DECOMPOSITION OF BOOLEAN FUNCTIONS ON A
NETWORK OF POLYFUNCTIONAL NODES

Rik A. Verstraete February 1987
Jacques J. Vidal CSD-870008

DECOMPOSITION OF BOOLEAN FUNCTIONS
ON A NETWORK OF POLYFUNCTIONAL NODES

Rik A. Verstraete
Jacques J. Vidal

Distributed Machine Intelligence Laboratory
Computer Science Department
University of California, Los Angeles

Networks of fixed topology but flexible functionality have received very little atten-
tion in the literature. Indeed, problems of combinational circuit design invariably deal
with the question of how to interconnect a minimal number of Boolean gates (AND-gates
or OR-gates) in order to implement a given Boolean function. Gate array technology isa
typical embodiment of this work. In VLSI technology, however, the complexity of the
interconnections is the most critical factor, while the complexity of the modules them-

selves is of lesser concern.

The work reported below adopts a point of view that is compatible with these VLSI
requirements. The interconnection topology of the network is fixed and regular, and the
interconnections are short and unidirectional. The Boolean functions of the constituent
nodes are adjustable and not constrained to AND or OR functions. Refer to [1, 8] for a
preliminary study of the functional characteristics of such networks. This class of sys-
tems includes threshold gate networks, for instance perceptrons, 7] since a threshold
gate is indeed also an adjustable Boolean gate. The specifics of threshold gate logic,
however, is not the subject of this paper. Rather, the treatment is at an implementation-

independent level, using Boolean logic as the tool.

This paper considers the implementation of a completely specified Boolean function

on a given network of polyfunctional nodes. Stated differently, it deals with the selection

-2-

of the nodal functions in order to accomplish a given network function. (We assume that
the network can indeed implement the given function.) This problem is called decompo-
sition of a function onto the network. It is similar in purpose to programming a sequen-
tial computer, but here we view it as a decomposition of one Boolean function into a set

of smaller Boolean functions.

The central topic in the decomposition problem is the assignment of functional
responsibility: what parts of the given global function must be assigned to which nodes
of the network? This problem addresses at the simplest possible level, namely that of
Boolean operations, the most crucial question in the development of parallel systems. It

can be viewed as a archetypical problem of parallel processing.

We apply the theory of decomposition of Boolean functions to this problem and
show that in certain simple networks the solution to the decomposition problem can be
obtained in a deterministic fashion. In more general networks, however, a search stra-
tegy is required to assign responsibility. We develop a heuristic criterion that reduces the

amount of search necessary to find one or more correct decompositions.

Section 1 introduces the necessary definitions and a formal definition of the decom-
position problem. Section 2 is a treatment of the preliminary concepts that will be used
in the decomposition algorithm. The algorithm itself is developed in section 3, including
a program that implements the method. Section 4 lists conclusions and future research

questions.

1. DEFINITIONS

1.1. Polyfunctional Networks

Polyfunctional nets, or P-nets, consist of a number of polyfunctional combinational
nodes. In this paper, the nodes of the P-nets are assumed to be all identical since it
simplifies the description. However, the principles and methods outlined here are gen-

eralizable to heterogeneous networks.

-3-

Each node i has k inputs x;=(x;,1, . . . ,Xi &) and its output z; is a Boolean function

of its inputs:

Zi=fi®=filxi1,....xik).

The nodal functions are adjustable independently, and input or output values do not
influence these functions directly. In other words, the function fi can be any one of a set

of possible functions:

¢={f1,....fp}, with 1¢l=p .

If p=2?* then the node is universal: it can implement all possible functions of its inputs.

A schematic representation of the node is shown in figure 1.

Zi

X1 Xix

Figure 1: Schematic representation of a node (labeled i) of a polyfunctional

network.

The node of a P-net is formally defined to be a pair:

N=(k,0),
where k is the number of inputs and ¢ is the functional set.

Each output of a node is connected to an input of another node, and the interconnec-
tions form a single-output loop-free network. The interconnections are defined by a set

of node interconnections:

| = {(,zi,xi)ti=1,...,1}
where:
i is a unique label for the node;
z; is the output label of the node;

x;=(x; 1, ...,%ix) are the input labels of the node, an ordered set of either output

labels of other nodes or labels of the network inputs;
[is the number of nodes in the network.

Each node interconnection (i,z;.X;) specifies that the inputs of node i are connected to
respectively Xi 1, Xi 2, . . ., Xi k, and that its output is labeled z;. The latter can be used in

other node interconnections. An example of a P-net is shown in figure 2.

The definition of an entire P-net is a 4-tuple:

P =[N,z x,l]
where:
N is the definition of the node;
z is the network output;
x=(x1, . ..,Xn) are the network inputs;

| is the set of node interconnections,

The resulting network implements a Boolean function of n inputs:

fa fs fs

£ fs fo9 f10
/NN VN
x1 X2 X3 x4 x5

Figure 2: Example of a P-net. It consists of 10 nodes with 2 inputs each. The

network has 5 inputs.

z=F&)=F(x1,...,%n)

This network function F is derived from the choices f; for the functions of the consti-
tuent nodes. By changing these functions the network implements a set of different func-

tions:
®={F,,....Fg}, where 101=0 .

Again, if Q=2 then the network is universal.

@ is not part of the definition of a P-net, but can be derived from it, For example, in

figure 2 the network function is derived as follows:

F(x1,02.03) = f1(f 2(f 4 1,x2).f 50c2.x3).f 3(F 5(x2.x3).f 6(x3.x1))) -
An assignment of node functions to a P-net is a mapping
o:fl,...,I}o0:if;

meaning that the node labeled i is assigned the function f; € ¢. The corresponding net-
work function is represented by F o. A partial assignment (one in which not all elements

of the domain are mapped) is a subset of a complete assignment.

An important question associated with P-nets relates to the size of the set of network

functions ®. We define the universality index vy as follows:

Y=-fr
Since 0<Q <22* it follows that O<y<1.

Another important concept is the total number of nodal assignments. If the network
contains / nodes, then P =p! different combinations of node functions are possible. Typi-
cally this number will be larger than 0, meaning that not every different combination of
node functions results in a different network function, and vice versa, a given network
function can usually be obtained by different combinations of nodal functions. This
phenomenon is called functional redundancy. If P>Q then the P-net is said to be redun-

dant; if P =0 then it is nonredundant. We define the redundancy factor p as follows:

p=5.

QO cannot exceed P and therefore p=1. In P-nets, redundancy is the rule rather than the

exception.

EXAMPLE 1: Consider the network of of figure 3. The global network function
F (x1,X2,X3) = X1X2X3+X1X2X3 .

can be achieved many different ways, for example

f1=zo+z3; f2=z425; f 3=Z526; f 4=X1X2; f 57X 2@ x3; f 6=x3X1 .
f1=z273; f=za@® z5; f 3=z f 4=X1x2; f5=x2x3; f 6=X3X1 .
f1=z2+z3; fo=za@ z5; f3=z526; [a=X1X2; f5=x2x3; fe=x3x1 .
fi=z3; f2=0; f3=z526; [4=0; [5=x2; f 6=x3@ X1 .

etc.

If each of the structure’s nodes can implement all 16 possible Boolean functions of 2

inputs, then p =16 and P =166. For this network 0 =256 and the redundancy factor is

Figure 3: A 3-input polyfunctional network.

