SYSTEM ARCHITECT'S APPRENTICE (SARA) AS THE
FOUNDATION FOR A METHODOLOGY-ORIENTED ADA®
PROGRAMMING SUPPORT ENVIRONMENT

Eduardo Aaron Krell January 1987
CSD-870001

The dissertation of Eduardo Aaron Krell is approved.

Fva Baker

Stephen Jacobsen

David F. Martin

Gerald Estrin

Daniel M. Berry, Committee Chair

University of California, Los Angeles

1987

i1

TABLE OF CONTENTS

1 Introduction e e e e e

1.1 Motivation for the Research
1.2 Related Research Areas v oo
1.3 Research Hypothesis
1.4 ResearchPlan« i v i
1.5 Dissertation Organization

Related Research
2.1 AdaEnvironments
2.1.1 ATMAda e e
2,12 Arcturus. e e e e e e e e e e
213 CAEDE e
2.2 Ada-compatible Design Methods
2,21 METHODMAN et
222 TheUK.Study,
2.23 CORE/MASCOT
224 JSD . .. e e e e e
225 CCS . . . e e e e e e e e
2.3 DISCUSSIOM . v v v v v v ot e e e e e e e e e e e e e e

STONEMAN - Requirements for APSEs
3.1 Components ofan APSE
3.2 The Layered Approach
321 TheKAPSE
322 TheMAPSE
323 The APSE
3.3 APSEsand designmethods

SARA/IDEAS ~ A Computer-Based System Design Method
4.1 The Structure Model L.
4.2 The Graph Model of Behavior.
4.21 The Control Domain
422 TheDataDomain
4.2.3 The Interpretation Domain
4.3 The Building Block Library
4.4 The Socket Attribute Model
4.5 The Module Interconnect Description

111

O U =

o oo G0

UNIVERSITY OF CALIFORNIA

Los Angeles

System Architect’s Apprentice (SARA) as the
Foundation for a Methodology-Oriented

Ada® Programming Support Environment

A dissertation submitted in partial satisfaction of the
requirement for the degree of Doctor of Philosophy

in Computer Science

by

Eduardo Aaron Krell

1987

© Copyright by
Eduardo Aaron Krell

1987

The dissertation of Eduardo Aaron Krell is approved.

Eva Baker

Stephen Jacobsen

David F. Martin

Gerald Estrin

Daniel M. Berry, Committee Chair

University of California, Los Angeles

1987

il

TABLE OF CONTENTS

1 Imntroduction e

1.1
1.2
1.3
1.4
1.5

Motivation for the Research
Related Research Areas
Research Hypothesis
Research Plan
Dissertation Organization

2 Related Research

2.1

2.2

2.3

3.1
3.2

3.3

4.1
4.2

4.3
44
4.5

Ada Environments
211 ATMAda e
2.1.2 Arcturus. o v e e e e e e e e e e e
2.1.3 CAEDE e
Ada-compatible Design Methods
2.21 METHODMAN
222 TheUK.Study
223 CORE/MASCOT
2.2.4 JSD e
2.25 CCS
Discussion v v v v e e e e e e e e e e e e e e e e e

STONEMAN - Requirements for APSEs

Componentsof an APSE
The Layered Approach
321 TheKAPSE,
322 TheMAPSE
323 The APSE
APSEs and design methods,

SARA/IDEAS - A Computer-Based System Design Method

The Structure Model 0L
The Graph Model of Behavior
421 TheControlDomain
422 TheDataDomain
4.2.3 The Interpretation Domain
The Building Block Library
The Socket Attribute Model
The Module Interconnect Description

11

46 The SARA/IDEAS Environment 40

Stoneman versus the SARA /IDEAS Requirements 42
5.1 Simularities L. L 42
51.1 General Guidelines 42
5.1.2 Requirements for APSEs 44
5.1.3 APSE Control Requirements 44
5.1.4 APSE Toolset Requirements 45
52 Differences. L L 46
5.2.1 APSE Toolset Requirements 46
GMB models for Ada Tasking Primitives 48
6.1 Ada Tasking Primitives 50
6.1.1 Non-interacting tasks 50
6.1.2 Task synchronization - Rendezvous o1
6.1.3 The select statement 53
6.2 Discussion e 61
Translating GMB models into Ada program skeletons 62
7.1 Translation Schemes 63
711 WorkbyNelson 63
712 TheP-NUT System 64
7.2 Designing the Translator 65
7.21 Control Nodesand Ares 65
7.2.2 The Task Scheduler 66
7.2.3 Interface to the Interpretation Domain 67
724 Adacodeforcontrolnodes 67
7.3 Terminatingtheloops 68
7.3.1 Detection by the Task Scheduler 69
74 AnExample. o 69
7.5 The Translation Algorithm 75
Ada as the Interpretation Domain Language for SARA 77
8.1 The Interpretation Domainin SARA 77
8.2 The Interface Problem 79
8.3 Data Structures Communication 79
8.4 Designing the Interface. 80
8.5 An Ada Package Specification o000 81
886 The T side of the Interface 82
87 AnExample.o 83

iv

9 Conclusions and Future Research 85

91 Contributlons . . .+ v v v e e e e e e e e e e e e e e 85
9.2 Usage Scenario o 86
9.3 Limitations e e e e e e 87
9.4 Areas of Future Research, 89
9.41 The GMB-to-Ada translator 89

9.42 An Ada-to-GMB translator 91

A User’s Guirde to the Translator, 92
A1l User's Guide v i e e e e e e e e 92

B List of Acronyms 94
References v v v e e e e e e e e e e e e e 96

3.1

4.1
4.2
4.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
9.1

LIST OF FIGURES

Architecture of an APSE00 23
Structure Model of the Buffer System 31
GMB Control Graph for the Buffer System 34
GMB Data Graph for the Buffer System 36
GMB model for Non-interacting Tasks 51
GMB model for simple rendezvous 52
GMB model for compounded rendezvous 53
GMB model for the plain select statement 54
GMB model for guarding conditions 56
GMB model for delay alternatives 57
GMB model for timed-out entry calls 59
Asimple GMB o 69
Asimple GMB 90

vi

ABSTRACT OF THE DISSERTATION

System Architect’s Apprentice (SARA) as the
Foundation for a Methodology-Oriented

Ada® Programming Support Environment
by

Eduardo Aaron Krell
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1987

Professor Daniel M. Berry, Chair

The design of inherently complex concurrent systems is inhibited by support-
1ve languages and design environments. This dissertation probes the possibilities
of integrating the strengths of a design method supported by a programming sys-
tem called SARA (System ARchitect’s Apprentice) and the well known language,
Ada®.

It has been recognized that one of the weaknesses of Ada Programming Sup-
port Environments (APSEs) is the lack of integration of design methods into
them.

It is shown that SARA and Ada can be integrated and, together, provide a

significant advance over the state of the art.

o® Adaisa registered trademark of the U.S. Department of Defense (AJPO).

vii

CHAPTER 1

Introduction

1.1 Motivation for the Research

Ada® has been chosen by the U.S. Department of Defense as their new Com-
mon High Level programming language for embedded systems. The definition of
Ada Programming Support Environments {APSEs) came in a document known as
Stoneman [Buxt80]. This document gives the requirements for APSEs and devel-
ops a model for them. It also provides a framework to accommodate a wide variety
of design methods and software tools.

Although Stoneman does not enforce any particular design method to be used

by APSEs, it states in 2.B.16

... A comprehensive APSE may encourage, or even enforce, one specific

system development methodology [sic] !.

The fact that APSEs are not built around any particular design method is

being seen today as a major drawback. John Barnes (a member of the original

Ada design team) recently said in a conference:

® Adaisa registered trademark of the U.S. Department of Defense (AJPO).

!People often use “methodology” when they should use “method” instead. Methodology is
the study of methods or a system of methods. I will use “method™ but when quoting other
people, the word “methodology” will appear when it does in the original.

“The language itself is ready (referring to the ANSI standard Ada). The
compilers are almost ready (there are already several in the market).

The training is established (Ada courses). The APSEs are in need of

urgent action”.

John Buxton himself, the creator of Stoneman, when criticizing his own work,
said that “not enough was done on using a methodology as a driver for an APSE
design”. He also said that the environment development should be separated from
Ada, introducing the idea of multi-language environments, which could be tailored
then to support a specific programming language. He strongly suggests that APSEs
should be method-specific instead of language-specific.

John Buxton and the rest of the tearn who wrote Stoneman are not to be
blamed for doing a poor job since the state-of-the-art in requirements for design
environments was at that time (and still is) a long way from being as precise as,
say, requirements for programming languages.

Nevertheless, the need for design methods to be part of Ada Environments is

real, as discussed in [Fisc84] and [Druf82]. Quoting from the latter:

“... we will not realize the full potential of Ada until we are able to
define a software development methodology complete with management

practices which can in turn be supported by automated tools.”

SARA (System Architect’s Apprentice) is a requirements-driven design

method for concurrent digital systems [Camp78,Estr78]. IDEAS (Intelligent De-

sign Environment for Analyzable Systems) is a set of tools supporting the SARA
method in an interactive, workstation environment. The SARA method provides
modeling in three domains: Control, Data, and Interpretation. SARA does not
enforce the use of any particular programming language for its Interpretation Do-
main.

A team of British experts conducted a study of several design methods (in-
cluding SARA) to see how well would they support software design in Ada. Their
results were published in [Jack81]. The report shows an Ada design modeled using

SARA, where Ada specifies the behavior of the model. The authors state:

“It is assumed that the module packages will be processed by a special
SARA processor, which may include the Ada compiler or which may
be a pre-processor to it. This processor will construct appropriate sim-
ulators and analysers for the system, or the data structures necessary
to drive general purpose tools. Such a processor does not currently
exist, the existing SARA support system being oriented towards PL/L.
However, such a tool would form an essential part of a SARA-based

APSE.”

As of today, none of the existing APSEs is driven by a specific design method.
They are just a collection of general purpose tools, not tied to any particular
method.

It is true that a design method could be later on adapted to an APSE since

there are many tools in an APSE that can be used to support many different
methods. However, I believe the tools of an APSE should be there to support the
method, not the other Way-arc’)und. Therefore, it is essential to have an APSE
driven by a design method.

One problem with method-oriented APSEs is that there is no commonly ac-
cepted underlying model to support full life cycle development, as discussed in
[McDe84}. The Ada community has been trying to define the requirements for an
Ada-compatible method for some time. The first draft of this document, known
as METHODMAN [[Wass82], surveys several design methods and analyzes their
characteristics such as life-cycle coverage, suitable application areas, technical con-
cepts supported and Ada compatibility.

SARA is found, in this study, to cover the entire life cycle from requirements
analysis to implementation and validation, and well suited for embedded system
applications. In the Ada compatibility study, SARA is found to be Ada-compatible

to a great extent.

1.2 Related Research Areas

Very little has been done in the Ada environments area (which is one of the
motivations for this research). There are some experimental Ada environments in
development such as ARCTURUS [Will84,Will83] (from the University of Califor-
nia at Irvine). The U.S. Army is also building an Ada Environment together with

their Ada compiler in what is known as the ALS (Ada Language System), but it

is not expected to be completed until 1987.
These Ada environment are nothing more than a collection of software tools to

design, write and debug Ada programs. Among these tools are:

¢ Ada compilers and/or interpreters
e Syntax-directed Ada editors

e Ada cross-reference generators

Debuggers and debugging tools

Once again, the problem is that these environments do not address the issue of

an Ada Design Method, which I believe should be the heart of an Ada environment.

