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ABSTRACT OF THE THESIS

Relevance Based Propagation in Bayesian Networks

by

Javier Andres Pinto
Master of Science in Computer Science
University of California, Los Angeles, 1986

Professor Judea Pearl, Chair

Bayesian Networks have been proposed as a mechanism for representing causal
and inferential knowledge, and for providing a computational model for updating
beliefs to reflect evidential information. The main theme of this thesis is im-
proving the efficiency of this scheme by focusing its activity towards a predefined
target hypothesis. All activities are regulated by parameters which measure their
degree of relevance relative to the target hypothesis.

These parameters provide measures for: (1) determining which sensory node
is the most important to test; {2) evaluating the impact of a single message on the
target node; (3) evaluating a particular instantiation of a sensory node and (4)
determining the maximum potential effect that any node can have on the target
node.

Based on these measures, we propose a mechanism to thwart the propagation

of irrelevant information. To do so, we define a relevance region that contains

vii



only nodes that may become relevant for assessing the target node, and establish
a distributed mechanism for dynamically adjusting the boundaries of this region.
Finally, we describe the implementation of BAYNET, a software tool for the

graphical design of Bayesian networks.
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CHAPTER 1

Introduction

A central pfoblem in Artificial Intelligence research involves making the pro-
cess of reasoning precise enough to allow the design of automatic reasoning sys-
tems. These systems often make inferences and draw conclusions from inaccurate
and incomplete sources of information.

Many formalisms have been devised for reasoning under uncertainty. They
have been applied in the development of decision support systems, most notably
in expert system technology, which is the area of Al that has aroused the most
interest in the industrial community in recent years. These systems normally deal
with domains where the degree of complexity is too high to permit deterministic
analysis and where probabilistic reasoning is more appropriate.

A widely used approach for representing inferential knowledge are the influence
or causal networks, along with some kind of calculus to evaluate the evidence that
impinges on the different hypotheses. This thesis is centered on the Bayesian
Networks approach, with a calculus based on a formal probability theory.

A Bayesian Network (BN) is a directed graph in which the nodes represent
propositions {or discrete variables) and the links represent direct causal relation-

ships between the linked propositions (or variables). For example, let us consider



the following three rules: “If the patient has the ‘Alu’ then he/she will be sneezy,”
“If the patient has the ‘flu’ then he /she will have fever” and “If the patient has
‘hay-fever’ then he/she will be sneezy.” From this small set of rﬁles we can form
the small Bayesian network of Figure 1.1, where node F denotes the proposi-
tion “The patient has the flu,” H represents the proposition “The patient has
hay-fever,” S denotes “the patient is sneezy” and V denotes “the patient has
fever.” F, H, § and V are treated as propositional variables; each may attain
the value of either true or false. If we needed to be more precise with respect
to the representation of the fever node, we could make the continuous variable,
the patient’s temperature, discrete. The new variable would denote the range of

possible temperatures of the patient.

Figure 1.1: A Bayesian Network.

Normally, rules of the type used in the last example are not deterministic, e.g.,
it is not always true that a person with hay-fever will be sneezy. Thus, we need
to introduce some measure of the uncertainty of the rules. In Bayesian networks
this uncertainty is expressed by associating weight with the causal relation be-
tween nodes. These weights represent the conditional probabilities of a variable,
given its causal antecedents. In our example we have to specify the probabities

P(S|H,F) and P(V|F). For nodes without ancestors, the prior probabilities of



their respective propositions are provided, e.g., we specify the prior pro}?ability
that a patient has flu and the prior probability that a patient has hay-fever (i.e.,
P(F) and P(H)).

Having defined a BN as a representation of the causal knowledge in a par-
ticular domain, we will normally be interested in confirming or refuting a single
proposition called the target hypothesis. For example, the target could stand for
the existence of a severe disease, the occurrence of a major event, etc.

The propagation of evidence in a BN usually involves updating the belief
parameters of every node in the network after it receives a message from one of
its neighbors. In this standard approach, updating takes place at every node in
the network upon receiving a message, even if the effect of the new update on
the target hypothesis is negligible. What is proposed here is to propagate new
information only if its net effect on the belief of our target hypothesis surpasses
a certain threshold: otherwise, the information is considered irrelevant and the
propagation is postponed until additional information is gathered.

We define the information value of a node in terms of the impact that infor-
mation regarding that node alone will have on the belief vector associated with
the target node. On every node we will maintain impact parameters, which will
be updated upon receiving new information. If the impact of this new informa-
tion surpasses a certain threshold, it is propagated to the node’s neighbors. We
are interested iﬁ preserving the local nature of the computation, as is done in

ordinary belief propagation, so that the impact parameters too will be updated



only on the basis of information from the neighbors. |

Since these impact parameters permit us to predict what effect future findings
would have on the belief vector of the target hypothesis, they are also useful for
deciding where data-gathering efforts should be concentrated. In medical diagno-
sis, for example, having identified a particular disease as our target hypothesis,
we would be able to tell which evidence (medical test) is the most significant in
order to confirm or refute the target hypothesis.

This thesis defines the impact parameters, and establishes a distributed scheme
for updating their values.

This work adds two valuable features to the Bayesian Network technique of
handling uncertainty. First, it reduces the computation involved in the evidence
propagation phase by curtailing the propagation of irrelevant information. For
example, in a large knowledge base containing models of different diseases, we may
have models for many loosely connected diseases. In this type of system we will
need some mechanism for narrowing down the reasoning to relevant information
or else, every new piece of information will trigger updating of the entire system.
For instance, if a patient is being treated for lung problems, we need to bring into
focus information related to lung diseases and should ignore all information related
to, say, knee pain. This will allow us to focus our reasoning resources on the
relevant portion of the knowledge base, discarding unconnected information. This

approach is especially beneficial in systems consisting of many loosely coupled

subsystems.



Second, it facilitates a more efficient data acquisition process by focusing the
queries on the most informative sources of evidence.

Chapter 2 provides a review of several alternative approaches to handling
uncertainty, and discusses some of their advantages and disadvantages. Chapter
3 reviews the most important characteristics of Bayesian networks. The reader
familiar with the topic may skip directly to chapter 4, where we discuss the
extensions introduced to the Bayesian network formalism. In chapter 5 we discuss

some of the issues regarding the implementation of the proposed scheme.



CHAPTER 2

Reasoning under Uncertainty

Reasoning under uncertainty amounts to drawing of conclusions from incom-
plete information utilizing uncertain rules of inference. As an example, given a
rule If A and B then Cin which both, the antecedents, A and B, and the rule
itself are uncertain, we need to estimate how much we can commit ourselves to
the conclusion C, given the degree of belief we have commited to A and B, and
the confidence Conf. we have assigned to the rulel.

Reasoning under uncertainty has become an important issue in current Al
applications, and one around which much controversy has been raised. While
some researchers advocate the use of Bayesian calculus, others have criticized it,
arguing that it requires huge amounts of data or making unrealistic assumptions
about the probability distributions used. New ad-hoc approaches have been
introduced to overcome these particular limitations. S8till others consider all
approaches based on numeric degrees of belief to be “restricted because the set of
numbers is not a sufficiently rich representation to support considerable heuristic

knowledge about uncertainty and evidence” [Cohe83, p. 18]. In this chapter we

L At this point we are not making any assumptions about the formal meaning of Conf., it can
be interpreted as a conditional probability matrix P{C|A, B), as a certainty factor, or in any
form consistent with its conceptual meaning, which is a measure of the reliability of the rule.



will review some of the approaches being used to handle uncertainty, highlighting
the most relevant characteristics of each. We will first describe the problem in

more formal terms and provide a simple model based on Bayes rule?.

2.1 Probabilistic Reasoning.

Let H = {hy, ks, ..., hn} be a set of hypotheses and S = {s1, 51, vy S } @ set of
findings that convey relevant information regarding one or more components of
H. To simplify the analysis and without loss of generality, we assume all variables

to be binary. We will define a belief vector in h; as:
Bel(h;) = [Bel(hi), Bel(-hi)] = [P{k;]S), P(—h:|S)]. (2.1)

where Bel(h;) + Bel{—h;) = 1. Our primary interest is to assess the value of a
subset of hypotheses H, of H based on the information available. The hypotheses
included in H, are determined by the problem domain and by the context defined
by S. Since the acquisition of information is normally done incrementally, we
need to provide a calculus for updating the belief vector of the hypotheses when-
ever new data arrives. This problem has been extensively studied in the domain
of medical diagnosis [Szol78,Spie85], where we can associate the hypotheses with
diseases or disease classes and the findings with symptoms. The belief vector

Bel(h;) is obtained by using Bayes’ formula:

P(h:) P(S}hi)

P(RIS) = =253

(2.2)

2The following presentation is based in the so called “idiot’s Bayes” and on the formalization
made in [Char83].



which suggests that, to compute P(4:|S), we would need to know the param-
eters P(S|h;), that is, n(2™ — 1) parameters (plus the n prior probabilities of
the hypotheses), which would be normally impossible to obtain. A significant
reduction in the number of parameters occurs when conditional independence

holds, allowing us to write:

P(S|hi) = T] P(sslh), (2.3)

]

thus, reducing the number of parameters to mn plus the n prior probabilities
P(h;). We do not need to worry about the parameter P(S) in equation (2.2),
since it can be regarded as a normalizing constant, which can be determined from
the condition 3 P(h;|S) = 1. The assumption of conditional independence of the
h;
findings given the hypothesis has been severely criticized e.g. “the assumption of
conditional independence is usually false” _[SzolTS]. However, as Charniak pointed
out [Char83|, the absence of conditional independence of the findings given the
hypotheses can often be removed by introducing intermediate states and causal
reasoning, a technique not foreign to Al applications (see, for example, [WeisT8]).

Whenever a new piece of evidence smy1 arrives, the belief vector can be

updated as follows:
P(hiS, sme1) = aP{S|k:) P(sme1|hi) (2.4)

where & is the normalizing factor. An approach often utilized is to take the



logarithm of this equation, which yields:

log(P(hi|S, sm+1)) = o' + log(P(S|h:}) + log(P(sm+1|Ri)) (2.5)

Now, log(Bel(h;)) can be interpreted as the sum of the weights of previous ev-
idence supporting h; and the weight of new evidence (i.e., log(P(sm+1lhi))); @
can be left out since it appears as a constant in the computation of the weight
of every hypothesis.

This simple probabilistic approach permits ranking the hypotheses according
to the weights given to them by the available evidence. It does not handle the
situations where one hypothesis can be considered as evidence towards derivation
of another hypothesis or when the evidence itself has not been observed with
certainty. These situations, and the propagation of evidence through chains of

inferences, will be discussed under the topic of inference networks.

2.2 Inference Networks

An inference network is a graph in which the nodes represent propositions (ei-
ther evidence or hypotheses) and the arcs represent elastic antecedent-consequent
implications (i.e., if-then inference rules). As an example, the inference net of
figure 2.1 represents three evidence nodes (S;, S; and S3), an intermediate node
(I;) and one hypothesis node (H;).

Each proposition in the network has an associated degree of belief, which is

the conditional probability of the proposition, given all the evidence at hand.



Figure 2.1: A simple Inference Network.

If we receive evidence supporting Sy, we will update our degree of belief in Iy,

and from there we will propagate the update to node H;. In this section we will

describe the mechanism by which these belief parameters are updated.

2.2.1 Belief Computation

Consider a two node inference network E — H. Using Bayes’ formula, we

can derive:
P(H|E) _ P(E|H)  P(H) 26)
P(-H|E) P(E|~H) P(-H) '
or
O(H|E) =X -O(H) (2.7)

where O(H) = % and O(H|E) = ﬁ%—}% stand respectively for the prior and
posterior odds of H, and A = %,(%:-l% is the likelihood ratio of E given H. This
last equation tells us how to update the odds of H given that we observed E

to be true; thus, the relation P(H|E) = 5%%;% gives the updated belief in H.

10



Now, if we observed that E was false, the update can analogously be done by:

O(H|-E) = ~X- O(H). (2.8)

where —A = }f :‘fﬁl . This approach assumes that we have the values of A

and -\ available. Their interpretation is that a high value for A implies that
the observation of E strongly suggests H; on the other hand, a low value for
- would mean that E is a necessary piece of evidence to conclude H. In
the literature [Duda76], X is also called measure of sufficiency and - is called

necessity measure. An inference rule is then specified as:
If £, Then (to degree A,~A) H (2.9)

in which the values for A\, =X and O(H) are supplied by the designer of the

inference network model.

2.2.2 Combining and Propagating Evidence.

To illustrate the case v;rhere we have more than one piece of evidence imping-
ing on a hypothesis node, let us assume we have n evidence nodes Ey, ..., E,, all
linked to the hypothesis node H. To handle this case we use a strategy analogous
to the one described in the previous section. If we can make the assumption of

conditional independence among the evidence nodes, given the hypothesis, then:
n
P(E,,....E.|H) = [[ P(Ei|H), (2.10)

i=1

which gives:

O(H|E,,...,E,) = AO(H), (2.11)

11



where, by the assumption of conditional independence,

P(E,,....,En\H) !

A= =TT A, 2.12
P(E,...EqinH) '1;[1 (2.12)
Similarly, we have:
O(H|~E1, ...~ En) = [] A - O(H). (2.13)

i=1

The posterior odds of other combinations of positive and negative evidence are
handled analogously by taking the product of the corresponding combination of
their positive and negative lambda parameters and the prior odds.

Finally, we need to specify how evidence is propagated through chains of
inference. Suppose that we have the chain E — I — H and that we have
determined P(I|E) and P(~I|E). The question is how do we determine P(H|E).

From probability theory we know that:
P(H|E) = P(H|E,I)P(I|E) + P(H|E,-~I)P(-I|E). (2.14)

In a causal chain of this type it is assumed that the effect that evidence E has on
the hypothesis H is indirect through the intermediate node I. Hence, knowing
the value of the intermediate node I we may assume that the influence of E on H
is blocked. From a probabilistic point of view this assumption may be translated

as P(H|E,I) = P(H|I). If this assumption holds, we may write:
P(H|E) = P(H|I)P(I|\E) + P(H|-I}P(~I|E). (2.15)

Now we can straightforwardly determine the effective likelihood ratio A’ as:

_ O(H|E)

X = GlE) (2.16)

12



The relation of equation 2.16 permits to obtain the effective likelihood ratios Al
and -} corresponding to an uncertain piece of evidence E;. This likelihood ratios
can be used in 2.12 and 2.13 to compute the probability vector of a hypothesis,
given the evidence nodes.

To illustrate the ppdate and propagation scheme, we will use the inference
network of figure 2.1 with the following parameters: P(H;} = 0.5; P(L;) = 0.7,
As, = 4; ~As, = 0.25; kg, = 6; =g, = 0.44; A5, = 0.42; —dg, = 2.3; An, = 4
-Ar, = 0.25. Furthermore, assume that we have established that S, is known to
be true and that S; and Ss have both been denied. Under these circumstances,

we can determine:
O(I;[S;, "‘Sg) = )\SI—'AS;O(II) =41 (217)

= P(Iﬂsl, ﬂSg) = 0.804 > P(Il) (2.18)

P(1|S1,-S:) — P(I ‘
O(H1|S1,-S52,~S3) = O(Hl)ﬂxs,xn( (‘Il‘ P’()I) (‘)) (2.19)
- 1

0.804 - 0.7
= 1-2.3-4-(——-——-)= 19 .
—57 3 (2.20)
= P(H]_]Sl,-'32, ﬁS;J,) = 0.76. (2.21)

If we had an uncertain observation (related to a terminal or leaf node), we could
treat it as an intermediate node and consider P(S|E) equal to the probability
of S being true. This amounts to a straight interpolation between P(H|S) and

P(H|-S).

13



Sometimes a problem of overspecification may arise. From equation 2.15 we

may derive:

P(H) = P(H|I)P(I) + P(H|-D)P(~1),  (222)

which gives an expression to determine P(H) in terms of P(J ). If we elicit
these prior probabilities from the user (through the assessment of O(H) and
O(I)), they in general will not obey the relation 2.22. One approach to solve
this problem is to use a linear interpolation function [Duda76| (this solution will
sntroduce inconsistencies with the probabilistic relationship 2.13). For example,
to determine P(H|E), we can take a linear interpolation between P (H|~I) and
P(H), or between P(H) and P(H|I) depending on whether the evidence tends

to decrease or increase the belief in H.