Two different types of redundancy can be considered.

a. Trivial redundancy.

Consider an interconnection of the output of one node to the input of another node
(figure 4). The following operation will not change the function of the network: negate
the output of the first node (that is, change f1 to f 1) and invert the corresponding input
of the second node (change fa2(--- %,) to f2(- - X, - -)). These modifications
cancel each other. Such operations are possible only if the set ¢ is closed under negation

of the output or inputs.

f2

T

Figure 4: Example of trivial redundancy in a polyfunctional network.

b. Nontrivial redundancy.

A more important form of redundancy is shown in figure 5. This figure shows how
one function, namely F (x1,x2,X3) = X1X2X3+X1x2x3 can be implemented in two entirely
different ways. One implementation cannot be derived from the other by a trivial opera-

tion such as negating inputs and/or outputs. The reason for this redundancy is the fan-out

-9.

that occurs at the inputs and inside the network.

D EXOR RIGT

A XA A A A

7N ARvan™

X1 X2 x3 X1 x2 X3

(@) ®

Figure 5: Example of non-trivial redundancy in a polyfunctional network.

1.2. Problem Description

Assume that a P-net definition P and a Boolean function G are specified. The prob-
lem is to implement the given function with the given network by finding an appropriate
assignment for all the node functions. Stated differently, the problem is to decompose a
Boolean function of n inputs into a set of smaller functions of k¥ inputs each (k<n) in
such a way that it matches the given network structure. More formally, a decomposition

problem is defined as follows:

-10 -

Given: a specific P-net definition P =[N,z x,I] and a Boolean function G (x) =

G(XI, . ,Xn),
Find: an assignment o such that F o(x) = G (X).

As a secondary problem, it may be required to find different (or all) possible assignments

fo; } that implement the network function, if more than one exists.

2. PRELIMINARIES

In this section the principles behind the decomposition strategy, to be developed in
the next section, are presented. The strategy consists of the repeated application of two
basic operations, namely selection and reduction. The first subsection below gives an
overview of the existing theory of decomposition of Boolean functions, which forms the
basic tool for the selection step. The second subsection presents the concept of reduc-
tion, used to determine the function of the remainder of the network after one or more

nodes have received a functional assignment.

2.1. Theory of Decomposition of Boolean Functions [2-5]

A Boolean function G (x1, . . .,Xn) is decomposable if G can be realized as a com-

position of functions of fewer than n variables each. Let X={x1,...,xs} represent the
set of input variables and assume that A1,42, . . ., Ak are subsets of X such that QA,':X ,

then

GX)=G(f1lADf2A2), ..., e(AK)

is a decomposition of the function G. This decomposition is shown schematically in

figure 6.
Decompositions of Boolean functions can be classified as either disjunctive or non-
disjunctive. In a disjunctive decomposition the input variables to different functions fi

are disjoint, that is, Vi,j,i#j :AiNA;=@. If, for some i,j,i#j 1 AiMNA;»D, the

-11 -

Al Az Ak

Figure 6: Decomposition of a Boolean function.

decomposition is called rnondisjunctive.

2.1.1. Simple disjunctive decomposition

A simple disjunctive decomposition is a decomposition of the form
G(X)=G'(f1(A1),A2), with AiMA= and A1\WA2=X. It can be characterized by
arranging the truth table of G as in figure 7. The rows of the map represent entries with
equal values for the variables in A2, and the columns represent entries with equal values
for the variables in the set A1. The truth table arranged this way is called a decomposi-
tion map or decomposition chart with respect to the variable sets (A1,42). If Ay has u
input variables (lA1l=u) and Az has v input variables (1A2l=v), and hence
|X |=n=u+v, then each row of the decomposition map has 2# entries and each column

has 2v entries.

THEOREM 1: [4] A completely specified Boolean function G(X) has a simple

-12 -

Az | As

Figure 7: Decomposition chart for the variable sets (A 1,A 2).

disjunctive decomposition, G (X)=G (f 1(41),A 2), if and only if its decomposition chart
with respect to the variable sets (A 1,A2) has at most two distinct columns (columns with

different patterns of (’s and 1’s). 0

EXAMPLE 2: A simple disjunctive decomposition of the function G(x1,x2,x3)=
X13 x2® x3 with respect to A 1={x1,x2} and A2={x3} is: G (x1,x2.x3) = G'(f 1(x1,x2),x3)
with z1=f 1(x1,X2)=x1®x2 and G'(z1,x3)=21® x3. Its decomposition chart, shown in

figure 8, has two distinct columns, namely *‘01°” and **10.”” {1

EXAMPLE 3: In figure 9 G (x1,x2,x3,x4,x5) is decomposed with respect to A1={x1,x2,X3}

and A={x4,xs}. In this example
G (X1,X2,X3,X4,X5) = X 4(X 1X2+X 2 3)+x 5(X 1X2+X 2X3)
z1=f 1(X1,X2,X3)=X1X 2+ X 2X 3 ,
G'(z1.X4X5)=X421+X521 .

Again, the decomposition chart of G has only 2 distinct columns, namely “0110°" and
““0o011.’ 0OJ

If all the columns of a decomposition chart are identical then the function is

-13-

Ar={x1.x2)
00 01 11 10

0 0 1 0 1
Ax={x3} X3

X1 X2

Figure 8: Example of a simple disjunctive decomposition of a Boolean func-

tion with 3 variables.

independent of the variables in the set A1. In this case G (X)=G ’(A2) and any choice for
the function f is valid. If the decomposition chart has two distinct columns, but the
column patterns consist of all 0’s or all 1’s, then the function is independent of the vari-
ables of the set Aa, G (X)=G’(f 1(A1)), and f 1 is determined by the column differences of
the decomposition chart. In a typical case the decomposition map will have 2 non-trivial

columns.

The decomposition map for an incompletely specified function has don’t care
entries. Two columns (rows) of a decomposition map are compatible if the don’t care
entries can be assigned 0’s or 1’s such that the columns (rows) become identical. The
decomposition of an incompletely specified Boolean function is generally not unique
since different assignments to the don’t care entries may result in different decomposi-
tions. If more than two columns of the decomposition map are mutually incompatible
then a simple disjunctive decomposition with respect to the particular variable sets is not

possible.

-14 -

z
A1={x1,x2.%3]
000 001 011 010 110 111 101 100 G
oololololo]lo]ololo
X

!

011
Ax={xaxs}

1111

10| O

ojolof1j1|0Ot11
11111 f(1}1f1
1(3111{0}0]1;0

l X2

L
I

3

Figure 9: Example of a simple disjunctive decomposition of a Boolean func-

tion with 5 variables.

A classical problem in logic circuit design is to find the sets A1 and A2 such that a
simple disjunctive decomposition is possible. In the decomposition problem, however,
the network, and therefore the sets A1 and A2, are given and one needs to find the func-

tions G’ and f 1, if they exist.

