued in this research:

1. To develop an error recovery algorithm which is effective in MVS, easy to use

by designers and programmers, and efficient in its execution,

2. To integrate the recovery algorithm into the distributed MVS testbed DEDIX
to ensure its practicality in implementation and provide an experimental

vehicle for future fault-tolerant design investigations.

3. Evaluate the effectiveness of the recovery algorithm through mathematical
models.

4. Study the recovery algorithm using programs created in a large scale
experiment to assess its feasibility in practical use, and to obtain quantitative

empirical results about its effectiveness from the execution of the programs.

11



CHAPTER 2
COMMUNITY ERROR RECOVERY

2.1 Objectives of Error Recovery in MVS

The following objectives were set forth in the development of an error

recovery algorithm for multi-version software:

1. Recovery from design faults. It is the intent of MVS to handle those design
faults in a system, which are unanticipated. The error recovery algorithm
should be able to recover from errors caused by this class of faults. The
scenario depicted in Figure 2-1 shows how the recovery algorithm will recover
from errors in a 3-version MVS system. Each of the three versions has a fault
in a different program module. Without recovery, the error caused by the fault
will most likely be propagated to the subsequent modules in each version. At
the end of the execution, ail the three versions wiil produce erroneous results,
making the MVS system fail. The error recovery algorithm attempts to
recover a version from its error right after the faulty module so that normal
execution can continue. If successful, the 3-version MVS system will have a

correct majority result at the end of each module.

2. Minimal limitation on design diversity. Diversity in the design and
implementation of the independent versions is crucial to the success of MVS.

The recovery algorithm should not adversely limit the programmers in their
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Figure 2-1: Scenario of Error Recovery in MVS
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choices of design and implementation. We regard the inevitable limitation in
design diversity resulting from the inclusion of the recovery provisions in the
versions to be the cost paid for the increased reliability made possible by the
recovery algorithm.

3. Simplicity in implementation. The required additional programming effort for
the recovery algorithm should be simple, not only because we do not wish to
increase the workload of the application programmers, also, we do wish to
ensure that the recovery algorithm can be easily observed by the programmers

and verified for its correctness.

2.2 Principles of Community Error Recovery

In multi-version software, the method of Community Error Recoveryt (CER)
makes use of the assumption that at any given time during execution there exists a
majority of good versions which can supply information to recover the failed versions,
It uses the natural redundancy that exists among the program versions in an MVS

system.

The CER method is based on two levels of recovery: Cross-check points (cc-
points) which provide a consensus result for immediate masking and partial error
recovery of the erroneous results, and recovery points (r-points) which are inserted
between program modules (usuvally containing several cc-points) for the complete

recovery of the erroneous states of failed versions.

t The idea of Community Error Recovery is analogous to a community of people
helping individuals with difficulties.
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Figure 2-2 shows an instrumented avionics control program consisting of four
modules and the major computations within the Acceleration Estimation module that
was implemented 20 times for the NASA-Four University Multi-Version Software
Experiment. In this discussion, a computation consists of one or more functions that
compute some result, and a module consists of a sequence of such computations. We
also distinguish between two types of design faults in software which have different
effects on the execution of a program. These are computation faults, which cause the
assignment of erroneous values to the state variables, and control flow faults, which
cause erroneous branching in a program, resulting a cc-point or r-point being skipped

or incorrectly called.

2.2.1 Cross-Check Points

A standard N-version cross-check point is a decision point at which the
redundant versions output their results after a computation for comparison [Chen78b].
Associated with each cc-point are a cc-point id (ccp-id), which uniquely identifies the
cc-point; a format string, which indicates the types and number of state variables to be
compared; and a set of pointers to the state variables (cc-vector) which allows results
to be passed to the MVS Supervisor for comparison. The standard cc-point is
extended beyond its fault masking capability in CER to include functions of error
detection and error recovery of the failed versions. Hence the cc-points serve the

following functions in MVS with CER:

. fault masking - a decision result is obtained through comparison of the cc-

vectors, thus masking faults in the versions.

. fault detection - faults in failed versions will manifest themselves as either
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Figure 2-2: An Instrumented Avionics Control Program
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erroneous or missing cc-vectors, which are detectable. This information is

accumulated for the second level of recovery.

. error recovery - the decision resuit is returned to the failed versions for future

computation, in order to attempt a recovery from the effects of errors.

Figure 2-3 shows the actions of a cc-point in a 3-version MVS system with
version 3 failed at the cc-point following computation i. The MVS Supervisor, which
will be discussed in the next chapter, compares the results with a decision function and
sends the decision result to the faulty version for recovery. If the result is an output of
the program, the Supervisor will output the decision result so that faults due to a

minority of versions will be masked.

Error recovery at the cc-point level is fully effective only if a minority of
versions fail between two successive cc-points, if the failed versions have executed
the right cc-point on time, and if all other state variables that are not in the cc-point
have not been corrupted. If there is no consensus among the versions, recovery will
not be performed and the system will be shut down safely. If, in the worst case, a
majority of versions produces similar errors at the cc-point, then the minority of good

versions will be forced to an erroneous state.

2.2,2 Recovery Points

Complete error recovery of failed versions is performed at recovery points.
Associated with each r-point in each version, the following are specified: a unique
recovery point id (rp-id), which uniquely identifies the r-point, and two exception
handlers, the state-input exception handler and the state-output exception handler,

which are required to input and to output, respectively, the internal state of the version

17



Version 1 (no update)

v

o8 *8
g . g
Input d complinanon g
P
L K [ X}
i, cc-vector-1
Version 2 (no update) \
[ B # L}
Input € ion |
d complixtanon d
P P
*e L X J
i, cc-vector-2
Version 3 ) decision-result
ae * L N
In G -
ut d computation
- IR
L A J L X ]

i, cc-vector-3

ccp(i, format, cc-vector)

Figure 2-3: Cross-Check Point Actions With Failed Version 3
(cc-vector-3 differs from cc-vector-1 and cc-vector-2)
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(version state) in a specified format. Every version is required to have the same
version state at the recovery point. At a recovery point, the rp-ids of the versions are
submitted to the MVS Supervisor and compared, as shown in Figure 2-4. Failed
versions are identified by missing or incorrect rp-ids, and by errors that have been
detected at cc-points. Exception handlers are invoked by the MVS Supervisor upon
any failed versions thus detected. The state-output exception handler in .evcry good
version is then instructed to output its version state. The version states are compared
by the decision function of the MVS Supervisor to produce a decision state which will
be input by the state-input exception handler in every failed version. Versions that
have control flow faults are detected by missing or incorrect rp-ids. These versions
are restarted at the current recovery point by means of the decision rp-id. Before their
execution is resumed, the MVS Supervisor invokes their state-input exception
handlers to input the decision state. In this way, failed versions will proceed to the

next program module with a correct internal state after the recovery point.

2.3 Comparison of Cross-Check Points and Recovery Points

The functions of cc-points and r-points in CER complement each other in their
recovery efforts, We will gain a better understanding of CER by further contrasting

these mechanisms.

A cc-point cross-checks the result of a computation from each version (which
most likely consists of only a few state variables), while a r-point involves the
comparison of the complete version states at that decision point. Hence, cc-points are
more efficient both in terms of inter-site communication and in the comparison of the

values than are r-points. However, a cc-point can only achieve partial recovery, since
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it recovers only the cross-checked state variables and does not handle control flow
faults. Recovery at the r-point level may limit diversity in the design and
implementation of program versions because it requires them to be structured into

modules with identical specified states.

The differences between these two recovery mechanisms are summarized in

Table 2-1.

Table 2-1: Differences of Cross-Check points and Recovery points

Cross-Check Points Recovery Points
Involve only a few variables Involve complete internal
(computed resuits) state
Partial recovery Complete recovery
Lower overhead Higher overhead
Easy to specify and implement | May limit design diversity

2.4 Rationale of Two Levels in CER

The addition of the second level of recovery by means of CER has the

following advantages:

1. To minimize the adverse effects on program design and implementation
diversity. Cc-points that compare the version results after a computation can
easily be specified and observed by the programmers. The complete internal
states have to be specified at the recovery points may constrain the design

diversity of the program versions.
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To match the type and severity of the errors. At the first level, cc-points are
placed after major computations in a module. If a version fails to compute
correct results, it is immediately corrected in the hope that further
computations that are based on those results will use the correct values and

normal execution can continue.

To minimally disturb the system. In some systems, recovery actions may be
more disruptive than the error they are intended to correct. The cc-point level
makes sure that local errors are corrected without disruption of other parts of
the system. If the local recovery action is inadequate, the versions will be
recovered by the use of recovery points at the second level. At a recovery
point, the complete internal state of a failed version is recovered at the expense
of the time and effort needed to communicate and compare states of the
versions. For applications with a large system state, the exception handler can
be designed so that the communication and comparison of version states is

done progressively in two or more recovery points.

Cross-check points can be used alone for error recovery in an MVS system

without the need for a recovery point. However, it can only be a partial recovery if

not all the state variables are cross-checked or control flow faults are not handled. It

might be sufficient for applications which have small internal states and low

probability of control flow faults. If cc-points do cross-check complete internal states,

the following problems may still arise: 1) limited design diversity may result if the

computations between the cc-points are relatively small, 2) there is an increased

chance of coincident errors if the computations between cc-points are large, and 3)

high communication and comparison overheads may result because complete states

have to be sent and compared even in the absence of errors.
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A hybrid scheme may be devised by combining the fault masking and error
detection functions of cc-points by cross-checking only a few state variables, and the
error recovery functions of recovery points by invoking exception handlers upon
detected failure. It may be called a cross-check recovery point (cr-point). The cr-
point has the merit of less overhead when there is no failure but it is still able to
achieve complete recovery. Nevertheless, it cannot be used in place of the cc-points
because complete states have to be specified, and this puts a severe limitation on
design diversity if they are placed too close together. It would be convenient to use a
cr-point 10 replace the cc-point of the last computation and the recovery point of a

module.

2.5 Program Structure for CER

With CER implemented in MVS, the initial specification not only specifies the
functional requirements of the application, it is also required to specify the locations
of cc-points and r-points, and their corresponding associated cc-vectors and states. A
great deal of research has focused on the system structuring and placement of
recovery points in order to avoid the so-called domino effect [Rand78] in recovery of
asynchronous systems [Merl78, Russ80, Bari83, Camp86, Koo87]. Since the versions
in MVS are synchronous at the cc-points and r-points, we do not need to deal with this
complex problem.

A cc-point can be placed anywhere in a version once all of the state variables
of its cc-vector have been computed and before any one of them is used. If some state
variables in a cc-vector have been used before they are cross-checked, recovery will

not be effective, since errors in those variables would have been propagated before
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they are recovered.

Care must be taken in the specification of cc-points to make sure that there is
no. cyclic data dependency between any of them. Otherwise, no implementation can
satisfy the recovery requirements. Cyclic data dependency arises when one or more
state variables in a cc-point depend on the result of the next computation which, in
turn, must use some of the state variables of the cc-point. Figure 2-5 shows a program
fragment consisting of two computations and their cc-points. Suppose the sequence of
the cc-points and their associated cc-vectors have been specified as in Figure 2-5. If
the function f; is placed in the first computation, the value of the state variable a will
be used before it is cross-checked. If f. is placed in the second computation, f
cannot be computed in the first computation. Fortunately, we can always avoid the
cyclic data dependency problem by splitting a cc-point into two or more cc-points
which, together, cross-check the same state variables as the unsplit one, or by
rearranging the state variables in the cc-points. For this example, we can either split
the two cc-points as in Figure 2-6(a), or cross-check the state variable ¢ in the first cc-

point so that £. can be placed in the first computation, as shown in Figure 2-6(b).

Recovery points require the versions be structured into modules. The intended
service of a module can be specified by a relation between its initial internal state and
final internal state. Modular programming has been advocated by modern
programming methodology. A module is intended to be a unit of work assignment. It
is intended to be a unit which can be constructed with no knowledge of the internal
structure of other modules. It is also intended that most design decisions in a system
can be changed by altering a single module {Parn72a, Pam72b]. The purpose of
modular deéomposition in CER is to minimize the size of the internal state between

modules, and to be able to restart a version from any module by the use of a rp-id.

24



a= L I B

b = fb(c)
ccp (a, b)
c = fc(a)

d = fd(a, b)

ccp {(c, d)

Figure 2-5: Cyclic Data Dependency in Cross-Check Points
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a = ....
ccp (a)

c = fc(a)
ccp ()

b = fb(c)
ccp (b)

d = f;(a, b)

ccp (d)

(a) Splitting CC-Pocints

A= veu.
b = fb(c)
c = fc(a)

ccp (a, b, ¢)

d = f;(a, b)

ccp (d)

(b) Rearranging CC-Vectors

Figure 2-6: Solutions of Cyclic Data Dependency
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Many modem programming languages which support exception handling have been
devised to help designers program the specified exceptional responses correctly
[Lisk79, Luck80). In this research, we intend to use common programming languages
for the versions. Since these languages do not have a global goto or language
constructs for restarting a version anywhere in the program, versions are structured as
shown in Figure 2-7 in order to make restart possible. In this scheme, a switch is
inserted at the beginning of a version which determines the module from which the
execution starts using the argument rp-id. The MVS Supervisor executes all the
versions with a rp-id equal to 0 at the beginning. If a version fails due to a control
flow fault at r-point r, that version will be aborted by the MVS Supervisor and
restarted with an argument 7, hence from the module after r-point r.

It may appear that r-points restrict the structure of the versions to a sequence
of modules. In fact, other control structures such as branching and looping are
possible, as shown in Figure 2-7. In the case of branching, both r-points in the two
branches go to the next module after the branching. With loops, the r-point is called

in each iteration and the rp-id goes back to the loop itself.

Some programs may have large modules, each in turn consisting of a number
of nested modules in which r-points are needed for recovery. For these programs, the
single rp-id can be extended to a list of ids, such that the first one identifies the
modules in the first level, and the second one identifies the nested modules, and so on.
Figure 2-8 shows the structure of a program with two levels of control. Note that the
r-point requires two arguments: the rp-ids for the first and second level of control.

This scheme of restarting a version requires no special linguistic support and can be

applied with any common programming language.
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version(rp-id)

begin
case {(rp-id) of
: goto MO
: goto Ml
: goto M23
: goto M4
: goto M4
: goto M4

b W N = O

end

MO:
Module
rp (1)
Ml: i
Modulel
rp (2)
M23:
if (¢) then
Module?2
rp (3)
else
Module3
rp (4)
endif
M4:
while (c) do
Module4
rp (5)
end

end

Figure 2-7: Structure of a Program to Support Recovery Paints
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version (rp-id)

begin
case (rp-id[1}]) of
0 : goto MO
1l : goto Ml
end
MO
ModuleO
rp (1, O)
Ml:
Modulel
rp (2, 0)
end

Modulel (rp-id)
begin
case (rp-idi2]) of
0 : goto M10
1 : goto Ml1

end

M10:
Modulel0
rp (1, 1)
M11l:
Modulell
rp (1, 2)

end

Figure 2-8: A Program With Two Levels of Control Structure
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2.6 Exception Handlers for State Input/Qutput

The use of exception handlers for input and output of the version states allows
the programmers flexibility in the choice of data structures for their programs. For
state recovery at the r-points, it is necessary to specify the state vari_abIes comprising
the internal states at those r-points, their formats, and their order of exchange.
Different data structures can be used to represent a state which meets the specification.

