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ABSTRACT OF THE REPORT

Analysis of the Number of Occupied
Processors in a Multiprocessing System

by

Abdelfettah Belghith
Leonard Kleinrock
Computer Science Department
School of Engineering and Applied Science
University of California, Los Angeles

We view a multiprocessor system as a set of P cooperating processors, and a computer
job as a set of tasks partially ordered by some precedence relationships, and represented by a
directed acyclic graph called a Process Graph. Nodes in the process graph represent the tasks
and edges represent the precedence relationships between these tasks.

Many parameters are in play to characterize the underlined multiprocessor system.
These are: the job arrival process, the process graph description (number of nodes, number of
levels, distribution of the tasks among the levels, and the precedence relationships among the
tasks), task processing requirements, and the number of processors in the system,

In this report, we investigate the probability distribution of the number of occupied pro-
cessors, the generating function of this distribution and its first two moments. In particular, the
expected number of busy processors is found to be dependent only on the average number of
tasks per job, the job average arrival rate, and the task average processing requirement.
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ANALYSIS OF THE NUMBER OF OCCUPIED
PROCESSORS IN A MULTIPROCESSING SYSTEM

One of the major issues in distributed and parallel processing systems is the evaluation
of the system concurrency. Concurrency is a measure of the achievable parallelism, and can be
thought of as the number of busy resources which can be utilized simultaneously. In this report,
we regard a multiprocessor system as a set of cooperating and identical processors, and a paral-
lel job as a set of tasks partially ordered by some precedence relationships and hence
represented by a directed acyclic graph called hereafter a Process Graph. Many parameters are
thus in play to characterize the terrain of the parallel processing system under investigation.
These include: the job arrival process, the process graph description, the task processing
requirement, and the number of processors involved.

1 Model Description

A computer job is a set of tasks partially ordered by some precedence relationships and
represented by a process graph (PG). A node in the process graph represents a given task, and
an edge (i,j) between node i and node j represents the precedence relationship between task i
and task j. Edge (i.j) is used to prevent the start of task j execution unless task i execution has
been completed. The tasks (i.., nodes ) in the process graph are therefore distributed into lev-
els. Tasks at level one are said starting tasks, and tasks at the last level in the process graph are
said terminating tasks. Any two tasks can be executed concurrently (i.€., in parallel) if and only
if every predecessor of one task does not include the other task, and vice versa. Figure 1 gives
an example of such a process graph, where the edges are implicitly directed downwards.



The multiprocessor system under consideration consists of a set, say P, of identical pro-
cessors. Each processor is capable of executing any task. The number P of processors can be
infinite or finite. Let N denote the random variable counting the total number of tasks in a pro-
cess graph (i.e., in a job), r denote the random variable counting the number of levels in 2 pro-
cess graph 1$FSR’, X denote the random variable representing the task processing requirement,
and ¥ denote the random variable representing the number of occupied processors.

Since each level in the process graph must have at least one task in it, it follows that the
total number of process graphs having N tasks and r levels is equal to the number of ways to
distribute (N-7) tasks among the r levels. This number of ways is "

[(N-r)-l-r—l] ) [N-—l] o
r—1 r—-1

Proposition 1

For a fixed number of tasks per job, say N, and a fixed number of levels, say r, and for
1€n<N-r+1 and 1<k<r , the probability of having n tasks at level k is given by :

1. If =1 then: P [n tasks at level 1}={0 1 7*V
1 ifn=N

N-n-1

r-2

2. If r22 then: P[n tasks at level k]=
N-1
r-1

* In fact, the ordinary generating function of such a number of ways is :
E+x2++ - x4 Y =x"(1x)”

since each level can have from 1 to N-r+1 tasks in it, the number of ways to distribute N tasks
among the r levels such that no level is left empty is the coefficient of x¥ in the generating
function. By the binomial theorem [Liu68], we have:

A=x)"= 3 [f ¥ 'l] x and therefore

i=) |}
x (l_x)—r = Z ’:‘H-l Ir+i = E N-1 xN
i=o (¢ N=r |1



Figure 1: Example of a Process Graph
Proof

The proof of case 1 is trivial since for r=1, all tasks must be at such a level. For N and r fixed
and from equation (1), we know that the total number of process graphs that we can have is
given by: N_;l . Consider now level k, we want t0 have n tasks at this level where

15n<N-r+1 . Hence it remains (N-n) tasks for the other (r-1) remaining levels. The number of
ways to distribute these (N-n) tasks among the (r-1) levels such that no level is left empty (i.e.,
the number of process graphs with (r-1) levels and (N-n) tasks), is given by :

[(N—n)—(r—l)] +(r-1)-1 _ N-n—1
(r-nH-1 r=2

This number also represents the number of possibilities for level k, 1<k<r to have n tasks out of

a total of N-II] possibilities. The probability P{n tasks at level k] is therefore the ratio between
r—

them.
il

Notice that level k can be any level, that is 1$k<r . The minimum number of tasks any level
can have is one, and therefore the maximum number of tasks any level can have is (N-r+1).



Proposition 2

For a fixed number of tasks per job, say N, the probability that a randomly chosen process graph
has rlevels, 1<r<N, is given by :

N-1
r—1
oN-1
This conditional probability of having a process graph with r levels given that the number of
tasks is fixed to N, is the binomial distribution 5 (r-1,N —1,%).

P [process graph has r levels]=

Proof

Since the total number of process graphs with N tasks is readily given by
N [n_1] Nt [N

Yy [N 11 =3 [N 1 =2N-1, and since the total number of process graphs with r levels and
r=l (P r=0 |

N tasks is N—ll , it follows that:
r-—
N-1
U O R Y21 B T Y
P [process graph has r levels | N tasks in it] = ] = iz )
r_
=b(r-1,N-1 -1—)
‘l ’ 2

nil
Let 7 and o2 denote respectively the mean number of levels and the variance of the number of
levels in a randomly chosen process graph comprising N tasks. From Proposition 2, we readily
have:

This Report is organized into 6 sections. In Section 2, we investigate the case of Fixed
Process Graphs. All jobs have the same process graph with a fixed number of tasks, say N, and
a fixed number of levels, say r. The number of processors is assumed to be infinite, the process-
ing time per task to be constant, say X, and the job arrival process to be Poisson with parameter
A. The probability distribution, the Z-transform, the average, and the variance of the number of
occupied processors are derived. Section 3 deals with Semi-random Process Graphs with two or



more levels. The case of just one level, being a fixed process graph, has already been treated in
Section 2. Each job has a process graph with a fixed number of tasks and a fixed number of lev-
els. The distribution of tasks among the levels, however, may vary from one job o another.
The job arrival process is assumed 1o be Poisson with parameter A, the number of processors to
be infinite, and the processing requirement per task to be constant, say X. In this Section, we
also derive the probability distribution, the Z-transform, the average, and the variance of the
number of occupied processors. Section 4 deals with the case of Random Process Graphs.
Each job has a random process graph with a fixed number of tasks, say N, and a random number
of levels (not exceeding the number of tasks). We still assume a Poisson job arrival process with
parameter A, an infinite number of processors, and a constant processing time per task, the same
for all the tasks. The Z-transform, the average, and the variance of the number of occupied pro-
cessors are derived. In Section 5, we generalized our results to random process graphs with a
random number of tasks, random number of levels, general task processing requirements, a gen-
eral job arrival process, and a finite number of processors. In Section 5.1, we further pursue the
case of an infinite number of processors, where we first derive a closed form expression of the
task arrival process distribution, its mean and variance, and then investigate the average number
of occupied processors under the generalized model. In Section 5.2, we consider the finite
number of processors case and prove that the average number of occupied processors stays a
function of only the job average arrival rate, the task average processing requirement, and the
average number of tasks per job. Section 6 concludes the report by providing and discussing
profiles of the average number of occupied processors and the system utilization as a function of
the number of processors used, and the number of occupied processors and the job average sys-
tem time as a function of the system utilization factor.

2 Fixed Process Graphs

Throughout this section, the process graph is assumed to have a fixed description, the
same for all jobs. All jobs have the same process graph with a fixed number of tasks, N, and a
fixed number of levels, r. Moreover, if we let J(n; .75 , ... ,n,) be the description of the process
graph where n; is the number of tasks at level i in the process graph, then we require that all
jobs have the same process graph description. First, we provide an expression for the probabil-
ity density function of the number of occupied processors. Then, we derive a closed form
expression of the Z-transform of the distribution of the number of occupied processors. Closed
form expressions for the average and the variance of the number of occupied processors will
also be derived.