1.3 Research Hypothesis

The primary hypothesis of this dissertation is that SARA can and should be
used as the design method for an Ada Programming Support Environment. In

order to test this hypothesis, it is necessary to test this list of secondary hypotheses:

e That SARA/IDEAS and APSEs have similar requirements

e That SARA tools be able to model concurrency in Ada

e That Ada can be used as the Interpretation Domain language in SARA

¢ That SARA models can be translated into skeleton Ada programs

1.4 Research Plan

I will carry the following research activities in order to prove the research

hypotheses listed above:

o Review Literature on APSEs and try to use at least one of them.

¢ Show similarities between the requirements for APSEs as indicated in Stoneman

and the SARA/IDEAS requirements.

e Show that the Ada tasking primitives can be modeled using SARA.

¢ Design and implement a GMB-to-Ada translator to build Ada program skele-

tons from GMB models.

e Show the feasibility of using Ada as an Interpretation Language for SARA

by building an appropriate interface.

1.5 Dissertation Organization

Chapters one through four provide the reader with an introduction to the prob-
lem area, a review of related research and products, an analysis of Stoneman and
a description of the SARA method and its support environment.

Chapter five compares the SARA requirements with those in Stoneman. Chap-
ters six through eight are the heart of the dissertation. Chapter six gives GMB

models for all of Ada Tasking Primitives. Chapter seven shows how GMB models

can be translated into' Ada code skeletons. Chapter eight show how Ada can be
used as the Interpretation Domain Language for SARA.
Chapter nine lays out the contributions, future research suggestions and con-

clusions.

CHAPTER 2

Related Research

This chapter surveys existing Ada Environments, or prototypes thereof, as well

as attempts made to define Ada-compatible Design Methods.

2.1 Ada Environments

2.1.1 ATMAda

The ATMAda Environment is an enhanced version of the Rolm/Data General

Ada Development Environment (ADE) from Texas A & M University [Matt86].

The ATMAda Environment comprises seven major components:

e The Ada Editor. There are two full-screen editors, one of which has been
modified for use with Ada by supporting the use of Ada source code templates

and access to the on-line reference materials.

o A Help Facility. A help facility provides consistent help on commands, util-
ities, and provides commentaries on various aspects of the environment and

its features.

e An Environment Customization Facility. The user can customize simple

things such as terminal default colors and prompt, pretty printing defaults,

custom templates, etc.

o An On-line Ade Syntaz Reference Guide. A synopsis for the syntax of most
Ada constructs is provided. Each synopsis has a BNF description, examples

of use, and references to the Ada Language Reference Manual (LRM).

o An On-line Reference Manual. The Ada LRM is included in the environment.

o An Automatic Recompilation Facility. This facility keeps track of module
dependencies for each program unit so that when each module is recompiled,
all dependent modules which need to be recompiled will be according to the

compilation sequence specified by the Ada LRM.

o A Library Management Facility. This is only a proposed facility for the
future as no library management functions have been implemented at the

time of this writing.

The ATMAda developers recognize that “one problem with developing large
and complex software is the lack of coherent development methodologies [sic] and
software management tools”. They view this problem as one to be addressed in

the ATMAda Environment “in the future”.

2.1.2 Arcturus

Arcturus [Will84, Will83] is a prototype of an APSE integrating together tools

for system design, coding, testing, and maintenance for programming-in-the-large.

Users interact with Adash (Ada Shell), a text editor with syntactic and se-
mantic knowledge about Ada. Adash sends characters to the lexical analyzer for
Arcturus and receives characters from the tools in Arcturus. The lexical analyzer
was written using LEX [Lesk75] and interfaces directly to the parser, which was
written using YACC [John75]. The parser generates abstract syntax trees, mem-
bers of the DIANA [Goos83] family of trees.

The heart of Arcturus is an interactive Ada interpreter. The user can write
expressions using Ada syntax and the interpreter will print back the result of
evaluating that expression. The user can also enter Ada statements that will get
executed immediately. Entire functions, procedures, packages and programs can
be typed or read from files and then later on executed. There is a pretty-printer to
properly indent pieces of programs when printed and there is also a user-callable
procedure called break which will produce a breakpoint at run time. Users can then
get a backtrace of the last statements executed and continue execution if they wish
to do so.

Arcturus supports the implementation and partially the maintenance phases of
the life-cycle model but there is no support for the earlier phases of requirements
specification and design.

Arcturus does not include a design method as a driver for the environment. In
addition, the tools in Arcturus are language-specific (that is, Ada-specific) rather
that method-specific, exactly the opposite of what I am looking for. I therefore

believe that Arcturus is not suitable for my purposes.

10

2.1.3 CAEDE

CAEDE (CArleton Embedded system Design Environment) is an experimen-
tal design environment for embedded systems being built at Carleton University
[Buhr85d,Buhr85b,Buhr85c,Buhr85a]. It is based on an extended version of Buhr’s |
graphical design method [Buhr84]. CAEDE’s intended application area is embed-
ded system design. It claims to be a design environment by integrating a design
method, a design entry system (graphical paradigms), a design data base and
design toolsets. The design data base and most of the tools are written in Prolog.

Graphics in CAEDE are used to capture the logical structure of the system
under design in a Prolog data base and the generation from this data base of
partial Ada source code for the system under designed.

Underlying Principles

CAEDE is founded on the following principles:

1. METHODOLOGY: The design of embedded systems is a creative process

and the method’s and the environment’s tasks are to assist this process.

2. GRAPHICS: Graphical paradigms provide a framework for reasoning about

a system.

3. CLOSENESS TO PROGRAMMING: The design level should be close enough
to Ada so that mappings between design and Ada code are straightforward

in either direction.

11

4, POSTPONEMENT OF COMMITMENT: The tools should be usable with-

out full software implementation of a design.

5. DESIGN SUPPORT: Design tools should support the system structure, tem-

poral behavior and functional behavior aspects of the system.

Since the system is written in Prolog, it is relatively simple to translate designs
(which are stored in Prolog’s data base) into partial Ada source code using Prolog’s
translation rules. The system is implemented on a SUN workstation under 4.2 Unix
using SUNCORE graphics, C and C-Prolog.

The modeling primitives in CAEDE are very close to those of Ada. In fact,
they map one-to-one with Ada’s features. The translation of CAEDE’s models into
Ada code is, thus, an almost trivial one since they are two different representation
of the same concepts.

Also, the complexity and size of Ada manifest themselves in CAEDE: there
are more than 15 different modeling primitives with more in sight. This makes
modeling a difficult task. The designer is presented with too many choices and
choosing the right one is not easy.

Furthermore, the closeness to Ada implies that the designer has to think in
terms of Ada during the design process. This is particularly annoying in the
concurrency area, where the model of concurrency in Ada is a controversial one.
One would rather design in terms of higher level concepts, which makes a model

simpler and smaller. These higher level models could then be translated into a

12

given target language like Ada.

2.2 Ada-compatible Design Methods

This section will present the purpose and main results of two major efforts to
define Ada-compatible design methods: METHODMAN and the Report on the
Study of An Ada Based System Development Methodology (U.K. Study, for short).
In addition, the main characteristics of the Ada-compatible methods found by the

latter study are shown here.

2.2.1 METHODMAN

METHODMAN I {Wass82] was the result of an effort by the Ada community
to define the requirements for an Ada-compatible design method. An extensive
survey of some 48 methods in use was done, to see to what extent they were (or
were not) Ada-compatible.

The methods were evaluated in four main categories:

technical: support for hierarchical models, modularization and interface defini-
tion among modules, support for control flow, data flow, data abstraction

?

procedural abstraction, parallelism, safety, reliability and correctness.

usage: how easy is to understand the results, to teach the method to someone else,
reusability of previous designs, are there automated tools that support the

entire method (or phases thereof)?, What range of the life-cycle is covered

13

by the method?, application area, extent of current usage, ease of transition
from one phase in the life-cycle model to the next one, validation of models,

repeatability.

management: use of standard management techniques, support for teamwork,

configuration management, project scheduling, cost estimation.

economic: benefits of using the method versus costs (of acquisition, of use, of

management).

Twenty seven organizations (representing 27 different methods) answered the
long questionnaires and the results were analyzed and tabulated. One of the tables,
shown in the next page, represents the degree of Ada compatibility found in each
method.

Of special interest to us is the line for SARA. It says that SARA has no serious
incompatibility with Ada. Furthermore, it can be used to model Ada Packages,
Tasks, Generics and Exception Handling. The only “negative” entry is in the
machine representation section, where SARA does not currently support explicit
machine representation schemes, but they can be realised by whatever language is

used in the Interpretation Domain.

2.2.2 The U.K. Study

The Report on the Study of An Ada Based System Methodology [Jack81] was

the main result of a joint effort between the UK. Department of Industry and a

14

ADA COMPATIBILITY

Il

Ada Construction Machine Serious
Methodology Exception | Represen- | Incompat-
Packages Tasks | Generics Handling tation ibility?
ACM/PCM ves no ves yes no Database%
DADES ? ? ? ? ? ?
DSSAD
DSSD yes yes ? yes 7 ?
EDM ? ? ? ? ? ?
GEIS no no no no no
HOS ves yes ves yes yes no
IBMFSD-SEP yes ? yes yes yes
IESM yes yes yes yes no ?
ISAC yes yes no yes no
JSD yes ? no ? ? ?
MERISE yes yes yes yes no
NIAM yes yes ? ? ?
PRADOS
REMORA yes yes yes possible no no
SADT yes yes yes yes ves o
SARA yes yes yes yes no
SA-SD yes yes ves Databaseé
SD yes yes yes
SDM yes yes yes yes
SEPN no no no no no yes
SREM ves yes yes yes no yes
STRADIS ?
USE yes ves no yes no Databased:
Key:
? = “Not known”
= 1o answer
yes = methodology supports mapping into Ada feature
no = methodology does not support mapping into Ada feature
% = Query Language
& = Modeling/Design; I/0

15

number of british companies.

Their goal was to first conduct an extensive review of as much published ma-
terial as possible in the area of design methods. They realized that published
material rarely contains the full story, and members of this team visited 24 orga-
nizations where they discussed further details with both implementors and users
of those methods.

A set of thirteen different characteristics was defined to assess each method

against. These characteristics can be divided into five major categories:
¢ life cycle coverage
e technical characteristics

e management and control characteristics

usability

Ada compatibility

This study finds four potential Ada-compatible methods among the over 40
methods originally studied. These are CORE/MASCOT, JSD, SARA and CCS.

Since SARA is covered in a separate chapter, I shall give an overview of only the

other three methods.

16

2.2.3 CORE/MASCOT

Controlled Requirements Expression (CORE) and MASCOT are two different
methods often used in conjunction to cover the entire life cycle, CORE dealing
with the requirements and specification phases and MASCOT with the design and

implementation phases.

2.2.3.1 CORE

CORE is concerned with the collection and collation of information which de-
fines the requirements of a system. The specification and design procedure within
the CORE system is concerned with the analysis of data flow through a system.
Initially, data flow is viewed from a number of different viewpoints in an attempt to
identify logically independent, isolated processing paths. The various viewpoints
are then combined to form a complete system representation.

A standard questionnaire is used to gather information on requirements from
several viewpoints. A standard procedure ihen provides for the identification of
data flow through the system and a top-down decomposition of the requirement
is imposed such that sub-requirements can be identified and handled separately if
needed. Consistency of data flow within and across levels is a prime concern of the
method.

The method is mainly of use for large, complex systems and the Ada Tasking

model may require changes to the CORE method.

17

2.2.3.2 MASCOT

MASCOT is based on the analysis of data flow to perform a structural de-
composition of the problem domain. The aim is to identify co-operating parallel
processes which have a minimum of communication with each other.