2.1.2. Simple nondisjunctive decomposition

In a nondisjunctive decomposition the input variables of different functions f; have

some common elements. Hence, if
GX)=G'(f1(A1), fk(Ar))

with 'kalA,-:X and Ji,j, i#j such that A; MA;#Q, then the expression represents a non-

-15 -

disjunctive decomposition. A Boolean function G(X) has a simple nondisjunctive
decomposition if GX)=G'(f1(A1),A2) with AjUA2=X and A1NAxD. Let
A1NA=Ay, |Apl=yv, Bi1=A1-A12, |B1l=uy, Ba=Ax-A12, IBal=uq, and hence
ui+u2+v=n=1X1. For each of the 2v values for the variables in A 12 we define a decom-
position map with 2% rows (corresponding to B2) and 2*! columns (corresponding to
B1).

THEOREM 2: [4] A completely specified Boolean function G (X) has a simple nondis-
junctive decomposition if and only if each of these maps has not more 2 distinct columns.

O

EXAMPLE 4: In figure 10, B1={x1,x2}, Ba={x4.,x5}, and A 12=fx3}. The functions of the

two nodes are:
fi(x1,x2,x3)=x3001x2)+x3(x1+x2) ;
G'(z21,X3,X4,X5)=X3[21((xa+x5)+x3[z1+(x4xs5)] . U

In this paper we Ueﬁt the nondisjunctive case in an alternative way. Every nondis-
junctive decomposition is converted into a disjunctive decomposition by introducing for
each input x; € A1z an additional virtual variable x¥. This virtual variable x¥ must
always be equal to x;, and therefore the truth table entries with x¥#x; are don’t care.
EXAMPLE 5: In figure 11, B1={x1}, A12=({x2}, B2={x3}. The introduction of x¥ makes
the network disjunctive with A 1={x1,x2} and A2={x% ,x3}. However, since x}%=x7 half of

the new decomposition chart contains don’t care entries. [J

Each virtual variable introduces don’t cares equal in number to the size to the origi-
nal truth table. The decomposition chart that results is called the virtual decomposition

chart. The original one is called the real decomposition chart.

The theorem below follows directly from theorems 1 and 2; it is given here without

proof.

THEOREM 3: A Boolean function G (X) has a simple nondisjunctive decomposition if

-16 -

/o\
x4 x5

Xy X2 X3

Bi1={x1.x2)} Bi={x1.x2}

00 01 11 10 00 01 11 10
o0|1(1]011 cojoj1|{1]1
0110010 01|01 1{1(1

— B_.
B={xaxs} R ={x4,x5} NEINEERE
10(0|0(1]|0 10j0[1[1]1
x3=0 x=1

Figure 10: Example of a simple nondisjunctive decomposition of a Boolean

function with 5 variables,

and only if its virtual decomposition chart has not more than two mutually incompatible

columns. O

2.2, Reduction

The process called reduction answers the following question (figure 12). Suppose a
polyfunctional network implements the function G and suppose that one of its nodes in
the bottom layer, labeled 1, implements the function f ;. What is the residual function
G’ of the remainder of the network?

In figure 12, G is a function of (x1,x2,x3,x4) and G’ is a function of (z1,x2,x3,x4).

If G’ were known then G could be deduced by substituting f1(x1,x2) forz1in G .

-17 -

X1 X2 X1 Xz
X1x2 X1X2
00 01 11 10 00 01 11 10
s ojoj1j0(1 0010 |[=*]=
1101141 o~ 01| Of*]*:1
110113111 =
10]* |10 *

Figure 11: Example showing how a nondisjunctive decomposition can be

made disjunctive by introducing virtual variables.

G(x1x2x3.x4) = G'(f1(x1,x2),X2.X3,x4) .

In the decomposition problem, instead of G’ and f 1 being given, G and f) are given and

G’ must be deduced.

EXAMPLE 6: Suppose

G (x1,x2.x3.x4) = (x1+x2)3 (xax4)

and f 1(x1,x2)=x1+x2, then

-18-

Figure 12: Schematic representation of reduction in a polyfunctional network.

G'(z1x2.x3.x4) = 1@ (x3x4) .

If £ 1(x 1,x2)=X1X2, then
G'(z1,X2.x3.X4) =Z1® (x3x4) .

But what if for example f1(x1,x2) =x1x2? In this case reduction is impossible for the
following reason. If the network input is x=(0,0,0,0) then the network output should be
2=G (0,0,0,0)=0; the output of node 1 for this input will be z1=f 1(0,0)=0. If the network
input is x=(1,0,0,0) then the network output must be z=G (1,0,0,0)=1; z1=f1(1,0) is still
equal to 0. What should be the truth value of G’ for (z1,x2,x3,x4) = (0,0,0,0)7 The two
requirements imposed by G are conflicting. Hence, the assignment f1x1.x2)=x1x2 can

never be correct for this function. [

Another important feature of reduction is that, besides sometimes being impossible,
it also sometimes generates don’t care entries in the truth table of the residual network

function.

-19 -

EXAMPLE 7: Consider the network of figure 13 with G(x1.x2,x3)= (X1x2)xox3 =
(T1x2)x3. Assume node 1 implements fi(x1,x2)= X1x2. Is in this example
G'(z1,x2,x3)=21x2x3 of G'(z1,x2.x3)=21x3? The answer is: neither of them. Since z;
cannot be 1 if x3 is 0, nothing is specified regarding G’ when (z1,x2)=(0,0), and hence

G'(1,0,0) and G'(1,0,1) are don’t cares.

Z]

X1 X2 X3

Figure 13: Example of reduction in a 3-input polyfunctional network.

Figure 14 shows how the reduction proceeds in this example. It is represented as a
mapping from the truth table of G to the truth table of G’. A number of truth table
entries of G are mapped into the same entry in G’. For instance G (0,0,0) and G (1,0,0)
are both mapped into G ’(0,0,0). If these entries of G were different then a conflict would
occur and the reduction would not be possible. A number of truth table entries of G* do
not receive a value, for instance G ’(1,0,0) and G’(1,0,1). These entries are don’t cares

(represented by ‘“*’” in the figure). O

The algorithm for the reduction process, expressed in a Pascal-like pseudo-

language, is as follows:

-20 -

x1 x2 x3|G | z2 za x2 x3 |G’
0 0 0|0]0 0 0 010
0 0 1]0}0 0 0 110
0 1 0:01}1 0 1 0]0
0 1 111]1 ¢ 1 1|0
1 0 0]|0|O0 1 0 0| *
1 0 1[(0]0 J 1 0 1| =
1 1 01010 1 1 0|0
1 1 1 01160 1 1 1 1

Figure 14: Reduction as a mapping from one truth table to another.

function reducel(G, f ,conflict);
begin initialize G” to all don't-care;
conflict &« false;
for all s {0,1}n
do begin z « f (s1):
if G'(z,s2) = donft-care
then G'(z,s5;) & G{s)
else if G'{z,s:2)#G (s)
then conflict ¢« true
end;
return (G”)
end;

s is an input vector for the network; 51 is the part of it received by the current node and

§2 is the part fed to the remainder of the network. ““£’’ denotes incompatibility:
a+b <> a#don’t—care and b#don’t—care and a#b .
The opposite is compatibility:

a~b <> a=don’t—care or b=don’t—care or a=b .

221 -

The procedure reduce can also be used if G itself contains don’t cares. A don’t care

entry in G may be mapped into any entry of G ’ without causing a conflict.

3. DECOMPOSITION ALGORITHM

This section develops a procedure for the decomposition problem. Nothing is
assumed about the structure of the given network. Rather than designing a specific
special-purpose algorithm that applies only to a restricted set of networks, we develop a
general-purpose strategy that applies to any P-net. The algorithm is a search strategy
consisting of the repeated application of a selection and reduction process. In the case of

a disjunctive binary tree the search degenerates to a deterministic scheme.