2.2.3 Some Drawbacks of the Inference Network Formalism.

The inference network paradigm has been successfully utilized in a number of
applications, notably in PROSPECTOR, which is a computer-consultant system
intended to aid geologists in the evaluation of the favorability of an exploration
site or region of finding mineral deposits of a particular kind [Duda79]. However,

this approach entails certain inconveniences:

1. Overspecification of parameters: The model designer often wishes to specify
the prior probabilities on the intermediate nodes. These probabilities will

not necessarily be consistent; the prior probability of a hypothesis node

14



computed using (2.15) in the abscence of evidence (i.e. P(I|E) = P(I)?

will generally not agree with that derived from the inference network.

. The parameters A and ~ are not totally independent. The definition of A
and =) is such that, if either is less than one, then the other must be greater
than one. In principle, it is not possible to define these parameters so that
the presence of an evidence would strongly suggest a hypothesis, while
its absence would remain neutral between its hypothesis and its negation
(A = 1 implies A = 1). This is also true in Bayesian networks, where
both, the negative and the positive instantiations of a variable have effect

over the related propositions.

. No predictive inferences. In PROSPECTOR the propagation is done one-
way, from evidence to hypotheses. The belief in any intermediate hypoth-
esis is calculated based on information coming from its descendants (diag-
nostic), ignoring the support gathered by its parents (prospective). This
results in erroneous conclusions in cases where the target hypotheses are
not peripheral (i.e. intermediate) and, moreover, it prevents us from prop-
erly discriminating between significant and insignificant sources of evidence
- a sensory node is judged to be significant when it may lead to high-impact

outcome, even though the likelihood of such outcome is extremely low.

15



2.3 Causal-associational Networks (CASNET).

CASNET [Weis78] has been developed as a general approach to structure
medical knowledge for computer-aided diagnosis and therapy. It has been used
to construct a diagnostic system for the disease glaucoma. A CASNET model
consists of a graph decomposed into three levels, the nodes in the bottom level
representing observations, which can be either symptoms, signs or test result;.
The middle level, on which most of our discussion will be centered, is composed
of intermediate pathophysiological states, which describe internal conditions as-
sumed to take place in the patient. At the top level are the nodes related to
disease categories, in which patterns of states and observations are summarized.

Nodes in the middle level are linked together in a causal network, which is
a directed acyclic graph where each directed link represents a non-strict cause-
effect relationship.? A disease process is characterized by a path in the graph;
progression and severity of a disease corresponds to a progression along a directed
path in the causal network. The strength of a cause-effect link is éuantiﬁed by
a frequency measure, which can be interpreted as the conditional probability of
the ocurrence of the effect, given the cause. Starting states in the causal graph
are assigned a starting frequency, which can be interpreted as a prior probability.

The middle level of pathophysiological states is linked to the bottom level

of observations by a set of assoctational links, connecting observation nodes (or

3In a non-strict cause-effect relationship, a cause may be present without any of its effects
occurring at the same time.

16



logical combinations among them) to the state about which they are providing
evidence. These links are quantified by a confidence measure @, which is a
number between —1 and 1. Q;; is the degree of confidence in the state j as
a consequence of having observed i alone. Negative (positive) values in the
confidence measure indicate decreased (increased) confidence in the state node
due to the presence of the observation node.

'fhe association between the top level of disease categories with the middle
level of pathophysiological states is one of pure classification. States in the mid-
dle level are conmected to disease categories in the top level by classification
links, which can be represented by the triple (r, D,T), meaning that disease D
is present whenever a causal path termiﬁates in n, and T is a set of therapy

recommendations for the patients that fall in the disease category D.

2.3.1 Measure of Confidence and Interpretation of the Causal Net-

work

Every pathophysiological state n; in the middle level has an associated con-
fidence measure, which is initially set to zero. When the first test ¢; with an
associational link to n; is obtained, the confidence measure is set to the link’s
confidence measure, i.e., C f(n;} = Qi;. This measure is updated whenever new
test results arrive, following the criteria that € f(n;) remains the same until 2
more confident test appears, i.e., a test such that |Qy;] > |Cf(n;)|. If we receive

a test with a magnitude of confidence equal to C f(n;) but with opposite sign, we
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set Cf(n;) to zero and annotate conflict between tests, conflict that is resolved
when a new and more confident test (i.e., with a higher magnitude of confidence
measure) is available.

When the measure of confidence is over a certain positive threshold T, the
state is assumed to be confirmed; otherwise, it is assumed to be denied. In all
other cases, the node is undetermined.

A pathway in a causal nework is a directed path in the graph, whose starting
node corresponds to a starting state (i.e., a state with no defined causes). Thus,
the starting state represents the original cause of the disease of the patient. A
pathway is considered admissible if it contains no denied nodes. For any given
configuration of confirmed and- denied nodes, there are many possible starting
nodes, the most likely is chosen to be the one that explains the greatest number of
confirmed states. If there is a tie beween two or more starting states, a likelihood
is computed (based on the inverse weight, as explained later on), and the most
likely state is chosen. The last confirmed state (in the direction of causality)
determines the disease category from the top level of the network and once the
disease category has been identified, the treatment can be chosen. The system
permits the user to ask for different possible pathways or to identify the most
probable progression of the disease based on the most likely pathways in the

causal network.
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2.3.2 Test Selection Criteria.

For every node n;, in the middle level of pathophysiological states, two pa-
rameters are defined: forward weight and inverse weight, which measure the
likelihood of the node based on diagnostic support and on its causal consequents
respectively. Every admissible pathway leading to n; contributes to the forward
weight wr(7) of n; by an amount equal to the product of the frequency measures
of the links along that pathway, starting at the closest confirmed node, if any, or
at the starting node, which contributes to the forward weight with its starting
frequency. The total forward weight of n; is the sum of these partial weights.
For example, in the causal graph of figure 2.2, if node n; has been confirmed and

all others are undetermined, the total forward weight of ng would be:
wr(6) = we(6]4) + wr(6]2) = 0.5-0.9+0.5-0.3- 0.1, (2.23)

where the starting frequence of n, is considered to be 0.1.
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Figure 2.2: A Causal Graph

The inverse weight of node ¢ with respect to node 7 is defined as:

(wr(715) - wr(5))

o) : (2.24)

wi(ils) =

where wr (7]t} is the forward weight of n;, considering that n; has been confirmed.

wr(7]3) is computed ignoring all confirmed nodes. Hence, this measure can be
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interpreted as the contribution of n; to the weight of those pathways ending in

n;. The inverse weight wy(?) of node i is defined as;:
wi(i) = max(ily) (2.25)
In the example of figure 2.2 we compute the inverse weight of ng as:
w(6) = w(6(8) = wr(8[6) - wr(6)/wr(8) (2.26)

A special case in the computation of the inverse weight of a node occurs when-
ever the node is on all the .pa.thways to a confirmed node; the inverse weight is
then set to one. For example, if n; were confirmed, then w 1{6) would be one;
on the other hand w;{5) would still be computed using equation 2.24. This is
intuitively reasonable since, according to the causal model, n; could not possibly
be confirmed if ng were denied.

Finally, the likelihood of a node is determined as the maximum between the
forward and the inverse weights, i.e.,, W; = maxtw;-(i),w;(i)). W; is interpreted
as the degree to which we can expect n; to be confirmed or disconfirmed, based
on the causal evidence available from the network.

The previously defined weight determines the criteria by which a test is se-
lected. Tests are assumed to be made incrementally. At any given point, the
test that conveys the most confident information regarding the node with the
greatest weight is chosen. The idea behind this criterion is that an unconfirmed

node with a great chance to be confirmed (or denied) should be tested first.

4The maximum corresponds to the strongest support received from the causal consequences
of ni.
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Besides the test selection criterion described in the previous paragraph, we
can also have a hypothesis driven test choice. In this selection, the attention

is focused upon pathways that could explain the patients’ observations, even

though the nodes in this pathways are undetermined.

2.3.3 Comments on CASNET

The handling of evidence, the confirmation and denial of nodes and the test
selection deserve some attention. We notice, for instance, that the status of
a node is determined solely on the basis of test results, without taking into
account the support given by possible causes or by confirmed effects. In an
extreme case, we could have a cause C and an effect E with strength close
to 1 (i.e., P(E|C) =~ 1), have C confirmed and, still, E would not be considered
confirmed until some test renders it confirmed. In fact, the test selection criterion
would select this node to be tested first. The situation just described arises
because of the separation of support given to a node by its causal relationship
with neighboring nodes and the patient’s observations. This separation seems
artificial and unnecessary since a confirmed possible cause of a node n can give
as much support to the belief in n as that given by a test result. In addition, no
effect is attributed to partially confirmed hypotheses. These deficiencies can lead
to wrong choices of nodes to be tested and, in some cases, to wrong decisions
and conclusions. However, the causal graph paradigm is general enough to be

adapted to a different mechanism of evidence propagation.
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CASNET was implemented utilizing the disease glaucoma as a domain. The
level of detail in which the knowledge about this disease is structured permits
a very precise reasoning and, as reported by the authors, very accurate results.
The applicability of CASNET to other domains is limited by the requirement of
having a very well structured knowledge of the domain, where the cause-effect
relationships among variables are well known. If we overlooked a part of the
causal network by omitting links or possible pathways, we would end up with
inconsistencies in the results displayed by the state of the network. For instance,
we could have confirmed unexplained nodes (i.e., with no admissible pathway
leading to them), a situation that can occur due to either erroneous test results or
an incomplete causal network. The medical knowledge about glaucoma embodied
in the causal network is so precise that it has been argued [Szol78| that CASNET
could be converted to a categorical reasoning program, avoiding all probabilistic
reasoning in the system. The main contribution of this work is the use of detailed
causal models, which seems to be a natural way to express diagnostic knowledge

in domains like medicine or electronic troubleshooting.

2.4 NESTOR

NESTOR [Coop84| is a computer-aided medical decision making program
developed to help in the diagnosis of the diseases that cause hypercalcemia. Its
tasks are the generation of a set H of hypotheses that would account for a set of

findings given to the system, the ranking of these hypotheses according to their
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likelihood and an explanation of how well the set H accounts for each one of
the findings. The system is designed to support (not to guide) the reasoning of
physicians, and can be adapted to its user’s requests. It permits, for instance,
the evaluation of any hypothesis in terms of how well it explains the findings, or
the comparison of two hypotheses on the same grounds.

NESTOR uses causal graphs to structure its domain knowledge, and the

cause-effect relationships are quantified by probabilistic parameters.

2.4.1 Measure of Belief in NESTOR.

The measure of belief® used by NESTOR is based on the conditional prob-
ability of the hypothesis given all the findings. Bayes formula can be written

as:

P(F|H:)P(H,) _ P(F,H)
P(F)  P(F)

P(H{F) = (2.27)
and NES TOR computes the degree of belief in a hypothesis as P(F, H). It then
avoids the computation of P{F) which “is not practically possible” [Coop84,
page 80]. However, since the term P(F) remains constant for every H;, it then
follows that the use of P(F, H) is equivalent to the use of P(H|F), the same
reasoning we followed in section 2.1. There is an important difference between
the interpretation of the measure of belief used by NESTOR and the one used

in Bayesian Networks (to be discussed in detail in the next chapter). When

NESTOR computes P(H|F) for the causal network of figure 2.3, it does not

SCooper uses the term scoring metric, which is consistent with our concept of measure of
belief or degree of belief. We will use these terms interchangeably.
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attribute to it the intuitive causal interpretation: “F indicates H ' and H' causes
H”, since there is no direct causal relationship between the instantiated variable
F and H. This kind of interpretation is only possible if evidence is propagated

through causal links in both directions.

Figure 2.3: A Causal Graph in NESTOR

NESTOR represents the belief of an event E as a range in which its probability
P(E) might lie, i.e., P5(E) = [PLa(E), Pys(E)], where Prp(E) is the lower
bound of Pz(E) and Pyg(E) is the corresponding upper bound. Furthermore,
the precision of a range is defined as one minus its length, so that a point range has
precision of 1, and a {0,1) range has a precision of zero. According to Cooper, the
use of ranges instead of point probabilities is justified because point probabilities
have unrealistic precision. The introduction of ranges allows flexible expression
of the probabilities used in the system.

Another important characteristic of NESTOR is that it does not make in-
discriminate global assumptions about the conditional independence of findings
relative to the hypothesis. Conditional independence of the effects of a cause is
assumed unless some explicit knowledge about their interdependence is available.

Knowing that the effects are not independent, permits us to determine lower and
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upper bounds on the conditional probabilities. The use of these ranges will de-

crease the accuracy of the probabilities, but it will not produce wrong results.

2.4.2 Causal Graphs in NESTOR

NESTOR bases its representation of the knowledge embedded in the system
on an acyclic causal graph, which is semantically equivalent to Bayesian net-
works and to the causal networks used by CASNET, i.e., the nodes represent
propositions that are causally related to other nodes by the links in the graph,
links which are directed from cause to effect. However, the causal network is not
limited to pathophysiological states; in fact, nodes in NESTOR can represent
diseases, etiologies, findings and intermediate states (pathophysiological states).
For example, in figure 2.4 we have two findings (f, and f;), two intermediate
states (I; and I,) and one etiology node (E). _To determine the scoring metric,
we use:

P(F,E) = P(F|E) - P(E) (2.28)

since the prior probability P(E) is assumed to be known, the task of scoring the
hypotheses is reduced to computing P(F|E).

To compute P(F|E), the graph is divided into levels, where the level of a
node n is defined as the length of the longest path (in the graph) from n to
an etiology node. Hence, the first level is occupied by etiology nodes only, the
second and higher levels are occupied by intermediate nodes and findings. By

definition, any node is at a level greater than the level of its ancestors. Finally,
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I f3
fi f2
Figure 2.4: A Causal Graph with Intermediate States.

the value of P(f1, f2)E) is computed as:

P(f1, f2|E) = > P(f1, f2, 1, 1| E), (2.29)

Iz

in which we consider every possible instantiation of the intermediate nodes [

and I,. Each instantiation is computed as:
P(f1, f2o It, | E) = P(L|L)P(L| L) P(f2| ) P(L|E) (2.30)

where conditional independence of the effects given the causes has been assumed.
We also assume that nodes at level j are causally influenced only by nodes at
a level less than j, and the computation in (2.26) is referred to as Probabilistic
Causal Simulation.

There are two levels of links in NESTOR, a first level of probabilistic links
and a second level of functional links. Probabilistic links relate cause and effect
between etiologies and findings and the causal relation is quantified by the con-
ditional probability of the effect given the cause. In the second level, functional
links can relate etiologies, findings and intermediate states, which are pathophys-

iological states or processes not clinically observable. The functional relationship
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between the cause and the effect can be one of two types, of either a positive or a
negative correlation, i.e. if there is a positive (negative) correlation, an increase
in the value of the cause variable monotonically increases (decreases) the value
of the effect variable. The probabilistic links can only relate a single cause to a
single effect. In cases where multiple causation is present, NESTOR combines
the probability density functions of all the individual links. This combination is
based on the correlation among the different causes (considered independently)
and the effects.

As an example, consider figure 2.5 in which the two causes S and T are
producing the same effect X. Both causes are positively correlated with their
common effect (indicated by the “+” sign on the links). Let us consider that all
variables can range over three possible values each, high, middle or low. Each
probability P{X = z;|n = n;) (n being any of the cause nodes) is specified by its
upper and lower bounds. Based on this information, the ranges for P(X]S5, T) are
determined based on the behavior of these probabilities considering the kind of

correlation present between causes and effect. For example, the value Prp(X =

high|S,T) is determined as:

Pua(X = high|S,T) = maz(Pra(X = high|8), PLs(X = high|T)),  (2.31)

where we assume that both causes acting independently would increase the value
of the effect, regardless of the value of the other cause (both causal relations are

supposed to be positively correlated). Hence, both causes acting together will
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‘ncrease the value of the effect by at least as much as the strongest cause acting

alone. The remaining five bounds are determined analogously.
S&T

X X

Figure 2.5; Combination of two convergent links.

The combination functions for cases with the same topology of the causal
graph in the previous example but with different types of correlation (i.e. ——,
and —+ correlation pairs) are also determined in {Coop84]. In the general case,
where we can have many links converging into a single effect, NES TOR combines
all the positively correlated links into one link and all negatively correlated links
into another, reducing this case to a two cause, one effect causal graph with a
known combination function.

Cooper argues that conditional independence among effects given a common
cause might not be a realistic assumption; hence, it considers divergent links as an
abstraction of a more complicated lower level causal relationship (see figure 2.6),
where additional intermediate states have been introduced. These intermediate
states are linked to the rest of the nodes through functional links that are used
to derive a combination function to convert divergent links into single links.