The essence of MASCOT is a graphical notation and a set of building blocks for
expressing real-time system designs. MASCOT applies to the design, implemen-
tation and maintenance phases of the life cycle. Interfaces to a specific high-level
language (CORAL) have been defined.

The principal building blocks in MASCOT are Activities and Intercommunica-
tion Data Areas (IDAs). IDAs in turn consist of Channels and Pools. There is a
graphical representation of these building blocks and they are connected by lines
in a diagram, showing communications among different activities in a system.

There are rules for connecting Channels, Pools and Activities. Problem de-
composition is achieved by hierarchically dividing a system into communicating
subsystems.

Since there is an intimate interface between MASCOT features and the underly-
ing operating system and high-level implementation language tools (like compilers

and linkers), porting MASCOT to a new host or target is a non-trivial task.

2.2.4 JSD

The Jackson System Design (JSD) method is aimed at the system develop-

ment level, from somewhere in the requirements phase through to implementation

18

[Jack83,Hugh79,Came83].

JSD should not be confused with JSP (Jackson Structured Programming). The
latter is a program design rﬁethod developed between 1972 and 1974.

JSD is a superset of JSP covering almost the whole life cycle, beginning with a
model of the entities in the problem domain and ending with program implemen-

tation and subsequent maintenance. The JSD phases are:
1. modeling the real-world entities.
2. extending the model to include the functions of the system.

3. implementing the model as a program.

2.2.5 CCS

The Calculus of Communicating Systems (CCS) is an algebraic way of describ-
ing the meaning of a concurrent system. A system is viewed as being constructed
from a number of process objects that have externally visible ports which are used

to connect processes together.

2.3 Discussion

The first two APSEs presented in this chapter, ATMAda and Arcturus, are not
suitable for my purposes since they do not allow for any design method to be part

of the APSE. A particular design method could be later on added to these APSEs

19

but it should be done the other way around: you have the method first and only
then the environment is built to support the method.

The third APSE, CAEDE, seems at a first glance as a promising candidate but
when looked at closely reveals that it has a serious drawback by lacking support for -
bottom-up composition of designs. In addition, the method relies too heavily on
Ada being the underlying implementation language and does not provide higher
level abstractions. This i1s good because the mapping between designs and Ada
code is straightforward but it locks the designer into thinking in Ada terms early
on.

The Ada-compatible methods suffer from a series of different problems that
make them unsuitable for my purposes. It is not clear how CORE would support
Ada tasking, and one of my goals is to deal with Ada tasking.

CCS provides a formal way of describing concurrency but does not have a

support environment. It 1s a formal algebraic notation rather than a design method.

20

CHAPTER 3

STONEMAN - Requirements for APSEs

The U.S. Department of Defense Common High Order Language program
started in 1975. Its goal was to establish a single high level language for new
embedded computer systems. Ada was the culmination of that effort.

It was recognized from the beginning that the major benefits from the use of
Ada would be, among other things, from its use as a mechanism for distributing
effective software development and support environments.

Stoneman was the nickname given to the document named Requirements for
Ada Programming Support Environments, published by the Department of Defense
in early 1980. It paints a broad picture of the needs and identifies the relationships
of the parts of an integrated Ada Programming Support Environment (APSE).

Stoneman specifies the requirements for an APSE, provides criteria for assess-
ment and evaluation of APSE designs, and offers guidance for APSE designers and

implementors.

3.1 Components of an APSE

An APSE, as defined by Stoneman, has three principal components:

21

The Data Base: acts as the central repository for all information associated with

a project throughout its life cycle.

The Interface: includes both the interface to the user and to the data base and

toolset.

The Toolset: tools for program development, maintenance and configuration con-

trol.

3.2 The Layered Approach

To address the problem of portability, Stoneman proposes a layered architecture

for APSEs:

level 0: Hardware and host software.

level 1: Kernel APSE (KAPSE); provides database, communication and run-time

support functions. Presents a machine-independent portable interface.

level 2: Minimal APSE (MAPSE); minimal set of tools, written in Ada, necessary

and sufficient for the development and continuing support of Ada programs.

level 3: A full APSE, extending a MAPSE to provide support for a particular

application or method.

This layered architecture is represented in Figure 3.2.

22

editor

KAPSE
functions

Figure 3.1: Architecture of an APSE

23

3.2.1 The KAPSE

The KAPSE provides the basic run-time support facilities that are required by
Ada programs within an APSE. A typical KAPSE will provide all Input/Output
services as well as the tool invocation mechanism, including suspension, resump- |
tion, abortion, and termination of programs. A KAPSE will also provide the
interface with the underlying database manager.

The features of a KAPSE are given in one or more Ada package specifications.
These declarations include operations that are made available to any tool in an
APSE as well as abstract data types common to all APSEs (including abstract
data types used in the interface specification for the various phases of program
compilation and execution).

The KAPSE defines, therefore, an abstract data type for a virtual support en-
vironment for Ada programs, i.e., a virtual machine, by hiding all the peculiarities
of the underlying operating system and providing a uniform interface to an Ada

program, making it easy to port Ada programs across different APSEs.

3.2.2 The MAPSE

A MAPSE provides a minimal toolset written in Ada and supported by the
KAPSE which both necessary and sufficient for the development and support of
Ada programs.

Tools within a MAPSE or an APSE are to be written in Ada and can, there-

fore, use (in the Ada sense) the interface packages provided by the KAPSE. That

24

15, these tools can make use of the abstract data types and object declarations
provided by the Ada packages used by the KAPSE to specify the interface with
the low level facilities.

Requirements for MAPSE tools include

1. a standard text editor,

2. a source code prettyprinter,

3. an Ada compiler (plus linker and loader),

4. a set-use static analyzer (for cross reference),
5. a control flow static analyzer,

6. a dynamic analysis tool,

7. a file administrator,

8. a command interpreter, and

9. a configuration manager

3.2.3 The APSE

An APSE includes tools that go beyond the MAPSE requirements. Among

them are:

25

1. syntax-directed editors,

2. documentation tools, .

3. project control systems,

4. configuration control systems,

5. measurement and performance tools,

6. fault report systems,

7. requirement specifications,

8. system and program design tools, and

9, program verification tools.

3.3 APSEs and design methods

Because of the layered architecture, KAPSEs deal only with issues pertaining
to low-level, machine-independent user interface to an APSE. The only support
provided by a MAPSE for different activities throughout the life cycle of a project
consists of general text manipulation facilities (text editors, prettyprinters, etc).

As stated by Stoneman in section 2.B.16,

Clearly, the MAPSE does not emphasize any particular development
methodology at the expense of any other. However a comprehen-
sive APSE may encourage, or even enforce, one specific development
methodology.

26

From this it is clear that the place where a design method comes into the
picture is in a full blown APSE. Stoneman does not go one step further, defining
a method that could be used in an APSE. This is a gap that needs to be closed

and this dissertation tries to do just that.

27

CHAPTER 4

SARA /IDEAS — A Computer-Based System Design Method

SARA (System Architect’s Apprentice) is a requirement-driven top-down and
bottom-up design method for concurrent digital systems [Camp78,Estr78]. The
method provides for a separate modeling of the structure and the behavior of the
system being designed. The history of SARA can be found in [Estr86].

I will carry out an example throughout this chapter to illustrate the different
modeling aspects attacked by SARA. The example chosen is a simple input Joutput

buffer system. The specification is given by the following Ada Package:

package buffer_package is
type message_slot is private;
type buffer is array(1..MAX) of message_slot;
procedure write(m : in message_slot);
function read returns message_slot;
procedure init;

end buffer_package;

A buffer is, then, a sequence of MAX message_slots. The init procedure
initializes the buffer to be empty. Calls to procedures read and write can occur

concurrently. If write is called when the buffer is full, the caller will be suspended

28

until there is an empty slot in the buffer. If read is called when the buffer is empty,
the caller will be suspended until some message is written onto the buffer. The

system needs to manage the buffer in such a way to ensure that:

1. messages are delivered in the same order as they are received,
2. no message is destroyed (written over) before being read, and

3. no message is read twice.

Environment Assumptions
The environment will contain two processes, sender and receiver. The sender

process behaves as follows:

1. it sends messages to the buffer system through the write procedure,

2. it sends only one message at a time and, after sending one message, can

proceed only after write finishes, and

3. after the last message is sent, it terminates.
The receiver process behaves as follows:

1. it requests messages from the buffer system through the read procedure,

2. it reads one message at a time and, after requesting a message, can proceed

only after read finishes, and

3. after the last message is read, it terminates.

29

4.1 The Structure‘ Model

The structure of a system is expressed in terms of the Structure Model (SM).

The SM has three primitives:

¢ modules,
e sockets, and

e interconnections

Modules can be connected with other modules by an interconnection connecting
two sockets, one socket in one module and one socket in the other module. Thus,
sockets are communication ports for modules.

The interconnection is not directed, so it just models a communication line but
does not reveal which way the information flows. Nothing is said about the type
of data passing through that interconnection; it could be either data or control or
both. An interconnection always connects two and only two sockets. Furthermore,
a socket can have only two interconnections attached to it: one going out and one
coming in.

There is a top level module called universe which has no sockets. Hierarchical
decomposition is achieved by refining a module into submodules. This process can
be repeated until the system has been decomposed into small enough modules,
whose behavior can be directly mapped to an existing behavioral model stored in

the Building Block Library or whose behavior is simple enough to be understood

30

and expressed using the behavioral primitives.

In our buffer system, we would decompose our universe module into the buffer
system and its environment. The environment and the buffer system would com-
municate through the write and read operations. Figure 4.1 shows the SM for

the Buffer System.

write

read

environment buffer

universe

Figure 4.1: Structure Model of the Buffer System

The environment module has two sockets, ew (for environment write) and
er (for environment read). These sockets are connected through interconnections
write and read respectively to sockets bw and br in the environment module.

The environment module or the buffer module could be partitioned further

into submodules if needed.

31

4.2 The Graph Model of Behavior

In SARA, the behavior of the system is modeled using the Graph Model of
Behavior (GMB) [Razo80]. The GMB offers the designer three different but related
modeling domains, control, data, and interpretation. The designer can, then, think
independently of these three aspects of his system and describe the system using

these three different views that will need to be made consistent with each other.

4.2.1 The Control Domain

The control flow model describes concurrency, synchronization and precedence
relations in a graph using an underlying theoretical model similar to Petri-Nets
[PeteBl].

The control domain of the GMB is a directed hypergraph, i.e., a graph in which
the edges may have multiple sources and/or multiple destinations. Conirol nodes
(the vertices) represent events and control arcs represent precedence constraints,
or a partial ordering, among the events.

Each node has an input logic expression, which is a boolean expression on the
input arcs, that expresses the condition under which that node can be initiated.
An OR (+) in the input logic means any of the operand arcs can initiate the node.
An AND (#) in the input logic means that all operand arcs must pass control
before that node can be initiated.

Each node has an output logic expression, a boolean expression on the output

32

arcs, which shows where is control passed upon termination of that node. An
OR here implies control is passed to one of the designated arcs. An AND implies
control is passed to all the designated arcs.

Both input and output logic expressions can be arbitrary functions using ANDs |
and ORs. Control Flow in the control graph is represented by the passing of tokens
through control arcs. When a node is initiated, it consumes the tokens which
enabled it. Upon node termination, tokens are created and placed on output
arcs according to the node’s output logic expression. The semantics of a control
graph are dictated by an underlying machinery known as the token machine which
performs state-to-state transformations on the graph, starting from an initial token
distribution and terminating if and when no further transformations are possible.

Continuing with our buffer system, we would define a control graph for each
of the modules defined in the SM. The mapping between the control graph and
the SM is shown by drawing the control graph on top of its corresponding SM.