2.1 Distribution of the Number of Occupied Processors

Let I represent the closed time interval {t—Xr,¢] as depicted in Figure 2. Interval [ is
divided into r slots of width X each (recall that X represents the constant service time per task).
Jobs arriving before time (t—}_fr) complete execution before time t, and hence do not occupy any
processor at time t. On the other hand, a job arriving in slot i of the interval I, participates at
time t with the tasks of its ith level. This job will then occupy a; processors at time t. Hence,

P[Y=y]= ¥  P[k jobsamivedinslot1,...,k, jobs arrived in slot r]
84 I':k,-n,-=y

i=1

Since the job arrival process is Poisson with aggregate rate A, and the slot width is X, we obtain:

_Tk

V= oyl = pAKr ax ™
Plr=yl=e L e m

51 }’: kn;=y

i=]

)

Although equation (2) is not an explicit expression, it allows to numerically compute the proba-
bility density function of the number of occupied processors in the system. In fact, since
r

r
3 k; <y, the number of possibilities (k, ...,k ..., k) such that Y k:n; =y is at most equal

i=l i=l

t-Xr t
1 : l
L . . 4 . — 4 = TIME AXIS
1 [ r '
- INTERVAL | :I

Figure 2: Analysis of Fixed Process Graphs

to the number of ways to distribute y objects among r cells. Hence for a small y, not too many
computations are involved in computing P[ff =y]. If the job amival rate, A, is smail, only
P {f’ = y] for small values of y are of interrest (of any significance). For a large value of A how-
ever, we can see the system as composed of several independent subsystems, say j subsystems,
each one comprising an infinite number of processors, and having a Poisson job arrival process

with average rate -%’- Now the probability density function of the number of occupied



processors can be computed using equation (2) and the following:

PIY=yl= ¥ Plfi=y]
s.t.k§1n=y

where I?,,, k=1,...,j represents the number of occupied processors in the kth subsystem.
Now, we proceed to compute the Z-transform of the number of occupied processors in

the system. Let Y;, i=1,...,r be the random variable counting the number of processors occupied
at time t by the jobs that arrived in slot i of the interval I, we have :

~ Lg—
Y=%7; 3)
i=1
since
PlY=x]= S P[¥Yi=x 1k,— jobs arrived in slot i].P [k; jobs arrived in slot i]
k=0
and,
~ ﬁ' =b.n.
P[Yi=x |k.~ jobs arived in sloti]=4 ! x=hin,
0 otherwise
we obtain:

P{Y; =k; n;]=P[k; jobs arrived in slot i]
and since the job arrival process is Poisson with rate A, and the slot width is X (the same as the
task service time), we obtain:

AD* ax

P[ii:ki ni]= !
!

4

Let us define by ¥;(Z) the Z-transform of ¥; ; that is :

Yi2) A T PIY=j2/ i=1,..r
j=0
From equation (4) we get:
- . nod o
Yi2)= 3 P(Fimkin) 25 = 3 QXL 4% 7
k=0 =0 J:

which amounts to:



Y.(2)= exp{-—?d? [1 _ z""} } (3)

Since the job arrival process is Poisson with parameter A, then the arrivals and the number of
such arrivals in any slot i, i=1, ... ,r are independent random variables. It follows that :

Y@)= I:I Yi(Z)

i=l

using (5) we obtain :

- u?zr:z"'
Y(Z)=eMre = ©

Notice from (6) that Y (0) = e“ﬁ’ =P, ,where Py =P] no job arrivals in the interval I].

2.2 Average Number of Occupied Processors

We now proceed to derive the average number of occupied processors, we have

¥=-%2y(Z) and using equation (6), we get:
dz Z=1
- % ¥ ézm - ’ X i Z
Y=e ™l d AX d Zh] o A = ¢~ Mr XS n 2! 8
. H e
Z=1 zZ=1
- - _r
=e™M 4 X | . P =X T
i= i=1
Therefore, we have: )



2.3 Variance of the Number of Occupied Processors

Now, we proceed to derive the variance of the number of occupied processors, we have

2 —_— =
—4—2—1'(2) = Y2 — Y. Using equation (6), we obtain:
dz |z=1
d? d | d
Pz [EY(Z)]

and by taking Z=1, we obtain:

- S - - _r 2
F—F: e—er [th Zﬂ" [n,-—l]]e"x’+e‘u’ [ Eﬂi] e”f'

i=1

=0 =...2 T .2 Ao =2

=X 3 n; [n,--l] £ OXNY: = AX 3 n2 — AXN +HAXN)
i=1 i=1

Since 63 =Y2 -7 = %Y(Z) +7 — ¥, and using equation (7), we get:

|Z=1

c}=MX ¥ n? (8)
i=1

An upper bound for 0% can be found by using the loose inequality ¥ x;% < [Z x,-]z. We get
i i

from equation (8):
6} SAX N? orequivalently O3 <SNY

Indeed *, this forms a tight upper bound, for it is accomplished by the process graph comprising
only one level (i.e., r=1). On the other hand, the process graph with N levels (i.e., each level has
one task) provides the lower bound for the variance of the number of occupied processors; that
is 63 = AXN. Hence, we have:

* Formerly, to obtain an upper bound on o}, we have to solve the following maximization
problem:

r

maximize {Z n? }
i=1
r

subjectto: Y m;=N for 1<r<N

i=]



AXN <o% <AXN? orequaivalently Y <o} <NY ®

In the above analysis, no restriction was assumed as to the choice of the shape of the PG(N,r).
Equations (7), (8), and (9) are valid for any given shape of the process graph PG(N,r). The only
restriction is that all jobs have the same process graph description J(n 13, ... .1,).

Examples

Let us take the discrete well shaped diamond process graph denoted by PG(r) (as a function of
r only); examples of which are depicted in Figure 3 and Figure 4. Two cases may be dis-
tinguished depending on the value of r being odd or even.

Case of an odd number of levels

Figure 3 gives some examples of such a process graph. In this case, the number of tasks at level
i, i=1,...,r is given by:

r+1
1<is—
i il
r—i+l r+1
2

and hence, the total number N of tasks in the well shaped process graph with an odd number of
levelsis:

r+l r-1 1 r+l1 r+3 1 r=1 r+l
N= .= + + +... = — + —
3n [1+2+... > ] [ 3 +2+1] ) >

n;

<i<r

which finally yields:

For a given value of r, the solution to this maximization problem is simply m=N-r+1 , n;=1,
j=1,....N and j#k. It is also easy to see that r=1 gives the upper bound. Likewise, to obtain a

lower bound on 0‘2{ we ha}c to solve the following minimization problem:

r
minimize { ¥ n;?
i=1
r
subjectto: Y} m;=N for I1<r<N

i=1
For a given value of r, the solution to this minimization problem is simply n,-=% for all i=1,....r.
It is easy to see that r=N gives the lower bound.

10



2

(10)

N=.’.'.".i
&

replacing N in equation (7) by the above expression, yields:
+1 2
VAl
B
4

2_n(n+1)2n+1)
6

Y= (11)

n
On the other hand, using the known identity Y ¢

i=]

, - 2 2
foeer oo | [t [ 5 [

Now, by using equation (10) we obtain :

, we get :

Z n,'z =Nﬂ - LW
= 3 3

which along with equation (8) gives:

Figure 3: Discrete Well Shaped Process Graph with Odd Number of Levels

o%=M?N’—f—-%-’— N (12)

11



r=4 r=6

Figure 4: Discrete Well Shaped Process Graph with Even Number of Levels

Case of an even number of levels

Figure 4 gives some examples of such a process graph. In this case, the number of
tasks at level i, i=1....,r is given by:

r
1sis—
i 2
n; = i1
T Lagg

and hence, the total number N of tasks in the well shaped process graph with an even number of
levels is :

N=Y m= (1424 4= |+ | SH T 4241
Fne vt 55

which amounts to :

N= ’—(’Z"El 13)

replacing N in equation (7) by the above expression, yields:

12



Xr(r+2)

Y= 14
Y 4 (14)
n
On the other hand, using the known identity ¥ i?=" (n +135(2n+1) , we get:
i=l
z
r 2
3 niz =23 2= r(r+2) r+1
i=1 i=1 4 3
now, using equation (13) along with equation (8), we obtain:
o} = xiN’—;'l- (15)
or equivalently,
sr+l
oi=Y——
r=""3

Equations (11) and (14) provide explicit expressions of the average number of occupied proces-
sors as a function of the number of levels, for well shaped process graphs having respectively an
odd and an even number of levels. Equations (12) and (15) on the other hand, ascertain their
variances. Other examples of interrest are studied in [Belg85].