A hypothesis in NESTOR can be composed of several etiology nodes, i.e.,
more than one dise.a.se can be present at any given time. The question of how to

select the hypotheses for evaluation is handled as follows:
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Y Z Y Z
Figure 2.6: Functional links associated with a divergent pair.

As a first step, NESTOR considers all possible combinations of etiologies as
hypotheses to be scored, although it restricts the etiologies to the ones that are
causally connected to the set of findings. The set of hypotheses that can be
generated is immense; hence, a heuristic mechanism for reducing the task of
scoring them was used. NESTOR resorts to a.dmiséible optimization techniques
that eliminate any hypotheses which, in the evaluation phase, are bound to have

suboptimal score.

2.4.3 Comments on NESTOR.

The novelty of NESTOR’s approach with respect to the ones previously de-
scribed is its consideration of a two level causal network, with a first level of
probabilistic links and a second deeper level of functional links. Functional links
are used to avoid making commitments regarding the values of the conditional
probabilities associated with them. It then separates the causal knowledge from
the probabilistic knowledge, which is limited to the first level of probabilistic

links. NESTOR also uses ranges to express the probability values, arguing that
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point probabilities have an unrealistically high precision. In addition, the use of
point probabilities is not compatible with the less precise functional links.

The computations yield results identical to those obtained in Bayesian net-
works, but are conducted in a global manner, considering all possible instan-
tiations of intermediate nodes. In contrast to Bayesian networks, these com-
putations are lengthy, void of conceptual meaning, and do not facilitate saving
of partial results, each new finding, requires restarting the computation from

scratch.

2.5 Reasoned Assumptions.

As we pointed out earlier in this chapter, there has been a great deal of
criticism of all numeric approaches to uncertainty management. In this section
we will briefly review the research in the area of reasoned assumptions developed

by Jon Doyle [Doyl83,Doyl82].

2.5.1 Uncertainty and Reasoned Assumptions.

Doyle argues that the use of numerical assessments for the uncertainty of
rules, such as “if A, then with uncertainty X, C” hides the knowledge of those
exceptions that have made the rule uncertain. He then continues, saying that we
should make explicit those cases in which the rule is not applicable and replace

the rule above with the inference rule:

A| BFrcC. (2.32)
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Equation 2.32 is the basic tenet of this approach and is called a reason, where
A, B and C are sets of propositions. The interpretation of 2.32 is: If every
proposition in A has been concluded and no proposition in B has been concluded,
then conclude every proposition in C. The conclusions derived from a set of
reasons are called reasoned assumptions. For example, we can encode a rule like
“If the patient is sneezy and does not have fever, then assume that the patient

has hay-fever” as:
{sneezy} || {has fever} I has hay-fever, (2.33)

and we may conclude the reasoned assumption “the patient has hay-fever,” pro-
vided that we have previously concluded that the patient is sneezy and but not
that the patient has fever.

To express uncertainty we may use either default reasons or defeasible reasons.
Default reasons express inferences in which the conclusions may be assumed to
hold unless they are proven to be incorrect or their negation had been previously

concluded. They are expressed as:
Al ~CtcC. (2.34)
A defeasible reason R is expressed as:
Al {Defeated(R)} - C, (2.35)

which is interpreted as a reason that can be used to derive C only if the reason

itself has not been ruled out (defeated). There are many other kinds of reasons
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that can be used to express the inferential knowledge (causal or otherwise) in a
given domain; for example, premises can be expressed as: @ || @ F p, which means
that p is always true.

Let S be a set of reasons. An admissible eztension AE(S) of Sisaset £ 2§
such that, if A | B F C and every element of A is in E and no element of B is
in E, then every element of C is in E. Another requirement for E is that, for
every element X of E, there is at least one sequence of reasons such that X can
be concluded from them and that the sequence is originated from elements in §
(i.e., there are no circular arguments for any reasoned assumption).

For every set S of reasons, there may be many different admissible extensions,
or there may be no extension at all if we start with contradictory premises. In
general, however, we will have many different extensions for any given S. For

example, let us consider the following set S of reasons:

al|-cte (2.36)
Bl et —e (2.37)
BlloFa (2.38)

which has two possible extensions:
1. Suf{ea}, and
2. Su{-e¢a}.

Hence, given many possible extensions, we need to decide which is the most

satisfying one, i.e., which is the one with the highest probability and which
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includes the correct assumptions. Doyle a.ssigns a probability measure to each
extension (the sum of the probability measures for all extensions equals 1.0). This
measure increases monotonically with the inverse of the number of elements in
the extension. It then assigns a probability to a proposition ¢ equal to the sum of
the probabilities of those extensions that contain c. It then follows that we can
obtain degrees of belief in propositions from a categorical formulation of 2 model
in terms of reasons. Then, Doyle argues that “reasoned assumptions express a
more fundamental notion of uncertainty than numerical stipulations of certainty”

[Doyl83, p. 42].

2.5.2 Comments.

The technique devised by Doyle is very appealing since it permits a rigorous
expression of inferential knowledge in any domain, providing a formal mechanism
to handle uncertainty, and is certainly better suited for expressing knowledge
without having to make commitments to particular numbers (e.g. conditional
probabilities).

Yet, the approach contains major drawbacks. First, just as any categorical
reasoning system, this approach requires an extensive and precise knowledge
of the problem domain. Even though it is ideal to be provided with such a
knowledge, it is generally understood that its codification is extremely difficult
and expensive. Moreover, the scoring mechanism used by Doyle seems to be

arbitrary, as the assignment of a probability value to an extension in terms of its
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cardinality may prove inadequate, it does not consider the possibility of assigning
some prior preference to certain admissible extensions over others.

We maintain that any system should contain as much of its knowledge as
possible codified by this kind of formalism, avoiding, wherever possible, the use
of probabilistic reasoning. However, the use of externally provided probabilities
cannot be left out and must be included both to score different extensions and
to summarize knowledge which we prefer to keep implicit. For example, if we
were asked to detail the conditions under which the outcome of a coin will be
head, we would probably have to encode a volume full of microscopic molecular
interactions over which we have no control. On the other hand, we may use
our past experience and our limited knowledge of the area of interest to give
a numerical summary of 50% which, for many practical cases, would be quite
adequate. We conclude that the use of a probabilistic mechanism for handling

uncertainty is still a necessity.

2.6 Summary.

In this chapter we have summarized some of the approaches being used to
handle uncertainty. It is not intended as a comprehensive survey of the area, and
we have left out some important approaches. However, our selection is broad
enough to appreciate the extension of the field, as well as the advantages and

possible disadvantages of the particular approach used in this thesis.
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CHAPTER 3

Bayesian Networks

In this chapter we will provide a review of the Bayesian Network formalism,
emphasizing those aspects considered more relevant to this thesis. A more detailed

description of the BN formalism can be found in [Pear85c|.

3.1 Introduction

A Bayesian Network is a computational device aimed for modelling inferential
reasoning of humans using the framework of Probability Theory. The network
represents a causal model for the problem domain, where the nodes are multi-
valued variables. Each variable represents a set of mutually exclusive hypotheses
and/or the possible results of observations. For example, a hypothesis node may
stand for the identity of a mineral deposit, and an observation node may be as-
sociated with the level of suifur in a rock sample. The interrelationship between
nodes is made explicit by the links connecting them. If the value of node M is
known to be directly influenced by the value of node N, we include a directed link
from node N to node M. More formally, a Bayesian network is a directed acyclic
graph in which nodes denote propositions (or discrete variables) and links repre-

sent direct causal relationships between the connected propositions (or variables).
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The links point from causes to effects.
The Bayes network formalism provides a mechanism for determining a degree
of belief in each one of the propositions represented in the network. We define

each component of the degree of belief vector of a node as:
Bel(X;) & P(X = X|D), (3.1)

where D is a set of instantiated variables representing all the evidence available,
and X; is one of the possible values of the variable X. In addition, Bayesian
networks provide a scheme of updating the degree of belief when new data is
added to the system.

A straightforward way of handling evidential reasoning is to first obtain the

joint probability distribution of all the variables in the network and then compute:

P(X;, D)

BCI(X.) = _ﬁ(_ﬁ_)-—

(3.2)

However, this approach requires storing and computing a very large number of
probability values, each corresponding to the joint probability of some combina-
tion of states for all the variables in the knowledge base. This approach is, in
general, hard to implement because of the very large number of parameters in-
volved. Alternatively, we can simplify the computation by making explicit use of
the dependencies among the variables. A Bayesian network specifies the existence
of a direct causal relationship among small subsets of variables, and these rela-
tionships are quantified by conditional probability matrices of the effects given the

causes. For example, if we have two nodes, E and B, and both can act as causes
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for node A, we would have the links E — A4 and B — A and the conditional
probability matrix P(A|B, E). Hence, we are assuming that a given proposition
is dependent on the joint ocurrence of its immediate ancestors.

The Bayesian network approach relies in some assumptions of conditional
independence which is explicit in the topology of the network. These assumptions
are the conditional independence of a set of manifestations given its common
cause (independence among the children given its parent) and the independence
of two nodes in a directed path given an intermediate node. These notions of
independence are captured in the concepts of path blocking and graph separability
introduced in page 47.

To determine the belief vector of a proposition, the evidence in the network
is separated at every node into prospective and diagnostic evidence. We imme-
diately notice a major difference between the Bayes networks approach and the
probabilistic approaches considered earlier, namely, the inclusion of prospective
support for the computation of the degree of belief in the propositions. Prospec-
tive support is obtained from the parent nodes of a proposition, and correspond
to top-down inferences as opposed to the bottom-up (diagnostic) inferences, nor-
mally the only ones considered in other uncertainty management formalisms.

In order to illustrate the modelling of causal knowledge using Bayesian net-

works, we will take the following situation!:

One day at the office, Mr. Holmes receives a telephone call from his neighbor
Dr. Watson, stating that he hears a burglar alarm sound from the direction

! This is a modified version of an example used by Pearl [Pear85al.
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of Mr. Holmes’ house. Preparing to rush home, Mr. Holmes recalls that Dr.
Watson is known to be a tasteless practical joker and, therefore, he decides
to first call his other neighbor, Mrs. Gibbons, who, in spite of occasional
drinking problems, is far more reliable.

When Mr. Holmes called Mrs. Gibbons, he soon realized that she was in a
somewhat tipsy mood. Instead of answering his question directly, she went
on and on describing her latest operation and how terribly noisy and crime-
ridden the neighborhood had become. As he finally hung up, all Mr. Holmes
could make out of the conversation was that there was an 80% chance that
Mrs. Gibbons did hear an alarm sound from her window.

Immediately after his conversation with Mrs. Gibbons, as Mr. Holmes is
preparing to leave his office, he recalls that his daughter Christie is due
to arrive home any minute and, if confronted by an alarm sound, would
probably (.7) phone him for instructions. Now he wonders whether he should
not wait a few more minutes in case she calls.

As he is pondering this question, Mr. Holmes remembers having read in
the instruction manual of his alarm system that the device is sensitive to
earthquakes and can be accidentally triggered (.2) by one. He realizes that
if an earthquake had ocurred, it would surely (.9) be on the news. So, he
turns on his radio and waits around for either an announcement or a call
from Christie.

From the given information we can structure the graph of figure 3.1, in which
we have identified seven nodes along with the propositions they represent. They -

are;

1. E, “an earthquake has taken place in the surroundings of Holmes’ house”.

2. B, “a burglar entered Holmes’ house”.

3. A, “the burglar alarm went off”.

4. R, “the radio announces the occurrence of an earthquake”.

5. C, “Holmes’ daughter calls him up”.
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Figure 3.1: A Bayes Network.

6. W, “Watson calls”.
7. G, “conversation with Gibbons”.

In this figure the prospective support received by node A (denoted as (DJ)),
comes from nodes R, E and B, while the diagnostic support of A (denoted D )
(the one given from below the node) is received from nodes W, G and C. In order
for this separation to be possible, the data subsets D and D7 must be disjoint.
This requirement is met in singly-connected networks, which disallow the presence
of more than one undirected path (ignoring the directionality of the links) between
any pair of nodes (e.g., figure 3.1). Multiply-connected networks can be converted
into singly-connected ones by conditioning over a subset of variables forming a
cycle cutset. In this section we will consider only singly-connected networks; later,
we will discuss how multiply-connected networks can be treated.

For any node in a singly-connected causal network, we can separate D into
disjoint the subsets of data, each reachable through one outgoing or incoming

link. In figure 3.1, from the standpoint of node A, we can separate:

D= { E,AaDE,AsD;,C’DlG:D;.W} ) (3'3)
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where Dy, v represents the data available from the subnetwork on the tail side of
the link M — N, and Dy, y is the data available on the head side of the the same
link (so that D = Dy, v U D}, v). Assuming conditional independence among the

children given their parent, we can write:
P(DIA) = P(Dg,a, D54l A) P(D{ c|A)P(D; | A) P(Diw|A),  (3.4)
Thus, using Bayes equation, we can compute the belief vector as:
Bel(A;) = P(A|D) = QP(DI.W|A-‘)P(DZ.G|A€)P(DI.CIA1‘)P(A€|DE.A,Dg.A)a
(3.5)

where « is a normalizing constant. The conditional probability of node A, given

the data coming from its ancestors, can be rewritten as:

P(Ai|Dg 4, Dg.4) = 2_ P(A:|B;, Ex) P(B;|D} ) P(E| D} ). (3.6)

ik
Hence, the degree of belief in any node is computed as a function of the causal
evidence received from each parent separately and from the diagnostic support
given by each of its successors. Utilizing the standard nomenclature of Bayesian
Networks, we write:
ra(B) = P(Bi\D} ), (3.7)
and

Ac(Ai) = P(D} c|Ai). (3.8)

Combining equations 3.7 with 3.8 and 3.6, we may rewrite 3.5 as:

Bel(A,) = a:\w(A.')AG Z: P IBJ! Ek WA(BJ')‘JTA(E;) ' (3.9)
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In summary, to compute the belief vector of a proposition, we need the 7 pa-
rameters of its immediate ancestors, the A parameters from its successors and
the conditional probability matrix that relates the node to its immediate causes.
Nodes with no specified causes (i.e., with no incoming links) can be classified as
primary etiologies. They represent the propositions that would ultimately explain
the data available from the evidence nodes and whose causal sui)port is beyond
the scope of the knowle'dge base. For these nodes, the conditional probability
matrix takes the form of a vector of prior probabilities.

In theory, the size of the conditional probability matrices stored at each node
gTows exponentially with the number of jts immediate ancestors._ However, various
techniques can be used to encode these matrices economically, (e.g. see [Kim84]
and [Coop84]). We will assume that these higher order probability matrices are
available. The leaves in the causal graph represent the evidence nodes, into which
all the information that enters the system is placed. The strength of the causal
relationship established by the links is quantified by the conditional probability of
the effect given its cause, e.g., the link A — C is quantified by the probabilities:
P(C|A) = 0.7, and P(C|-4) = 0.

In the case of multiple causation (i.e., many causes for the same effect), we
specify the conditional probability of the effect given the joint occurrence of the

causes. This is exemplified by node A, which has two possible causes, an earth-
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quake or a burglary, and for which we assume the matrix?:

P(A\E,B) =1.0 P(A|-E,B) = 0.949

P(A|E,~B) =0.2 P(A|~E,-B) =0.01 (3.10)

The information regarding the occurrence of the primary etiologies is summa-
rized by their prior probabilities, which are part of the domain knowledge. In
the example we have chosen the same prior probability of 0.003 for both primary
etiologies (i.e. P(E) = 0.003, and P(B) = 0.003). These probabilities can be jus-
tified based on statistical data available about crime rates, geological activities,
or from other relevant sources. If our interest had been to determine the exact
probability of an earthquake on that day, we would have had to provide a detailed
causal model of an earthquake, including geological stresses, climatological con-
ditions, gravitational interaction with the moon and other celestial bodies, etc.
Our interest, however, is far from that, a crude number, summarizing our belief
in the occurrence of an earthquake, would suffice.