Figure 4.2 shows the control graph for the buffer system.

33

arv
5 SEND
+
cwW
af
write
INIT 1 «(TERM aw
*
af
arr
REC2 or road
*
+
al 3 acr
+ *
a2 REC1
environment buffer
universe

Figure 4.2: GMB Control Graph for the Buffer System

The following tables describe what the function of the various components in

the control graph are:

Control Nodes

INIT initiation process, initiates sender

TERM termination process

SEND sender process; sends message to the buffer and receives
acknowledgment

REC1 receiver process I, requests for message

34

REC2

RECM

REQ

Control Arcs

aokw

aokr

receiver process II, actually receives messages from the
buffer and informs REC1
receives message from the environment, acknowledges,

and performs the write operation

receives request, performs the read operation, and sends

it to the environment

semaphore, indicates the number of empty slots in the
buffer
semaphore, indicates the number of messages in the

buffer

4.2.2 The Data Domain

The data domain of the GMB is a bipartite directed graph, i.e., a graph in
which there are two types of nodes (datasets, represented as rectangles and data
processors, represented as hexagons) and in which arcs (called data arcs) are used
to connect datasets with data processors. Thus, every data arc goes from a data

processor to a dataset or viceversa. This graph represents the data flow of the

system by defining its data paths.

Datasets model static collections of data. Data processors are data transformers

which can read from and/or write to datasets. Data arcs define the read and write

accesses of a data processor to a dataset.

35

Continuing with our buffer example, we would draw the data graph over the

SM and show the mapping existing between the data and control graph.

MESIN

write

aw

read

dout

MESQUT

environment buffer

universe

Figure 4.3: GMB Data Graph for the Buffer System

The following table describes the function of the various data processors and

datasets in the data graph:

36

Data Processors

CHK

RDI

RDO

REC

SEN

Datasets

INPUT

OUTPUT

MESIN,

MESOUT

BUFFER

mapped to control node TERM; it checks the message re-
ceived .ﬁgainst the initial messages to determine that they
are the same and in the same order before termination
mapped to SEND in the control graph; it reads messages
from INPUT into MESIN, one at a time

mapped to REC2 in the control graph; it reads messages
from MESOUT, and deposits them into OUTPUT, one at a
time

mapped to RECMin the control graph; it receives messages
from the environment and deposits them into dataset
BUFFER.

mapped to REQ in the control graph; it reads messages

from BUFFER and passes them back to the environment

initial sequence of messages

messages read from BUFFER, to be checked against INPUT

message slots, interfaced with submodule buffer

the actual buffer in the system

37

4.2.3 The Interpretation Domain

The Interpretation Domain defines the format of the data stored in datasets
and defines the transformations of data performed by the data processors. Many
interpretation languages can be used for this domain. The original SARA system
used PLIP (an extension of PL/1) as its interpretation language. The current
system, being implemented in a Lisp dialect supports a Lisp-like interpretation
language.

One of the proposals of this dissertation is that Ada be an interpretation lan-

guage for SARA.

4.3 The Building Block Library

In order to support bottom-up design, it is necessary to have a collection of
previously designed and tested models, appropriate for the design domain, stored
in a design database. The SARA design database is called the Building Block
Library by Drobman in [Drob80]. His work concentrates on hardware building
blocks but the procedure is also applicable to software building blocks.

The primary hypothesis of Drobman’s work is “a set of models of hardware
and software building blocks can be created and utilized as primitive elements
in a computer-aided design system and methodology such that the composition
of requirement-satisfying, partially correct, microprocessor-based digital systems

is dramatically enhanced”. He demonstrated satisfaction of the hypothesis by

38

defining building block descriptions of a number of hardware devices, and then
using those building blocks to design a 16-bit microprogrammable microprocessor.
Other SARA researchers have studied the requirements and organization of a

design library [Land83,Land86}.

4.4 The Socket Attribute Model

During research on the Building Block Library and t-he SARA simulation tools,
it was felt that many of the errors found during simulation could have been de-
tected much earlier by analysis of some as-of-yet undefined static description of
the building blocks. This observation spawned Sampaio’s research into the Socket
Attribute Model, SAM {Samp81], and Penedo’s research into the Module Intercon-
nect Description, MID [Pene81]. While both deal with a description of a building
block at its interfaces, sockets or interconnects, SAM concentrates on hardware
building blocks and MID concentrates on software building blocks.

Sampaio provides a language to describe the behavioral attributes of a hardware
module’s sockets, for example, electrical characteristics (fan-in, fan-out), timing
(set-up and hold times), bandwidth, and perhaps physical characteristics. With
these descriptions attached to a module’s sockets, it is possible to detect inconsis-
tencies occurring during composition of two or mode modules. The detection of
socket mismatch errors occurs at the time the socket connection is attempted, not
later during an expensive and time consuming simulation that may not detect the

error at all.

39

4.5 The Module Interconnect Description

Penedo attacks the same problem as Sampaio, but on the software front. She
describes software modules as they appear at their interfaces. Most type checking
compilers detect some of the errors that Penedo is after, for example, procedures
called with the wrong number or type of arguments. The product of her research
is the Module Interconnect Description, MID [Pene81,Pene79]. Berry shows later

in [Berr84] that Ada package specifications meet the needs of Penedo’s MID.

4.6 The SARA/IDEAS Environment

The SARA method 1s supported by automated tools in an integrated interactive
environment. These tools allow the user to create and edit SM and GMB models.
There is also a design data base where models can be stored and retrieved from.

The GMB simulator [Razo79] is one of the main tools in the SARA environ-
ment. [t conducts a simulation of the GMB model, allowing the user to set up
breakpoints in the control graph. Extensions have been made to the GMB and
to the simulator to model queueing systems for performance analysis. Another
tool is the Control Flow Analyzer, used to analyze control graphs for control flow
anomalies such as deadlocks and to assure some control flow properties such as
proper termination.

A second generation of these tools is being implemented at UCLA on the Apollo

workstations. Extensive efforts are being made into providing a state-of-the-art

40

graphics interface and user interface. More details on this can be found in [Krel85a].

41

CHAPTER 5

Stoneman versus the SARA/IDEAS Requirements

It should be of interest to see similarities (and differences) between the require-
ments for APSEs as stated in Stoneman and the SARA/IDEAS requirements.
When building an APSE by adapting an existing design environment, one needs
to keep always in mind these similarities and differences.

The similarities help to reassure one that the underlying principles of both

Stoneman and SARA/IDEAS are very much alike.

5.1 Similarities

This section consists of short quotes from Stoneman followed by some discussion
and comparison to the SARA/IDEAS requirements and design goals. The quotes

are presented according to the section they appear in.

5.1.1 General Guidelines

3.F USER HELPFULNESS: High priority will be given to human
engineering requirements in the design. The system shall provide a

helpful user interface that is easy to learn and use...

42

The IDEAS system provides a rich flexibility for the user interface aspects. of a tool,
with accommodations for state-of-the-art interaction techniques. A specification
language is used to describer the user interface of a tool in the IDEAS environment.
Facilities are included for defining the syntax of the interface as well as logical and’

physical devices available. More details can be found in [Krel85b].

3.G UNIFORMITY OF PROTOCOL: Communications between

users and tools shall be according to uniform protocol conventions.

IDEAS provides a consistent, common user interface across tools. A specification
language 1s used to describe the user interface. This specification language can be

used to implement those protocol conventions.

3.M INTEGRATED: An APSE shall provide a well-coordinated set
of useful tools, with uniform inter-tool interfaces and with communica-
tion through a common database which acts as the information source

and product repository for all tools.

IDEAS implements a paradigm to build an integrated environment. The IDEAS
method follows an object-oriented strategy resulting in uniform inter-tools inter-
faces. For instance, as part of an experiment, three different developers were given
the task to implement a certain SARA tool using the IDEAS method. As a result,
any of the three implementations could be used without any changes in the system

(and without the user noticing it).

43

A common database facility is used to store objects and their relations. This

database service is available to all tools requiring it.

3.P OPEN-ENDED: An APSE shall facilitate the development and

integration of new tools.

Not only is this irue of the IDEAS system as well, but IDEAS goes one step
further by providing a constructive method to integrate new tools into an existing

environment.
5.1.2 Requirements for APSEs
4.A.2 The database shall offer flexible storage facilities to all tools.

The IDEAS database manager provides facilities for storing complete and partial

designs, as well as relationships among the objects stored in the database.

4.A.3 The database shall permit relationships to be maintained between

objects.

This is one of the requirements of the IDEAS database manager as well.

5.1.3 APSE Control Requirements

4.C.4 The user may access the virtual interface from a variety of phys-

ical terminal devices.

44

One of the design goais of the IDEAS user interface was to achieve device inde-
pendence. It is very easy to write a device driver for a new I/O device. IDEAS
has actually been ported to a variety of terminals, ranging from “dumb” ASCII

terminal to sophisticated workstations.

5.1.4 APSE Toolset Requirements

4.E.4 The set of tools in an APSE shall remain open-ended: it shall

always be possible to add new tools.

As I mentioned before, IDEAS provides a constructive method to integrate new
tools with the potential to reuse significant amounts of software written for the
existing tools. The entire user-interface aspects of the tools are taken care of by
the IDEAS system and the tool builder is only concerned with implementing the

semnantics of the tool.

4.E.6 The principles for communication between tools and the user

shall be simple and uniform throughout an APSE toolset.

By sharing the same user interface specification scheme, tools built using the

IDEAS system will present a uniform interface to the user.

4.E.7T An APSE toolset shall offer comprehensive “help” facilities to

APSE users.

Any tool built using the IDEAS method will have uniform on-line help facilities

and documentation. For example, a help command can be entered by a user at

45

any time to request help from the system.

5.2 Differences

This section tries to keep us aware that there are some important differences

between APSE requirements and those of the SARA/IDEAS system.

5.2.1 APSE Toolset Requirements

4.E.3 Tools shall be written in Ada and where possible shall conform

to standard interface specifications.

This a noble idea, but when an existing set of tools is being adapted to build an
APSE (as it is the case here), it should not be required to rewrite them in Ada.
Furthermore, Ada might not be the best programnming language to write APSE
tools in. I can see one significant problem that would arise if the SARA/IDEAS
system would have to be rewritten in Ada. The lack of dynamic linking in Ada
(being able to load and link code at run-time) would mean that all the code
(including the Interpretation Domain one} would have to be linked a priori every
time a change is made on any piece of code. This is unacceptable.

There is no requirement for the SARA/IDEAS system to write the toolset in
any specific programming language. In fact, the first SARA system at MIT was
implemented in PL/1, while the current SARA/IDEAS system is written in a Lisp
dialect. The tools could be rewritten in Ada to conform to Stoneman requirement’s,

but that is not one of the goals of our research group.

46

The lack of availability of Ada compilers until very recently surely played a role
in the APSE development process, as APSE developers had to wait for decent Ada

compilers.

47

CHAPTER 6

GMB models for Ada Tasking Primitives

Concurrency is an important aspect of Ada, which is being designed as a
language for embedded systems applications in which multitasking is required.
The importance of concurrency in such applications has been recognized early
in the design of Ada. It was first stated in the requirements for the language
[Defe77,Defe78], and then in the rationale behind the design of Ada [Ichb79]. Con-
currency is achieved in Ada by using the various tasking primitives described in the
Ada Language Reference Manual [Defe83]. This is a controversial aspect of Ada,
due, partly, to the fact that as of today, the area of concurrency and multitask-
ing does not rely upon any universally accepted theoretical model or formalism.
There have been various attempts to formally describe parallelism, but there is a
lack of consensus on a common notation and these problems worsen when real-time
issues arise. Debugging and testing Ada programs involving concurrency is, there-
fore, a difficult task. Sophisticated methods have been proposed for this purpose
[Fair80,Germ84,Helm84].

