UNIVERSITY OF CALIFORNIA
Los Angeles

Computer Generation of Meta-Technical Utterances

in Tutoring Mathematics

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in Computer Science

by

Ingrid Zukerman

1986

© Copyright by
Ingrid Zukerman
1986

The dissertation of Ingrid Zukerman is approved.

Yl J /M—A—«

Richard J. Shavelson

Wk, CC Bopen

Kirby A. Baker’

Hydo] K Ao/

Michael G. Dyer /

Daniel M. Bérry /

b, he A

Judea Pearl, Committee Chair

University of California, Los Angeles

1986

DEDICATION

To Moshe, Jenny, Debbie, Ashley and Wendy.

iit

TABLE OF CONTENTS

1 Introduction and OVETVIEWccccccrersssssiessenaissssassssssosssossnmansasssssssnsssnses
1.1 Why AlZEDIa? .ccciveeivurmrinrneressaniisirninnsinansmsstss st tosensacasnsasassosasecescs

1.2 Input and Output of FIGMENT ...ccciinmimmmsnninrtenssitinnninnscases

1.3 Text Generation TECHNIGQUES ..c..coeerierrireecserisnisienimnnnmeesssssssissases

1.4 TUOTING SYSIEMS .cvovreereisriraresssmsetessssminimsesessras saesasusssnsassssnsnaos
1.4.1 Intelligent Tutoring SYStEMS .ccceoermiinenennmisnnsnssnesie s

1.5 Overview of this DiSSErtationccoovereeessceiisrisiieneraissassnnsen

2 Semantics of Meta-Technical UErancescccoovmivmmioan,
2.1 Sample Expressions Used in Tutoring Algebraccooevrivirnnne.

2.2 Overview of Related Researchcoovvreeiiiicoiiioniniinnnnnniicsiiinnes

2.3 A Functional Taxonomy for the Generation of MTUS ..c.cceoeveiennee
2.3.1 Knowledge-Organization MTUS .ccoimiienncninnccinincnne.

2.3.2 Knowledge-Acquisition MTUS ..ccecciviimiinmniminncniennnnen

2.3.3 Affect-Maintenance MTUS ...ooovirmriemnmeciinnncniinnisne e

2.3.4 Summary of Meta-Technical Utterancesccccceevveeunnnnn

3 Design of FIGMENTcooivireimssesesmssstsssammaiarmsnsiss st ossssososs s s snans s
3.1 Problem Solving Expertise MOQUIE ..coviiveciineninivinnnnncrninnines
3.1.1 Domain Knowledgeccccmiiverermmmncnnissteriniiienanienssenae

3.1.2 Problem Solving Knowledgecccoveiimicieiniiieinniiennnes

3.1.3 Output of the Problem Solving Expertise Module

3.2 Model of the Knowledge of a Studentccccvvniiiiininiinnnsninnnns

3.3 Tutoring Strategies MOAUIEcueeirecimirinsiinmnere s
3.3.1 Output of the Tutoring Strategies Modulecccoccermecescncns

4 Generation of Knowledge-Acquisition MTUs: The Comprehension-

Processes MOQUIEccceeverrcereiecrescirsisisnrssscsssssasessssssssisnssssvesnnmssssassass tasssas
4.1 Determining FOCUScovirmmimrmiernoraiesescosisinisinnssesssssmsssinsssnsansss
4.1.1 Recognizing a Permanent Focus Shiftcoooeevinieinnienas
4.1.2 Recognizing a Temporary Focus Shiftccooriviriinrenecens

4.2 Determining Type of Relationshipcccoimimmminniccisisiniinnnns
4.3 Selecting Implementation MOdecoocovirieieniiriininninns i
4.4 Applying Mental RESOUICESoovrmciisiinismsmisnssecusssimsasiissusmnenacs
4.4.1 Preparing Computational POWETccooerimiccinniiscninmnnininss
4.42 Preparing Processing TiMEooivmimcniinninniniiinens

4.5 Building up Motivation and Justificationcvmenerniininsnnnnss
4.5.1 Selecting a MOHVAHON ..ccririveeersiinsimisiisassssesssosnensansssannanss

4.6 Partial Output of the Comprehension-Processes Module

5 Generation of Knowledge-Organization MTUS ...cviiinnneinininmsinenns
5.1 Generation of Additive MTUS ..eeeemrriiniiiciiiienneac e
5.2 Generation of Adversative MTUS .c..ovoiiiienininc i
5.3 Generation of Causal MTUS oommrirmniinen s seebsasnsees
5.4 Generation of Attributive MTUS oot

iv

page

5.5 Generation of Temporal MTUS ..coooeroeiiiiisimmmenssinsscsnninssssnnssenne 131
5.6 Output of the Comprehension-Processes Module ..c.ccoveevimacisinsranene. 134

6 Generation of an English-Language Representation: The Sentence Composer 140

6.1 The Phrasal DiCHONATY ..ccooveuceinrreisassesnrmrnssssmasnssmsasssenssnssensesansenes 141
6.1.1 Generating an English Representation of a Dictionary Entry 143
6.1.2 Updating the DIiCHONATY .cvcorermiisimsrmsemmmmamissrnsssissstisssnssssnessces 145
6.1.3 Generating PrONOUNS ...overeererescssnssssesessssssnsasmassusssnsnissnsnsiesss 146
6.2 The Attribute-Clause GENETAtOrcccersccssssersasesnassnsnansssiasessasanes 147
6.2.1 Some Heuristics for the Generation of Attribute Clauses 151
6.3 The Utterance GENEIAtOTSceveveeirscrrsrcsnsressssmsaterssmnissssmsssstsnsmyssss 155
6.3.1 Structure of the Generated TEXt ...ccccormimeriievsnimaiiienninaenee 157
6.3.2 Selection of an English Representationcccemeieensicinsneees 160
6.3.3 The Declarative GENEIatorccccecesvverssrsresssmmsssassemumnasisnasenss 160
6.3.3.1 The Topic-Introduction GENeratorceveeverssuvccsens 162
6.3.3.2 The Equation-Explanation Generatorcoeees. 167
6.3.4 The Procedural GENeratoreeceeremassssmrssmssiisesstnasssssnancans 172
6.3.4.1 The Alternative GENETaAtOrcccceeereememsvmrsssimnnnereseers 173
6.3.4.2 The Rule-Sequence GEneratorcoecvcmecrrosnrnineanees 177
6.3.4.3 The Rule-Cluster GENEratorccemscerimemirissenasnasnannes 179
6.3.4.4 The Rule Generatorcccoevvesemueecomssisssisnsinsamessssesnss 184
6.3.4.5 The Pattern Generatorcceeemueeessssecssummnssrmnsrassnsossnne 185
6.3.4.6 The Expectation GENeTatOrceeverisiessmmssssessoscassnncenins 186
6.3.4.7 The Result GENETatOrcocceeivesssaeranesssnmmsssssrasassnasasasas 187
6.3.4.8 The Finish GENEratorcccccvismrmrscemenmsisnniesssscnnaacenen: 188
6.3.4.9 The Continue GENETALOTivereerrecsntsrsssssentesisisieassasnns 188
6.3.5 The Intervening-Utterances GENEratorooeciirecncsninns 189
6.3.5.1 The Method GENEratorccccccecerirersirsasscvssssanesiaesansonnes 189
7 Conclusions and Future ReSEarchoeccicimenirresrnennniismnnianinies e snnaan, 192
7.1 Limitations of this Research and Future Workccoiiiiiiiniiennns 192
Appendix 1 Taxonomy of Conjunctions by WIHIKINS oeeecveerrnerinereeesnrensnnensnenanes 195
Appendix 2 Output of the Ttoring SEAEGISL .ovvvevrirrercesrsarmmsmmmmisssisscencenemenes 198
Appendix 3 Arguments of the Technical Part of a Technical Utterance 211
3.1 Arguments of the Technical Part of a Rule Technical Utterance 211
3.2 Arguments of the Technical Part of a Pattern Technical Utterance 212

3.3 Arguments of the Technical Part of an Expectation Technical
TULLETANCE .eeveersreeasmesesssssrnsseensesssssossmsasssessesssnmmansssssssssnsnsasnasassssssannnnsss 213
Appendix 4 Referencing Mathematical ENHES ..ccovvruremiemsisenssscncecnssmsensens 214
Appendix 5 Output of the Comprehension-Processes Modulecoovviemrcicinnns 216
5.1 Topic EXtended-MESSARE ..ovooveuncruiimnsmnensmsusmaisenisnsinimss st e asee 216
5.2 Equation Extended-MESSAZEcovivemmmesmnmarnenmmsissssissssssmsssasssissasae e 217
5.3 Alternatives Extended-MEeSSaBEceceerrrececreiimvirsmmienssinisisneneiene 218
5.3 Alternative Extended-MeSSagecoceerermecsciserrimssnisssnessessisnunessaanses 218
5.4 Rule Extended-MeSSagecccverreenesunmsmmmnnmnninsssnnssss syt sncesees 219

5.5 Pattern Extended-MESSAZE -ccvveerreeerenonmrmsnessisrnmmnnesssssiisnenssisssanass 220
5.6 Expectation Extended-MeSSagecocumeimmreenreisimmisnismammnmcnnscsssenes 221
5.7 Result Extended-MESSAZE ...coovvvreermmrmisssssssimssmmisnernmansestsersnissosnnasassnses 221
5.8 Finish Extended-MeSSAZE voruecrcrisismsrnesesscsstissnsnssnsanesrsssssssssssassaniens 222
5.9 Continue Extended-MESSaZEccovverrenrarmsnssrasnmsanirsnissaasscessosnenssseanaes 222
5.10 Method Extended-MEeSSagecoeceereersusennisnnmisniassessnissssssanssanasnnee 222
5.11 Report EXtended-MESSABE ...counrrmresenmmsmsesrtssusaninaimssssssssscassimsrsasscass 223
Appendix 6 Thresholds for the Generation of Estimational MTUs ccccovvnee 224
6.1 Thresholds for Complexity-Related MTUS .oeiveeiriirmisiiccnncinniienns 224
6.2 Threshoids for Length-Related MTUS cccoviiiinininicnniciiniisnsrine 226
Appendix 7 Rules Applied for Selecting a MOtIVAtION occviriinercinrnrerineessenareaens 229
Appendix 8 Typical Output of the Comprehension-Processes Module and
SENtENCE COMPOSET ...veereurucrcsermssssersesssssssssasitonsasmssensasusatarasss trassssssosysnsscsesess 236
8.1 A Linear EQUAtON ..ccocvrriinrmrsesssssnsniessansis s sissasscsss st srpanssssas oo 236
8.2 A Quadratic EQUAtON ...cevvevesriesemcnimirnninmneas sttt 240
8.3 A Third Degree EQUatiOn ...cccceeemeimmmiinmenmsisinensscnncisisns e 246
REFERENCES oo ceeeeivtstrreiesesertasssesssssensasssesansssassastossanssanassssssss sassonst besassenanss 251

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

LIST OF FIGURES

1.1: Text With MTUS .eivicceerrrcerenreressumisesassmsastsssnssssssnisnsnisssssssasnissonassassns
1.2: Text without MTUS ..ccovceicrcinrcnrnismmsesesstessseness e sns e sassamanasense
1.3: Output of the Tutoring SrateiStccermamrescrsisiimminssssssiaceees
1.4: Block diagram of an Intelligent Tutoring SYStEM ...ccveminriiiinenee:
2.1: Summary Table of Conjunctive Relations by Hallyday and Hasan ...
2.2: Summary of Meta-Technical Uterances ...
3.1: Block Diagram of FIGMENT ...oociimiiniieiicseis i
3.2: Sample Rule in Problem Solving Expertise Modulecooovvvunivicnnnns
3.3: Problem Solving Knowledge of the PSE Moduleooeviinicinnneees
3.4: Typical Output of the Problem Solving Expertise Module ..ccoveennne.
3.5: Sample Rule in Model of the Knowiedge of a Studentc.cccveen
3.6: Technical Part of Sample Qutput of the Tutoring Strategist
4.1a: Process for Generating a Permanent Focus-shift MTU for a Topic

4.1b: Process for Generating a Permanent Focus-shift MTU for an

EQUAON 1urvoveeureecureermenressaresassasssemsssssarsssstssssmssas st s e it s s

Fig.

4.1¢: Process for Generating a Permanent Focus-shift MTU for an

ATEEITIATIVE oveeeeeesseseeaarsemmeessssssessmsnnasssassetiessrnssnsssssssnsasasnnssissstasassnsnaestansssssssrnss

Fig.

4.1d: Process for Generating a Permanent Focus-shift MTU for an

AIZEDTAIC RUIE ooovrrrermeseim s sses sttt st

Fig.
Fig.
Fig.

4.2: Process for Generating a Temporary Focus-shift MTU ..o
4.3a: Process for Generating an Implementational MTU ...oooveiinieneenns

4.3b: Process for Generating an Implementational MTU for an Algebraic

o0 1 (-SSP S PRI TTYPIPRTTEPISITLIR LN ERERLAS A A A A A

Fig. 4.4: Process for Generating a Complexity-related MTU .o

Fig. 4.5a: Process for Generating a Length-related MTU oo

vil

page

12
24
36
39
42
46
48
51
56

66

67

69
73
76

81
86

Fig. 4.5b: Process for Generating a Length-related MTU for a Previous

Topic-length PrediCON ...c.eucinescnsmecressmmmnessmssisen s cstsans s s e
Fig. 4.6: Motivation Relations in the Context Hierarchyccomiirinrncens.
Fig. 4.7: Process for Generating a Motivational MTU .cc.covennmmrimsimnnsinsinsene:

Fig. 4.8: Sample Input to Comprehension-Processes Module ..cooviiiiiiiennrinnns

Fig. 4.9: Requirement-codes for Knowledge-Acquisition MTUs for Sample

IDUL eeevreeeencesancesesenrresnasess et eess s basssaes s e et s saERns
Fig. 5.1: Sample Input to Comprehension-Processes Module .co.ovcvnniivininnnns
Fig. 5.2: Completed MTU Requirement-codes for Sample Input ...ooocereeeen.
Fig. 6.1: Segment of the Phrasal DICHONATYcooveveimmrniecmsimimnisins s
Fig. 6.2: Hierarchy of Generators in the Sentence COMPOSET ...ocvveecsceinsruns:

Fig. 2app.1: Input Sequence of Technical UHETaNCesooevvessiceminnmrnnisis

Fig. 6app.1: Selected Values of Talent, Relative-Expertise and Complexity

Fig. 6app.2: Thresholds Used to Generate Length-related MTUS ccoeiirieene

Fig. 6app.3: Some Values of Diligence and Length ..ooorvvnccnvcicinininnnnen:

viii

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my advisor, Judea Pearl, for his
insightful comments, the many hours of discussion he devoted to this research in its
formative stages, and for his guidance and encouragement through all the stages of

this dissertation.

Sincere thanks are extended to the dissertation committee members, Richard J.
Shavelson, Kirby A. Baker, Michael G. Dyer and Daniel M. Berry for their useful
comments. In particular, I would like to acknowledge Daniel M. Berry's stylistic

suggestions and his advice in formatting and editing this document.

I am also indebted to Leonard Kleinrock, who generously shared with me his
computational facilities supported under grant MDA-903-82-C-0064. 1t was due to
these facilities that the process of programming this system was as painless as possi-
ble. Lillian Larijani deserves special thanks for going out of her way to heip in vari-
ous administrative matters; and I thank Tovah Hollander and Lance Lee for perform-

ing stylistic improvements to parts of this dissertation.

An enormous THANKS goes to my husband, Moshe, for his unwavering sup-
port and understanding throughout my studies, and for helping in every possible way
during these last hectic months. Last but not least, [thank my children, Jenny, Deb-

bie, Ashley and Wendy, for being so cute.

ix

This research was supported in part by the National Science Foundation grants

IST 81-19045 and DCR 83-13875.

VITA

February 25, 1955 Born, Lima, Peru

1976 B.Sc., Technion - Israel Institute of Technology

1976-1977 Teaching Assistant, Technion - Israel Institute of Technology
1977-1979 Research Assistant, IBM Israel Scientific Center

1979 M.Sc., Technion - Israel Institute of Technology

1982-1986 Research Assistant, School of Engineering

University of California, Los Angeles

PUBLICATIONS AND PRESENTATIONS

Zukerman L (1979), Development of a Data Base for Agricultural Planning. Master
Thesis, Technion - Israel Institute of Technology, Haifa, Israel,
August 1979.

Zukerman 1. and Rodeh M. (1979), Compaction in a Collection of Buddy Systems.
Technical Report 074, IBM I[srael Scientific Center, September
1979.

Zukerman I. (1981), The Subsumption Problem for Relational Databases. Quarrerly,
Computer Science Department, University of California, Los
Angeles, Spring 1981.

Zukerman 1. and Pearl J. (1984), Listener Model for the Generation of Meta-
Technical Utterances in Math Tutoring. Technical Report CSD-
840064, Computer Science Department, University of California,
Los Angeles. Also presented at the Conference of the Southern
California Artificial Intelligence Society, October 1934.

Zukerman I. (1985), A Functional Taxonomy of Meta-Content Utterances. In
Proceedings of the First Annual Artficial Intelligence &
Advanced Computer Technology Conference, pp. 1-7, May 1985.

Zukerman 1. and Pearl J. (1986), Comprehension-Driven Generation of Meta-

Technical Utterances in Math Tutoring. To appear in AAAI-86
Proceedings, August 1936.

xi

ABSTRACT OF THE DISSERTATION

Computer Generation of Meta-Technical Utterances
in Tutoring Mathematics
by
Ingrid Zukerman
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1986
Professor Judea Pearl, Chair

A technical discussion often contains conversational expressions like: ‘‘how-
ever,”” ‘‘as I have stated before,”” ‘‘next,’’ etc. These expressions, denoted Mera-
Technical Utterances (MTUs), carry important information which the listener uses to
speed up the comprehension process. The goal of this research is to understand the
semantics of text containing MTUs, the mechanisms by which people generate them,
and the processes required for generating them mechanically. To achieve this goal, we
model the meaning of MTUs in terms of their anticipated effect on the listener
comprehension, and use these predictions to select MTUs and embed them in a com-
puter generated discourse. This paradigm was implemented in a computer system
called FIGMENT, which generates commentaries on the solution of algebraic equa-

tions.

We classify MTUs according to their function, as seen by the speaker, in

transmitting the subject matter to the listener, and distinguish among three main types

of MTUs: (1) Knowledge Organization, (2) Knowledge Acquisition, and (3) Affect
Maintenance. Knowledge-Organization MTUs reflect the organization of the material
in the speaker’s mind (e.g., ‘‘however,”” ‘‘in order to’"), Knowledge-Acquisition
MTUs provide information that enables the listener to prepare adequate knowledge-
assimilating facilities (e.g., ‘‘we shall now introduce,”’ *‘as I have stated before’’),
and (3) Affect-Maintenance MTUs convey the affective impact of an event (e.g.,
“‘fortunately’”), and foster a positive attitude in the listener (¢.g., *1 shall go over this

explanation again’’).

This classification governs the generation of MTUs in the following manner:
Knowledge-Organization and some Affect-Maintenance MTUs are generated directly
from the organization of the system’s knowledge of the subject matter; Knowledge-
Acquisition MTUs and the majority of Affect-Maintenance MTUs are generated by
consulting simplified models of some mental processes which the user presumably
activates upon encountering a technical message. For example, determining the con-
text in which a technical message should be processed, building up motivation to

attend to the next item of discourse, and so on.

The main contribution of this dissertation is the presentation of an explicit
model for the generation of MTUs. This model can be incorporated into a text-

generation facility to enable the generation of fluent and coherent discourse.

xiii

CHAPTER 1

Introduction and Overview

In the process of generating discourse, speakers and writers must decide what
to say and how to present the information effectively. A speaker performs the first
task by selecting appropriate items from his body of knowledge and ordering them
into a coherent unit. In order to perform the second task, he determines which elocu-
tionary acts to perform, such as asking a question or giving an explanation. He then

decides which words to use, and how to group them into sentences.

Often we find not only the bare facts in texts, but also expressions like ‘‘how-
ever,” ‘‘as I have stated before,”” “‘next’’ or ‘‘generally speaking.’’ It is our conten-
tion, that these expressions, denoted Meta-Technical Utterances (MTUs), are not
included in the text merely for decorative purposes, but carry information which has a
significant impact on making the subject under consideration better understood.
Therefore, they are especially useful in situations where the listener is not familiar

with the information presented by the speaker, as in a tutorial setting.

Our claim of the importance of MTUs is supported by Farnes (1973), Winter
(1968 and 1977), Reichman (1978 and 1984) and Hoey (1979), who conclude that the
presence of MTUs can signpost what kind of information is to be presented in the fol-

lowing sentence or sentences.

Let us illustrate the importance of these expressions by means of two com-
mentaries presented in Figs. 1.1 and 1.2, on the same algebraic equation. Both contain

the same information items; however, only the first commentary contains MTUs.

Now, let’s consider a third degree example:

X-x2-x+1=0

There is a formula for solving third degree equations,
but we haven’t covered it in class. So we will have
to try another approach. The most useful approach is
to try to apply the factor theorem, so that we can
reduce the probiem to the solution of a linear and a
quadratic equation.

Exemplify factoring

Fig. 1.1: Text with MTUs

x-x2-x+1=0

There is a formula for solving third degree equations.
Apply the factor theorem. Reduce the problem to the
solution of a linear and a quadratic equation.

Exemplify factoring

Fig. 1.2: Text without MTUs

A student who is not familiar with the subject of third degree equations could
completely misunderstand the text without meta-technical utterances. He might think

that applying the factor theorem is part of the formula for solving this type of equa-

tion, and that the next operation consists of reducing the problem to the solution of a

linear and a quadratic equation.

The presence of MTUs has a special significance in a machine generated text,
beyond speeding up the user’s comprehension process. Since the user receives a tan-
gible and frequent reinforcement of the machine’s knowledge about the state of the
discourse, he is provided with a perception of an intelligent interlocutor, thereby

increasing the trustworthiness of the system.

Thus, the first goal of this research is to understand the semantics of texts con-
taining MTUs, including the mechanisms by which people generate them and the
processes required for generating them mechanically. To achieve this goal, we model
the meaning of meta-technical utterances in terms of their anticipated effect on a

listener’s comprehension.

The prevailing paradigm in Artificial Intelligence is that adequate models of
mental processes should be expressed by computer programs and evaluated by their
performance, i.e., a computer program reflecting a model should be able to approxi-
mate human behaviour. Therefore, a second goal in this research is to weave MTUs
into machine-generated discourse in order to achieve a natural effect. As a prere-
quisite for the attainment of this goal, we need to find out what kind of knowledge

should be incorporated into a language-generation system.

We have selected the domain of high-school algebra as a testbed for our ideas,
and have implemented some components of an Intelligent Tutoring System called

FIGMENT to generate commentaries on the solution of algebraic equations.

In the following section we explain the reason for choosing the domain of
high-school algebra. Next, we present a sample of text generated by the implemented
system. In section 1.3 we review the available text generation techniques with
emphasis on their ability to produce text containing MTUs, and in section 1.4 we con-
sider Tutoring Systems as a special case of text-generation systems. We conclude this

chapter by presenting an overview of this dissertation.
1.1 Why Algebra?

The first reason for choosing this knowledge domain is its importance. Skill
in manipulating algebraic equations is essential to studies in the sciences and in techn-
ical subjects. This material is usually taught in a ““follow me’’ fashion (Davis 1974),
where a teacher works out a few examples, and then the students are expected to solve
similar questions. This approach to tutoring algebra does little to develop a student’s

problem-solving skills.

Although a very talented student may be able to learn algebra by following the
solution of equations, a mediocre student’s performance improves when the
mathematical symbols are accompanied by explanations in ordinary English (Watkins
1977). However, if these explanations are presented in a tedious and repetitive style, a
student may become increasingly annoyed with the teacher and bored. Thus, an effec-
tive Intelligent Tutoring System should present the material and exercises in a

pedagogically sound manner and express itself with an appealing style.

Finally, a rather pragmatic reason for choosing the domain of high school
algebra is the easy availability of experts in this area among the UCLA faculty and

students.

1.2 Input and Output of FIGMENT

We present a stylized version of a sample input to FIGMENT’s text-
generation components in Fig. 1.3, to illustrate the kind of behaviour it attempts to
emulate (the actual input appears in Appendix 8.3). From this input the implemented

system produces the following text:

Let us look at a rather interesting topic, namely third degree equations,
which is also challenging. Unfortunately, we shall not examine a general
technique for solving equations in this subject. However, we can solve
certain types of third degree equations by factoring out common factors, or,
alternatively, applying the appropriate factorization formula. Here is

an equation:
3_,2 0

x-x*-x+1=

First, since x2 is a factor common to the first and second terms, we factor
it out. As you know, we perform this operation hoping to get a factor

common to the rest of the terms. Through it we get the following result:
x2(x-1)-x+1=0 #

Next, we rewrite -x+1 as -(x-1), arriving at the result we were hoping for:
x*¥(x-1) - (x-1) =0

Afterwards, we factor out x-1, yielding:

x-Dx2-1)=0

We continue by applying the factorization formula a? - b2 = (a+b)(a-b)

to x2-1, arriving at the following result:
(x-1)%(x+1) =0

We obtain the solution by solving separately for each factor.

TOPIC: third-degree

METHOD: general specific

EQUATION: x> -x*-x+1=0

(ALTERNATIVE 1)

RULE: factor out x2 from terms 1 and 2

PATTERN: x2 is a factor common to terms 1 and 2
EXPECTATION: result has common factor with rest of terms
RESULT: x¥(x-1)-x+1=0

RULE: rewrite -x+1 as -(x-1)

RESULT: x2(x-1) - (x-1)=0

RULE: factor out x-1

RESULT:. (x-1(x2-1)=0

RULE: apply. factorization formula a? - b? = (a+b)(a-b)
RESULT: (x-12(x+1) =0

CONTINUE: product of factors

ra

Fig. 1.3: Stylized Version of Sample Input to FIGMENT’s
Text-Generation Components

1.3 Text Generation Techniques

The issues involved in the generation of MTUs have not been addressed,
although a continuum of text generation techniques is already in general use. At one

end of the spectrum, a previously prepared or canned text is displayed. At the other

end, we find text produced by a direct translation of knowledge structures (Mann

1981). The middle ground is covered by text generation techniques which store whole

phrases (possibly parametrized), and combine them by means of rhetorical rules

(Kukich 1983).

The simplest and most commonly used way to have a computer system pro-

duce text is for the implementors of the system to figure out in advance what sort of

English output will be required and then store it as text strings. The computer merely

displays portions of text that has been stored to match a given conversational situa-

tion. Clearly, with this technique, the generated text can be very elegantly written.

However, the technique has several drawbacks.

iv.

Lack of consistency.
Revision of a knowledge structure supporting the program is not automatically
accompanied by appropriate changes in the text. Therefore, there is no guaran-

tee that the program does what it says it does.
All questions and answers must be anticipated.

Lack of closure.
The computer does not have a conceptual model of what it is saying. As far as
the computer is concerned, one text string looks like any other. Therefore the

task of generating text does not become easier as more text is generated.

Insufficient individualization.
Because the text is prepared in advance, it is not tailored to the particular
needs of each student. This situation can be partially remedied by inserting

slots into the canned text that can be filled out by different words according to

the circumstances. This strategy, however, can only account for a small frac-

tion of the cases that arise in a dialogue.

Poor connectivity between sentences.

Strings of text have to be physically juxtaposed in cases where it is necessary
to generate more than one instance of canned text. This often results in a rather
awkward discourse, since the machine lacks a representation for the relation-

ship between the various sentences in the text.

The opposite approach for providing English output produces text by translat-

ing knowledge structures of the program directly into English (Davey 1979, Mann

and Moore 1980, McDonald 1980, McKeown 1982, Swartout 1982, etc).

Mann et al. (Mann 1981) assert that a competent text generation facility must

include the following four components:

idi.

iv.

A comprehensive, linguistically justified grammar.

A knowledge representation formalism that can encode diverse kinds of infor-
mation — This formalism has to suitably represent knowledge like: time,
space, events and actions, cause, uncertainty, obligation and modality, etc, in

addition to the subject of the discourse.

A model of the reader — In order to generate acceptable text, the generator
must take into account the reader’s knowledge. Therefore the model of the
reader has to contain information that includes what is obvious and what has

already been told.

A model of the discourse structure and control — We need to model the

interaction between the sentences in text, in order to generate multisentential
text. At a higher level, sequences of sentences and paragraphs must be organ-

ized in a principled way.

Since the structures being translated are the same ones used in the program’s
reasoning process, consistency can be ensured. Closure can be realized, because
transformations are written to handle large classes of knowledge structures. The prob-
lem of individualization can be tackled by taking into consideration the variables
which make each piece of dialogue unique, such as the model of the reader or the
record of the ongoing dialogue. Finally, discourse-generating strategies can be applied

to the knowledge structures in order to attain the desired connectivity of sentences.

The following example (from McKeown 1982) illustrates the process of gen-
erating English sentences by translating the knowledge structures of the program. A
U.S. Navy toy database, which contains information about vehicles and destructive

devices, generates the following answer to the query “DEFINE SHIP"’:

The ship is a water-going vehicle that travels on the
surface. Its surface going capabilities are provided
by the DB attributes DRAFT and DISPLACEMENT.

The first step in answering this query is to partition off a subset of the
knowledge base that contains information relevant to the question. Next, the resulting
subset is matched against predicates that represent the types of information that could
appear in a definition — identification, constituents, evidence of a fact or analogies.
In this example, the matched predicates are the identification predicate (which

accounts for the first sentence), and the evidence predicate (which accounts for the

second one). In the final stage, a tactical component determines the surface ordering
of the constituents of these propositions and the grammatical constructs to be used.