To exemplify the computation of the belief vector, we will use equation 3.9.
Before doing so, however, a word of caution pertains to the computation of the
parameters Aw (A) and Ag{A), which correspond respectively to the support given
by the statement made by Watson and the conversation with Gibbons to the

proposition “the alarm went off.” We may feel tempted to assess the values

20ur treatment of E is rather simplistic, since the decomposition of it into E and -F would
not take into consideration the strength of an earthquake. Imagine a 7.8 degree earthquake
(Richter scale), for that event we would probably have P(A|very strong E} ~ 1.0. Hence, in a
more detailed model we would define several possible states for F, each accounting for a different
strength of an earthquake.
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P(W|A) and P(G |A), amounting to assigning probabilities to all possible ways in
which these two conversations could have developed. This would be impossible to
enumerate or even to articulate and, fortunately, would not be required because
these nodes represent evidence which is already available. Instead of specifying

the matrices P(G|A) and P(W|A), we give the likelihood ratios®:

Ac(A) : Ag(~4) =4:1. | (3.12)

To determine the parameter Ac(A) = P(Djc|A), we notice that Dy is

empty. In these cases we assign:
[AC(A), z\c(ﬂA)] = [1, 1] (3.13)

which is interpreted as carrying no diagnostic support from C to any possible
instantiation of node A. To compute the parameters 7 4(B) and 74(E) we notice

that both D} , and D} 4 are empty; hence, we obtain:
(14(B), 7 4(~B)] = [0.003,0.997), (3.14)

(7 a(E), 7 a(~E)] = [0.003,0.997]. (3.15)

Based on these values and on equation 3.9, we compute:

Bel(A) = [0.328,0.672), (3.16)

3We are assigning a 90% chance that Dr. Watson’s call originates out of a serious concern, and
a 10% that he is being a tasteless joker again. Also, we assign an 80% chance that Mrs. Gibbons
heard the alarm.
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which means that, given the information surrendered by Dr. Watson and Mrs.
Gibbons, there is a 32.8% chance that the alarm went off. Similarly, the belief

vectors of B and E can be computed as:
Bel(B) = [0.07,0.93] (3.17)

Bel(E) = [0.0165,0.9835] (3.18)

3.2 Propagation and Update

Whenever new evidence is gathered, we need to propagate the information
through the entire network and update the belief vectors of all its propositions.
To describe the mechanism of propagation and update, we will use the message
passing paradigm of object-oriented programming languages. Each node A is
given a processor that computes (in parallel) the associated belief vector and
passes information to the processors associated with A’s neighborﬁ.

When a sensory node N is instantiated as N, its belief vector becomes
Bel(N) = (0,...,0,1,0,...,0) with 1 at the 7t* position. This assignment con-
strains the belief vectors of its neighbors to new values that can be obtained by
applying equation 3.9. In turn, these new assignments will constrain the values
of the belief vectors of all neighbors of already updated nodes. Therefore, the
new information sets up multi-directional a propagation process in the network, ‘
reaching equilibrium once all constraints are satisfied [Pear85bj.

In the computation of the belief vector of a node in equation 3.9, each term can
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be computed locally by the process associated with the corresponding neighboring
node. From the definition of m¢(A4) = P(A:|D}c), partitioning D} ¢ into its

components DE. A,DE, oDaw Dag and applying Bayes rule, we obtain:
WC(A;) = a/\w ZP I.B B WA(B )WA(EI,) (3.19)

Hence, to compute the prospective = parameters, we need to combine the param-
eters of the neighbors according to the previous equation. Tn an analogous way,

we obtain:

M(E) = a Y [7a(Bi) Ac(A) Aw{Ax)Ac(Ar) P(Ax] Bj, Ei)] (3.20)

ik

Then, after updating the belief vector of node A, the corresponding processor*
computes the A and = parameters associated with every neighboring node and
propagates these newly computed messages to all neighbors. Normally, the re-
laxation process is activated when a sensory node becomes instantiated. Starting
with the sensory node, the messages are updated (according to equations 3.19
and 3.20) and sent to the neighbors, which update their own belief vectors and
compute new messages for their neighbors. To illustrate this relaxation process,
let us assume that in our example Mr. Holmes turned on his radio and heard that
there was an earthquake 50 miles north of his home. Then, in the computation

of the belief vector of E, we would have:

[Ar(E),Ar{~E)] =[1,0}, (3.21)

4Tn the future when we refer to a node we will mean either the node, or the processor associated
with that object. The precise meaning will be given by the context.
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meaning that the radio broadcast gives full support to the belief in the earthquake.
Given this new parameter, node E recomputes its belief vector, making Bel(E) =

1.0 and also updates the message 7 A(E) to its son A, which becomes:
[nalB),7a(-B)} = [1,0] (3.2)
In the next relaxation step, node A updates its belief vector, obtaining:
Bel(A) = [0.9,0.1]. (3.23)

Node A also updates the messages A4(B) and 7¢(A), and this process goes on
until all constraints are satisfied.
This example demonstrates a nonmomotonic behavior — if we compute the

new value of the belief vector of node B, we obtain:
Bei(B) = [0.013,0.987 (3.24)

a reduction of the belief in the burglary. This effect of ezplaining away the
burglary would not have happened if there were no diagnostic evidence supporting
the alarm sound. Hence, we say that nodes B and E have been “connected” by

the evidence received by its common son A.

3.3 Properties of the Bayesian Network Formalism

A very important characteristic of causal graphs representation is that they

provide a pictorial view of the dependency relationships among the variables in
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the model. To identify these dependencies in Bayes networks we make use of the

concepts of path blocking and graph separability.

Definition 3.1 Path blocking: An arbitrary path from N, to N, ts said to be
blocked by node y whenever there is a subpath z —y — 2 of the original path

(N,, N3), such that esther:
e y i3 an ancestor of both z and z (z — y — z), and y is instantiated,

o zis directly connected to z through y (x — y — 2z or vice versa (z —y—z),

and y is instantiated,

o y is a descendant of both z and z (z — y « z) and y has not received any

diagnostic support (i.e., none of y’s descendants is instantiated).

In our example, instantiation of node A will block nodes W, G and C (according
to the first case) and will block the path between node B and node W (second
case). On the other hand, if Watson had not called, and the conversation with

Gibbons had not taken place, nodes E and B would be blocked {third case).

Definition 3.2 Graph separation: two arbitrary nodes in the network are sepa-
rated by a subset S of instantiated variables if all paths® between them are blocked
by S.

From this definition it can be shown that, if nodes N; and N; are separated

by S then:

5This definition is valid for any network, not only for singly connected ones.
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Henceforth, we will use the term separﬁtion (or connectivity) to mean separation
in the sense of definition 3.1. In Bayesian networks, graph separation is a dynamic
property, i.e., two nodes may be separated in one data context (defined by the
set D of instantiated nodes) and connected in another.

In Holmes’ example we notice that nodes B and E are connected, since the
intervening variable A has received evidential support. If there were no evidence

impinging on node A from its descendants, these nodes would be separated.

3.4 Propagation in Multiply Connected Networks.

We have described the propagation scheme as a multidirectional relaxation
process, using both predictive and diagnostic inferences. Executing the same
scheme in multiply connected networks would lead to a ctrcular reasoning prob-
lem. As an example, let us take the small network of figure 3.2. Upon the arrival
of evidence to node y we relax a constrain with node z (a symmetric process fol-
lows in the direction of node z), then we proceed to relax the constraint between
z and z, updating z's belief vector. However this last update will render z and
y un-relaxed once again, and a new cycle of relaxation begins. This process may
eventually converge, but to an incorrect value.

The reason that this problem occurs in multiply connected graphs is that our
separation of prospective and diagnostic evidence at every node will no longer be
valid and the definition of D~ (likewise the definition of D*) will not hold. In

figure 3.2, for example, there would be no distinction between D and DF.

48



Figure 3.2: A Multiply Connected Bayes Network.

One way to handle multiply connected netw‘orks is to break all their undirected
cycles by conditioning [Pear85b]. This is achieved by finding a small subset § of
nodes in the network such that every cycle will be broken by instantiating all nodes
in S. This set will be referred to as “cycle-cut-set”. For example, in figure 3.2
the instantiation of either node, z or y, would break the cycle. Thus, if we want
to propagate some data, we first instantiate a node, say z, and propagate this
evidence, once equilibrium is reached we instantiate z to a different value and
propagate again. The final degree of belief in a proposition is obtained as the
linear combination of the degrees of belief of the proposition resu'lting from every
possible instantiation of node z. An obvicus limitation of this approach is that
the computational complexity grows exponentially with the cardinality of the set
S, thus making it hard to deal with highly connected networks.

In this thesis we will develop a propagation mechanism for singly-connected
networks, relying on the process of conditioning to handle the multiply-connected

ones.
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3.5 Influence Diagrams

A different approach to the computation of conditional probabilities in a
Bayesian Network is presented by the influence diagram approach [Howa84]. In-
fluence diagrams have been developed for the analysis of probabilistic models,
and their semantic content is equivalent to that of a BN.

The power of these systems relies on the development of causal or inferential
models on which we have a considerable degree of independence. An important
difference between these two approaches is that, in an influence diagram, the goal
is to find the conditional probability P(K|I}, where K and I are arbitrary subsets
of S (the set of nodes in the diagram); whereas in a BN we obtain the conditional
probability of individual propositions given the data at hand.

The analysis of influence diagrams usually involves external, global computa-
tions to determine the joint probability distribution of selected subsets of variables
of the diagram.

In the Bayesian network approach, on the other hand, the computation is
performed at the nerwork itself, by passing messages between the nodes. One of
the advantages of this approach is its computational simplicity. Also, when new
information is received, the mechanism is one of update; previous computations
are not discarded. In contrast, the computation of the probability distributions
in influence diagrams is done “from scratch” any time new information arrives,

not taking into consideration old information.
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Finally, a distributed approach permits us to identify the sources of infor-
mation at every node. This can be used to track down the sources of a given
modification. With this information, we can construct meaningful explanations
for the changes on the belief parameters of the nodes in the system. By contrast,
computing the belief parameters based on global characteristics of the network

normally involves computational steps which are void of conceptual correlates.

3.6 Summary.

Bayesian Networks provide a mechanism for uncertainty management that
is applicable to many areas, notably in decision support systems and intelligent
reasoning systems. The formalism provides a calculus for updating the degrees
of belief of the variables in a given a causal model. The calculus is very efficient
in singly connected networks. There is also a mechanism of handling multiply
connected networks; but its complexity is exponential in the number of nodes
necessary to break all the undirected loops in the network.

An important feature of this calculus is the distinction between prospective
and diagnostic supports. This distinction is compatible with human reasoning,
and it facilitates rich explanations of the system’s reasoning, since the flow of

evidence can be identified by tracing down the messages.
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CHAPTER 4

Relevance-Based Propagation in Bayesian Networks

4.1 The Problem

Once the problem domain has been modeled by means of a Bayesian Network
we are in the position of feeding information into the system and have the nu-
merical degrees of belief updated for every node in the network. However, most
of the times, we want to focus our efforts on assessing the value of a small subset
of nodes; thus, a propagation throughout the whole network seems unnecessary.
This claim is in concordance with the way humans focus their attention over a
small set of salient hypotheses.

For example, let us consider the task of debugging a system S. We normally
choose a hypothesis H that would explain the ill behaviour of S, and try to
gather evidence to support or deny H. The new evidence may carry enough
information to confirm H, in which case we terminate the debugging process, or,
if H had left some aspects of the misbehavior of S unexplained, we iterate this
process, postulating more reﬁned hypotheses. If, instead, the evidence denies H,
we disregard this hypothesis and choose another plausible H as a new target of

attention.
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This motivates our interest in focusing the network activity towards updating
the belief in one target hypothesis.

The importance of the information impinging on a sensory node will be mea-
sured according to the impact that information has on the belief of the target
node. While in the approach all the information is propagated, even if it is ir-
relevant for the computation of the target hypothesis, here we propose to limit
the propagation so that only relevant information is propagated. Doing so will
decrease the amount of data traffic in the network and the amount of computation
spent on the propagation.

There is yet another important motivation for focusing attention on a target
hypothesis. Let us assume that we have defined a Bayesian Network for a given
problem domain, and that a subset S of the nodes (normally the leaves) are
defined to be sensory nodes (for example, in a medical domain a sensory node
may be associated with a particular test, and its values range over all the possible
outcomes of the test). In general, the instantiation of any of these sensory nodes
involves a positive cost, and the utility of the information they convey might be
insufficient to justify this cost. Thus, it is important to decide which node in
S should be instantiated first, on the basis of the information it renders to the
target node. That is, we can assign priorities to the sensory nodes based on their
degree of informativeness.

Finally, having a measure of the relevance of the nodesin S enables us to decide

when to stop the acquisition of information. Without this measure we might end
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up spending resources in meaningless and possibly very costly tests. Even worst,
we might erroneously decide that we have acquired enough information to assess
the target node. Termination should occur only when none of the uninstantiated
sensory nodes promises a higher benefit than its cost.

As an example, let us consider the burglary case. Here, Holmes’ main interest
is focused towards the burglary, and the information he receives is considerad
relevant only if it helps him reach a decision regarding whether or not there was
a burglar in his house. For instance, if he is sure that the alarm did indeed go off,
based on his conversation with Dr. Watson, he will regard the conversation with
Gibbons as irrelevant (unless, of course, she could give him direct information
about a burglar). However, he would still be interested in knowing if there was
an earthquake in the surroundings, since this information would provide an alter-
native explanation for the alarm sound and, hence, would reduce the suspicion in
the target hypothesis, namely the burglary.

Qur objective is to define parameters of relevance for each node in the net-
work. These parameters will be called Impact Parameters, since they are used to
evaluate the impact information flowing in the network has on the belief in the
target hypbthesis. We require that these parameters be updated using the general

propagation scheme without altering its original properties[Pear85c|, namely:
1. Efficiency in storage and time.

2. Local and asynchronous computations, i.e., the final values should be en-
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tirely independent of the control mechanism that activates the individual

operations.

3. New information diffuses through the network in a single pass. The time
required for completing the updating should be proportional to the diameter

of the network.

This implies that the impact parameters, like all other parameters, will have
to be computed and updated in a distributed fashion, i.e., using only information
from neighboring nodes. The proposed mechanism of propagation adds important
features to the original scheme proposed by Pearl [Pear85c|, and in fact, as we

will show in the following sections, keeps the aforementioned properties.

4.2 Definition of the Impact Parameters.

The purpose of the impact parameters is twofold. First they should allow us to
measure the relevance, with respect to the target hypothesis, of messages pending
propagation. Secondly, they should permit us to evaluate the potential worth of
testing a node before it is instantiated. In order to formalize these considerations

we need the following definitions:

Definition 4.1 A Target Node is a salient node in the Bayesian Network that

serves as a reference for judging the relevancy of the information.

In the burglary case of last chapter it would be natural to define B (the event of

burglary) as our target hypothesis (see figure 3.1).
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Definition 4.2 Path neighbor or Path node. For every node there ezists a unique
undirected path® to the target node*. The path neighbor N¥ of node N is defined

as the immediate neighbor of N that is along its path to the target node T.

In figure 4.1, NP is N’s path neighbor with respect to T. In Holmes’ case, the

earthquake’s path node is the alarm A.

Figure 4.1: N7 is a Path Neighbor of N

Definition 4.3 D}, and D, data subsets. Each link (n — m) separates the

network into two unconnected subgraphs. D;'; n represents the data that is avail-

able on the sub-network containing the node n. Similarly, Dy, represenis the
data available from the other sub-network (i.c. the one that contains m). (See

figure 4.2).

1A Bayesian Network is a Directed Acyclic Graph (DAG). When we refer to an undirected
network (or an undirected path) we are referring to the network (or path) in the graph obtained
by ignoring the directionality of the arcs in the DAG.

27This is so, because we are dealing only with singly connected networks.
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Figure 4.2: Data subsets separated by the link (C, A).

Before proceeding with the definition of the impact parameters, we will express
the degree of belief in the target hypothesis in terms of the belief vector of an
arbitrary node N.

Let us assume we have an arbitrary Bayesian network with target node T,
and a node N, whose path neighbor is ¥V P We want to determine how the
information impinging on N affects the degree of belief in T. Consider the portion
of the Bayesian Network pictured in figure 4.3, where the directionality of the link
between N¥ and N has been arbitrarily chosen.