The following example demonstrates how this can be accomplished.

The application used in the example is a data base problem which concerns the
operation of an airport in which flights are scheduled to depart for other airports, and
seats are reserved on those flights. The problem was discussed originally in [Ehri78]
and was used by Kelly .in a specification-oriented experiment for multi-version
software [Kell82]. The data base structure is shown in Figure 2-9. The airport
scheduler application has seven operations, defined as possible inputs to the data base
of the system, as shown in Figure 2-10. Three different data structures have been used
to implement the data base in Pascal, as shown in Figures 2-11, 2-12, and 2-13.

The first data structure uses three tables in a way similar to the specification.
The second uses one single table to represent the data base structure, The last one
uses a linked list, with each node representing a record. The respective exception
handlers for state output are aiso shown in the figures. The function stateout
used in the exception handlers is supplied by the MVS systam for collecting state
values from the versions. Since the internal state of each version is the data base

itself, the exception handlers do not depend on the rp-id.

This example shows that by using exception handlers for input and output of

the internal states, the programmers are not restricted in their choice of data structures.
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APS Aimport Scheduler

2 FS Flight Scheduler
3 F# Flight Number
3 DEST Destination
3 TIME Depanture Time
4 HOURS
4 MINS
2 P | Planes
K P# Plane Number
K] TYPE Plane Type
3 NOSEATS Number of Available Seats
2 PF Planes and Flights
3 F# Flight Number
3 P# Plane Number

Figure 2-9: The Airport Scheduler Data Base Structure
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CREATE

Initialize data base

SCHEDULE F#, DEST, TIME, P#, TYPE

CHANGE_TIME

Schedule a fiight,
Add a data base record

F#, TIME
Change a departure time,
Modify a data base record

RESERVE_SEAT F#

CANCEL F#

USED? F#

LIST

Reserve a seat on a flight,
Modify a data base record

Cancei a flight,
Rermove a data base record

See if a flight is scheduled,
Make a data base query

Show dail flights,
List data base contents

Figure 2-10: The Airport Scheduler Operations
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type
HrMin = record

Hr: integer;
Min: integer;
end;
. FSrec = record
FN: integer:;

Deat: string;
Time: HrMin;
end;
Prec = record
PN: integer;
Types: string:
Seat: integer;

end;
PFrec = record
FN: integer;
PN: integer;
end;
TableIndex = 1 ., TABLELENGTH;
var
FStable : array {TableIndex] of FSrec;
Ptable : array [TableIndex] of Prec;
PFtable : array [TableIndex] of PFrec;

TablePtr : TableIndex;

~ {(a) Data Structures: Using Three Tables

procedure stateoutput (rpid : integer);
var i : TableIndex;
begin
for i := 1 to TablePtr do begin
stateout (rpid, "%d¥sidididisid”,
FStable{i] .FN, FStable[i].Dest,
FStable(i].Time.Hr, FStablefi].Time.Min,
Ptable(i] .PN, Ptable[i]).Type, Ptable[i].Seats);
end;

(b) Exception Handler for State Output

Figure 2-11: Data Structures and Exception Handler of Version 1
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type
HrMin = record
Hr: integer;
Min: integer:;
end;
FSPrec = record
FN: integer;
Dest: string:;
Time: HrMin;
PN: integer;
Types: string;
Seat: integer;
end;
TableIndex = 1 ,. TABLELENGTH;
var
FSPtable : array [TablelIndex]) of FSPrec;
TablePtr : TablelIndex;

(a) Data Structures: Using One Table

procedure stateoutput (rpid : integer);
var i : TableIndex;
begin
for i := 1 to TablePtr do begin
stateout (rpid, "sdistdsdidsasd”,
FSPtable([i] .FN, FSPtable[i] .Dest,
FSPtable(i].Time.Hr, FSPtable[i].Time.Min,
FSPtable{i).PN, FSPtable{i].Type, FSPtable[i]
end;

(b) Exception Handler for State Output

.Seats):

Figure 2-12: Data Structures and Exception Handler of Version 2
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type
HrMin = record

Hr: integer;
Min: integer;
end;
FSPrec = record
FN: integer;
Dest: string:;
Time: HrMin;
PN: integer;
Types: string;
Seat: integer;
NextRec: “FSPrec;
end;
var
FSPlist : "FSPrec;

(a) Data Structures: Using List of Records

procedure stateocutput {(rpid : integer);
begin
while FSPlist <> nil do begin
stateout (rpid, "%d¥skd¥didiskd",
FSPlist~ .FN, FSPlist".Dest,
FSPlist".Time.Hr, FS5Plist”.Time.Min,
FSPlist~.PN, FSPlist”.Type, FSPlist".Seats);
FSPlist := FSPliat”.NextRec:
end
end;

(b) Exception Handler for State Output

Figure 2-13: Data Structures and Exception Handler of Version 3
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Of course, they can use any appropriate algorithm in the module for the data structure
they have chosen. If the types of all the state variables are defined in the specification,
the exception handlers will be the same for each version and can be supplied to the
programmers. This will relieve most of the work required to implement CER in the

versions.

2.7 Comparison of the Recovery Algorithms of MVS and RB

Both the Community Error Recovery algorithm in MVS and the Recovery
Block method attempt to tolerate design faults in software. They both require the
internal state be specified between program modules. The RB method saves the state
before the execution of a module in order to be able to roll-back if the acceptance test
rejects the results. CER uses the states of the majority (good) versions to recover the
erroneous states of the faulty versions., Hence, the RB scheme is a backward error

recovery a]gorithm, while the CER scheme is a forward error recovery algorithm.

One major difference between the two schemes is their mechanisms to detect
errors. The RB scheme uses an acceptance test after each module to detect errors.
Some experiments have shown that sometimes the acceptance test can be as
complicated as the original algorithm [Glas80, Ande84], and it may make sense to
replace it with a re-execution of an alternate module and compare their results for
error detection [Kim84]. The generic decision algorithm of MVS is simple and

efficient,

The overheads of both algorithms are compared in two aspects: 1) overhead
incurred during error-free execution, and 2) overhead needed to recover from errors.

During normal execution, the RB method incurs time and storage overhead on saving
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the state before the execution of each module. It is also required to execute an
acceptance test after each module. For the CER scheme, time overhead is incurred on
the inter-site communication and the comparison of cc-vectors for each cc-point, and
rp-ids for each r-point. During recovery actions, the RB scheme is required to
reinstate the previous saved state and to execute an alternate module and the
acceptance test. The time overhead on the multiple executions sometimes would be
too high for time-critical applications. The CER scheme requires that the good
versions output their internal states, compare the states, and input the decision states
into the faulty versions. This inter-site communication and comparison overhead is

much lower than the re-execution of alternate modules.

Another important difference is that a Recovery Block has only one version of
state for the primary and alternate modules, while in MVS different versions may
implement the specified state in different ways. This has been shown in a previous

section, which allows more diversity among versions.

The differences between the recovery algorithms of MVS and RB are

summarized in Table 2-2.
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Table 2-2: Differences of the Recovery Algorithms of MVS and RB

cross-check points

No internal state needs
to be saved

Cc-vector compared at every
cc-point and rp-id compared
at every r-point

Time overhead for
communication and
comparison of states

One version of state
in a Recovery Block

Multi-Version Software Recovery Blocks
Forward error recovery Backward error recovery
Error detection by Error detection by

acceptance tests

Internal state saved at
every recovery point

Acceptance test executed after
every module

Time overhead for state
restoration and alternate
modules execution

Possible diversity in the
implementation of a state in
different versions
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CHAPTER 3
DEDIX AND THE IMPLEMENTATION OF CER

3.1 The UCLA DEDIX System

In order to facilitate experimental investigations into the design and evaluation
of multi-version software as a means of achieving fault-tolerant systems, a distributed
MYVS supervisor and testbed, called the DEsign Dlversity eXperiment (DEDIX)
system, has been designed and implemented by the UCLA Dependable Computing
and Fault-Tolerant Systems research group, at the UCLA Center for Experimental
Computer Science [Aviz85a, Aviz85b, Aviz85¢c]. DEDIX currently executes above
LOCUS, a distributed, network-transparent UNIX-like operating system running on
the Center’s Olympus Net local network operating a set of about 20 VAX
minicomputers connected by Ethernet [Pope8i]. The purpose of DEDIX is to
supervise and to observe the execution of N diverse versions of an application
program functioning as a fault-tolerant multi-version software unit. DEDIX also
provides a highly transparent interface to the users, versions, and the input/cutput
system. DEDIX is the cooperative effort of several individuals. The contributions of
the author include the User Interface, Input/Output System, and the integration of the

CER mechanism into the Version Layer, Local Executive, and Global Executive.

The general functional requirements for DEDIX are the followings:
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1. Distribution: The versions should be able to execute on separate physical sites
in order to take advantage of the physical isolation between sites, to benefit

from parallel execution, and to survive a crash of a minority of sites.

2. Transparency: The interface for the application programmers has to be simple,

and the interface must be independent of the number of actual versions used.

3. Environment: DEDIX is designed to run on the distributed LOCUS
environment at UCLA, and should be portable to other UNIXt systems.
DEDIX must be able to run concurrently with all other normal activities of the

local network.

In order to fulfill 'these requirements, DEDIX was developed as a modular
redundant system. Its structure can be considered as a network-based generalization
of SIFT [Gold80] that is able to tolerate both hardware and software faults. Both have
similar partitioning, with a local executive and a decision function at each site that
processes broadcast results, and a copy of the global executive at each site that
responsibles for error recovery and reconfiguration decisions by majority vote.

DEDIX is extended to allow some diversity in results and in version execution times.

DEDIX itself is written in C and makes use of several LOCUS features, €. g.
the distributed execution of the version processes and the linking of these processes
via remote pipes. The DEDIX system can be located either in a single computer that
executes all versions sequentially, or in a multicomputer system running one or more
versions at each site. If DEDIX were to run on a single computer, it would be
vulnerable to hardware and software faults that affect the host computer, and the

execution of MVS units would be slower. In a computer network environment, the

+ UNIX is a trademark of AT&T Bell Laboratories
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system is partitioned to protect it against most hardware faults. This has been done by
providing each site with its own copy of DEDIX software. The DEDIX design is
suitable for any specified number N 2 2 of sites and versions, and the current
implementation allows up to 20 versions due to the limited computing resources, such
as memory size, the maximum number of communication links and running processes.
DEDIX has been ported to other UNIX systems running on a single site. It should be
able to port DEDIX to a network of computers running UNIX if mechanism for
communication between different sites is provided, such as the socket mechanism

found in the Berkeley UNIX BSD4.2 or BSD4.3 systems [Leff86).

A global view of the DEDIX system supporting N versions is given in Figure
3-1. The versions communicate with its local DEDIX, which in turn makes use of the
LOCUS operating system, and the different sites are interconnected with each other

via Ethernet.

3.2 The DEDIX Layers

DEDIX has been designed as a set of hierarchically structured layers as shown
in Figure 3-2. The layered structure reduces implementation complexity and
facilitates the inevitable modifications. The purpose of each layer is to offer services
to the higher layers, shielding them from details on how those services actually are
implemented. Each of the sites running DEDIX has an identical set of layers and
entities, providing services to its version and the external user. These layers, from top
to bottom, are:

o the Version Layer,

» the Decision and Executive Layer,
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» the Synchronization Layer,

» the Transport Layer.

3.2.1 The Version Layer

The purposes of this layer are to interface the i-th version with the DEDIX
system, to correct state variables and to restart failed versions. The interface is
supported through calls to cc-points and r-points. Three different types of cc-points

are currently implemented:

1. ccinput, which is used by DEDIX for centralized data input and broadcast to

the versions;

2, ccoutput, which is used for comparing the output values collected from the

versions and then uses the decision result as output;

3. ccpoint, which is used for crosschecking state variables for fault detection and

CITOr ICCOVErY.

Each cc-point has a cc-point id (ccp-id), which uniquely identifies the cc-point;
a format string, which indicates the number of state variables to be compared and their
types; and a set of pointers to the state variables (cc-vector), which allows results to be

passed to DEDIX for comparison and passed back for recovery.

Each r-point has one parameter, a r-point id (rp-id). Control flow errors of
failed versions are detected by missing or incorrect rp-ids. It is also used to identify
the exception handlers needed for global recovery, and to determine the point at which

a failed version should be restarted.



To run on DEDIX a version must be instrumented. That is, the version must
call DEDIX at each occurrence of a cc-point or a r-point, and pass its results to
DEDIX. We will show how this is done in a subsequent section. Currently, the
available application languages are C and Pascal. Other languages could be used for

the versions, if an interface between this language and C is available.

3.2.2 The Decision and Executive Layer

This layer receives cc-vectors and internal states from its local version and
from the other versions through the Transport Layer and Synchronization Layer,
produces decision results, determines faulty versions, and performs recovery and
reconfiguration actions. If also controls the input/output of versions and handles
exceptions. This layer has four entities: the Sender, the Decision Function, the Local
Executive, and the Global Executive. The Sender receives requests from the local
version and broadcasts the requests to other sites. It also attaches an occurrence
number to a ccp-id or rp-id. The occurrence number is used to uniquely identify a cc-
point or r-point, since the same ccp-id or rp-id will appear in loops and other repeated
program sequences. The Decision Function is used to determine a single decision
from the multiple results. The Local Executive and Global Executive are responsible

for fault detection, error recovery, and reconfiguration.

3.2.2.1 The Decision Function

The Decision Function is used to determine a single decision result from the
N-version results {cc-vectors or version states). In the case that a decision result

cannot be determined, a higher level recovery procedure may be invoked.
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In DEDIX we have implemented a generic Decision Function which may be
replaced by user written routines provided that the interfaces are preserved. This
allows application-specific decision algorithms to be incorporated in those cases
where the default mechanisms are inappropriate; for example, this may occur because

of lack of sensitivity, or unnecessary elimination of program versions,

The generic Decision Function is hierarchical in nature. The algorithm
attempts to determine a decision by applying the following major decision classes

sequentially:

1. bit by bit - identical match only;

2. cosmetic - detecting character string differences caused by misspelling or
character substitution;
3. numeric - integer and real number decisions.

All numeric decisions use the median value of the version results as the
decision result; It can be proved that, so long as the majority of versions are not faulty,
the median of all results is acceptably close to a supposed ideal value [Aviz85b].
Numeric values are allowed to be different within some "skew interval," thus allowing

results to be non-identical but still similar.

3.2.2.2 The Local Executive

The Local Executive is activated when the Decision Function indicates that a
cc-point decision is not unanimous, or when some unrecoverable exception is signaled
from the local version or some other layer. The actions to handle a cc-point by the

Local Executive are shown in Figure 3-3. If the cc-point decision is no majority, then
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DEDIX will terminate without further execution. Otherwise if there is any failed
versions, each Local Executive updates its error report. Each Local Executive has an
error report table, with one entry per site. Each entry is an error counter of a site. The
Local Executive increments the counter when that site has either a disagreeing or
missing cc-vector. Local error recovery is accomplished by passing back the decision

result to the failed versions.