The skeleton of the search strategy is presented first (section 3.1), the case of binary
trees is discussed next (section 3.2), and the same strategy is then applied to general net-

works (section 3.3).

3.1, Principles of the Search Algorithm

A brute-force solution to the decomposition problem might consist of exhaustively
generating all possible combinations of nodal assignments until a combination is found
that produces the desired network function. If redundant assignments are sought then the
search continues until more solutions are found. In other words, the strategy consists of
exhaustively generating all possible assignments o and for each assignment verifying

whether F =G .
Denote Ng the number of ways G can be implemented on the given network:
Ng=1{alFe=G} | .
The probability that a randomly selected assignment o achieves the function G is:
Prob{Fo=G1= ¢ .

where P=p! is the total number of possible assignments for the P-net. Denote A the

-22-

number of assignments examined before the correct one is found. Bounds for A are:
A min=1 and A ma=P -Ng+1. If the assignments are tried in a random order then A obeys
a negative hypergeometric distribution with parameters Ng, P—Ng , and 1. [6] The mean

of such a distribution is
- P+l
Aav = NgFr -
The decomposition strategy discussed here generates a limited number of assign-
ments (less than P) in an order such that A,y is as small as possible. The algorithm tries
only assignments selected by a selection criterion. Its strength is measured by how well

it succeeds in reducing Agy .

The selection criterion is global: which assignments it selects depends on the net-
work function and the entire structure of the network. In our approach, however, the glo-
bal assignment is decomposed into a sequence of nodal assignments and the selection cri-
terion is also local to each node. The nodes are treated in a sequential bottom-up fashion.
At each node a few candidate functions are selected and tried one after the other. The
decomposition algorithm then becomes a search through a tree structure. Every leaf of
the tree corresponds to a complete assignment and A is the number of leaf nodes that are

examined.

In a search procedure the computational time is not directly related to the number of
leaf nodes examined, but rather depends on the size of that part that is actually traversed.
We call S the number of nodes of the tree that are traversed. Bounds for S are: Smin={,
the number of nodes in the network (the depth of the search tree), and Smax=p!=P, the
total number of assignments (the overall size of the tree). There is no direct relationship

between Sy and Agy .

The search procedure has 2 major components. First, a local selection procediire
reduces the number of functions to be considered at each node from p=1¢| to some
smaller number p’=1¢’1. It is based on the observation that a number of functions can be

excluded from examination and that a few functions are likely to achieve the given

_23.

network function, This component of the search procedure can be expressed as:
¢ « S(6,G.i,P)

where S is the selection procedure, ¢ is the functional set of the node, G is the given net-

work function, i is the label of the current node, and P is the network definition.

A second component of the search procedure is necessary because the function to be
assigned to a node depends on previous assignments to other nodes. Therefore, the selec-
tion procedure S should be coordinated between different nodes. This coordination is
accomplished by using a reduction computation between two nodes. The first node (in
the bottom layer) selects an assignment based on the given network function. It then
passes the residual network function to the next node, which makes a selection based on
this residual function, and so on. The coordination between nodes is therefore achieved

by using successively modified network functions.

EXAMPLE 8: Figure 15 shows a simple P-net. Suppose the given network function is
G (x1,x2.x3) = (x 1@ x2)(x2+x3). Treating the nodes in the order (2,3,1), the decomposi-

tion might proceed as follows:

Node 2: G (x1x2x3) = (x10 x2)(x2+x3) ,
Fax1x)=x1@x2,
G (z2.x2.x3) = z2(x2+x3) .
Node 3: G(zzx2.x3)=z{x2+x3),
falx2x3) =x2tx3,
G(z2.23) =2223.
Node 1: G(z2,23)=z323,

fi(z2.23) = 2223,
G'(z)=z.

This example demonstrates redundancy. Indeed, since (X 1@ x2)(x2+x3) = X1X2X3,

an alternative solution might be:

-24 -

t) 23

X1 X2 X3

Figure 15: Example of a decomposition problem.

Node 2: G{x1,x2,x3)=X1x2x3,
falx1x2)=x1x2,

G'(zaxa.x3) =22x3.
Node 3: G{z2.x2.x3)=z2%3,

falxaxa)=x3,

G'(z2,23) = 2923
Node 1: G{(z223)=1z221,

fizzza)=z2223,

G'(z)=z.

Alternative assignments, obtained by equivalence or inversion operations, ar¢ demon-
strated below:

Node 2: G(x1,x2.%3)=X1x2x3,
falxix2) =x14x2,

G'(z2x2.x3) =22x3.

-25.

Node 3: G(zz.x2.x3)=22%3,
Falxax3}=xa,
G'(z2.23) =2223.

Node 1: G(z2,23)=2223,

Flz2.23)=12223,
G'(z)=z. O

3.2. Binary Tree Networks

We now apply the principles discussed in the previous sections to binary tree net-

works. Extensions to ternary or higher-order trees are trivial.

A disjunctive binary tree network is a network where the 2 input values of a node
depend on a disjoint set of input variables, that is, each input variable is connected to
only one node. In a nondisjunctive binary tree network the 2 inputs to a node may
depend on an overlapping set of input variables. A nondisjunctive tree can be reduced to
a disjunctive one by the introduction of virtual variables. Figure 16 shows a disjunctive
binary tree with 8 inputs.

The number of virtual inputs for the network is m=2i{ where i is the number of
layers in the tree. For a disjunctive tree m=n; for a nondisjunctive tree m>n. The
number of nodes in the network is /[=m—1. A disjunctive tree is not universal (Q <22;
v<1) and it exhibits only trivial redundancy. By contrast, a nondisjunctive tree can be
universal provided there are enough fan-out connections in the inputs and the redundancy
will typically be nontrivial.

The algorithm for decomposing a given Boolean function onto a binary tree works
as follows. Starting with any node in the bottom layer, for instance node 4 in figure 16, a
function is assigned using the decomposition chart with respect to Aj;={x1x2} and
Aa={x3,...,%m}. (Ina disjunctive tree, only a single function and its negation are possi-

ble. In a nondisjunctive tree, the assignment is not unique as a result of the don’t care

-26 -

/2\ /3\
ANV

X1 X2 X3 Xa X5 Xe X7 X8

Figure 16: Example of a binary tree network with 8 inputs. It has 7 nodes and

3 layers.

entries in the virtual decomposition chart, and a search is necessary.) Next, the residual
function is determined by reduction. (It may generate don’t care entries unless the tree is
disjunctive.) The procedure treats the remaining nodes in a similar fashion, taking them
one by one in a bottom-up order, that is, child nodes are assigned functions before their
parent node. For the example of figure 16 two possible traversals of the nodes are

(4,5,6,7,2,3,1) and (4,5,2,6,7,3,1).

To conclude, disjunctive binary trees have a very simple deterministic decomposi-
tion strategy; no search is necessary and Szy =S min=Smax=!. For a nondisjunctive binary

tree, a search is typically required and Say ,S max>1.