In chapter 3 we defined:

Bel(T)) = P(T;|D), (4.1)
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Figure 4.3: Arbitrary Bayesian Network with target node T.
where D is all the data available from sensory nodes, and T'; is one of the possible

instantiations of the target node. By conditioning on N we can write:

P(Ti|D) = ; P(Ti| D, N;) P(N;| D), (4.2)
which can also be written as a vector-matrix product:
Bel(T) = Bel(N) - [s¥7], (4.3)
where the components of the matrix S¥7 are defined as:
S3T = P(T;|D, Ny). (4.4)

This motivates the following definition:

Definition 4.4 Sensitivity matrix. The sensitivity matriz s¥M of node N with

respect to node M i3 defined as:
sy™ = P(M;|D, N;) (4.5)

Equations 4.2 and 4.3 show that the sensitivity matrix obeys the relation:

Bel(M) = Bel(N) - [s"¥]. (4.6)
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Thus, the sensitivity matrix of N with respect to M measures the effect that
variations in the belief vector of node N will have on the belief vector of node M.
The question now is how to compute this matrix, and how to update it by

local computations each time new data arrives. This is shown in the next section.

4.3 Propagating and Updating the Impact Parameters.

Our approach would be to recursively define the sensitivity matrix of any node
with respect to the target node T in terms of two quantities: (1) its sensitivity
matrix with respect to its path neighbor, and (2) the sensitivity matrix of its path
neighbor with respect to the target node. The former will be denoted by lower

case s and the latter by capital S.

Definition 4.5 Path-cut node: An intermediate node m on the path (n,t) be-
tween n and t is satd to be a path-cut for {n,t) if the instantiation of m renders

nodes n and t separated.

Figure 4.4: a and d are not Path-cut Nodes.
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In figure 4.4, for example, nodes b, ¢, e and f are path-cut nodes. On the other
hand, neither a nor d are path-cut nodes.

Based on this definition we introduce the following theorem:

Theorem 4.1 If M is a path-cut node for path (N,T), then:

[SN,T] — [sN,M] [SM,T] . (4.7)
Proof: We know that:
SYT = P(T4|D, Ny), (4.8)
by conditioning on M:
S¥T = 3" P(T;|D, Ni, Mi) P(Mi| D, N:) (4.9)
k
we recognize that:
si™ = P(M,|D, Ny). (4.10)

Also, since M separates node N from node T we have:

P(TJ’ID,N,‘, Mk) = P(TJID, Mk) (4.11)
= ST (4.12)

So,
SHT =3 sNMsiT (4.13)

k

which is equivalent to equation 4.7.
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O

Now, if we want to compute the sensitivity matrix of a node N in terms of
the sensitivity matrix of its path neighbor N P and if N7 is a path-cut node for

the path (N, T), we can use the following relation:
[s%7] = [s™¥7] [s77] (4.14)

In cases where NF is not a path-cut node we will have to resort to a different

sirategy.

Lemma 4.1 . For any undirected path (n,t) of length greater than twe®, at most

one of any two consecutive nodes along the path is a non-path-cut.

Proof: Suppose that we have a sub-path m; — mp — ms, such that the three
nodes my, mg, and ms belong to the path (n,2). A necessary condition for m,
to be a non-path-cut node is that both m, and ms be its ancestors. Now, for
my (6r ms) to be also non-path-cut for (n, t) we need m, to be an ancestor of it,
which is impossible. It then follows that two consecutive nodes in a path cannot

simultaneously be non-path-cut nodes.
O

Therefore, the only case in which equation 4.7 is not applicable is illustrated
by figure 4.5, where R is N P3g path neighbor and the path that joins R and T

is arbitrary. In this case N¥ is not a path-cut node for (N,T), but lemma 4.1

3Where the length of the path is equal to the number of links it traverses.
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Figure 4.5: A father-son-father Path to the Target Node.

guarantees that R is path cut. Thus using theorem 4.1 we can write:
SMT = [sME] [sRT) (4.15)

Equations 4.15 and 4.14 suggest that we may determine the sensitivity matrix

of any node N with respect to the target node T recursively:
SNT = [N:M] [sMT). (4.16)

Where M will be chosen as the closest (N, T) path-cut node to N. In the extreme

case, we know that:

[s7T] =11]. (4.17)

where I is the identity matrix. In figure 4.4, for example, the sensitivity matrix

S would be computed as:

[s+] = [s* | [5%] (4.18)
= [s%] [S"f] [S"‘] (4.19)

= (s |[s*7] [57] [s%] (4.20)

We will use the terminology introduced by the following definitions:

62



Definition 4.8 T-path-cut neighbor of a node. Node m is said to be T-path-cut
of node n, if m is the closest node to n such that m is path-cut node for the path

(n,T}.
In figure 4.6 N is T-path-cut of node X and node M is T-path-cut of node A.

Definition 4.7 Neighborhood matrix. The sensitivity matriz s¥M of 4 node N
with respect to its T-path-cut node M is called the neighborhood matrix of node

N.

This motivates the need for calculating the neighborhood matrix sMM of any
node N, where M is N'’s T-path-cut node.

We distinguish the following three cases:

1. (son-father relation). M is the father of N (see figure 4.6). From equation

Figure 4.6: M is a father of NV

4.5 we know that:

si™ = P(M;|D, Ny) (4.21)
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and the sensitivity matrix of N with respect to M is given by (see deriva-

tion A.l appendix A) the expression:

sNM = aumy(M;) 3 P(Ni|M;, A)mn (As)- (4.22)
P

i

2. (father-son relation). M is a son of N (see figure 4.7). In this case we have

Figure 4.7: M is a son of N

(derivation A.2, appendix A):

sNM = a A x (M) Ay (M;) S P(M;|N;, Be)mar(Bs) (4.23)

ij
k

3. (spouse-spouse relation). M is a father of one of N’s sons (see figure 4.8).

It can be shown that (see derivation A.3 appendix A):

Figure 4.8: M isason of vV
sMM = aimp(M;) S Ax(Re) Ay (Re) P(Re|Ni, M). (4.24)
k

ij
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The results obtained in equations 4.22, 4.23, and 4.24, along with theorem 4.1
provide a local mechanism for updating the sensitivity matrices of every node
with respect to a predefined target. We see that the belief-support messages {A
and 7) are sufficient also for updating the local matrices sNM and, by virtue of
equation 4.7, this should be sufficient for updating the sensitivity matrices as well.

In the standard approach, every time a node’s information is updated it sends
out new messages (m’s and A’s) to its immediate neighbors, thus triggering mes-
sage propagation through the entire network. In the new approach we also main-
tain sensitivity matrices in all nodes, and propagate additional messages to keep
these sensitivity matrices updated. To describe this propagation we will make

use of the nomenclature introduced by the following definitions:

Definition 4.8 Targetted message, is a message whose recipient is the path
neighbor of the sender. Pictorially, a targetted message goes ina d:'rectio.n to-

wards the target node. (Figure 4.9).

Definition 4.9 Non-targetted message, is a message whose recipient is not the
path neighbor of the sender or, in other words, it is a message going in a direction

away from the target node. (Figure {.9).

Notice that every message can be labeled as either targetted or non-targetted,
since for every node there is a unique neighbor closer to the target (the path

node).
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Figure 4.9: Targetted and Non-targetted messages.

From theorem 4.1, we know that the semsitivity matrix of node N may be
computed as the product of its neighborhood matrix and the sensitivity matrix
of its T-path-cut node. Later on we will show that, for the purpose of updat-
ing the sensitivity matrices, it is enough to devise a mechanism to update the
neighborhood matrices. A description of this update follows.

The conditions under which the neighborhood matrix s NM requires different

updating are illustrated by the following two cases:

1. N is a son of its path neighbor (figure 4.10), and the path between M and

T is arbitrary.

Figure 4.10: N is a son of its path neighbor.
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2. N is a father of its path neighbor (figure 4.11), and the path between N

and T goes through one of M’s sons.

Figure 4.11: N is a father of its path neighbor.

Each node will store its own sentivity matrix, but the update of this matrix
will not necessarily be done locally. The labels on the nodes of figures 4.10 and
4.11 indicate which nodes update the neighborhood matrices.

In the first case whenever N receives a A message, it will have to update
the matrix s4™, according to equation 4.24. Additionally, when N receives a
7 message from any node other than A it also updates sAM (equation 4.24).
Also, from equation 4.22, N updates sNM whenever it receives a m message,
independently of the node that issues the message.

In the second case, M has to maintain the sensitivity matrices of its parents,
which are obtained from equation 4.23. The update of s¥-* is ensued whenever
M receives a message from a node other than N itself.

In the propagation approach proposed here, the scheme for updating the belief
vectors of each node has remained unaltered. To update the sensitivity matri-

ces, however, we need to add a new processing step. In the following discussion
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we will consider the Bayesian Network approach as implemented in a network _of
independent objects (one object for each node), in line with the object-oriented
programming pamdigﬁ. Each object is associated with a separate processor in a
distributed processing environment. Each node will have a two-way communica-
tion channel with its neighbors. The relaxation process is executed by message-
exchange between neighboring nodes. When new data arrives at the network,
the originated message is propagated throughout the network in a direction away
from the source. The updating equations are such that nodes at the periphery
of the network do not reflect back messages which they absorb. Therefore, the
process must finish in time proportional to the network’s diameter.

It would seem natural to let each node update its own sensitivity matrix with
reépect to the target node. However, this may not be the best way to handle
the computation. The cases illustrated by figures 4.7, and 4.8 suggest that the
corresponding s sensitivity matrices would be better computed by N’s path-
neighbor (either M, in figure 4.7 or R in figure 4.8), rather than by N itself. Thisis
so because, in both cases, s™¥ is a function of the conditional probability matrix
of N's path-neighbor. Also, if we compute s™¥M in node N in the aforementioned
cases, then s¥M would have to be updated whenever N’s path-neighbor receive
new messages. In this way, we avoid an unnecessary increase in the communication
overhead introduced by this scheme.

We found it more convenient to let each node maintain the sensitivity ma-

trices s¥M of all its fathers, with the exception of the path-neighbor. Also, the
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sensitivity matrix of a node will be maintained by itself only if its path-neighbor
is one of its ancestors, otherwise this matrix is maintained by its path-neighbor.

In the previous paragraphs we have determined the general scheme for the
updating of the neighborhood matrix of a node. However, we are interested in
the computation of:

[s97T] = [sMM] - [s%7] (4.25)
which also requires the updating of the sensitivity matrix $M7T. In the case illus-
trated by figure 4.10, we need to update S*7T whenever N receives a message. In
the second case,the update follows whenever M receives a message. Fortunately,

the following lemma shows that these updates:are not necessary:

Lemma 4.2 Given a path (N,T), let M be any path-cut node for this path, then

SMT {5 invariant with respect to targetted messages originated at node N.

Proof: By definition:

Si'" = P(T;|M;, D) (4.26)

if M is a path-cut node for the path (N,T), then the instantiation of M will

render NV and T separated, blocking any messages originated at N.

a

In the figure 4.10, when N receives new messages from any source it would
update the sensitivity matrices of A and N with respect to node M. Later

on, N would issue new messages, including a targetted message to node M. Our
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previous lemma guagantees that this targetted message will not affect $*7, hence
the updates of $4T and SM7T are correctly achieved by updating sAM and sV M
only. This argumentation also applies to the second case (figure 4.11).

In this section we have established a scheme for propagating and updating the
sensitivity matrices. This scheme is such that whenever new information arrives

at the sensory nodes, it propagates throughout the whole network, simultaneously

updating the sensitivity matrices at the nodes traversed.

4.4 Measure of Information.

4.4.1 Value of incoming information.

To determine the relevancy of incoming data to the target hypothesis we need
to measure the expected decrease of current uncertainty of the target proposition,
due to anticipated or actually received incoming data. First, let us consider the
case of evaluating the merit of input data (instantiated sensory nodes). We assume

that the change of uncertainty of the Target can be quantified by some function:
M(T|D,D') = F(P(T|D), E(T|D,D") (4.27)

where D' is the newly incoming data, and D is the data available before receiving
D'. The function F should return a value which measures the amount of variation
that Bel(T) (i.e. P(T|D)) has experienced. The simplest function F' is the

straight sum of the variations caused by the new incoming data on Bel(T)’s
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components, i.e.:
My(T|D, D) = ¥ |P(T|D) — P(T:|D, D)| (4.28)

The advantage of using Mp as a figure of merit is its computational simplicity
and ease of interpretation by a naive user. However, there are more standard
measures of information that can also be utilized, e.g., a measure of variation
based on the concept of entropy. The entropy is understood here as a measure of
the effort necessary for removing the uncertainty associated with a sample space
E. If E is partitioned into a finite number of exhaustive and mutually exclusive

events E,, with known probabilities P{Ey) then,
H(E) = ->_ P(E)log P(E}). (4.29)
*

Applying this measure to the target hypothesis T' yields:
¢
H(T)= - Z P(T| D) log P(T:{D). (4.30)
k=1

Considering the data D as background information, we define the measure of the

information rendered by the new data as the variation experienced by H(T), i.e.:

M,(T\D,D") = AH(T) (4.31)

‘ -
= z ‘P(T},ID) log P(Tk|D) - P(Tle,D') logP(T;,|D, D’)' .

k=1

(4.32)

In order to decide whether or not to propagate incoming data, we can judge its

merit by either M, or M;. So, comparing M with a positive threshold m, defined
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by the user of the system, we make the decision of propagating the information
only if M > my. However, the decision of not sending some information, which
is normally taken locally at sensory nodes, will have to be revised every time
the impact parameters are modified. This necessity can be illustrated with the

example of figure 4.12.

Figure 4.12: Revising the informativeness of a node.

Let S, be the set of instantiated sensory nodes, initially empty. Under these
circumstances, Ny and T are separated. Thus, if we instantiate Ss, getting S, =
{ss}, the message A,,(Ns) would carry no information relevant to T and, therfore,
will remain stored at Ss. However, if N. receives diagnostic support from one of
its sons, e.g. S, = {2,933}, N; and T get connected. We then need to reevaluate
the relevance of the message A, (N3), and, in case it exceeds some threshold, we

should permit its transmission to N,

4.4.2 Potential Value of Uninstantiated Nodes.

While M, and M, allow us to determine the merit of incoming data to N, we

also need a measure of the potential informativeness of uninstantiated nodes. If
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we instantiated a node N then its informativeness would be measured by some
function:

M'(T|D,N) = F(P(T\D), P(T|N, D). (4.33)
Not knowing the actual outcome of N, we should take the weighted average of M

over all possible outcomes of N, that is:
M’ =3~ P(N;|D)F(P(T|D), P(T|Nj, D)). (4.34)
b

For example, using the information-theoretical approach, we can calculate the

conditional entropy of T using the weighted average:

H(T|N) = - ¥ |P(N;|D) 3 P(Tu|D, N;) log P(T:|D, N;) |, (4.35)

b

and take the difference:
R(N)=H(T|N) - H(T). (4.36)

While the term H(T) is a constant with respect to node N, the convinience of
R(N) is that it takes the value zero for irrelevant nodes.

An important advantage of the entropic measure is that it is based on a well
founded body of theory, and hence it inherits qualities that an ad-hoc measure

lacks[Dalk85].

4.4.3 Evaluation of A and 7 messages.

An important characteristic of Bayesian Networks is their capability to receive

and propagate data in a distributed and asynchronous way. When a sensory node
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is instantiated, the A messages originated are propagated only if their value, as
estimated by equation 4.32, surpasses a threshold my. Assume that we have in-
stantiated several nodes, and that their corresponding messages are propagated
concurrently in the network. Furthermore, assume that a node N receives new
messages from its neighbors and that these messages have been originated from
a set D, of data nodes. After updating the belief vector of node N we com-
pute new A and 7 messages to send to N’s neighbors. However, before sending
these messages we need to reevaluate their combined effect on the target node.

Analogously to equation 4.32 we may write:

t

M,(T\D,D,) = 3 [P(T:|D) log P(Ti|D) — P(Ti|D, D) log P(T:|D, Da)] ,

k=1
(4.37)
where, by virtue of equation 4.3,
P(T|D,D,) = P(N|D, D) - [$™7]. (4.38)

Notice that P(N|D, D,) is the updated belief vector of node N, which is locally
available at node N.

In conclusion, whenever a node is updated with more than one new message,
the effect of this update is measured, and, if it surpasses a threshold (m ), it
updates and propagates new A and 7 parameters. Updates due to single messages
are evaluated oniy once. For example, if we instantiate a single node and find it
relevant, all the messages originated are propagated without further questioning.

In contrast, the instantiation of several nodes, each one relevant by itself, may
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result in a combination on which their individual effects are cancelled. The latter

case is evaluated at those nodes that receive more than one message.