3.2.2.3 The Global Executive

The Global Executive is activated when a r-point is executed. As shown in
Figure 3-4, it performs the following actions to determine if global recovery is
necessary: 1) compares the rp-ids delivered by the versions, 2) collects error reports
from the Local Executives, 3) exchanges error reports with other Global Executives,
and 4) determines failed versions. Since each site might get different numbers of cc-
vectors due to varying communication delays, the sites may have somewhat different
error reports. The exchange and comparison of error reports ensure a consensus

among the sites on failed versions.

If no failed version is detected, the Global Executive merely resets the error
report table and the versions continue their execution. Otherwise, global error

recovery is initiated.

Two types of failed versions are distinguished: 1) those have errors detected at
the cc-points, and 2) those have incorrect or missing rp-ids. Each Global Executive of
the good versions signals the stare-output exception handler of its local version to
output the internal state at that rp-id. These states are compared by the Decision

Function to obtain the decision state. Each failed version of the first type is recovered
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by invoking its state-input exception handlers to input the decision state. After the
exchange of internal states, actions of the global error recovery are completed and
execution of the versions is resumed. A failed version of the second type is first
aborted by its Global Executive. In the current implementation this is accomplished
by sending a kill signal (SIGKILL) to the version process. The version is then
restarted by its Global Executive at r-point with the decision rp-id. The restarted
version also inputs the decision state before its execution is resumed by invoking the

state-input exception handler.

3.2.3 The Synchronization Layer

For each physically distributed site, this layer broadcasts results (using the
Transport service) and collects messages with the results from all other sites. The
layer only accepts results that are both broadcast within a certain time interval and
that will arrive within the same time interval. The collected results are delivered to the
Decision Function for comparison. The layer accepts a new set of results when every

site has confirmed that all or a majority of the previous results have been delivered.

The processors need to be event-synchronized in order to ensure that results
from corresponding cc-points or r-points are compared. Otherwise, if two sets of
results from two different points are compared, the Decision Function might wrongly
conclude that some of the processors are faulty. Traditionally, this synchronization has
been obtained by referring to a common clock or set of clocks. The SIFT system is
one example of such a clock synchronous system. In SIFT it is predicted when the

results should be available for a comparison.
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The underlying distributed system and the versions have the following

characteristics which make the clock synchronous technique difficult to use or

impractical in DEDIX:
. the versions have different execution times between the cc-points;
. the versions will run concurrently with other network activities, which means

that processors temporarily can be heavily loaded, and hence prolong the time

1o execute some VCTSiOﬂS;

. the communication network has inherently varying transport delays of

messages.

A synchronization 'protocol is designed to provide the service. It ensures that
the results that are compared by the Decision Function are from the same cc-point or
r-point in each version. The versions are stopped undl all of them have reached the
same cc-point or r-point, and they are not started again until the results are exchanged
and a decision is made. To be able to detect versions that are in an infinite loop and to
allow slow versions to catch up, a time-out mechanism is used by the protocol.

Details of the synchronization protocol can be found in [Gunn85].

3.2.4 The Transport Layer

This layer controls the communication of messages between the sites.
Messages are broadcast to all active sites. The layer makes sure that no message is
lost, duplicated, damaged, or misaddressed, and it preserves the ordering of sent

messages. A disconnection is reported to the layer above.
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Currently, this layer is implemented as a simple ring of point to point links by
LOCUS inter-processor pipes. The decision of the initial ring implementation was
made due to the limitation of the number of pipes per process in the LOCUS operation
system. Nevertheless, it provides us with some determinism in the system which

made it much easier to observe and debug the Transport Layer.

3.3 Program Interface

In MVS the versions of an application program are all written according to the
same functional specification. The specification must dictate not only the overall
input-output transformation the program has to perform, but also which intermediate
results must be compared, and at which points in the execution. The difference
between a non-redundant program and the corresponding MVS program version
running on DEDIX is minimized for programmers. Figure 3-5 and 3-6 shows a

sample program written in Pascal [Joy86} and its corresponding instrumented version.

The program consists of two modules: 1) RSDIMU which consists of five
computations (specified in the file rsdimu.h) for estimating the aircraft
acceleration, is also shown in the figure; 2) MODULE?2 for computations specified in
module2.h. The declarations of constants, types, and variables of the program is in

the files consts.h, types.h,and vars.h respectively.
The differences between the program and the version are as follows:

1. A cc-point function is inserted after each computation in the RSDIMU module
to cross-check results of the computation and to recover errors in the results.

The first argument of each cc-point function specifies the cc-point id. The
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program- avionics (input, output):;

#include "consts.h"
#include "types.h"
#include "vars.h"
#include "rsdimu.h"
#include "module2.h"

procedure RSDIMU;
begin
CALIBRATION;
SCALE;
FAULTDETECTION;
ESTIMATION;
DISPLAY;
writeln (’/Display Outputs = 7, dismode,
disupper[1l], disupper[2], disupper(3],
dislower (1], dislower[2], dislower([3]);
end;

begin
RSDIMU;
MODULEZ;
end;

Figure 3-5: A Sample Program
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#include "consts.h"
#¥include "types.h"
#include "vars.h"™
#include "rsdimu.h"
#include "module2. h”
#include "dedix.h"

procedure RSDIMU;
begin
CALIBRATICN;
ccpoint (1, f%8K%8E%8¢c’, skew, linoffset, linnoise):
SCALE;
ccpoint (2, 7%8K%BE’, skew, linout);
FAULTDETECTION;
cepoint (3, ‘%d%Bc’, sysstatus, linfailout):
ESTIMATICN;
ccpoint (4, *%c%3K33E%c%3K%3E%cH3KI3EScH3KIIEIcH3KY3EY4cC’,
bestesat.status, skew, bestest.acceleration,
chanest [0] .status, skew, chanest([0].acceleration,
chanest[l].status, skew, chanest(l)].acceleration,
chanest [2] .status, skew, chanest{2].acceleration,
chanest [3].status, skew, chanest{3].acceleration,
chanface);
DISPLAY:
ccoutput (5, ’%S%d%3d%3d’, ’Display Outputs = ',
dismode, disupper, dislower):
end;

procedure version ({(rpid: integer);
label 100, 101;
begin
case (rpid) of
0:
goto 100;
1:
goto 101;
end;
100:
RSDIMU;
rpoint {(1);
101:
MODULEZ2;
end;

Figure 3-6: An Instrumented Sampte Program
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second is the format string which specifies the sizes and formats of the
variables participated in the voting, and the decision algorithms to be used.
The format specifiers %8K%8E specify that the array of eight double precision
real numbers are compared with the corresponding supplied skew values. The
format specifiers %d and %c are used for voting integers and Booleans

respectively.

Instead of using writeln function for output, the ccoutput function is
used which first votes on the output values and then outputs them. The format
specifier %S specifies that the string can tolerate "cosmetic" error (described in

Section 3.2.2.1).

The main body of the program has become a version procedure with an
argument rpid.

A r-point with an argument rpid is inserted between the two modules for
global recovery. The rpid will be used to determine the module to be restarted
in a failed version, and used by the exception handlers to input and output the

current internal state.

At the beginning the of the version procedure is a case statment which
decides which module is to be executed according to rpid. This is used to

restart a version after a control flow fault.

The state-input and state-output exception handlers of the instrumented sample

program are shown in Figure 3-7. Inside each exception handler is a case statment

which determines the internal state to be input or output according to rpid. Since a

state may consist of many variables, functions sinput and soutput are supplied by

DEDIX to help the programmers to assemble a complete internal state. The format
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procedure stateinput (rpid: integer):

var
i: integer;
begin
case {rpid) of
i:
begin
sinput (rpid, ’%A%8K%8E%8c¢’, skew, linoffset, linnoise):
sinput (rpid, '%8K%8E’, skew, linout);
sinput {(rpid, *%d%8c’, sysstatus, linfailout);
sinput (rpid, ‘%c%3K%3E’,
bestest.status, skew, bestest.acceleration);
for i := 1 to 4 do
sinput (rpid, ‘%c%3K%3E/,
chanest[i] .status, skew, chanest{i].acceleration):
sinput (rpid, ’%4c’, chanface):
sinput ({(rpid, ’'%d%3d%34d’, dismode, disupper, dislower);
sinput (rpid, ‘%4c%3K%3E3Z’, statebadface, skew, statefhat):
end
end
end;

procedure statecutput (rpid: integer);

var
i: integer;
begin
case {(rpid) of
1l:
begin
soutput (rpid, ’'%A%BK%BE%8c’, skew, lincoffset, linnoise);
soutput (rpid, *%8K%BE’, skew, linout);
soutput (rpid, ’%d%8c¢c’, sysstatus, linfailout);
soutput (rpid, f%c%3K%3E’,
bestest.status, skew, bestest.acceleration);
for i = 1 to 4 do
soutput (rpid, ’%c%3K%3E’,
chanest [1] .status, skew, chanest[i].acceleration};
soutput (rpid, ’%4c’, chanface);
soutput (rpid, ‘%*d%3d%3d’, dismode, disupper, dislower):
soutput (rpid, ‘%4c%3K%3E%2’, statebadface, skew, statefhat):
end
end
end;

Figure 3-7: Exception Handlers of the Instrumented Sample Program
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specifiers %A and %Z respectively designate the beginning and end of the state.

Other format specifiers have the same meaning as those in cc-point functions.

3.4 User Interface

As an experimental testbed, DEDIX provides a flexible interface for the users
to design, implement, and evaluate multi-version software. It allows users to debug
the system as well as the versions, monitor the operations of the system, apply stimuli
to the system, and to collect empirical data during experimentation. A number of
commands are available to the user for controlling the execution and defining

additional output.

1.  Breakpoint

The break command enables the user to set breakpoints. At a
breakpoint, DEDIX stops executing and goes into the user interface where the
user can enter commands to examine the current system states, examine past
execution history, or inject stimuli to the system. Some examples of using the

break commands are as follows: The command
break no-majority

instructs the user interface to stop when there is no majority in a cc-point

decision. The command
break cc-point-id = 3

stops DEDIX when the third cc-point is executed.
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Monitoring

The user can examine the current contents of the message passing
through the transport layer by using the display command. Since every
message is logged, the user may also specify conditions in the display
command to examine any message logged in the past. The user can also
examine the internal system states by using the show command, e.g., to
examine the breakpoints which have been set, the results of voting, etc.

Examples are:
display sender = 1, cc-point-id = 2

displays the message sent by version 1 at the second cc-point on the screen.

The command
show decision-vector

displays the result of comparison.

Stimuli Injection

The user is allowed to inject faults to the system by changing the
system states, e.g., the cc-vector, by using the modify command. An example

of using the command is
modify cc-vector

which changes the values of the cc-vector.
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4, Statistics Collection

The user interface gathers empirical data and collects statistics of the
experiments. Every message passing the transport layer is logged into a file
with a time-stamp. This enables the user to do post-execution analysis or even
replay the experiment. Statistics like elapsed time, system time, number of

cc-points executed, and their results of decision are also collected.

3.5 Input/Qutput System

The input/output system for the versions is designed to be replicated as well.
However, in the current implementation a centralized terminal connection is used for
all input/output. The site designated for input/output is called the primary site. The
primary site collects results to be printed from all versions. These version results are
run through the Decision Function and the decision result is output only if there is
majority in the comparison. The request to read data is also run through the Decision
Function to ensure consistency. The primary site compares the ccp-ids and the format
strings sent from all versions. If majority exists, the data will be input according to
the decision format string and the data are then distributed to all versions. The
interface between DEDIX and the input/output system is similar to the interface
between DEDIX and the local version. For example, a read from a terminal might be
timed-out if it does not respond in phase with the other terminals. If errors are
detected in the input/output system of the primary site, another site will be selected to

be the primary site for input and output.
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3.6 Reconfiguration

CER can recover versions from transient and design faults, If the error is
caused by a permanent physical fault, CER will not be useful since the version will
continue to produce errors due to the physical fault. After a version has produced
errors at several consecutive r-points, a physical fault is likely to have oécumd, and

reconfiguration is used to repair the system.

Reconfiguration techniques have been used to repair systems from physical
faults successfully in a number of systems [Toy78, Hopk78, Wens78]. The
techniques basically involves &§comwdng the faulty channel from the system,
replacing it with a standby spare or rescheduling its tasks to the remaining

components.
The state of the system after the reconfiguration may be classified as [Aviz78]:

1. Fully recovered - the system returns to the state that existed before the fault

occurred.

2. Degraded - it returns the system to a fault-free state but with a reduced

computing capacity.

3. Safely shutdown - the system is degraded to a state with no computing

capacity.

If a multi-version software system has more channels than the number of
independent versions, reconfiguration is done by migrating the version in the faulty
channel to a redundant one for full recovery. The migrated version is brought to the
current state obtained from the decision state of the good versions. If there is no

redundant channel, depending on the situation, the system can be degraded in one of
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the following three ways:

1. The system is degraded such that there is one less version. If the system was
running with more than three versions, majority decisions can still be obtained

from the remaining versions.

2, The system is degraded such that there is one less channel, but the version of
the disconnected channel is migrated to another functioning channel. Of
course, a channel that runs two versions will take longer to produce both

results.

3. This is similar to the first one, but instead of throwing away a version, that
version is kept as a standby. Its state is updated at r-points with the decision

state so that it can be brought into use whenever the two remaining versions

disagree.

The first approach lowers the reliability of the system, since fewer versions are
used in the comparison. The second reduces the computing capacity of the system.
The choice depends on the overall system reliability requirement, real-time constraint,

and available computing resources.

3.7 Future Improvements of DEDIX

DEDIX can be improved in the following ways in order to make it able to
tolerate hardware faults, more flexible in comparison of results, and to improve

performance for extensive testing:
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The simple ring structure currently implemented in the Transport Layer does
not allow a site crash. A redundant interconnection structure should be
introduced so that reconfiguration can be possible when physical faults occur

on the links or sites.

The current Decision Function treats a cc-vector as a single result in the
comparison. Under this implementation, a 3-version MVS system reaches no
consensus if two versions fail on different variables, despite the fact that there
is a consensus on each variable. DEDIX should provides options for the users
to choose the granularity of the comparison. The Decision Function should
also allow user-specific decision algorithms being used, such as adaptive
voting [Broe75], or utilize only a subset of all N results for a decision, for

example, the first result that passes an acceptance test.

DEDIX is intended to provide two distinct research and utilization
opportunities. First, it serves as an experimental vehicle for fault-tolerant
design investigations; and second, it will be a very high-reliability and
continuous availability system for users who have a need for exceptionally
reliable computing. Experiences on the use of DEDIX showed that these two
goals are not compatible. The current DEDIX has too much overhead on the
Transport and Synchronization layers because of the fault-tolerant provisions,
making it too slow for extensive testing on the versions. Other configuration

of DEDIX should be investigated for a highly efficient testbed.
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CHAPTER 4
RELIABILITY MODELS FOR MULTI-VERSION SOFTWARE

A number of analytic models have been proposed for evaluating reliability of
fault-tolerant software. In [Gma80], the performances of both the multi-version
software and the Recovery Blocks software fault-tolerant strategies were evaluated
using queueing models. The results showed that the models can be useful for system
designers in decidingr which of the strategies should be used, depending on system
parameters. Laprie [Lapr84] has developed a Markov model which enables one to
account for the failures due to design faults in evaluating the reliability of a system.
The model has been applied to evaluating the reliability of the recovery block scheme
as an example. A probabilistic model has been developed by Eckhardt and Lee for
analyzing the effectiveness of multi-version software subjected to coincident errors

[Eckh85].