3 Semi Random Process Graphs with two or more Levels

We now proceed to analyze the case of semi random process graphs. Each job has a
process graph with a fixed number of tasks, N, and a fixed number of levels, r22. However,
jobs do not necessarily have the same process graph description J(n,n3,...,n) where n;
i=1,...,r denotes the number of tasks at level i in the process graph. We shall first derive closed
form expressions of the probability density function and the Z-transform of the number of occu-
pied processors in the system. Closed form expressions for the average and the variance of the
number of occupied processors will also be derived.

3.1 Distribution of the Number of Occupied Processors

Let I define the interval of time [t - }_{r,t], ir",, denoté the random variable counting the
total number of occupied processors at time t given that k jobs arrived in the interval 1.

It is easy to see from Figure 5 that all jobs which arrived before time (t-rX) had finished before
time t. Such jobs will not occupy any processor at time t. Those jobs which occupy some

13
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Figure 5 Analysis of Semi Random Process Graphs
processors at time t, are the jobs that arrive in the interval 1. Therefore :

PY=y]= i P(Y, = y]P [k jobs arrived in I]
k=D

Since, if no job arrived in the interval I, then no processor will be occupied at time t, it follows
that:

~ 7 1
P[Y=0]=e’u’ (16)

On the other hand, if k jobs arrived in the interval I, then at least k processors will be occupied
at time t. The number of job arrivals in the interval I and the number of occupied processors at
time t are therefore related by the following double sided inequality:

k<SySk(N-r+1)
and hence for y21, we have:
- ¥y ~
P[Y=y]=Y P[Y,=ylP[k jobs amivedinI]  y21 oY)
k=l

To explicitly express the probability density function of the number of occupied processors in
the system, we need to evaluate P (Y, =y] for the values 1 £ k <y. We have:

P[Y, =y st. 1Sksy] = ) P job j participates with ;]
k
st Xmy=y
j=

tSm SN —r+1 ,vj=l,. .k

Proposition 1 readily gives the probability of having n tasks at a given level k given that we
have N tasks and r levels in such process graph n=1,...N-r+1 ,and k=1,...,r. We then obtain:

14



- k k|IN=n—-1
P, =y st 1ksy] = [ 1 ] > I [ & } (18)
N-1 d
sty n=y
r—1 i=
1SN -r+1,¥j=1,...k
Let us define the following quantities: L=y-k, M=N-2, and R=r-2. Since r22, N22, and
k<y<k(N-r+1), it follows that M20, R20, and 0<L<(k—1)(N-r+1). Using these quantities,
equation (18) may be rewritten as:

= _ 1 k k M—nj
P[Yk-ys.t.lskSy]—[ N-I] Lz l'[[ ]

i=1 | R
.. z 'IJ' =L !
r-1 J=1
n20 ¥ j=i,..k

where by definition [n] A 0 whenever n<i. Let the bivariate function ay, be defined as:
i

ar= ¥ TI !
i i=1 | R
st E ?lj=1‘
j=1

which amounts 1o :

r 3

M—i x-l [M"‘nj]
ak.l=éﬂ [R ] oz 111 R 3

st z n;= 1-i
J=1
‘G'P!J'ZO , J=lhe k=1

“ o

Notice that the inner summation is exactly a;_;;—;, and hence we obtain the following
recurrence relation on the bivariate function ay; :

1 .
M =i
=Y, [ ] Ap-1,0-i 2<k<y (19)
i |R
with the following boundary condition for k=1:
ay = [A;'] Y20 20

since this is the case where only one job arrived in the interval I. Finally, using equations (17),
(19), and (20), and the fact that the job arrival process is Poisson with aggregate rate A, we
obtain:

15



- ¥ v * - L i
P[Y:y}: E [ AXr ] i!e-—ur 2 [M l] [+ PR y21 2ZhH

Equation (16) and equation (21) provide then the probability density function of the number of
occupied processors in the system. In the sequel, we derive the Z-transform of the number of
occupied processors, denoted hereafter by Y(Z). Since by definition Y (Z) A > P [I-f =yl)Z’, we
y=0
can use equations (21) and (16) to derive such a Z-transform. In the sequel, however, we shall
take a rather simpler and more elegant way. Let X, i=1,... k denote the random variable count-
ing the number of occupied processors at time t, and by the ith job arriving in the interval 1.
Since only the jobs that have arrived in the interval 1 will occupy some processors at time t, we
have:

X,

M

Y=
1

i

and from Proposition 1, we already have:

N—n,-—l
r=2
N-=1
r-1

P(X=n]= Y m=1,.. N=r+l

Let X;(Z) denote the Z-transform of the random variable X;, and Y,(Z) denote the Z-transform
of the random variable Y, We therefore have:

N—r+1 ~ .
@2 ¥ PIX=j12/
j=1
which amounts to:
N— —_i ,
x@=73 [\ 2] Zi @)
- j=0 r-2
r—1

Since the random variables }},-'s, i=1,....k are independent and identically distributed, we may
drop the index i in X;(Z), and we get :

Y (Z)= [X(Z)]"

and since the job arrival process is Poisson with an average rate A, we get :

= Wk
- AXr)  xr
P [ ( )] k€

16



which amounts to:
7 23
Y(@Z)= ™ (-xa) @
Finally, by using the expression of X(Z) as given by equation (22) into equation (23), we obtain
the following expression for the Z-transform Y(Z) of the number of occupied processors:

N-r i
zZy N-j=2
- =0 r-2
Y(Z)=expi—AXril —

Zs

> (24)

r—1

3.2 Average Number of Occupied Processors

We now proceed to derive the average number of occupied processors in the case of

semi random process graphs. We have Y= -fz-Y (Z)| , where Y(Z) is as given by equation
Z=1

(24). Let b(Z) and a be defined as:

M-R .
@)= ¥ [M“]Z‘ 25)
i (R
and,
a= X (26)
M+1
R+l

Therefore, the Z-transform of the number of occupied processors given by equation (24) can be
rewritien as follows:

Y(Z)=exp {—M?r +aZb (Z)} @7
from the above equation, the average number of occupied processors is then given by:
- d
= — 2
Y ab(1)+adzb(Z) (28)

om

Let us first compute b(1) and b'(1) = %b (Z)’ . From equation (25), we get:
Z=1

17



roin MR M~
b'(1)= é, i [R ]

Now let us compute b(1), from equation (25), we get :

wor % - B f) e

which amounts to:
M-R .
b(1)= E [R +l]
i |R

Consider now the function B(x) defined by :

px)= I+ + Q4+ + - (14

since the coefficient of x® in (14+x)®* is [ﬁ+

exactly b(1). First, let us rewrite the function B(x) as :

Q+)M*! - A+0)®
X

Blx) =

Thus, the coefficient of x¥ in B(x) is [‘;::11] , and therefore we obtain :

M+l
b= [R+1]

29)

'] , it follows that the coefficient of x® in B(x) is

(30)

by replacing M and R by their respective values, it can easily be seen that X;(Z) |z=1 =1. Now,

by using equations (28), (29), and (30) we get:

b'(1)
d - |1+
—Y(@), =\Xr M+1
az Z=1 R+1

Now, let us compute 5'(1), we have:

M-R i,
b'(1)= z i [I‘; l]
i=0

M-R : M-R
Y, (M-R-i) [’:"] =M-R) ¥
i=0 i=0

18
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[R+

]

M-R

Y i

i=0

0 [g;]l [f*;l] [ﬂ;] SR [g]

3

(31)



M-R -
= M-Rb()- ¥ i [’:”}

i=0
which by using equation (30), amounts to:
M+1| MR R+
b¥(1)=(M-R - i 32
(1)=( )[RH] E) [R ] (32)

Now we proceed to derive a closed form expression for the summation in the right hand side of
the above equation. Let us define the following :

n ]
a=3i [RF n20 (33)
i= |[R

which then results in the following recurrence relation:

dpn=0an_1 +n+ [ﬁ +n] n21 (34
with the boundary condition:
(35)
dg= 0

Define the generating function of a, by A(x); that is A(x) A Y a,x". Thus, equation (34)
a=0
yields:
Y aux= Y apx"+ Y0 Rn| oo
n=1 a=l n=1 R .