EXAMPLE 9: Figure 17 illustrates a decomposition in a nondisjunctive binary tree. The
function for the network is G (x1,x2,x3) = x1x2+x2x3. The figure shows the real and vir-
tual decomposition charts. A possible assignment for node 2 would be f2(x1,x2) = X1x2,
resulting in a residual function G” as indicated. However, no assignment is possible for

node 3 since its decomposition chart has 3 mutually incompatible columns, and

-7 -

backtracking is required. The assignment f2(x1,x2)=x1x2 leads to a different residual
function and f3(x% x3)=x%x3 is a possible assignment for node 3. This leads to a correct

global assignment. [

G
X1X2
x 0j0{11]0
*To[1]1]0
X1 X2 X3
Gv G’
X1x2 2
0]+ [*]0 _ 0l+
ol+|*|0 f2=X1xL N 0+
S ERNE = B
«j011]=* 110
2=X1X2
z3 z2
0f=* fa=xix3 o1
0+ = BN
X33 T
0|1

Figure 17: Example showing the need for search and backtracking in a non-

disjunctive binary tree network.

-28 -

3.3. General Polyfunctional Networks

The search algorithm is now extended to include all possible P-nets. Two possible
local selection criteria are presented, resulting in two different algorithms. The cautious
algorithm finds all possible (redundant) solutions, but it is by necessity very defocussed
and may require a lot of search. The adventurous algorithm is more focussed, but it does
not aim at finding all the solutions. These two selection criteria are presented first. A
preliminary analysis of the complexity of the adventurous algorithm follows. The last

subsection presents a program that implements the adventurous algorithm.

3.3.1. Cautious selection criterion

Consider a node in the bottom layer of a P-net and suppose it takes x1 and x2 as
inputs. If neither x1 nor x2 are inputs to the remainder of the network then the decompo-
sition is disjunctive. In this case only two functional assignments (negations of each
other) are applicable for that node. If the network function contains don’t care entries

then multiple assignments may be possible and must be tried in sequence.

Now consider the case where x2 is an input to the remainder of the network as well.
The virtual decomposition chart must be used to determine the nodal assignment; mutu-
ally incompatible columns must have a different functional value. For node 2 in figure
18 only the columns G¥; and GY1 are mutually incompatible and should be assigned
different functional values. Hence 8 nodal assignments are possible, as shown in the

figure.

For this particular network the virtual decomposition chart has at most 2 pairs of
mutually incompatible columns, namely (G¥0,G Yo) and (G¥1,GY1). If these 2 pairs are
indeed incompatible then only 4 local assignments must be tried. If only one pair is
incompatible then 8 assignments are possible. In the extreme all 16 possible functions of

2 inputs have to be examined.

If both x1 and x2 are inputs to the remainder of the network as well then (as in

.29 -

G Gv
X1Xx2 X1x2
0|0|1}0 O)*|*]0

X3 —
01130 Xax3 O[*]|*]|0
* |1 *
* | Q|11=*
PQSSIBLE ASSIGNMIENTS: x) x2 X3
x1 0 011
xX1x2 0100
X1@®x2 0101
x1@ x2 1 010
X1+X2 1 011
x1 1100
xi+xz 1101

Figure 18: Example of cautious selection with one virtual variable x¥.

figure 19) any pair of columns is never incompatible and therefore all 16 local functions

have to be examined.

In general, assuming that a node has k inputs, v of which are inputs to the rest of
the network as well (0<v<k), and assuming that the network function is completely
specified, then the number of functional options for that node is at least 22, The selec-

tion procedure reduces ¢ to ¢” with the size of ¢” bounded by

-130 -

Xix2

X{xdxs - Xxa

A ————

e ———]
R

Figure 19: Virtual decomposition chart with two virtual variables xY and x3.

2 <p'=1¢'1 2% .

If the given network function contains don’t cares then the lower bound is larger. Hence,
don’t cares increase the amount of search needed to find a decomposition. Fan-out con-
nections in the network introduce don’t care entries in the network truth table, and they

constitute a major source of search complexity in the decomposition problem.

The cautious selection procedure S, selecting functions that have different values

for mutually incompatible columns of the virtual decomposition chart, is listed below:

-31-

function Sc-{($,G,1i,P);
begin Gv « wvirtual(G,i,P):
o« I;
for all fe¢
do begin retain < true;
for all (s,s’)e({0,1}K)2
do if (G¥4G¥) and (fs=fs)
then retain ¢« false;
if retain
then ¢ « ¢'UF
end;
return (¢")
end;

virtual is a function that generates the virtual truth table; G is the s -th column of the

virtual decomposition chart.

The program listed above implements the test
Vs,s'e{01}k: GGy > fs#fs .

This test, however, is automatically included in the reduction process. Indeed, the reduc-
tion will return a conflict if and only if two mutually incompatible columns of the virtual
decomposition chart receive the same functional value. In other words, a function
selected by the cautious selection will not cause a conflict in the reduction step, and,
vice-versa, a conflict in the reduction computation occurs only for a function not selected
by the cautious criterion. Hence, S¢ is redundant and one may as well use the reduction

process to make the selection. Therefore, the procedure can be simplified:

function 5. (¢,G,1i,P);

bagin return (¢)

end;
In other words, the cautious criterion does not make any selection at all and feeds the
reduction phase with all possible local functions. This program is therefore doing the
maximum amount of search and relies only on the reduction step to cut down the number

of assignments. In return, it generates all possible redundant assignments after succes-

sive backtrackings.

.32 -

3.3.2. Adventurous selection criterion

We now discuss a possibility to further reduce the size of ¢’, based on the real
decomposition chart. This decomposition chart generally contains more than two mutu-
ally incompatible groups of columns. How can local functions be selected based on this

contradictory decomposition chart?

EXAMPLE 10: In figure 20 there are 3 mutually incompatible classes of columns in the
real decomposition chart of node 2, namely C1={G00,G 11}, C2={Go1}, and Ca={G10}.
We select three functions (plus their negations) by mapping these 3 mutually incompati-
ble classes into 2 groups and assigning the same functional value to columns of the same
group. The conflict that results from assigning two incompatible columns the same value
is ignored for the time being. We assume it will be taken care of by the remainder of the
network. Three groupings are possible: {C 1\ C2,C3}, {C3UC1,C2}, and {C2UC3,C 1}

Each grouping results in a functional assignment, as shown in figure 20. [J

G
X1x2
3 0|0|1]|0
o[1|1}0
POSSIBLE ASSIGNMENTS:
X1x2 0010 X1 x2 b 4]
Xix2 0100
X2 0110
X2 1 001
x1+x2 1011
X1+x2 1101

Figure 20: Example of adventurous selection.

233 -

This selection is based on the incompatibilities in the real decomposition chart only
and does not need any knowledge of how many or which local variables are inputs to the
remainder of the network as well.

If the network function G contains don’t care entries then one column (containing
don’t care entries) could be compatible with two other columns that are mutually incom-
patible (see for example figure 21). Two alternative assignments are then possible, and

both must be tried.

X1x2

X3

Figure 21: Column G is compatible with both Go1 and G 11, but Gor and

G 11 are mutually incompatible.