The reliability models developed in this chapter for the multi-version software
scheme follow the principles of Laprie’s work. The models account for the failures of
the underlying system that executes the diverse versions and the CER scheme for the
error recovery. Two reliability models are developed according to the operation of
DEDIX, one without recovery and the other with recovery. The models are based on

the execution of three program versions on DEDIX.
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4.1 Execution Model of MVS on DEDIX

The model for the execution of the diverse versions is shown in Figure 4-1.
Each version communicates with its local copy of DEDIX, which exchanges
information with the other DEDIXs through the services provided by the underlying
computer system. Without CER, a version sends the computed result to its local
DEDIX at cc-points. The results are exchanged and compared. Faults in minority
versions are masked through the comparison. However, without CER, the failed
versions are not recovered. With CER, a version sends the computed result to its local
DEDIX at cc-points. The results are exchanged and compared. The decision result is
sent back to the failed versions for recovery. At recovery points, if failures are
detected in any versions at the cc-points, the internal states of the good versions are
exchanged and compared. Then the decision state is sent to the failed versions for

recovery.

4.2 Typesof Errors

In multi-version software, the functional requirements of an application are
determined by a specification from which the independent programming teams
implement the program versions. Hence an error in the specification, labeled as
CE(V,V2,V3) for a similar error of the three versions, may lead to system failure.
Each programming team may make independent errors, labeled as IE(V;) for an
independent error in version i, during the design and implementation of the version.
During the execution of the versions, DEDIX may have an error, CE(D), for
common-mode failure caused by DEDIX, which leads to failure of the system. The

recovery mechanism may not be successful, so that a failed version is not recovered.



Version 1 Version 2

Vcrs_ion 3

DEDIX DEDIX

DEDIX

Underlying Computer System

Figure 4-1: Execution Model of MVS on DEDIX
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This failure is labeled as IE(R). It should be noted that independent errors of DEDIX,
or [E(D), may occur in the system if 1) each site has an independently implemented
DEDIX system, or 2) Heisenbugs [Gray86] occur, which by their nature appear to be
randomly distributed across sites. However, this type of error is not included in this

analysis.

4.3 Basic Assumptions
The following is assumed in developing the models.

1. The errors caused by the underlying system (hardware, operating system, etc.)
on which DEDIX -and the versions are executed are not included in this
analysis.

2. Versions are implemented in modules with cross-check points or recovery
points placed between them. To simplify the analysis, both the execution
durations and the failure rates of each module of the versions are the same.

3 Versions interact with DEDIX through cross-check points and recovery points.
We do not distinguish between cross-check points and recovery points, i.e.,
they have the same execution durations and failure rates.

4, If recovery is unsuccessful, the failed version is assumed to produce erroneous
results in subsequent computations. This is a pessimistic assumption since

versions that fail at one cc-point may produce cormrect results at later cc-points.



4.4 Reliability Model Without Recovery

In this model, DEDIX is assumed to provide only the communication and
decision functions for the three versions to run in parallel and to compare results for
masking faults, Figure 4-2 shows the detailed state diagram of the reliability model.
Initially, the system is in the idle state (I) with zero failure rate and idle ciuration im.
The versions are executed (V) with an execution duration 1/yy until a cc-point is
reached. Their results are compared by DEDIX (D) with a duration 1/yp. The
versions either continue the computation or go to the idle state after the comparison.
The activation ratio q is the probability that the versions will be resumed after a cc-
point. During the execution, independent errors may occur in the versions at a rate
Ay. If there is only one version that has an error at a cc-point, the system will be
degraded to two versions (the 1 I[E(V) states). Independent errors in more than one
version, common-mode errors of the versions with a rate Ao, or failure of DEDIX

with a rate Ap, all lead to failure of the system (CF).

By merging common states and considering the fact that the execution rates

are much larger than the failure rates, the state diagram is simplified to Figure 4-3.

4.5 Reliability Model With Recovery

In this model DEDIX is assumed to provide recovery to failed versions
through the cc-points and recovery points. A detailed state diagram of the reliability
model of three versions nunning on DEDIX with recovery is not shown here. Figure
4-4 shows the simplified state diagram. It is similar to the one without recovery
except that here DEDIX attempts to recover a failed version if an error occurs.

Unsuccessful recovery of one version will leave the system with two good versions.
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Figure 4-2: Detailed State Diagram of the Reliability Model Without Recovery
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Figure 4-3: State Diagram of the Reliability Mode! Without Recovery
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Figure 4-4: State Diagram of the Reliability Model With Recovery
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4.6 ARIES Evaluation

ARIES 82 (Automated Reliability Interactive Estimation Systein) [Maka82], a
reliability estimation tool for fault-tolerant systems developed at UCLA. ARIES 82
supports the evaluation of models for four specific types of fault-tolerant systems,
namely, closed systems, repairable systems, systems with transient fault recovery, and
periodically renewed closed systems. In addition, it allows users to evaluate more

complex systems which can be modeled under finite-state homogeneous Markov

processes. Our evaluation makes use of this additional feature.

4.6.1 State Transition-Rate Matrices of the Models
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The models developed in Figure 4-3 and Figure 4-4 are evaluated using

The state transition-rate matrix for the mode! without recovery is as follow:




The state transition-rate matrix for the model with recovery is as follow:

/
-M n 0 0
w(1-9  -b-M g 0
0 W “W-Ae-3hv v
0 0 ™ “Yr-Ax
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
\

0 0
0 0
0 0
Ap 0
“W-Ac-2hy Ay
Y9 “Yo-Ap
0 /i
0 0

The following parameter values are used in the evaluation:

Version Failure Rate
Correlated Failure Rate
DEDIX Failure Rate
Recovery Failure Rate
Version Execution Duration
DEDIX Execution Duration
Recovery Execution Duration
1dle Duration

Activation Ratio

Ay =1/ hour;

Ac =0.01;

Ap =0.01;
Ag=0.0land 1;
1A% = 0.01 hour;
Wp = 1My

1R = 1Ap;
Im=1/y *10;
q=09.

w(1-q)

“Yr

Figure 4-5 plots reliability against time for the models with and without

recovery. The graphs show that three versions running on DEDIX in a multi-version

software configuration have a higher reliability than a single version. With recovery,
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even with a relatively high recovery failure rate, the reliability is much higher than
without recovery. When the failure rate of the versions, Ay, increases, as shown in
Figure 4-6, the reliability of a three version multi-version software system without
recovery becomes lower than a single version; however, the reliability is stll good

with recovery.
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CHAPTER 5
EXPERIMENTATION ON MULTI-VERSION SOFTWARE

5.1 Previous Experiments on MVS

A number of experiments to investigate the role of multi-version software in

the production of fault-tolerant software have been performed at UCLA since 1975.

5.1.1 Zero Generation

The objectives of this initial MVS research effort at UCLA (1975-1978) were:
1) to study the feasibility and effectiveness , and 2) to identify problems or difficulties
in using MVS as a means to tolerate design faults. Two experiments were performed.
The first involved 27 diverse programs of a text editor and the second used three
different algorithms to enforce another level of diversity among the resulting 16
programs of a scientific application. Both applications were specified in English and
programmed in PL/1. These exploratory research demonstrated the practicality of the
MVS approach and the need for high quality software specifications [Chen78b,
Chen78a).
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5.1.2 First Generation

The objectives of the next phase of UCLA research (1979-1982) concentrated
on the investigation of the relative applicability of various software specification
techniques. Three specification languages were used to compare the effects of a
formal specification written in OBJ [Gogu79], a non-formal spcciﬁcatioh written in
PDL [Cain75], and a "control” specification written in English. Eighteen programs of
an "airport scheduler” application were developed with an average length of about 500
lines of PL/1 code. The research concluded that the MVS approach is a viable
supplement to fault avoidance and removal techniques for producing highly
dependable software. It was also found that specification errors are the most serious

because they can lead to similar errors in the final program versions [Kell82, Kell83].

5.2 The NASA-Four University Multi-Version Software Experiment

Encouraged by the results from the previous experiments in fault tolerant
software, the NASA Langley Research Center began funding the NASA-Four
University Multi-Version Software Experiment in 1984 [Kell86). This large-scale
experiment was designed to evaluate the performance of the MVS approach to fault-
tolerant software in a realistic aerospace application developed under a controlled
software development process which is indicative of industry practice. The goals

include:

1. Reliability assessment. To obtain empirical estimates of the reliability of the
programs both executed individually and in multi-version configurations in
order to make quantitative assessment of the effects of multi-version systems

on overall reliability.
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2. Characterization of faults. To determine what faults the programs contain in
order to facilitate their avoidance during development and avoidance during

testing.

3. The role of error recovery. To evaluate the effectiveness of the CER method

to recover errors of the failed versions.

The NASA-Four University Multi-Version Software Experiment involves four
universities, University of California at Los Angeles, the University of Illinois at
Urbana-Champaign, North Carolina State University, and the University of Virginia,
as well as the Research Triangle Institute (RTI), and Charles River Analytics (CRA).
The specifications were written by RTI and CRA. Tools, the preliminary acceptance
test and experimentai coordination were provided by RTI. CRA has now assumed the
role of customer and specification arbiter, and is providing flight simulation test data.
Each university employed ten graduate students to generate five program versions. In
order to ensure the versions were independently generated, people involved in the
design and coordination of the experiment did not participate in the programming

effort.
The experiment proceeded in several phases:

1. Choice of a suitable application. The application was chosen that is both

realistic in industry and appropriately sized for the experiment.

2. Specification of the problem. The specification not only specifies the
functionality of the application, it includes a description on the CER

requirements.

3. Recruiting Programmers. All the programmers recruited are graduate students
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with a few years experience in program development.

4, Generation of redundant software versions. Ten weeks were allowed to the
programmers to design, code, and debug their programs, and concluded with

the pass of a preliminary acceptance test.

5. Validation testing. The resulting versions were subjected to extensive
preliminary testing. During validation, many errors and ambiguities in the

specification were revealed and subsequently the specification was improved.

6. Maintenance and Certification. The initial versions were maintained
according to the revised specification and passed a much more stringent

certification test.

7. Final analysis. The final versions will be analyzed according to the objectives
of this experiment.

5.3 Program Generation

Five independent programming teams at each of the four universities
generated software from a common specification. A controlled software development
process, uniform across all four universities, was designed to reflect standard industry
practice. Additionally, programmers were not permitted to discuss any aspect of their
work with members of other teams. Work-related communications between
programmers and a central project coordinator (specification expert) were conducted

via electronic mail. Copies of each question and answer pair were locally rebroadcast

to all programming teams.
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The experiment included ten weeks for software generation. These were

organized into five phases:

1.

Training. The programmers attended a brief training meeting. An
inroductory presentation was made summarizing the experiment’s goals,
requirements and the multiple version software techniques. At this meeting,
the programmers were given written specifications and documentation on

system tools.

Design. At the end of this four-week phase, each team delivered a design
document following guidelines provided at the training meeting. Each team
delivered a design walk-through report after conducting a walk-through which

was attended by silent observers including the site’s principal investigator.

Coding. By the end of this 2-week phase, programmers had finished coding,
conducted a code walk-through and delivered a code walk-through report.

Testing phase. Each team was provided four sample test data sets. No two

teams received the same test cases. Two weeks were allotted to this phase.

Preliminary acceptance test. Programmers formally submitted their programs.
Each program was run in a test hamess. When a program failed a test it was
returned to the programmers with the input case on which it failed, for
debugging and resubmission. By the end of this two week phase, all twenty
programs had passed this preliminary acceptance test.
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5.4 Application: The RSDIMU

A Redundant Strapped Down Inertial Measurement Unit (RSDIMU) is part of
an integrated avionics system [CRA85]. This unit contains eight linear sensors
mounted on the four triangular faces of a semioctahedron. Each sensor measures the
component of Estimated Acceleration along its axis. This fault tolerant configuration
requires a special component to manage sensor redundancy and to reconfigure the
system in the event of sensor failures. It uses the Edge Vector Test to detect a failed
face during the flight and then uses the Least Square Algorithm to isolate the failed

sensor on that face.

A significant amount of linear algebra, particularly matrix transformations, is
involved. There are clf;ven reference frames of interest (coordinate systems
corresponding to the earth, vehicle, sensors, etc.), four of which are non-orthogonal.
Input to the programs consists of geometric data of the system, calibration data, flags
indicating which sensors are already known to have failed, raw data measurements
from the eight sensors, etc. They are required first to identify faulty sensors and then
to compute a statistical estimate of vehicle acceleration based on the redundant set of
operational sensors. Final system status and acceleration estimates are reported by a
digital display panel as specified by an input parameter. A block diagram of the major
computations is shown in Figure 5-1, which also includes cc-points and the variables
of the cc-vectors. The defined Pascal constants, types, and variables of RSDIMU
which were provided to the programmers are included in Appendices 1, 2, and 3.
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5.5 Specification of CER in RSDIMU

Four cross-check points were specified in the original RSDIMU specification,
as shown in Figure 5-1. The additional cc-point on LINOUT shown in the figure was
later added to the revised specification. No recovery points were specified. To avoid
restricting design diversity, the decision was made not to tell programmers where to
place the cc-points in their programs. The sequence in which the cc-points occurred
and the variables involved were specified, and it was required that the variables of
each cc-point be computed but not yet used when the cc-point is reached. The
programmers were also required to use the (possibly modified) values returned by the
MYVS Supervisor in all subsequent computations.

5.6 Validation Testing on the Initial Versions

A long and careful validation phase including extensive preliminary testing of
the versions followed the 10-week program generation phase. The validation showed
that the initial versions obtained were in very poor quality. The results of the
preliminary evaluation of the initial versions can be found in {Dora86, Swai86]. The
inadequacy of the programs stems largely from the inadequacy of the original
specification and from the inadequacy of the preliminary acceptance test.

During program development, the specification was unstable. Questions posed
by the programmers were answered by RTI and broadcast to all programming teams
as the formal protocol for clarifying the specification. The number of questions (over
250) posed by the 40 programmers was overwhelming. Although most questions
derived from only a handful of errors and ambiguities m the original specifications,

each was phrased differently so that simple affirmative or negative responses were
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interpreted to have extraneous and contradictory ramifications. In the end, the

specifications had grown unwieldy and imprecise.

The preliminary acceptance test provided by RTI was grossly inadequate for
the following reasons: 1) the number of test cases was insufficient, 2) the test cases
represented only a small subset of the entire input domain, and 3) only two out of the

eleven output variables were checked for correctness.

The preliminary acceptance test did not test recovery. It ensured that the cc-
points were placed in the right sequence, but output values were checked at the end of
the execution of each version. Due to this inadequacy, most versions which passed

the acceptance test still have faults in the recovery implementation.
The design faults related to cc-points can be classified into two categories:

1. Incorrectly located cc-points. Some teams inserted cc-points at the point
where a value was first calculated. Under some circumstances, such as the
detection of a sensor failure, values would be later revised to reflect the failure.
The corresponding cc-points were located too early in the procedure. Some
versions were found to use computed values before passing them to the

decision function. These cc-points occurred too late.