That is,

Axyrao=xA(x)+x ¥, n [R+"] ) = xA(x)+x i{ i [R+"] x" }
n=0 R dx

and using equation (A.5) of Appendix (A), yields:

_ _g— ___l.___.._. = L
A(x)—ao—m(x)+xdx{ o 1} MAE X (e

which finally amounts to:

_ (R+Dx
A (x) - (1"'X)R+3

We can rewrite A(x)as :

19



R+l R+l
(l_x)R+3 (l_x)R+2

Equation (36) can be inverted [Klei75] to give :

(n+R+2 n+R+1
a, =(R+1 —(R+1
n = )!?+2 } ( ){RH ]

A= (36)

and, by using the well known formula |"|= Y IR ol RN get :
* k k-1

n+R+2| _ |[n+R+1 + n+R+1
R+2 R+2 R+1
hence, we obtain :

(37

n+R+1
R+2

@y = (R+1) [

Now, using equation (32) and equation (37), we get:

d ey (ML M+1
E-Z—b(Z)IH =(M-R) [R+1] (R+1) [R+2] (38

and using equations (31) and (38), we obtain :

d = M2
—Y(Z =AX
dz ( )|Z=1 r R+2

Finally, since M=N-2 and R=r-2 we obtain :
— (39)

3.3 Variance of the Number of Occupied Processors

Now, we proceed to derive the variance of the number of occupied processors, denoted
by 6%. We have:

(74

$2Y@) |, &Q@) _l@l ]2
dz Iz:n Z=1

on

=2ab’(1) +ab”(1) + [4:11'::(1)+¢n!:v’(1)]2 (40)

o

20



2
To evaluate the above expression, we need to compute b”(1) = d—dbz-%z—)l . From equation
Z=l

(25), we obtain ;

-

M-R
p()= 3 i(i-1) [M“
i=0 R

0. [M] +0. [M“ +2. [M‘ }+6. [M ‘3] + o+ (M-R)YM-R-1), [R]
R R ) R R R

M-R

T (M-R—i)YM—R~i-1) [R +‘]

i=0

which can be rewritten as:

M-R
b(1) = (M—R)M—R 1) z [ﬁ*‘] -2M-R) T, i [ﬁ*‘]+ 3, iG+1) [R“] (41)

MR R+
We then need to compute Y i (i+1) R . Let:
i=0

z i(i+1) [R “] =0 @2)
which results into the following recurrence relation :
Gn = ap_y +n(n+1) [R +"] n21 @3)
n
with the boundary condition
(44)
apg= 0

Let A(x) define the generating function of a,; thatis A(x) & ¥ a,x". Therefore, equation (43)
n=0)

yields:
)_“.la,.x = Z an-1 X" + }: n(n+1) [R””] n
which gives :
A(x)—— Z n(n+1) [R'”’] n-1 @)

On the other hand, we have:

21



Z n(n+1) [R+n] A=l ::2 {21 [2“] x"”} = :x_zz {x "%:1 [g'm] x"}

Now, using equation (A.5) of Appendix {A), we obtain:

R+n| . _ d? 1 |l RU+RMX +2(1+R)
Z n(n+1) [ ] - dx2 {x !(l_x)R+l I]}— (l_x)R+3

hence equation (45) becomes:

R(1+”)x? + 2(1+R)x
(1-x)R*

A(x)=

which can be rewritten as

R(1+R) 201+R)? | (14R)(2+R)

A + 46
()= JEY TP 2 (1—x )R (46)
The above equation can be easily inverted [Klei75] to obtain:
=204 (R L eryery [RTHT n21 (47)
R+2 R43

Let us now return to the expression of (1) given by equation (41). Using equations (30), (37),
and (47), we obtain:

p'(1) = (M—R)YM—R 1) [Mﬂ] _2AM-R)R+1) [M”
R+1 R+2
M+1 M+l
+2(14R) [ +2]+(1+R)(2+R) [ +3]
which after some algebra yields:
B(1) = (M —RYM~R~1) [M+1]+2(1+R)(1+R—M) [M“]+(1+R)(2+R) [M“J (48)
R+1 +2 R43

Now, let us return to the computation of 6%; using equation (39) and equation (40), we obtain:
(49)
=ab(1)+ 3ab’(1) + ab”(1)

where a is given by equation (26), b(1) is given by equation (30), »'(1) is given by equation
(38), and &”(1) is given by equation (48). Using the facts that

22



[M+1] {Mﬂ]
R+2] M-R and R+3) _ (M-RYM-R-1)
M+1 24+R M+1 (2+RY3HR)
e v

and after some algebra, we obtain:

2 _ AT - 1+R 1+R
oy =AXr + AXr(M-R - —QR-2M-1) + —(M-R-1
& r r( ){M R+2 + 2+R( ) 3+R( )}

replacing M and R by their respective values as a function of N and r, we obtain:
0% = AXr + AXr(N -r) {N—r+2 + '—:l(zr—zN—l) + -E_—;—(N—r—l)} (50)

Equation (50) provides then the variance of the number of occupied processors as a function of
both the total number of tasks, N, and the number of levels, r. Moreover, from the previous sec-
tion, we already know that the upper bound and the lower bound on 6% are obtained respec-
tively by the process graph having just one level, and the process graph having N levels. Figure
6 depicts the variance 6% for the value N=10, and for AX=1, and as a function of the number of
levels 1<r<10. When r=1, we observe that the variance gets its highest value of 100 as expected
by equation (9). For r=10 on the other hand, the variance gets its lowest value of 10. We pur-
posely joined the points in Figure 6 by straight lines to shed light on the slope of the decrease in
the variance when we move from r=1 to r=10. We observe that for small value of r, the decrease
in the variance is very substantial, and as r approaches the number of tasks N, the decrease in
the variance (respectively the increase in the slope) gets smaller,

4 Random Process Graphs

We now proceed to analyze the case of random process graphs. Each job has a random
process graph with a fixed number of tasks, N, and a random number of levels r, 1<rsN .
Moreover, two jobs having the same number of levels do not necessarily have the same process
graph description J(ny, . ..,n;, ...,n,), where n;, i=1,...,r denotes the number of tasks at level
i. We shall first derive a closed form expression of the Z-transform of the number of occupied
processors in the system. Closed form expressions for the average and the variance of the
number of occupied processors will then be derived.
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Figure 6: Variance of the Number of Occupied Processors versus the Number
of Levels; for Semi Random Process Graphs
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4.1 Distribution of the Number of Occupied Processors

From Proposition 2, we know that the probability of an incoming job to have r levels
follows the Binomial probability distribution given by :
N-1
r-1 1
N1 = b(r—l,N-l,E)
Proposition 1, on the other hand, gives the probability of having n tasks at a given level k given
that the job has r levels and N tasks, where n=1,... N-r+1, k=1,...,r and r=1,....N.

Plr=r]=

From Figure 7, we sce that any job that had arrived before time (1-NX) would not parti-
cipate (occupy any processor) at time t. On the other hand, a job arriving in the interval I=(t-
NX,t) will participate if and only if it has enough levels. Let us divide the interval I into N equal
slots of duration X units of time each, equal to the processing time of one task. We number
such slots by 1,2,....N (see Figure 7). It follows that a job arriving in slot number i, will occupy
some processors at time ¢t if and only if it has at least i levels, where 1<i<N.