EXAMPLE 11: Figure 22 illustrates that the adventurous algorithm does not necessarily
generate all solutions. With the network function G (x1,X2,Xx3)=x1x2, the only functions
tried for node 2 are f2(x1,x2)=x1x2 and its negation. However, the choice f 2(x1,x2)=x1

and f 3(x2,x3)=x2, also a valid solution, is not found. O

The adventurous algorithm neglects some correct assignments but reduces the total
size of its search tree. It is intuitively very appealing. Consider the example of figure 22:
why should f2(x1,x2)=x1 or f2(x1,x2)=X1x2 be tricd? None of them causes a reduction
conflict and both might be part of a solution, but f2(x1,x2)=x1x2 is definitely the most
appropriate choice, the most likely to lead to a correct assignment. In general, different
local assignments lead to different residual functions G and it depends on the structure

of the remainder of the network which G’ is implementable.

The program for the adventurous algorithm is listed below:

234 -

G
X1X2
0l011]0
*Iolol1]0
2 3
X1 X2 X3

Figure 22: Example showing that the adventurous algorithm does not neces-

sarily generate all solutions to a decomposition problem.

function 5, ($,G,1,P);
begin ¢ « &;
for all fe¢
do begin retain « true:
for all (s,s)Ye ({0,1}x)?
do if (Gs~Gs’) and (fs#fs’)
then retain « false;
if retain
then ¢ « ¢'UF
end;
return (¢")
end;

In summary, the adventurous selection criterion is the complement of the cautious
criterion. Instead of assigning different functional values to incompatible columns of the
virtual decomposition chart, it assigns equal functional values to compatible columns of
the real decomposition chart. The relationship between both selection criteria is as fol-

lows. The cautious selection is based on the formal property (theorem 3)
Y s,5°ef0,1)k : GyEGYy > fs#fs . (1

The adventurous selection uses:

-35-

Y 5,5°€{0,1}k : Gs~Gy* > fs=fs. (2)

The latter is not a theorem (we showed a counterexample above) but a heuristic. By con-
trast, (1) is a theorem that holds for all network functions and for all assignments imple-
menting the given function. It remains to be proven that for all network functions there
exists a corresponding assignment for which (2) holds. This question is left for future

research.

3.3.3. Characteristics of the adventurous algorithm

The combined adventurous decomposition program is listed below:

procedure decomp{G,1i,U,P);
begin if i=0
then print assignment o
else begin ¢ « 5.(9,G,i,P}:
for all fied’
do begin o « al{i—>fi};
G’ « reduce(G, fi,conflict);
if not conflict
then begin i’ « next (i,P);
decomp {G’, 17,0/, P)
end
end
end
end;

G and G’ are respectively the network function and the residual network function for
node i, the latter to passed to the next node. The procedure next calculates the label of
the next node in a bottom-up fashion; label ‘“0’" is returned when the top node is
reached. If i=0 then the top node has been assigned a local function and, since
apparently the corresponding reduction succeeded, the complete assignment implements

either the given network function or its negation.

Some performance predictions of this algorithm include the following. The amount
of memory required for each node is roughly the size of the network truth table. How-
ever, the network truth table decreases in size as the algorithm proceeds through the net-

work. For example, the sizes of the network truth tables for two different node traversals

-36 -

of the network of figure 23 is shown in table 1. The first traversal is superior in terms of

memory requirements.

node 7 8 91 10 4 5 6 3 (1] total
size 32 (3232|132 |16 16| 16 8181 4 196
node 7 8 4 9 5 2110 6 | 3] 1| total
size 32 132 (323232132 (32|16 8] 4] 252

Table 1: Size of the memory required at each node for different traversals of

the nodes of the network shown in figure 23.

z=F(x1,...,Xs)

/avVavava
X1 X2 X3 X4 xs
Figure 23: A simple 5-input polyfunctional network.

The amount of search necessary, S, depends not only on the particular network

structure, but also on the given network function. The following analysis leads to an

-137 -

upper bound for S max.

Assume each node has k inputs and the network has n inputs. The number of
different columns in the real decomposition chart is less than 2%, the total number of
columns in the decomposition chart. Additionally, the length of each column is 2n-k
entries and therefore at most 22** columns are possible. If C represents the number of

different columns in the decomposition chart then
C <min{2k 22*} = C yax .

This upper bound is smallest for k=2 and for k=n—1 (Cmax=4) and is largest for k=2n-%,
that is, loga(k H+k=n. If C different columns exist then the adventurous criterion will
select 2€ local functions, which is bounded by 2¢== The size of the network function
changes from node to node, and so does Cmax. A pessimistic upper bound for Smax
would be to assume Cmax constant for all the nodes: Smax<2/*Cm==, A tighter upper bound
for Smax would have to take into account the size of the network function at each node
(as shown in table 1) and the number of assignments excluded by the reduction conflict
detection. Furthermore, this would still only give an upper bound, namely the number of

steps if the resulting tree is traversed entirely.

Simulation showed for the 3-input P-network of figure 3: Smax=99 and Say=26.
This is certainly an enormous improvement over the upper limit 2/XC===224, Further
experimental results, using the program described in the next section, are given in table

2. Different numbers in the column S are for different network functions G .

3.3.4. Implementation

The adventurous algorithm decomp has been implemented in a Pascal program. It
uses a more efficient formulation of the adventurous selection process. Instead of testing
all members of ¢ with the criterion, it generates the set of all functions that satisfy the
criterion. It then checks each one of these functions for membership in ¢. In other

words, S, is implemented as:

-38 -

! S 21X Con
6 | 11,55,58 224
4 | 95,246, 288 216

12 | 158,613,775 248
24 | 61,178,205 296
28 | 236,592,695 2112
18 | 39 272

N TN N S RO R R
MR R R W BN

Table 2: Experimental data for the adventurous decomposition program.

function Si (¢,G,1,P);
begin Yy « generate-all(G,1i,P):
¢« yNo:;
return (¢’)
end;
If ¢ is universal then ¢’=y. This approach is more efficient in time and in storage

requirements than the version presented earlier.

The program was also written to be a little more general than described above. It is
able to invoke itself recursively on a subnetwork. This allows the user to define a P-net
as a network of basic nodes and then use this network as a macro-node or module in the
definition of a larger network, and so on (see for example figure 24). The program
decomposes the network function and assigns functions to each subnetwork assuming
they are basic nodes of the network. It then further subdecomposes the assigned func-
tions for these smaller networks, and so on. The decomposition is organized in a depth-
first manner, that is, the subdecompositions are treated before the next macro-node is
considered. The decomposition backtracks if the current subnetwork cannot implement

its assigned function.

As a result of this multilevel strategy, backtracking can be done in a more radical
fashion than would be possible in a single-level definition of the same P-net. The

rationale is the following. If a dead-end is found at for example macro-node 3 of the

-39 -

z=F (x1.X2.X3.%4)

Figure 24: Example of a multilevel P-net.

network in figure 24 (that is, all the options selected for this node generate a reduction
conflict) then there is no need to continue with different assignments for the nodes in the
macro-node 2. In other words, there is no need to backtrack inside the subnetwork 2 and
try different assignments for the nodes 21, 22, or 23 with the same assignment for the
subnetwork 2. Such different assignments would only cause the same dead-end at
macro-node 3. Hence, the backtracking can be continued until the next assignment for

macre-node 2 is found.

The program reads the definition of the network P=[N,z,x,|] from a file. N defines
the node, z and x label the network output and inputs, and | defines the interconnection
structure. The network specifications are written in a simple language whose context-

free grammar is listed below.