To the best of my knowledge, all attempts to provide a formal semantic to
Ada’s tasking system have been unsuccessful so far. Furthermore, the official Ada

LRM is hard to read casually. Therefore, I chose to provide my own informal

48

semantics of Ada’s tasking system instead.

At a first glance, the concurrency expressed in the Control Graph of the GMB
and that of Ada seem far av;ray apart. This chapter will try to reconcile those two
views and models of concurrency by trying to come up with GMB models for all |
possible types of concurrency in Ada.

This will enable Ada programs to be converted to GMB models in order to an-
alyze control flow anomalies (like potential deadlocks, liveness, boundedness, etc.).
The early detection of these anomalies is crucial in order to prevent unexpected
failures of Ada programs involving concurrency, and thus to increase the reliability
of these programs. In addition, such models could serve as a basis for a formal
definition of Ada’s tasking system.

One difference which will not be dealt with here is that the GMB models are
pseudo-static. That is, nodes and arcs can not be created or removed on the fly.
That would make any attempt to analyze models all but useless. Ada, on the
other hand, does have ways to handle dynamic creation of concurrent processes,
in effect, changing the computation paths. I will not try to model that kind of
concurrency.

It is not clear whether this restriction is in any way an important one. The class
of problems that can not be expressed using a static control flow model includes

atrocities such as self-modifiable programs.

49

6.1 Ada Tasking Primitives

The concurrency model in Ada is based on tasks. Tasks represent concurrent
processes which are executed in parallel. Tasks come in different flavors, ranging -
from simple potentially non-interacting tasks to complicated synchronizing tasks
with many scheduling and timing variations. The different flavors of tasking will

be analyzed next.

6.1.1 Non-interacting tasks

The simplest form of concurrency in Ada is that where several concurrent tasks
execute in parallel without interacting with each other. According to the semantics
of Ada, these tasks will run in parallel and their parent unit will become terminated
only after all these tasks come to termination themselves.

This example is illustrated by the following Ada template:

procedure parent is

task Ti;
task T2;

task TN;
begin
null;

end parent;

Tasks T1 through TN will run in parallel and parent will wait for all of them to finish

30

before control is returned to the caller. Figure 6.1 shows the GMB corresponding

to the Ada code above.

Figure 6.1: GMB model for Non-interacting Tasks

Control node begin will place a token on arcs A1, ..., AN, enabling thus
nodes TL, ..., TN. The synchronization takes place at node END, which has to
wait until it has a token on every input arc{X1, ..., XN) before it can proceed

by placing a token on X.

6.1.2 Task synchronization - Rendezvous

The basic form of synchronization between tasks in Ada is the rendezvous,
where one task calls an entry declared in another task. Comnsider a task defined
by:
task T1;

entry Ei;

end Ti;

task body T1 is
begin

accept El;

end T1;

51

and a caller task

TLELC ...)

when the caller task makes the call to T1.E1, it will wait until T1 reaches the
accept statement for E1. Similarly, if the accept statement is reached before
anyone calls that entry, T1 will wait until someone calls E1.

This is called a rendezvous. After the synchronization takes place, the com-
mands in the body of the entry are obeyed (if any) and both the caller and T1
continue with their respective executions. Figure 6.2 shows the corresponding

GMB control graph.

CEPT X Tt continues here
* *
ALL X2

caller continues here

Figure 6.2: GMB model for simple rendezvous

For E1 to proceed, it requires a token on both input arcs (ACCEPT and CALL),
achieving thus the required synchronization. Once the rendezvous is over, node
E1 will place a token on both arcs X1 and X2 to enable both T1 and the caller to
continue their execution. In some cases, however, the same entry could be called
from different tasks and any of those calls should trigger E1. Figure 6.3 show the

corresponding GMB control graph.

52

Ti continues here

CALL1

caller 1 continues here

caller n continues here

Figure 6.3: GMB model for compounded rendezvous

Here, a token, on both ACCEPT and any of CALL1, ..., CALLN will trigger
node E1. If there are tokens on more than one CALL arc, they will be queued and
processed in a FIFO (first in - first out) order. Upon termination, E1 will place a
token on X to enable task T1 to continue and it will place a token on one of X1, ...,
Xn to enable the caller to continue. In this case, it is the interpretation associated

with E1 who is respounsible for placing the token on the right control arc.

6.1.3 The select statement

The select statement allows a task to select from one of several possible actions.
There are several forms of the select statement and all of them will be addressed

here.

6.1.3.1 Selection among rendezvous

The simplest case is when the selection is to allow the accepting task to choose
among several possible rendezvous. This would correspond to the following select

statement:

select

53

accept El do
end;

or
accept E2 do

end ;

or
accept En do
end;

end select;

The rendezvous can occur with anyone of the entries E1, ..., En that have
been called upon and are waiting for rendezvous. If none is waiting for rendezvous,
then the select statement waits until one of these entries is called. If rendezvous
is possible with more than one entry, it has to choose one of them in an arbitrary

way. Figure 6.4 show its corresponding control graph.

" Figure 6.4: GMB model for the plain select statement

The single token on arc 8 is going to fire one of E1, ..., EN, depending on

which ones of them are enabled by having a token on CALL1, ..., CALLN. If

54

the token. Figure 6.5 shows the corresponding control graph.

S ﬂ
CALL1, @
CALLn e

Figure 6.5: GMB model for guarding conditions

6.1.3.3 Delay Alternatives

As explained, the task reaching the select statement has to wait if none of the
entries in the select had been called. It is possible to specify a time-out for this

waiting period:

select
accept el do

end;

or
accept en do
end;

or
delay 5.0;

~-- time-out statements;
end select;

If the rendezvous can not take place within 5 seconds, the time-out statements

are executed and the select statement is considered completed. If one of the entries

56

is called within 5 seconds, then the rendezvous takes place and the time-out is

ignored. Figure 6.6 shows the corresponding control graph.

Figure 6.6: GMB model for delay alternatives

The START node will fire and place a token on both A1 and A2. The node on A2
will enable node N5 to fire. The interpretation associated with N& waits 5 seconds
before continuing. Meanwhile, one of the nodes el, ..., en could be enabled
by a token on CALL1, ..., CALLn. When N5 is ready to terminate (after the 5
seconds delay), its interpretation code will ask whether any of e1, ..., en have
fired (this can be implemented in the data graph by making the nodes that output
a token on CALLY, ..., CALLnto write to a dataset that can be read by the data
processor associated with N5). If so, it will place a token on arc A4. Node D is a
terminal node with no delay time used to absorb the token produced by N5.

If none of e1, ..., en has fired within the 5 seconds limit then node N5 will

place a token on arc A3, enabling thus NO to fire since there's still an unconsumed

37

token on arc Al. The interpretation associated with NO will implement the time-out

statements corresponding to the Ada code and it will place a token on arc X.

6.1.3.4 Immediate time-out

There is a special form of the select statement when the time-out branch has
no delay, that is, a delay 0.0:

select
accept el do

end;

or
accept en do
end;

else

-- alternative statements;
end select;

In this case, the alternative statements will be obeyed at once if the rendezvous
can not take place with the other accept branches. Since this is a special case of
the more general delay alternative, its GMB model is the same as the one for delay
alternatives with the difference that node N5 is now a zero delay node (instead of

waiting 5 seconds as before).

58

6.1.3.5 Timed-out entry call

Now we deal with selections on the calling side of a rendezvous. The first case

is when an entry call is timed-out:

select _
T1.E1(...);
or
delay 10.0;

-= time-out statements
end select;

The time-out statements will be executed if the rendezvous with entry E1 of
task T1 can not take place within 10 seconds, that is, if task T1 does not reach the
accept statement for E1 within 10 seconds. Figure 6.7 shows the corresponding

control graph.

m
* 1

Y

Figure 6.7: GMB model for timed-out entry calls

Here, node START will place a token on both arcs A1 and A2. Node N10 will

wait for 10 seconds and, if no token has arrived on L1 (meaning that task T1 has

59

not reached the accept statement for entry E1), it will place a token on arc A3,
enabling thus node NO which aborts the rendezvous and implements the time-out
statements in the Ada code. Otherwise (if the rendezvous can occur), N10 will
place its output token on A4 which will enable node D (a terminal node with no
purpose other than to absorb that token). Node ei will be ready to fire next,

absorbing the tokens in A1 and L1 and executing the rendezvous.

6.1.3.6 Conditional entry call

The second case is when the rendezvous takes place only if there is no wait-
ing involved (this is the counterpart for the immediate time-out case for accept

statements):

select
T1.E1(...);

else
-- alternative statements

end select;

If and when the select statement is reached, entry E1 in task T1 is not wait-

ing for rendezvous (i.e., T1 has not reached the "accept E1 ...”

statement), the
alternative statements are executed and the select statement is completed.
Here again, since this is just a special case of the timed-out entry call (with the

waiting time being 0.0), it can be modeled using the same GMB model as before,

changing node N10 to be a zero-delay node.

60

6.2 Discussion

This chapter has conjectured that all Ada tasking primitives can be modeled
using the Graph Model of Behavior and presented actual GMB models for all of
them. These results can be applied to build an translator from GMB models to
partial Ada source code.

Once the concurrency present in Ada programs is expressed on the GMB Con-
trol Flow Graph, it can be analyzed for deadlocks and other control flow anomalies,
an area where Ada is very weak right now.

In addition, the GMB simulator (another SARA tool) can be used to simulate,

test and validate the model against functional and performance requirements.

61

CHAPTER 7

Translating GMB models into Ada program skeletons

After a GMB model has been built and simulated to the satisfaction of the
designer, it must be translated into a conventional programming language for ex-
ecution. The GMB simulator executes the model but is unable to produce a
stand-alone running program that corresponds to the model.

GMB models could be translated manually to a particular programming lan-
guage, but that task is a tedious one and likely to be the source of many errors,
invalidating whatever benefits were achieved by using the GMB tools in the first
place. An automatic translation scheme would eliminate these problems and make
the SARA-based APSE an attractive one, since Ada code would be produced au-
tomatically.

One goal is, then, to write a translator that will convert GMB control graphs
into Ada programs involving tasking. This limited goal is not to produce a complete
executable Ada program but rather concentrate on the control low aspects of it by
translating the concurrency and control flow embedded in the control graph into
Ada terms, i.e. to produce Ada program skeletons.

This Ada program skeleton will need to be filled with actual code for every

program unit to make an executable Ada program. That code is assumed to come

62

from the Interpretation Domain and could be expanded in-line by the translator
(as opposed to placing a procedure call). This method is meant to support a
process of composition of re;u.sa;ble software building blocks.

A further goal of automating the integration of the data graph in the generated -

Ada code is discussed in section 9.4.1.

7.1 Translation Schemes

Several automated systems to translate Petri Nets into programs have been
built. Since the underlying principles of the GMB control graph and Petri Nets
are similar and since it has been shown that they are equivalent in power, it is

worthwhile to review those efforts.

7.1.1 Work by Nelson

Nelson, Haibt, and Sheridan built a system that translates Petri Nets into PL/I
programs [Nels82,Nels83]. The Petri Nets are first translated into a procedural
language called XL /1. There are actually two versions of XL/1: a parallel one and
a serial one. One can specify whether the code should be generated for a serial
XL/1 or a parallel one. The serial version of XL/1 can be translated into PL/I,
compiled with a standard PL/I compiler, and executed thereafter.