=
-
=
-
—
-
-

- = TIME AXIS
1 i N

INTERVAL | =i

Figure 7 Analysis of Random Process Graphs

Proposition 3

The probability of a job arriving in slot i, 1</<N to occupy some processors at time t is given
by:

i-1
% |
P {job arriving in slot i occupies some processors at time t] = LZNT

-1

25



Proof

A job arriving in slot i, 1<i<N occupies some processors at time t if and only if it has at least i
levels. Hence, from Proposition 2 we get:
N-1
-1 1 i

2N—l - 2N—1 jz—‘:l

N
P [job arriving in slot i occupies some processors at time t} = Y,

r=i

N-1

., we obtain:
j—1

EIN-L LNt I
Eh- 202 [,- |

Let f’k denote the random variable counting the total number of occupied processors at time t
given that k jobs arrived in the interval I, Y .. 4,) denote the random variable counting the

. [N—I}
and since =
N—j

total number of occupied processors at time t given that k; jobs arrived in slot i, i=1,...,N, X; K
denote the random variable counting the number of occupied processors at time t due to jobs
that arrived in slot i and given that k; jobs arrived in slot i, i=1,...,N, and X; ; denote the random
variable counting the number of occupied processors by the jth job that arrived in slot i,

i=1,..,N. From these definitions, we readily have :

o0 - Zank —
PIF =y)= T Py =y) I (0 (51)
k=0 !
P[Y,=y]= PIY = —L[l]t 52
[Ye=yl= ; [ (tl,....ky)-)’]—kl!mkN! N (52)
s Y b=k
- N .
Yoo,... 0= 2 Xip. (33)
i=1
- ko
X;k‘= > X (54)

Also, define the following Z-transforms of the above defined random variables.

YZ) A3 PY,=y1Z?
y

26



X;, @) &3 PIX;, =x1Z*

X;;(2) 2 T PIX;=x1Z*

Since the random variables )},-_ ;j 's are independent and identically distributed v j=1...., k;, then
using equation (54), we obtain:

Xy (@)= ﬁ[lx.-, 2
Let us denote by X;(Z) 2 X; (Z) since the X; ; 's are i.i.d. . Thus we get:
X,@= [x@|"
and from equation (53), we get:

Y, . @)= ﬁ [X.'(Z):Ij‘ri

i=]

and from equation (52) we obtain;

k1 kv N X
X\ (Z k
N@)= 3 [ . )]_ [X”(Z)] ol % Xi(2)
N ki! ky! N i=l
5.1 Y k=k N
i=1
and finally using equation (51), we obtain:
N e,
- Xi(Z) AXN) %
Y@= % Eo ‘ (k—') e~ MN
k=0 N
which amounts to:
S EX.-(Z) (55)

Y@Z)=e™MN ¢ =

27



4.2 Average Number of Occupied Processors

We now proceed to derive the average number of occupied processors in the case of

random process graphs. We have Y= -&%Y(Z) , where the Z-transform Y(Z) of the number
Z=1

of processors is as given by equation (55). Hence, we obtain:

= =N d(2
¥ =X (56)
lé { ‘a ‘Z:l }

We need now to evaluate the Z-transform X;(Z); concentrating on slot i, we have:

- N -
PIX;;=x]= ¥, P[X;=x/F=r]P[F=r]

r=1

where for i22 , we have:

0 ifx#) 1<sr<i-1
1 ifx=0 1<r<i-1
- - N-x-1
PLX;m=xir=r]={ | (57
~ ifx21 isrsN
N-1
!'_IJ
and for i=1, we have:
(0 ifxeN  r=l
1 ifx=N r=1
N—x-i
Pi-:/-’: = 4 |Fr=2 58
Wyj=xir=r] x21  r22 (58)
N-1
r—1
0 otherwise

)

Since we know that P[r=r}= SN and by using equation (57) and Proposition 3, we obtain

for the case of i22:
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.
i-1
N-1
E ]
r=1 r—l
. _ZN‘I x=0
PIX;j=x]= { >
i{, N—-x-1
r=i r=2
e x#0

Therefore, we obtain:

1 )i N1
Xi,j(Z)=“2",;r:1“ {Z [

r=i r—1

N (IN=x-1] |, .

and for the case of i=1, and by using equation (58), we obtain:

(0 if x=0
# if x=N
PlX,.=x]=
[ 15 x] 1 N=x-1
N |r=2
3 NI ifx21
r=2 2

which then yields:

N—x-1
r=2

}zx} i=

1 N i
X1j(Z)=-2-,v-:1- {Z + 2 {Z

x2l |r=2

Now, using equations (60) and (63), we get:

N&@ [ ¥ 1 NiN=x-1]l , 1 XN
s M| S (O

Define the quantities A and B by the following expressions:

N—x-1
r—2

}

N 1 N
A=Y FT L* X

r=i

Since we have X;;(Z) lz=1 =1, we get from equation (60):

5 % [N——x-—l] _ -1 __"E [N-l

x21 r=i r—2 r=1 r—1
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N — —
B=Yx{Y N—=x-1
x>t r=2 \¥ -2
Hence equations (56) becomes:

?=A}?{A+ﬁ [N+B]} (64)

The quantities A and B are evaluated in Appendix (B), where A is given by equation (B.9); that

18
1 N1
A=N=-2+ |=

and B is given by equation (B.10); that is:

B=2N_(N+1)
and therefore equation (64) becomes:
- - (65)
Y=AXN
finally, from equation (56) and equation (65), we deduce that:
g,‘ dX:(Z) N 66)
i=1 dz |z=1

4.3 Variance of the Number of Occupied Processors

Now, we proceed to derive a closed form expression for the variance of the number of
occupied processors, denoted by 6%. We have:
2 - -
d Y(22) +F7 -7
az

|Z=l

of =

where Y is the average number of occupied processors and is given by equation (65). Using
equation (55), we obtain:

d’y@) _dav@ 4 |,z% a4 Lo
I dz{”,éx‘(z)}”(z)dzz n.xzix,(Z)

where X;(Z) is given by equation (60) for {22 and by equation (63) for i=1. Now, using equation
(66), the expression of the variance of the number of occupied processors becomes:
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d2
O'Y = Y + M _XI(Z) }
z { ‘a |Z=l
and using equations (60) and (63), we obtain:

— N _
53%—]—{2 x@x-DE [iv—x—l]} ;X] {N(N -D+ 3 Z x(x—1) [N —*-1

x21 -2 x21 r=2

Mz

o¥=Y+

}

2

-
|

Define the quantities C and D by the following expressions:

N — —
E 1Ex {E[ﬁr_le

i=2 xz1

It follows then that 6% becomes:

=, AXD MNWN-1) N X N
aN-1 + AN-1 "Ei N1 {E X3,

= AXD MNW-1) .=|¥ |dX(2) N
= Y+7LXC + + AX{E‘{ { 7 |Z=l}_ 2N—1}

2Na1. 2N -1
using equations (56) and (66), we obtain:
3 T D N?
Gy—u{c+2~—_l+w} 67

The quantities C and D are evaluated in Appendix (B), where C is given by equation (B.17);
that is:

2N +5

C=3N-10+"55>

and D is given by equation (B.18); that is:
D=32Y-N?-2N-3

Therefore equation (67) becomes:

o} = u‘f{ IV -4+ [—21-]”_2 } (68)
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From the above equation, we observe that for a large value of N (e.g., N>>5), the variance of the
number of occupied processors is:

0% =3Y — 40X for N>>1

and finally for the value N=1, equation (68) verifies that cr%- =AX as provided by equation (7) of
the fixed process graph case.

5 Average Number of Busy Processors - The General Case

In the previous sections, we have considered the case of multiprocessor systems with
infinite number of processors, and have investigated the distribution of the number of occupied
processors for three different process graph models. We have assumed that the task service time
is constant, the same for all the tasks, that the process graphs have a fixed and prescribed total
number of tasks, and that the job arrival process is Poisson. We have found a rather interresting
result stating that the average number of occupied processors in the system is only a function of
the job average arrival rate, the task constant service time, and the fixed number N of tasks
forming the process graph. The question naturally arises as to what extent can this result be
generalized.. This is the aim of the current section,

Our multiprocessor system can be generalized by relaxing all the assumptions made in
the previous sections. We shall then consider the infinite and the finite number of processors
cases, an arbitrary distribution of the number of tasks per job, an arbitrary conditional distribu-
tion for the number of levels in the process graph, arbitrary repartitions of the tasks among the
levels, arbitrary task service time distribution, perhaps different service requirements for the
different tasks, and general job arrival process. Under these rather general conditions, we shall
prove that the average number of occupied processors, in both the infinite number of processors
case and the finite number of processors case, remains a function of only the job average arrival
rate, the task average service requirements, and the average number of tasks per job.