- 40 -

<networkdescription> ::= <atomdefinition> ; <networkdefs> .
<atomdefinition> ::= define <representation>
functions { <truthtableset> } |
define <representation>
functions all

<representation> ::= <identifier> = <identifier> { <parameterlist>)
<identifier> ::= <lettercrdigit> [<identifier>]
<letterordigit> ::= <letter> | <digit>
<parameterlist> ::= <identifier> [, <parameterlist>]
<truthtableset> ::= <truthtable> [, <truthtableset>]
<truthtable> ::= <zeroorone> [<truthtable>]
<networkdefs> ::= <networkdefinition> [; <networkdefs>]
<networkdefinition> ::= define <representation>
interconnect { <nodelist> }
<nodelist> ::= <nodedefinition> [; <nodelist>]
<nodedefinition> ::= <identifier> : <representation>

The definition of the the P-net of figure 3 is listed below.

% Definition of a 3-input P-net with & nodes.

% Definition of the node
define z = atom(xl,x2) functions all;
% Definition of the 3-input network
define z = F(xl,x2,x3)
interconnect { noded4 : z4 = atom (x1,x2);

nodeb : z5 = atom (x2,x3):
nodeé : z6 = atom (x3,x1);
node?2 : z2 = atom (z4,z5);
nodel : z3 = atom {(z5,z6);
nodel : z = atom (z2,z3) 1}.

The definition of the P-network of figure 24 is:

_41-

% 4-input P-net built with 3-input P-nets.

% Definition of the atomic node
define y = atom(xl,x2) functions all;
% Definition of the 3-input network:
define z = f(x1,x2,x3)
interconnect { a2z : z2

atom{xl,x2);
a3l : z3 atom{x2,x3);
al : =z atom{z2,z3) }:

% Definition of the 4-input network:

define z = F(x1l,x2,x3,x4)

interconnect { m2 : z2 = f(x1,x2,x3);
m3 : z3 = £({x2,x3,x4);
md : z4 = £(x3,x4,x1);
ml ;: z = f(z2,z3,2z4) }.

Lines starting with a ““%’” are comment lines. The first few lines of the definition specify
N=(k,0). Each define statement lists z and x and the following interconnect

statement defines .

The basic node (called atom in both cases) could be defined arbitrarily by giving a

list of local truth tables. For example:

% 2-input node implementing AND, LEFT, RIGHT, OR
define z = atom(xl,x2)
functions { 0001, 0011, 0101, 0111 } :

The decomposition program treats the nodes (or macro-nodes) in the order given by
the network specification. Therefore the node connections | should be ordered in a
bottom-up sequence. A label cannot be used as input to a node unless it was defined ear-
lier as the output label of another node or unless it is a network input. Additionally, the
subnetworks must be defined in a depth-first manner, meaning that the node must be
defined first, then the subnetworks, and finally the global network. A subnetwork must

be defined before it can be used as macro-node in another interconnection definition.

This language allows the specification of any polyfunctional net with only a single
node, as defined in section 1. The adventurous algorithm described earlier does not
require all nodes to be identical, and the program and definition language could be

extended in this direction. However, except for this restriction the program is completely

general. It does not make any assumptions regarding the universality of the node, the
universality of the network, the structure of the interconnections, or the size of the nodes.

Furthermore, it finds multiple solutions, although typically not all of them.

Below is a partial script of the program using the 3-input network of figure 3. The

network function is G (x1,x2,x3) = x1x2+x2x3+x3x1. Inputs typed by the user are in

bold face.

.47 -

specify network file: Nw3.6

specify truth table of 3 varilables (xl,x2,x3):

01101011
1: 1 | noded: 0000... ok.
2: 1 | node5: 0000... conflict.
3: 1 | node5: 0010... conflict.
4: 1 | nodeS5: 0100... conflict.
5: 1 | node5: 0110... ok.
6: 1 | node6: 0000... conflict.
7: 1 | nodeé: 0001... conflict.
8: 1 | node6: 0100... conflict.
9: 1 | node6: 0101... conflict.
10: 1 | nodef: 1010... conflict.
11: 1 | nodeé: 1011... conflict.
12: 1 | nodeé: 1110... conflict.
13: 1 | nodeé: 1111... conflict.
14: 1 | nodeb: 1001... ok.
45: 1 | node3: 0101... conflict.
46: 1 | node3: 0110... ck.
47: 1 | nodel: 0000... conflict.
48: 1 | nodel: 0111... ok.
implementation found after 48 steps:
1 | noded: 0001
1 | node5: 0011
1 | node6: 0110
1l | node2:; 0001
1 | node3: 0110
1 | nodel: 0111
continue? [y,n,#] no
search aborted.
number of steps: 48

maximum stack size:
other memory used:

do you want to run another decomposition? no

366 words
286 records

- 43 -

An example of a decomposition problem for the network of figure 24 with network

function G (x1,X2,X3.X4) = X1X3+x2(x 1® X 4) is given below:

specify network file: Nwd.4.3
specify truth table of 4 variables (x1,x2,x3,x4):

0110100100110011
i: 1 | m2: 00000000... ck.
2: 2 | m2.a2: 0000... ok.
3: 2 | m2.a3: 0000... ok.
4: 2 | m2.al: 0000... ok.
5: 1 | m3: 00000000... conflict.
6: 1 | m3; 00010010... conflict.
7: 1 | m3: 00100001... conflict.
8: 1 {1 m3: 00110011... conflict.
9: 1 | m3: 01001000... conflict.
10: 1 | m3; 01011010... ok.
11; 2 | m3.a2: 0000... conflict.
12: 2 | m3.a2: 0011... ok.
13: 2 | m3.a3: 0000... conflict.
14:; 2 | m3.a3: 0101... ok.
15: 2 | m3.al: 0000... conflict.
16: 2 | m3.al: 0110... ok.
17: 1 |{ md4: 00000000... conflict.
18: 1 | m4: 00000101... conflict.
16: 1 | m4: 00001010... conflict.
20: 1 | m4; 00001111... conflict.
21: 1 | m4: 01010000... conflict.
22: 1 | m4; 01010101... conflict.
23; 1 | m4: 01011010... conflict.
24: 1 | m4: 01011111... conflict.
25: 1 | md4: 10100000... conflict.
26: 1 | m4: 10100101... conflict.
27: 1 | md4: 10101010... conflict.
28: 1 | m4: 10101111... conflict.
29: 1 | m4: 11110000... conflict.
30: 1 | m4: 11110101... conflict,
31: 1 { md4: 11111010... conflict.
32: 1 | mg: 11111111... conflict.
33: 1 | m3; 01101001. ok.
145: 2 | md4.al: 0100... ok.
146: 1 | ml: 00000000... conflict.
147: 1 | ml: 00000101... conflict.
148:; 1 | ml: 00101010... ok.
149: 2 | mi.a2: 0000... conflict.
150: 2 | ml.a2: 0111... ok.
151: 2 | ml.a3: 0000... conflict.
152: 2 | ml.a3: 0001, conflict.

153:
154:
155:
156:
157:
158:

implementation found af

1
2
2
2
1
2
2
2
1
2
2
2
1
2
2
2

m2
m2
m2

m2

NN NNDN

2

.az:
.a3:
.al:

m3;

m3
163
m3

.a2:
.a3d;
.al;

m4 ;

m4.

m4
ma

.a3:
.al:

ml:
ml.
.a3: 0101

ml
ml

.al;

ml.,a3:
ml.a3:
ml.a3:
ml.a3:
ml.al:
ml.al:

i
i
I 0100,
|

| 0000..

| 0010.