2. Unused returned values. This fault occurred when a version used a local
variable in some computation and its value was assigned to the state variable
of the cc-vector before the cc-point is called, but subsequent computations still

based on the value of the local variable.
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5.7 Maintenance and Certification

The errors and ambiguities of the original specification found in the Validation
Testing has been eliminated. It has now been restored to a single document, a
document that has benefited from the scrutiny of more than 50 motivated
programmers and researchers. Furthermore, an attempt has been underway at UCLA
to formalize the RSDIMU specification using the LARCH specification languages
[Gutt8S, Tai86). Although the formal RSDIMU specification was not used in the
Certification, it contributed to the detection and correction of errors and ambiguities in
the original English specification. One more cc-point on the variable LINOUT has
been added. This will make all the eleven output variables of the application be cross

checked and recovery be done better.

Benefited from the validation process, a better acceptance test has been
developed for the certification of the versions. The new acceptance test has the

following features:

. Versions had to pass 200 test cases randomly selected from a pool of 1000

prepared cases. The test cases sampled a much larger input space.

. 55 hand-made test cases which included Extremal Test Data and Special Test

Data [Adri82].

. All output variables were checked and a much tighter skew interval for real
numbers was used.

. The output values were checked at the cc-points, which detected the incorrect

placement of cc-points. Also, special tests were included that deliberately

returned new values to some cc-points. The results of the next cc-point are
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then checked to verify the returned values were actually used.

The five UCLA versions were brought in accordance by the original

programmers with the revised specification and certified by the final acceptance test.

5.8 Characteristics of UCLA Certified Versions

Table 5-1 shows, for each UCLA certified version, the size of the source

program in number of lines of Pascal code, the size of the compiled object in bytes,

the compile time in seconds, and the execution time in milliseconds.

Table 5-1: Characteristics of the UCLA Certified Versions

Versions || Source Program | Object Code | Compile Time | Execution Time
(lines of code) (bytes) (seconds) (milliseconds)

uclai 2016 34827 95 340
ucla2 1685 38028 103 290
ucla3 1962 38003 105 300
uclad 2794 67614 107 360
uclas 1677 34411 90 220
range 1.67:1 196:1 1.19:1 1.64:1

The compile times and the execution times were measured on a lightly loaded

VAX-11/780 machine. The execution times were the average of 100 runs of test cases

identical to each version. It can be seen the size of the largest program is about two

third of the smallest one, and the object size varies by the ratio almost 2 to 1. A close

look at the implementation revealed that ucla$ is the cleanest and most well structured

program. Version uclad uses a lot of global variables and lack of structure,
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CHAPTER 6
EXPERIMENTAL EVALUATION OF CER

6.1 Testing Strategy for CER

The evaluation of CER with the five UCLA certified versions generated in the

NASA-Four University Multi-Version Software Experiment is divided into two parts:

1. Extensive random testing of cc-points. A special testing driver was used to test
the cc-point recovery implemented in the RSDIMU modules using randomly
generated test cases. In total 200,000 test cases were run through the versions

with an estimated execution time of 800 hours of a VAX-11/780 computer.

2, Systematic testing of r-points. DEDIX was used to evaluate the r-point
recovery of instrumented versions each containing a RSDIMU module. Test
cases which found one or more failed RSDIMU modules during the extensive
random testing were used. Also, verification of the r-point recovery through

systematic error seeding was carried out.

The main reason to divide the evaluation into two parts is the use of different
tools in the two testing processes. Extensive testing of the versions requires the use of
an efficient testing harness. However, DEDIX was designed to be a general purpose
MYVS supervisor which is too slow for this purpose. Hence a testing driver specially
designed for the testing of the RSDIMU modules has been used. DEDIX was used in

the testing of r-point recovery because the testing requires a sophisticated MVS
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supervisor for state recovery and version restart.

6.2 Testing Driver for CC-Point Recovery

A Test Case Generator (TCG) is used throughout the extensive cc-point
recovery testing to generate random test cases. The TCG uses a reverse algorithm
which begins by assuming some fixed geometry angles, temperature readings, scales,
offsets of the sensors, and the display mode. It randomly selects which sensors will be
noisy, which will have failed before the flight, and which will fail during the flight. It
then projects a vector representing gravity on cach sensor. These projections are
converted into values in “"counts” with the introduction of noise according to the array
of noisy sensors, creating the raw sensor readings at calibration. It also chooses an
acceleration vector and projects it onto each sensor, modified with noise according to
the selected array of sensors that failed during the flight, creating the in-flight raw
sensor readings. Figure 6-1 shows the block diagram of the TCG with the input and
output variables indicated. Italics indicate which of the values are randomly selected
by the TCG. The TCG has been designed to sample the input space as thoroughly as
possible. Discrete variables are selected with all possible combinations, while
continuous variables are sampled evenly on their largest possible ranges. With this
reverse algorithm, the TCG not only generates the input data, but some known output
values of the test case are also provided since these values were used by the reverse

algorithm to generate the input data.

After the TCG has generated the data for a test case, individual versions are
executed consecutively, using the same input data. If a majority of similar results

exists, they are used to decide the reference output which is further checked by the
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Figure 6-2: Flow Diagram of the Testing Driver
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known TCG output values to ensure its consistency. At the same time, individual
version failures are identified. This failure information is used to generate
"interesting" 3-version combinations (triplets) using the assumption that all majority
versions are identical. That means triplets of three different good versions, such as
(G1, G2, G3) will be eliminated; triplets of two good versions, such as (G1, G2, B),
(G1, G3, B), and etc., will be treated as one, i.e. (G, G, B). In this way, many triplets
can be eliminated from testing. The interesting triplets are then executed in a MVS
configuration. The decision results are passed back to the failed versions to attempt
recovery at the cc-point level. Decision results of the triplets without recovery are
obtained simply by comparing individual version outputs of the combinations. The
decision results, both a) without recovery and b) with recovery, are then used to
determine the results of the recovery. The process is then repeated for further test

cases as shown in Figure 6-2.

6.3 Observed Faults in the Versions

We define a fauit to be any instance of program text that causes the program to
produce erroneous outputs when that program text is executed on some test cases.
During the CER evaluation process several faults have been found in the five UCLA
certified versions. Table 6-1 summarizes the observed fauits and their effects on the

outputs,

The fault uclal-1 manifested itself in the testing because of the use of a Pascal
compiler in the testing harness, while a Pascal interpreter was used in the program
development and certification processes. Obviously the interpreter initializes

variables in a Pascal procedure while the compiler does not. Since this fault fails the
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Table 6-1: Characteristics of Observed Faults

Label Class Fault Effect

uclal-1  incorrect uninitialized incorrectly
algorithm variable set sensor failure

uclal-2  incorrect incorrect display incorrect
algorithm rounding display

uclal-3  incorrect handle overflow incorrect
algorithm incorrectly display

ucla2 no known fault

ucla3-1  spec mis- use individual vs. incorrect

interpretation average slope values  sensor status

ucla3-2  spec mis- use wrong incorrect
interpretation frame of reference SEnsor status
ucla3-3  spec set system failure set system
ambiguity if inconsistency in failure
fault detection and

fault isolation

ucla3-4  incorrect display incorrect
algorithm rounding display
ucla3-5 incorrect overflow incorrect
algorithm not handled display
uclad-1  spec set system failure set system
ambiguity wrongly in fault failure
isolation

uclas no known fault
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version more than half of the time, it is taken out in our evaluation. One of the display
functions is to display the five most significant digits and the decimal point of the
Estimated Acceleration which is a floating point number. Two versions fail to round
the numbers correctly, although in different ways: uclal does not round up when the
last four digits are a run of 9’s (fault uclal-2), while ucla3 separates the rounding of
the integral and mantissa parts, so the carry from the mantissa is dropped (fault ucla3-
4). When the Acceleration has value larger than 99999, only 99999 should be
displayed. Version uclal uses 100000 as the threshold instead of 99999 (fault uclal-
3), so any value between them will be displayed incorrectly. The programmers of
ucla3 missed overflow handling (fault ucla3-5).

Both versions ucla3 and uclad4 incorrectly identify failures of the RSDIMU
systemt on some test cases for different reasons but would be triggered by the same
input. The RSDIMU specification requires that after a face of the semioctahedron has
been found to have failed, the program isolates the failed sensor on that face. In some
cases the isolation algorithm does not find any sensor failure on the detected failed
face. Version ucla3 sets the RSDIMU system to failure in these cases while the others
just continue the execution (fault ucla3-3). Version ucla4 sets the RSDIMU system to
failure when four of the six Edge Relations in the Edge Vector Test for fault detection
are violated (fault uclad-1). Although the original specification is ambiguous and
implicitly implies that this situation would not happen, the revised specification
clearly indicates that this is not an abnormal situation. Another fault of ucla3 is the
incorrect use of frame of reference in the Fauit Isolation algorithm (fault ucla3-2).
Since the misalignment angles between the two frames of reference are very small, it

is difficult to detect the fault in the acceptance tests.

+ The RSDIMU system fails when there are not enough working sensors in the
system to compute the Estimated Acceleration.
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6.4 Observed Errors in the Versions

The five UCLA certified versions were subjected to an extensive testing using
200,000 random test cases. The following are the failure statistics of the versions

collected during the testing.

6.4.1 Failures of the Individual Versions

The result of a version running a test case is defined erroneous if one or more
of its output values (out of a total of 64) differs from the reference values as defined in
section 7.2. We also say that the version fails on that test case. Table 6-2 shows the

observed failures for the individual program versions in the 200,000 test cases.

Table 6-2: Failures of Individual Versions

Number of Faiiure
Version Failures Probability
uclal 1 0.0000050
ucla2 0 0.0000000
ucla3 702 0.0003510
uclad 283 0.0001415
ucla$ 0 0.0000000

It must be noted that the failure probability depends very much on the test case
generator, and the range of variation (skew) that is allowed in comparing results. We
consider that the versions tested in this evaluation were under stress because the test
cases were sampled randomly from the largest possible input space. In actual flight,

extremal input data are much less likely to happen.
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6.4.2 Coincident Failures of the Versions

Two versions are said to fail coincidently if they both fail (produce erroneous
outputs) on the same test case. Table 6-3 shows the observed coincident failures of
the versions. It has been observed that no more than two versions have failed at the

same test case during the 200,000 test runs. Errors may be similar or distinct.

Table 6-3: Coincident Failures of the Versions

Version | ucla2 ucla3 uclad  ucla$
uclal 0 1 0 0
ucla2 0 0 0
ucia3 110 0
uciad 0
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6.4.3 Similar Errors of the Versions

It should be noted that the results of the versions which fail coincidently may
not be similar. Similar results are defined to be two or more results (good or
€IToneous) -that are within the range of variation that is allowed by the decision
algorithm. When two or more similar results are erroneous, they are called similar

errors [Aviz86].

Table 6-4: Similar Errors of the Versions

Version | ucla2 ucla3 uclad ucla$
uclal 0 0 0 0
ucla2 0 0 0
ucla3 96 0
uclad 0
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6.5 Faults vs. Errors

In order to measure the number of errors caused by each of the detected faults,
the faults found during the extensive testing were all removed and were put back to
the versions one by one. These versions were then run through the test cases that had

caused failures of the respective version. Table 6-5 shows the results.

Table 6-5: Faults vs. Emrors

Number of
Fault Failures
uclal-1 numerous
. uclal-2 1
uclal-3 0
ucia3-1 320
ucia3-2 404
ucla3-3 54
ucla3-4 65
ucla3-5 0
ucla4-1 283

The faults uclal-3 and ucla3-5 were not triggered in the 200,000 test cases.
They were uncovered through code inspection. Some test cases triggered more than
one fault in a version, hence the sum of all errors of version ucla3 in Table 6-5 is
larger than thc total number of failures shown in Table 6-2. With the presence of
other faults in the version, a fault may or may not be triggered due to the erroneous

state caused by the other faults.

Faults in the multiple versions affecting their decision results may be divided

into two classes: independent, and related [Aviz86]. Faults in the multiple versions
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are considered to be related if they are attributed to some common cause, such as a
common link between the separate design efforts, otherwise they are considered to be
independent. The faults ucla3-3 and uclad-1 are related because they are caused by the
ambiguity of the specification. Although the faults uclai-2 and ucla3-4 both cause
rounding errors and sometimes produce similar erroneous results, they are
independent because they do not have a common cause. The faults uclal-3 and

ucla3-5 may also produce similar erroneous results, nontheless the chance is slight.

The approach that is employed by MVS to avoid related faults in the multiple
versions is the maximal independence of design and implementation efforts.
Obviously, the single specification used in this experiment becomes the most likely
source of related faults. Independent faults producing similar errors should also be
systematically avoided bSr enforcing diverse algorithms, design tools, and testing
methods. None of these were employed in this experiment. In fact, the design tools
used by each programming team were the same and each version was accepted based
on the same acceptance tests. It is those parts of the program texts that had not been
exercised in the two acceptance tests that caused most of the faults that produced

similar errors.
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6.6 Classification of Triplet Decisions

In the analysis of recovery the individual versions are combined into 3-version
MVS systems (triplets). MVS systems of two versions cannot perform recovery if no
extra information is supplied to determine which one of the two versions is good.
MVS systems with four versions and five versions are not analyzed in this research
because we found at most two versions failed at the same test case in all the test runs.
That means combining the versions into 4-version MVS system will at worst have no
majority in the comparison, and a 5-version MVS system will always have a majority
of good versions. Analysis of these results will not be fruitful. Besides this, a 3-
version MVS system is most practical in practice because of the high cost in

generating software versions.

We wish to introduce the concept of decision before we discuss the results of
recovery. As has been mentioned previously, a decision result is the single consensus
result obtained from the comparison of the individual version results using a decision
algorithm. The decision result may be a consensus of all the versions, or of a majority
of the versions. Sometimes there is no decision result because no consensus can be
obtained. The number of versions that are in consensus gives the decision result the
confidence level. Also a decision result may be good or erroneous depending on the
correctness of the majority similar results. A decision summarizes the confidence
level and the correctness of the decision result. OQur analysis is interested in the
decisions made by the decision algurithm, not the decision results per se. The
decisions of a triplet can be classified into five categories as shown in Table 6-6. In
the figure "G" represents a good result, while "B" represents an erroneous result. We
do not distinguish similar results from each other, whether they are good or erroneous.

"B1", "B2", and "B3" represent distinct erroneous results.
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Table 6-6: Classification of Triplet Decisions

Individual
Decision Results Comment

GOOD3 G G G | All the three versions produce good results (G).
The triplet not only has the good decision
result, but also shows high confidence for its
resuit,

GOOD2 | G G B | Only two versions are good. The error (B) of
the failed version is masked by the majority.

NOMAJ | Bl B2 G | All the results are different from each other.

Bl B2 B3 | We donot distinguish whether there exists a
good version or not. This decision is a fail-

safe result,

BAD2 B B G | A similar error occurred in two versions.
B B Bl | Again we do not distinguish whether the third
version is good or bad.

BAD3 B B B | A similar error in all three versions. Itis
seriously bad because the triplet not only
produces an erroneous result, but also shows
high confidence for the resulit.
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6.7 Analysis of CC-Point Recovery

Two approaches are used for estimating the effectiveness of cc-point recovery.
The first one is based on the comparison of cc-point decisions of a triplet executed
without the recovery provision and the cc-point decisions of the same triplet executed
with the recovery provision. Instead of looking at the improvement of cc-point
decisions, the second approach examines the difference in decision results produced
by the RSDIMU modules in triplet if recovery provision is in place. This approach is

more related to the application itself.