In Section 5.1, we further pursue the case of an infinite number of processors, where we
first derive a closed form expression of the task arrival process distribution, its mean and vari-
ance, and then investigate the average number of occupied processors under the above men-
tioned generalized conditions. In Section 5.2, we consider the finite number of processors case,
and prove that the average number of processors in the system stays a function of only the job
average arrival rate, the task average service requirements, and the average number of tasks per
job. For the finite number of processors case, we assume throughout this section that the system
is in equilibrium.
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5.1 Infinite Number of Processors

In this section, we pursue the infinite number of processors case. We shall provide a
theorem stating that under the generalized model, the average number of occupied processors in
the system is only a function of the Jjob arrival average rate, the task average service times, and
the average number of tasks per job. First, we investigate the distribution of the task interarrival
times to the system.

5.1.1 The Task Interarrival Time Process

Since a job is composed of a set of tasks, the task interarrival process is then different
from the job arrival process. These two arrival processes are identical only in the case where
jobs are composed of only one task. In this section, we derive a closed form expression of the
distribution of the task interarrival time process. Throughout the section, we assume that the
number of available processors is infinite, the Job arrival process is Poisson with average rate A,
and the task service time is constant equal to X, the same for all tasks. Jobs are represented by
the same process graph with N tasks and 1=r<N levels. The average and the variance of the
task interarrival time will also be derived.

Our multiprocessor system can be viewed as an FCFS queueing system with an infinite
number of processors. Let J = (ny,nz,...,n,) denote the process graph description, where »; is
the number of tasks at level i, i=1,..,r, and thus we have i n; = N. Jobs may thus be regarded

i=1

as a vertical string of super-tasks (ST); where super-task 8T;, i=1,...,r comprises n; tasks
representing the set of tasks at level i in the process graph. Since the number of processors is
infinite, the »;, i=1,....r tasks forming super-task i are then executed in parallel. Upon the arrival
of a job to the system, its starting tasks (i.e., the tasks forming its first super-task) are ready-for-
service and thus start execution immediately. Upon the completion of its first super-task, the job
feeds back all the tasks forming its second level (i.¢., its second super-task), which immediately
start their execution. Each X seconds thereafter and until completion, the job creates all the
tasks of its next level as shown in Figure 8. Figure 8:(b) represents a time diagram of the job
arrival process, and the corresponding super-tasks arrival process, the task arrival process, and
the job departure process. The process graph description used is depicted in Figure 8:(a). Let
us first consider the interarrival time of super-tasks to the system.

Proposition 4

Provided the task constant service time X is strictly positive, no simultaneous super-task arrivals
can occur,
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Proof

Super-task arrivals from the same job are separated exactly by X seconds. Since X>0, then no
simultaneous super-task arrivals from the same job can occur. On the other hand, to have simul-
taneous super-task arrivals from 2 different jobs, the arrival of these two jobs must be separated
exactly by iX seconds where 0<i<r-1. But since the job arrival process is Poisson with parame-
ter A, we have:

P [job arrival in [ t,t+dt ] and job arival in [¢+iX , :+if+d:]]
=P [job arrival in [t,t+dt]] P [job arrival in [f+iX , :+i§+d:]]

= (At +O ().Adt+0 (1)) = AM2dt* + 0 (1) = O(1)

The above can also be seen by noticing that the probability of having two arrivals separated by
exactly iX seconds is the same as the probability of having simultaneous arrivals.
Wi

Proposition 4 says that to characterize the distribution of the tasks interarrival time process, we
need to find :

1. the distribution of the super-task interarrival times, and then

2. the distribution of the super-task size

First, we proceed to find the distribution of the super-task interarrival times. Recall that jobs are
represented by a process graph with r levels, and thus comprising r super-tasks. Let 7 denote the
random variable measuring the interarrival time between jobs, and 7, denote the random vari-
able measuring the interarrival ime between super-tasks. Our objective is to find the probabil-
ity distribution of the random variable 7,; that is P [,<¢]. In the sequel, we distinguish two cases
depending on the value of the number of levels (i.e., the number of super-tasks) in the process
graph.

(1);: Caser=1

Since each job creates just one super-task and this is exactly upon its arrival to the system, then
the distribution of the interarrival time between super-tasks is the same as the job interarrival
time distribution. We then have :

69
Pl,stl=1-e™ 120 )
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(2): Caser 22

This is the case of two or more super-tasks per job. Depending on whether the interval of time t
is less or equal to the task constant service time X, we distinguish the two following cases.

(2.1): Case where 0<t <X

TAGGED ST ARRIVAL

AT TIME t,
Y Y 1 ™ &= ST ARRIVALS
i
: 1 II._ t —.l| :
cee  le—xX—s DI
] f ol ¥ ——in
1 1 | I 1
—— RN eeee—— |, JOB ARRIVALS
Iy I, I,

Figure 9: Super-task Interarrival Time Diagram, case of 0z <X

Since P [f,St]=1-P[f,>¢], let us first compute P [7,>¢]. As depicted in Figure 2.3, let us
place ourselves at the tagged super-task arrival time tg, and compute the probability of no
super-task arrivals during the interval of time t. The intervals /;, i=1,...,r are of the same time
length and are equal to t. Therefore, we have:

P{t,>t] =P [no ST arrivals during the interval of time t)

,
=P [no job arrivals in the intervals I ,/,,15,....I,] = ]'Ie‘M

i=]
which yields:;

Pli,st]=1-¢M 0sr<X (0

(2.2): Case where 12X

Since £2X, we must distinguish whether =X or t>X,

36



(2.2.1): Case where t=X

Let us position ourselves at a super-task arrival instant, say ¢o. From Proposition 4, we know
that the next arriving super-task, if any, must belong to the same job as the tagged super-task.
Since t=X then:

P (5,$t] =P [1,<X1=1-P [}, >X]

on the other hand,

P[f,>X]) =P [no ST arrivals in the interval [tg,20+X) , and no ST arrival at time (#9+X)]
and since both events are disjoint we obtain:

P[3,>X] = P[no ST arrivals in the interval ¢o,f+X]].P [no ST arrivals at time (fo+X)]
Finally, from case (2.1} where 0<t <X, we get from equation (70);

P [no ST arrivals in the interval [¢g,70+X)] = e X
and by application of Proposition 4, we obtain:
P [no ST arrivals at time (t0+f )] = P [ST is the Iast super-task of its job]

on the other hand, since a job has r super tasks, and each super-task takes X seconds of process-
ing time, it follows that:

1

P [job is executing its ith super-task | job is in the system] = = i=l,..r
and therefore, we obtain:
P _
Pt,>X]= =X {71)
(2.2.2): Case where t>X

Let us place ourselves at a super-task arrival instant, say #g, as indicated in Figure 10. Since the
interval of time t is strictly larger than X, we already know that no job arrivals occur in the
interval (¢g,t0+X), and that the system becomes empty at time #p+X. We therefore have:

P[%,>t] = P [no ST amivals during t] = P[no ST arrivals in [t+X, tg+t]]

= P [no job arrivals during (t-X)]

which amounts to:
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TAGGED ST ARRIVAL
AT TIME t,

— ST ARRIVALS

= JOB ARRIVALS

Figure 10: Super-task Interarrival Time Diagram, case of 1>X

Pi,>t]= ™D 1>X (72)
Finally, putting the two cases together, that is for 12X , we get:

Pli,st]1=1-Pi>1)
= 1—P [no ST arrivals during ¢]
= 1-P[no ST arrivals during t | no ST armivals during X] . P[no ST arrivals during X]

— P[no ST arrivals during t ‘ ST arrivals during X] . P (ST arrivals during X]

Since P [no super-task arrivals during t | super-task arrivals during X1=0, then using equation
(71) and equation (72), yields:

e AX(l—) oy _

Plf,st]=1- e r2X (73)

Equation (70) along with equation (73) provide an explicit closed form expression of
the probability distribution function of the super-task interarrival time process.

5.1.1.1 Average Interarrival Time Between Super Tasks

Let 7, denote the average interamrival time between super-tasks. Therefore:

T, = ({ [1 -P[E,s:]] dt

and using equations {70) and (73), we get:
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|
8
41
%,
R

which amounts to:

since for the case of =1, and from equation (69) we have 7, = % , therefore, we obtain:

7=

7&1-; r21 74

For any process graph with N tasks and r levels, 1<r<N, and for the case of an infinite
number of processors and constant task service time, X, the average number of jobs occupying
SOme Processors is ArX. This can be seen by noticing that the only jobs which occupy some
processors at any given time t, must have arrived in the interval of time (t-rJ_{.t). On the other
hand, since the expected number of busy processors in such a case is ANX, it follows that the

jobs which occupy some processors at any given time t, participate on the average by % tasks.