This compbnent then translates the resulting propositions into English by means of a

grammar.

Even though this approach solves the problems present in the canned text tech-
nique, it introduces some problems of its own. Since the transformations performed
on the knowledge structures are relatively simple, the quality of the text depends to a
great extent on the structure of the knowledge. This requires the knowledge itself to
be structured, so that it is readily understood, which is not always easy to accomplish
in certain domains. Moreover, systems employing this technique have to command
considerable linguistic knowledge in order to produce high quality text. Thus far, the
available systems have produced text that, although readable, is not graceful. This is
due partly to the scarcity of MTUs. In fact, the above mentioned systems have pro-
duced few MTUs like “‘however,”’ ‘‘or,”” “‘next’’ or ‘‘therefore,” which directly
reproduce the speaker’s organization of the subject matter. However, they do not gen-
erate MTUs which reflect the state of the dialogue or the relationship between the

speaker and the listener.
1.4 Tutoring Systems

Tutoring Systems, also known as Computer Assisted Instruction (CAI), can be
viewed as a class of text generation facilities in which the communication is two-way,

as in a dialogue between a teacher and a student.

Two kinds of tutoring systems are in general use. In the first kind, which is

commercially available, the computer functions as a page turner (Basic Algebra, from

10

Dorsett, Educational Systems Inc., 1981). Large chunks of canned text are presented
interspersed with questions to which the user may answer either YES or NO. The

material does not vary on the basis of a student’s performance.

In the second kind of tutoring systems, the material presented depends on the
user’s responses. As in any text generation situation, this material can be either
canned text or text generated by direct translation of knowledge structures. In the
canned text type of system, a group of teachers attempts 1o anticipate every wrong
response, specifying branches to appropriate remedial material, based on their ideas
about the student’s misconceptions (Bork 1981). Systems generating text by direct
translation of knowledge structures have, as the canned text system, a representation
of the subject matter they teach. However, unlike the former system, direct translation
systems are able actually to diagnose student’s misconceptions from his mistakes and
respond to his individual needs. This type of system is known in the literature as
Intelligent CAI (ICAI) or Intelligent Tutoring Systems (ITS).

1.4.1 Intelligent Tutoring Systems

Intelligent Tutoring Systems have been developed in several domains of
knowledge in the past few years, including medical diagnosis, problem-solving skills
and electronic trouble shooting. These systems feature diverse methods of instruction,
taking the form of coaches, like WEST (Burton and Brown 1981) and WUMPUS
(Goldstein 1981); consultants, such as A Consultancy System for MACSYMA
(Genesereth 1978, 1981); problem solving monitors, like GUIDON (Clancey 1979,
1981a-c); and laboratory instructors, like SOPHIE (Brown, Burton and deKleer
1981).

11

Most Intelligent Tutoring Systems contain all the modules present in a general
text generation facility, plus additional components specific to the tutoring environ-
ment. The first four modules we will consider, are common to text generation and
tutoring systems, while the last two modules are particular to tutoring systems only

(see Fig. 1.4).

Model of Problem
the Student’s 3 Solving
Knowledge Expert
Tutoring
Strategist
———
Response Problem
Analysis and 3
Error Detection Generator

Discourse
Generator

o

Fig. 1.4: Block diagram of an Intelligent Tutoring System

i. Problem Solving Expert.
This module contains the knowledge that the system tries to impart to the stu-
dent, which is in our case a few chapters of high-school algebra. The
knowledge representation formalisms of an ITS have to be able to encode the

distinctive features of the subject, e.g., to describe an equation, the purpose of

12

iv.

a step in the solution, or the correctness of an operation.

Model of the Student’s Knowledge.

This module contains the information required by a general text generation
system, namely what is obvious, what has already been told, etc. The two
methods generally used in order to model the knowledge of the student are the
overlay method in which the student model is a subset of the expert’s
knowledge base (Goldstein 1981), and the differential model that abstracts
how the student’s behaviour is critically different from that of the expert (Bur-

ton and Brown 1981).

Tutoring Strategist.

This module specifies how the system presents its material to the student. It
contains pedagogical rules for deciding which material to present and in what
order. Thus, it performs the high-level discourse-organization function men-

tioned in the Models-of-the-Discourse component of a text generation facility.

Discourse Generator.

This module is used for generating the explanations, questions and remarks
presented by the system during the dialogue with the student. In order to gen-
erate text that is not awkward or misleading, this module should model the
interaction between sentences, performing the low-level function of the
Model-of-the-Discourse component. One of the results of this model is the
generation of appropriate MTUs. In addition, this module should be able to
control a variety of language effects at the sentence level. These effects are

produced by the arrangements of the words used.

13

V. Problem Generator.
This module presents problems (exercises and examples) to the student. It usu-
ally accepts specifications regarding the level of difficulty of the problem, the

elements of the material to be included in the problem, etc (Sleeman 1981b).

vi. Response Analysis and Error Detection.

In this module the user’s response is analyzed in order to determine whether it
is correct or not. If incorrect, this module should be able to trace the user’s
misconception responsible for the mistake. In the subject of algebraic equa-
tions, error detection has been performed by means of mal-rules. Given a set
of rules used to solve an equation, a mal-rule is a perturbation of a good rule,
which students use instead of the good rule (Brown and VanLehn 1980, Slee-
man 1981a, 1982).

Each of the above mentioned systems emphasizes some of the aspects of the
overall teaching system and neglects others. However, they all concentrate on convey-
ing the curriculum material, mostly disregarding the manner in which this material is
delivered. All the tutoring systems have some provision for encouraging the student,
even the ones that present canned text. WUMPUS, WEST and GUIDON also feature
tutorial rules for guiding the discussion and choosing explanations. But even in these
systems, the tutorial rules control what to say, not how to say it. No attempt is made
to tailor the generated text (as opposed to the material presented) to the student’s indi-
vidual needs, i.e., no variation is introduced into the text, the parts that deserve special
attention are not emphasized, a repeated mistake is not dealt with differently on each
occasion, etc. Thus, even though the generated text is readable, it is rather tedious and

stilted.

14

1.5 Overview of this Dissertation

In this research we discuss the knowledge required by a text generation system
and the processes it activates in order to generate discourse containing MTUs. Let us

now briefly describe the contents of this dissertation.

Chapter 2 presents a taxonomy of meta-technical utterances according to their
function as seen by a tutor in transmitting the subject matter to the student. This
classification distinguishes between three types of MTUs: (1) Knowledge Organiza-
tion, (2) Knowledge Acquisition, and (3) Affect Maintenance. Knowledge-
Organization MTUs reflect the organization of the material in the tutor’s mind, €.g.,
“next,’’ “‘however’’; Knowledge-Acquisition MTUs provide information that enables
a student to prepare adequate mental resources, €.g., “‘as I said before,”’ *‘let us con-
sider’’: and Affect-Maintenance MTUs inform a student of favourable and unfavour-
able events, e.g., ‘‘unfortunately,’” and contribute to maintaining his positive attitude,

e.g., ‘I shall go over this explanation again.”

Chapter 3 discusses the overall design of FIGMENT. This design enabies an
Intelligent Tutoring System to produce discourse which contains MTUs. We also
examine the strategic components of FIGMENT. These are the modules which deter-
mine the material to be presehted, namely the Problem Solving Expert, the Model of

the Student’s Knowledge and the Tutoring Strategist.

Chapters 4, 5 and 6 examine in detail the tactical component of FIGMENT,
namely the Discourse Generator. This module is divided into two sub-components,
the Comprehension-Processes Module, which determines the need for MTUs, and the

Sentence Composer, which organizes the output of the Comprehension-Processes

15

Module into paragraphs and sentences, and translates it into English.

Chapter 4 describes the generation of Knowledge-Acquisition MTUs and of
the Affect-Maintenance MTUs which are issued to maintain a positive attitude in a
student. The Comprehension-Processes Module generates codes which reflect require-
ments for these types of MTUs, by consulting simplified models of the comprehen-
sion processes of a student. These models simulate some metal activities performed
by a reader or listener upon encountering technical messages. In section 4.6 we
present a partial output of the Comprehension-Processes Module, and describe how it

was obtained.

Chapter 5 contains a detailed discussion of the generation of Knowledge-
Organization MTUs and of the Affect-Maintenance MTUs which inform a student of
the nature of the events under consideration. These MTUs are directly derived from
the organization of the knowledge of a tutor, and from the sequence of events which
took place while solving an equation. Section 5.6 contains a complete output of the
Comprehension-Processes Module, accompanied by a description of the manner in
which it was generated. It also features the text produced by the Sentence-Composer

for this output.

Chapter 6 describes the structure and operation of the Sentence Composer.
This module translates the technical messages and accompanying MTU requirement-

codes into English by using a phrasal dictionary and applying rhetorical rules.

Finally, chapter 7 discusses the importance of the ideas of this dissertation and

potential avenues for future research.

16

CHAPTER 2

Semantics of Meta-Technical Utterances

In this chapter we first present typical expressions used in math tutoring, and
focus on their MTUs. We then discuss linguistic research performed on the semantics
of meta-lingual utterances. Finally, we present a functional taxonomy of MTUs, on

which the design of FIGMENT is based.
2.1 Sample Expressions Used in Tutoring Algebra

The MTUs in the following expressions transmit information to improve a

student’s understanding of the algebraic operations and entities in question:

1. ‘“We shall perform algebraic expansion and then collect terms.”’
The MTU in boldface depicts a temporal relation, i.e., that the actions (alge-

braic expansion and term collection) must be performed sequentially.

2. “‘We cross-multiply in order to get rid of fractions.”’
The conjunctive expression ‘‘in order to’’ indicates that the latter portion of
the sentence contains the purpose for which the action described in the former

portion is performed.

3. ““We factored out (x-2), hoping to find a common factor with the rest of the
equation. Unfortunately, however, we have been unable to find such a fac-

tor.

17

These MTUs convey two types of relations. The word ‘‘hoping’’ signals that
the actions described at the beginning of the first sentence purport to achieve
the result described in the second part of this sentence, and that this result is

uncertain. ‘“Unfortunately, however’’ represents violation of these hopes.

““The following example illustrates"”’
This sentence declares that the sentence or group of sentences following it will

contain an instantiation of the general material presented earlier.
““An alternative way of solving this equation consists of”

“‘Incidentally, there is a general method for solving quadratic equations.”’
The MTU “‘incidentally’’ alerts the listener that the forthcoming sentence con-
tains a digression, i.e., that the focus of the discussion is about to shift tem-

porarily.

““You take the first two terms, namely 3x and x2, and”
The MTU “‘namely’’ indicates that the forthcoming list of elements is an

explicit paraphrase of the previous implicit description.

“‘Let us now consider the topic of linear equations.”
The expression in boldface indicates that discussion on a previous subject has

been completed, and that a different topic is about to be discussed.

“As I have said before, this type of equation is solved by”’
The MTU in boldface signals to the student that the tutor is aware of having

previously presented the forthcoming information.

18

10. ““The solution to this equation is quite complicated.”’
This sentence informs the student of a particular attribute of the equation in

question.

The MTUs featured in expressions 1-8 portray relationships between a forth-
coming sentence or group of sentences and preceding discourse, while the MTUs in
expressions 9 and 10 are associated only with forthcoming text. While most of the
MTUs presented in examples 1-7 have been thoroughly studied by linguists, MTUs

like the ones in examples 8-10 have been neglected despite their frequent use.
2.2 Overview of Related Research

The relations between clauses or predications have long been of interest to
linguists. As early as 1668, Wilkins devised a taxonomy of the English Language
which included conjunctions and conjunctive expressions such as ‘‘although,’’
“‘indeed,”’ ‘‘therefore’’ and ““for example’’ (see Appendix 1). His classification of

conjunctions is based on their function, e.g., interrogative, declarative, causal, etc.

Recent linguists have examined the relations in the English language from two
opposite points of view. Sweet, Winter, Quirk and Hallyday & Hasan have focused on
conjunctions, also denoted surface conjunctions; whereas Grimes and Longacre have
investigated the deep structures underlying interclausal relations, e.g., causal, tem-
poral, illustration, introduction, deixis, etc. The English representation of most of
these structures includes surface conjunctions and conjunctive expressions. However,
some deep structures do not feature conjunctive expressions. For instance (from Lon-

gacre 1976):

19

AWARENESS ATTRIBUTION
SPEECH ATTRIBUTION
DEIXIS (INTRODUCTION)
DEIXIS (IDENTIFICATION)

“‘John knows that Mary is coming’’

“‘John said ‘Mary is coming’”’

““There was a man. The girls gave him food’
“‘He bought an apple and that was what he ate”

In 1891, Sweet investigated the function of conjunctions and half-conjunctions

(ie., independent adverbs such as “nevertheless’’ or ‘‘still’”), and classified them

according to their role as sentence connectors. Taxonomies performed by contem-

porary linguists have not strayed far from Sweet’s original classification, a fact that

prompts us to examine Sweet’s taxonomy in detail and use it as a basis for further dis-

cussion.

ii.

iv.

Affirmative or copulative.
These conjunctions connect without implying any special kind of connection,
e.g., ‘‘and,’” ‘*‘also,”” ‘‘too.’’ More emphatic forms include: ‘‘both ... and,”

““not only ... but,”’ *‘furthermore,” ‘‘moreover,”” “‘now’’ and “well.”’

Alternative.
The chief alternative conjunction is ‘‘or,”’ whose emphatic form is “‘either ...

»

Qr.

Negative.

3

The chief negative conjunction is ‘‘neither ... nor.

Adversative.

These conjunctions add something which is unexpected, does not follow natur-
ally from what has just been said, or seems to halt the natural progress of the.
narration. Some conjunctions and half-conjunctions used as adversatives are:
“but,’’ *‘still,”’ ‘‘nevertheless,’”’ “however,’”’ ‘‘at the same time’’ and ‘“‘in

spite of that.”

20

vi.

viii.

Concessive.

These conjunctions imply that the forthcoming sentence is followed by one
with adversative meaning, €.g., ‘‘though ... yet,”” “‘although ... but.”” Whereas
adversative conjunctions refer backwards, concessive conjunctions refer for-

wards.

Hypothetical.

The chief hypothetical conjunction is ‘‘if.”’ Other hypothetical conjunctions
include “in case,”” ‘‘suppose,’’ ‘‘supposing that”’ and ‘‘provided that.”’
““Unless’’ which equals *“if not,’”’ is a hypothetical negation. A hypothetical
difference is expressed by ‘‘otherwise’’ (meaning: if we act differently). The
correlative pair ‘‘whether ... or’’ expresses an alternative hypothesis, as in:
““He will have to do it, whether he likes it or not.”” Hypothetical concession
is expressed by ‘‘even if’”’ (e.g., ‘‘Even if he is mistaken, you need not tell
him s0’*); hypothetical comparison is expressed by *‘as if’”” (e.g., “He started

as if he had been shot’’).

Temporal.
These conjunctions include ‘‘when,”” “‘as,” ‘*while,”’ ‘‘before,’’ ‘‘after,”’
“‘since,”” ‘“‘until’’ and ‘‘till.”’ Some temporal conjunctions which express

immediateness are ‘‘directly,”” “‘as soon as,’’ ‘‘just as,”’ *‘just after.”’

Causal.
These conjunctions are subdivided into three classes: cause (e.g., ‘‘because,”’
“for,’”’ ‘‘since,”’ ‘‘as’’), effect (e.g., ‘‘therefore,” ‘‘so,”’ ‘‘then,”’ ‘‘accord-

1y id

ingly,” “‘consequently’’) and purpose (e.g., *‘in order (that),”” “'so that ...

not’’).

21

Winter (1968), Quirk et al.(1972) and Hallyday & Hasan (1976) also classified
interclausal relations according to the semantics of surface conjunctions and conjunc-
tive expressions. The classification arrived at by Hallyday and Hasan is the most
refined and complete of the three. They considered types of conjunctive expressions
similar to the ones reviewed by Sweet, and devised a classification scheme composed
of four main categories. Additive contains Sweet’s affirmative and alternative
categories; Adversative collapses Sweet’s adversative, concessive and hypothetical-

difference categories; Causal and Temporal.

In addition, they distinguished between relations inherent in the phenomena
under consideration, and those in the communication process between the speaker and

listener (external vs. internal). The following example illustrates these concepts:

a First he switched on the light. Next he inserted the key into the lock.
b. First he was unable to stand upright. Next he was incapable of inserting the
key into the lock.

In (a) two time-related events are described, whereas in (b) there are no actual
events, but only linguistic events, for the time sequence is in the speaker’s organiza-

tion of his discourse.

Hallyday and Hasan further refined their categories, with internal
subclassifications such as: afterthought (‘‘incidentally,’”” ‘‘by the way’’) and
exemplificatory (*“for instance,”” ‘‘thus’’) in the additive cdtegory; avowal (“‘in fact,”

LR XY

“‘actually’"), correction (*‘instead,”” “‘rather’’) and dismissal (“*in any case,”’ ‘‘either
way’’) in the adversative category, etc. They also presented other cohesive items

which are not part of any of the conjunctive relations identified in their classification:

22

“now,’’ ‘‘of course,”’ ‘‘well,”” “‘anyway,”’” ‘‘surely’’ and ‘‘after all.”” A summary

table of their taxonomy is reproduced in Fig. 2.1.

The taxonomies of interclausal relations performed by Grimes (1975) and

Longacre (1976) are based on deep structures, rather than on surface conjunctions.

Some of the categories in their classifications do not contain surface conjunctions, and

will not be addressed here.

Longacre’s classification is based on the fundamentality of the interclausal

relations to the communication process. It contains the following main headings:

Basic, Elaborative and Frustration.

ii.

Basic relations are essential to the structure of discourse. These are none other
than the relations introduced by Sweet, but collapsed into four categories,
namely:

(1) Conjoining, .g., *‘and,’”” ““but,”” *‘except’’ and “‘as much as ... "

(2) Alternation, e.g., “‘either ... or”’;

(3) Temporal, e.g., *‘while,”” *‘as,”” “‘after’’ and ““then’’; and

(4) Implication, which includes Sweet’s causal and hypothetical categories.

Elaborative relations contain embellishments or rhetorical devices of the
language. They are separated into the following categories:
(1) Paraphrase, including generic-specific (*‘to be more specific’’), specific-

generic, summary, preview and negated antonym (*‘it is not hot, but warm’’);

'(2) Ilustration, including exemplification (‘‘for example’”) and simile (*‘she

acts like a baby’’);
(3) Deixis; and

23

External/Internal Internal (unless otherwise specified)
Additive | Additive, simple: Complex, emphatic: Apposition: Comparisoa:
Additive and, and also | Additive furthermore, | Expository ihat is, I Similar likewise,
Negative nor, and ... in addition, mean, in similartly, in
not besides other words the same
Alternative or, or eise Alternative altermatively |Exemplifi- for instance, way
catory thus Dissimilar on the other
Compiex, de-emphatic:
After- incidensaily,
thought _by the way
Adversa- | Adversative "proper’: Contrastive: Correction: Dismissal:
tive Simple yat, though Avowal in fact, Of meaning instead Closed in any case,
only actually, ax a rather, on the in either
Contain- but matter of fact contrary case, which-
ing 'and’ Of wording at least, ever way it is
Emphatic however, Contrastive (external): rather, [mean | Open-ended in any case
nevertheless, |Simple but, and anyhow, at
despite this Emphatic: howaver, on any rate
the other hand, however il is
al tha same
tims
Causal | Causal, general: Reversed causal: Condilional (also external): | Respective:
Simpie 30, then, hence, | Simple for, because | Simple then Direct in this
tharefore Emphatic in that case, respect, in
Emphatic consequently, in such an this regard,
because of thiz event, that with refer-
being s0 ence 1o this
Causal, specific: Causal, specific: Generalized under the Reversed otherwise, in
Reason Jfor this reason, | Reason it follows, on circumstances| polarity other re-
on account of this basis Reversad otherwise, spects, aside
this Result arising owt of | polanity under other from this
Result ay a resuit, in this circumstances
consequence |Purpose (o thirend
Purpose for this pur-
pose, with
_ this in mind
Temporal | Temporal, simpie Complex (external only): Iaternal temporal: 'Here and now’:
(external oniy): Immediate at once, Sequential ‘then, nex, Past up Lo now,
Sequential hen, next, thereupon secondly hitherto
after that Intertupted soom, aftar ¢ | Conclusive finaily, in Present at this
Simul- Just thanm, at tima comclusion point, here
taneous the same lims | Repetilive aext time, on Future from now
Preceding previowusly, anothsr Correlative forms: on, hence-
befors that occasion Sequential first ... next forward
Specific ~ next day,ax | Conclusive ... finally
Conclusive: hour later Summary:
Simple finally, atlast | Durative meanwhile Sum- 10 SUM up,
Terminal wntdl then marizing in short,
Correlative forms: Punciiliar a this briefly
Sequential first ... then moment Resumptive (o resume,
Conclu- atfirst ... in to return to
sive the end the point

Fig. 2.1: Summary Table of Conjunctive Relations by Hallyday and Hasan

24

(4) Attribution.

it. Frustration relations express the violation of expectations established by some
of the subclassifications in the Basic and Elaborative headings. The following

examples illustrate this category:

She is smart but pretty. (frustrated coupling)
They left but did not arrive. (frustrated succession)
He drives but does not look. (frustrated overlap)
Even if ... , I will (not) ... (frustrated hypothesis)
He was poisoned, but did not die. (frustrated cause)

I thought you knew, but you did not. (frustrated attribution)
Grimes’ first division is performed along the dimension of coordination and
subordination of rhetorical predicates. Nevertheless, most of his final categories

resemble those of Longacre.

Winter (1977) expands on these works by considering the notion of predicta-
bility of discourse structure in relation to the semantics of sentence connection. In
reference to the conjunctions and conjunctive expressions presented above, he states:
““One of the most important connective functions of this vocabulary is that the pres-
ence of one of its items in a particular sentence can signpost what kind of information
is to be presented in the sentence or sentences which immediately follow it. Such a

signposting function will be called anticipation.” 7

Farnes (1973) claims that the identification and use of /ink or function words,
such as “‘although,’” “‘rather,” ‘‘whereas’’ and *‘similarly”’ greatly aids ‘comprchen-
sion. In addition, he broadens the concept of signaling to include entire clauses and
sentences whose main function is the clarification of the discourse structure (e.g.,
““There are three points to consider’’). Finally, he notes that this signaling is usually

performed cataphorically, i.e., in advance.

25

Reichman (1978, 1984) focuses her research on the generation of coherent
dialogue. Her views are similar to Farnes’ regarding the importance of clue words and
some full phrases in signaling context ransitions. She expands the concept of signal-
ing to shifts in verb tense, changes in mode of reference (e.g., a shift from pronomi-

nalization to explicit reference signals a change of context), etc.

Finally, Hoey (1979) considers signals similar to the ones researched by
Reichman. However, he claims that they not only signal shifts in context, but also
indicate other functions of the discourse structure. For example, fhe first sentence of
any discourse is expected to provide a context for subsequent sentences; a problem is
signaled by verbs like *‘require’’ or *‘need to avoid.”” Furthermore, he points out that
problems of comprehension have been shown to arise from faulty or missing signal-

ing.
2.3 A Functional Taxonomy for the Generation of MTUs

The classification of Meta-Technical Utterances presented in this section is
based on their function as seen by the tutor in transmitting the subject matter to the
student. In our taxonomy we recognize three main functions of MTUs: (1) Knowledge
Organization, (2) Knowledge Acquisition and (3) Affect Maintenance? The system
whose design is outlined in the next chapter makes use of this taxonomy in order to

generate MTUs necessary for the formulation of fluent discourse.
2.3.1 Knowledge-Organization MTUs

At each point in time, the information residing in a student’s (or tutor’s) mind
can be visualized as a network whose nodes contain the individual information items,

and whose links contain the relations between the nodes (Anderson 1980, 1983). For

26

example, NODEI1 contains the purpose of NODE2, NODES3 is the cause for NODE],

or NODE4 contains the algebraic operation performed after NODE2. These relations

directly reflect a teacher’s knowledge about algebraic equations and about the events

which take place during the solution of an equation. The MTUs which express these

relations may also convey information about the state of the dialogue. Hence, they

roughly correspond to Hallyday and Hasan’s external/internal category (in Hallyday

and Hasan 1976) and Longacre’s basic heading (in Longacre 1976). The Knowledge

Organization function consists of transmitting these relations, and is performed by the

following types of MTUs:

ii.

Additive.
These MTUs signal additional elements in a list (*‘and,’’ ‘‘also,”” ‘‘nor’’);
availability of alternatives (*‘alternatively,” “‘or,”” *‘or else™); or realization

of expectations (‘‘indeed’’).

Adversative.

These MTUs signal violation of expectations (‘‘however,"’ ‘““nevertheless,”’
“‘although,’’ ‘‘but,’”” *‘despite this’’); dismissal, which is triggered when two
different paths in & solution arrive at the same pattern (“‘in any case,”” ‘‘either
way,”” ‘‘at any rate’’) or recognition, which is triggered when a well known
pattern, implicit in the equation, is recognized and made explicit (‘‘notice

that’’).

Causal.
These MTUs pertain to the knowledge about the subject matter, and signal the
reason for performing an operation (*‘for this reason,”” “‘on account of this,”’

““it follows,”’ ‘‘therefore,”’ ‘‘so,”’ ‘‘because of this’’); its purpose (‘‘for this

27

iv.

purpose,’’ *‘with this in mind,” ‘‘to this end’’); expectations (‘‘hopefully,”’
““expecting to get’’); resulr (“'as a result,”’ ‘“in consequence’”); means (*‘this

can be accomplished by’"), or correciness (*‘this works because’’).

Attributive.

These MTUs signal either a generality or particularity relationship of a group
of algebraic rules with the subject under consideration. A technique may con-
stitute a general way of solving equations of a given topic (‘‘in general,”
‘generally’”), or may be able to solve only certain types of equations (‘par-
ticular instances of,’ ‘‘certain types of’’). Even though this relationship
appears in the internal category of Hallyday and Hasan, we have added it to
the Knowledge-Organization MTUs because in the realm of algebra the gen-
erality or particularity of a technique does not depend on the status of the

conversation, but on its applicability to a topic or type of equation.

Temporal.
These MTUs signal sequence (‘‘then,” “next,’’ “‘after that,”’ ‘‘first ... next,”’
““finally,”’ ‘‘previously’”), or partial sequence (‘‘at the same time’’). They

refer to the events which occur during the solution of an equation.

The reader will note that this taxonomy contains some changes with respect to

Hallyday and Hasan’s classification (see Fig. 2.1). Due to the conditions imposed by

the domain of algebra we have added a relation of realization-of-expectations to the

additive category and the recognition relation to the adversative heading. We have

also added the attributive classification, and have classified the dismissal relation as

external, since it is directly derived from the solution of an equation.

28

The reader will also note that there exist situations in which the distinction
between temporal MTUs and certain additive MTUs may become fuzzy. For instance,

consider the following sentences:

1. ‘““We remove parentheses. Next we collect terms,’’ and

2. ““We remove parentheses and collect terms.”’

The first sentence contains a temporal MTU, while the second one features an
additive MTU. Nevertheless, both sentences convey the same meaning, namely a tem-

poral relationship.

Whereas the values of the above mentioned relations would generally depend
on the solution to each particular equation, most of the relations in the causal category
are inherent in the solution methods and do not vary from equation to equation. For
example, each method has a purpose, a pattern or reason for applying it, a correctness
proof, etc. Thus, the knowledge required for commenting on the causal aspects of the
solution of equations should preferably reside in a module that contains the expertise
about strategies for solving equations. We call this module a Problem-Solving Expert

(see section 3.1).
2.3.2 Knowledge-Acquisition MTUs

MTUs that facilitate Knowledge-Acquisition are related to the interaction
between the teacher and the student and to the state of the discourse, rather than to the
subject matter itself. They ease the assimilation of the subject matter by alerting the
student to prepare adequate mental resources. In the context of tutoring algebra, the

Knowledge-Acquisition function is performed by the following types of MTUs:

29

Motivational.

These MTUs are often used by a teacher to motivate a student to listen to the
forthcoming technical utterance. For example, if a new method is to be taught,
the tutor might say: ‘“This method is very expeditious.’’ If a student has to
practice the same type of equation many times, the teacher might say: ‘“Third

degree equations are rather difficult and demand lots of practice.”’

Focal.

A student generally attempts to process a forthcoming technical utterance in
the currently active focus space (Grosz 1977, 1979). To provoke a change in
the active focus space or to close an open focus space, a teacher must present
the student with an MTU to this effect. For example, the focal MTU “‘Let us
now consider the following equation’’ will close the focus space correspond-
ing to the previous equation and open a new focus space for the next equation.
In addition, the MTUs corresponding to Sweet’s hypothetical category signal
alternatives that should have been artempted (**1f you had ... you would have
... ’’) or mistakes that could have been avoided (“‘Instead you ... ”’). Tem-
porary focus shifts are signaled by MTUs like “‘incidentally’’ or ‘‘by the
way.” In terms of the above-mentioned network analogy, focal MTUs create a

space to contain a forthcoming sub-net.

Categorical.

To clarify the relationship between a forthcoming technical .utterance and a
specific item in active focus, a tutor might say: ““Let’s take the first term on
the right hand side, namely x3(x - 3),”" The MTU “‘namely’’ alerts the

listener to the fact that the symbolic description paraphrases the preceding

30

iv.

positional description and is not to be added to the first term on the right hand
side. Categorical MTUs are included in the taxonomies presented in Hallyday
and Hasan’s internal classification (in Hallyday and Hasan 1976) and in
Longacre’s elaborative heading (in Longacre 1976). Some types of MTUs
which belong to this subclass are: paraphrase (‘‘in other words’’); specific-
generic (‘‘more generally’’); generic-specific (‘‘to be more specific’’);
exemplification (‘‘for example’’); and avowal, which signals that the forth-
coming technical utterance contradicts what the current state of the dicourse
would lead us to expect (‘‘as a matter of fact,” “in fact’’). These MTUs
specify the manner in which a student should use the information in the forth-
coming technical utterance to update the information featured in the previous

one.