6.7.1 Results on CC-Point Improvement

The objective of cc-point recovery in a triplet is to recover a failed version
from errors that has occurred at some cc-point so that normal execution can continue
and good results can be produced at subsequent cc-points. Figures 6-3, 6-4, and 6-5
show some of the possible changes in cc-point decisions after an attempted recovery.
Figure 6-3 is a successful recovery of a single error. The decision of the subsequent
cc-points have been changed from GOOD2 to GOOD3. Figure 6-4 shows a successful
recovery of two failures on different modules in two versions. The decision of the
third cc-point has been improved from NOMAJ to GOOD3. An unsuccessful
recovery is shown in Figure 6-5. The similar error of the two failed versions produces
an erroneous decision result and an attempted recovery forces the only good version to
fail in the same way. Hence one way to evaluate the effectiveness of cc-point
recovery is by examining the improvements on the decisions of the cc-points after an

attempted recovery. Table 6-7 summarizes the results of the 200,000 test runs.
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Table 6-7: Results on CC-point Improvement

Without With Triplets of 2 good | Triplets of 1 good
recovery | recovery | and ! bad versions | and 2 bad versions | Total
GOOD2 | GOOD3 1259 3 1262
NOMAJ | GOOD3 0 7 7
NOMAJ | GOOD2 0 3 3
NOMAJ BAD3 0 15 15
BAD2 BAD3 0 127 127
Total number of changed cc-points 1414

Most decisions remained the same whether or not there was recovery provision
and their number is not shown in the table. The main reason is that triplets of three

good versions always produce GOOD?3 decisions and recovery is not activated.

Almost 90% of the changed cc-point decisions are from GOOD?2 to GOOD3,
meaning that errors occurred in a single version of the triplets had been recovered
successfully by the recovery provision. The improvement of the decisions from
GOOD2 to GOOD3 should not be diminished by the fact that the decision results of
the two decisions are the same so that the change is only on the confidence level. It is
this improvement that makes the 3-version MVS system fully recovered and ready to
tolerate another fault if that would happen in the subsequent computations. The
improvement of the decision from NOMAJ to GOOD?2 or GOOD3 demonstrates this
effect. Since the RSDIMU module has only five computations and all the observed
errors occurred after the second one, the situation that a fully recovered triplet

tolerates a second fault does not happen very often,

The 127 cc-points that have their decisions changed from BAD2 to BAD3

show that the good version in those cases was forced to fail in the same way after a
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recovery attempt. However, with similar errors in majority of versions, the MVS

system is assumed to fail.

The 15 cc-points that have their decisions changed from NOMAJ to BAD2 are
bad because the triplicated RSDIMU MYVS system has been changed from a fail-safe
state to an unsafe state. Let us investigate how such decisions had happened by
examining the details of a sample test case. A coincident error occurred in ucla3 and
uclad4 at the third cc-point comparing the LINFAILOUT - an array of final sensor
status. Suppose version ucla2 produced a good output, the results of the versions will

be as follows:

LINFAILOUT
ucla2 (000000O00O0)
uclad (00000CO010)
ucla3 (11 111111)
decisionresult (0 0 0 0 0 0O 1 0)

Without recovery, the next computation for the Estimated Acceleration will be
a NOMALJ decision because the versions have a different set of working sensors. With
recovery, the erroneous decision result will be used by all the three versions and they
produce a similar erroneous result on the Estimated Acceleration based on the same
set of working sensors. In the later section we will discuss how this erroneous

recovery can be avoided.
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6.7.2 Results on RSDIMU System Improvement

The second approach to evaluate the effectiveness of cc-point recovery is by
comparing the decision results of a triplicated RSDIMU system executed without the
recovery i)rovision and the one executed with the recovery provision. A RSDIMU
system is considered to be working properly if it computes the final Systemn Status and
Estimated Acceleration in agreement with the majority-derived reference result. This
decision is made at the fourth cc-point. We expect that if there are errors occurred at
the first three cc-points, and if cc-point recovery is effective, a failed version will be
recovered and produce a good final result. We do not account for the output of the
Display Driver because in many cases the Driver is requested to display merely a test
pattern, In these cases the’ Display Driver can produce a correct result even though the

RSDIMU module fails to compute the Estimated Acceleration correctly.

Table 6-8 shows the number of decisions in each category of different triplet
combinations without the recovery provision over 200,000 test cases. There are ten

distinct triplets available with five versions. Therefore there are a total of 2,000,000

decisions.
Table 6-8: Decisions of Triplets Without Recovery
Triplets of 2 good | Triplets of 1 good | All possible triplets
Decision { and 1 bad versions | and 2 bad versions | (2000000 possible)
GOOD3 63 1 1998967
GOOD2 923 3 926
NOMAJ 0 11 11
BAD2 0 96 96
BAD3 0 0 0
Total 986 111 2000000
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There is no triplet composed of three failed versions because no test case failed
more than two versions was found in the testing. Triplets of three good versions
which produce GOOD?3 decisions are added to the last column of the table. From
Table 6-8 we can observe that triplets consisting two good versions and one failed
version invariably have masked the error in the failed version successfully. For
triplets with two failed versions and one good version, there are 96 decisions in the
BAD?2 category which show the presence of a similar error in the two versions. There
are 67 decisions in the GOOD3 category even the triplets consist of one or more failed
versions because our analysis considers results of the System Status and Estimated
Acceleration only, and these failed versions were able to compute them correctly but

failed in the Display Driver.

Table 6-9 shows the results obtained from the triplets executed with the
recovery provision. Compared to Table 6-8, all the 926 GOOD2 decisions have been
improved to GOOD3 for those triplets with only one failed version, that means the
failed version had been successfully recovered at the cc-point at which it failed and

was able to produce a correct result.
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Table 6-9: Decisions of Triplets With Recovery

Triplets of 2 good | Triplets of 1 good | All possible triplets
Decision | and 1 bad versions | and 2 bad versions | (2000000 possible)
GOOD3 986 13 1999902
GOOD2 0 0 0
NOMAJ 0 0 0
BAD2 0 0 0
BAD3 0 o8 98
Total 986 i11 2000000

Results of the cc-point recovery are not as good for triplets with two failed
versions. Although it is found that 9 decisions have been improved from NOMAJ to
GOOD3, in 98 triplets similar errors in two failed versions have forced the good
version into failure by attempting recovery. Table 6-10 summarizes the results of the

cc-point recovery based on the RSDIMU system improvement over the 200,000 test

cases.
Table 6-10: Results of RSDIMU System Improvement
Without With Triplets of 2 good | Triplets of 1 good
recovery | recovery | and 1 bad versions | and 2 bad versions | Total
GOOD2 | GOOD3 926 3 026
NOMAJ | GOOD3 0 9 9
NOMAJ | BAD3 0 2 2
BAD2 BAD3 0 96 96
Total number of changed triplicated RSDIMU resuits 1033

The most common similar errors observed during the testing are due to

situations that both versions ucla3 and uclad4 declare the RSDIMU system failed,
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which will set all sensor status to non-operative and the estimated acceleration to zero.
The program faults (ucla3-3 and ucla4-1 in Table 6-1) are due to extra checks on
conditions that should not happen in the original specifications, but which were
changed during the course of program development and certification. However, it
should be noted that such outputs lead to a fail-safe response of shutting down the
system in the RSDIMU application.

6.7.3 Granularity of Comparison

In order to determine the decision result from several versions, the Decision
Function must compare and classify computed values. It is found that the granularity
of comparison has a profound influence on the decisions of the triplets. The five cc-
points specified in the RSDIMU application compare eleven variables. Most of them
are of complex type, e.g., an array of 8 Booleans for sensor status, and a structure of 3
real numbers for acceleration components. A total of 64 elements is found in the
eleven variables. We can compare their computed values based on 1) elements, 2)
variables of complex types, and 3) cc-points of several variables. For comparisons
based on variables and on cc-points, two versions agree only if each of their

corresponding elements agree.

Comparison based on elements has a potential benefit that consensus may be
reached in the face of coincident errors in a majority of versions. For example, in a
~ particular test case there should be no sensor failure determined by the computation,
but ucla3 incorrectly detects sensor 2 failed and ucla4 incorrectly detects sensor 5

failed. Their outputs on sensor status are as follows:
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LINFAILOUT

ucla2 (0000O0O0O0O0)
ucla3 (01 000000)
uclad (00001000)
decisionresult (0 0 0 0 O 0 O 0)

The consensus is a correct decision with the error masked and recovery on ucla3 and
uclad will enable them to compute the acceleration correctly based on data from eight
sensors. However, if the comparison is based on the single variable of "eight sensor

status,” there will be no majority decision, and a safe shutdown should follow.

However, comparison by elements also has a potential danger of making a
wrong decision. In the above example, if ucla3 incorrectly identifies system failure
and sets all sensors to non-operative, the decision based on comparison by elements

on the following outputs

LINFAILOUT
ucla2 (00000O0O0CO0)
ucla3 (11111111)
uclad (00001000)

decisionresult (0 0 0 0 1 0 0 O)

will lead to an incorrect decision result. After cc-point recovery, ali the versions will
be forced to have their sensor status as these erroncous values, and most likely it will

lead to a BAD3 decision on the Estimated Acceleration.

The results in Tables 6-7, 6-8, and 6-9 are based on comparison by elements.
Table 6-11 shows the results of triplets with recovery based on comparison by

variables.
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Table 6-11: Decisions of Triplets With Recovery
(comparison by variables)

Triplets of 2 good | Triplets of 1 good | All possible triplets
Decision | and 1 bad versions | and 2 bad versions | (2000000 possible)
GOOD3 986 5 1999894
GOOD2 0 0 0
NOMAJ 0 10 10
BAD2 0 0 0
BAD3 0 96 96
Total 986 111 2000000

Compared with Table 6-9, the results show exactly the consequences of using a larger
granularity: it lost the potential to have more agreement, but also reduced the risk of
making erroneous decisions. We have found that the results based on comparison by
a complete cc-vector at a cc-point are the same as by individual variables within the

CC-VeCctor.

6.8 Analysis of R-Point Recovery

Recovery points were not specified in the RSDIMU specifications. However a
test program can be easily composed such that the RSDIMU module is the first
module with an auxiliary (AUX) module added and a recovery point inserted between
them. The AUX module contains nothing but a new cc-point (ccp6) used to check if
the AUX module is indeed executed and started with a correct version state. The
skeleton of the instrumented program has been shown on Figure 4-6. The version
state at the beginning of the AUX module for our purpose has been defined as a

collection of all the eleven output variables and two other variables in the RSDIMU
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module found to be common to all the versions. With the version state defined, two
exception handlers similar to those illustrated in Figure 4-7 have been implemented

for state input and output and used by all the versions.

DEDIX was used for the testing because recovery at the recovery point level
requires a sophisticated MVS supervisor for keeping track of errors detected at the

cc-points, invoking the exception handlers, and restarting an aborted version.

The evaluation of r-point recovery was performed in two steps. The first one
used the test cases which were found to cause failure of some versions during the
extensive cc-point testing. The second one used systematic error seeding into the
versions for verifying the effectiveness of the r-point recovery mechanism which was
not tested completely usiﬁg the random test cases since there were no control flow

errors observed in the versions.

6.8.1 Resuits Based on Previous Test Cases

All the test cases which failed some versions found in the extensive cc-point
recovery testing were used to test triplets of the instrumented programs for r-point
recovery. The evaluation is similar to the previous one on RSDIMU system
improvement with cc-point recovery. The previous evaluation examines the result
(System Status and Estimated Acceleration) of a triplicated RSDIMU system. In this

evaluation we examine the version state after the recovery point.

All possible outcomes of a DEDIX test run executing a triplet of instrumented
versions each consisting the RSDIMU module, a r-point, and the AUX module are
shown in Table 6-12 {(not all actually occurred).
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Table 6-12: Possible Outcomes of a DEDIX Test Run

QOutcome Comment

CCP-NM Test run terminated because of no majority
occurred at the cc-points in the RSDIMU
module.

RPID-NM Test run terminated because of no majority
in comparing the r-point ids; this will occur
when some version has control flow fault.

STATE-NM | Test run terminated because of no majority

_in comparing the version states at r-point.

CCP6-G3 GOOD3 decision at the cc-point in the
AUX module after the r-point recovery.

CCP6-G2 GOOD?2 decision at the cc-point in the
AUX module after the r-point recovery.

CCP6-NM NOMALJ decision at the cc-point in the
AUX module after the r-point recovery.

CCP6-B2 BAD?2 decision at the cc-point in the
AUX module after the r-point recovery.

CCP6-B3 BAD?3 decision at the cc-point in the
AUX module after the r-point recovery.

DEDIX-E DEDIX itself terminated because of its

internal errors.
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The results, which are summarized in Table 6-13, show that for triplets with
only one failed version, 983 of the 986 version states of the failed versions were
recovered correctly after the recovery point. There are three cases in which DEDIX
terminated because of disagreement in comparing version states. In the testing, the
good versions we used for the triplet were the first two good versions in the order
according to their version id, so they are different versions. It was found that in those
test runs although uclal produced good outputs at the cc-points in the RSDIMU
module, in fact it had an erroneous internal state. The two additional variables
included in the defined state revealed the errors. The 96 triplets that produced BAD3
decisions shown in Table 6-11 had no majority in comparing the version states. This
is because the two versions both incorrectly identified that the RSDIMU system failed
and produced similar errors that were due to different faults. The two variables
included in the internal state, one is the id number of the failed face, the other is the
threshold determining a sensor failure, revealed the differences. This shows that -
point checking is more effective than cc-point only since all the 111 BAD2 decisions
were properly detected.
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Table 6-13: Results of R-Point Recovery

Triplets of 2 good | Triplets of 1 good
Result and 1 bad versions | and 2 bad versions | Total
- CCP-NM 0 12 12
RPID-NM 0 0 0
STATE-NM 3 96 99
CCP6-G3 983 3 986
CCP6-G2 0 0 0
CCP6-NM 0 0 0
CCP6-B2 0 0 0
CCP6-B3 0 0 0
DEDIX-E 0 0 0
Total 986 111 1097

There are three test runs with triplets of 2 bad versions produced GOOD3 at

As control flow errors were not observed in the 200,000 test cases, we

6.8.2 Results Based on Error Seeding

points and were successfully recovered by cc-point recovery.

the last cc-point because the errors of the two failed versions occurred in different cc-

conducted more testing through error seeding specifically to verify the effectiveness of

the restart mechanism of the r-point. Faults of the following two categories were

Program exceptions such as division by zero and index out of range,

Control flow faults such as infinitc loop and incorrect branching that lead to

some cc-point incorrectly called or skipped.
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Most of the faults we seeded into the versions are those that were eliminated
during the certification process in order to make them realistic. The testing was
conducted with triplets consisting of two good versions combined with a version with
a seeded fault. It is found that in all the hundred different test runs we had performed,

the failed versions were restarted with a correct version state after the recovery point.