4.5 Propagation Scheme.

In previous sections we have derived a mechanism by which we can determine
the worth of new data coming to a sensory node, and also to measure the potential
information that an uninstantiated node can convey to reduce the uncertainty of
the target node. In section 4.1 we expressed our interest in focusing the activity
in the network on a target hypothesis and its area of influence. To formalize this

idea we will introduce the following definition:

Definition 4.10 The influence area (IA) of the target node T is defined as the
set of nodes that (individually) can potentially reduce the uncertainty in the target
node by at least a certain predetermined threshold r, where r is a user defined

constant.

Definition 4.11 The maximum potential effect R{N) of node N on the belief of

the target node is defined as:

R(N) = max|3_ P(Ty|D, N;) log P(TulD, N;) - S P(Ty|D) log P(Ti|D)

k
(4.39)

To determine the Influence Area of a node we will use the maximum potential

effect of a node as given by the definition 4.11. The rationale behind the use of
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this measure will be discussed after the introduction of the algorithm to obtain
the I A of the target node.

For a Bayesian Network with a subset D of instantiated sensory nodes, al-
gorithm 1 (see figure 4.13, page 77) will return T’s area of influence. With this
algorithm we traverse all possible paths, starting at the target node in a direction
away from it. When a node n is visited, its maximum potential effect (R{n))
over the target node is determined. If R(n) surpasses the threshold p, the node
and all its ancestors are included in the 4. On the other hand, if E(n) does not
surpass the threshold p, the node is left out of the I A, and the traversal of the
paths that go through n is stopped, leaving the nodes located farther away from
the target (and having n in their path to the target) out of the Influence Area.
This area of influence varies with the available data, as described in the example

of figure 4.12.

Algorithm 1 will return:

e JA = The set of nodes in the influence area of the target node T.

e BOUND = set of nodes that separate the influence area from the rest of

the nodes, (short for BOUNDARY).

This algorithm makes the implicit assumption that the influence of a node N
on T’s belief vector decreases with the distance between N and T, i.e., we are
assuming that E(N) < R(NP), where N” is N’s path neighbor. This assumption

may not be valid in cases where NV P is not a T-path-cut neighbor of V. In those
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Algorithm 1:
1. IA «— {T};
2. OPEN « { T’s neighbors + parents of T"s sons };
3. BOUND « @;
4. While OPEN # 0

e pick a node n from OPEN randomly,

o If E(n) > p then
ITA « IA + {n}
OPEN « OPEN+ n’s neighbors + parents of n’s sons —I4
Else

BOUND « BOUND + {n};

Figure 4.13: Algorithm to determine the area of influence of T'.
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cases we explicitly consider the inclusion of N in IA, even if B(NF) happens to
fall under the threshold r.
When new evidence arrives to a sensory node in a Bayesian network it is

propagated according to the following criteria:

1. The impact of the data on the belief vector of T is measured, if it exceeds the
threshold m then the node sends updated messages to its parent nodes,
triggering a propagation through the influence area of T. If the sensory
node were originally out of the influence area of T, or if its impact were not
high enough then this data would be considered irrelevant and propagation
would not ensue. In the latter case, the data remains stored at the sensory

node, and is propagated later if the I A gets extended up to this node.

2. Once the new data has been approved (i.e. is found to be relevant) all
targetted messages originated by its propagation are updated and sent over

to its correspondents.

3. Non targetted messages are propagated only in the influence area, however
this influence area may change as a result of this new data. To update the
I A we can evaluate E(n) for every node on the periphery of I A. As a result,

the influence area may shrink or expand.

As an example, let us consider the Bayesian network of figure 4.12. Assume

that neither S} nor S; have been instantiated, and that new data arrives at S3.
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Since nodes T and N; are separated, we have
P(T3|D) = P(Tle,Nh'), (4.40)

so that B(N;) = 0, leaving nodes Ny, Ns and S3 out of the influence area of T.
Now, assume that one of N;’s sons is instantiated, thus connecting T and N,.
By virtue of step 3 above, E(N,) is reevaluated and, depending on the resulting
value of R(N,), A is extended. The extension of the influence area could go all
the way down to S;, depending on the parameters of links (N, Ns) and (N3, Ss).

In order to include a node N in the IA of the target node, we used the
maximum potential effect that V could have on T (according to equation 4.36).
Normally, this measure will overestimates this effect; however, if we used a lesser
value, e.g., the average R(N), we would be discounting rare but possibly crucial
_events. For example, assuming that we have nodes N; and T connected, we may
have a situation where N; = false has no noticeable effect on T, but Ny = true has
a significant effect on T. Furthermore, assume that the probability of N; = false
is very high (e.g. greater than 0.95). Now, if we use the average potential effect
of node N; {equation 4.39), it will probably render N; {and its descendants N3
and Ss) out of the influence area of the target node. Furthermore, assume that
data that confirms N; arrives to S3. Since Ss is out of the Influence Area, the new
data is not propagated, and its effect (which would be very important) would not
reach the target node. Using of the maximum-potential-effect measure remedies

this situation, at the expense of widening the influence area.
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The resulting influence area is not minimal, since R overestimate the impor-
tance of individual nodes. However, if we wanted to use the more precise measure
R(N), we would have to detérmine the updated values of the belief vector of
node N (i.e., Bel(N) = P(N|D) see equation 4.35). To do so, the new incoming
messages will have to be propagated all the way from the sensory nodes to the
nodes in the boundary of IA (from S to N; in the example); propagation that
we wanted to eliminate in the first place. By contrast, the resulting strategy is
based on the heuristic of including in the IA every node that can potentially af-
fect the target node over a given threshold. This is a conservative heuristic, but
it guarantees that all relevant information will eventually reach the target node,
and that grossly irrelevant data will not be propagated.

In chai)ter 3 we discussed the process of conditioning to handle multiply con-
nected networks. If C is a minimal “cycle-cut-set” for the Bayesian network, then
the computational complexity of the propagation is exponential on the cardinality
of C. By restricting the propagation to the influence area, we not only reduce the
overall network size, but we also reduce the cycle-cut-set. Thus, we reduce the
computational complexity to an exponential in the cardinality of C'; where C' is
the cycle-cut-set of the influence area (since the influence area is a region of the
network we have |C| > |C']).

There are two problems that we have left out of this thesis. First we have
considered T as a single target hypothesis, while it may be important to consider

T as a small set of hypotheses, and to govern the propagation of data in the
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network by considering all hypotheses, in T. If this set is small compared to
the total size of the network we may simply maintain impact matrices relative
to all combinations of the variables in T. This may work well for two or three
hypotheses, but may become very expensive as the size of T grows.

Secondly, we have not considered the evaluation of the combined effect of a
set of multiple sensory nodes on a target hypothesis. It may well be the case
that two sensory nodes would have a combined effect greater than the sum of the
two acting independently. One way to deal with this problem is to simulate the
combined effect on the target hypothesis of groups of pairs and triplets of the
sensory nodes under consideration, and determine the belief on the target node
for each group. This approach straightforward, but it becomes too expensive for

large sets of sensory nodes.

4.6 Summary

In this chapter we have defined the set of parameters that have to be main-
tained at each node in order to locally compute the Bel(T), where T is a target
node. We have also established a measure of informativeness to judge the rel-
evance of incoming data. This measure allows us to control the propagation of
information througout the network, and to categorize the relevancy of potential
sources of information. In the next chapter we will discuss some implementation

issues.
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CHAPTER 5

Implementation Issues

In this chapter we discuss some of the implementation issues of the Bayesian
network approach. In appendix B we discuss lower level technical details of one
particular implementation.

One of the most important characteristics of the Bayesian network approach
is that the network is turned into a computational architecture of independent
processors, which compute and update the belief parameters of the underlying
propositions in a distributed manner. In this architecture we map each node in
the Bayesian network with a processor and each link with a bidirectional commu-
nication path between the associated processors.

In order to implement this architecture in a single processor machine, we have
used the object-oriented programming paradigm. Each object has an associated
local memory and a set of functions that characterize that object. In our scheme,
each node is represented as an instance of an object belonging to a common
object-type or class. This class is a programming abstraction of the processor.

In principle, each one of the objects can communicate with any other object
by passing messages. However, we constrain the message passing to those paths

where the receiver is either a son or a parent of the sender, disallowing direct
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communication between unconnected nodes. Then, the A and messages will be
associated with actual messages sent by the processor objects.

We assume that there is no central processor, nor is there a common memory.
Hence, each processor must have local memory, where it will keep the following

information:
1. identification of the node represented;

2. a list of all the neighboring processor objects {nodes}, each element of the

list with a pointer to the object representing that processor;
3. a copy of the last message received from each neighboring processor;
4, a pointer to its path neighbor;
5. the sensitivity matrix of the node with respect to the target node;
6. the belief vector of the node;

7. status of the node, kept only for sensory nodes. This status may be either
positive instantiation, negative instantiation, or no instantiation (no data

arrived); and

8. conditional probability parameters of the node with respect to the joint

ocurrence of its direct ancestors.

With this information we can locally compute the belief vector of a node given

the set of messages received from its neighbors.
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Once the network has been established, we need to initialize the network
parameters. To do so, we start with the root nodes (i.e., nodes with no ancestors).
We initialize the belief vector of the root nodes to their prior probabilities (given
by the user). Afterwards, the root nodes trigger a propagation phase by sending
7 messages compatible with their prior probabilities. These messages propagate
until equilibrium is reached. At this point (i.e., before receiving any data), each
node will hold its prior belief.

After obtaining the prior belief of each node, the smplicit evidence nodes are
instantiated, and the corresponding messages are issued, initiating a second prop-
agation phase. After this initialization is performed, the network reaches its stable
initial state.

The initialization phase is done before a target node is defined. The compu-
tation and update of the Sensitivity matrices are disabled until a target node is
defined. Even though we did not analyze the case where two or more target nodes
are considered, a careful choice of the target node may make the definition of more
than one target unnecessary. For example, we may want to assess two hypothesis
nodes. Normally, these two nodes will be related, and we could choose the target
to be an intermediate node that, if instantiated, would render information about
the original two. Another possibility is to use a dummy node, and connect it with
the nodes we are interested in assessing. A more precise study of these schemes
is left for further research.

When the target node has been selected, the identity of the path neighbor can
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be determined at each node. This is done simply by triggering an identification
process, where each node n sends its identity to those neighbors that will have
n as the path-neighbor. This process starts at the target node and spreads from
there to the rest of the network, always in a direction away from the target node.

In the distributed updating scheme, each node is activated as soon as it re-
ceives a new message from a neighboring node. In this activation the associated
_ processor computes its belief vector incorporating the new information. At this
time, the processor updates the sensitivity matrices as described in chapter 3.
This scheme, however, is not applicable in a single-processor system, where a
different activation approach must be used.

Let us assume that we have a Bayesian network with a subset of sensory nodes
instantiated (either positively or negatively). Furthermore, assume that the mes-
sages originated dug to these instantiations have yet to be issued. In a distributed
environmeni; these messages would be concurrently computed and propagated. In
a single processor system we would need to serialize this propagation according
to some control mechanism. We have implemented four different update mecha-
nisms, which are described in appendix B. One, recency-driven propagation, seems
more appealing because it is intuitively more similar to the distributed scheme.
In this scheme we iterate on an update loop. In each cycle of the update loop we
take all nodes that have outsta.ndiné messages (not taken into account in previous
updates) in an arbitrary order, update their belief parameters and send new mes-

sages to its neighbors. In any case, the control mechanism utilized is independent
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of the final result [Pear85c]. The final scheme used will depend on the goal sought
(e.g. conceptual transparency, efficiency).

On page 66 the mechanism by which we update the sensitivity matrices was
described. In this approach a node updates the sensitivity matrices according
to a criteria of efficiency. We did not always compute the sensitivity matrix
of the node itself, instead we computed the sensitivity matrices of some of the
node’s neighbors. In the implementation of the system, each node checks whose
sensitivity matrix must be computed by checking the relationship of the node
with its own path neighbor.

The guidelines given in this chapter have been used to construct the BAYNET
program. In appendix B we describe that program and give some insights on the

lower-level details of implementation.
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CHAPTER 6

Summary and Conclusions

Bayesian networks provide a theoretical framework for representing causal and
inferential knowledge. Once a model for a particular domain has been established,
we need to provide strategies for data acquisition and propagation. In the original
system all information is treated equal, regardless of the relevance it may have on
the particular problem on which we are working. Thus, the necessity of having a
scheme for goal-based activity in the network arises.

In this thesis we have established a scheme that enables us to define a target
node, so that any piece of information or data flowing in the network can be
evaluated in terms of its relevance with respect to the this target node.

First defined are smpact parameters, composed of a netghborhood matriz and
a sensitivity matriz, which are locally stored and updated at each node. These
matrices permit one to locally establish the belief vector of the target node as a
function of the belief vector and the sensitivity matrix of a node N.

Secondly, a mechanism for distributed computation and update of the impact
parameters is defined. The scheme proposed offers the advantage of not introduc-
ing any communication overhead since it uses the same parameters defined for

the update of the belief vector at every node.

87



We also established measures for determining:

1. the potential value of uninstantiated nodes, especially useful for determining

which sensory nodes should be instantiated first;

2. the value of incoming information, used to judge the relevancy of new data,

which is propagated only if it renders useful information to the target node.

3. the relevancy of single 7 and A messages. Any arbitrary message can be
evaluated and either discarded or delivered, based on the impact it will have

on the target node;

4. maximum potential effect of a node, used as a criteria to decide whether to

include any particular node in the influence area of the target node;

Finally, we describe the implementation of BayNet, a software tool on which
we implemented the propagation scheme proposed here.

We have considered here only the evaluation of the effect that a single node
will have on the target hypothesis. However, it is also important to be able to
determine a measure of the combined effect of the instantiation of several nodes.

This work should be a basis for developing such a scheme.
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APPENDIX A

Derivation of Equations

Derivation A.1 Proof of equation 4.22:

From the definition of the sensitivity matrix we know that:

NM _ p(M;|D,N;) (A1)

Separating D as D and Dy, and applying Bayes equation:

P(M!IDle) = P(MID§$DJ-G:N|) (A2)
— P(-D;;lM,,N,,D;)P(MAN‘,Dj;[) (A 3)
P(DR’INED;) ’ ‘

the data underneath N is independent of whatever is above N given the instan-

tiation of node N, so:

P(Dy|N:) P(M;|N;, DY)
P(Dx|N:)

= P(M;|N;,D}) (A.5)

P(M;|D,Ny) (A.4)

which is intuitively evident, since Dy has been isolated from T, also decomposing

D% into its components:

P(M;|Df;, N;) = P(M;|D% ny Dig s Vi) (A.8)
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applying Bayes:

P(D?* v, Die 5> NiiM;) P(M;
PO D) - DO TR0 (&0

Djf; y becomes independent of N; and D} y given the value of node M, so:

P(D} v, N M) P(Diyn | M) P (M)

Upt. N = A8

P(MJIDN’ N‘) P(DX‘N’DL'N, N‘) ( )
P(DI,N!D?\:I,NiNi) .