Implementational.

These MTUs guide the selection of a computational activity required for
assimilating the technical utterance that follows. We identify two main activi-
ties: adding an item to one’s knowledge pool and verifying the workings of
existing knowledge for possible revision. For example, if the tutor wishes a
student to use the forthcoming statement to verify existing knowledge, he
should signal his intent with an MTU like: *‘As I have stated before, since
x-3 is a factor common to ... **; or if the student should update a pattern for an
equation, the tutor might say: ‘“This equation is similar to'... .”’ On the other
hand, to prepare a student for learning a new subject (i.e., transfer to addition

mode) a teacher might say: ‘*We shall now consider a new type of equation.”’

31

V. Estimational.
These MTUs inform the student that the forthcoming technical utterance is of
unusual length and/or complexity. They indicate the processing time and com-
putational power the student should prepare to process the forthcoming techni-

LR]

cal utterance. Examples are: ‘“This equation is rather straightforward’’ or

““The following method entails several computations.”’

In order to illustrate the importance of these Knowledge-Acquisition MTUs,
let us examine the following imperfect discourse:
““The method of completion to square for solving quadratic equations
works as follows™'
... description of completion to square method ...
... examples of application of this method ...
““In order to perform completion to square we have to execute the following steps'’

... description of completion to square method ...

The dissonance in the preceding discourse stems from the repetition of
preparatory directives in the first and fourth lines. The first time the completion to
square method is introduced, the MTU “The method of completion to square ... works
as follows'’ performs the dual role of establishing our expectations for receiving new
knowledge and of signaling that the forthcoming technical utterance is a description
of a method already in active focus. The MTU in the fourth line repeats the directives
given first, even though their English representations differ. We again prepare our-
selves to add the method description to our knowledge pool. But upon discovering
that this information is already in our knowledge pool, we experience the discomfort-

ing feeling that the discourse generator has no recollection of previous activities.

32

Notice, however, that had the fourth line been replaced by ‘‘Ler’s go over the method
of completion to square again,” the learning process would be much smoother; we
would prepare to use the incoming information for verifying already existing

knowledge, instead of treating it as new information to be added on.

This example supports the claims made by Hoey, Farnes and others (see sec-
tion 2.2) regarding the adverse effects of the improper usage of MTUs on the learning
process. We need a module that represents the influence of both technical and meta-
technical utterances on the listener’s mental activities, in order to generate a commen-
tary which includes Knowledge-Acquisition MTUs. This module would then inspect
the technical utterances about to be issued, determine their effect on the comprehen-
sion processes of the listener, and generate adequate Knowledge-Acquisition MTUs.

We shall call this module Comprehension-Processes Module (see Chapter 4).

3.3.3 Affect-Maintenance MTUs

One of a tutor’s goals is to teach a student which algebraic operations and
results are considered favourable and which are considered unfavourabie. In addition,
a tutor wishes the attitude of a student to remain positive throughout the session. To
achieve these goals, a tutor may be required to use Affect-Maintenance MTUs. Since
these MTUs have no direct role in signaling inter-clausal relations, they have been
neglected in the taxonomies reviewed in section 2.2. Nevertheless, it is hard to dispute
their importance in a tutoring environment. We divide these MTUs into two subc-

lasses according to their goals.

i, Affect-Transference.

These MTUs prepare a student for a forthcoming technical utterance which

33

might have an affective impact. Examples of these MTUs are ‘unfortunately’’
and ‘‘fortunately.”” For example, if the teacher says: “‘Unfortunately, the
only way of solving this equation is to remove parentheses and collect terms,’’
the student should understand that this method of solution is considered
undesirable and should be used only as a last resort. This point might be

missed by the student had the MTU “‘unfortunately’’ been omitted.

Affect-transference MTUs are sometimes used by a tutor to alert a stu-
dent in advance of an upcoming utterance, even when its affective impact is
quite obvious. For instance, if the result of an algebraic operation violates a
previous expectation, thereby causing failure to solve the equation under con-
sideration, a tutor might say: ‘‘Unfortunately, contrary to our expectations,
we arrive at the following result.’’ If a particular method fails to solve an
equation and there exists another alternative, the following sentence could be
generated by the tutor: ‘‘Fortunately, however, there is another way of solv-

ing this equation.”

Consolatory.

These MTUs are applied in situations where the goal of maintaining a positive
student attitude throughout a tutorial session cannot be accomplished by using
Knowledge-Acquisition MTUs. For example, a student may fail to understand
a solution method in spite of having received preparatory Knowledge-
Acquisition MTUs. In such cases, a teacher should reassure and console the
student, so that he will be able to continue learning. This is the purpose of
consolatory MTUs such as: ‘I know these are many alternatives, but you will

benefit from learning the techniques they illustrate,” or ‘“Don’t worry, I will

34

explain this a few more times.’’

The reader will notice that some of the Affect-Maintenance MTUs are
equivalent to or contain Knowledge-Acquisition MTUs (in particular estimational
MTUs). The reason for this is that an MTU may perform several illocutionary acts
(Appelt 1982), e.g., it can signal to the student which mental resources to prepare and,

simultaneously, dispel negative affects.

To generate commentaries which have a desired affective influence on a stu-
dent, a discourse generator needs to recognize the affective impact of both technical
and meta-technical utterances. It has to neutralize anticipated negative affects by gen-
erating adequate Affect-Maintenance MTUs. Since consolatory MTUs are issued to
alleviate negative affects caused by a failure to assimilate the subject matter, their
generation is intimately connected to the generation of Knowledge-Acquisition
MTUs. The generation of affect-transference MTUs, on the other hand, is linked to
transmission of information and to the realization or violation of a student’s previous

expectations.
2.3.4 Summary of Meta-Technical Utterances

Fig. 2.2 contains a summary of the taxonomy presented above.

35

Additive and; or; indeed

Adversative however; either way; notice that
Knowledge Organization { Causal therefore; in order to; as a resuit

Attributive in general; certain types of

Temporal then; next; second

Motivational this topic is very important

Focal let us consider the following
Knowledge Acquisition { Categorical for example; namely

Implementational as [said before

Estimational this equation is quite difficult

Affect-Transference fortunately; unfortunately

Affect Maintenance {Consolatory don’t worry, I will explain it again

Fig. 2.2: Summary of Meta-Technical Utterances

36

CHAPTER 3
Design of FIGMENT

This chapter outlines a system designed to generate fluent and cogent com-
mentaries on algebraic equations, based on the taxonomy presented in Chapter 2. The

generation of a commentary is performed in three stages (see Fig. 3.1).

i. In the first stage, the strategic components of FIGMENT produce a technical
file, which consists of a list of technical messages. These components are (1)
Problem Solving Expert, (2) Model of the Student’s Knowledge and (3) Tutor-
ing Strategist. The Problem Solving Expert solves the equation, and produces
a tree-like graph in which each branch contains an attempted solution alterna-
tive. Next, the Tutoring Strétegist modifies this graph by suppressing alterna-
tives and steps which are well-known to the student and by adding explana-
tions where necessary, such as for the purpose of an operation or for its
description. Both modules use information about the state of the student’s

knowledge provided by the Model of the Student’s Knowledge.

ii. In the next stage, the Comprehension-Processes Module complements and
revises the technical file by adding appropriate Meta-Technical Utterances.
The affect-transference MTUs and most Knowledge-Organization MTUs can
be directly derived from the structure of the technical file. The Knowledge-
Acquisition MTUs and the consolatory MTUs are generated by simulating

some of the comprehension-processes activated by the student when reading

37

or listening to an explanation.

iii. In the final stage, the Sentence Composer organizes the completed message
into paragraphs and sentences and translates it into English. Some
Knowledge-Organization MTUs which depend on the final structure of the text

are generated at this stage.

This text generation process is based on a clear division between the strategic
and tactical components, where the results of the strategic components are completely
determined before being passed to the tactical component. Nevertheless, the basic
tenets of this research could also accommodate a control structure like the one sug-
gested by Appelt (1982), which allows backtracking between the tactical and the stra-

tegic components.

In the following sections we consider the modules that are used for the first

stage.
3.1 Problem Solving Expertise Module

The Problem Solving Expertise Module (PSE) is an expert system for solving
algebraic equations. It is designed along accepted guidelines (Hayes-Roth 1983,
Waterman 1986), and is composed of two main parts: a domain knowledge and a
problem-solving knowledge. At present, only' the domain knowledge component has
been implemented. In particular, attention has been focused on the information

required to perform the text generation task.

38

Model of Problem
the Student’s Solving
Knowledge Expert

Tutoring
Strategist

4 Coded Message

Comprehension
Processes

Extended Message
Y (with MTU -codes)

L

Sentence
Composer

+ Commentary

Fig. 3.1: Block Diagram of FIGMENT

3.1.1 Domain Knowledge

The Domain Knowledge of the Problem Solving Expertise module has a
hierarchical representation (Anderson 1980, 1983). The top level of the hierarchy con-
tains the different topics in the domain of high-school algebra, €.g., linear and qua-
dratic; the next level contains equations which have frequently encountered patterns,
e.g., ‘ax +b=c"’ and “ax2 + bx + ¢ = 0’ and the third level contains the different
methods which can be used to solve equations, e.g., factorization, substitution, remo-

val of parentheses and collection of terms.

39

In order to produce a cogent commentary on the solution of an equation, FIG-

MENT requires an augmented representation of the domain knowledge (Clancey

1979, 1981a-c). In addition to the knowledge used to solve equations, this representa-

tion contains knowledge required to perform the text generation task. The selected

representation reminds us of the Frame formalism, in that slots are used to store the

relevant information (Minsky 1975, Fikes and Kehler 1985). For the first two levels

of the hierarchy, the domain knowledge appears in the following slots:

iv.

Attribute-list.

This slot contains a list of attributes which are applicable to the topic or equa-
tion type under consideration. For example, a topic may be interesting, impor-
tant or challenging. Each attribute is accompanied by a number which
represents its degree (“‘very,’’ ‘‘rather’’). This information may be used by
the Comprehension-Processes Module to generate a motivational sentence like
the following: ‘‘Let us consider the interesting topic of quadratic equations,

which illustrates some useful techniques’’ (see section 4.5).

General method.
This slot contains the names of one or more general techniques used to solve

equations of this type.

Specific methods.
This slot contains the names of one or more techniques which may be applica-

ble under certain circumstances.

Complexity.

This slot contains a compound assessment of the complexity of the equations

and techniques typical of the topic in question. The complexity of an equation
is a measure of the difficulty of recognizing the actions to be taken in order to
solve it. A linear equation of the form ‘‘ax+b=¢’’ is considered to be quite
simple, since its solution can be achieved with certainty by applying a few
straightforward operations, while a quadratic equation of the form
““ax2+bx+c=0"" is more complex, since a student would have more difficulty
in recollecting the quadratic formula or the method of completion of the

square.

Each method at the third level of the hierarchy is represented by an annotated
rule, which has two main components, namely Mathematical and Planning

Knowledge and Rule Evaluarors (see Fig. 3.2).

The Mathematical and Planning Knowledge component contains the
mathematical knowledge required to solve an equation and explain its solution. As
above, the mathematical knowledge is represented in slots which express the static
relationships inherent in the subject matter (such as reason, purpose, expectations,

result, means, continuation and possible alternatives).

i. The slot for Pattern and/or Preconditions for a rule application contains the
pattern which is matched to the given equation in order to enable the activation
of a rule. The preconditions are additional tests that help select the correct
rule. This slot embedies the reason for applying a particular rule. For instance,
the application of the substitution rule might elicit a statement like the follow-
ing: “‘Since (x+4) is repeated in several places in the equation, and x appears

only inside this factor, we substitute y=x+4"" The pattern.of this rule is:

41

ii,

Mathematical and Planning Knowledge

Rule: FACTOR OUT

; closed expression contains
Pattern: repeated factor
Description: .
Expectation: Get a factor common with

other terms in the equation
Alternative: REMOVE PARENTHESES
Continuation: FACTOR OUT

Rule Evaluators

Performance Measures

Complexity: 0.5
Length: 0.3
Elegance: 0.8
Error-Proneness: 0.3
Attributes
Usefulness: 0.9
Importance: 0.8

Fig. 3.2: Sample Rule in Problem Solving Expertise Module

. | unknown appears only inside a composite factor, AND
PATTERN: . 4 .
composite factor appears more than once in equation

The Purpose/Expectation slot contains a description of the result expected
from the application of a rule. The difference between purpose and expectation
lies in their degree of certainty. The former describes a result that will surely
occur, while the latter depicts a desirable outcome of which we have no
assurance. A rule may have more than one of these slots; their relevance

depends on the equation at hand. In the following example, if we are applying

42

iv.

the operation of removing parentheses on a linear equation, our purpose is to
get simple terms. Whereas when applying the same operation on a third order

equation, the expectation of getting rid of terms of third degree takes pre-

cedence.
RULE: Remove Parentheses
PURPOSE: Get simple terms

EXPECTATION: Eliminate terms of higher degree

The slot for Method Description contains a sequence of low level operations

T

which are executed during the application of a rule. For example, Patt’s

guessing method for solving quadratic equations may be described as follows:

RULE: Part’s guessing method
PATTERN: ac® + bx + ¢
PRECONDITION: a, b, ¢ are integers
DESCRIPTION:
(find two numbers L and M, such that:
L+M=b,and
LM = ac = Product-of-Factors(ac)
method; trial and error of combinations of factors of
Product-of-Factors(ac)
rewrite expression as: +Lx+Mx+c
enclose in parentheses two pairs of terms, e.g.,
(af +Lx)+(Mx+c)
factor out common factor for each pair:
F1 (composite factor) + F2 (composite factor)
{ factor out composite factor: (F1 + F2)(composite facror)

e,

*The slot for Correctness contains a formal proof of the correctness of the

action performed by the rule.

*The Possible-Continuations slot contains a pointer to other rules that usually

1 Mr. Patt was a high-school Math teacher in Tel-Aviv, Israel, who devised a very
effective method for solving a quadratic equation by means of a product of factors.

* The starred slots are optional

43

follow the current one, e.g., removal of parentheses is usually followed by col-
lection of terms. If the set of possible continuations is too large, this slot is

omitted.

vi. *The Alternatives slot contains a pointer to other rules that could be used
instead of the current one. For example, removal of parentheses is an alterna-
tive to factoring out common factors. This attribute assists FIGMENT in

finding alternative solutions to an equation.

The Rule Evaluators component contains several performance measures which
provide an assessment of the complexity, length, elegance and error-proneness of a
rule. The complexity of a rule represents the difficulty a student has in understanding
it and, later on, applying it. The values assigned to these measures represent
FIGMENT’s approach to algebra, which stresses the choice of methods requiring
some thought and insight, as opposed to ‘‘brute force’’ methods that merely entail
tedious mechanical manipulations. The former techniques, like substitution and Patt’s
guessing method, are assigned a high value in elegance and a low one in length and
error-proneness; the latter, which include removal of parentheses and collection of
terms, usually demand a larger number of calculations and therefore tend to be more
error-prone and less elegant. Notice, however, that in general the complexity of the

rules preferred by FIGMENT is higher than the complexity of the brute-force rules.

In addition, this component contains an attribute-list similar to the one used
for .equations with frequently encountered patterns and topics. The attributes of a
rule, together with its performance measures, may be used in the generation of a

motivational sentence.

3.1.2 Problem Solving Knowledge

The Problem Solving Knowledge for algebraic equations is represented by a
recursive control structure which operates according to the following backtracking
strategy (see Fig. 3.3): when an equation is presented, FIGMENT first tries to estab-
lish its topic (e.g., linear, quadratic, etc). Next it searches for the methods whose pat-
tern and preconditions match the given equation, and selects the rule with the best
overall measures. The search space may be composed of the rules mentioned in the
continuation attribute of the previous rule or the rules in the entire knowledge pool in
the absence of this attribute. Notice, however, that once the first matching rule is
found, its alternatives attribute can be used to reduce the search space. The equation
which results from applying the selected method is the input for the next call to the
problem-solving algorithim. Once FIGMENT reaches a solution or recognizes failure,
it will backtrack to the last location in which a choice was made, and generate an
alternative solution. The selection of the preferred solution is based on a comparison

of the performance measures of all the solution paths attempted.

Since FIGMENT purports to be an effective tutor, its commentaries both
explain the solution path chosen and refer to sub-optimal alternatives which may be
considered by the student. Therefore, the initial search space for the equation-solving
algorithm consists of the rules the student has been taught (see section 3.2). This algo-
rithm is then applied on the entire knowledge pool again, in order to find out whether

there is a better way of solving a given equation.

45

SOLVE EQUATION
Equation

Establish topic and
equatiin type

Find matchini rule patterns

Create nodes for
all matchiTF patterns

L 2

Any patterns left?
yes no

Apply rule with Is equation
A best measure solved?

SOLVE-EQUATION yes, 0
Success Failure Success Failure

N

kcord Rule Return

Fig. 3.3: Problem Solving Knowledge of the PSE Module

3.1.3 Output of the Problem Solving Expertise Module

The final output of the PSE module is a tree-like structure. Its root contains the
topic and equation under consideration, its branches consist of the alternatives
explored, and each node contains the name of a rule, the objects on which it is
applied, and its resuit (see Fig. 3.4). In order to enable the Comprehension-Processes
Module to generate appropriate MTU-codes, additional information like the following
may be added:

i. The pattern of an equation or result, such as linear canonic form.

46

iii.

iv.

This information is included if an equation (or result) resembles a known

equation type or some equations encountered previously.

The expected outcome of a rule application.

Even though this information resides in the Mathematical and Planning com-
ponent of a rule, the Problem Solving Expert has to select the appropriate
expectation or purpose for the current situation. For example, while the expec-
tation slot of the FACTOR OUT rule may have the following default value: ‘‘get
a factor common to other terms,’’ a particular instantiation of this rule could
have the following expectation: ‘‘get a factor common to the third term on

the right hand side.”

The pattern matched to a rule.

This information also exists in the Mathematical and Planning Knowledge
component. However, like before, it needs to be added to the output of the
Problem Solving Expertise Module in order to present to the student an instan-

tiation of the applied pattern.

The violation or realization of an expectation.

Given an expectagion for a particular result, or for a solution path which is
similar to a previous one, the PSE module has to recognize when such an
expectation is no longer valid, and incorporate this knowledge into the output

structure.

The certainty of the success of an entire solution path.
This information reflects the confidence of the system in the success of a par-

ticular solution alternative. For instance, while the technique of removing

47

parentheses, collecting terms and applying the quadratic formula will always

solve a quadratic equation, the success of Patt’s guessing method is rather unc-

ertain.
(x-3)*- 4(x-3)- 12=0
1
1 2 3
+ x appears only in x-3 and
x-3 common factor x-3 appears more than once
Factor out x-3 Remove parentheses Substitute y = x-3

Expect: common factor .2 ¢, 9. 44.12-12=0 Purpose; 2%«:t canonic form

(x-3)(x-3-4)-12=0 4y-12=0
d l l
Collect terms Collect terms Patt’s guessing method
(term 1, factor 2) x2-10x+9=0 (y-6)(y+2)=0
(x-3)(x-7)-12=0 Like alternative 1
Expectatioil violation l l
Remove Parentheses Patt’s guessing method Solve Product of Factors
x2-10x+fl-12=0 (x—l)(i-9)=0 y-6=0 oi' y+2=0
Collect terms Solve Product of Factors Transfer constant
x2-10x+9=0 x-1=0 or x-9=0 y=6 or y=-2
l l d
- Patt’s guessing method Transfer constant Substitute back
(x-1){x-9)=0 x=1 or x=9 x-3=6 or x-3=-2
l l l
Solve Product of Factors SUCCESS Transfer constant
x-1=0 or x-9=0 x=9 cf x=1
Transfer Capstant SUCCESS
x=1 or x=9
SUCCESS

Fig. 3.4: Typical Output of the Problem Solving Expertise Module
In general, due to the simplicity of the domain, once the first algebraic opera-

tion is selected the remainder of the solution path is clearly defined, and there is no

branching inside a major alternative. Still, the output described in Fig. 3.4 enables the

48

system to express dynamic relationships such as sequence of rule activations, alterna-
rives attempted and violation or realization of expectations. These relationships
depend on the solution paths and results arrived at for the equation at hand, and there-
fore cannot be represented by means of the static information in the Mathematical and

Planning Knowledge component.

After the Problem Solving Expert has generated the output structure, the
Tutoring Strategist determines which information items from this output structure and

the Domain Knowledge will be presented.
3.2 Model of the Knowledge of a Student

The Model of the Student’s Knowledge is a hypothetical model of the current
algebraic knowledge and skill possessed by the student, in which both the long-term
and short-term memory of the student are explicitly represented (Collins 1976,
Schank and Abelson 1977). The long-term and short-term memory constitute the
search space on which the general problem-solving strategies of the student are

applied.

The long-term memory of a student is modeled by means of the overlay
method, i.e., it is considered a subset of the knowledge of the Problem Solving Expert
(Goldstein 1981). In order to assess which of the skills of the Problem Soiving Expert
a student is believed to possess, each item in the Domain Knowledge of the PSE is

augmented by its exposure and mastery (see Fig. 3.3).

Exposure — contains the numbers of the equations in which a student was exposed to

a particular topic, equation type or rule;

49

Mastery — contains the numbers of the equations in which a student has made proper
use of an item of knowledge. For example, if he was able to identify a type of
equation, or apply a rule correctly, the number of the equation in which this

action was performed is recorded.

In addition, the Model of the Student’s Knowledge contains a Motivation slot,
which stores information regarding the number of times a student was motivated to
attend to a topic, equation type or rule, and also the type of motivation used (see sec-

tion 4.5 for a detailed description of the different types of motivation).
Finally, the following parameters represent the capabilities of the student.

Talent — This is a2 number between 0 and 1 which evaluates the ability of the student.
The most talented student receives a value of 1, the weakest, 0. Initally, a
human tutor may input an assessment of this measure, to be modified over a
period of time in light of the student’s performance. At present, only human

input is allowed.

Diligence — This is a number between 0 and 1 which measures the industriousness of
a student. This evaluation is based on factors like the length of an explanation
he is willing to attend to or the number of steps he is prepared to perform

when solving an equation.

The information concerning the student’s mastery and exposure, together with
the evaluation of his talent and diligence are used by the Tutoring Strategist to deter-
mine the material to be presented and the depth and length of the explanations (see
section 3.3). The Comprehension-Processes Module also uses this information,

together with the motivational information, in the generation of MTU-codes.

50

Mathematical and Planning Knowledge Knowledge Status

Rule: FACTOR OUT Exposure Mastery Motivation

. closed expression M
Pattern: contains repeated factor Exposure tery

Description: Exposure Mastery
Get a new factor
Expectation: common with other Exposure Mastery
terms in the equation
Alternative: REMOVE PARENTHESES
Continuation: FACTOR OUT
Rule Evaluators

Performance Measures

Length: 0.3 Exposure

Elegance: 0.8 Exposure

Error-Proneness: 0.3 Exposure
Attributes

Usefulness: 0.9 Exposure

Importance: 0.8 Exposure

Fig. 3.5: Sample Rule in Model of the Knowledge of a Student

The short-term memory of a student contains a list of N equation instances (N
depending on the student), which he is presumed to remember operationally. Each
instance is remembered in as much detail as possible, including its complete path of
solution and the alternatives attempted. A model of a student’s short-term memory
enables a tutor to reference equations similar to the current one, recall alternatives in

which the same sequence of operations was applied, etc.

51

3.3 Tutoring Strategies Module

This module receives input from the Problem Solving Expertise module and
the Model of the Student’s Knowledge, and produces a technical file. It decides on the
contents of this file by considering the knowledge-status of the student (i.e., his
mastery and exposure), the difficulty and length of the knowledge to be imparted, and
certain affects, such as boredom and confusion. For example, in order not to bore a

student, a well known fact should not be repeated.

The Tutoring Strategist first determines which of the attempted solution aiter-
natives should be presented to the student and in what order. This decision is made by

applying rules like the following:

R1: Do not present more than K alternatives,

where K depends on the diligence of the student.

R2: Order the alternatives as follows:
1. First the unsuccessful ones and next the successful ones.
2. In decreasing order of obviousness (i.e., the most obvious
or the method practiced lately first).

3. In increasing order of elegance, interest, etc.

Next, the Tutoring Strategist considers each alternative separately, and decides
on the operations and results which should be mentioned. The following rules might

be applied for this purpose:

52

R3: Present the first S steps of each alternative,

where the steps from S+1 to last are well known to the student.

R4: IF a rule is well-known to the student,

and the result of its application is not significant to the explanation

THEN omit this result.

Finally, the Tutoring Strategist activates rules like the following, in order to

determine which additional technical information should be transmitted:

RS: IF the student’s mastery of a topic is medium or less

THEN mention the topic’s name.

R6: IF the student has been exposed to a rule several times and masters it well
THEN mention the rule (without additional information)
ELSE TF the student’s mastery of a rule is medium or less
and so is his exposure
THEN present also the algebraic object on which the rule is applied and

additional relevant parameters.

R7: IF the student’s mastery of a rule’s expectation or purpose
is medium or less

THEN present this item of knowledge.

53

3.3.1 Output of the Tutoring Strategies Module

The output of the Tutoring Strategies Module consists of a list of technical
messages. Each message includes the technical information to be transmitted and pro-
cessing information about the message. For example, an equation technical message
has the following format (see Appendix 2 for a detailed description of the different
types of technical messages):

TECHNICAL PART: (equation representation)

(existing-alternatives mentioned-alternatives certainty)
PROCESSING PART: ¢ [(similar-equations [qualifier])]

complexity

The representation parameter contains the equation under consideration.

The existing-aiternatives parameter contains the number of alternatives generated by
the PSE module, and mentioned-alternatives contains the number of alterna-
tives that shall actually be presented; cerzainty has value TRUE if all the alter-
natives which shall be discussed ensure the solution of the equation, otherwise

FALSE.

The similar-equations parameter may either contain the numbers of the equations
which have a similar pattern or the name of a known pattern (such as linear-
canonic-form or quadratic-canonic-form), and the qualifier may contain infor-
mation which restricts this similarity. An example of a qualified similarity
statement is: ‘*This equation is similar to the previous one, but it has another

3y

term.

Finally, the complexity parameter contains a measure of the difficulty of the current

equation.

54

Fig. 3.6 illustrates the technical part of the output obtained by the Tutoring
Strategist from the output of the PSE module presented in Fig. 3.4 (see Appendix 8.2
for a hand-coded listing of this output). In the first alternative, after the expectation
for a factor common to the rest of the equation has been violated, the tutor still contin-
ues solving the equation by means of the brute-force methods of removing
parentheses and collecting terms, If the student is quite proficient in these methods,
only their name is mentioned. In addition, the tutor assumes that the student is able to
continue solving the equation by himself and terminates the presentation of this solu-
tion path. In the second alternative, these brute-force methods are applied from the
very beginning and, again, the presentation of the alternative is not completed.
Finally, in the third alternative, the tutor decides to spell out the entire solution for a

student who has no previous exposure to the substitution method.

From the output of the Tutoring Strategist, FIGMENT proceeds to generate
codes which express requirements for different types of MTIUs. As stated before,
while the codes for Knowledge-Organization and affect-transference MTUs can be
directly produced from the output of the Tutoring Strategist Module, the generation of
codes for Knowledge-Acquisition and consolatory MTUs entails the simulation of

some comprehension processes activated by a student.

55

TOPIC: quadratic
EQUATION: (x-3)% - 4(x-3)-12=0
(ALTERNATIVE 1)
RULE: factor out x-3 from terms ! and 2
PATTERN: x-3 is a factor common to terms | and 2
EXPECTATION: get a factor common with rest of equation
RESULT: (x-3)(x-N-12=0
RULE: remove parentheses
RULE: collect terms
RESULT: x2-10x+9=0
CONTINUE
(AL TERNATIVE 2)
RULE: remove parentheses
RULE: collect terms
RESULT: x2-10x+9=0
CONTINUE
(ALTERNATIVE 3)
RULE: substitute y = x-3
. x appears only in expression x-3
PATTERN: and x-3 appears more than once
PURPOSE: get canonic expression
RESULT: y2-4y-12=0
RULE: quadratic formula
RESULT: y=6 or y=-2
RULE: substitute back x-3 for y
RESULT: x-3=6 or x-3=-2
RULE: transfer term
RESULT: x=9 or x=1
FINISH

Fig. 3.6: Technical Part of Sample Output of the Tutoring Strategist

56

CHAPTER 4

Generation of Knowledge-Acquisition MTUs: The Comprehension-Processes Module

In order to generate Knowledge-Acquisition MTUs, an effective human tutor
generally uses some models of the cognitive-processes triggered in a student upon
encountering a technical utterance. These models represent a teacher’s perception of

the learning habits of a typical student.

In this chapter we examine simplified models of some mental processes
presumably activated by a student when reading or listening to a technical utterance.
By consulting these models FIGMENT is able to emulate human behaviour for some
discourse-generating situations. We prefer these models to a rule-based text-
generation system, since the latter contains only an implicit representation of the

underlying models. Let us now briefly introduce the mental processes modeled in this

work.

i, Building up Motivation and Justification.
This process answers the following mental question: WHY SHOULD I LISTEN TO
THIS UTTERANCE? A satisfactory answer is necessary to activate the rest of the
student’s mental activities.

ii. Determining Focus.