6.9 Discussion

The empirical results obtained in the experiment show that for 3-version MVS
systems Community Error Recovery is highly effective to correct erroneous
computations at cc-points and to restore comect states at recovery points. This
successful result may be attributed to the computational nature of the RSDIMU
application, which is a highly sequential program module in which each computation
depends mostly on results of the previous one. This fortunately is typical of a large
class of real-time control computations. Although values which passed from one
computation to the next without being cross-checked are found when the software
versions are examined, these unchecked values have not affected the cc-point
recovery. For 3-version systems with similar errors in two versions, in most cases the
good version was forced to fail in the same way after a recovery attempt. However,

with similar errors in majority of versions, the MVS system is assumed to fail.

Results of the experiment show that comparison of version outputs where each
output consists of a single Boolean value is dangerous. One can always find a
majority dec_:ision in the comparison for three Boolean outputs, but it is hard to place
any confidence on the majority decision. In this experiment, ucla3 and ucla4 set

System Status to failure incorrectly due to different faults, but the outputs were similar
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and erroneous. It will be much better if we compare the values which are used to
compute these single bit outputs. For example, if the RSDIMU system decides that a
sensor has failed when its noise level exceeds 10.0, ucla2 computed the noise level of
the sensor to be 8.5, and ucla3 and ucla4 incorrectly computed 12.0 and 118.5
respectively. Comparison based on Boolean outputs will lead to similar errors, while

no majority can be detected if noise levels are compared.

Related to the comparison on Booleans, the granularity of comparison has
found to have a profound influence on the results of MVS systems. The smaller the
granularity, the higher is the potential to obtain consensus in the comparison.
However, the chance of erroneous decisions will be larger. For safety-critical

applications, comparison by variables or by cc-points will be more appropriate.

The results in this experiment has shown that & version may produce good cc-
vectors even though there are errors in its internal state. This kind of error is known
as a latent error. The experimental results also show that the r-point is a powerful
check on undetected errors in the version states. Reliability of a MVS system would
conceivably be improved if at some r-points all the versions are signaled to output
their internal states which are then compared, and the resulting decision state is input

by the disagreed versions to flush out latent errors.
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CHAPTER 7
CONCLUSIONS

7.1 Practicality of CER

The proposed CER recovery mechanism, which makes use of the natural
redundant information in the versions, is simple and efficient. It recovers from errors
in two levels; these 1) match the type and severity of the faults, 2) minimally disturb
the system, and 3) impose minimum restrictions on the implementation of the
programs. It has been implemented in the Local and Global Executives of the DEDIX
distributed MVS testbed, and has been tested using programs of the NASA-Four
University Multi-Version Software Experiment. In this experiment, any given cross-
check point was specified to be placed at the point where the cc-vector had been
computed and before it would be used. Experience shows that the CER method is
easily observed by the programmers and easily verified for its correctness by the

experimenters.

7.2 Effectiveness of CER

Evaluation of the reliability models developed in Chapter 5 has shown that
recovery may substantially improve the reliability of a multi-version software system.

The prediction was validated by the results obtained with programs from the NASA-
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Four University Multi-Version Software Experiment. Experimental results show that
cc-points are highly effective in recovering independent errors in a 3-version MVS
system, and r-points which compare version states are effective to detect erroneous
states in the versions even though they have similar errors in their results. It should be
noted that the results are obtained from this experiment for the chosen application,
and may not extend to other applications. The RSDIMU module is a highl)} sequential
program in which each computation depends mostly on the results of the previous

one. This is typical of a large class of real-time control applications.

7.3 Related Faults and Similar Errors

The average failure rate of the versions during the testing was less than 0.0001
which indicates that the UCLA certified versions are of high guality. However the
observed faults and errors show an annoying result: of the eight observed faults (not
counting the uninitialized fault in uclal), every one of them may produce similar
errors with some of the other fauits; of 111 observed coincident failures, 96 of them
are similar. Does this imply a warning that residual design faults in high quaility
software are prone to produce similar errors? Detailed analysis indicates that all the
96 similar errors are due to the incorrect identification of system failure of the
RSDIMU module which entails setting the subsequent output values to zero. The
Fault Detection and Isolation computation is the largest and most complex one in the
RSDIMU module. Independent faults in that computation may cause system failure
because of different reasons, but the output depends only on the Boolean result,
causing serious similar errors. To detect these emrors, we should compare the values
which determine a Boolean output, not the Boolean output itself. The results on r-

point recovery which detected all the similar errors (since the version states were
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different) support this conclusion.

7.4 Suggestions for Future Research

7.4.1 Resolving Multiple Correct Results

In this application, one way to identify a faulty sensor is to observe that its
calibration readings are noisy, i.e., that the standard deviation over a set of values
exceeds some prescribed threshold. Should the noise level be precisely at this
threshold, two algorithms could conceivably produce different results, one indicating
that the sensor is noisy, the other indicating that it is operational. The effect of slight
numerical differences is seen by the MVS Supervisor as totally contradictory
responses. This situation has, in fact, happened during the extensive testing. In three
out of the 20,000 test cases, version uclal has different noisy sensor values from the
other versions. When the values of the internal variables are examined, it is surprising

that their difference is really so small:

uclal standard deviation of noise level = 2.9999999999999999
ucla2 standard deviation of noise level = 3.0000000000000001
threshold = 3

‘This problem may be avoided by introducing an additional decision point that
uniformly retumns to the versions the decision value of the standard deviation. The
versions may then compare this value to the threshold and obtain a consistent result.

The generality of this approach has not yet been determined.
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7.4.2 Enhanced Fault Tolerance Techniques

The simple ring structure currently implemented in DEDIX does not allow the
implementation of the reconfiguration scheme proposed in Chapter 4. A redundant
interconnection structure should be developed so that reconfiguration can be possible

when physical faults occur on the links or sites.

For applications with a large system state, such as a database, the overhead on
the comparison and inter-site communication will be overwhelming for r-point
recovery. Research on the practicality of designing exception handlers so that the
comparison and communication of version states are done progressively in two or

more recovery points should be investigated.

In order that a veréion with control flow faults can be restarted at any r-point,
the versions are constrained with the modular structure described in Chapter 3.
Although the method is general and applicable to different programming languages, it
would be much better if special linguistic support is developed for the CER algorithm.

7.4.3 Future Experiments

Based on the experience gained in this experiment, the following areas of

interest for future experiments are discussed.
L. Formal specification

Although nine months were spent on writing the original RSDIMU
English specification by a team of avionics and software specialists, it was

found to contain errors and ambiguities. The original specification was
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improved based on the feedback of the programmers and preliminary testing
results obtained in the validation phase. However, the revised specification
was found to have caused the most serious related fault in the certified
versions. The conclusion is that an English specification is inherently
ambiguous and etror-prone. Future experiments should use formal
specification languages and appraise their applicability to practical use by
application programmers for the specification of fault-tolerant multi-version

software,
Exploration of other dimensions of diversity

In the NASA-Four University Multi-Version Software Experiment only
diverse programmihg teams and geographical distribution have been employed
to generate the independent versions. Many other potential sources of
diversity, such as specification languages, programming languages, algorithms,
development environment, and testing methods, can be found in the software
development process. Each of these dimensions of diversity should be
systematically investigated to examine their influence on multi-version

software in future experimentation.
Better experiment protocol

In order to avoid interaction and be able to share knowledge of the
specification among the independent programming teams, it was decided that
questions concerning the specification should be submitted to the central
project coordinator and then the question-answer pairs be broadcast to every
team. The protocol caused a number of problems: 1) The number of questions

(over 250) posed by the 40 programmers was overwhelming. The additional
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question-answer pairs tripled the bulk of the specification. 2) The questions
and answers had caused numerous ambiguities and contradictions. The cause
for this confusion appears to be attributable to the requirement that the central
coordinator answer every question personally, which put a great deal of
pressure on the central coordinator to answer quickly, rather than well. 3)
Many implementation details of individual teams were leaked to other teams
through the questions, which posed a potential threat of related faults. In
future experiments, the coordinator should study a question and the related
part of the specification carefully before answering it. Only if it is really a
specification error or ambiguity, a well prepared specification revision should

be sent to every team. In no case should the question be broadcast.
Avoid Boolean value comparison

As the results of the extensive testing have shown, comparing Boolean

values is harmful to MVS in two respects:

a. Diverse versions are vulnerable to producing similar errors. Since a
Boolean result has two values, incorrect Boolean results of the versions

are deemed to be similar.

b. Good versions may produce different but correct results. If the values
which determine the Boolean results differ by an acceptable numerical
difference, they may decide on different Boolean results after
comparison to a threshold.

We should avoid comparing Boolean results at cc-points. Instead, the values

that lead to those Boolean results should be used for comparison in future

experiments, as well as in practical use of multi-version software.
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High quality acceptance test

The preliminary acceptance test for this experiment was grossly
inadequate. The resulting initial versions were flawed b}} many common
programming bugs. If these versions had been used in the analysis, the
superfluous bugs would have masked the effect of faults that would be found in
high quality software, making the result of the experiment unrealisticc. We
were fortunate to be able to re-hire the original programmers to improve their
own programs and apply a much more stringent acceptance test in the
certification phase. The acceptance test will have a direct influence on the
quality of the resulting versions, and should be well planned and implemented

before the software development phase.
Careful placement of cc-points

The original specification of cc-points for the RSDIMU module had a
state variable which caused a cyclic data dependency problem. The variable
was taken out from the cc-point in the initial software development. It was
later specified in a separate, additional cc-point in the revised specification and
implemented in the certified versions. Without the certification phase, cc-point
recovery would not be completed. Another inadequacy of the cc-point
specification is that the Fault Detection and Isolation computation of the
RSDIMU module is the largest and most complex computation. Most
coincident errors observed in the extensive testing occurred in this
computation. Placing an additional cc-point after the fault detection of failed
sensors in that computation should help in the detection of software errors and
their subsequent recovery. The inadequacy of the cc-point specification was
due to different people specifying the application and the cc-points, where the
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person specifying the cc-points did not have an adequate understanding of the
application. In future experiments cc-poinfs should be specified by the same
people who write the specification of the application, or by people who have a

thorough understanding of the application.
Larger Programs

RSDIMU was a well chosen application for this experiment. It is a
realistic highly critical software module, with an appropriate size for the 10-
week software generation phase for two programmers. However, for better
evaluation of the CER, a larger application should be used. In the next
experiment the chosen application should consist of a few program modules
with r-points and internal states defined, and each of them should consist of a
few cc-points similar to those of the RSDIMU module. Such application
should allow us to better assess the effort of specifying and implementing

CER, its effectiveness in MVS and its limitation of design diversity.

126



[Adri82]

[Ande81]

[Ande84]

[Aviz71]

[Aviz75]

[Aviz78]

[Aviz82]

[Aviz84]

REFERENCES

W.R. Adrion, M.A. Branstad, and J.C. Cherniavsky, ‘‘Validation,
Verification, and Testing of Computer Software,”” ACM
Computing Surveys, Vol. 14, No. 2, June 1982, pp. 159-192.

T. Anderson and P.A. Lee, Fault Tolerance: Principles and
Practice, London, England: Prentice Hall International, 1981.

T. Anderson, ‘‘Can Design Faults be Tolerated?,”’ in Proceedings
2nd GIIGMR Conference on Fault Tolerant Computing Systems,
Bonn, Germany: 1984, pp. 426-433.

A. AviZienis, G.C. Gilley, F.P. Mathur, D.A. Rennels, J.A. Rohr,
and D.K. Rubin, ‘“The STAR (Self-Testing And Repairing)
Computer: An Investigation of the Theory and Practice of Fault-
Tolerant Computer Design,’’ IEEE Transactions on Computers,
Vol. C-20, No. 11, November 1971, pp. 1312-1320.

. A, AviXienis, ‘‘Fault-Tolerance and Fault-Intolerance:

Complementary Approaches to Reliable Computing,”” in
Proceedings 1975 International Conference on Reliable Software,
Los Angeles, California: April 21-23, 1975, pp. 450-464.

A. AviZienis, ‘‘Fault-Tolerance: The Survival Attribute of Digital
Systems,’’ Proceedings of the IEEE, Vol. 66, No. 10, October
1978, pp. 1109-1125.

A. Avi%ienis, ‘‘Design Diversity - The Challenge for the
Eighties,”” in Digest of 12th Annual International Symposium on
Fault-Tolerant Computing, Santa Monica, California: June 1982,
pp. 44-45.

A. AviZienis and JP.J. Kelly, ‘“‘Fault-Tolerance by Design

Diversity: Concepts and Experiments,”” Computer, Vol. 17, No. 8,
August 1984, pp. 67-80.

127



[Aviz85a}

[Aviz85b]

[Aviz85c]

[Aviz86]

[Bari83]

[Bish86]

[Bjor72]

[Bjor75]

[Broe75]

[Cain75]

A. AviZienis, P. Gunningberg, J.P.J. Kelly, L. Strigini, P.J.
Traverse, K.S. Tso, and U. Voges, ‘‘The UCLA DEDIX System:
A Distributed Testbed for Multiple-Version Software,’” in Digest
of 15th Annual International Symposium on Fault-Tolerant
Computing, Ann Arbor, Michigan: June 1985, pp. 126-134.

A. AviZienis, P. Gunningberg, J.P.J. Kelly, R.T. Lyu, L. Strigini,
P.J. Traverse, K.S. Tso, and U. Voges, *‘Software Fault-Tolerance
by Design Diversity; DEDIX: A Tool for Experiments,” in
Proceedings IFAC Workshop SAFECOMP'85, Como, Italy:
October 1985, pp. 173-178.

A. AviZienis, ““The N-Version Approach to Fault-Tolerant
Software,”’ [EEE Transactions on Software Engineering, Vol.
SE-11, No. 12, December 1985, pp. 1491-1501.

A. AviZienis and J.-C. Laprie, ‘‘Dependable Computing: From
Concepts to Design Diversity,’’ Proceedings of the IEEE, Vol. 74,
No. 5, May 1986, pp. 629-638.

G. Barigazzi and L. Strigini, ‘*Application-Transparent Setting of
Recovery Points,”” in Digest of 13th Annual International
Symposium on Fault-Tolerant Computing, Milano, Italy: June
1983, pp. 48-55.

P.G. Bishop, D.G. Esp, M. Barnes, P. Humphreys, G. Dahll, and J.
Lahti, ‘“PODS - A Project of Diverse Software,’”’ [EEE
Transactions on Software Engineering, Vol. SE-12, No. 9,
September 1986, pp. 929-940.

L.A. Bjork and C.T. Davies, ‘“The Semantics of the Presentation
and Recovery of Integrity in a Data Base System,”” IBM, San
Jose, California, Tech. Rep. TR 02.540, December 1972.

L.A. Bjork, ‘‘Generalized Audit Trail Requirements and Concepts
for Data Base Applications,”” IBM System Journal, Vol. 14, No. 3,
1975, pp. 229-245.

R.B. Broen, ‘“New Voters for Redundant Systems,’’ Journal of
Dynamic Systems, Measurement and Control, Vol. 97, No. 1,
March 1975, pp. 41-45.

S.H. Caine and EK. Gordon, ““PDL - A Tool for Software
Design,”’ in Proceedings National Computer Conference, 1975.

128



[Camp86)

[Chen78a]

[Chen78b]

[CRABS]

[Cris82]

[Dora86]

[Eckh85]

[Ehri78]

[Glas80]

[Gmei79]

R.H. Campbell and B. Randell, *‘Error Recovery in Asynchronous
Systems,”’ IEEE Transactions on Software Engineering, Vol. SE-
12, No. 8, August 1986, pp. 811-826.