However, the parallel version of XL/1 could not be translated into PL/I since
PL/I does not have facilities for concurrency. That restriction may not be that

severe for serial models but when translating into Ada, one wants to take advantage

63

of all the forms of concurrency in the language.

7.1.2 The P-NUT System

The Distributed Systems group at the University of California, Irvine has pro- -
duced a suite of tools called P-NUT, used to prove partial correctness and evaluate
performance of Petri Net models.

There are two major parts to the P-NUT tools:

exhaustive state exploration: a reachability graph is built with all the states
of the system which can be reached from a given initial state. This graph

can be analyzed interactively using the Reachability Graph Analyzer.

path exploration: A Petri Netsimulator is used to produce a single path through

the reachability graph. Statistics can be gathered from that simulation.

One of the tools in the P-NUT environment, the P-NUT compiler, is used to
generate executable Ada code from a standard Petri Net representation [Morg85].
The generated code makes use of the tasking features of Ada. This compiler always
translates a complete Petri Net graph and does not have any facilities for Petri
Net modules. The real problem is with the flat structure of Petri Nets, which does
not allow for modularity in the graph.

The GMB solves that problem by providing modularity in the Structure Model.
The translator can translate the control graph of a particular SM module as a

package and use the SM structure for structuring the packages.

64

The basis for the P-NUT compiler implementation is that each transition is
represented by an Ada task. A transition in a Petri Net is similar to a node in a
control graph. A separate task, called the Place Manager, schedules the execution

of transitions and their sequencing.

7.2 Designing the Translator

One of the first problems we need to attack is how are the different elements
in the control graph to be represented in terms of Ada constructs. It is natural
to see the modularity in the Structure Model imposing our modularity in Ada in
terms of packages.

One could, therefore, represent every SM module by an Ada package (including
environment SM modules). The translator would translate a specific GMB (asso-
ciated with one SM module) at a time, or it could translate a complete GMB as

well.

7.2.1 Control Nodes and Arcs

Control Nodes represent events, or processes, that can potentially execute in
parallel. The most appropriate Ada construct would then be a task. Every control
node will be translated into a task.

Control Arcs can be represented by the number of tokens they hold at a given

moment. Therefore, every control arc can be translated into an integer variable.

65

7.2.2 The Task Scheduler

All tasks {representing all control nodes) will be running in parallel. There will
be one additional task called Scheduler which will be responsible for activating
and suspending the rest of the tasks according to the underlying semantics of the
control graph.

This task scheduler is going to represent exactly what the underlying foken
machine does when it executes the control graph, with the only difference that it
will allow concurrency when possible. The token machine is a sequential one.

Every task will communicate with the Scheduler via two entries: one signaling
the activation of a control node and one signaling its completion. The Scheduler
will have two entries for each control node named T: T_start and T_end.

The Scheduler will have to accept the rendezvous to start a task only when
the input logic for that node has been satisfied. This can be done with a select '
statement with guards to evaluate the input logic for all nodes. Only those nodes
whose input logic is satisfied will be considered for rendezvous.

Since the presence of a token on an arc is represented in the Ada program by the
corresponding integer variable being greater than zero, the test for the guardian

conditions will be built according to the following formula:

o if there is only one input arc named a to a node, its guardian condition will

bea > 0.

e if the input logic involves and and or operators, then its guardian condition

66

will be the same as the input logic, except that all the arc names have been

replaced by a > 0.

For example an input logic of the form ai and a2 will be translated into a

guardian condition of the form (a1 > 0) and (a2 > 0).

7.2.3 Interface to the Interpretation Domain

We need to include whatever code has been written in the Interpretation Do-
main as part of our executable Ada program. The Interpretation Domain code for
a control node named T will be a parameterless procedure called T_code which we
can call whenever the control node becomes activated.

The Interpretation Domain code could also be included in-line within the task
itself. However, I think that making it a global procedure instead is a better
approach as you could change the Interpretation Domain independently from the
control graph without having to recompile your entire program (making use of

Ada’s separate compilation facilities).

7.2.4 Ada code for control nodes

As noted earlier, each control node will be translated into a task with no entries.
The task will need to get the go-ahead signal from the Scheduler before it can
execute and it will notify the Scheduler upon completion. It then needs to go back

and see if it can fire again. The entire body will thus be surrounded by a loop.

The body of the task will then be:

67

task body T1 is
begin
loop
scheduler.Ti_start;.- -- get the go-ahead from the Scheduler
Ti_code; -- call Interpretation Domain procedure
scheduler.Tl_end; -- notify Scheduler we are done
end loop;
end T1;

7.3 Terminating the loops

The problem with the Ada code in the previous section is that every task
executes an infinite loop. We need to find a way of terminating the Ada program
somehow.

We first need to find out the state in which the various tasks will be when that
situation occurs. The token machine terminates when there are no more nodes
ready to be fired. That would correspond in our Ada program to all tasks waiting
to rendezvous with the task scheduler’s associated start entry.

The task scheduler will need to be aware of this sitnation and act accordingly.
One way of implementing this is by keeping a count of the number of tasks that are
waiting to rendezvous with their corresponding start entry. We will increment
this variable at the beginning of the start rendezvous and will decrement it at
the end of the end rendezvous.

We do not have to worry about concurrent updates to this global variable since
all the updates are done by one process (the task scheduler). If we wanted every

individual task to update this variable, we would need to protect it in a separate

68

task with entries to read and write that variable.

7.3.1 Detection by the Task Scheduler

The Task Scheduler will detect this termination situation by an else branch in -
the select statement. When the value of this shared variable becomes the same
as the number of tasks, then we know that the execution can not go any further.

The Scheduler can then abort all calling tasks and terminate itself.

7.4 An Example

To get a feeling of what the translator should do, we can start with a simple

example of a GMB:

Y
Figure 7.1: A simple GMB

Figure 7.1 shows a GMB with a non-trivial control flow complexity. A first

69

step would be to writé the body of the tasks associated with each control node.
There will be one task for every control node and they will be named after the

corresponding control node:

task body T1 is
begin
loop
scheduler.Ti_start;
Ti_code;
scheduler.Tl_end;
end loop;
end T1;

task body T2 is
begin
loop
scheduler.T2_start;
T2_code;
scheduler.T2_end;
end loop;
end T2;

task bedy T3 is
begin
lcop
scheduler.T3_start;
T3_code;
scheduler.T3_end;
end loop;
end T3;

task body T4 is
begin
loop
scheduler.T4_start;
T4_code;
scheduler.T4_end;
end loop;
end T4;

task body TS is

70

begin
loop
scheduler.TS_start,;
TS _code; ‘
scheduler.T5_end;
end loop;
end TH;

Now we have to write the task Scheduler for this GMB. Control arcs will be
translated to integer variables:

procedure main is

waiting_tasks : integer := 5;
task scheduler is -- task specification. Just a list
entry Ti_start; -- of all its entries

entry Ti_end;
entry T2_start;
entry T2_end;
entry T3_start;
entry T3_end;
entry T4_start;
entry T4_end;
entry To_start;
entry TH6_end;
end scheduler;

task body scheduler is

al: integer := 1; -- initial token on al
a2,a3,a4,ab,a6,a7 : integer := 0; -=- no other initial tokens
begin
loop
select

when al > 0 =>
accept Tl_start do

waiting_tasks := waiting_tasks - 1;

al := a1 - 1; -- remove token from al
end Ti_start;

71

or

accept Ti_end do

a2 := a2 + 1; -- place a token on a2
a3 := a3 + 1; -- and on a3 as well
waiting_tasks := waiting_tasks + 1;
end Ti_end;

or

when a2 > 0 =>
accept T2_start do

waiting tasks := waiting_tasks - 1;

a2 := a2 - 1; -- remove token from a2
end T2_start;

or

accept T2_end do
chose{ad,as); -- place token on either a4 or ab

waiting_tasks := waiting_tasks + 1;
end T2_end;

or
when a3 > 0 =>
accept T3_start do
waiting_tasks := waiting_tasks - 1;

ald := a3 - 1; -- remove token from a3
end T3_start;

or

accept T3_end do

a6 := a6 + 1; -- place token on a6
waiting_tasks := waiting_tasks + 1;
end T3_end;

or

when a4 > 0 =>
accept T4_start do

72

waiting_tasks :=
a4 := a4 - 1; -- remove token from a4
end T4_start;

waiting_tasks - 1;

or

accept T4_end do

a7 := a7 + 1; -- place token on a7
waiting_tasks := waiting_tasks + 1;
end T4_end;
or

when (a5 > 0) and (a6 > 0) =>

accept T5_start do
waiting_tasks :=
ab = ab - 1; -- remove token from ab
a6 := ab - 1; -- and from af

end T4_start;

waiting_tasks - 1;

or

accept TS5_end do
a7 := a7 + 1;
waiting_ tasks :=
end TS_end;

-- place token on a7
waiting_tasks + 1;

else

-- if all tasks are waiting, abort everyone and exit
if waiting_tasks = 5 then

abort T1, T2, T3, T4, T5;
exit;
end if;
end select;
end loop;
end scheduler;

end main;

To understand this program, we can list the sequence of actions that take place

73

in time:

1. Tasks T1 through T5 as well as the scheduler begin executing in parallel.
All tasks stop as soon as they start executing, waiting to rendezvous with
the scheduler. The scheduler enters the loop and, because of the guards,
the select statement only selects entry T1_start for rendezvous since there

is an initial token on arc a1 (a1 > 0 in the Ada program).

2. The rendezvous occurs and T1 continues executing in parallel its Interpre-
tation Domain code (by calling procedure Ti_code). The scheduler decre-
ments al (representing the removal of a token from al) and is ready for

another round of the select statement.

3. The scheduler at this point can not rendezvous with anyone, so it will
wait until T1 reaches its rendezvous call to Til_end. The scheduler will
accept the rendezvous call from T1 and it will increment both a2 and a3. T1
completes and it goes back into the loop statement waiting to rendezvous

with T1_start again.

4, The scheduler can now accept both entries T2_start and T3_start. One
of them is chosen, be it T2_start. The rendezvous takes place and a2 is

decremented. T2 starts executing its Interpretation Domain code.

5. Now the scheduler accepts the rendezvous with T3, decrementing a3. T3

starts executing its Interpretation Domain code (in parallel with T2. The

74

scheduler now waits until either T2 or T3 finish. Let us say that T2 finishes

first.

6. The scheduler would then accept the T2_end rendezvous and executes the
“chose(a4,a5)” statement. This is a procedure that arbitrarily choses one
of its arguments and increments it. This is how the nondeterminism in the

control graph 1s translated.

7. The execution continues until there are no further possible rendezvous. Then
the else branch of the select statement will be obeyed and the calling tasks
will be aborted (and thus they will become terminated). The scheduler will

then exit the loop and terminate.

7.5 The Translation Algorithm
We can now write an algorithm for the translation process:

1. Let n = number of control nodes in the GMB.

2. emit the main procedure heading and global variables (including translating
control arcs into integer variables initialized according to their initial number

of tokens).
3. For each control node, emit its associated task specification and body.

4. Comnstruct the Task Scheduler by looking at the input and output logic ex-

pressions for every node.

75

5. Add an else claise to the select statement to terminate the program. Use

the value of n to check against waiting tasks.

76

CHAPTER 8

Ada as the Interpretation Domain Language for SARA

In order to have a SARA-based APSE, we must be able to use Ada as the
Interpretation Language of the GMB. This chapter deals with defining exactly

what would be needed to do that.

The chapter is structured as follows: The Interpretation Domain in SARA 1s
defined as well as its place in the SARA method. The problems that arise when
building inter-language interfaces are discussed and an interface is designed for
an Ada Interpretation Domain. An Ada package is then built that defines that

interface. the T part of the interface is also shown and an example is presented.