The activation of this process attempts to answer the question: HOW DOES THIS

UTTERANCE FIT INTO THE PREVIOUS DISCOURSE? QOne of the most valuable

57

iv.

sources of information for building a mental representation of current
discourse resides in previously established representations of past discourse.
Therefore, a student should be able to recognize whether the tutor is address-
ing the same topic as before, whether the same equation is being considered,

etc.

Determining Type of Relationship.

Once the general context of a technical utterance is clarified, this process is
activated in order to determine: HOW DOES THIS UTTERANCE RELATE TO THE
TECHNICAL UTTERANCE CURRENTLY IN FOCUS? Here a student has to determine
whether the forthcoming utterance is a paraphrase of the previous one, an

example, a generalization, etc.

Selecting Implementation Mode.

A student may use a given technical utterance to add the information con-
tained in it to his knowledge pool, or alternatively, to verify or reinforce
already existing knowledge. This process is activated to determine: WHICH OF

THESE ACTIONS HAS TO BE PERFORMED?

Applying Mental Resources.

In processing a given technical utterance, a student may either use shallow
mental resources (for a simple utterance), deep resources (for a difficult or
long utterance), or just apply his default resources. This process is applied in

order to decide: WHICH TYPE OF MENTAL RESOURCES HAS TO BE PREPARED?

For each technical utterance in the output of the Tutoring Strategies Module,

the Comprehension-Processes Module activates these processes 1o predict the

58

behaviour of a student in the absence of an MTU. The result of this activation
depends both on the information contained in a given technical utterance and on the
circumstances surrounding its presentation. If the anticipated behaviour does not
agree with the action intended by the tutor, a corrective MTU is generated. For
instance, if a student decides to add a particular technical utterance to his knowledge
pool, and then discovers that the information contained in this utterance is already
there, he might feel disrespect for a tutor who has no recollection of previous
discourse. The Comprehension-Processes Module will rectify this situation by pro-
ducing a verification implementational MTU-code. This MTU-code would eventually
have the following‘ English representation: ‘‘as you already know,”” “‘as I have said
before,’’ etc. As another example, if a technical utterance is especially long and/or
difficult, a student might fail to process it, in spite of having been provided with
appropriate MTUs. In this case, FIGMENT will comfort the student by means of a
consolatory MTU like the following: ‘‘Do not be concerned, as I will go over this

method a few more times.”’

Our representation of affects differs from Dyer’s (1982), in that Dyer provides
declarative semantics for affects, while we provide a procedural definition of how a
certain affect is reached and, if necessary, avoided. We believe this definition to be

sufficient for the generation of MTUs.

The Comprehension-Processes Module examines each technical utterance in
the order in which it was produced by the Tutoring Strategist, and gen-erates codes for
Knowledge-Acquisition and consolatory MTUs where necessary. The order in which
these MTUs are generated for each technical utterance is immaterial, except for the

Motivational MTUs which, for reasons of convenience, are produced last.

59

Knowledge-Organization and affect-transference MTUs may be directly pro-
duced from the output of the Tutoring Strategist. However, the requirements for some
of these MTUs may be affected by previous technical utterances or Knowledge-
Acquisition MTUs, and in turn, the presence of some Knowledge-Organization and
affect-transference MTUs may influence the need for other MTUs in later technical
utterances. For instance, if a tutor states that the current equation is similar to a previ-
ous one (verification implementational MTU), he causes a student to expect both
equations to have similar solutions. If, however, their solution paths diverge, this fact
has to be advertised by means of an adversative MTU, thereby canceling this expecta-
tion. Thefefore, for each technical utterance, the Knowledge-Organization and
affect-transference MTU-codes are gencrated immediately after the Knowledge-
Acquisition and consolatory MTU-codes have been produced. Only then shall the

next technical message be considered.

The order in which a particular configuration of technical and meta-technical
utterances appears in the final English representation is independent of the order in
which they are generated by the Comprehension-Processes Module. Moreover, some
configurations may cause an MTU to become obsolete. In this case, the Sentence

Composer eliminates the redundant MTU (see Chapter 6).
4.1 Determining Focus

A student generally attempts to process a technical utterance in the context
provided by preceding discourse. If this is not the context intended by the teacher, the
student will feel rather confused. For example, if the tutor completes the solution of a
given equation, and wishes to examine another equation, he should provide the stu-

dent with a focal MTU like ‘‘Let us now consider the following equation.”” Failing to

do so will cause confusion, since the student is expecting the discourse to refer to the

previous equation.

A commentary describing the solution of an algebraic equation usually follows
the format of the output of the Tutoring Strategist, i.e., first, the equation is presented
and its topic is esté.blished, then the algebraic rules corresponding to the first approach
for solving this equation are considered. This structure of the discourse prompts us to
define the context in which an utterance is processed, by means of a list which con-

tains the following information:
(topic equation alternative rule)

The rightmost non-null element in the list, is defined to be in high focus. At
the beginning of a tutorial session, the high focus is empty. As the session progresses,
the high focus first shifts to a topic and an equation. Next, it may contain an alterna-
tive, and finally, a rule. The reader should notice that discussion of a slot in the
domain knowledge of an utterance represented in the context, does not produce a shift
in focus. For instance, when the pattern or expectations of a rule are being considered,

the rule remains in high focus.

Let us illustrate these concepts by means of an example. In the context defined
by the list (linear ‘‘x+3=4'" 1 remove-parentheses), the tutor is referring to a
linear equation, he is examining the first approach applied to solve it, and he is con-
sidering the method of removing parentheses. The latter is in high focus. Later on, if
the context-list becomes (linear ‘‘x+3=4"" 2 @), the discussion still hinges on
the same equation, but the tutor is now examining the second alternative. Since the

element corresponding to the rule is null, the alternative is in high focus, thus depict-

61

ing a situation in which the alternative has just been introduced, but the algebraic

operations have not been described yet.
A tutor may perform two types of shifts in focus; permanent and temporary.

A Permanent focus shift takes place with the natural progression of the discourse and
defines its permanent context. If we envision the output of the Tutoring Stra-
tegist as a tree, then a permanent focus shift occurs whenever a node is visited
in preorder (Knuth 1975). In the following sentences, the expressions in bold-
face signal this type of focus shift: ‘‘After removing parentheses, we collect

terms,’’ ‘‘Let us consider the following linear equation.”’

When a permanent focus shift occurs with respect to an element in
position i of the permanent context, all elements in positions 1 to i-1 remain
unchanged, whereas all elements in positions i+/ to n (where 7 is the length of

the context), are set to null.

A Temporary focus shift (also called digression or interruption, Reichman 1978, 1984
and Grosz & Sidner 1985) occurs when the flow of the discourse is interrupted
by an event which has to be addressed by the speaker. This interruption may
either be external, like a student asking a question, or internal, ¢.g., the tutor
himself remembering to mention something. After the interruption has been
dealt with, the teacher returns to the previous path of the discourse. An inter-
nal interruption is signaled by means of MTUs like *‘incidentally’’ or “‘by the
way,’’ whereas a retum to previous discourse is indicated by MTUs like

“‘anyway,”’ ‘‘in any event,’”’ etc.

62

A temporary focus shift defines a temporary context of the discourse.
When a temporary focus shift takes place, the permanent context is tem-
porarily relinquished, and the forthcoming information is prdcessed in the
temporary context. When the system signals a return to the permanent context,

the temporary context is canceled.

In the following subsections, we discuss the generation of MTU-codes for

both types of focus shifts.
4.1.1 Recognizing a Permanent Focus Shift

In this section we discuss the processes activated to determine the need for a
permanent focus-shift MTU. These processes are activated for each technical utter-
ance represented in the permanent context. For a permanent focus shift to become evi-
dent, two actions have to be performed: the previous focus has to be closed, and a

new focus has to be opened.

Focus close.
This action terminates the previous discussion. The focus may be implicitly
closed through the presentation of a technical utterance. For example, if a tutor
says ‘‘we remove parentheses,”’ the focus of a previously applied rule is
automatically closed. However, there are cases in which a focus-close MTU
may be required. This type of MTU may either be embedded in another utter-
ance, e.g., “Let us now consider the following equation,”” or may be

represented by an entire sentence like ‘‘Let us go on to another topic.”

Focus open.

This action introduces a new item, transferring it to high focus. Like before,

63

this task may be performed by a technical utterance. In the above given exam-
ple, the sentence ‘‘we remove parentheses’’ not only closes the rule which was
previously in focus, but also puts the rule of removing parentheses in high
focus. In situations where a technical utterance by itself is unable to open the
new focus, a focus-open MTU has to be issued, e.g., a new equation has to be
preceded by an introductory MTU like “‘Let us consider the following equa-

1?

tion.

The Comprehension-Processes Module produces codes which express require-
ments for MTUs that perform these two functions. The generation of these codes is
accomplished by consulting simplified models of four focus-recognition processes,
one for each type of technical utterance represented in the context. These models are
consulted in the following order: first the need for a focal MTU for a topic technical
utterance is determined. Next, the focus-recognition process of a student is activated
for the equation. Thereafter, the requirements for a focal MTU for the first alternative

and for the algebraic operations applied through it are established, and so on.

Fig. 4.1a depicts the focus determination process activated by a student for a
topic technical utterance. An open topic is the topic a student is expecting, based on

the topics of the last few equations.

According to the process in Fig. 4.1a, if the student has been practicing equa-
tions in different topics lately, he will have no expectations regarding the topic of the
next equation, i.e., there will be no open topic, and no focus-closing MTU is required.
If, however, there is an open topic, which is not the topic of the forthcoming equation,
a student may become perplexed. In this case, a focus-closing MTU-code is generated

by the Comprehension-Processes Module. The Sentence Composer then uses this

is there an open topic?
yes no

does input topic
differ from open topic?

yes no

affect: perplexity affect: confusion
unexpected topic no prepared space

Generate
Focus-close MTU

Generate
Focus-open MTU

Fig. 4.1a: Process for Generating a Permanent Focus-shift MTU for a Topic

code to produce a sentence like ‘‘Let us consider a different topic’” or ““We shall
now examine a quadratic equation’’ (see section 6.3.3.1). Notice that, while the
focus-closing function is performed by the entire first sentence, in the second sentence
this activity is performed by the adverb ‘‘now,’’ and the rest of the sentence opens the
focus for a new topic. A focus-open MTU should always accompany a topic, in order
to prevent a student from experiencing confusion due to failure in preparing a new

7
space.

A diagram such as the one in Fig. 4.1a, is used to describe a mental process
presumably activated by a student when trying to understand the presented material.
From a strictly pragmatic point of view, the nodes representing the affects could be
eliminated. However, we have incorporated them in this dissertation, since they con-
tribute to the plausibility of the models by explicitly presenting the rationale for the

generation of an MTU.

65

is there an open equation?

yes no
is input equation affect: confusion
equal to open equation? no prepared space
yes no
A affect: confusion
affect: ;laosmve improper linkage
continue Generaie .
Focus-close MTU

Generate
Focus-open MTU

Fig. 4.1b: Process for Generating a Permanent Focus-shift MTU for an Equation

Upon encountering an equation technical utterance, a process like the one dep-
icted in Fig. 4.1b is activated by the student. In this process, the open equation is the
equation currently in the permanent context. Notice, however, that if a topic-
introducing MTU was issued, there is no open equation, and only a focus-open MTU
like the following is required: ‘‘Let us consider the following equation’’ or ‘‘Here is
the equation.”’ If a topic technical utterance was not isued then the previous equation
is still open and a focus-close MTU has to be generated, yielding a sentence like the
following: *‘We shall now consider the following equation.’”’ This sentence may also
be generated by the Sentence-Composer if the following configuration of focal MTU-

codes is produced by the last two processes (see section 6.3.3):

topic close, open
equation open

66

In this case, either of the following introductory texts could be generated:

1. ““We shall now consider the following equation: This is a linear equa-
tion."’
In this text, the equation technical utterance inherits the focus-close MTU

from the topic technical utterance.
2. ““I et us now consider the topic of linear equations. Here is an equation.”

Next, when the first alternative technical utterance is encountered, a student
activates a focus-recognition process like the one depicted in Fig. 4.1c. This process is
repeated for each solution alternative presented by the tutor. Like for equations, an

open alternative is the alternative currently in the permanent context.

is there an open aiternative?

yes \no

affect: confusion has number of altemnatives
improper linkage been mentioned?
Generate es 16
Focus-close MTU y
affect: confusion affect: positive

rule or alternative?

Generate

Focus-open MTU conuinue

Fig. 4.1c: Process for Generating a Permanent Focus-shift MTU for
an Alternative

According to this process, if there is an open alternative, then a student shall

be confused, since he will not understand how the first operation of the forthcoming

67

alternative fits in the previous discussion. In this case, the generation of a focus-close
and a focus-open MTU is necessary to effect a permanent focus shift. If there is no
open alternative, but the number of alternatives to be presented was previously men-
tioned (see section 4.4.2), then in the absence of a focus-open MTU, a student would

experience confusion. Let us illustrate this situation by means of the following exam-

ples:

l. “\We shall consider three approaches for solving this equation. First, we
remove parentheses”’

2. ““We shall consider three approaches for solving this equation. The first

alternative consists of the following steps:

First, we remove parentheses’

In the first example, it is not clear whether the temporal MTU ““first’’ refers to
the first alternative or the first algebraic operation, thus causing confusion in the stu-
dent. This negative affect can be prevented by preceding the description of the first
alternative by the focus-opening MTU in boldface, in conjunction with a temporal

MTU.

Although this process generates MTU-codes which introduce different ave-
nues for solving a given equation, it does not account for the generation of a hypothet-
ical form of speech. For instance, *‘If you had factored out x-2 you would have

solved the equation. Instead you removed parentheses.’”

This form is generally reserved for mixed-initiative discourse, in which the
alternatives attempted by the student have failed to solve a given equation, or have

solved this equation inefficiently, and there is another approach which the student

68

should have attempted (Davey 1978). In addition, the successful approach has to be
rather short, in order to avoid a lengthy discourse in past-perfect tense. Since at
present FIGMENT does not analyze students’ errors, this form of speech shall not be

produced.

is rule sequence in focus?

yes no
affect: confusion
affect: positive .
ect: po lost track of discourse
Generate

continue Focus-close MTU

Fig. 4.1d: Process for Generating a Permanent Focus-shift MTU for
an Algebraic Rule

Finally, a student activates the process described in Fig. 4.1d for each alge-
braic rule. In general, the mere mention of a rule both closes the previous focus and
opens a new focus. However, an exception to this situation occurs when, due to a
lengthy explanation or digression, the student may have lost track of the operations
previously performed. In this case, he needs to be reminded of the algebraic rule
which was previously in focus, by generating a focus-closing MTU such as ‘‘After

dividing by a constant, we collect terms.’’
4.1.2 Recognizing a Temporary Focus Shift

There are situations in which the tutor has to temporarily interrupt the flow of
discourse, in order to attend to other issues. Once these issues are resolved, he returns
to the original discourse. Reichman (1978, 1984) and Grosz & Sidner (1985) classify

these situations into the following categories:

69

i. Digressions.
If something mentioned in one context triggers off an association that leads to
an interruption, the speaker has to perform a digression. For example, ‘‘This
equation can be solved by factoring out x-2. Incidentally, you could have

done so in your test. Anyway, this operation yields a product of factors.”’

ii. Flashbacks and Fiiling in missing pieces.
If a speaker forgot or was unable to include important entities in the discourse,
he must now interrupt the flow of the discourse, go back and fill in the missing

information.

iii. True Interruptions.
An external event causes an interruption if it either disrupts one’s line of
thought or warrants immediate attention. For example, in a learning environ-

ment, this occurs when a student asks a question.

Most human tutors plan a tutorial session in advance. Hence, they know which
information they want to transmit about a particular topic or equation type. Further-
more, they have a notion of the types of equations they wish to present, and once an
equation is introduced, they know the number of alternatives they wish to discuss, the
algebraic operations in each alternative, etc. This characteristic is more pronounced in
written or automaticaily generated discourse, in which a tutor is not likely to forget
items of information which are crucial to the understanding of a particular subject.
These items are usually delivered while the subject is in high focus. In addition, while
presenting a commentary, there are no external interruptions. Therefore, situations

which require a temporary focus-transition MTU are restricted to digressions.

70

As illustrated in the above given example, in order to signal a digression, an
MTU like “‘by the way’’ or ‘“‘incidentally’’ is used. The retum to the original

discourse is signaled by an MTU like ‘‘anyway’’ or “‘in any event.”’

According to Grosz and Sidner (1985), when an interruption takes place, the
permanent context is pushed into a stack. Each subsequent interruption causes the pre-
vious context to be pushed into the stack and upon completion of an interruption, this
context is popped from the stack. This model is applicable to everyday conversation,
since the subjects involved do not demand significant intellectual effort from the
speakers. However, in the domain of Tutoring Systems, its applicability is rather lim-
ited, since stacking up digressions would be counterproductive to the understanding of
the subject. In this situation, if a tutor does perform a digression, he would complete
it, and if necessary, transfer to another digression. Otherwise, he would return to the
main subject. Thus, instead of stacking subsequent digressions, FIGMENT just
replaces the temporary context corresponding to the first digression with the context
of the next one. This policy might yield sentences like the following:

““By the way, we can solve linear equations by removing parentheses and collecting
terms. I also wanted to mention that we shall not go over a general method for solv-

ing third degree equations. Anyway we continue by removing parentheses""

In Fig. 4.2 we present the process used by FIGMENT to determine the need
for a temporary focus-shift MTU. The inpur context is the context of the forthcoming
technical utterance. If it is null, it signals that this technical utterance should be pro-
cessed in the permanent context. If no digression is taking place, the temporary con-

text is null, otherwise it contains the context defined by the current digression.

71

In the current implementation, only general commentaries and statements
describing available methods may require a temporary focus-shift MTU. If their
accompanying input context is non-null, then a temporary focus shift should be
effected. If a general commentary does not have an accompanying context, it should
be processed in the permanent context. This policy cannot be applied to method state-
ments, since these may refer only to a topic or an equation with a distinguished pat-
tern. Therefore, if neither of these mathematical entities is in high focus, the context
of a method statement is determined by the rightmost non-null element in the per-
manent context, for which a method statement is relevant. For example, if the per-
manent context is (quadratic 2 +3x-5=0"" 2 factor-out}, a method statement

should be processed in the following context: (quadratic o o Q)

According to the process depicted in Fig. 4.2, if a digression was previously
performed (the temporary context is non-nuil), and the next technical utterance should
be processed in the permanent context (the input context is null), then a digression-
closing MTU such as ‘‘anyway’’ or ‘‘in any event’’ should be generated. If the input
context is not null, then if it is equal to the current temporary context, the digression
is continued without further ado; otherwise, a shift in temporary-context has to be sig-
naled by an MTU like ‘I also wanted to mention that.”” Finally, if the temporary con-
text is currently null, and the tutor wishes to perform a digression, he should signal
his intent by means of a digression-opening MTU like “‘incidentally’’ or ‘‘by the

way.
4.2 Determining Type of Relationship

The relationship between two technical utterances in the same focus is sig-

naled by means of a categorical MTU. Categorical MTUs differ from Knowledge-

72

is there a
temporary context?

is input context nuil? is input context null?
yes no yes no
affect: confusion is temporary context affect; confusion

improper linkage equal (o input context? affect: positive improper linkage

Generate Generate
Digression-close yes no continue Digression-open
MTU MTU

affect: confusion

affect: positive improper linkage
Generate
continue Digression-update
MTU

Fig. 4.2: Process for Generating a Temporary Focus-shift MTU

Organization MTUs in that the latter advertise the manner in which two technical
utterances should be permanently linked in memory; while the former indicate how a
forthcoming technical utterance should be used to update or better understand the pre-
vious one. For instance, a paraphrase provides an explicit representation which
clarifies a previous impiicit representation; an example features an instantiation of a

previous abstract statement, €tc.

The decision to generate a technical utterance that improves the understanding
of a previous utterance is performed by the Tutoring Strategist, and is based both on
pedagogical considerations and on affects elicited in the student by its absence. For

example, the Tutoring Strategist ‘will decide to issue an example after an abstract

73

explanation if he feels that its absence may cause a student to experience boredom and
frustration. Clearly, in this case, he must be aware of the relationship between the pre-
vious and the forthcoming technical utterance, and just needs to transmit this informa-

tion to the Comprehension-Processes Module.

A categorical relation may also exist between two Knowledge-Acquisition
MTUs, or a Knowledge-Acquisition MTU and a technical utterance. For example,
““This equation is easy to solve. In fact, we can solve it by”” The first sentence
consists of an estimational MTU, whereas the second one consists of rule statements.
This relationship becomes evident after the Comprehension-Processes Module has

completed its operation.
The following examples feature some categorical relationships:
Equivalence — ‘“We take the first term, namely 3(x-1),"”"

Generic-Specific — ‘‘Some of these techniques, in particular removing parentheses

and collecting terms,”
Specific-Generic — *‘More generally, we can solve linear equations by"”"

Avowal (contrary to what the current state of the discourse would lead us to expect)
— ““The solution to this equation is rather complex. In fact, we shall not teach

it in class.’’
Summary — ‘‘to sum up,”’ “‘in short.”’

Exemplification — *‘for instance,” *‘for example.”’

74

The current implementation generates categorical MTUs which signal the
presence of an implicit and an explicit description of the same mathematical entity.

For example, given the following representation of a factor:
[(1 3 factor) (2x*)]

In the absence of an equivalence MTU, the resulting text would be: ‘‘the first
factor, 2x3."” FIGMENT evaluates that this description may confuse a student, and
concludes that an equivalence MTU is required, yielding the text: “‘the first factor,
namely 2%3."* The same considerations are applied when generating an equivalence
MTU for an introductory statement such as ‘‘Let us consider a very interesting topic,

namely third degree equations’’ (see section 6.3.3.1).
4.3 Selecting Implementation Mode

A student assimilates a technical utterance by performing one of the following

computational activities:

Addition of new information to the student’s knowledge pool.
This activity is prepared by means of an implementational MTU like the fol-

lowing: ‘“We shall now introduce the topic of linear equations.”’

Venﬁcation of existing knowledge against an incoming technical utterance.
This activity is triggered by implementational MTUs such as ““As I have said
before,”’ *“This equation is similar to the previous one.”’ These MTUs indicate
that a particular information item in the student’s knowledge pool should be

verified or reinforced by means of the forthcoming technical utterance.

75

Fig. 4.3a illustrates the model used in selecting an appropriate implementation

mode.
can student recail the
technical utterance?
yes no
is student familiar can student recognize this
with this utterance? utterance as new?
yes \no yes / \no
verification addition addition
unknown
mode mode mode |
affect: disrespect] affect: hesitation
affect: positive confusion affect: positive new or existing?
\ data duplication \
continue Generate continue Generate
Verification-mode MTU Addition-mode MTU

Fig. 4.3a: Process for Generating an Implementational MTU

According to this model, if a student receives a previously encountered but not
well-known technical utterance, he will attempt to add it to his knowledge pool (addi-
tion mode). Then, upon discovering that the accessed memory location already con-
tains some information, he might experience disrespect for the teacher or confusion.
For example, if a tutor repeats an earlier statement, he will elicit disrespect for having
no recollection of previous discourse. Likewise, if a student is given an equation
- accompanied by the statement ‘“This is a linear equation,”” and this statement is
repeated for the next equation, the student may naturally ask: *‘If this is a linear equa-
tion, what was the previous one?’’ These conflicts can be resolved by generating

verification implementational MTUs, yielding statements such as ““As I said before,

76

in general we can solve ... *’ or *“This is also a linear equation,’’ respectively. If a stu-
dent encounters a familiar technical utterance, then even though the absence of a
verification MTU may have momentarily put him in addition mode, his well esta-
blished knowledge transfers him to verification mode. In this case, the presence of an
implementational MTU is not only superfluous but even counterproductive, since a
student might get bored by the seemingly endless repetition of an implementational
MTU. Finally, if a student is presented with a new technical utterance, and is unable
to determine whether it was seen previously, he will feel rather confused. To avoid
this situation, the teacher has to transfer him first to addition mode by using an imple-
mentational MTU like ‘“You have never seen this type of equation before’” or “‘Let

us consider a new topic.”

The reader will note that the process of establishing the implementation mode
is applied not only to technical utterances, but aiso to MTUs involving evaluations,
yielding text like the following: ‘‘As I have said before, this topic is very interesting
and important’’ or ‘‘As you already know, this equation is rather simple.’” This is

because the process depicted in Fig. 4.3a is applicable to any transmitted information.

Another type of implementational MTU, denoted short-term-implementational
MTU, refers to events in a student’s short-term memory. For instance: *“This tech-
nique is also easy to apply,”” ‘‘Like the previous equations, the following exercise
can be solved in three different ways” or ““This method was also applied in the previ-
ous equation.”” They are produced by a tutor to exhibit recollection of previous
discourse, and differ from implementational MTUs in that, although they prompt the

student to recall previous knowledge, this knowledge is not updated.

77

In order to generate short-term-implementational MTUs, a system would have
to search previously generated extended messages for MTU-codes common with the
current MTUs, and apply rhetorical rules to determine the need for short-term-
implementational MTUs. Since the current version of FIGMENT maintains a partial
model of a student’s short-term memory (see section 3.2), we have not implemented a
procedure for generating these MTUs. They are issued only in one particular case,
ie., they accompany MTUs which motivate a student to attend to a solution alterna-
tive, yielding text like the following: ‘‘Another alternative which enables us to prac-

tice this method consists of the following steps.”’

Let us now consider the manner in which we test the conditions required by

the process of Fig. 4.3a.

Can the student recall the technical urterance?
The current system does not contain an accurate model of the processes by
which a student remembers or forgets an information item. Our model simply
assumes that if a student was exposed to a particular technical uiterance, he

should be able to recall it.

Is the student familiar with the utterance?
The answer to this question is arrived at by means of the following rule:
IF NUMBER-OF-UTTERANCES > RECOGNITION-THRESHOLD
THEN ASSERT student is familiar with utterance
In order to perform this test, the system stores a RECOGNITION-
THRESHOLD for each type of technical utterance in the domain knowledge,
namely topics, equations, algebraic rules and statements. The different thres-

holds are required due to the different degrees of difficulty in recognizing a

78

particular utterance.

It is natural to think that a student’s familiarity with a technical utter-
ance depends also on his talent, i.e., a more talented student should need fewer
repetitions of a particular utterance than a mediocre student. In practice, how-
ever, this consideration turns out to be unnecessary, since the number of times
an implementational MTU can be issued without causing a student to be bored

is quite limited.

Can the student recognize this utterance as new?
The system answers this question by performing-the following test:
IF TALENT-OF-STUDENT > TALENT-THRESHOLD
THEN ASSERT student can recognize new utterance

Our basic paradigm is that a talented student will recognize that a given
utterance is new, without being explicitly informed of this fact. A mediocre
student, however, might think that he has forgotten a previously mentioned
utterance, and may not know whether to continue searching for it. A student’s
reaction also depends on the type of the technical utterance under considera-
tion. In a tutorial setting, if a student is unfamiliar with an equation with a
not-distinguished pattern or a statement, he assumes that it is new, unless oth-
erwise stated. Moreover, if a student were advised of every new equation and
statement, the resulting text would be awkward and repetitious. This is not so
for topics, equations with distinguished patterns and rules, since their recogni-
tion requires some ability. Hence, in order to perform this test, FIGMENT
stores a TALENT-THRESHOLD fbr each of these types of technical utterances.

The threshold for equations with not-distinguished patterns and for statements

79

is quite low, while the threshold for topics, equations with significant patterns

and rules is higher.

After the process depicted in Fig. 4.32 has determined that a verification
implementational MTU has to be generated, the actual code (and subsequent text)
depends on the circumstances and the type of utterance under consideration. For
example, if the topic of the previous equation is equal to the topic of the current equa-
tion, then the equation should be introduced by means of a sentence like ‘‘Let us con-
tinue with a linear equation’” or ‘“This is also a linear equation.’” If the topics differ,
and more than one equation shall be presented, then a sentence like the following is
issued: ““We shall now return to the topic of quadratic equations.”” When an equa-
tion technical utterance is being considered, then a student is transferred to
verification mode by means of a sentence such as ‘“This equation is similar to the last
one’’ or *“We have studied this type of equation before,”” depending on whether the
equation is of an established pattern. These MTUs direct the student towards updating
a useful pattern and inhibit the creation of irrelevant patterns. Finally, a statement
which requires an implementational MTU, would be preceded by text like the follow-

ing: ““As you already know,”” ‘‘As I have said before,”’ etc.

The process depicted in Fig. 4.3a applies to algebraic rules in a general way.
However, unlike topics, equations and statements, a rule can be applied on various
objects, in different locations, etc. In order to distinguish between the different situa-
tions pertaining to the application of rules, a more detailed process is necessary (see
Fig. 4.3b). The right hand branch of the discrimination net in Fig. 4.3b is equal to the
right hand branch of the process in Fig. 4.3a. The left hand branch, however, demands

careful consideration.

80

can student recall the rule?

Y"’/ no

is rule repeated in can student recognize
same altemnative? this rule as new?
yes / no yes no
addition addition
molde mode unknown
affect: disrespect affect; confusion
confusion affect: positive new or existing?
already applied
Generate is student familiar Generate
Verification-mode with this rule? continue Addition-mode
MTU again MTU new
yes no
verification is rule repeated from previous
mode equation or alternative?
yes no
.. was student previously was rule used in
affect: positive put in verification mode? same equation?
yes / \no yes / \no
continue verification addition verification addition
mode mcide mode mode
_ I
affect:disrespect i affect: disrespect
affect: positive confusion affect: positive confusion
already applied duplicate rule
Generate Generate
continue Vertfication-mode continue Verification-mode
MTU like before MTU known

Fig. 4.3b: Process for Generating an Implementational MTU for
an Algebraic Rule

81

In order to determine the code (and subsequent text) of the implementational
MTU to be generated, the process depicted in Fig. 4.3b distinguishes between various

degrees of similarity among different applications of the same rule.