L. Chen, ‘“‘Improving Software Reliability by N-Version
Programming,”” Ph.D. Dissertation, UCLA Computer Science
Department, Los Angeles, California, Tech. Rep. ENG-7843,
August 1978.

L. Chen and A. AviZienis, ‘‘N-Version Programming: A Fault-
Tolerance Approach to Reliability of Software Operation,” in
Digest of 8th Annual International Symposium on Fault-Tolerant
Computing, Toulouse, France: June 1978, pp. 3-9.

CRA and RTI, ‘“‘Redundancy Management Software
Requirements Specification for a Redundant Strapped Down
Inertia Measurement Unit,,”’ Version 2.0, Charles River Analytics
and Research Triangle Institute, May 30, 198S.

F. Cristian, ‘‘Exception Handling and Software Fault Tolerance,"’
IEEE Transactions on Computers, Vol. C-31, No. 6, June 1982,
pp. 531-540.

K.H. Dorato, ‘‘Coincident Errors in N-Version Programming,’’
Master Thesis, UCLA Computer Science Department, Los
Angeles, California, June 1986.

D.E. Eckhardt and L.D. Lee, ‘“A Theoretical Basis for the
Analysis of Multiversion Software Subject to Coincident Errors,””
IEEE Transaction on Software Engineering, Vol. SE-11, No. 12,
December, 1985, pp. 1511-1517.

H. Ehrig, H. Kreowski, and H. Weber, ‘‘Algebraic Specification
Schemes for Data Base Systems,”’ in Proceedings 10th
International Conference on Very Large Data Bases, West-Berlin,
Germany: September 1978, pp. 427-440.

R.L. Glass, ‘A Benefit Analysis of Some Software Reliability
Methodologies,”” ACM SIGSOFT Software Engineering Notes,
Vol. 5, 1980, pp. 26-33.

L. Gmeiner and U. Voges, ‘‘Software Diversity in Reactor
Protection Systems: An Experiment,’” Proceedings IFAC
Workshop SAFECOMP’79, May 1979, pp. 75-79.

129



[Gogu79]

{Gold80]

[Gray86]

[Gray79]

[Grnag0]

[Gunn85]

[Guu8s]

[Hill83]

[Hopk78]

{(Horn74)

JA. Goguen and JJ. Tardo, ‘““‘An Introduction to OBJ: A
Language for Writing and Testing Formal Algebraic Program
Specifications,”’ in Proceedings Specifications Reliable Software
Technology, Cambridge, Mass.: 1979, pp. 170-189.

J. Goldberg, ‘‘SIFT: A Provable Fault-Tolerant Computer for
Aircraft Flight Control,” in Proceedings IFIP Congress 80,
Tokyo, Japan: October 1980, pp. 151-156. .

J. Gray, ““Why Do Computers Stop and What Can Be Done About
It?,”” in Proceedings Fifth Symposium on Reliability in
Distributed Software and Database Systems, Los Angeles,
California: January 1986, pp. 3-12.

JN. Gray, ‘‘Notes on Data Base Operating Systems,”’ in
Operating Systems, An Advanced Course, R. Bayer, RM.
Graham, and G. Seegmuller, Ed. Berlin, Germany: Springer-
Verlag, 1979, pp. 393-481.

A. Grnarov, J. Arlat, and A. Avifienis, ‘‘On the Performance of
Software Fault-Tolerance Strategies,”’ in Digest of 10th Annual

International Symposium on Fault-Tolerant Computing, Kyoto,
Japan: 1980, pp. 251-253.

P. Gunningberg and B. Pehrson, ‘‘Specification and Verification
of a Synchronization Protocol for Comparison of Results.,’”’ in
Digest of 15th Annual International Symposium on Fault-Tolerant
Computing, Ann Arbor, Michigan: June 1985, pp. 172-177.

J.V. Guttag, J.J. Horning, and J.M. Wing, ‘‘Larch in Five Easy
Pieces,’’ Master Thesis, Digital Equipment Corporation Systems
Research Center, Palo Alto, California, Tech. Rep. Report No. 5,
July 24, 1985.

A.D. Hills, *“A310 Slat and Flap Control System Management &
Experience,”’ in Proceedings Fifth Digital Avionics Systems
Conference, Seattle, WA: November 1983, pp. 6.7.1-6.7.7.

AL. Hopkins, T.B. Smith, and J.H. Lala, “FTMP - A Highly
Reliable Fault-Tolerant Multiprocessor for Aircraft,’”’” Proceedings
of the IEEE, Vol. 66, No. 10, October 1978, pp. 1221-1239.

J. Homing, H.C. Lauer, P.M. Melliar-Smith, and B. Randell, ‘A
Program Structure for Error Detection and Recovery,’” in Lecture
Notes In Computer Science, Vol. 16, New York: Springer-Verlag,
1974, pp. 171-187.

130



[Joy86]

[Kell82]

(Kell83]

[Kell86]

[KimB84)

[Koo87]

[Lapr84}

[Leff86]

[Lisk79]

W.N. Joy, S.L. Graham, C.B. Haley, M.K. McKusick, and P.B.
Kessler, ‘‘Berkeley Pascal User’s Manual,”” Version 3.1,
Computer Systems Research Group, Department of Electrical
Engineering and Computer Science, University of California,
Berkeley, California, April 1986.

J.P.J. Kelly, “Specification of Fault-Tolerant Multi-Version
Software: Experimental Studies of a Design Diversity Approach,”
Ph.D. Dissertation, UCLA Computer Science Department, Los
Angeles, California, Tech. Rep. CSD-820927, September 1982.

J.P.J. Kelly and A. AviZienis, ‘A Specification Oriented Mula-
Version Software Experiment,”” in Digest of I13th Annual
International Symposium on Fauwlt-Tolerant Computing, Milan,
Italy: June 1983, pp. 121-126.

J.P.J. Kelly, A. AviZienis, B.T. Ulery, B.J. Swain, R.T. Lyu, A.T.
Tai, and K.S. Tso, ‘‘Multi-Version Software Development,’’ in
Proceedings IFAC Workshop SAFECOMP’86, Sarlat, France:
October 1986, pp. 43-49.

KH. Kim, “Distributed Execution of Recovery Blocks: An
Approach to Uniform Treatment of Hardware and Software
Faults,”’ in Proceedings IEEE 4th International Conference on
Distributed Computing Systems, San Francisco, California: May
1984, pp. 526-532.

R. Koo and S. Toueg, ‘‘Checkpointing and Rollback-Recovery for
Distributed Systems,”” IEEE Transactions on Software
Engineering, Vol. SE-13, No. 1, January 1987, pp. 23-31.

J.-C. Laprie, ‘‘Dependability Evaluation of Software Systems in
Operation,”” IEEE Transaction on Software Engineering, Vol.
SE-10, No. 6, November 1984, pp. 701-714.

S.J. Leffler, R.S. Fabry, and W.N. Joy, ‘A 4.2BSD Interprocess
Communication Primer,”” Draft, Computer Systems Research
Group, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, California, February
1986.

B.H. Liskov and A. Snyder, ‘‘Exception Handling in CLU,’’ /[EEE
Transactions on Software Engineering, Vol. SE-5, No. 6,
November 1979, pp. 546-558.

i31



[Luck80]

[Maka82]

[Mart82]

[Merl78]

[Mili85]

[Parn72a]

{Parn72b]

[Pope81]

[Rand75]

[Rand78]

D.C. Luckham and W. Polak, ‘‘ADA Exception Handling: An
Axiomatic Approach,”” ACM Transactions on Programming
Languages and Systems, Vol. 2, No. 2, April 1980, pp. 225-233.

S.V. Makam, A. AviZenis, and G. Grusas, ‘‘UCLA ARIES 82
User’s Guide,”” UCLA Computer Science Department, Los
Angeles, California, USA, Tech. Rep. CSD-820830, August 1932,

D.J. Martin, ‘‘Dissimilar Software in High Integrity Applications
in Flight Controls,”’ in Proceedings AGARD-CPP-330, September
1982, pp. 36.1-36.13.

P.M, Merlin and B. Randell, ‘‘Consistant State Restoration in
Distributed Systems,”’ in Digest of 8th Annual International

Symposium on Fault-Tolerant Computing, Toulouse, France: June
1978, pp. 129-134.

A. Mili, ‘“Towards a Theory of Forward Error Recovery,”’ IEEE
Transactions on Saoftware Engineering, Vol. SE-11, No. 8, August
1985, pp. 735-748.

D.L. Pamas, ‘‘A Technique for Software Module Specification
with Examples,”’ Communications of the ACM, Vol. 15, No. 5,
May 1972, pp. 330-336.

D.L. Parnas, ‘‘On the Criteria to be used in Decomposing Systems
into Modules,’’ Communications of the ACM, Vol. 15, No. 12,
December 1972, pp. 1053-1058.

G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin,
and G. Thiel, “LOCUS: A Network Transparent, High Reliability
Distributed System,’’ in Proceedings 8th Symposium on
Operating Systems Principles, Pacific Grove, California;
December 1981, pp. 169-177.

B. Randell, *‘System Structure for Software Fault Tolerance,”
IEEE Transactions on Software Engineering, Vol. SE-1, No. 2,
June 1975, pp. 220-232.

B. Randell, P.A. Lee, and P.C. Treleaven, ‘‘Reliability Issues in

Computing System Design,”” Computing Surveys, Vol. 10, No. 2,
June 1978, pp. 123-165.

132



[Russ80]

[Siew84]

[Swai86]

[Tai86}

[Tayl81]

[Toy78]

[Wens78]

[Youn84]

D.L. Russell, ‘‘State Restoration in Systems of Communicating
Processes,”” IEEE Transactions on Software Engineering, Vol.
SE-6, No. 2, March 1980, pp. 183-194,

D.P. Siewiorek, ‘‘Architecture of Fault-Tolerant Computers,”’
Computer, Vol. 17, No. 8, August 1984, pp. 9-18.

B.J. Swain, ‘‘Group Branch Coverage Testing of Multi-Version
Software,”” Master Thesis, UCLA Computer Science Department,
Los Angeles, California, Tech. Rep. CSD-860013, December
1986.

A.T. Tai, **A Study of the Application of Formal Specification for
Fault-Tolerant Software,”” Master Thesis, UCLA Computer
Science Department, Los Angeles, California, June 1986.

R. Taylor, ‘‘Redundant Programming in Europe,”” ACM SIGSOFT
Software Engineering Notes, Vol. 6, No. 1, January 1981.

W.N. Toy, ‘‘Fault-Tolerant Design of Local ESS Processors,”
Proceedings of the IEEE, Vol. 66, No. 10, October 1978, pp.
1126-1145.

J.H. Wensley, L. Lamport, J. Goldberg, M.W. Green, K.N. Levitt,
P.M. Melliar-Smith, R.E. Shostak, and C.B. Weinstock, *‘SIFT:
Design and Analysis of a Fault-Tolerant Computer for Aircraft
Control,”” Proceedings of the IEEE, Vol. 66, No. 10, October
1978, pp. 1240-1255.

L.J. Yount, ‘*Architectural Solutions to Safety Problems of Digital
Flight-Critical Systems for Commercial Transports,”” Proceedings
AIAA/IEEE Digital Avionics Systems Conference and Technical
Display, December 1984, pp. 1-8.

133



APPENDIX A

RSDIMU Defined Constants
censt
alb = 1; { bounds for axes of }
aub = 3; { frames of reference arrays}
baddat = 9999.000;
chlb = 1;
chub = 4; { bounds for channel array }
clb = 1;
cub = 50; { bounds for calibration array }
dlb = 1;
dub = 3; { bounds for display arrays }
elb = 1; { bounds for misalignment }
eub = 6; { angle arrays }
flb = 1;
fub = 4; { bounds for face-oriented arrays }
g = 32.0; { gravitational constant in ft/sec2}

maxint = 65535;

modemin = 0;

modemax = 99; { range values for display modes }
mlb = 0; { bounds for unsigned }

mub = maxint; { 16 bit machine integer }
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nsigmin = 3;
nsigmax 7;

I
*

pi = 3.1415926535;

pairmin = 0;
pairmax = 6;

slb 1;
sub = 8;

bounds for nsigt }

bounds for face-pair arrays }

bounds for sensor }
and related arrays }
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APPENDIX B
RSDIMU Defined Types

type

{ base types for portability }
iint = integer;
ireal = real;

{ index types }

aindex = alb..aub;
chindex = chlb..chub;
cindex = clb..cub;

dindex dlb. .dub;

eindex elb. .eub;

findex = flb..fub;

modet = modemin. .modemax;
nsigset = nsigmin..nsigmax;
pairt = pairmin..pairmax;
sindex = slb..sub;

mint = mlb..mub;
{ represents a l6-bit nonnegative machine integer }

system = (normal, analytic, undefined):;
{ computational modes }

ararray = array [aindex] of ireal;
{ holds information for 3 axes }

cmarray = array [sindex, cindex] of mint:
{ holds calibration data points for 8 sensors }

cparray = array [chindex] of pairt;
{ holds facepair used to compute channel estimate }
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dmarray = array {dindex] of mint;
{ holds ‘words’ of display information }

erarray = array [findex, eindex] of ireal;
{ holds misalignment angles of 8 sensors }

frarray = array [findex] of ireal;
{ holds temp or normface of 4 faces }

sbarray = array (sindex] of boolean;
{ holds sensor fallure indications }

smarray = array [sindex] of mint;
{ holds count data for 8 sensors}

srarray = array [sindex] of ireal;
{ holds slope coefficients for 8 accel’s }

state = record
status: system;
acceleration: ararray
end;
{ holds one vehicle state estimation }

vsearray= array [chindex] of state;
{ holds vehicle state estimation of 4 channels }
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APPENDIX C
RSDIMU Input and Output Variables

var
{ input variables }

obase : ireal;
{ semi-octahedron base }

offraw : cmarray;
{ calibration data for 8 sensors }

linstd : mint;
{ noise standard deviation for sensors }

linfailin sbarray;

{ accererometer failure initial conditions }

rawlin : smarray;
{ raw data for acceleration computation }

dmode : modet;
{ display mode }

temp : frarray:
{ current temperature on each face }

scalel, scalel, scale2 : srarray;
{ linear sensor slope coefficients }

misalign : erarray;
{ sensor misalignment angles }

normface : frarray;
{ accelerations normal to i faces }
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nsigt : nsigset;

{ noise tolerance }

phiv, thetav, psiv : ireal;

{ n to v rotations }

phii, thetai, psii : ireal;

{ v to 1 rotations }

{ output variables }

linoffset : srarray;

{ sensor offset values }
linnoise : sbarray:;

{ sensor calibration results }
linout : srarray:

{ individual sensor ocutputs }
linfailout : sbarray:;

{ failure detection results }
sysstatus : booclean;

{ operational status of system }
dismode : mint;

{ display panel mcde }
disupper dmarray;

{ upper display panel encodings }
dislower : dmarray:

{ lower display panel encodings }
bestest : state;

{ vehicle state estimate using

all operational sensors}

chanest : wvsearray:

{ vehicle state estimates for the 4 channels }
chanface : cparray;

{ maps face pairs to channels }
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