00000101
0011
0101
0001
01101001
0119
0101
0110
01010000
a2: 0011
0101
0100
00101010
az2: 0111

0010

continue? [v,n,#] no
search aborted.

number of steps:
maximum stack size:
other memory used:

do you want to run another decomposition? no

Answering the question

158
80z

<

0010...
0011...

0101..

‘continue?

- 44 -

conflict.
conflict.
conflict.
ok.
conflict.

. ok.

ter 158 steps:

words

453 reccords

program backtrack and find another solution.

4. CONCLUSIONS AND FUTURE RESEARCH

The decomposition problem in its most general form is a hard problem that can
require a large amount of search. Sometimes a solution is found early in the search, but
there is no guarantee that this will always be the case, or that it will be true on the aver-
age. If on the average the size of ¢ is reduced to p"=1¢’| then it would require O ((p)

steps to traverse the tree in its entirety. In the worst case, the solution for the decomposi-

tion problem requires an almost exhaustive search.

(y,n, #]° with ‘‘yes’ will make the

- 45 -

The main issue is not so much the amount of search needed, but the nature of the
responsibility assignment task, namely how to assign certain pieces of the global system
goal to certain parts of the system. In terms of polyfunctional networks this means
specifically: how to assign a smaller function to a node or subnetwork given a certain
function for the network as a whole. When can an assignment of responsibility be done

in a straightforward fashion? When is it easy and when is it hard?

The multilayered nature of the network is not an obstacle in determining which part
of the network should implement a certain piece of the network function. The example
of the disjunctive tree shows that for any network function implementable on this net-
work the assignments for all the nodes can always be decided by a straightforward algo-
rithm. The number of node assignments is linear in the number of nodes. What is it that

makes the assignment so simple in this case and so complex in others?

The size of the node versus the size of the whole network is an important issue. If
the node or subnetwork to be assigned responsibility is only a little smaller in size than
the whole network, then the problem is simpler than if the node is much smaller. In the
latter case the network function must satisfy strict requirements in order for the assign-
ment to be focussed to one or a few possibilities (as in the case of the disjunctive binary
tree). In the former case most network functions allow a simple solution. If the network
function happens to depend only on the variables that are inputs to a given node then the

assignment is solved trivially.

In general, the sources of difficulty are the fan-out connections (external or inter-
nal). Fan-outs introduce virtual variables, which in tarn introduce don’t care entries in
the network truth table. The decomposition then requires a search. Furthermore, in such

a case the responsibility assignment is not unique, because the structure is redundant.

The fundamental reason behind the necessity for a search is that the assignment can-
not be entirely local and must use global knowledge of the network structure. If multiple
assignments are possible at a given node, each one will produce a different residual func-

tion. Deciding which local assignments are correct requires knowing which residual

- 46 -

functions are implementable on the remaining network. Coordinating local assignments
with global requirements is therefore of crucial importance. The local assignments
should depend not only on the assignments made to previous nodes, but also on the struc-
ture of the remainder of the network (the part that has not yet been considered by the
search). The question whether a (residual) function is implementable on a (remainder of
a) P-net is different from the problem of actually finding an implementation. The former
is a binary question; the latter is a search for a particular solution. We do not know yet

whether the former is computationally simpler.

Different traversals of the nodes are possible, opening a possible improvement to
the decomposition algorithm. Some orderings might lead to a faster solution (less back-
tracking) than others. Which order should be preferred? It depends on the network func-
tion. The node with the simplest assignment, the smallest number p’, should be taken
first. This node has the smallest number of mutually incompatible groups of columns in
its decomposition chart, or the maximum number of mutually compatible columns. Find-
ing this node is a different problem than the original decomposition problem, and its

complexity remains to be evaluated.

An ordering of nodes such that at each step p” is minimal would reduce the com-
plexity of the problem substantially. Finding this optimal order of traversal can be facili-
tated by using parallelism. Assume that all the nodes in the bottom layer receive the glo-
bal function at the same time and compute ¢” concurrently. A global control mechanism
can then designate a single winner to perform the reduction step. The same process can
be repeated for the nodes in the bottom layer of the remainder of the network, and so on.
Using parallelism the nodes are treated in an optimal order at no cost in time. By com-
paring the size of this optimal search path with the size of an average search path one

could determine if the extra cost of parallelism is offset by the improvements in speed.

Three important topics regarding the decomposition problem are open for future

research.

- 47 -

a. Existing decomposition algorithm

Many aspects of the decomposition algorithm need to be explored not only to
improve not only the performance of the algorithm itself, but also to provide more insight
into the responsibility assignment problem in general. Several improvements to the
selection criterion are possible, which would further focus the search. Further theoretical
or statistical analysis of the performance of the algorithm is needed. The development of
estimates (instead of a very pessimistic upper bound) for Sy would allow a better char-
acterization of the complexity of the decomposition problem. Finally, the possibilities

for exploiting parallelism in the decomposition process itself should be explored.

b. Top-down versus bottom-up strategies

A complementary decomposition algorithm, proceeding in a top-down fashion, has
not been developed or explored. Still, a top-down procedure would be intuitively very
appealing. The difficulties encountered in such an approach are different from those ina
bottom-up strategy, but the exact nature of these differences remains to be explored.
Insight gained from understanding a complementary strategy would undoubtedly shed
additional light on the bottom-up strategy as well. A unification of both approaches may

be the ultimate goal.

c. Incompletely specified functions.

The existing decomposition algorithm does not assume that the given network func-
tion is completely specified: it is already dealing with don’t cares internally. However,
so far we have always considered cases of completely specified functions, and possible
shortcuts with don’t cares have not been examined. It would again be desirable to do a
theoretical or statistical analysis of this issue and identify appropriate ways of treating

don’t cares. R

_48 -

REFERENCES

1.

Aleksander, 1., “‘Structure/Function Considerations for Digital Systems that Contain
Polyfunctional Elements,”” Computers and Digital Techniques 1(4), pp. 165-170
(October 1978).

Curtis, H.A., “‘A Generalized Tree Circuit,”” Journal of the ACM 8(4), pp. 434-496
(October 1961).

Curtis, H.A., “Generalized Tree Circuit - The Basic Building Block of an Extended
Decomposition Theory,”” Journal of the ACM 10(4), pp. 562-581 (October 1963).

Friedman, A.D. and P.R. Menon, Theory and Design of Switching Circuits, Computer
Science Press, Inc., Woodland Hills, CA (1975).

Hight, S.L., ‘‘Complex Disjunctive Decomposition of Incompletely Specified
Boolean Functions,”’ IEEE Transactions on Computers C-22(1), pp. 103-110 (Janu-
ary 1973).

Johnson, N.L. and S. Kotz, Urn Models and Their Application, John Wiley & Sons
(1977).
Rosenblatt, F., Principles of Neurodynamics, Spartan Books, Washington, D.C.
(1962).

Urbano, R.H., *‘Structure and Function in Polyfunctional Nets,”’ IEEE Transactions
on Computers C-17(2), pp. 152-173 (February 1968).