Repetition in the same alternative.
If an algebraic rule is used more than once in the solution of an equation, the
tutor states that it is applied to the same object or using the same instrument,
and the rest of the arguments of the rule are not being stated, then an MTU
like “‘again’’ or ‘‘once more’’ has to be used. For example, given the equa-

tion:
x5+ (x+)(x-1) +1=0
The following text would be generated:

First, we factor out x? from the first and second terms, yielding:
x3(x-5) + (x+D(x-1) +1=0
Next, we apply the formula (am+b)(a-b)=az-l:n2 to the second term
and collect terms, which results in:
x2(x-5) +x*=0
Thereafter, we factor out x* once more, with the following result:

x3(x-4) = 0

Omission of this MTU may cause the naive student to think that it is
odd to perform the same operation on the same object twice, and that one of

these operations is probably a mistake. This MTU services also the sophisti-

82

cated student who may feel disrespect for a tutor who does not seem to recall
having just performed the same operation. The reader should notice that,
unlike the rest of the technical utterances, this type of MIU is generated

regardless of the student’s ability to recognize the rule in question.

Repetition in a previous alternative or equation.
If the tutor has already pointed out that the current equation resembles a previ-
ous one, he has transferred the student to verification mode, causing him to
expect the sequence of rules applied to solve the referenced equation, and so
eliminating the need for implementational MTUs. If, however, the similarity
between the equations was not previously mentioned, the repeated application
of an unfamiliar rule will require the generation of an MTU such as “We now

remove parentheses, like in the last equation.”

Previous usage.
This type of similarity refers to an algebraic ruie which has been previously
applied, however, not under circumstances which resemble the current appli-
cation. In this case, if a student is not familiar with the rule, and it was not
used in the same equation, an implementational MTU like *“We have encoun-
tered this technique before’’ has to be issued. If this rule was already used in
the same equation, an implementational MTU of this type would be

superfluous and repetitious.
4.4 Applying Mental Resources

In general, a student expects a technical utterance to be of average length and

difficulty. This prompts him to prepare default mental resources for processing it.

83

There are, however, technical utterances which do not conform to the student’s expec-
tations, i.e., they may be rather lengthy or difficult or, alternatively, they could be
extremely simple. In these cases, as shown in Figs. 4.3 and 4.4, the discordance
between the student's expectations and reality might cause a waste of useful

TESOUrces.

FIGMENT is able to predict most of these situations by assessing the
knowledge status and quality of a student against the attributes of the problem under
consideration. This evaluation allows him to advance conjectures regarding technical
utterances which the student will most likely fail to process, and to generate warnings
such as *“The following equation is quite simple’’ and **We shall devote most of the
session to quadratic equations.’”” Moreover, when failure is anticipated despite having
generated adequate estimational MTUs, a consolatory MTU has to be produced, e.g.,
I know these are a lot of equations, but it is necessary.”” In the following subsection
we shall consider the model used by FIGMENT to generate complexity-related
MTUs. Thereafter we shall discuss the model used to produce length-related MTUs.

4.4.1 Preparing Computational Power

To assist a student in selecting the level of computational power required to
process a given technical utterance, a tutor generates a complexity-related MTU. Fig.
4.4 depicts a model of the process activated by the system to generate this type of
MTUs. Before we discuss this process in detail, let us consider a working definition

of the term complexity for the technical utterances under consideration:

Topic — The complexity of a topic is a number between 0 and 1, defined as a combi-

nation of the complexity of its definitions, theorems, algebraic rules and equa-

84

tions;

Equation — The complexity of an equation, is a number between 0 and 1 which
measures the difficulty a student of average talent will experience in arriving

at its solution;

Alternative — The complexity of a solution alternative is the sum of the complexity

measures of its rules; and

Definitions, Theorems, Rules and Statements — Their complexity is also a number
between O and 1 which measures the difficulty a student of average talent has

in understanding and using them.

In the current implementation the process depicted in Fig. 4.4 is applied to
topics, equations and rules, and not to entire solution alternatives or statements. This
is due to the fact that the complexity of a description statement is directly related to
the complexity of the rule which it describes, and pattern, expectation and method
statements are factual statements which do not require a complexity-related MTU; a
correctness proof might require a complexity-related MTU, but at this point it is not
being generated. A solution alternative does not require a complexity-related MTU,
since the complexity of an equation already conveys the difficulty experienced by a
student in solving it, hence it would be either repetitious or contradictory to advertise

the difficulty of any of its solution alternatives.

In the process illustrated in Fig. 4.4 the systeni first evaluates whether a stu-
dent will experience difficulty in processing a particular technical utterance. It checks
whether the default resources are sufficient, and if not it advises the student of the

utterance’s complexity by means of a statement like *“This equation is hard to solve”

85

is technical utterance

too difficult?
yes no
affect: frustration
insufficient com-
putational power
Generate
Complexity-related
MTU (d?fﬁcult)
is technical utterance is technical utterance
extremely difficult? too easy?
yes / no yes/ no
affect: extreme frustra- affect: boredom
tion, high computational waste of compu- affect: positive
power is insufficient tational power
Generate Generaite
Consolatory MTU continue Complexity-related continue
MTU (easy)

Fig. 4.4: Process for Generating a Complexity-related MTU.

or ““This technique is very difficuit to apply.”’ These complexity-related MTUs will
prompt a student to prepare high computational power (i.e., increase his concentra-
tion). Clearly, the presence of a complexity-related MTU does not ensure success in
processing a technical utterance; nevertheless, it increases the student’s chances of
succeeding, and even in the event of failure, he might find comfort in the fact that he

failed while trying to perform a difficult task.

Next, the system checks whether there is a great disparity between the capabil-
ities of the student and the difficulty of the utterance. If so, even though the student is

being provided with an adequate preparatory MTU, the deep mental activity will not

86

suffice to process the technical utterance under consideration, causing frustration. The
Comprehension-Processes Module assumes that the Tutoring Strategist has already
tried to optimize the difficuity of the utterance. Therefore, it only tries to alleviate
negative affects by adding a consolatory MTU such as “‘Don’t worry, we shall go

over this equation several times.’’

Alternatively, if the technical utterance is very simple, the student will cer-
tainly succeed in processing it, but he might become bored and inattentive. In this
case, the tutor should warn him to prepare low computational power, using MTUs

such as “‘clearly,”” ‘‘obviously,”” ‘‘this equation is rather straightforward,”’ etc.

The difficulty of the information the student can comfortably digest depends
on the complexity inherent in the technical utterance, the talent of the student and his
previous mastery of this utterance. A talented student, who has exhibited proficiency
in solving a given type of equation, will not require a complexity-related MTU to
advise him of its difficulty. The following rule is used by FIGMENT to encode these
considerations:

TF { RELATIVE-UTTERANCE-COMPLEXITY — TALENT-OF-THE-STUDENT } >
UPPER-COMPLEXITY-THRESHOLD
AND TECHNICAL-UTTERANCE-COMPLEXITY 20.2

ASSERT technical utterance is too difficult

Where:

COMPLEXITY—-QF ~-TECHNICAL -UTTERANCE

RELATIVE -UTTERANCE -COMPLEXITY =
NRELATIVE-EXPERTISE +0.25

And RELATIVE-EXPERTISE is determined by the following ratio:

NUMBER—OF —UTTERANCES -MASTERED
NUMBER -OF ~UTTERANCES -EXPOSED -TO

RELATIVE -EXPERTISE =

87

According to this measure, a student is advised of the difficulty of a technical
utterance, only if its RELATIVE COMPLEXITY exceeds his TALENT by more than a cer-
tain THRESHOLD. Still, a complexity-related MTU shall not be generated for an utter-
ance whose complexity measure is below 0.2, regardless of the student’s

qualifications.

In this formula, the student’s RELATIVE-EXPERTISE is calculated over the last
N technical utterances of the type of the utterance in question, thus discounting poor
performances in the past. The RELATIVE-EXPERTISE has been adjusted by adding to it
0.25, thereby considering a previous expertise of 75% an acceptable score. The square
root of the denominator serves to moderate the weight of the RELATIVE-EXPERTISE

compared to the COMPLEXITY measure.

Similarly, the need for a consolatory MTU is ascertained by means of the fol-
lowing rule:
IF { RELATIVE-UTTERANCE-COMPLEXITY — TALENT-OF-THE-STUDENT } >
EXTREME-COMPLEXITY-THRESHOLD
AND TECHNICAL-UTTERANCE-COMPLEXITY 2 0.4
THEN ASSERT technical utterance is exiremely difficult
- Finally, FIGMENT determines that a student can get by with only low compu-
tational power, by means of the following rule:
IF { RELATIVE-UTTERANCE-COMPLEXITY — TALENT-OF-THE-STUDENT } <
LOWER-COMPLEXITY -THRESHOLD
AND TECHNICAL-UTTERANCE-COMPLEXITY £ 0.8
THEN ASSERT technical utterance is 100 €asy

As before, the system will not advertise the ease of a technical utterance if its

complexity measure is greater than 0.8.

38

The preceding rules convey qualitative relationships between the need for a
complexity-related MTU and a student’s talent and relative-expertise. The numerical
parameters in these ruies were adjusted to yield satisfactory outputs in a large number
of repeated tests. (For numerical results of the application of these rules with different

values for talent, expertise and complexity, see Appendix 6.1).

We found that the need to issue a complexity-related and a consolatory MTU
should depend not only on the utterance’s attributes and the student’s qualifications,
but also on the state of the discourse. Therefore, before generating MTUs of these

types, the following rules are applied:

i If the complexity of a rule was already stated in the current equation, it should

not be repeated.

il If a complexity-related MTU is being repeated, it should be preceded by an
implementational MTU, yielding text like the following: ““‘As I said before,
this technique can be easily applied.”

iii. If a complexity-related MTU was already stated a certain number of times (say

3), then it should not be repeated.

iv. A consolatory MTU may be stated only the first time a technical utterance is

presented or for equations without a distinguished pattern.
4.4.2 Preparing Processing Time

In general, a student is quite prepared to devote a certain amount of time to
process a technical utterance. He would probably be quite content if the utterance

required less processing time than anticipated. However, should the forthcoming

89

utterance need longer processing time than expected, a loss of attention might ensue.
A tutor should be able to predict these situations and prevent the ensuing negative
affects by generating a lengrh-related MTU. Figure 4.4 illustrates the process
activated by the system to generate this type of MTU. However, before we discuss
this process in detail, let us define the length of the technical utterances under con-

sideration:

Topic — The length of a topic is defined by an estimate of the number of consecutive
equations a tutor predicts he is about to present. In general, a tutor will not
anticipate the exact number of equations that will be discussed, but a range of
equations (see Appendix 2). For example, the following length-related MTUs
are often encountered during a tutorial session: ‘‘Let us now consider a few
linear equations,’”’ ‘“We shall devote the rest of this session to third degree
equations,”’ etc. If no prediction is made, the student assumes that, for the

moment, one equation in a given topic will be discussed.

Equation — We define the length of an equation as the number of solution alterna-
tives which will be examined during a commentary. Clearly, this number may
differ from the number of existing solution paths. The generated length-related
MTUs distinguish between the number of mentioned alternatives and the
number of existing alternatives by means of expressions like the following:
““We shall discuss two approaches for solving this equation’’ and *‘There are

two approaches for solving this equation,’” respectively.

Alternative — The length of an aiternative is defined as the number of algebraic rules
that solve the equation. When discussing the solution of an equation, a teacher

may omit some of its steps. Thus the number of steps actually performed may

90

differ from the number of operations discussed. However, unlike the length of
an equation, the length of an alternative is defined as the number of existing
steps. This is because the alternatives which are not mentioned do not have to
be processed by the student, while the omitted rules still have to be processed,

though possibly in a cursory manner.

Rule — The length of a rule is a number between 0 and 1, which is a measure of the
amount of computations performed for one application of the rule on a
minimal number of elements. For example, the length of the application of the
| quadratic formula is 0.9, and the length of removing parentheses is 0.2. How-
ever, while the former value is fairly constant, the latter depends on the
number of terms which have to be multiplied. The length-related MTUs distin-
guish between the length inherent in a rule and the length resulting from
numerous applications of a (probably short) rule by means of statements like
““This technique entails many computations’’ and ‘‘This technique entails

many computations, in this case,”’ respectively.
P P y

Statement — We define the length of a statement as a number between 0 and 1 which
represents a normalized evaluation of the number of clauses in its English
representation. In the realm of Tutoring Algebra, most statements are ade-
quately represented by a few English clauses. However, a correctness proof or
a detailed description of the manner in which a rule is applied could be quite

lengthy.

According to the process depicted in Fig. 4.5a, a length-related MTU is gen-
erated if a technical utterance is judged too lengthy. For example, ‘“This technique

entails several calculations.”’ Although this preparation does not ensure success in

2

is technical utterance

too lengthy?
yes /
affect: boredom
insufficient affect: positive

processing time

Generate

Length-related MTU continue

is techaical utterance
extremely lengthy?

yes / o
affect: extreme
boredom, greatest
processing-time is
zmngfﬁcxem

Generau continue
Consolatory MTU

Fig. 4.5a: Process for Generating a Length-related MTU

processing the utterance at hand, it is our contention that the preparatory MTU
increases the student’s chances of coping successfully with it. If the teacher antici-
pates that even this preparation is insufficient to process a technical utterance, the
length-related MTU will be followed by a consolatory MTU like the following: ‘*This

alternative involves many steps, but it has to be examined.”

We have not found it necessary to generate a length-related MTU for a techni-
cal utterance which is shorter than the default expectation. Still, there are special cir-
cumstances in which such warnings are in order. For example, if a student is tired and

bored, but the teacher wishes to continue discussing the material, he might say ‘‘Let

92

us solve just one more equation’’ or ““The solution to this equation is really short.”
Unlike the MTUs presented previously, these MTUs are not issued to prevent nega-
tive affects, but to alleviate existing ones. Another scenario which may require MTUs
of this type occurs when a student falsely expects the forthcoming utterance to be of a
length identical to that of the preceding one. In this case, a length-related MTU like
the following, probably accompanied by an adversative MTU, might be generated:
““Unlike the last equation, there is only one way to solve this exercise.”’ Finally, in
addition to the MTUs generated by the process depicted in Fig. 4.5a, the
Comprehension-Processes Module may issue an MTU like ‘*There is only one way to
solve this equation,”’ in order to prevent a student from fruitlessly searching for alter-
native solutions. This type of MTU refers only to the number of existing alternatives,
as opposed to the number of alternatives which will be discussed, and its generation is

independent of the diligence of the student.

_ The processing time a student can comfortably devote to 2 technical utterance
depends both on its length and on the diligence of the student. Therefore, the system
evaluates the need for a length-related MTU by means of the following rule:

IF RELATIVE-UTTERANCE-LENGTH > UPPER-LENGTH-THRESHOLD
THEN ASSERT technical utterance is too lengthy
The UPPER-LENGTH-THRESHOLD is defined as the maximum utterance length
which can be comfortably processed by a student whose diligence is 1, and the

RELATIVE-UTTERANCE-LENGTH is defined as:

LENGTH-OF -THE -TECHNICAL -UTTERANCE
Nmax(DILIGENCE —OF -THE~STUDENT, 0.2}

RELATIVE-UTTERANCE-LENGTH =

93

To prevent the generation of a length-related MTU for a short utterance, the
denominator in the formula for the calculation of the RELATIVE-LENGTH is adjusted by

a lower bound, namely 0.2.

Likewise, FIGMENT determines the need for a consolatory MTU by the fol-
lowing rule: |
[F RELATIVE-UTTERANCE-LENGTH > EXTREME-LENGTH-THRESHOLD

THEN ASSERT technical utterance is extremely lengthy

The process of determining the need for a length-related MTU is basically the
same for all types of technical utterances. However, whereas the Tutoring Strategist
has firmly established the length of equations, alternatives and rules, a prediction
regarding the length of a topic may remain unfulfiiled, due to new information on the
student’s performance. For instance, if a student’s performance is worse than
expected, he will have to practice additional equations, or alternatively, if a student’s
performance has improved dramatically, he may require less than the anticipated
number of equations to achieve proficiency. Therefore, prior to activating the process
depicted in Fig. 4.5a, the system needs to ascertain whether a prediction regarding the
length of the previous topic has been fulfiiled, and if not, generate appropriate MTUs.

This task is performed by the process described in Fig. 4.5b.

According to this process, if the number of exercises in the current topic
exceeds the anticipated number of exercises, a student will doubt the tutor’s ability to
recall his prediction. In this case, FIGMENT has to generated a length-related MTU
like the following: ‘‘Let us examine another quadratic equation.”’ The reader will
recall that the English representation for this type of MTU is equal to the representa-

tion of a verification implementational MTU. Therefore, a requirement for both types

%4

is there a previous prediction
for a topic’s length?

yes no
is input topic equal aff .
. . . Sive
to previous topic? ect: po
yes no
does current exercise does current exercise continue
exceed prediction? fall below prediction?
yes / no yes / no
affect: disrespect affect: disrespect
insufficient affect: positive too much affect: positive

processing-iime processing-time

Generate continue Generate continue
Length-addition MTU Premature-end MTU

Fig. 4.5b: Process for Generating a Length-related MTU for a Previous
Topic-length Prediction
of MTUs shall converge to one surface representation (see section 6.3.3.1). Alterna-
tively, if a change in topic is effected before the predicted number of equations is dis-
cussed, a student should expect some explanation regarding this turn of events. In this
case, FIGMENT might generate the following MTU: *‘I know I said we would solve

more linear equations, but I feel we have done enough.”

When presenting a length-related MTU for an alternative, if a consolatory
MTU is also required, then FIGMENT checks whether the number of steps which
shall be mentioned is acceptable to the student. In this case, the consolatory MTU
would be composed of the number of steps to be mentioned, yielding text such as
““The following solution alternative requires many steps, however we shall examine

only a few of them.” Otherwise, a consolatory MTU like the ones presented for

95

equations and topics is issued.

The need to issue a length-related and/or consolatory MTU depends on the

status of the discourse. Therefore, prior to issuing MTUs of these types, the following

rules are applied:

iv.

If the length inherent in a rule was already stated in the current equation, it

should not be repeated.

If a length-related MTU is being repeated, it should be preceded by an imple-
mentational MTU, yielding text like the following: “‘As I said before, this

method entails many calculations.”

If a previously stated length does not match the current length, then the latter

should be omitted.

If a length-related MTU was already stated a certain number of times (say 3),

then it should not be repeated.

A consolatory MTU may be stated only for topics, equations without dis-
tinguished patterns and alternatives, and the first time an equation with a dis-

tinguished pattern, a rule or a statement is presented.

4.5 Building up Motivation and Justification

An algebra student typically exhibits the goals of solving the given equations

and mastering the subject matter. Ideally, the fulfillment of the second goal is a

precondition for the fulfillment of the first one. In addition, a student may have social

goals like earning the respect of his peers or gaining the approval of the teacher.

96

Finally, while studying the material, a student has the more immediate goal of remain-

ing interested and, if possible, amused.

To motivate a student, a teacher may remind him of the status of his goals and
the actions he has to perform to achieve them. However, a tutor is not expected to say
““You need to master this subject so that Sally will admire you.” Instead, he will
attempt to motivate a student through his knowledge-related goals. This task is per-
formed by using a variety of MTUs which reflect the tutor’s perception of the

knowledge-status of the student. For instance:

1. ““We shall now consider a topic, namely quadratic equations, which we have
not seen for a while.”’
This motivation is issued to prompt a student to practice a topic which he may

be forgetting.

2. ““This alternative serves to introduce the very important and interesting
method of factoring out common factors.”’

A tutor uses this motivation to awaken interest in a new item of knowledge.

3. ““This type of equation has been practiced a lot, but it still demands some
more practice.”
This motivation is generated to encourage a, probably tired, student to con-

tinue practicing a subject in which he lacks proficiency.

The design of FIGMENT captures important aspects of the motivation-

generation process, enabling it to produce these and other MTUs.

97

We recognize two types of motivations related to the student’s goal of master-

ing the subject matter:

Knowledge Preservation — If a certain item of information has not been encountered
for some time, and the tutor suspects that the student’s skills might have
deteriorated, he could motivate the student by means of a knowledge preserva-
rion motivation, yielding a sentence such as ‘“This equation enables us to prac-

tice a technique, which we have not encountered for a while’’; and

Increment Knowledge — If a technical utterance has been practiced recently, we can
safely assume that the expertise of the student will only increase with addi-
tional practice. In this case, if the performance of a student leaves something
to be desired, a tutor can use an increment knowledge motivation, producing a
sentence like the following: ‘‘Let us continue with the following type of equa-

tion, which demands some more practice.”

To keep a student interested, a tutor may highlight the astributes of an infor-
mation item; for instance, **This topic is very interesting and challenging.”” This type
of motivation is generally used when introducing a new technical utterance. However,
it sometimes accompanies a knowledge-status related motivation statement, yielding a
sentence like the following: ‘‘Let us consider a very interesting topic, namely third
degree equations, which requires additional practice.”” A similar type of motivation
highlights the relative attributes of a method or 2 topic, for example, *“This method is

more elegant and efficient than removing parentheses and collecting terms.”’

As stated in section 3.3, FIGMENT occasionally presents solution alternatives

which the student may have considered. These may be motivated by the following

98

sentence: ‘‘Another alternative you might have thought of consists of the following
steps.’’ This motivation satisfies the student’s goal of mastering the subject matter, as

well as a social goal, by finding out the tutor’s opinion about him.

Finally, if none of these motivation types is applicable, a tutor could motivate
the student by appealing to his social goals, i.e., gaining the teacher’s approval. This
motivation is represented by a sentence such as “‘I would like you to solve the follow-

ing equation.”

Before we consider in detail the motivation process used by the tutor, we

would like to discuss its relation to the context hierarchy (see Fig. 4.6).

Inheritance — If we motivate a student to attend to the solution of a given equation
through the equation’s topic or its type, we may assume that the student has
acquired the goal of solving it, and that this goal remains active as long as the
equation is not solved. Therefore, all unsuccessful solution alternatives and the
first successful alternative inherit this motivation, and the student does not
have to be motivated separately for them (recall that the Tutoring Strategist
presents first the unsuccessful alternatives and then the successful ones). How-

ever, the student still has to be motivated to attend to additional alternatives.

Similarly, the need for a knowledge-status related or social motivation
may also be inherited, i.e., if a student lacks skill in a particular topic, his lack
of expertise is expr;:ssed in inability to solve equations in this topic and to
apply algebraic rules properly. However, a demand for a motivation which
highlights the attributes of a topic or equation type is not propagated to lower

levels.

99

AY2IBIILY 1X3JU0)) B Ul SUOLIEPRY uoneAloN 9°p ‘g

L2 Wy,
uonvdvdosd
spipmdn ,—
Toanewae Meanewae

uonvdodosd

spimmdn 2ouvIaYUl

u
uonenba :
Ldoy .

REVTILINEN

)

2ouDILYU!

Luonenba

-~

aoupnIU!

Iidoy —
20ua42fsUDA

L3P LLP

Uganewane 'oanewssie
FoupILIYUI
Tuonenba

20upsLIZYUL

Toidoy

100

Transference — If a student is motivated to attend to the solution of a given equation
through the equation’s topic, its pattern, or the techniques being used to solve
it, then this motivation applies to the following equations which share the

same characteristics.

Upwards propagation — A student may also be motivated to attend to an equation, by
presenting it as a vehicle for the introduction of a technique, or by means of a
knowledge-status related motivation for a previously discussed method. We
shall denote this type of motivation upwardly propagated. If a new method is
being studied, this motivation is propagated upwards to the equation, and may
then be inherited by other alternatives, stating that they are presented ‘‘for
comparison purposes,’’ i.., so that their performance may be compared to
those of the alternative which includes the method in question. After all the
alternatives have been presented, a comparison statement to this effect has to
be issued, e.g., ‘‘The last alternative is faster and less error-prone than the two
previous ones.’’ If a knowledge-status related motivation is being used by the
tutor, then if it is shared by all the solution alternatives, it may be propagated
upwards. A motivational sentence like ‘‘This equation enables us to practice a
couple of methods, which we have not seen for a while,” is generated by pro-

pagating upwards the knowledge-preservation motivation of its alternatives.

In Fig. 4.7 we present the model used by the Comprehension-Processes

Module to generate an appropriate motivational MTU.

According to this model, a student is presumed to experience loss of interest
upon encountering a new technical utterance, until he is motivated by means of an

MTU which highlights the attributes of this utterance. If the technical utterance has

101

is technical utterance new?

yes no
affect: loss was utterance not practiced
of interest for some time?
irrelevance
yes no
Generate affect: loss is student motivated
Highlight- of interest to attend to utterance?
attributes MTU remoteness
yes no
Generate
Knowledge- affect: positive affect: boredom
preservation MTU
continue is student proficient in
this utterance?
yes no
Generate Generate
Obligation Increment-
MTU knowledge MTU

Fig. 4.7: Process for Generating a Motivational MTU

already been discussed, the appropriate motivation depends on the student’s
knowledge status, i.e., if this utterance has not been studied for a while, a
knowledge-preservation motivation is produced. If, on the other hand, the technical
utterance has been practiced lately and the student was not recently motivated to
attend to it, the system considers an increment-knowiedge motivation. If this motiva-
tion is not applicable, the Comprehension-Processes Module uses the catch-all obliga-

tion (social) motivation.

102

Given a list of technical messages, FIGMENT applies the motivation build-up
process to the topic and equation messages, and also to selected rule messages in each
solution alternative. After the motivation requirements of each of these technical
utterances have been ascertained, the system selects the motivation to be presented.
Let us now consider the questions concerning a topic technical utterance shown in the

discrimination net of Fig. 4.7.

Was the technical utterance not practiced for some time?
To answer this question FIGMENT takes into consideration both the student’s
last exposure to the technical utterance in question and the possible deteriora-
tion of his knowledge. The latter depends mainly on a student’s talent.
IF { CURRENT-EQUATION-NUMBER — LAST: -EXERCISE-EXPOSED-TO } >
DETERIORATION-FACTOR
THEN ASSERT technical utterance was rot practiced for some time

Where:

DETERIORATION-FACTOR = max { MINIMUM-DETERIORATION-THRESHOLD,
TALENT X OUT-OF-PRACTICE-THRESHOLD }

MINIMUM-DETERIORATION-THRESHOLD is the minimum number of equations
that must have elapsed before knowledge starts deteriorating.
OUT-OF-PRACTICE-THRESHOLD contains the number of equations that gen-

erally elapse until a student of talent 1 starts forgetting a particular topic.

Is the student motivated 1o attend to the technical utterance?
This question expresses the motivation-transference relation. If the student
was recently motivated to attend to the current topic, then by the transference
relation, this motivation remains valid; and by the inheritance relation, no

motivation is required for the equation and the solution alternatives presented

103

up to its first successful one. The motivation to attend to a known technical
utterance depends on a student’s diligence and on his exposure to consecutive
utterances of the same type. It is evaluated by the following rule:
IF { NUMBER-OF-EXERCISES-SINCE-MOTIVATION +
PREDICTED-NUMBER-OF-EXERCISES } < MOTIVATION-FACTOR
THEN ASSERT student is motivated to attend to technical utterance
Where:

MOTIVATION-FACTOR = max { MINIMUM-MOTIV ATION-THRESHOLD,
DILIGENCE X REQUIRED-MOTIVATION-THRESHOLD }

MINIMUM-MOTIVATION-THRESHOLD is the minimum number of equations that
must have elapsed between two motivations for the same topic.
REQUIRED-MOTIVATION-THRESHOLD is the number of equations the most dili-

gent student is willing to solve in a topic, without being motivated.

The product of DILIGENCEXREQUIRED-MOTIVATION-THRESHOLD
expresses the number of equations a particular student is willing to solve
without requiring motivation. This number has to be adjusted by means of the
MINIMUM-MOTIV ATION-THRESHOLD, in order to avoid motivating a very lazy

student for each equation,

Is the student proficient in the technical utterance?
The proficiency of a student depends on his relative expertise. The following
rule is used to answer this question:
IF RELATIVE-EXPERTISE 2 KNOWLEDGE-THRESHOLD
THEN ASSERT student is proficient in technical utterance
The student’s RELATIVE-EXPERTISE is defined as a ratio of the equa-

tions mastered and the equations he was exposed to; and the KNOWLEDGE-

104

THRESHOLD is a percentage of solved equations beyond which a student is

considered to know a topic.

Once the adequate motivation type for the topic has been ascertained, FIG-
MENT considers the possibility of motivating a student through the pattern of the
current equation. To this end, the above described process as activated, with the fol-

lowing modifications.

A highlight-attributes motivation may be presented only for an equation with a dis-

tinguished and unqualified pattern (see Appendix 2).

If a requirement for a knowledge-status related or social motivation for the topic has
been recorded, but the student was recently motivated to attend to an equation
with the current pattern, then the student is considered to be motivated to
attend to the current equation, and the requirement for a topic motivation is

canceled.

If the equation is evaluated by the system as being of low level of difficulty for the
student, then even if the student lacks expertise in solving this type of equa-
tion, an increment-knowledge motivation cannot be presented, and it has to be

replaced by an obligation motivation.

An equation with a qualified pattern and an equation without a distinguished pattern
may be motivated only if they inherited a need for motivation from the topic.
In this case, only an obligation motivation should be generated, since the Prob-

lem Solving Expertise Module does not store any attributes for these patterns.