5.1.1.2 Variance of the Interarrival Time Between Super Tasks

Let o2 represent the variance of the interarrival times between super-tasks. We have:
2 - 2
ol =E[1,1-E[7,]
Using equations (70) and (73), and after some algebra, we obtain:

s 1-2(1=r) e

h — (h)l’.
Notice that in the special case where r=1, equation (75) reduces to the variance of the job
arrival process (i.e., the variance of the exponential distribution with parameter A).

rz1 (75)

In the sequel, we shall find the distribution of the super-task size. Recall that a job is
represented by the process graph description J =(ny,n2, - - - ,n,), where n; is the number of
tasks at level i, i=1,...r. Let § denote the random variable representing the size of a super task,
and 8,(i) denote the binary function, which is equal one if i=k and equal zero otherwise.
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Proposition §

the distribution of the size of a super-task, given that all jobs have the same fixed process graph
description, is given by :

P[§=Ic}=% T 8un)) 1SkSN —r +1
j=1

Proof

Consider the arrival process of super-tasks to the system (see Figure 8). Take any arrival and
call it the tagged arrival. This tagged arrival belongs to a given job, call such a job the tagged
job. Hence we have:

P[tagged arrival is the jth ST of the tagged job] =
Pltagged job is executing its jth level | tagged job is in the system] = %
and therefore:
P[S=k]= % . [number of levels having k tasks]

the proof is complete by using the binary function 8,(i). The restriction on the value of k is due
to the fact that the maximurn number of tasks at any level cannot exceed N-r+1.
[T

On the other hand, if jobs are described by semi-random process graphs, the distribution of the
super-task size is readily given by Proposition 1; that is:

oy

N-1
r-1

P{S=k]= r22, 1sksN-r+l1
and,

0 ifk=N

S=k] = _
pl ]{1 if k=N r=1
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5.1.2 Expected Number of Busy Processors

We have shown in the previous sections that Y=ANX, where we have assumed for the
most general case studied that the job arrival process to the system is Poisson with fixed rate A,
that the total number of tasks per job is fixed to N, and that the task average service time is con-
stant equal to X, the same for all the tasks. In this section, we show that such a result still holds
for the more general case. If we still assume a Poisson job arrival process and a constant task
service time, we can see the multiprocessor system as an M/G/e= queucing system. For this sys-
tem, it is readily shown [Klei75], that the probability of having k jobs in the system in steady
state is given by:

&l
Plk}=—— ™

Since each job in the system participates on the average by @ tasks, it follows that ¥ =ANX.
r

We can further generalize our multiprocessor system by relaxing the Poisson job arrival process
assumption. Let N denote the average number of tasks per job, Ej denote the average con-
currency per job over all jobs, K denote the average number of jobs present in the system, and T
be the average time a job spends in the system.

Theorem 1

The expected number of busy processors Y in the case of:
1. an infinite number of processors,

2. random service time per task (possibly different service requirement and distribution for
each task) with an overall average X,

3. random job arrival process with average arrival rate A (but independent job arrivals),
and
4, random process graph, that is,

+ N random

+ rrandom, r=1,..N

« random repartition of tasks among levels, and

« random precedence relationships among levels
is given by:
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Proof

Since the average number of occupied processors, Y, represents the average concurrency in the

system, it follows that

T-KG,

Notice that K_C] =KC j» due to the fact that P is infinite. By using Little’s formula [Litt61], we

have:
K=AT

where the job average system time T can be written as:

It then follows that:

5.2 Finite Number of Processors

In this section, the number of processors in the system is finite, say P. We shall prove
that the average number of occupied processors, Y, is still given by ¥ =ANX . Throughout this

section, we assume that the multiprocessor system is in equilibrium.

Theorem 2

If the multiprocessor system is in equilibrium and work-conservative, then the average number

of occupied processors Y for the case of:

1. finite number of processors, say P,

2. random service time per task (possibly different service requirement and distribution for

each task) with overall average X,

3. random job arrival process with average arrival rate A (but independent job arrivals),
and
4, random process graph per job, that is for each job:

+ N random
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* rrandom, r=1,...N

+ random repartition of tasks among levels, and

« random precedence relationships among levels
is given by:

Y = ANX

Moreover, if the system is overloaded then

Proof

For p=1,...,P, let n, denote the average number of tasks per job processed by processor p, Pp
denote the utilization factor of processor p, and p be the system total utilization factor. The
P

equilibrium condition is then¥ p=1,...,.P Pp <landthatp= ¥ p, < 1. We have:
p=1

_ _ P
Pp=An,X and N=Y 7,
p=1

- P P — _
Y=Epp= ZHPX=ANX
p=i p=1

If the system is overloaded (i.e., the system utilization factor p is greater than one) then it is
easy {0 see that Y = P since all the processors are being used all the time,
L1}

6 Conclusion

In this report, we have proved that the average number of occupied processors in a mul-
tiprocessor system with P=1,2,3,... processors is given by Y = ANX, where N and X represent
respectively the average number of tasks per job and the average service time per task. It is
interesting to note that the average number of occupied processors does not depend on the jobs
description (e.g., the distribution of the number of tasks per job, the distribution of the number
of levels in the process graph, the repartition of the tasks among the levels, the precedence rela-
tionships among the levels inside the process graph, the distribution of the task service time, the
distribution of the job arrival process and the number of processors in the system given that
such multiprocessor system is in equilibrium). More importantly, in the case of finite number of
processors, the average number of occupied processors is independent of any processor schedul-
ing provided the multiprocessor system is work-conservative.
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Figure 11 and Figure 12 provide a pictorial profile of the system utilization and the
average number of occupied processors in the system as a function of the total number of pro-
cessors. In Figure 11, we have ANX <1, that is the utilization factor of the system, when P=1, is
less than unity. In Figure 12, we have ANX 21, that is the utilization factor of the system, when
P=1, is greater than unity. Notice that whenever p<1, the expected number of busy processors is
Y = ANX; whereas for pz1, Y=P.

NUMBER OF PROCESSORS

Figure 11: System Utilization and Average Number of Occupied
Processors versus P, ANX <1

Figure 13 provides a pictorial profile of the average number of occupied processors Y
and the average system time T as a function of the job arrival rate A, and for a given number P
of processors. In the region where p<1, we observe that the expected number of busy processors
grows linearly with the number of processors used, and at a constant slope equal to NX. At

= TP;‘, the system total utilization factor p reaches the value one, which results in an average

number of occupied processors equal to ¥ = P, and an infinite Job average system time.
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NUMBER OF PROCESSORS

Figure 12: System Utilization and Average Number of Occupied
Processors versus P, ANX21

Speedup Factor

The achievable parallelism (Speedup) can be thought of as the number of busy
resources which can be utilized simultanecusly. The expected number of busy processors
readily ascertain such a measure. The best we can achieve is for the concurrency (equivalently
the speedup factor) to grow linearly with P. Indeed, the two previous Theorems witness such a
behavior, and prove that for any finite number of processors, the speedup factor is a linear func-
tion in P for any value of the system total utilization factor; namely Y= pP.

In practice however, the speedup is much less since some processors are idle at a given
time because of conflicts over memory access or communication paths, and inefficient algo-
rithms for properly exploiting the natural parallelism in the computing problems [Mura7l1,
Kuck72, Kuck74, Kuck77, Kuckg4].
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In the early days of parallel processing, Minsky and Papert [Mins71] provided a
depressingly pessimistic form of the speedup factor known as Minsky’s Conjecture; namely that
the speedup factor is equal to the base 2 logarithm of the number of processors used.