8.1 The Interpretation Domain in SARA

Interpretation is one of the three modeling domains in the GMB (the other two

are Control and Data). The purpose of the Interpretation Domain is

e to define the data types of all datasets

e to define the initial values of all datasets

¢ to define the function performed by data processors

7

¢ to determine where the control token goes when there is an OR in a control

node’s output logic

e to assign delays

At the heart of the Interpretation Domain is an underlying Interpretation Lan-
guage. The old SARA system at MIT used PLIP as its Interpretation Language.
PLIP is an extension of PL/I, augmented with statements and declarations nec-
essary in order to accomplish the functions mentioned above. The definition of
the GMB does not preclude the use of a different Interpretation Language, and
the current SARA/IDEAS implementation uses T (a Lisp dialect), augmented
in the same way as PLIP. Other languages have been suggested to be used as
the Interpretation Language as well (Concurrent Pascal, ISP, DCDL, MPDL and
FORTRAN).

The interface between the Interpretation Domain and the rest of the GMB
is realised by associating a piece of program written in the Interpretation Lan-
guage with a particular Data Processor and, through the mapping between Data
Processors and Control Nodes, with its associated Control Node(s).

This piece of program takes the form of a procedure, or a similar construct
available in the Interpretation Language, that is called by the GMB Simulator
whenever its associated Data Processor becomes active (triggered by the firing of

any of its associated Control Nodes(s)).

78

8.2 The Interface Problem

In the old SARA system and in the SARA/IDEAS system, the problem of
interfacing the Interpretation Domain to the rest of the system is non-existent, ‘
since the Interpretation Language is just an extension of the language the system
is written in.

In our system, we would need to be able to call Ada programs from within
our system (a running T program), which poses some inter-language interface
problems.

Fortunately, we already have the necessary code to build an interface from T to
other languages. T allows one to set aside a certain amount of memory to be used
to load foreign code (compiled code from other compilers). In particular, there
is a function called define-apollo that is used to define the heading of foreign
procedures (name plus number and type of arguments). I will be making use of
this function. Although this is an Apollo-specific function, similar facilities exist

in other implementations of T.

8.3 Data Structures Communication

One of the practical problems in trying to interface an Ada program with the
SARA/ IDEAS system (or any other two programming languages for that matter)
is that of communicating data structures written in one language to a program

written in a different language.

79

This is certainly the case here. The SARA/IDEAS system has a complex
web of T data structures, in a variety of flavors. Of particular interest to us
are control nodes, control a;rcs and data arcs. Control arcs are needed because
the Interpretation Domain will have to choose among control arcs when a control
node’s output logic contains an OR. Data arcs are needed because reading and
writing to from and to datasets is done through them.

Interfacing T to any other language poses even more problems as T ’s data
structures are inaccessible from outside, among other reasons, because of their
internal representation. The interface routines, thus, need to be written in T
and calls to these routines will be made from the Ada part. It is clear that the
interface routines form an abstract data type and will thus be implemented as an

Ada package (see section 8.5).

8.4 Designing the Interface

A key issue is how to make references to T$ data structures from within Ada.
We have to find some way of uniquely identifying a particular control node or
control arc or data arc. Their name is a good choice but it is not unique. For
instance, different control nodes in different modules can have the same name.

However, the name of a control node together with the name of the module
in which the control node lies is indeed unique. We will represent that by a fully
qualified name. For example, control node INIT in Figure 4.2 can be represented

by the unique string "universe/environment/INIT"

80

The T routines will have to translate this string into a reference to the appro-

priate internal data structure representing that particular control node.

8.5 An Ada Package Specification

An Ada Package Specification is provided that defines this interface. This
package should be included in every compilation of an Ada program unit in the

Interpretation Domain.

generic
type DATASET_TYPE is private;
-- this is the type of the dataset
-- this package needs to be instantiated for
-— every type of dataset used '

package IDEAS_INTERFACE is
type T_CBJECT is private;

procedure READ(in DATA_ARC : T_OBJECT;
out RESULT : DATASET_TYPE);
-- reads a value from DATA_ARC and assigns it to RESULT

procedure WRITE(in DATA_ARC : T_OBJECT;
in VALUE : DATASET_TYPE);
-- writes VALUE to DATA_ARC

procedure OUTPUT_ARC(in ARC : T_OBJECT)
-- used to select among OR output arcs in the control graph

procedure DELAY(n : INTEGER);
-- assigns a delay of n time units

procedure SET_ENVIRONMENT(in ENV_NAME : T_OBJECT);
-- needs to be called with the string representation of the

-- environment (SM module) this Data Processor lies in

private

81

type T_OBJECT is string(1l .. 50);
-- a T_OBJECT is really a string of up to 50 characters

end IDEAS_INTERFACE;

This package is a generic one, the generic parameter being the type of the
dataset. Therefore, there will be one instance of this package for every type which

15 that of a dataset.

8.6 The T side of the Interface

All the functions provided by the IDEAS_INTERFACE package are actually part
of the GMB simulator and are written in T. The Ada package serves the purpose
of allowing Interpretation Domain Ada procedures to use the objects defined in it.
There is no package body since the procedures in it are actually written in T. The
facilities provided by the Ada compiler to link foreign code with Ada programs will
have to be used. The following table lists the name correspondence between the
functions in the IDEAS_INTERFACE package and the actual functions in the GMB

simulator.

IDEAS INTERFACE (T

READ SINPUT
WRITE $OUTPUT
OUTPUT_ARC $OUTPUT_ARC
DELAY $DELAY

82

Some T code will be written to convert the Ada parameters into what the T
functions expect (this is part of the define-apollo package). Since we do not have
Ada compilers for the Apo]l-o workstations ! (where the SARA/IDEAS system is
being developed), we can only speculate about the exact details of the interface, '
but it will be something very close to that described above.

The scenario is one in which an Ada compiler is used to compile all the Interpre-
tation Domain procedures. These procedures are loaded into the T environment
using the define-apollo facilities described previously in this chapter. The GMB

simulator will make calls to these Ada procedures as the simulation requires.

8.7 An Example

Continuing with our small example of a buffer system, we will define an Ada In-
terpretation Domain for some of the data processors in figure 4.3. Data processors

RDI and CHK in the module environment will be chosen.

with IDEAS_INTERFACE; use IDEAS_INTERFACE;
-- include the generic package previously defined

procedure RDI is

package MSG_INTERFACE is IDEAS_INTERFACE(message_slot);
-- instantiate IDEAS_INTERFACE to the message_slot type

message :@: message_slot; -- a local variable
begin

SET_ENVIRONMENT("universe/environment");
-- initializes the MSG_INTERFACE package by providing it

1 Actually, there are validated Ada compilets for the Apollos, but we do not have them yet.

83

-- with the name of the SM module

READ("dinput”, message);
-- reads a message from dinput
if empty_message(message) then -- o more messages
OUTPUT_ARC("afi");
-~ choose afl in the control graph (signal termination)
else
-- valid message
WRITE("di", message);
-- write into dataset MESIN via data arc di
QUTPUT_ARC("acw");
-- signal to the buffer module (ready to send messages)
DELAY(2000000);
-- delay 2 mega units

end RDI;

Processor RDI reads one message from data arc dinput and, if there are no
more messages to be read, then control arc afl is selected to place the control
token on in the control graph. This signals termination.

If, on the other hand, the message is a valid one, then RDI writes it into dataset
MESIN through data arc di and selects control arc acw as the one to get the control
token from control node SEND. Finally, the delay associated with this processor is

set to 2 million time units.

84

CHAPTER 9

Conclusions and Future Research

This dissertation has attempted to show that SARA is an Ada-compatible
design method as it was suggested by two independent studies, METHODMAN I
and the U.K. study. Below we list some of the most important contributions made

by this dissertation.

9.1 Contributions

Provide an Ada-compatible method: The SARA method has been used to

build a method-based APSE with a support environment.

Better understanding of concurrency: The control graph provides a formal
method to understand and reason about concurrency, one of the aspects in

which Ada is highly controversial and least understood.

Graphical representation: Ada packages are represented by the SARA Struc-
ture Model which has a graphical pictorial representation. Ada tasks are

represented by SARA control nodes, also having graphical counterparts.

Static control flow analysis: Using the GMB Control Flow Analyzer, SARA

designs can be analyzed for control-flow anomalies such as deadlocks, lack of

85

liveness, etc.

Performance analysis: Using the performance analysis tools added to the SARA

environment, queuing systems can be built and analyzed.

Animated Simulation: One of the main tools in the SARA environment is the
simulator which provides an animated interactive simulation. Models can be

simulated before any Ada code has been written.

Automatic Ada skeletons generation: A tool built as a result of this disserta-
tion generates skeletons of Ada programs which can be executed to produce

the same results as the original SARA model.

9.2 Usage Scenario

There are several possible scenarios in which these tools could be used. The
best scenario is the one described by the goals of this dissertation: to aid in the
design of concurrent Ada systems.

Users will use the SARA method and tools to build the models of the system
being built. The Interpretation Domain will be the one described in chapter 8.
Ada code will be written for each processor and the separate compilation facilities
of Ada compilers will be used together with the foreign code interface available in
T to compile these Ada procedures and load them into the T environment.

The GMB simulator will make calls to these Ada procedures to carry on the

simulation. The model will be tuned according to the simulation results and anal-

86

ysis given by the Control Flow Analyser. The GMB-to-Ada translator will be used
afterwards to get a stand-alone Ada program that can be compiled and executed
outside the SARA/IDEAS ;environment. This Ada program might be the final
version of the system being designed or it can serve as a prototype thereof.
Another l;ossible scenario would be to analyze an existing concurrent Ada pro-
gram using the SARA tools. Before this can be done, an Ada-to-GMB translator

needs to be built.

9.3 Limitations

It is important to understand what the limitations of what was designed and

built as a result of this dissertation are.

¢ There are no claims of being able to model all the features of Ada. In
particular, there is no hope of being able to model the dynamic aspects of
Ada tasking, as the GMB graphs are static. There have been suggestions to
have dynamic GMBs, but that is questionable as most of the control flow

analysis capabilities would be lost.

For example, consider the following Ada code:
task type T is
entry E(...);
end T;

task body T is

end T;

87

This task type declaration creates a template that can be used to create
similar tasks. Objects can be declared of type T, and T can be used as a base

type for arrays (of tasks) or as the type for record fields.

Moreover, tasks can also be created through access types (Ada jargon for

pointers):

type REF_T is access T;

X : REF_T;

When X is assigned a value at run-time (such as in X := new T;), the task
it is bound to becomes activated. This corresponds to control nodes being
created on the fly in the control graph, which is forbidden according to the

rules (the graphs are static).

No claims are made to cover other aspects of Ada, such as types, generics,
etc. The main problem with that is that sockets in the SM are typeless (see
section 4.4 for some possible extensions). The SM by itself is not power-
ful enough to express the richness of Ada packages (see section 4.5 for an

extension to the SM).

The Ada code skeletons generated from the GMBs are far from what one
would get if the system was written in Ada from scratch (but then, that was

never a goal and, as a prototyping tool, it is quite acceptable).

The software modeling capabilities of the SM are quite inadequate. They

can be supplemented by an appropriate Module Interconnection Language

88

(such as Ada packages). No attempt has been made to make the SM play a

more active role in the process of translation to Ada.

9.4 Areas of Future Research

This dissertation has uncovered many areas for future research that could make
this SARA-based APSE a more effective environment. Below, we list some of these

areas as well as some weaknesses of the current system that could be improved.