105

Finally, the Comprehension-Processes Module has to ascertain that the student
is motivated to attend to each solution alternative. In order to accomplish this task, we
assume that each alternative is characterized by a typical sequence of one or more
methods, which set it apart from other alternatives. Usually a typical sequence is
applied at the beginning of an alternative, and after it is completed, the rest of the
steps are rather routine. A motivation has to be presented only for the method or
methods in the typical sequence corresponding to each alternative. To generate such a
motivational MTU, the following rule, which accounts for the inheritance relation, is

incorporated in the process described in Fig. 4.7.

IF a rule is not new
AND the equation does not require a knowledge-status related
or social motivation
AND the equation has not been soived yet
THEN the method is considered to be motivated

Unlike the process applied for motivating a student to attend to the solution of
an equation, an inherited requirement for a knowledge-status related motivation is not
canceled if a rule was previously motivated. This is because there may be more than
one rule in a typical sequence, and in order to cancel 2 motivation requirement for an

alternative, all the rules in its typical sequence have to be previously motivated.
4.5.1 Selecting a Motivation

After the motivation build-up process has been activated on the topic, equation

and the typical sequence of methods in each solution alternative, a structure contain-

106

ing the resulting motivation MTU-codes is produced. For example:

TOPIC knowledge-preservation

EQUATION highlight-attributes

ALTERNATIVE, (method, increment-knowledge) (method, increment-knowledge)
ALTERNATIVE, (method, obligate)

In the process of selecting a motivation FIGMENT tries to imply the least pos-
sible lack of knowledge. Therefore, it will generally favour a motivation which
highlights the attributes of a technical utterance over a knowledge-status related
motivation. Among the latter, it will prefer an equation motivation over a topic
motivation, and an upwardly-propagated method motivation over an equation motiva-
tion. In addition, FIGMENT prefers a knowledge-status related motivation to a social
motivation. For the above-presented structure the system will highlight the attributes
of the equation. These attributes are extracted from the Problem Solving Expert’s

domain knowledge, producing a sentence such as ‘‘Let us consider a new type of

equation, which is very important and is encountered frequently.”’

Occasionally this policy will not be applied. For instance, if the current topic
requires motivation and the number of equations is being advertised, a topic motiva-
tion is mandatory. This policy may also be violated for aesthetical reasons, i.e., to
avoid repeating the same type of motivazilon. (For a detailed presentation of the

motivation-generating rules, see Appendix 7.)

If both a topic and an equation require a highlight-attributes motivation, then

both motivations may be presented. This yields an introduction like the following:

““Let us consider the important topic of quadratic equations. Here is

an equation:

107

x2-3x+5=0

This type of equation is very common.’’

If a highlight-attributes motivation of a method is upwardly propagated, then
an equation may be introduced as follows: ‘“This equation enables us to introduce the
very important and useful technique of substitution, but first let us consider two other
ways of solving this equation, for comparison purposes.”’ The adversative MTU
““ut’’ is produced because the Tutoring Strategist postpones the introduction of a
new technique to the last alternative, thus violating the expectations established in the

first part of the sentence.

If the same type of motivation appears at least once in all the alternatives, then
an upwardly propagated knowledge-status related motivation may be generated. If
both types of knowledge-status related motivation are applicable to all aiternatives,
the type which appears more times is selected. For example, given the following
MTU-codes for typical rule sequences of three alternatives, the increment-knowledge
motivation should be selected, yielding a sentence such as **Through this equation we

are able to exercise a few techniques'which demand some more practice.”

ALTERNATIVE, (method,, increment-knowledge)

TERN (methc increment-knowledge),
AL A 2 { (methodzé knowledge-preservarion)

TERN (meth knowledge-preservation),
AL ATIVE; { (mcth&; increment-knowledge)

Finally, after the motivation MTU-code for an equation has been selected,

each alternative which is not automatically motivated through the inheritance relation,

108

has to be separately motivated. The following sentences accomplish this task:

L “s Another alternative through which we can practice a couple of techniques we
have not seen for a while consists of the following operations.’’
This motivation is issued if the equation was motivated through an upwardly

propagated knowledge-status related motivation.

2. ““Through the following alternative we shall introduce a very interesting tech-
nique, namely Patt’s guessing method for solving quadratic equations.’’

This sentence highlights the attributes of a forthcoming method.

3. *s Another solution I would like you to try consists of the following steps.”’
This sentence contains a social motivation, however it may also be used when
a new method is being introduced. In this case, the attributes of this method

are highlighted later on.

4, ““The second alternative enables us to exercise a few rules which demand
plenty of practice.”’

This sentence contains a knowledge-status related motivation.

The motivation-selection process presented in Fig. 4.7 is an integral part of the
comprehension-processes activated by a student when attending to a technical utter-
ance. Nevertheless, this process together with the motivation-selection rules should be
activated by the Tutoring Strategist, in conjunction with the didactic rules which
select the material to be presented. This will enable the Tutoring Strategist to present
topics, equations and techniques which do not have to be motivated by means of a

social motivation.

109

4.6 Partial Output of the Comprehension-Processes Module

This section describes the Knowledge-Acquisition and consolatory MTUs pro-
duced by the Comprehension-Processes Module. After the preceding processes have
been activated, the Comprehension-Processes Module produces a list of extended
messages. Each message contains a technical utterance accompanied by codes which
specify requirements for MTUs. Figure 4.9 depicts the MTU requirement-codes gen-
erated from the output of the Tutoring Strategist presented in chapter 3 (repeated in
Fig. 4.8 for convenience). These MTU-codes correspond to the second quadratic
equation presented after a sequence of equations of a different type, to a student who

is very competent but not diligent.

The first entry in Fig. 4.9 contains a topic technical utterance accompanied by
a CONTINUE verification implementational MTU-code and an OPEN focal MTU-code.
The former is produced by the Comprehension-Processes Module since the current
equation is the second quadratic equation, i.e., the student is not familiar with this
type of equation. The latter is generated to preclude confusion due to the presentation
of a topic. FIGMENT does not produce a focus-close MTU, since there is no open

focus.

The second entry requires a focus-open and a length-related MTU for the
equation. The focal MTU is generated to introduce the forthcoming equation. The
length-related MTU is required by a student who is not very diligent, since three alter-
natives for solving the equation are to be discussed. Notice that the code EXIST is pro-

duced, because these are all the possible alternatives.

110

TOPIC: quadratic
EQUATION: (x-3)% - 4(x-3) - 12=0
(ALTERNATIVE 1)
RULE: factor out x-3 from terms 1 and 2
PATTERN: x-3 is a factor common to terms 1 and 2
EXPECTATION: get a factor common with rest of equation
RESULT: xNx-7-12=0
RULE: remove parentheses
RULE: collect terms
RESULT: x?-10x+9=0
CONTINUE
(ALTERNATIVE 2)
RULE: remove parentheses
RULE: collect terms
RESULT: x2-10x+9=0
CONTINUE
(ALTERNATIVE 3)
RULE: substitute y = x-3
. x appears only in expression x-3
PATTERN: and x-3 appears more than once
PURPOSE: get canonic expression
RESULT: y?-4y-12=0
RULE: quadratic formula
RESULT: y=6 or y=-2
RULE: substitute back x-3 for y
RESULT: x-3=6 or x-3=-2
RULE: transfer term
RESULT: x=9 or x=1
FINISH

Fig. 4.8: Sample Input to Comprehension-Processes Module

111

In the third entry, a focus-open MTU-code is generated for the first alternative,
since the number of alternatives was mentioned previously, and in the absence of an
introduction the student rﬁay temporarily mistake the first operation for the first alter-
native. The expectation corresponding to the factor-out rule is accompanied by an
implementational MTU, since the student has seen this statement once before (entry
No. 4). Next, the entry corresponding to the remove-parentheses rule contains three
MTU-codes. This rule was encountered twice before, therefore the Comprehension-
Processes Module generates an implementational MTU for it. Since the student is
very talented, the system finds it necessary to issue a complexity-related MTU which
signals the ease of this rule. The remove-parentheses rule is not inherently long, how-
ever, since it is being applied several times, it requires enough computations to war-

rant the generation of a length-related MTU for a student who is not diligent.

The second alternative (entry No. 6) requires a focus-close MTU, since the
first alternative is still in focus, and a focus-open MTU, to introduce it. In addition,
since the first alternative solved the equation, the second alternative has to be
motivated. To this effect, the Comprehension-Processes Module selects an
ATTEMPTED motivation for lack of a knowledge-status related motivation. The Sen-
tence Composer generates a sentence such as "Another approach you may have con-
sidered consists of the following operations,” from this MTU-code. As before, the
remove-parentheses rule requires several computations, therefore, a situation-
dependent length-related MTU has to be generated. Since the current usage of the
'remove-parenﬂlescs rule does not resemble its usage in the previous alternative a
LIKE-BEFORE implementational MTU is not required, and since the implementational
MTU generated in the previous alternative already put the student in verification-

mode regarding his knowledge of this rule, a KNOWN MTU would be superfluous.

112

The third alternative also requires.a focus-close and focus-open MTU, and a
motivation. This time, however, a HIGHLIGHT-ATTRIBUTES motivation is presented,
since the expression-substitution rule is being introduced. Finally, a complexity-

related MTU advertising the ease of this rule is generated.

Utterance MTU type MTU Code
Focus? (OPEN)
TOPIC {Implementation Mode? (CONTINUE)
Focus? (OPEN)
EQUATION { Length? (EXIST 3)
ALTERNATIVE, Focus? (OPEN)
EXPECTATION Implemenzation Mode? (KNOWN 1)
Implementation Mode? (KNOWN 2)
RULE (Remove Parentheses) Complexity? (EASY)
Length? (LONG-SITUATION)
Focus? (CLOSE 1) (OPEN)
ALTERNATIVE, { Motivation? (ATTEMPTED)
RULE (Remove Parentheses) Length? (LONG-SITUATION)
Focus? (CLOSE 2}(OPEN)
ALTERNATIVEj Motivation? (HIGI‘]LIC?HT-ATI"RI]?UTES)
- (Substitute Expression)
RULE (Substitute Expression) Complexity? (EASY)
Fig. 4.9: Requirement-codes for Knowledge-Acquisition MTUs for
Sample Input

113

These codes for Knowledge-Acquisition MTUs are complemented by means
of codes for Knowledge-Organization and affect-transference MTUs, whose genera-
tion is described in the following chapter. The English-representation produced by the

Sentence-Composer from this output is also presented in the next chapter.

114

CHAPTER 5

Generation of Knowledge-Organization MTUs

In this chapter we describe the generation of Knowledge-Organization and
affect-transference MTUs. As stated above, they are derived from information in the
domain knowledge of the Problem Solving Expert and from the structure of the Tutor-

ing Strategist’s output.
5.1 Generation of Additive MTUs

The additive MTUs generated by FIGMENT represent direct translations of
the structure of the output of the Tutoring Strategist. Therefore, it will suffice to
present some examples which illustrate common usages of these additive MTUs in

discourse related to the solution of algebraic equations:

1. “‘Next, we remove parentheses, collect terms and apply the quadratic for-
mula.”
The simple additive MTU ‘‘and’’ represents a direct translation of a sequence

of rules.

2. ““You can generally solve quadratic equations by removing parentheses, col-
lecting terms, and then applying the quadratic formula or completing the
square.’’

The simple additive MTUs “‘or’’ and ‘‘and then’” are produced by translating

the information in the general-method slot corresponding to the topic of

115

quadratic equations (see section 3.1.1). This information has the following

structure:
((remove-parentheses collect-terms (quadratic-formula complete-square)))

In this representation, alternative approaches appear between odd-
numbered parentheses, and sequences of rules, between even-numbered
parentheses. Thus, there is only one general approach for solving quadratic
equations, which consists of three rules applied consecutively, and there are

two alternatives for the third rule.

““This topic is very interesting and important.”’

The MTU “‘and”’ directly reflects the relationship between the attributes
selected by the Comprehension-Processes Module for this motivational MTU
(see section 4.5). Since both attributes are positive, an additive MTU is issued;
whereas if one of the attributes were negative, an adversative connective such
as ‘“‘but’’ would be required. For a detailed explanation on the choice of con-

nective see section 6.1.

““As stated above, this technique is very useful. Furthermore, it is elegant
and efficient.”’

This example is similar to the previous one, but for the fact that it features the
internal additrive MTU “‘furthermore,”” in addition to the external MTU
‘“‘and.’”” As before, the attributes are represented as a list, and the choice of
MTUs depends on their relationships. In this example, the attribute-list is
divided into two sentences, because the attribute ‘‘useful’’ is modified by the

implementational MTU “‘as stated above,’” while the other attributes are not.

116

Realization of expectation MTUs also belong to the additive category. How-
ever, unlike the MTUs presented above, their generation is not straightforward, as
they depend on the expectations triggered in a student by previous discourse. These
MTUs are generated by a module which monitors the status of the student’s expecta-
tions, and determines whether a realization or a violation of these expectations has

occurred.
5.2 Generation of Adversative MTUs

In this section we discuss the generation of realization and expectation viola-
fion MTUs (e.g., ‘‘however,” ‘‘nevertheless,’” ‘‘despite this,”” etc). Affect-
transference MTUs which are frequently linked to the violation of expectations, shall
be produced by the same algorithms which produce expectation-violation MTUs.
First, we shall consider some of the expectations experienced by a student.
Thereafter, we shall examine the impact of different types of technical utterances on

these expectations. The following types of expectations are recognized by FIGMENT:

i Expectation of the existence of a solution.
The presentation of an equation triggers and implicit expectation of the
existence of a solution. This type of expectation is activated in a more explicit
manner by the introduction of a solution alternative or the presentation of a

rule.

i, Expectation of a particular result.
This type of expectation is usually explicitly prompted by a teacher, by means
of an expectation technical utterance. For example, ‘“We factor out (2x+5)

from the first two terms, hoping to get a factor common to the rest of the

117

equation.’’ At each point in the solution of an equation there is only one active
ekpectation of this type. The system records an expectation for hopes only,
since a realization-of-expectation MTU following the statement of a purpose

would be superfluous.

Expectation of similarity with previous solution paths.

A tutor triggers this type of expectation by presenting a student with an imple-
mentational MTU which states that the current equation or result is similar to a
previous equation. For instance: ‘“This equation reminds us of equations; 1 and
3.”" This type of statement prompts a student to expect to solve the current
equation, by repeating the algebraic operations which were successful previ-
ously. We distinguish between two types of similarity expectations, according

to their scope:

Inter-aiternative — If the similarity statement refers to an equation, a student
would expect the solution alternatives considered for the current equa-

tion to have been applied earlier; and

Intra-alternative — If the similarity statement concems an intermediate result,
arrived at during the solution of an equation, the student expects the
subsequent operations in the current alternative to be equal to the ones
used to solve the equation being recalled. This expectation is not trig-
gered if an inter-alternative expectation is already active, and does not
transcend to any other approaches applied to solve the current equa-

tion.

118

Another type of expectation found in this category is the expectation of
dissimilarity. This expectation is triggered by a qualified implementational
MTU (see Appendix 2). After mentioning the similarity between the current
equation and a previous one, this MTU points out a discrepancy between
them. For example, ‘“This equation is similar to the last one, but it contains
an additional term.”’ This type of statement would cause a student to expect
the solution paths of the equation under consideration to differ from the solu-

tion paths for the previous equation.

iv. Expectation of a particular technical utterance.
If a teacher mentions that he will discuss a particular technical utterance, a stu-
dent would expect this utterance to be immediately issued. For example, this
type of expectation is activated by means of the following statement: ““The
following alternative serves to introduce the method of”” It differs from the
previous expectations, in that when an utterance is expected, its arrival is not
in question, but only the time of its arrival, whereas when a mathematical

event is expected, its fulfillment is uncertain.

Let us now consider the effect of each technical utterance and its accompany-

ing MTUs on these expectations.

i. Equation.
As stated before, an equation technical utterance by itself triggers only an
implicit expectation of the existence of a solution. However, if it is accom-
panied by an implementational MTU such as ‘“This equation is similar to the
previous one,”’ the student will expect to see the solution alternatives which

succeeded in solving the previous equation (i.e., expectation of similarity). In

119

iii.

addition, if a length-related MTU like the following is issued: ‘“There are
three ways to solve this equation,” an explicit expectation of the existence of

solution would be triggered in the student.

Alternative.

The introduction of an alternative by means of a focal MTU triggers an expec-
tation of the existence of a solution. If an expectation of an absence of solu-
tion was active, the introduction of the alternative represents a violation of the
student’s expectations, and entails the generation of an expectation-violation
MTU. In addition, if the tutor can foresee that this alternative will solve the
equation, the generation of a positive affect-transference MTU is in order,
yielding a sentence like the following: ‘‘Fortunately, however, there is a way
to solve this equation.”” To avoid generating boring and repetitious text, this
affect-transference MTU can be generated only if a negative affect-
transference MTU was not produced for the utterance which caused the expec-

tation of the absence of a solution.

Rule.

Like for alternatives, if a previous technical or meta-technical utterance caused
a student to expect the current equation to have no solution, the mere presenta-
tion of a rule violates this expectation. Thus, like before, an expectation-
violation MTU has to be generated in this situation, yielding a sentence like

the following: *‘Nevertheless, we can still remove parentheses.’’

If there is an active expectation of similarity, triggered by an imple-
mentational MTU, the following rules govern-the generation of realization or

violation of expectation MTUs.

120

If the rule applied in the current equation is indeed equal to the one used to
solve the equation referenced in the implementational MTU, and an
MTU signaling the realization 6f a similarity expectation was not pre-
viously produced, then it has to be generated. The ratonale supporting
this rule is that once an expectation of a particular solution path is real-
ized by the first step in the solution of an equation, the tutor does not
have to continue reinforcing this realization of expectations. According
to this policy, the implementational MTU *“This equation is similar to
the previous one’’ might be followed by an MTU like ‘‘Indeed, we

shall begin by applying the same solution methed.”’

If the rule applied in the current equation was not used in the equation referred
to by the implementational MTU, then a similarity expectation viola-
tion MTU has to be generated, yielding the following text: ‘‘However,

we shall solve it by”"

An expectation of dissimilar solutions is activated by means of a
qualified implcmexitational MTU such as ‘“This equation reminds us of equa-
tion #3, but it has an additional term.’’ This expectation is violated, if the first
algebraic operation applied to solve the equation resembles the first operation
used to solve the referenced equation. In this case, a statement like ““Still, we
begin by ... ,”” replaces the expectation of dissimilarity with a similarity expec-

tation. If the expectation of dissimilarity is realized, it is canceled.

As shown in Appendix 2, a rule technical message may contain a list of
equations in which this rule was used under similar circumstances. FIGMENT

ascertains the status of an expectation of similarity or dissimilarity, by testing

121

iv.

whether the current list is a superset of the list of equations which triggered
this expectation. As long as an expectation of similarity remains active, no
implementational MTUs shall be produced for a rule, since they would only

repeat the information transmitted in a previous implementational MTU.

Finally, a rule also affects an expectation of a particular technical utter-
ance, since the rule following an introduction may not be the expected one. In
this case, an event violation MTU like the following is generated: ‘‘But,

before we apply this method, we remove parentheses.’’

Result.

If there is an active expectation of a particular resuit, then the result of each
algebraic operation has to be checked against this expectation. If the result
violates or realizes the expectation, an MTU to this effect has to be generated,
and the expectation is canceled. The following sentence illustrates a realization
of expectation MTU: ““This method arrives at the result we were hoping
for.”’ If the violation of an expected resuit disables the solution of the equa-
tion, then a negative affect-related MTU should be generated, yielding a sen-

tence such as ‘‘Unfortunately, however, we get”’

An algebraic operation may constitute an intermediate step, which nei-
ther violates nor realizes an expectation. Thus, no expectation-related MTUs
are issued for it, and the expectation remains active. If the relevant result is
reached some time after the expectation was stated, then the expectation might
have to be restated, yielding the following sentence: ‘“We were hoping to get a
common factor between some of the terms in the equation, however, we

arrived at”’

122

A result technical utterance may also affect the status of an expectation
of similarity. However, it can cause only a violation of this expectation, since
such an expectation would be realized by a preceding rule. Let us illustrate this

point by means of the following example:

““This equation is similar to equations 1 and 3. Indeed, we start solving it by

factoring out common factors. However, we get ... ”’

In the first sentence, an expectation of similarity is triggered. It is real-
ized in the second sentence, containing a rule technical utterance. The third
sentence constitutes a violation of this expectation, and the expectation of
similarity is canceled. If the violation of an expectation of similarity occurs
after several steps have been performed, a more explicit expectation violation
MTU may be required, for example: ‘‘Unlike the result obtained in equa-

tions 5 and 6, we get”

As stated before, an expectation of dissimilarity exists only at the
beginning of a solution. Therefore, by the time a result is presented, this

expectation is no longer active.

Method.

These technical utterances differ from the above mentioned utterances in that
they may refer to a topic or equation type which are not currently in focus.
Therefore, any expectation triggered by a digressing method technical utter-
ance is a temporary expectation, which has no impact on the expectations
related to the items in the permanent context, and is canceled when the

discourse returns to the main subject. Similarly, the expectations regarding the

123

items in the permanent context have no effect on a temporary expectation. The
following rules govern the generation of expectation and affect-transference

MTUs for method technical utterances.

If a solution is being expected for a certain topic or equation type, and the
method technical utterance contains information regarding the lack of a
general or a specific method, then the expectation of the existence of a
solution is canceled. If the expectation of the existence of a solution
was explicitly activated, then an expectation-violation MTU is in order.
In addition, the system determines the need for an affect-transference

MTU by applying the following rule:

If a technical utterance concerns a general solution method, and the
expectation of a solution was implicitly established or the technical
utterance which explicitly established this expectation was not accom-
panied by an affect-transference MTU, then a negative affect-

transference MTU may be issued.

This rule is based on the belief that if there exists a general
method for solving an equation, the absence of specific methods has no
affective impact on a student. However, in the absence of a general
technique, this rule may produce the following text: ‘‘Unfortunately,
we shall not examine a general technique for solving third degree equa-

tions.’’

If a solution is not being expected, and there exists a solution method, then an

expectation-violation MTU is generated, and the expectation of the

124

existence of a solution is activated. In addition, if the method technical
utterance contains information regarding particular techniques to solve
an equation and the technical utterance which canceled the expectation
of the existence of a solution was not accompanied by an affect-
transference MTU, then a positive affect-transference MTU should be

produced.

The following sentence is generated by means of this rule:
“‘Fortunately, however, we can solve certain types of third degree
equations by factoring out common factors, or alternatively, applying
the appropriate factorization formula.”” The system does not produce
positive affect-transference MTUs for general methods, since their

existence is not considered a fortuitous event.

vi. Finish.
A finish technical utterance signals the termination of a solution path. It can-
cels any active expectation of a particular result and also any intra-alternative
similarity expectation. If the current alternative did not succeed in solving the
equation, and an expectation of the existence of a solution is still active, the
expectation is canceled and a negative affect-transference MTU 1s genergted,
yielding a sentence such as ‘‘Unfortunately, there is nothing else we can do
here.”’ If, however, a solution is no longer expected, due to a previous failure
of an expectation of a particular result, no affect-transference MTUs need to

be produced.

In addition to these technical utterances, there are some configurations of

Knowledge-Acquisition MTUs, which entail the generation of expectation-violation

125

connectives, in particular the connective ‘‘but.”” The generation of these MTUs and
their connectives is performed by the Sentence Composer. Since this process is

explained in detail in Chapter 6, it will suffice to present here a few examples:

1. ““] know these are many alternatives, but you shall benefit from learning the
methods they illustrate.”’
In this example, the second sentence contains a consolatory MTU, which
counteracts the misgivings experienced by a student due to the presence of

many alternatives, advertised by a length-related MTU.

2. ““There is another way of solving this equation, but it entails many steps.”’
In this example, the first sentence represents a focal and a temporal MTU, and
the second sentence, a length-related MTU. Whereas the former reaffirms the
expectation of the existence of a solution, the latter imperils the realization of

this expectation.

3. ““This method is very important but simple.’’
An expectation-violation MTU is issued in this example, since, in most cases,
a reader would not expect to encounter these attributes in reference to the same

object. s

4. ““This equation enables us to introduce a useful technique, but first, let us
consider three other approaches, for comparison purposes.’ ’
In this example, the second sentence temporarily negates the occurrence of the
event advertised by the first motivational sentence. Therefore, an MTU which

violates an event expectation has to connect between them.

126

Expectation-violation MTUs may also be applied to estimational, implementa-
tional and motivational MTUs, in relation to expectations triggered by previous techn-
ical utterances. For example, ‘‘Unlike the previous equation, this equation is quite
simple.”” However, due to the partial short-term memory supported by the present

version of FIGMENT, this configuration of MTUs is not generated.

Dismissal MTUs (e.g., “‘in any case,”” ‘‘either way’’) are used by a human
tutor when two different but rather short paths in the solution of an equation arrive at
the same pattern. The following text illustrates this usage: ““We may transfer terms
first and then collect terms, or we may first collect terms on both sides of the equation
and transfer terms thereafter. Either way, we arrive at”" Since the current imple-
mentation of FIGMENT assumes that the output of the Tutoring Strategist has a tree

structure, it does not generate this type of MTU.

A recognition MTU is issued when an implicit pattern is recognized and made
explicit. For example: ‘‘Notice that we can rewrite this expression as"” The gen-
eration of this type of MTU is linked to the application of rewrite rules. These rules
provide a different representation for a given expression by means of parentheses

(e.g., “‘-x+1 =-(x-1),"" “x°-2x+1 = (x-l)z”).
5.3 Generation of Causal MTUs

As stated in section 2.3.1, most of the relations expressed by Causal MTUs are
invariant with respect to equations and are inherent in the algebraic rules. Therefore,
they can be directly represented by the following slots of the Mathematical and Plan-

ning Knowledge component in each rule (see section 3.1.1).

127

i.

Pattern and Preconditions.
These slots contain the reason or justification for applying a particular rule.

The following example illustrates the generation of a reason MTU:
Given the equation:
x(x-53) - 4(x-5)*=0
And the rule instantiation:

RULE: factor out x-5 from terms 1 and 2
PATTERN: x-5 is a factor common to terms 1 and 2

FIGMENT may generate any of the following sentences:

1. ““Since x-5 is a factor common to both terms, we factor it out.”’

2. ““We factor out x-5 because it is a factor common to both terms.”’
3. “*x-5 is a factor common to both terms. Therefore we factor it out.”
Purpose/Expectation.

If a particular result of an algebraic operation is expected with certainty, the
purpose of this operation is stated. If, however, the result is uncertain, then it
is hoped for. We shall illustrate the generation of purpose and hope MTUs by

means of the following examples.

Given the previous equation, and the following rule instantiation:
RULE: factor out x-5 from terms 1 and 2
EXPECTATION: get a product of factors (1)*

*(degree of certainty)
FIGMENT may generate the following text: ‘“We factor out x-5 from

both terms, in order to get a product of factors.”

128

ii.

The following equation is quite similar to the previous one, but con-

tains two additional terms:
x(x-5) - 4(x-5)% +3x-20=0

The expectation instantiated in this case would be:
EXPECTATION: get a factor common with the rest of the terms (0.5)
And the following text would be produced: ‘“We factor out x-5 from
the first and second terms, hoping to get a factor common with the rest of the

ferms.

If both, the pattern and the expectation of a rule are to be stated, then

the generated text incorporates both types of MTUs:

1. ““Qince x-5 is a factor common to the first and second terms, we factor

it out, hoping to get a factor common with the rest of the terms.”’

2. “‘x.5 is a factor common to the first and second terms, therefore we
factor it out. We perform this operation hoping to get a factor com-

mon to the rest of the terms.”’

3. ““We factor out x-5 from the first an second terms, hoping to get a fac-
tor common to the rest of the terms. We are able to perform this
operation because x-5 is a factor common to the first and second

L]

terms.

Method Description.
The slot which contains a detailed description of the application of an alge-

braic rule requires the generation of a means MTU such as ““This can be

129

accomplished in the following way."’

iv., Correctness.
A correctness MTU like ‘‘this works because,”” signals the presentation of the
explanation or correctness proof for an algebraic rule. The information in this

slot, and its corresponding MTU are not generated by FIGMENT at present.

The result of an algebraic operation is extracted from the output of the Prob-
lem Solving Expert. If it constitutes a realization of an expectation of a particular
result, the following sentence is produced: ‘‘We factor out x-5 from the first an
second terms, yielding the result we were hoping for.”” If there is no previous
expectation, a sentence like the following is generated: ‘“This operation arrives at the

following resuit.”’
5.4 Generation of Attributive MTUs

In the current implementation, attributive MTUs are generated for the methods
used to solve equations belonging to a given topic or having a distinguished pattern. A
group of methods is either generally applicable, or may be applied only under certain
circumstances. Like most of the technical utterances discussed in the previous section,
a method technical .utterance is extracted from a slot in the domain knowledge. This
slot directly represents the appropriate attributive MTU. The following examples

illustrate the usage of these MTUs:

““In general, we can solve quadratic equations by removing parentheses, collecting

terms, and then applying the quadratic formula or completing the square.”’

““We can solve certain types of third degree equations by factoring out common fac-

130

tors, or alternatively, applying the appropriate factorization formula.’’
5.5 Generation of Temporal MTUs

FIGMENT produces temporal MTUs for equation, alternative and rule techni-

cal utterances.

i. Equation.
If the number of equations to be solved was advertised, the first few equations
should be accompanied by a temporal MTU. For example, ‘“We shall discuss
several linear equations, let us begin with the following one.”” After a certain
number of the advertised equations has been presented, a temporal MTU is no
longer required and subsequent equations may be introduced by means of a
focal MTU only. If the number of equations is not mentioned, temporal MTUs
should not been generated, since they do not fit naturally in FIGMENT's
discourse. In this case, a sentence like *“We shall now examine the third equa-

tion,”’ is meaningless.

ii. Alternative.
A sentence generated to introduce a solution alternative usually contains a
temporal MTU. For instance, ‘‘Let us consider another approach for solving
this equation”” or ‘“The second alternative consists of the following steps.’’
These MTUs advertise the order in which the different aiternatives were
attempted. Before discussing their generation, we would like to distinguish
between two types of temporal MTUs, according to the circumstances in

which they are generated.