-

<]

e . T T P —"

P/NX
JOB AVERAGE ARRIVAL RATE

Figure 13. Average System Time and Average Number of Occupied
Processors versus A

Although the expected number of busy processors in a multiprocessor system provides
a measure of how much resources can be utilized simultaneously, it does not accurately ascer-
tain how much faster a job can be processed using multiple processors, as opposed to using a
single processor. In [Belg86], we properly defined the speedup measure as the ratio of the job
average system time using a uniprocessor system to the job average system time using a mul-
tiprocessor system; and as a function of the system utilization factor, the number of processors,
and the scheduling strategy used. Consequently, we investigated the gain in the job average
response time achieved by using a multiprocessing system relative to using a uniprocessor sys-
tem.
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APPENDIX A

Derivation of ¥, n+k x"
a=0 k

Let the bivariate function a,(n) be defined as:

ax(n) = ["

k+k]x" k20, n20 (A1)

where the absolute value of x is less than unity. From the above equation, we obtain the follow-
ing recurrence relation on the bivariate function a,(n):

ay(n) = ﬂ-:—k-ak_l ) k=1 (A2)

with the following boundary condition for k=0:

apg(n)=x" nz0 (A.3)

oo

Define the normal generating function of a,(n) by A (Z) ,Vk20; that is Ax(Z) A Y ap(n)Z”.
a=0
Thus equation (A.2) yields:

AD =24y (@) + 44 @) k21 A4)

Now, we proceed to show, by induction on the index k, that A,(Z) = [AO(Z)]"“.

Basis step

From equation (A.2), we have ap(n) =x", and consequently its generating function A ¢(Z)
ﬁ. On the other hand, for the value of k=1, we have
ai(n) =(n+1)x", and hence its generating function A,(Z) is given by: 4(Z) = a iZ)z .

is given by: Ag(Z)=

Therefore we readily have: A |(Z) = [A 0(2)]2.
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Inductive Step
Now, suppose that we have:

AZ)= [AO(Z)]J'*‘ 1gj<k-1
and let us show it for the value k. We have:

L @ =k [ |

thus, using equation (A.4), we indeed obtain A;,;(Z) = [A O(Z)] kel

Finally, since Ag(Z) = L, and putting Z=1, we obtain:

1-=xZ
E n+k _[ 1 ]k+1 50 s
=0 |P R - '
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APPENDIX B

N N e
Derivationof A=Y ?1\7111_2 ¥ {Z [N X 1]}

i=2 21 = |r—2

To evaluate the quantity A, notice that for any given value of i, i=2,..,,N correspond a range of
values for x, and a range of values for r. For i=j for example, we have r=j,j+1,...N, and
x=1,2,....N-j+1. This value of i accounts with the following in the expression of the quantity A:

St bl afrafbe s d 2]

In the above expression, we purposely factored out the values of x. Let A, denote the participa-
tion of the value x in the quantity A. Therefore, for any value of x, x=1,...,,N-1, we obtain:

A,=x{ Nz g V2= g V2, [V
0 1 2 i

N-=x-1
+ +(N-x) [N—x-l} }

N—=x-1 —_—r—
A=x 3 G+ V71
i=0 i

N-=
N-=

N-
N-3

cot

Which amounts to:

x=1,..N (B.1)

since X varies from 1 to N-1, it follows that:

N-
A=Y A,

x=1

and hence by using equation (B. 1), we obtain:

] N-l N=x-1 [N—x—l]

AsmT L* T 0+ (B.2)

on the other hand, we have:
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i

N—x- 1] E‘ {N—x—l

N=-x~1 N=x-=1
z<+nﬁx1 5

i={
and since by using the binomial theorem [Liu68], we have:
Nx-1 Iy _x—1

NE-I [N_x—l]=2N—x—1 and, Y i [

i i i |

=(N=-x—1)2VN=*72

therefore equation (B.2) becomes:

N-1
T x (N—x+1) 2N =2 (B.3)

2N - x=1
Now, define the quantities Al and A2 by:

N-1 1 x—1
M= 5 5]

x=1
A2=1:Z=—:: X (x—1) [%]H

Therefore equation (B.3) becomes:
A=% {ZNAI-AI} (B.4)

now, we proceed to evaluate the expressions of Al and A2. Lety = %; we have:

el

N . d
AMO= 22y =y 27~ |V 15

x=1

which amounts then to:

[1-Ny” "](l—y) +y-y¥
Al(y)= (B.5)
(1)
replacing the dummy variable y by its value % we obtain:
N-2
Al =4—(N+1) -%] (B.6)
Now let us evaluate A2; we have:
N-1 - d2 N-1
A=Y x(x-Dy T =— X ¥
x=1 dy x=1

which amounts then to:
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1y N2
N (Nyi)ly +liyA1(y) (B.7)

A2(y)=

replacing the dummy variable y by its value % we obtain:

A2=16- (N2 4N +2) i]m ®.9)

2

Finally, by using equations (B.4), (B.6) and (B.8), we obtain:
N-1
A=N-2+ {-21-] ®.9)

xzl r=2 r-2

Evaluationof B= Y x {sz: [N—x-l ] }

As before, let A, denote the total participation of the value x, x=1,..,N-1 in the expression of
the quantity B. For the value x=i for example, we have:

Ai=i N-i-1 + N-i-1 b 4 N—-i-1 _ joN-i1
0 1 N—i-1
it follows then that the expression of B becomes:
N-l N-1 pqqx-l
B= ¥ x2N=l=N2 ¢ x[—] =2V-2 A1(y)
x=] x=1 2

and by using equation (B.6) and replacing the dummy variable y by its value % we get:

B=2V —(N+1) (B.10)

1
Derivationof C =73

N —) —
= 2V Ei i {?:‘. E’V—; 1]}

From the evaluation of the quantity A earlier in this Appendix, and by following the same exact
steps, it is not hard to see that the quantity C may be written as:
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N-1
C= 53,-1-_-1_ T x% (N-x+1) 2V =2 (B.11)
x=1

Now, define the quantities A3 and A4 by:
N-1 1 x=2
A3=3% x? [——]
x=1 2

N-1 1
Ad=3 i [—
x=1 2

Therefore equation (B.11) becomes:
C=— {2(N+1)A3—A4} (B.12)

Now, we proceed to evaluate the expressions of A3 and A4. To evaluate A4, we need first to
evaluate the following expression:

AS='S xG-1)E-2) [%]H

x=1
Lety= % the quantity AS can then be written as:
A2(y)

4
x=1 dy3 x=l dy

using the expression of A2(y) as given by equation (B.7), we obtain:

_d  NN-1yY 2
AS(y) = —
» dy{ -1 1 ’“@)}

where the expression of the quantity A1(y) is given by equation (B.5). Define the quantities
A6(y) and A7(y) by:

N-1 43 [r-t
ASy)= T x(x-Dx=2)*C = —<{ Ty i =

dy y-1

_d | 2a1
e

Therefore the quantity A5(y) can be rewritten as:

A5(y) = Ab(y) + AT(y)

e s

(B.13)

After derivation and some algebra and by replacing the dummy variable y by its value % we

obtain:
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A6=-NWN-1) [—;—]M (B.14)

Now, we proceed to evaluate the quantity A7(y); we have:

A7) = @{2‘“0’1} 2 ALG) + e ALY)

1=y -y dy )2
Since from the definitions of the quantities A1(y) and A2(y), we have %Al(y) = A2(y)}, and

after some algebra and replacing the dummy variable y by its value %, we obtain:

N-5
A7 =96—~(N242N +3) [%] (B.15)

Retuming now to the expression of the quantity A5, and using equations (B.13), (B.14), and
(B.15), we obtain:

A5 =96 — (N3+5N +6) [3] (B.16)
Let us now return to the evaluation of the quantity C. Since:
N-1 {3 N-lopq el
A4=AS+3 T x’[u] 2y x[—]
x=1 2 x=1 2
using equations (B.12), (B.13), (B.14), (B.15) and (B.16), and after some algebra, we obtain:

C—1—16{2(N—2)N2:x(x 1)[1]1‘_2 + ng[ﬂx—l - AS}

1

= E{Z(N—2)A2 +4NAl - AS}

and therefore by using the expressions of the quantities Al, A2, and A5, which are given
respectively by equations (B.6), (B.8), and (B.16), we obtain:

C=3N-10+ 2;,*5 (B.17)

1]
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N — —
Evaluationof D=7, x2 {Z [N 2Jc 1]}
r=2 |T—

x21

From the evaluation of the quantity B earlier in this Appendix, and by following the same exact
steps, it is not hard to see that the quantity D may be written as;

N-1 N1 -
D= Y%, x2N-=x-1 _ oN-3 ¥ 2 [—5]

x=l x=1

-wofiocolg] 5 2T

x=1 x=1

and therefore using the expressions of the quantities Al and A2 given respectively by equations
(B.6) and (B.8), and after some algebra, we obtain:

18
D= 3.2N - N2_2N_3 (B )
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