9.4.1 The GMB-to-Ada translator

The GMB-to-Ada translator is only a prototype. It could be improved by
automating the integration of the data graph as well as the control graph. It could
use the Ada type definitions given to the datasets and include them as part of the
Ada program automatically. Also, debugging statements could be added to the
Ada program if requested by the users.

The straightforward translation of the Token Machine does not produce optimal
Ada code, in terms of concurrency control. The Task Scheduler is not really needed
as all of its role can be distributed in the tasks themselves, as it would be the case
in an Ada program written from scratch.

For instance, consider the following fraction of a GMB:

A corresponding Ada program translated by hand would be

procedure main is

begin

89

Figure 9.1: A simple GMB

Ti_code;
declare
task T2;
task T3;
task body T2 is
begin
T2_code;
end T2;
task body T3 is
begin
T3_code;
end T3;
begin
null;
end;

T4_code;

end main;

The difference between this code and the one produced by the GMB-to-Ada
translator is that the former does not need a task scheduler. All the concurrency
control is done directly by the Ada code, whereas, in the code produced by the

translator, a task scheduler is needed (with the associated run-time overhead cost).

a0

9.4.2 An Ada-to-GMB translator

Another interesting project would be an Ada-to-GMB translator. It could be
used to convert Ada programs written elsewhere into SARA models and analyze

them using the SARA tools. A starting point could be the results of chapter 6.

91

APPENDIX A

User’s Guide to the Translator

This appendix includes a short user’s guide to the GMB-to-Ada translator.

A.1 User’s Guide

The GMB-to-Ada translator is embedded within the SARA /IDEAS system.
It is one of the commands available at the GMB editor level. A typical menu at

this point will look like this:

1. addControlNode
2. addControlArc

3. moveControlNode

5. gmbtoAda

The user will type gmbtoada in order to invoke the Ada translator. After typ-

ing the command name, the system will prompt for the two arguments required:

92

the GMB to be translated and a file name where the resulting Ada code will be

stored.

¢ The GMB to be translated is given by pointing with the mouse (or any
other pointing device available) to the SM module containing the GMB
to be translated. This SM module has to be a terminal one (cannot have

children modules) and has to contain a GMB,

e The system will then prompt for a file name to be used to write the Ada
code onto. The file will be placed in the user’s home directory. If the

specified file exists, it will be overwritten.

The Ada code is enclosed within a main procedure, as described in chapter 7.
To compile the resulting program, it needs to be linked with the Interpretation

Domain Ada procedures to produce an executable Ada program.

93

APPENDIX B

List of Acronyms

The reader can easily loose track of the numerous acronyms used in this

dissertation. Therefore below is a list the main ones, in alphabetical order.

ADE Ada Development Environment

APSE Ada Programming Support Environment

CAEDE Carleton’s Embedded system Design Environment

CCS Calculus of Communicating Systems

CORE COntrolled Requirements Expression

GMB Graph Model of Behavior

IDEAS Intelligent Design Environment for Analyzable Systems
JSD Jackson System Design

KAPSE Kernel APSE

MAPSE Minimal APSE

LRM (Ada) Language Reference Manual
MID Module Interconnection Description
MIL Module Interconnection Language

94

SARA System Architect’s Apprentice

SM Structure Model

95

[Berr84]

[Buhr84]
[Buhr85a]

[Buhr85b]

[Buhr85c]

[Buhr85d]

[Buxt80]

[Came83]

[Camp78}

[Defe7T]

[DefeT8]

Bibliography

Daniel M. Berry, On the Use of ADA as a Module Interface De- -
scription, in Proc. of the Hawaii International Conference on System
Sciences (January 1984).

R.J.A. Buhr, System Design With Ada, Prentice Hall (1984).

R.J.A. Buhr et al., CAEDE User’s Manual, Technical Report, Car-
leton University, Ottawa, Canada {May 1985).

R.J.A. Buhr et al., Experiments with Prolog Design Descriptions
and Tools in CAEDE: An Iconic Design Environment for Multitask-
ing, Embedded Systems, pp. 62-67, in Proc. of the 8th International
Conference on Software Engineering, IEEE Computer Society, Lon-
don, England (August 1985).

R.J.A. Buhr et al., An Overview and Example of Application
of CAEDE: A New, Experimental Design Environment for Ada,
pp. 173-184, in Proc. of the Ada International Conference, Cambridge
Univ. Press, Paris, France (May 1985).

R.J.A. Buhr and G.M. Karam, An Informal Overview of CADA: A
Design Environment for Ada, Ada Letters, 4(5):49-58 (April 1985).

J. Buxton, STONEMAN - Requirements for Ada Programming Sup-
port Enwironments, U.S. Department of Defense (February 1980).

John Cameron, JSP & JSD: The Jackson Approach to Software De-
velopment, IEEE Computer Society Press (1983).

Ivan Campos and Gerald Estrin, Concurrent Software System Design
Supported by SARA at the Age of One, in Proceedings Ird Interna-
tional Conference on Software Engineering, Atlanta, GA (May 1978).

U.S. Department of Defense, Requirements for High Order Program-
ming Languages (revised IRONMAN), SIGPLAN Notices, 12(12):39-
54 (December 1977).

U.S. Department of Defense, Requirements for High Order Program-
ming Languages (STEELMAN), Technical Report (June 1978).

96

[Defe83]

[Drob80]

[Druf82)

[Estr78]

[Estr86]

[Fair80]

[Fisc84]

[Germ84]

[Goos83]

[Helm84]

[HughT9]

[Ichb79]

U.S. Department of Defense, Ade Programming Language Reference
Manual (ANSI/MIL-STD-1815A4), U.S. Government Printing Office
(February 1983).

J. H. Drobman, A Model-Based Design System and Methodology for
Composition of Microprocessor-Based Digital Systems, PhD disserta-
tion, UCLA Computer Science Department (1980). -

Larry Druffel, The Need for a Programming Discipline to Support
the APSE: Where does the APSE path lead?, Ada Letters, 1(4):21-
23 (May 1982).

Gerald Estrin, A Methodology for Design of Digital Systems — Sup-
ported by SARA at the Age of One, pp. 313-336, in Proceedings of
the National Computer Conference, AFIPS (1978).

G. Estrin, R. Fenchel, R. Razouk, and M. Vernon, SARA: Modeling,
Analysis, and Simulation Support for Design of Concurrent Systems,
IEEE Transactions on Software Engineering, 12(2) (February 1986).

Richard Fairley, Ada Debugging and Testing Support Environments,
SIGPLAN Notices, 15(11):16-25 (November 1980).

Herman Fischer, ADATEC Dallas Panel on Design Methodologies
and How They Relate to Ada, Ada Letters, 3(4):13-21 (February
1984).

Steven M. German, Monitoring for Deadlock and Blocking in Ada
Tasking, IEEE Transactions on Software Engineering, 10(6):764--777
(November 1984).

G. Goos, DIANA - An intermediate Language for Ade, Springer-
Verlag (1983).

David Helmbold and David Luckham, Debugging Ada Tasking Pro-
grams, pp. 96-105, in Proceedings Conference on Ada Applications
and Environments, IEEE Computer Society, St. Paul, Minnesota (Oc-
tober 1984).

J.W. Hughes, A Formalization and Explication of the Michael Jack-
son Method of Program Design, Software Practice and Ezperience,
9(3):191--202 (March 1979).

J.D. Ichbiach et al., Rationale for the Design of the ADA Program-
ming Language, SIGPLAN Notices, 14(6) (June 1979).

97

[Jack81]

[Jack83]

[John75]

(Krel85a)|

[Krel85b]

[Land83]

[Land86]

[Lesk75]

[Matt86]

[McDe84]

[Morg85]

[Nels82]

Mel Jackson, Report on the Study of An ADA Based System Develop-
ment Methodology, Technical Report, British Department of Industry,
London, England (September 1981), UK Task Force.

Michael A. Jackson, System Development, Prentice Hall Interna-
tional, Englewood Cliffs, New Jersey (1983).

S. C. Johnson, Yacc — Yet Another Compiler-Compiler, AT&T Bell'
Laboratories, Murray Hill, New Jersey (July 1975).

Eduardo Krell and Edward Lor, Current State of the SARA/IDEAS
Design Environment, in SOFTFAIR II Proceedings (A Second Con-
ference on Software Development Tools, Techniques, and Alterna-
tives), IEEE Computer Society (December 1985).

Eduardo Krell and Duane Worley, User Interface in the SARA Design
System, in Proc. of the IFIP Working Conference on the Future of
Command Languages, Rome, Italy (September 1985).

Dorothy Landis, Design Considerations for the Satisfaction of CAD
Library Requirements, Technical Report CSD-830614, UCLA Com-
puter Science Department (June 1983).

Dorothy Landis, CADIS: A Kernel Approach Toward the Develop-
ment of Intelligent Data Management Support for Computer Aided
Design Systems (June 1986), UCLA Computer Science Department.

M. E. Lesk, Lez - A Lexzical Analyzer Generator, AT&T Bell Labo-
ratories, Murray Hill, New Jersey {October 1975).

Edmund R. Matthews and William Lively, The ATMAda Environ-
ment: An Enhanced Ada Programming Support Environment, Ada
Letters, 6(3):61-64 (May 1986).

John McDermid and Knut Ripken, Life cycle support in the Ada
environment, Cambnidge University Press (1984).

E. Timothy Morgan, Instantiating Petri Nets as Concurrent Pro-
grams, submitted to the 1986 Petri Net Workshop (1985), Depart-
ment of Information and Computer Science, University of California
at Irvine, Irvine CA 92717.

R. A. Nelson, L. M. Haibt, and P. B. Sheridan, Specification, De-
sign, end Implementation Vie Annotated Petri Nets, Technical Re-
port, IBM Thomas J. Watson Research Center, Yorktown Heights,
NY 10598 (1982).

98

[Nels83]

[PeneT9]

[Pene81]

[Pete81]

[RazoT9)

[Razo80]

[Samp81]

[Wass82]

[Wills3]

[Will84]

R. A. Nelson, L. M. Haibt, and P. B. Sheridan, Casting Petri Nets
into Programs, IEEE Transactions on Software Engineering, SE-9(5)
(September 1983).

Maria H. Penedo and Daniel M. Berry, The Use of a Module In-
terconnection Language in the SARA System Design Methodology,

in Proc. of the 4th International Conference on Software Engineering -
(September 1979).

Mana H. Penedo, The Use of a Module Interface Description in
the Synihesis of Reliable Software Systems, PhD dissertation, UCLA
Computer Science Department (1981).

J. L. Peterson, Petri Net Theory and the Modeling of Systems, Pren-
tice Hall, Englewood Cliffs, New Jersey (1981).

Rami R. Razouk, Mary Vernon, and Gerald Estrin, Evaluation Meth-
ods in SARA - The Graph Model Simulator, pp. 189-206, in 1979
Conference on Simulation, Measures and Modeling of Computer Sys-
tems (1979).

Rami R. Razouk and Gerald Estrin, The Graph Model of Behavior,
pp. 67-76, in Proceedings of the Symposium on Design Automation
and Microprocessors, IEEE Computer Society, Piscataway, New Jer-
sey {(December 1980).

A.B.C. Sampaio, Scheme of Attributes in Multilevel Design of Com-
puter Systems, PhD dissertation, UCLA Computer Science Depart-
ment {1981).

Anthony Wasserman and Peter Freeman, Software Development

Methodologies and Ade (METHODMAN I), U.S. Department of De-
fense, Ada Joint Program Office (November 1982).

Stephen Willson, Introduction to Arcturus, Department of Informa-

tion and Computer Science, University of California, Irvine, CA (July
1983).

Stephen Willson, Arcturus User’s Guide, Department of Information
and Computer Science, University of California, Irvine, CA (January
1984).

99