131

Ordinal — If the number of solution alternatives to be discussed was adver-
tised in advance by a length-related MTU of the equation, then a tutor
would generally use an ordinal number when introducing an alterna-
tive. For example: ‘“The second approach to solving this equation con-

sists of the following steps’’; and

Cardinal — If, on the other hand, the number of solution alternatives was not
previously discussed, a temporal MTU like the following should be
issued: ‘‘another approach,”’ ‘‘a different way to solve this equation,’’

efc.

The first solution alternative is usually treated differently than the rest.
For instance, a teacher might begin discussing it by directly presenting the first
algebraic operation performed. Therefore, in order to emulate human
behaviour, the policies implemented for the first approach differ from the ones
applied for the rest. The following rules generate a temporal MTU-code for

the first alternative.

If the number of solution alternatives to be discussed was previously adver-
tised by means of a length-related MTU for the equation, then, if more
than one solution alternative are fo be presented, an ordinal temporal
MTU has to be generated. Otherwise, if only one approach is to be
examined, a temporal MTU will be omitted, since its generation would
only repeat the previous MTU. The first part of this rule yields a sen-
tence like the following: ‘“Let us consider the first approach to solve

this equation.”

132

If the number of alternatives was not advertised in advance and a focal MTU
was generated for this alternative, then, if more than one alternative
shall be presented, a cardinal temporal MTU may be issued, yielding a
sentence such as ‘‘One way to solve this equation consists of the fol-

lowing operations.’’

The generation of temporal MTUs for the rest of the alternatives is

governed by the following rules:

If the current alternative is the last to be discussed, and there are more than
two alternatives, then an MTU indicating this fact should be generated.
For example, ‘‘Let us now consider the last alternative.’”’ This rule
precludes the generation of the MTU “‘last’’ when only two alterna-

tives are being discussed.

Otherwise, a temporal MTU is generated, according to the requirements for

the generation of cardinal and ordinal MTUs.

Rule.

The temporal MTUs generated for rule technical utterances differ from the
ones produced for alternative technical utterances, e.g., ““‘we begin by,”
“‘next,’’ ‘‘afterwards,’’ etc. Nevertheless, the policies which control their gen-

eration resemble the ones presented above.

If at least two algebraic rules have been presented, and the current rule yields
the solution of the equation, then an MTU to this effect is generated.
For instance: *‘we complete the solution by,”” “‘finally,”’ etc. Notice

that this policy refers to the last rule in the solution of the equation, as

133

opposed to the last rule being discussed.

If the entire solution alternative consists of one algebraic rule only, no tem-
poral MTU has to be generated, since a temporal MTU would be
redundant in this case.

5.6 Output of the Comprehension-Processes Module

The output of the Comprehension-Processes Module consists of a list of
extended messages, which may contain requirement-codes for Knowledge-
Organization, Knowledge-Acquisition and Affect-Maintenance MTUs (see Appendix
5).

Fig. 5.2 contains the completed MTU requirement-codes generated from the
output of the Tutoring Strategist presented in Fig. 3.6 (repeated in Fig. 5.1 for con-
venience). The starred MTU-codes correspond to Knowledge-Organization MTUs,
while the rest of the MTU-codes are used to produce Knowledge-Acquisition MTUs.

All the alternatives require a temporal MTU to signal the order in which they
were attempted. Since the number of alternatives to be discussed was advertised, an
ordinal temporal MTU is generated for the first and second alternatives. The third
alternative is accompanied by the MTU “‘last.”’ Likewise, temporal MTUs are gen-
erated for all the rules. Notice that in the first and second alternatives, the temporal
MTU accompanying the last rule is its number, whereas the last rule of the third alter-
native has the MTU *“last.”” This is due to the fact that the first two alternatives leave
the last steps of the solution to the student, whereas the third alternative reaches the
final solution. As stated above, causal MTUs are directly derived from the slots of the

Mathematical and Planning Knowledge Component of each rule. Finally, the result

134

technical utterance for the factoring-out rule in the first alternative (entry No. 6)
requires an adversative MTU which signals violation of the expectation of finding a
factor common to the remaining term. This utterance establishes a transient expecta-
tion for the absence of a solution, which is in turn violated by the removing-
parentheses rule in entry No. 7. Therefore, the removing-parentheses rule has to be

accompanied by an expectation-violation MTU.

The Sentence Composer translates the technical messages and MTUs into the

following text:

We shall go on with the topic of quadratic equations. An equation

follows:
(x-3)%-4(x-3)-12=0

There are three ways of solving this equation. The first alternative
consists of the following operations:

First, since x-3 is a factor common to the first and second terms, we
factor it out from these terms. As you know, we perform this step
hoping to get a factor common to the remaining term. However, it

arrives at:
(x-3¥x-7)-12=0

Nevertheless, we can still eliminate parentheses. We saw this method
in equation number 4, it is easy, but requires a lot of computations
in this case. Thereafter, we collect terms, yielding the following

result:

135

TOPIC: quadratic

EQUATION: (x-3)°-4(x-3)-12=0

(ALTERNATIVE 1)

RULE: factor out x-3 from terms 1 and 2

PATTERN: x-3 is a factor common to terms 1 and 2

EXPECTATION: get a factor common with rest of equation

RESULT: (x-3)(x-7)-12=0

RULE: remove parentheses

RULE: cgllect terms

RESULT: x“-10x+9=0

CONTINUE

(ALTERNATIVE 2)

RULE: remove parentheses

RULE: caﬂcct terms

RESULT: x“-10x+9=0

CONTINUE

(ALTERNATIVE 3)

RULE: substitute y = x-3

. x appears only in expression x-3

PATTERN: and x-3 appears more than once

PURPOSE: get canonic expression

RESULT: ye-4y-12=0

RULE: quadratic formula

RESULT: y=6 or y=-2

RULE: substitute back x-3 fory
-RESULT: x-3=6 or x-3=-2

RULE: transfer term

RESULT: x=9 or x=1

FINISH

Fig. 5.1: Sample Input to Comprehension-Processes Module

136

x*-10x+9=0
From here you can complete the solution of the equation by yourself.

Let us now examine the second way to solve this exercise. Through this
alternative we can go over a solution, which you might have considered.
First, we get rid of parentheses. This technique demands plenty of

calculations in this situation. Next, we collect terms, arriving at:
x2-10x+9=0
From this point you can obtain the solution by yourself.

We shall now consider the last alternative. This approach enables us
to introduce the method of substitution, which is quite efficient.
First, we substitute y for x-3, because x appears only in expression

x-3 and x-3 appears more than once in the equation. This technique is

rather simple. Through it we get the following resuit:
y2 -4y-12=0

We go on by applying the quadratic formula, arriving at:
y=6or y=-2

We continue by substituting back x-3, yielding the following result:
x-3=6o0or x-3=-2

Finally, we transfer the constant, namely -3, to the left hand side of

the equation, obtaining:

137

x=% or x=1

In the following chapter, we shall examine in detail the manner in which a text
like the one presented above is produced by the Sentence Composer from the output

of the Comprehension-Processes Module.

138

Utterance MTU Type MTU Code
TOPIC) Focus? (OPEN)
{Implementation Mode? (CONTINUE)
Focus? (OPEN)
EQUATION { Length? (EXIST 3)
Focus? (OPEN)
ALTERNATIVE, { *Sequence? (ORDINAL 1)
RULE (Factor out X-3) *Sequence? 1
EXPECTATION Implemenration Mode? (KNOWN 1)
RESULT *Result Expectation? (VIOLATION)
Implementation Mode? (KNOWN 2)
Complexity? (EASY)
RULE (Remove Parentheses) Length? (LONG-SITUATION)
*Solution Expectation? (VIOLATION)
*Sequence? 2)
RULE (Collect Terms) *Sequence? (3)
Focus? (CLOSE 1) (OPEN)
ALTERNATIVE, Motivarion? (ATTEMPTED)
*Sequence’? (ORDINAL 2)
Length? (LONG-SITUATION}
RULE (Remave Parentheses) { *Sequence? 1
RULE (Collect Terms) *Sequence?)
Focus? (CLOSE 2) (OPEN)
ALTERNATIVE Motivation? (HIGHLIGHT-ATIRIBUTES)
3 (Substitute Expression)
*Sequence? (LAST)
RULE (Substitute Expression) Complexity? (EASY)
P *Sequence? (1)
RULE (Quadratic Formula) *Sequence? (2)
RULE (Substitute Back) *Sequence? 3)
RULE (Transfer Terms) *Sequence? (LAST)

Fig. 5.2: Completed MTU Requirement-codes for Sample Input

139

CHAPTER 6

Generation of an English-Language Representation: The Sentence Composer

The Sentence Composer organizes the output produced by the
Comprehension-Processes Module into paragraphs and sentences, and converts it into
English. It has been mainly designed as a tool to test the feasibility of the ideas
expounded in Chapters 4 and 5 and is composed of three major components: a Phrasal

Dictionary, an Attribute-clause Generator and Utterance Generators.

Phrasal Dictionary.
This component generates expressions and words commonly used in technical
discourse, in particular in the area of algebra. In addition, it performs the
derivation and generation of verbs and nouns, and generates articles and pro-
nouns. The generation of verbs, nouns and articles follows the rules of English
Grammar, and need not be discussed. The generation of pronouns, however, is
performed according to some rather simple but effective heuristics, and shail

be explained in section 6.1.3.

Attribute-Clause Generator.
Utterances like ‘‘this method is very useful and interesting’’ or ‘‘we have
never encountered this topic before,’” frequently appear in technical discourse.
These utterances contain attributes of mathematical entities. The Attribute-
clause Generator applies rhetorical rules to generate one or more attribute

clauses for a given technical utterance.

140

Utterance Generators.
The manner in which MTUs interact and the actual text generated for them,
depend on the type of the technical utterance under consideration. This cofn—
ponent contains a hierarchy of dedicated procedures, which apply rhetorical
rules tailored for each type of technical utterance, to determine the order of
presentation of technical and meta-technical utterances, decide on the manner
in which the items under consideration shall be referenced, and perform the

actual generation of text corresponding to an extended message.
6.1 The Phrasal Dictionary

At present, the phrasal dictionary consists of 242 entries. Each entry has the

following format:
(keyword type motivation-relation last-used word-form clause-form)

A particular word is found by its keyword. Some are entries activate a special
process to generate their English representation, e.g., nouns have to be derivated
according to their grammatical number, and verbs, by their grammatical person and
tense. The type of an entry signals which process is to be activated. A nulil type indi-

cates that a representation of the entry can be chosen without further ado.

A sentence such as *“This method is important and simple’’ is grammatically
correct, however, most people would communicate the same facts by means of the
following sentence: ‘“This method is important but simple.”” We account for the
difference between these sentences by postulating that a particular value of an attri-
bute triggers expectations regarding the values of other attributes of the same entity. If

this expectations are violated, then an adversative MTU has to be generated.

141

In technical discourse, the values of attributes of topics, equations, methods,
etc, not only exhibit this property, but also reflect the ability of a tutor to motivate a
student by means of these attributes. For instance, a student can be motivate& to prac-
tice a particular method by stating that it is important and difficult. However, no tutor

would coax a student to practice a method repeatedly by advertising its ease.

In a dictionary entry, the motivation-relation slot is used to express these rela-

tionships. We distinguish between three types of motivation relations.

Type 1 — This type of motivation relation can be used by a tutor in coaxing a student
to additional practice and study. Attributes like ‘‘difficult,”” ‘‘important’’ and

“‘interesting’’ belong to this category.

Type 2 — This motivation relation represents the opposite of the previous one. It con-

tains attributes like ‘‘easy,’’ ‘‘short’’ and ‘‘simple.”’

Null — Attributes belonging to this category can still be used by a tutor for motiva-
tion purposes, however they are neutral with respect to the listener’s expecta-
tions. Attributes like “‘new’’ and ‘‘common’’ are of this type. Thus both of the
following statements would be acceptable: ‘“This topic is important and
appears quite frequently in tests’’ and ‘“This method is simple and is fre-

quently used.”

In general, when speaking or writing, people are reluctant to repeat recently
mentioned expressions. In fact, they will use synonyms or near synonyms rather than
repeat themselves. The last used slot in a dictionary entry supports this property. It
contains the last English representation generated for the dictionary entry under con-

sideration, and the clause number in which it was presented. By means of this slot, the

142

system verifies whether a selected English representation was recently used, and if so,
chooses an alternative representation. The representation stored in this slot differs
from the generated one, in that the verbs are stored in their infinitive form, and the
nouns, in their single form. This precludes the repetition of the same verb or noun in

different forms.

Many concepts in the English language can be expressed both, by a few
words, or by clauses or entire sentences. Since different situations may call for dif-
ferent types of representations, the dictionary distinguishes between word form and
clause form. For example, the dictionary entry corresponding to ‘‘nevertheless’’ has
the following values:

Word form: {nevertheless, however, despite this}
Clause form: {((contrary) to (our-expectations))}

The words enclosed in parentheses are keywords whose English representation
has to be generated separately. In addition, the values of some slots in the clause form
representation may contain parameters which are replaced by input given by other
components of the Sentence Composer. For instance, the dictionary entry correspond-
ing to “‘new’’ has the following values:

Word form: {new}

Clause form: {($person have (never) (study 1p pp) Ssubject (before))}

In this example, the parameters $person and $subject are to be supplied by the

calling component. If they are absent, then the corresponding slot remains empty.
6.1.1 Generating an English Representation of a Dictionary Entry

The text corresponding to a dictionary entry is generated by means of a

simplified version of the Augmented Transition Network (ATN) formalism (Woods

143

1970, Miller 1983). The ATN is implemented by mutually recursive word-generating
and list-generating functions. Let us now describe the generation of text correspond-
ing to a given keyword. First, the keyword is looked up in the dictionary by the
word-generating function. If the desired form was specified (e.g., word form or clause
form), a representation is randomly selected from the requested slot. Otherwise, it can
be selected from either slot. If the chosen representation is a list of words, the list-
generating function is activated. Otherwise, if the type of the dictionary entry is non-

null (verb or noun), the appropriate derivation is generated.

The list-generating function scans all the words in the list, looking for key-
words, and activates the word-generating function for each keyword. The rest of the

words in the list remain unchanged.

Once a representation of the entire list has been generated, it is checked
against the representation most recently used for the dictionary entry under considera-
tion. If they are equal, an alternative representation has to be produced. The resuiting

text contains a list of generated words, possibly sprinkled with parameters.

To illustrate the operation of the dictionary, let us go over the generation of a
representation of the keyword new. The relevant portions of the dictionary are illus-
trated in Fig. 6.1. For this example we shall assume that the current clause number is
30, and that the dictionary’s first selection was the word ‘‘new.”’ However, upon
verification against the last used slot, the system discovers that this version was

recently used. Therefore the clause form is chosen.

Since the selected clause is composed of a list of words, the list-generating

function is activated. The first keyword in the list is never. Thus, the word-generating

144

Keyword| Type | Last-used Word-form Clause-form
before |ml |(3 before)|{before previously}
never nil |nil {never not} ;
. {($person have (never)
new nil | (26 new) | {new} (study 1p pp) Ssubject (before))}
: {study see
study verb |nil encounter}

Fig. 6.1: Segment of the Phrasal Dictionary

function is activated. Let us assume that the word ‘‘never’” was chosen. Next, an
English representation of the keyword study is generated. After a verb is selected, the
verb-generating function is called to obtain the desired derivation (grammatical per-
son “‘1p’ is first person plural, and tense ‘‘pp’’ is present perfect), yielding the form
“‘encountered.”’ Finally, a representation of before is generated. For this dictionary
entry, both versions are acceptable, since the word ‘“‘before’’ was used a while ago.
The output of the dictionary is: ‘‘Sperson have never encountered $subject before.”’
After substituting the parameters, we would get clauses such as ‘‘we have never
encountered this type of equation before’” or ‘‘you have never encountered it

before.”” After the text has been generated, the relevant dictionary entries need to be

updated.
6.1.2 Updating the Dictionary

At each point in the text-generation process the Sentence Composer checks a
newly selected representation of a dictionary entry against its last used slot. Occasion-
ally, the system will discover that this representation was recently used, and that the
generation of the text corresponding to the entry in question will have to be repeated.

When the representation being generated contains several keywords, this occurrence

145

creates inconsistencies in the dictionary, since updates performed on the last used
slots of some of these keywords are no longer valid. We have considered two ways of
dealing with this problem. Given a request for a keyword K, in the first alternative,
we can withhold updating the dictionary until the entire English representation of K
has been satisfactorily generated. The second alternative consists of updating each
dictionary entry as we go along and record its previous value elsewhere. If at some
point in the generation process we discover that a representation coincides with the

most recently used one, we can roll back and restart.

Even though both alternatives are seemingly equivalent, the first one will yield
erroneous results if we are generating text for a list of words which contains the same
keyword more than once. In this case, the word-generating function might come up
with the same representation of both instances, since the dictionary was not updated
after a representation of the first instance was generated. In addition, the first alterna-
tive is somewhat less efficient than the second one, since we have to access the dic-
tionary a second time after the generation process has been completed. For the second
alternative, on the other hand, we update each dictionary entry while it is being con-
sidered, and we have to access the dictionary again only in the event of failure. Due to
the multiplicity of choices, the incidence of this event is rather low. These considera-

tions lead us to choose the second approach.
6.1.3 Generating Pronouns

As stated previously, the rhetorical rules applied in the generation of pronouns
are rather straightforward. Nevertheless, the resulting usage of pronouns contributes

to the fluency of the text.

146

When referring to pronouns in the context of the dictionary, we shall use two
concepts: the pronouns commonly used in the English Grammar (e.g., it, them, etc)
shall be denoted full pronouns, whereas references to previously mentioned items by
their type (e.g., ‘‘this topic,”’ ‘‘those equations,”’ etc), shall be called partial pro-

nouns.

Due to the hierarchical structure of the discourse (see section 3.1.3), we can
assume that at each point in time the item in focus can be a topic, an equation, an
alternative or 2 method. The following rules for the generation of pronouns are based

on this assumption:

i Given an item in focus, if the last reference to this item was not made by
means of a pronoun, then the choice between a partial and a full pronoun is

random.

it. If the item in focus was referred to by means of pronouns more than, say, 4
consecutive times, then no pronoun shall be used, and this item shall be

referred to by its entire name.

iii. A full and a partial pronoun referring to the same item, alternate in the text, as
F’
long as the previous rule does not hold.

6.2 The Attribute-Clause Generator

This component applies rhetorical rules to generate an English representation
of the attributes of a technical utterance. The generated phrases may be of two kinds:

dependent and independent.

A dependent phrase is a noun phrase which follows a noun and verb produced earlier

147

by an Utterance Generator (see section 6.3). For example:

““Let us consider a very important topic, hamely linear equations, which

we have not seen for a while.”’

““We shall devote part of this session to the topic of third-order equations,

which, as you already know, is interesting and quite challenging.”

An independent phrase consists of an entire sentence such as ‘“This method has to be

practiced some more.”’

The generation of dependent and independent phrases is quite similar, there-
fore, unless otherwise stated, the process described next is applied for both types of

text.

Given the type of a mathematical entity (e.g., topic, rule) and its name (e.g.,
linear, coilect terms), the Attribute-clause Generator extracts its attributes from the
complexity and length slots of the extended message in question and the highlight-
artributes MTU-directive in its motivation slot; and searches for the new attribute in
the implementation slot. Since there is no causality relationship between these attri-
butes, the selectiorf of connectives depends on rhetorical constraints and the motiva-

tion relation between these attributes.

Next, these attributes are separated into two groups: previously-stated and
current. Whereas the former are accompanied by an implementational MTU, the latter

are not.

When generating dependent text, the Attribute-clause Generator selects which

of the current attributes shall precede the subject of the verb phrase and which shall

148

follow it. The selection of these attributes is based on two considerations: first, in
order to ensure a stylistically sound sentence, the number of attributes which can pre-
cede a noun, has to be limited to, say, 3. In addition, only attributes in word form can
precede a noun. Among the current attributes which meet these specifications, the

attributes which shall precede the noun are randomly selected.

When generating independent text this selection process is not performed and
all the current attributes follow the noun. An independent attribute clause with attri-
butes that precede and follow the noun is not generated by the current version of this

system.

Once the selection process has been completed, both the current attributes
which precede the noun and the current attributes which follow it, are sorted first
according to their degree, next according to their motivation relation and finally

according to their syntactic form.

i Syntactic form.
Sorting by the attributes’ syntactic form precludes the generation of text con-
taining one clause for each attribute, e.g., ‘“This topic is important, appears
quite frequently, is challenging and illustrates some useful techniques,”’ in
favour of a representation in which all attributes in word form appear in the
same clause. For example, ‘“This topic is important and challenging, appears

quite frequently, and illustrates some useful techniques.”’

ii. Motivation relation.
Sorting by this parameter precludes the generation of a rather confusing clause

with several additive and adversative MTUs, in favour of a clause containing

149

at most two connectives for each syntactic form. For instance, ‘‘This method
is important and useful but easy to learn.’” Attributes whose motivation rela-
tion is null precede attributes of the other two types, and they are connected by

means of an additive conjunction.

iii. Degree.
As seen in section 3.1.1, each attribute may be associated with a number
which represents its degree. For example, a method can be very useful, rather
useful, etc. By sorting according to this parameter we preclude multiplicity of
adverbs, in favour of one adverb for all attributes with the same degree, e.g.,

“‘very interesting and challenging topic, and also frequently encountered.”’

The effect of sorting the attributes according to these parameters is that all
attributes with the same syntactic form appear together, and among those, all attri-
butes with the same motivation relation are generated consecutively, and so on. Thus

the sorting process accounts for the generation of attribute clauses like the following:

‘‘An important and interesting and also rather useful technique.’’
In this example, all attributes have the same syntactic form and motivation
relation, but the degree of the last attribute differs from the degrees of the first

onecs.

““A rather important and interesting but quite simple equation.”
In this case, all attributes have the same degree, however the first two attri-
butes have a motivation relation of type 1, whereas the last one has a motiva-

tion relation of type 2.

““The topic of linear equations appears quite frequently, illustrates some useful

150

methods, and is important and also rather interesting.’’

In this text, the first two attributes have a clause syntactic form and the last
two have a word form. The additive connective which appears between these
types of attributes, namely ‘‘and,’’ is generated by means of a rhetorical rule

presented in the next section.

In the next step, the attributes which depict the knowledge status of the student
are extracted from the extended message. These are new (if not already generated),
known and similar (from the implementation slot), and increment-knowledge,

knowledge-preservation and practice-reassure (from the motivation slot).

Finally, the Attribute-clause Generator activates rhetorical rules to compose
the rest of the attribute clause from the remaining current, previously-stated and

knowledge-status related attributes.
6.2.1 Some Heuristics for the Generation of Attribute Clauses

To generate a stylistically sound attribute clause, the following rhetorical rules

have been implemented.

L. All previously-stated attributes shail be presented together and they shall be
preceded by an implementational prefix. This prefix is an adverbial phrase
which represents the lowest common denominator between the implementa-
tional MTUs of the previously-stated attributes. For example, if there is only
one such attribute, then it is possible to generate a rather accurate implementa-
tional prefix like ‘‘As I said in equation number 3.”” However, if there are
several different previously-stated attributes, the compound implementational

MTU is rather vague, e.g., ‘‘As we have already seen a couple of times.”’

151

iv.

Previously-stated attributes should follow any other type of attribute or appear
in an independent sentence. This is due to the fact that an implementational
prefix affects everything that follows it up to the next period. Thus, in order to
affect only the attributes which were previously mentioned, they shall either
appear last in a dependent clause, or they shall appear in an independent sen-

tence. In order to illustrate this point, let us consider the following sentences:

““Let us examine a method, which, as I said before, is rather complicated and

very useful.”’

““T et us consider a method, which is very useful, and as I said before, rather

complicated.’’

Whereas the first sentence stipulates that both attributes have been
stated before, according to the second one, only the complexity attribute was

presented previously.

All current attributes shall appear together. This heuristic precludes the gen-
eration of a sentence like ¢“This type of equation is very simple, we have seen
it before, and it is quite common,”” in favour of ‘“We have seen this type of

equation before, and it is very simple and also quite common.’’

If there is more than one knowledge-status related attribute, a dependent
clause shall include only knowledge-status related attributes, and the rest of
the attributes shall appear in a forthcoming independent clause. Otherwise, a
knowledge-status related attribute will appear in the same sentence with at
least one additional type of attribute. The second part of this rhetorical rule

precludes the generation of a sentence which contains only one knowledge

152

vi.

attribute, if attributes of other types have to be generated. In order to illustrate

the impact of the first part of this rule, let us consider the following sentences:

““The method of factoring out common factors has already been exercised but

still demands more practice. This technique is used quite frequently.”’

““The method of factoring out common factors has already been exercised,

demands more practice, and is used quite frequently.”’

““The method of factoring out common factors is used quite frequently, has

already been exercised but still demands more practice.”

The first part of this rule favours the generation of the first example.
This is due to the fact that the addition of text corresponding to a current or
previously-stated attribute to a clause which already contains two knowledge-

status related attributes, tends to cloud their relationship.

If the attributes with syntactic clause form have different non-null motivation
relations, and so do the attributes with syntactic word form, then the attributes
which appear in clause form and the attributes which appear in word form
shall not be presented in the same sentence. This rule precludes the generation

of a sentence with two adversative conjunctions.

If the total number of clauses to be generated does not exceed a certain thres-
hold, say 4, then, in most cases, all attributes shall appear in the same sen-
tence. In such cases, the knowledge-status related attributes shall be followed
by the current attributes. As specified in the second rule, the previously-stated

attributes are always last In all other cases, the current attributes and

153

vii.

previously-stated attributes appear in different sentences. This rule is activated
after the two previous ones, to determine the organization of the remaining
attributes. The following examples illustrate the first and second parts of this

rule respectively:

““We shall discuss a topic, namely quadratic equations, which we have not
seen for a while, is rather interesting, and, as I stated before, is very

important.”’

‘““We shall discuss a topic, namely quadratic equations, which we have not
seen for a while and, as I stated before, is very important. Further-

more, it is rather interesting.”

The following rule is applied to generate a connective between two phrases

containing current or previously-stated attributes:

Given two lists of attributes, A and B, if all the attributes in A have the same
non-null motivational relation, and no attribute in B has the same motivational
relation as the attributes in A, and at least one attribute in B has the opposite
motivational relation, then the conjunctive relation between the sentences

featuring A and B is adversative. Otherwise it is additive.
This rule accounts for the connectives in the following cases:

““As T have stated before, this type of equation is very important and appears
quite frequently. Notice, however, that it is easy to solve.”
In this text, the first attribute has motivation relation of type 1, the

second attribute has a null motivation relation, and the last one has a

154

motivation relation of type 2, thus fulfilling the conditions of the rule.

‘] et us examine the method of factoring out common factors, which we have
not seen for some time and is very important. In addition, as I have
said in equation 5, it is rather useful but easy.”

In this example, the first attribute has a null motivation relation, and
the second one has a motivation relation of type 1. In the second sen-
tence, the attributes have motivation relations of types 1 and 2 respec-
tively. Thus, the conditions of the rule are not fulfilled, and an additive

connective is generated.

These heuristics shed some light on the problem of generation of a certain
class of attribute clauses, and enable the system to produce a variety of stylistically

sound attribute clauses in the area of algebra.
6.3 The Utterance Generators

Human tutors usually know in advance which information they want to
transmit about a topic or equation, the number of alternatives they wish to present, the
number of steps in each alternative, etc. Inside this framework, they plan their com-
mentary a few sentences at a time. Likewise, given a partially ordered list of extended
messages (see Appendix 2), the generators in the Sentence Composer scan predefined
subsets of these messages, to determine the manner and order in which these subsets

and their corresponding MTUs should be presented.

An additional feature which characterizes human discourse is the proper use of
.pronouns. The need for a pronoun at any stage of the text-generation process depends

on the items which were in focus in previous statements, on the items currently in

155

focus, and on the presence of intervening statements (Reichman 1978, 1984, Grosz
1977). In order to produce fluent discourse, a generator has to recognize and gather

the information that will enable the generation of pronouns when necessary.

The generators in the Sentence Composer form a hierarchical structure. Those
which are uppermost in the hierarchy perform high-level decisions regarding the
interaction between several technical utterances, whereas those in the leaves confine
themselves to one type of extended message (see Fig. 6.2). At the top of the hierar-
chy, we find the Declarative and the Procedural Generators. Each is activated on a dif-

ferent part of the discourse.

Declarative.
The declarative portion of a technical discourse describes the problem under
consideration and provides additional background information. The topic,
equation and alternatives extended messages belong to this part of the

discourse, and intervening utterances may appear in it as well.

Procedural.
The procedural part of a technical discourse describes the possible solutions
for a given problem. The following technical utterances are part of this group:
alternative, rule, pattern, expectation, description, result, finish and continua-
tion. Intervening utterances may be featured in the procedural discourse too,
‘however they may not appear inside a rule cluster, i.e., the technical utterances

between a rule and its result (see Appendix 2).

Before we describe in detail the operation of each generator, we shall consider

156

Generators

M !
Decla}rative* Procedural

\

Alterfiative

{
Present-Topic-First Present-Equation-First”
Topic-Introduction\ Equation-Explanation

Intervening-Utterances Rule-Sequence Rule-Cluster

*

1 T 1
Method Commentary* Result Finish Continue Rule | Description

Intervening-Utterances

Rule-Pattern-Expectation
Pattern-Expectation Rule

Pattern Expectation
Fig. 6.2: Hierarchy pf Generators in the Sentence Composer
some features which are common to the text generated by all of them.
6.3.1 Structure of the Generated Text

In general, the text corresponding to a technical utterance is composed of two

sections: preliminary and main.