= & P(M;|D};n)P(D4n, NilMj) (A.10)

where o; is constant with respect to Mj;, but not so with respect to NV;, to obtain

o; we observe that »_ P(M;|D, N;} = 1.0. Now:
i

P(Di N, Ni|M;) = 3" P(Dj ny Ni|Mj, Ax) P(Ai|M;) (A.11)
k

= 3 P(N:|M;, A)P(D} yAx) P(4|M;),  (A12)
k

the variables A and M are independent given no information beneath their com-

mon son N, so we may write:
P(D s NilM;) = 3 P(Ni| Mj, Ae) (D} v A P(As), (A.13)
k
or,

P(D} n, Ni|M;) = 2 P(N:| M, A P(A|DiN)P(DEN)s (A.14)
k

Finally, treating P{D7 y) as a constant, we obtain:

P(D} . Ni|M;) = oy P(N;\M;, Ay)P(Ael DY n)» (A.15)
k
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or

P(DI.N,NJMJ') = C!.'ZWN(A/,)P(Nl"Mj, Ak) (A..].G)

Combining the result of equation A.16 with equation A.10 we obtain:

sg'M = a; P(M;|Djy n) > P(Ni|M;, A Ar). (A.17)
k
$0,
s¥M = aumy(M;) 30 P(Ni| My, Ae)n(Ar)- (A.18)
k

The term «; can be obtained by normalizing the rows in the sensitivity matrix

gNM

a
Derivation A.2 Proof of equation 4.23
sy'M = P(M;|D, Ny) T (A19)
Applying Bayes and decomposing D into its components:
P(N;, D|M;)P(M;)
P { .D N,' = . 2 ! .
P(N;, Df ag, Dag| M;) P(M;
_ P(N Db pr, DM, P(M) A2
P(N;, D)
The data beneath M is separated from the rest when M is instantiated, so:
P(N;, D »|M;) P(Djy| M;) P(M;)
P(M;|D,N;; = - A.22
P(N;, D}
— P(DyIM;)P(M;iN:, D ) Do DBat) (4 3

P(N;,D) ’
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separating Dj; into its components and considering that they are mutually inde-

pendent given M, we may write:
P(M;|D, N;) = s P(M;|N;, D 0g) P(Dig x!M;) P(Diry |M;). (A.24)
which can be rewritten as:
P(M;|D, N;) = a;P(M;{Ni, Df )2 x (M;) Ay (M;) (A.25)
NowW:
P(M;|Ni, D} 1) = Zk:P(M,—]N.-,Bk,DE,T)P(BkIN;,DE,T}, (A.26)

but we know that M; is independent of D} r given B, and also that B is inde-

pendent of M given no information underneath M, therefore we conclude that:
P(M;|N;, D} 7) = 3 P(M;|N:, Be) P(Bi| D3 1), (A.27)
k
finally combining equations A.27 with A.25, and A.19 we obtain:

S::."r = a"AX ZP an Bk WT(B*.) (AZS)

Derivation A.3 Proof of equation 4.24:
Analogous to equation A.10 we may prove that:

P(M;|D, N;) = &;P(M;| D} n,) P(D x> Dy, Nil Mj) (A.29)
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where: {

P(DE,Xs DE,Y’N"IM) = zP(D};.X’DE,Y’N*'[MJ"Rk)P(RklMi) (A°30)
k

considering that the data underneath R is independent of N and R given R, we

may write:

P(Dg x: Dry, NilM;) = 3 P(Dg x|Ri) P(Dgy | Ri) P(Ni| M;, R ) P(Ri| M;)
k .
(A.31)

then, applying Bayes:

P(Ds.x, Dry. Ni|M;) =3 P(Djy x|Re) P(Dg y|Re) P(Re| M;, N;) P(N; | M;)
k .

(A.32)
knowing that P{N;|M;) = P(N;) we may write:
P(Dg x, Dpy, Ni|Mj) = ﬁ.'; Ax(Ry) Ay (Ri) P(Ri| M;, N) (A.33)
from equations A.33 and A.29 we cogclude that:
si ™ = aymp(M;) ; Ax(Ri) Ay (Re) P(Re|Ni, M;). (A.34)
a
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APPENDIX B

BAYNET

B.1 Introduction

In this appendix we describe the most imﬁortant aspects of the system built
to handle the propagation scheme proposed in this thesis. BAYNET is a sys-
tem that has been designed as a graphical tool for the design of Bayesian net-
works. BAYNET has been implemented on Apollo workstations in UCLA’s
Computer Science Department using the T language[Rees84], which is a dialect
of LISP. We made extensive use of two software packages: (1) The T-Flavors
package, which implements the notion of Flavors(Wein81], (2) and the GATE
environment{Muel84], which provides primitive objects to handle graphs on the
screen of the workstation.

BAYNET has been built using an object oriented programming approach. We

defined two classes of objects:

1. pnode: Each node in a Bayesian network corresponds to a pnode object in
BAYNET. The Bayesian network is represented as a collection of instances
of pnodes. Each instance contains pointers to the immediate neighbors of

the node it represents, so that the network can be traversed following these
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links.

2. tensor: This object type has been defined to work with multidimensional
matrices. The computation and update of the belief parameters and sensi-
tivity matrices are done using the functions defined for the tensor flavor.!

Thus, it is essential to understand the definition of this object in order to

comprehend the implementation of the system.

Here we review the implementation of these object types, emphasizing those
aspects that are more relevant from the point of view of the design of the system.
In section B.2 we provide an overview of the system interface, to give a flavor of
how the system actually works. In sections B.3 and B.4, we describe the attributes
of a pnode object and the functions or methods defined to manipulate these
attributes. In section B.5 we explain how the sensitivity matrices are computed.
Section B.6 describes the user interface. Finally, in section B.7 we describe the
most important characteristics of the tensor object, and we use the computation

of the belief parameters of a given node in a Bayesian network as an example.

B.2 Overall Description and Example.

In this section we describe how a user should interact with BAYNET in order
to build and display a Bayesian network and how data is entered and propagated

through it.

LThe terms flavor, object type and class will be used interchangeably.
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After loading the system, the user has three windows (see figure B.1): (1)
bottom left is the T window for direct interaction with the T interpreter; (2) at

the top is the Bayesian network drawing window (BND) and (3) an extra window

E for textual information, mainly for explanation and debugging purposes.
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Figure B.1: Starting State

The system can exist in two states: in an interaction loop (IL), where the user
interacts with the system through the BND window using the mouse device; or
in a T-interaction state, where the user interacts with the T interpreter through
the 7' window using the keyboard.

In turn, the BND window can be in two modes, edit or update. In edit mode

(where the system starts), the user may draw a Bayesian network utilizing the

96



mouse device. To do so, the left button of the mouse “pops up” a menu, which
provides items for creating nodes and links between them. TFor example, fig-
ures B.2 and B.3 show the sequence of steps leading to the two node network of

figure B.3b.

I:]

Craate root
Inagen Scrsen
(Edit-nodes |
DUNP

LOAD

Clear all |

(a) (b)

Figure B.2: Creating a Single Node, (a) selecting the menu item and (b) the

created node

T T P

Creats Link
Sat as Imp.
Dalete nods
Dalete 1Enk
EDIT

namg
show_tansar

(a) | (b)

Figure B.3: Adding a Descendant to Node A
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Following an identica] process, we build the network of figure B.4.

BTN ot |

Figure B.4; Complete Bayesian Network

Once the network ig complete, we edit the link Parameters, stored at each node,

To do so, we select a node for editing and provide the information requested on

the T window (see figure B.5).

avidraas 5]
ProblALARMInoL EARTHQUAKE , not. BURGLARY] = 0.9}
PranﬂLaRHIEﬁiTHﬂUﬂKE.nnt BURGLARY) z @.2

ProdlALARNI not EQRTHBURKE,BUﬁGLRﬂYI s 8,949
PPDU[&LARHIEﬂRYHﬂUﬂKE,BURGLRRYJ = 1.8
Prob(RADIGInot EARTHQUAKE?Y = g
Proh(ﬁﬂDIOIEﬂRTHQUﬂKE] =z 8.7

23

Figure B.5; Entering Conditional Probability Parameters

In this example, nodes Watson and Gibbons represent implicit evidence nodes.

We specify so by selecting the “Set as Imp.” menu item (see figure B.2b).
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Once all the parameters have been defined, we may change to update mode
(by clicking the left button of the mouse on the update box). Immediately after
moving to update mode, BAYNET starts propagating messages through the
network until it reaches equilibrium. At equilibrium, all nodes will display the
belief on their corresponding propositions (see figure B.6). So, in this case the

belief in the burglary would be 0.0699.

S UPR/ate . 44U 1] 8

CHRISTT
a.2297

Figure B.6: Initial State of the Burglary Bayesian Network

The situation of figure B.6 corresponds to the moment at which neither a
call from Holmes’ daughter, Christie, has been received, nor radio news has been
broadcasted. Now, we may want to determine which sensory node, R or C, is
more important for assessing the burglary node. First, we issue the command
“(send “ burglary ‘target)” on the T window, identifying the burglary node as
the target. This message is propagated through the network, computing all the

sensitivity matrices. Second, the message “(send *(node) 'r)” will return ( node)’s
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relevancy measure, as given by equation 4.36,
R{c) = 0.038
R(r) = 0.000421

This shows that there would be less uncertainty (and more information) by know-
ing whether there was a radio broadcast than by knowing whether Christie has
called. The small value for R(r) can be easily explained, considering the very low
belief of its only possible cause.

On the other hand, if we receive a confirmation that Christie has called, we
may want to determine how relevant this new information is to the target propo-
sition {the burglary). This relevancy is determined using equation 4.32, where

P(T:|D) is simply the current value of Bel(T}), and where:
P(T|D,C)=(0 1).5%% (B.1)

Hence, we obtain:

M,(T|D,C) = 0.2641 (B.2)

which is a measure of the information rendered by the instantiation of node C.
The E window is used to display messages that are intended to explain the
reasons for the modification of the belief parameters of certain nodes. At this
time, the explanations consist of the specification of the neighbors which sent
messages which affected the belief change.
In the subsequent sections of this chapter we provide a more detailed descrip-

tion of the implementation of this program.
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B.3 Pnode Object Type.

When we want to define a node for a particular Bayesian network, we create
an instance of a pnode flavor. A pnode is a specialization of the web flavor defined
in GATE. It inherits all the properties of webs (for details see [Muel84]), including
the necessary features for drawing nodes on the screen of the workstation, drawing’
links between the nodes and handling “pop-up menus”, etc.

Once the Bayesian network has been drawn, the program structures all the
information it nee&s on the attributes of the pnode class. For each node N the

following attributes are kept in its associated pnode object:

1. tensor: This object, of type tensor, represents the conditional probability
matrix of the node, given its parents, or in the case of nodes with no an-
cestors, it represents the prior probability vector. This matrix is entered

interactively upon user request.

2. fathers: This is a list of one element for each parent of the node, each of
the form “({p), 7~ ({p)),{u}))”, where (p) is a pointer to the corresponding
parent, mx{(p)) is the last 7 message received from this parent, and (u) is
a boolean variable that is true only if 7y ({p)) has not been included in the

last computation of the belief vector of N.

3. sons: This is a list with one element for each son of N, each element of the

form “({s), Ay (), (u)),” where (s} is a pointer to the son, Ay (N) is the
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10.

last \ message received from this son and (z) is a boolean variable that is
true only if A,y(V) has not been included in the last computation of the

belief vector of N.

implicit?: Boolean variable which is true for those leaves representing im-

plicit nodes.

excited?: Boolean variable that is true whenever there are outstanding mes-
sages (\’s or 7’s) that have not been included in the last update of the belief
vector, i.e., it is true when the constraints between the node and each of its

immediate neighbors are unrelaxed.

S: The sensitivity matrix of the node with respect to the target node. It is

initialized as the identity matrix.

. belief The belief vector of the node, which is represented as a simple list

equal to (Bel(~N) Bel(N)).

. par-mod?: Boolean variable that is true whenever the parameters of the

node (conditional probability matrix) have been changed.

data: Used only for leaf nodes, it represents the data available at sensory
nodes. It has a value (1 1) if the node has not been instantiated, a value

(0 1) if it has been confirmed, and a value of (1 0) if it has been denied.

path-node: A pointer to the node’s path-neighbor.
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In addition to the aforementioned attributes of the pnode object type, we have
defined a set of methods, which will be better described in the context of an

example.

B.4 Methods for the pnode Flavor.

Suppose that we want to enter the Bayesian network for the example in figure
3.1. In this section we will describe the sequence of steps involved in this pro-
cess, especially from a system viewpoint, i.e., we shall describe the functions and
methods invoked through the process.

The first step is to invoke the T interpreter and load the appropriate prograrns.
The command “(main)” executed on the T window will start the system, which
will automatically create a second wiﬁdow of reasonable size to draw the Bayesian
network. Now, the system gets into an interaction loop phase, in which it will
recognize only commands issued with the mouse device. The GATE environment
provides methods for handling menus, so that we obtain 2 menu by pressing a
button of the mouse. The entire process, from creation of the Bayesian Network
to subsequent interaction with the system, can be done solely by use of the mouse.
However, the description below will be done in terms of T function calls, which
may be issued from the T window or from any function in the T’ environment. So,
the description would be useful for implementing extra capabilities to the running

system.
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B.4.1 Setting up a Bayesian Network

BAYNET can be in either of two states, edit or update. The user can switch
from one state to the other as many times as necessary. However, it should not
be possible to switch from edit to update state unless the network is completely
defined. To do this, the system provides different menus of commands in both
states, however; these menus can be bypassed by calling the functions directly.
In the edit state we can draw and modify the topology of the network, while in
the update state we can enter data and propagate it through the network. The
parameters of every node can be modified in both states.

The following is a list of functions available to set up a Bayesian network:

1. create-node, (parameters: ask-name?)}. If ask-name? is false (nil), it
generates a name for the node; otherwise, it asks the user for one. The
function will wait for the user to click with the mouse on the position in
the screen where the node is to be depicted. It then creates a node in that
position, giving it a rectangular shape, displaying the name of the node in
the rectangle itself. The system keeps a list of pointers to all active nodes
in the system, which is updated whenever a new node is created. Each
pointer will have the name “" (name),” where (name) is the name given to
the node to which it points. When the pointer is evaluated, it returns the

actual object to which it is pointing.

In the burglary example, we call this function once for every node. So,
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issuing the command “(create-node t)” will make the system prompt us for
the name of the node (say burglary for the burglary node) and create the

node wherever the mouse is clicked.

. create-link, (parameter: pnode). Once we have more than one node on the
screen, we may link any two nodes by calling this function. Then, “(create-
link (pnode))” will make the system wait for the user to click in a node, say
(pnode2) and create a link from (pnode) to (pnode2). Besides drawing an
arrow between the two nodes, BAYNET will update the sons and fathers

attributes of the nodes involved in the linkage.

. create-descendant, (parameters: pnode, ask-name?). This is equivalent
to consecutively creating a node (with create-node) and a link (with create-

link) to that node, with its tail at pnode.

. set-implicit, (parameter: pnode). This function converts a node to im-
plicit. Tt should be applied only to a leaf node. As a side effect, the function

changes the size of the node and the font type used for the text inside it.

. delete-node, (parameter: pnode). It deletes the node received as a param-

eter and also deletes all the links to or from this node.

. delete-link, (parameters: pnode). It deletes the link that starts at the node

specified in the pnode parameter and ends at the node where the mouse is

clicked.

105



7. edit-node, (parameter: pnode). This function asks for the name of the

node and for its conditional probability matrix with respect to its parents.

B.4.2 Entering Data

To enter data into the network, the following functions are defined:

1. set-data, (parameters: pnode, d). When this function is called, the pnode
is either instantiated as true (if d is true), or instantiated to false (if d is

nil). This function should be applied only to sensory nodes.

2. clear-evidence-data, parameters: pnode. It resets the data attribute of a

sensory node to {1 1).

3. change-tensor, (parameter: pnode). This function is called to change the

conditional probability matrix of a node once in the “update” state.

4, create-aux-evid-node. There are situations where evidence impinges di-
rectly on a node that has not been considered in the network. For example,
suppose that Holmes receives a call from a friend, who comments on a minor
earthquake he felt around the time the alarm is said to have gone off. The
network does not include a node to account for this event. In this situation
we may add an “auxiliary evidence node” as a son of the “earthquake” node

since it provides evidence impinging directly on the earthquake.
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B.4.3 Propagation

The Bayesian network approach permits update of the belief vectors of the
nodes in the network in a completely asynchronous way. We have implemented

the following update mechanisms:

1. recency-driven propagation: When the recency driven propagation is
called, all the nodes that have outstanding messages (i.e., that have their
ezcited? attribute as true) are updated. To update, we simply send an
update message (described later on). After receiving it, the node computes:
(1) its new belief vector and (2) new messages to send to its neighbors.
The new messages are delivered to the neighbors, exciting them. After a
first phase, the nodes that were originally excited become updated, and
other nodes are left excited. This process is continued until all nodes in the

network have been updated.

Let L be the list of all the nodes in the network. This update mechanism

can then be expressed as:

(do () ((any-excited-nodes? L))
(walk (lambda (n)
(if (send n ’excited?)

(send n ’update)))
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where the “any-excited-nodes?” predicate would check if there is still an

excited node in the list L.

2. fixed-order propagation: Establish an arbitrary ordering among the
nodes and update each one in that order. This update is repeated un-
til a cycle through all the nodes is completed without finding any excited

node.

3. random-update: Choose an arbitrary node in the network and send it an
update message. Repeate until n consecutive update messages are received

by non-excited nodes, where n is a user constant.

4. selective-update: Send the update message to a chosen node.

The implementation of these update mechanisms makes use of the update-node
method, which is sent to the nodes requiring update. Next, we define this method,
along with a set of methods that allow the computation of 7 and A messages and

establish the communication among the different nodes. These are:

1. update-node (parameters: none) - When a node receives the update-node

message, it executes the following sequence of steps:

- compute and send all A messages to its descendants;
- compute and send all 7 messages to its ancestors;

- update its own belief vector.
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2. send-pi, and send-lambda (parameters: (dest)) - The parameter (dest)
indicates who is going to receive the corresponding 7 or A. These methods
would compute the message to send to (dest) and would send the message
catch-pi or catch-lambda to (dest) with the corresponding updated message

as parameter.

3. catch-pi, and catch-lambda (parameters: sender, v) - The parameter
sender is a pointer to the originator of the message, and v is the actual
message (7 or A). The node that receives the  or A compares it with the
last message received from the same source. If the difference between the two
is very small, the message is disregarded. If the message is not disregarded,

then the node updates its parameters (rendering ezcited? true).

B.5 Computing and Updating the Sensitivity Matrices

B.5.1 New Attributes of pnode

In this section we describe the methods defined to compute and update the
sensitivity matrices of every node in the network. The following attributes have

been added to the pnode flavor:
1. S, the sensitivity matrix of the node with respect to the target node.

2. path-node, a pointer to the path-neighbor of the node. It is initialized as

nil.
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3. summary, a matrix introduced to simplify the computation of the sensitivity

matrix. It will be deseribed later on.

4. LP,lambda product, is the component-by-component product of the lambda

messages received from the sons (see equation B.5).

The summary matrix Jjust introduced is used to perform a more efficient com-
putation of the sensitivity matrices. In the current version of the program, it is
also used to compute the A and 7 parameters that each node sends to its direct

ancestors and descendants.

The summary matrix for node A in the example of figure 3.1 is defined as:
Ui = P(A,-IB,-,E,,)Aw(A;)J\G(A.-)/\C(A,-)WA(B_,-)ﬂA(Ek). (B.3)
If we have defined the target to be node B, then we may compute;
847 =Y Ui/ LR, (B.4)
P

where:

LP,' = /\w(A;)z\G(A;)/\c(A;). (B5)

Also, in node 4 we need to compute and update the sensitivity matrix of node £

with respect to the target (given by equation 4.24). That can be computed as:
EB :
S = 22 Usji/ma(By). (B.6)
k

So, whenever a new r or A message is received by the object A, the summary

matrix, along with the sensitivity matrices S48 and SEB i updated. These
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equations are not valid when a node receives a 7 or A that makes the denominator
of these equations equal to zero. In these cases, the sensitivity matrices are

computed directly from equations 4.22 and 4.24.

B.5.2 Initialization

After the target node has been chosen, we need to initialize the parameters
at each node. The initialization is performed by the target method. The process
starts when the target message is received by the target node. Thus, in our

example, the message:
(send * B ’tensor)

will initialize node B as the tensor and will trigger the initialization process. In
order to describe this process, let us assume that we pull the target node up,
ignoring the directionality of the links. By doing so, we obtain a tree rooted at
the target node. Figure B.7 shows the tree obtained by pulling up node B of
figure 3.1.

Once node B receives the tensor message, it starts a propagation on breadth-
first order (on the tree of figure B.7). This Propagation consists of two steps: (1)
identification phase, where every node receives a message from its path-neighbor
to identify itself and (2) initial sensitivity matrix computation. For the second
step, it is important to notice that the breadth-first order of propagation is es-
sential since the sensitivity matrix of a node will depend only on the sensitivity

matrices of nodes above it on the tree.
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Figure B.7: Tree rooted at the target node

B.5.3 Update

As well as the belief vectors being updated, the sensitivity matrices are also
updated whenever new 7 and A messages are received by a node. The methods
update-S-pi (which is invoked when a node receives a message) and update-
S-lambda (invoked when the node receives a A message} update the sensitivity
parameters at every node. To update the sensitivity matrix of any node N, we
update the sensitivity matrix of N with respect to its closest T-path-cut node
(say, M) and then compute § «— S™M. SMT When a node receives a message,

the update is performed according to the following rules:

1. N receives a 7 message, and its path-neighbor is one of its ancestors. In this
case, N’s object would update: (1) its own sensitivity matrix, according to
equation 4.22, and (2} the sensitivity matrices of all its ancestors, excluding
the sensitivity matrix of its path-neighbor and the sensitivity matrix of the

node that issued the message {which does not need the update).
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2. N receives a , and its path-neighbor is one of its sons. It updates the
sensitivity matrices of its immediate ancestors, according to equation 4.23.

This update is not done for the node that sent the m message.

3. N receives a A\ message, and its path-neighbor is one of its ancestors. Here,
N’s object updates the sensitivity matrices of its ancestors, except for its

path neighbors’ sensitivity matrix, according to equation 4.24.

4. N receives a A message, and its path neighbor is one of its descendants.
In this case we update only the sensitivity matrices of N’s ancestors, as

specified by equation 4.24.

As an example, let us consider node A in figure 3.1. Suppose that Holmes
heard the news about an earthquake. in this case, new messages are propagated
through the network. When A receives a new 7 message, it will update its own
sensitivity matrix with respect to B (see equation 4.22). If, instead, A had re-
ceived a A message from node C, it would have updated only the sensitivity matrix

of node E with respect to B.

B.8 The User Interface

GATE provides an environment that includes the capability for graphical in-
teraction with a menu driven user interface. Most of the functions and methods
that are of common use in BAYNET can be accessed through the menus. As

we already mentioned, the system can be in two different states, edit and update.
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The user is allowed to execute a different set of commands in each state; so, dif-
ferent sets of menu items are provided for each state. In BAYNET we have three

diferent menus for each state. These are:

1. pop-up menu, which pops up when the user clicks the left button of the

mouse in an empty space in the BAYNET window (e.g., figure B.8).

/tmp/gata.d4d . N | . A

Exit IL

Creats roat

Inmagen Scrsen

Edit-nodes
DUMP

LOAD
Clsar ail

CHRISTI
9.2297

Figure B.8: Edit state pop-up menu.

2. leaf node pop-up menu, which pops up when the user clicks the left button

of the mouse in a leaf node (e.g., figure B.9).

3. non-leaf node pop-up menu, pops up when the user clicks the left button of

the mouse in any non-leaf node (e.g., figure B.10).

Each menu item is associated with either a functionora method. For example, the
Create Desc. menu item of figure B.10 is associated with the create-descendant

function defined on page 105. So, whenever the user selects the Create Desc.
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item, the function create-descendant is automatically invoked, with the node

in which the mouse has been clicked as a parameter. The list of menu items that

are available is?:

1.

8.

Exit IL: Exits from the interaction loop, returning the control of the pro-

gram to the user through the T window.

Create root: Calls the function create-node (page 104).

_ Edit-nodes: Calls the edit-node function (page 106) for every node defined

in the network.

DUMP: This is associated with a “dump” facility. It will preserve a snap-
shot of the Bayesian network as is at the time of invocation. It will ask for

the name of a file.

_ LOAD: Will read the contents of a file generated by the dump facility just

mentioned.

Clear all: Deletes all the nodes and links, reinitializing the system.

Create Desc.: calls the function create-descendant, with parameters (n)

and nil.

Set as Imp.: Sets (n) as implicit. In this case, (n) can only be 2 leaf node.

21n this description (n} will be the node on which the left button of the mouse has been clicked,
this is not used for the pop-up menus.
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10.

11,

12,

13.

Delete node: Calls the function delete-node (page 105) with parameter
(n).
Delete link. Calls the function delete-link (page 105) with parameter (n)

EDIT: Edits {(n), asking for the conditional probability matrix of node (n}
with respect to its parents. This definition, as well as the ones given with
the “Edit-nodes” menu item, is deleted whenever a link from one of its

parents is deleted or when a parent is either deleted or added to the node.
name: Permits a name change for (n).

show tensor: Displays the conditional probability matrix of (n) in the T

window.

Most of the menu items included in the previous list are available only in the

edit state. In the following list we include all those menu items that are available

in the update state and those that are not included for the edit state. The three

menus available in the update state are shown in figures B.11, B.12 and B.13.

. Propagate: Initiates a propagation of outstanding data through the net-

work, it finishes when the network reaches equilibrium.

recency driv: Initiates a recency driven propagation (page 107 ).

. fxed order: Initiates a fixed order propagation {page 108). It follows the

order given in a list called “*propositions*,” which can be modified by the

user. It must always contain one pointer for each node in the network.
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4. random updt. Calls for a random update (page 108).

5. set thresh.. Compares a new message received by a node with the last
message it received from the same source. If the difference between the two
does not surpass a certain threshold ¢, it ignores the message. This item

allows redefinition of the threshold ¢

6. delete: Permits deletion of a leaf node (only), avoiding a change of state

from update to edit.

7. evid T and evid (). Are equivalent to the calls “(set-data (n) t)” and

“(set-data (n) nil)” respectively (page 108).

8. clear evid: Is equivalent to the call “(clear-evidence-data (n}))” {page 106}.
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9. trace: BAYNET permits control of an extra window on which we put
textual information to identify the sources of changes in the belief vector
of selected nodes in the network. To select a node we use this trace item

which, in the current implementation, is also used to debug the system.
10. change mtrx. Permits change of the conditional probability matrix of {(n).

11. auxiliary ev: Sends (n) the message “create-aux-evid-node” (see page 106).

The menu items described in this section are dynamically changed. There are also
some items that are slightly modified under certain conditions. For example, if a
node has been put on trace, then the menu item trace will be changed to untrace
so that we canvremove that node from the trace list. This types of modifications

are straighforward, and their use should be evident on the context.

B.7 Tensor Package

In this section we describe the implementation of the tensor package, which
has been used to represent and manipulate the conditional probability matrices
used by the Bayesian network approach. We will also introduce the notation used
for the definition and access of flavors. .

The definition of any object type involves the settings of attributes that each
instance of the object type inherits. For example, one attribute of a node object

may be the name of the concept for which it stands. Separately, we also specify a
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set of methods, or procedures, that operate on these objects by manipulating its
attributes.
Let us take the example of figure 3.1 and see how the conditional probability

matrix P{A|B, E) has been represented. From equation 3.10 we have:

P(A|B,E) =10  P(A|~B,E) = 0.949

P(A|-B,E) =02  P{A|-B,~E)=0.01 (B.7)

where, P{(~A|B;, E;) = 1 — P(A|B;, Ej)-
To represent this kind of matrix, we use a special object type, called tensor,

which has been defined as®:

(define-flavor tensor
((value nil)
(shape nil)
(index nil)

(participants nil)))

where we have specified that the tensor object has the attributes “value,” “shape,”
“index” and “participants,” which are all initialized as nil. The meaning of each

one of the attributes is:

1. shape: Order and dimension of the matrix being represented. In the ex-

ample, the matrix has dimension three and order 2 x 2 X 2. Hence, the

3This definition is not rigorously correct, but a precise definition will unnecessarily complicate
the exposition.
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proper value for this attribute is (2 2 2)4 - where the dimension is implicitly

represented as the length of the list.

2. value: List containing all the components of the matrix. In our example it

will have 2 X 2 X 2 = 8 elements.

3. indez: Indicates how each component of the matrix has to be accessed. For
example, if index is (4 2 1), then the element M (1,0,1] of 2 matrix M would

be in the position (4 2 1) - {1 0 1) = 5 in the value list.

4. participants, is an optional list of names that can be assigned at each di-
mension of the matrix. For example, the conditional probability matrix
P(A|B, E) may be implemented with this attribute equal to (4 B E). In
our system this list contains pointers to the objects that represent the nodes

A, B and E respectively.
Therefore, in the example, the values of the attributes are:
1. shape = (2 2 2), only binary variables
2. value = (0.99 0.8 0.051 0 0.01 0.2 0.949 1)
3. index = (4 2 1)

4. participants = ("4 "B "E)

4The implementation of the tensor package has not been constrained to binary matrices, hence
we could have matrices of any order and dimension.
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Since we are considering only binary variables, we decided to access the elements
of the matrix by utilizing lists of binary numbers. For example, the index (0 0 0)
corresponds to the element P(~A|~B,—E), and the index (1 1 0) is mapped to
P(A|B,—E). The mapping function that permits to retrieval of an element of
the matrix is simply the dot product between the index of the variable and the
indez attribute of the tensor. Thus, to retrieve the element P(A|B,—E) from the

matrix, we compute the dot product
(1 1 0)-indez=3,

mapping to the fifth element (starting from zero) of the value list, i.e., to the
number 0.949.

To properly set a tensor object to represent the matrix of equation B.7, we use
the function “make-instance” (provided by the T-Flavors package), and assign its
result to some variable. For instance, our example matrix would be created as a

tensor object as:

(set tsr (make-instance ’tensor
’shape ’(2 2 2)
‘participants '("A "B " E))
In addition to defining the attributes of the tensor object, we also define
a set of methods or procedures that implement diverse functions for handling

multidimensional matrices. These methods manipulate the attributes defined

above. The definition of a method is similar to the definition of a normal function;
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its main difference is the way in which the method is invoked. Let us assume that
we have defined the method “met,” and that we want to apply this method to

the object “tsr.” To do so, we send the message “met” to the object “tsr”:
(send tsr ’met . (parameter-list))

where (parameter-list) is a list of the parameters to the method if there are any.

Among the set of methods defined for the tensor package, we have:

1. init: The method executed whenever a tensor instance is created with the
“make-instance” call. It is not explicitly invoked from any place in the sys-

tem. This method automatically initializes the value and indez attributes.

2. ask-tensor: The method called when a tensor is going to be read from the

terminal. It has been defined only for binary probability matrices.

3. tensor-get: By calling “(send tsr "tensor-get '(C O 1)),” would return the

element P(—A|-B,E).

4. tensor-set: By calling “(send tsr *tensor-set ’(0 1 1) {v)},” would modify the

value of the component (0 1 1) of the matrix, assigning it the value (v).

5. tranpose: Transposes the matrix represented by the tensor. For example,
after the call “(send tsr 'transpose 'E 'B),” the call mentioned in 3 would
return the element P(—A|-E, B) instead of P(~A|-B,E). This is easily

achieved by modifying the elements of the indez attribute.
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6. vzt, a vector by matrix multiplication. For example, “(send tsr 'vxt '(0.90.1)

'E)” eliminates the component E of the tensor, making
P(A|B) = 0.9 x P{A|B,—E) + 0.1 x P{A|B, E),

After this call, the tensor is modified and would be bi-dimensional (the call

of 3 would now be illegal since it specifies a three dimensional index).

7. vrt-no-sum, same as vzt, but without reducing the dimensionality of the
matrix. “(send tsr 'vxt-no-sum (0.9 0.1) 'E)” would make P(A|B,~E) «~

0.9 x P(A|B,-E), and P(A|B,E) « 0.1 x P(A|B, E).

8. copy. Returns a copy of the tensor object which receives the call. This
method is used to save a matrix before applying any destructive operations

to it (e.g. “vzt”).

There are some other methods that have been implemented for a variety of dif-
ferent functions but which are not relevant to the present discussion.
Now, let us assume that the following A and 7 messages have been received

by the node representing A:

Ag(4) = (11) (B-8).
‘ de(4) = (0.208) (B.9)
Aw(4) = (0.10.9) (B.10)
m4(B) = (0.997 0.003) (B.11)
ma(E) = (01) (B.12)
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which correspond to the situation in which the radio broadcast was transmitted,
and Christie has not called up her father.
Using the tensor object defined above, we want to determine an expression

that would return the belief vector of node A. According to equation 3.9,
Bel(A)) = adw(A)Ac(A)Ac(4) |3 P(Ai| By, Ex)na(By)ma(Be)| - (B.13)
ik
Now, let us assume that we have the lists:

1 A ((Ae(4) . ") (a(d) . °G) (w(4) . W),

2. T e ((x4(B) . "B) (za(E) . E)).

Then, using the methods we have described, equation B.13 may be computed

thus:

(define-method (tensor compute-bel) ()
(walk (lambda (s) (send self 'vxt {car s) (cdr s)))
A)
(walk (lambda (f) (send self *vxt-no-sum (car f) (cdr )))
1)
- (normalize (list (send self 'tensor-get '(0))

(send self 'tensor-get '(1}))))
In order to invoke this method, we issue the message:

(send tsr ’compute-bel)

126



which will return a list B, in which:

Bel(A) = (cadr B)

Bel(mA) = (car B)

When this message gets issued, the object to which it is sent (tsr, in this case)
executes the corresponding procedures. Thus, references to self will be bound
to the same object (tsr in the example) that received the message. Therefore,
the first walk sentence would computé the summation in the equation B.13 (as
a sequence of vector by matrix products), while the second walk would multiply
the lambda vectors of A’s sons. The result is then normalized to account for the

constant a of equation B.13.
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