Preliminary Section.
This section precedes the rest of the generated utterance, and expresses the
relationship between this utterance and expectations and foci established in
previous utterances. These relationships are mostly expressed by expectation,

affective, digression and focal MTUs.

* These components have not been implemented

157

Whereas the syntactic form of an affective MTU is based on local

aesthetic considerations only, the syntactic form of an expectation MTU may

be determined by the Comprehension-Processes Module as well, according to

the number of technical utterances elapsed between an expectation statement

and its realization or violation (see Chapter 4). The generation process of the

expectation, affective and digression MTUs is common to all types of techni-

cal utterances, and is guided by the following considerations:

iv.

A digression MTU precedes the rest of the sentence.
If only an affective MTU is required, it is generated in word form.

A lone expectation MTU is generated according to the specifications

provided by the Comprehension-Processes Module.

If a digression MTU was generated, then both, an affective and an
expectation MTU shall have a clause form. This rule precludes the
generation of ‘‘Anyway, fortunately’’ in favour of ‘‘Anyway, it is
rather fortunate that.”” If all types of MTUs appear in the extended
message, the following text may be generated: ‘‘Incidentally, contrary

to our expectations, it is rather unfortunate that.”’

If a digression MTU is not required, then an affective and an expecta-
tion MTU are combined in the following manner. In most cases, the
affective MTU shall be generated first, yielding text like ‘ ‘Fortunately,
however’” or ‘‘Unfortunately, contrary to our expectations.”” In a less
frequent, but still stylistically sound alternative, the expectation MTU

would precede the affective MTU, resulting in text such as

158

“‘Nevertheless, it is quite fortunate that.”

Even though focal MTUs are also common to several types of techni-
cal utterances, their English representation depends on the type of the techni-
cal utterance under consideration. For example, the representation of a focus-
close MTU-code for a topic technical utterance could be “‘Let us consider
another topic,”” whereas the same MTU-code might have the following
representation for a rule technical utterance: “‘After removing parentheses.’’
In addition, there exist MTU-codes which are featured only in certain techni-
cal utterances. For instance, the MTU-code premature-end may appear only in
topic technical utterances. Both the focus-close and premature-end MTUs
appear in the preliminary section of the generated text. However, their genera-

tion is performed by dedicated Utterance Generators.

Main Section.
This section generates the information pertaining to the current technical utter-
ance. It may include technical knowledge, length, complexity and motivational
attributes of the item in focus, and the knowledge status of the student. The
English representation of these information items and the manner in which
they interact, depend on the type of the technical utterance in question. For
example, the known implementational MTU-code produces the following text
for an equation and a statement, respectively: *“This equation is similar to’’
and *‘As I said before.”” Therefore, the generation of the main part of each

technical utterance is performed by a dedicated Utterance Generator.

159

6.3.2 Selection of an English Representation

An MTU-code may have several English representations. The choice of a par-
ticular one may be influenced by the position of the corresponding MTU in the gen-
erated text and the presence of other technical or meta-technical utterances. For

instance, let us consider the MTUs produced for the implementational MTU-code

new:

1. ““We shall now introduce the topic of quadratic equations.”’

2. “Let us consider the topic of quadratic equations, which we have not
encountered previously.”

3. “‘Let us examine a new topic, namely quadratic equations.”’

6.3.3 The Declarative Generator

This cornponcnfr determines the relative order of topic and equation technical

utterances. Its decisions are based on the following considerations:

i If the number of equations is mentioned, an introductory topic statement shall
precede the equation, and information pertaining to the equation shall appear
in an explanatory statement following it. The following example illustrates

these statements:

““] et us consider a few exercises in the topic of linear equations. We

shall begin with the following one:

T The present implementation does not contain such a generator, the system
automatically decides on the generation of introductory topic statements, followed by
explanatory equation statements.

160

2x-3=7

This equation is quite simple. There is only one way to solve it.”’

If the motivation or complexity slot of the topic extended message is not
empty, or the MTU-code new appears in its implementation slot, an introduc-
tory topic statement shall be generated. This rule is designed to preserve the
flow of discourse, by presenting first the information about the uppermost item
in the discourse hierarchy, namely the topic, then presenting the information
about the next item, i.e., the equation, etc. Thus precluding the generation of a

declarative statement like the following:

““Let us now consider the following equation:
x2-4=0
This is a quadratic equation. We have never seen this topic before, and

it is very important. There are two ways of solving this equation.”
In favour of the following alternative:

*‘] et us now consider the important topic of quadratic equations, which
we have never seen before. Here is an equation:
x2-4=0

There are two ways of solving it.”’

If intervening utterances appear in the declarative section, then the order of the
input is preserved. As seen in Chapters 4 and 5, the presence of intervening
utterances may cause the generation of digression MTUs, violation of expecta-
tion MTUs, etc. By altering the order in which the extended messages are

presented, these MTUs would become incongruous.

161

iv. If no topic extended message was generated by the Tutoring Strategist, then an

introductory equation statement is mandatory.

V. In all other cases, the choice between presenting first the information about the
topic or the information about the equation is random. However, preference
might be given to the generation of an introductory equation statement and an
explanatory topic statement, if the motivation, implementation or complexity
slots of the equation extended message are not empty. In the following exam-

ple, the equation is being motivated by obligation:

“T would now like you to solve the following equation:
2x-3=7

As you probably know, this is a linear equation.”

As a result of the application of these rules, the declarative portion of the text
is generated either by means of the Present-topic-first Generator or the Present-
equation-first Generator. The former has been implemented, and it activates the
Topic-introduction, Intervening-utterances and Equation-explanation Generators, in
the following order:

[Intervcning-utteranccs}T
Topic-introduction
[Intervening-utterances)
Equation-explanation

[Intervening-utterances)

6.3.3.1 The Topic-Introduction Generator

When generating an introductory topic statement the Topic-introduction Gen-

erator produces first the preliminary part of the statement. To this end, the Topic-

 The square brackets signal that the intervening-utterances are optional.

162

introduction Generator begins by checking for the presence of a digression-close
MTU-code. If it exists, an MTU like ‘“‘anyway’’ is generated. Since no affective or
expectation MTUs are associated with a topic technical utterance, next, the Topic-
introduction Generator looks for a premature-end MTU-code in the length slot. This
MTU signals that the tutor has changed the topic before presenting all the equations
he predicted for the previous topic, e.g., *‘I know I said we would be solving some
more linear equations, however I feel we have done enough.’”’ In order to generate it,

the dictionary is accessed with the keyword premature-end.

Before approaching the generation of the main part, the Topic-introduction
Generator looks for MTU-codes which could be produced at this point. This task is

performed by the following rules.

If the MTU-code return appears in the implementation slot, a sentence like the fol-
lowing could be generated: ‘‘Let us return to the topic of linear equations.”’
In addition, if the knowledge-preservation MTU-code appears in the motiva-
tion siot, then it is combined with the return MTU, yielding a sentence like the

following: ‘‘Let us review a topic which we have not seen for a while.”’

Alternatively, if the number of equations is to be mentioned, and the focus slot con-
tains a close MTU-code, then a clause which closes the topic previously in

focus may be generated. For example, ““Let us try another topic.”’

The format of the main part of a topic statement depends on the number of

equations to be presented:

If more than several equations are to be mentioned, the main part of the statement will

have the following format:

163

{ introduction session-part topic-clause length-apology }

Where:

1. dependent-topic-attribute-clause, or
topic-clause
2. action-name topic-name. [ndependent-topic-attribute-clause

The following types of sentences are produced by using the first and

second formats for the topic-clause, respectively:

‘“We shall devote most of this section to the topic of linear equations, which is

very important.”’

‘““We shall dedicate most of this session to the revision of linear equations.

This topic is very important.”’

If the number of equations to be presented is less than or equal to several, the format

of the main part of the statement is:
{ introduction verb topic-clause }

Where:
1. dependenz-topic-antribute-clause, or
topic-clause{2. number-of-equations topic-name.

Independent-topic-attribute-clause

The first format is selected when the number of equations is not men-
tioned. The following sentences ar;e produced by the first and second format,

respectively:

““‘We shall now continue with the topic of quadratic equations, which”’

164

<] et us consider several linear equations. This topic”

The introduction part may have one of the following representations:

‘] would [now] like to.”’
This representation is used when the motivation slot contains an obligation
MTU-code, transmitted to the student as a wish of the tutor. The brackets
enclosing the word ‘‘now’’ signal that it shall be generated, unless an MTU

which performs the focus-close function was produced previously.

““We shall [now].”’
This representation is generated when the number of equations is to be men-

tioned and there are more than several equations.

““We shall [now]’’ or ‘‘Let us [now].”’
One of these introductions is randomly selected, if none of the above condi-

tions is met.

We shall now describe the generation of the rest of an introductory topic state-

ment in which more than several equations are presented.

The session-part corresponds to text like the following: “‘devote half of the

session,’’ ‘‘dedicate most of the session,”” etc.

If return or continue appears in the implementation slot, or add is featured in
the length slot, then the session-part is followed by an action-name and a topic-name,
yielding text like the following: ““We shall devote part of this session to the revision
of linear equations,’” for the return MTU-code, and ‘“We shall dedicate most of this

session to practicing some more third degree equations,”’ for the other two MTU-

165

codes. If these MTU-codes are absent, the main part of the statement shall feature a
dependent-topic-attributeclause, yielding a sentence such as “We shall devote part of
this session to an important topic, namely quadratic equations, which demands some

more practice.”

If the number of equations is less than or equal to several, the generation of

the rest of the main part of an introductory topic statement is performed as follows:

The verb is determined by the following considerations. If new appears in the
implementation slot, the verb ‘‘introduce’’ may be used. If return appears in this slot,
the verb ‘‘review’’ is generated. If continue is featured in the implementation slot, or
add appears in the length slot, the verb ‘‘continue-with’’ is derivated from the diction-

ary. Finally, if none of these conditions holds, the verb ‘‘consider’” is used.

The following examples illustrate some introductory topic statements gen-

erated by the Topic-introduction Generator:

1. ““Let us now examine the topic of third degree equations, which is interest-
ing and also rather challenging.”
This text corresponds to an extended message featuring (close quadratic) in

the focus slot, and two attributes in the motivation slot.

2. ‘:Anyway, we shall continue with a few linear equations.”’
This example is generated from an extended message containing close in the
digression slot, conrinue in the implementation slot, and (mention 2) in the

length slot.

3. “‘Let us now review a topic which we have not seen for a while: We shall

166

devote most of this session to equations with fractions. I know these are
plenty of exercises, but it is necessary.”

This text is generated from an extended message containing the following
values: (close third-degree) in the focus slot, rerurn in the implementation slot,
knowledge-preservation in the motivation slot and (mention 6) and (apologize

length) in the length slot.

4, ““Let us try another topic. We shall dedicate most of the session to the
revision of equations with fractions. This topic has not been practiced for
some time. I know these are a lot of equations, but it is necessary.”’

This text is generated from the same extended message as the text in the previ-
ous example. Due to some random choices performed by the Topic-
introduction Generator, in this example the focus-close MTU is presented in
the first sentence. This causes the implementational MTU to be generated in
the main statement. Finally, since the motivation was not generated before the

main part, an independent-attribute-clause containing it has to be added.
6.3.3.2 The Equation-Explanation Generator

This component produces an explanatory statement corrgsponding to an equa-

tion technical utterance. This type of statement is divided into two parts.

Equation Introduction.
This part is rather brief and consists of an introductory sentence such as:

““‘Here is an equation’’ or ‘‘Let us consider a rather simple equation.”’

Equation Commentary.

This part follows the given equation, and presents the information extracted

167

from the equation extended message, and possibly from an alternatives
extended message. For example, ‘“This equation is very difficuit. There are

two alternatives for solving it.”’

The Equation-explanation Generator first generates the equation introduction
part. In order to accomplish this task, it first generates an MTU which closes a digres-
sion, e.g., ‘‘anyway.’”’ Next, the Equation-explanation Generator decides whether a
pronoun is required. The use of a pronoun in the equation introduction part depends
on the information stated in the immediately preccding statements. If the word ‘‘equa-
tion”’ was mentioned, and no intervening utterances or independent clauses were gen-
erated thereafter, then a pronoun has to be generated. A condition which ensures that
the word ‘‘equation’’ indeed was previously stated, is that the number of equations

introduced in the topic-related statement was no greater than several (see section

6.3.3.1).

After the need for a pronoun or lack thereof has been established, the contents

of the equation-introduction part are determined by means of the following rules.

I If only one equation was previously introduced, then, if a pronoun is required,
the equation introduction part shall be ‘“Here it ig<’’ Otherwise (a pronoun can

not be used), the equation-introduction part could be ‘“The equation follows.”’

ii. If the number of equations was not introduced, then the equation introduction
part would be *‘Here is an equation.”” Notice the use of an undetermined arti-
cle if the word *‘equation’’ was not mentioned before. If the equation does not
have a distinguished pattern and it is not similar to a previous equation, the

complexity attribute may appear in the equation introduction part. In this case,

168

an introductory statement like the following could be generated: ‘‘Here is a

rather simple equation.”

iii. Finally, if more than one equation were presented in the topic introduction, the
equation extended message would require a temporal MTU, yielding an intro-
ductory sentence like ‘‘Let us begin with the following equation,”” if a pro-
noun can not be used, and a sentence like **We shall begin with the following
one,” otherwise. As before, if the complexity attribute is chosen to appear in
the equation introduction part, the following sentence could be generated:

““We shall start with this very difficult exercise.”’

Once the equation-introduction part and the equation itself have been
presented, the Equation-explanation Generator proceeds to generate the equation-

commentary:

First, if a complexity-reassure MTU-code appears in the extended message,
then a statement to this effect is generated. This statement could have one of the fol-

lowing formats:

complexity-reassure
This type of sentence is produced only if the complexity attribute of the equa-
tion was presented before the equation. The following sentence is of this type:

“Do not worry, since I shall explain its solution a couple of times.’’

[implementational MTU] complexity complexity-reassure
This type of sentence is generated if the complexity attribute did not precede
the equation. The following statement illustrates this format: ‘“This equation is

very difficult. Nevertheless, you should not be concemed, since we shall go

169

over its solution a few times.’’ If an implementational MTU is required, and
there are no MTU-directives in the motivation slot of the extended message,
the implementational MTU should also be represented in the current state-
ment. This policy precludes the generation of the following text: ‘“This equa-
tion is very difficult. Nevertheless, you should not be concerned, as we shall
go over its solution a few times. It is similar to equations 1 and 3,” in favour
of: ‘“This equation is similar to equations 1 and 3 and is very difficult.
Nevertheless, you should not be concerned, as we shall go over its solution a

few times.”’

Next, the system produces an independent attribute-clause which includes the
remaining MTU-s in the implementation, motivation and complexity slots. Notice
that if a complexity-related MTU were included in the extended message, without an
accompanying complexity-reassure MTU, the corresponding complexity attribute

would appear in this independent clause.

As stated in section 4.5, a given equation may also be motivated through the
methods applied to solve it. The MTU-codes for this type of motivation appear in an
alternatives extended message. The following motivational statements are based on

these MTUs:

1. ““This equation enables us to practice a few methods, which we have not seen
for some time."’
This sentence is generated when more than one method require a knowledge-

preservation motivation.

2. ““Through it we can exercise the very useful technique of removing

170

parentheses, which demands some more practice.”
This type of sentence is generated when the equation under consideration is a

vehicle for practicing one particular method.

3. “‘By means of this equation we can introduce an important technique, namely
factoring out common factors, but first, let us consider two other ways of solv-
ing this equation, for comparison purposes.”’

This type of motivation is produced if an equation is presented as a vehicle for
introducing a new method, but this method is not featured in the first solution
alternative. In this case, information in the length slot of the equation extended
message is ignored, as it is subsumed by the information in the generated

motivational statement.

Finally, a statement which introduces the alternatives that solve a given equa-
tion is generated. This type of statement is extracted from the length slot of the equa-
tion extended message. If all the alternatives shall be mentioned, the MTU-code in the
length slot refers to the number of existing solution alternatives, otherwise it refers to
the number of mentioned alternatives. In the first case, a sentence like the following
could be generated: ‘“There are three ways to solve this equation,’”’ whereas in the
second case the following sentence might be produced: ‘“We shall consider a few
alternatives for solving it.”’ If an apologize-length MTU-code appears in the length

slot, then a statement to this effect is generated thereafter.

This concludes the generation of the declarative portion of the text. The gen-
eration of intervening utterances shall be presented later om, since they may appear

almost anywhere in the discourse.

171

6.3.4 The Procedural Generator

The Procedural Generator first activates the Alternative Generator in order to
introduce the solution alternative under consideration. It then scans the subsequent
extended messages, to determine whether a given sequence of rules shall appear in
one sentence, or each rule cluster shall entail the generation of one or more sentences,
requiring the activation of the Rule-Sequence Generator and Rule-Cluster Generator,
respectively. This decision is based on the succinctness of the prospective English

representation of the rule clusters, and is performed by the following rhetorical rule:

If two or more rule extended messages are presented consecutively, ie.,
without rule-dependent or intervening technical utterances between them, all have
empty rule siots (see Appendix 2), all the rules but the first one have at most a tem-
poral MTU, and the first rule has at most temporal, digression and focus-close MTUs,

then these rules are presented in the same sentence.

The following examples illustrate this situation:

““We solve this exercise by removing parentheses, collecting terms and applying the
quadratic formula.”’
This sentence is generated when all the rules in an alternative conform to the

above given criteria.

“‘Next, we collect terms and complete the square.’’

This sentence is generated if the rules in the list appear between other rules.

In the rest of the cases, each rule cluster requires the generation of one or more

sentences.

172

6.3.4.1 The Alternative Generator

The Alternative Generator generates text which introduces a particular

approach for solving an equation.

First, the system generates the preliminary part, possibly containing digres-

sion, expectation and affective MTUs. This task is performed according to the guide-

lines presented in section 6.3.1.

Next, an introductory statement is generated. Its format is determined by the

following rules.

il.

1.

If an affective MTU-code appears in the extended message, an existential type
of statement has to be generated, e.g., ‘‘Fortunately, however, there is a way to
solve this equation.”” The rationale behind this rule is that the presence of an
affective MTU-code indicates a current belief in the certainty of a solution,
after an utterance stating otherwise was issued. Thus, it would be incongruous

to say: ‘‘Fortunately, let us consider the following alternative.’’

If the success of the alternative in question is uncertain, and this fact is con-
sistent with other MTU-codes in the extended message, the alternative can be
introduced by means of text like the following: ‘“Let us try another

approach.”

If a focus-close MTU-code appears in the extended message, then an introduc-
tory statement like the following is generated: ‘‘Let us now consider the last
alternative’’ or ‘‘We shall now discuss a different approach.” Where the

object of the statement is dictated by the number of the temporal MTU and its

173

iv.

type, €.g., last or (2 cardinal), respectively. If no additional MTUs need to be
generated, then an introductory statement like the following is produced: ““We
shall now consider the last solution to this equation, which consists of the fol-
lowing steps.”’ Otherwise, if only the number of operations to be performed
remains to be stated, a dependent clause to this effect is appended to the intro-
ductory statement, The following text illustrates the result of this action: ‘“Let
us now examine the second alternative, which entails several operations.’’
Finally, if other MTUs need to be generated, they shall be presented in an

independent clause.

If no focus-close MTU is required, then a policy similar to the one presented
in the previous rule is followed, yielding a sentence such as ‘“The first alterna-
tive involves the following steps.”’ If any additional MTU-codes appear in the
extended message, no introductory statement is generated, and the information
corresponding to these MTU-codes shall be generated in an independent

clause.

The first alternative requires special attention. If only one alternative is dis-
cussed, this fact was previously advertised, and no intervening utterances were
issued, a pronoun should be generated instead of an explicit reference. This
rule produces the second sentence in the following example: *“There is only
one way to solve this equation. It entails many operations, and here it is.”’
Where the first sentence was generated by the Equation-explanation Generator.
If, however, an intervening utterance was generated, then a pronoun can not be
used, and the following introductory statement would be generated: ‘“There is

only one way to solve this equation. Incidentally, Anyway, here is the

174

solution.”’

After the generation of an introductory statement has been completed, the
Alternative Generator proceeds to generate one or more independent clauses which
contain motivational and length-related MTUs. The following statements iilustrate

some motivational MTUs.

1. ““Through the following solution we shall introduce a very useful and impor-
tant technique, namely Patt’s guessing method for solving quadratic equa-
tions.”’

This MTU motivates the student by highlighting the attributes of a new
method.

2. “*It enables us to exercise a few methods which demand some more practice.”’
This MTU motivates the student by means of an increment-knowledge

motivation which applies to a few rules.

3. ““This alternative also enables us to go over a solution you might have con-
sidered.”’
This MTU provides an English representation of the artempred MTU-code.
The word ‘‘also’’ indicates that previous alternatives were similarly

motivated.

The alternative statement is completed by generating a length-related MTU
and combining it with the previously produced motivational MTU. This task is

accomplished by means of the following rules.

i If a length-apology MTU is required, then a statement like the following is

175

iv.

generated: ‘“This alternative requires many steps, however it has to be con-
sidered.”’ If a motivational MTU was generated, it is issued after this sen-

tence.

If a length-related and a consolatory MTU are required for the existing number
of steps, and the number of steps to be mentioned is acceptable to the student,
then the resulting text would be: ‘“This alternative requires plenty of steps,
however we shall mention only a few of them.”” Like in the previous rule, a

motivational MTU may follow this sentence.

If both a motivational and a length-related MTU are required, and all the
operations are being mentioned, then the length-related MTU shall precede the
motivational MTU. Notice that the conjunctive relation between these two
items of information is adversative, since the length-related information may
be discouraging, whereas the motivating information is generated to encourage
the student to attend to the forthcoming explanation. This rule may yield an
independent clause like the following: ‘“This alternative involves many opera-
tions, however, it enables us to practice a couple of techniques, which we

have not seen for some time.’’

Finally, if an existential introductory statemcht was previously generated (due
to the presence of an affective MTU-code), and only a length-related MTU is
required, the latter shall follow the introductory statement, and like in the pre-
vious rule, they shall be connected by an adversative conjunction. The result-
ing statement would be: ““Fortunately, there is a way to solve this equation,

but it requires many operations.’’

176

6.3.4.2 The Rule-Sequence Generator

This component produces a sentence containing a sequence of algebraic rules.

The following rhetorical rules determine whether a temporal MTU needs to be gen-

erated, and what shall be its type.

iv.

If the alternative under consideration does not contain any rules besides the
rules in the sequence, no temporal MTUs are issued, and the solution of the
equation is presented by a sentence like the following: ‘‘We solve this equa- .
tion by collecting terms, factoring out common factors and solving separately

for each factor.”’

If a focus-close MTU-code is featured in the first rule of the sequence, no tem-
poral MTU shall be issued. This rule precludes the generation of the following
sentence: “‘After collecting terms, next, we transfer a constant to the right

hand side of the equation.”’

If the temporal MTU of the first rule in the rule sequence is greater than 2, and
this sequence completes the solution of the equation, then an MTU
corresponding to the MTU-code *‘last’” is generated. This rule may produce
the following text: ‘‘We complete the solution of the equation by collecting

terms and applying the quadratic formula.”’

Otherwise, the temporal MTU of the first rule precedes the entire sequence,

yielding a sentence like: ‘‘Next, we remove parentheses and collect terms.”’

After the English representation of the temporal MTU has been decided, the

following rhetorical rules are activated to determine the format of the rest of the sen-

177

tence.

1l

iv.

If a digression-close MTU-code appears in the first rule in the sequence, then a

digression MTU precedes the sequence of rules.

If a focus-close MTU-code appears in the first rule, its English representation
is generated after a digression-close MTU, and present tense shall be used for
the verbs representing the forthcoming rules. This rule yields a sentence such
as “‘In any event, after removing parentheses, we collect terms and apply

the quadratic formula.”’

If no focus-close MTU-code is required, the Rule-sequence Generator ran-
domly chooses between a word form for the temporal MTU (e.g., ‘‘next,”’
““finally’’) or a clause form (e.g., ‘‘we continue by,”” “‘we complete the solu-
tion of the equation by’’), where the choice leans towards the more commonly
used word form. The tense of the verbs is determined by the selected format,
ie., the word form entails present tense, whereas the clause form requires
present participle. This policy yields the following sentences respectively:
““Thereafter, we remove parentheses and collect terms’’ and ‘‘We complete
the solution of the equation by transferring the constant to the right and side,

and dividing by the coefficient of x.”’

If a result technical utterance follows the rule sequence, a dependent result
statement is generated, unless otherwise determined by Result Generator (see
section 6.3.4.7). This rule produces the following text: **We transfer terms to
the left hand side of the equation and collect terms, yielding the following

result.”’

178

6.3.4.3 The Rule-Cluster Generator

The presence of certain MTU-codes affect both the generation of other MTUs

and the order in which the extended messages and MTUs in a rule cluster are gen-

erated. The Rule-cluster Generator applies the following rhetorical rules to determine

the manner and order in which the information items in a rule cluster shall be

presented.

1.

If a pattern or expectation extended message contains a non-null implementa-
tion slot, then an MTU corresponding to the known MTU-code in the rule
under consideration shall not be generated. The rationale supporting this rule
is that if the pattern or expectation of a rule is known, so is the rule, and stat-
ing this fact separately would be redundant. For instance, this rhetorical rule
would avoid generating the second sentence in the following text: ‘“‘As you
know, since 3 is a factor common to the second and third terms, we factor it

out. We have seen this method before.”

Affective and expectation-violation MTUs can not be mentioned in conjunc-
tion with event-violation MTUs. Therefore if any of the first two MTUs has to
be generated, the last one is ignored. This rule precludes the generation of text

like: ‘‘Fortunately, but first’

If an event-violation MTU-code appears in a rule technical utterance, then the
statement describing the activation of this rule precedes the text representing
its dependent technical utterances, namely expectation and pattern. In addition,
the presence of an event-violation MTU-code precludes the generation of a

temporal and a focus-close MTU. This rule may yield the following sentence:

179

iv.

vi.

vii.

“‘But before we apply the above mentioned technique, we transfer the first

and second terms on the left hand side of the equation to the right hand side.”’

A focus-close MTU-code precludes the generation of a temporal MTU, and
causes the text corresponding to the rule to be generated before its pattern and
expectation. This results in text like the following: ‘‘After removing

parentheses, we collect the terms on the left hand side.”’

The presence of an expectation or digression MTU requires the generation of a
temporal MTU in clause form. This rule would generate ‘‘Anyway, we go on

by ...’ instead of ‘‘Anyway, next,”’

If any descriptive information, e.g., description extended message, motiva-
tional MTUs, etc, has to accompany the presentation of an algebraic rule, then
this rule, its pattern and its expectation are stated first, followed by one or
more independent clauses, which contain the descriptive information. An
independent clause corresponding to the result extended message is generated
last. The following text could be generated by this rhetorical rule: *‘Since both
sides of the equation are multiplied by 3, we divide by this factor. As I have
stated before, this method is very simple but important. It yields the following

result”’

Finally, if either the pattern or the expectation of a rule are to be presented,
then the result of the rule application shail be generated in an independent
clause. Otherwise, the result of a rule application appears in a dependent
clause, unless the Result Generator decides differently. The following output

is generated by the first an second part of this rule, respectively:

180

““We remove parentheses in order to get simple terms. This operation arrives

at the following result.”’
‘“We remove parentheses, getting”’

According to the outcome of these rules, the Rule-cluster Generator activates
one of the generators in the next level of the hierarchy, to determine the manner and
order in which the remaining technical and meta-technical utterances in the rule clus-

ter shall be generated.

If a statement corresponding to the rule activation was not generated by the
Rule-cluster Generator, then the Rule-pattern-expectation Generator produces the text
corresponding to a rule, its pattern and its expectations by applying the following rhe-

torical rules.

i. If both the pﬁttem and the expectation extended message have an implementa-

tional MTU, then a sentence of the following format is generated:
{ implementational-MTU pattern rule expectation }

An instance of the resulting text is: ‘‘As you know, since x-1 is a fac-
tor common to the first and second terms on the left hand side, we factor it out,
hoping to get a factor common to the rest of the terms.”” In general, when
presenting .the pattern of a rule, a tutor is instantiating a more general pattern.
Since FIGMENT does not have memory of exact statements issued, it has to
confine itself to implementational MTUs such as “‘as you already know’’ as

opposed to ‘‘as I have stated before.”

i. In most cases, a rule shall be preceded by its pattern and followed by its

181

expectation. If the pattern extended message contains an implementational
MTU-code and the expectation extended message does not, then the expecta-
tion statement has to appear in an independent claﬁse. Otherwise, the reader
will understand that the implementational MTU affects the expectation state-
ment as well. If, on the other hand, the pattern extended message has an
empty implementation slot, then, unless otherwise determined by the Expecta-
tion Generator, a dependent clause shall be generated for the expectation state-
ment. The following output is generated by the first and second parts of this

rule, respectively:

“‘As you already know, since ail the terms on the right hand side of the equa-
tion are simple terms, we collect them. We perform this step in order

to get a more compact expression.’’

“‘Since all the terms on the right hand side of the equation are simple terms we

collect them, in order to get a more compact expression.”’

iid. In some cases the rule statement is generated first, and its pattern and expecta-

tion are produced thereafter by means of the Pattern-expectation Generator.

The Pattern-expectation Generator applies the following rules to decide on the

relative order between the pattern and expectation statements.

i If ‘both the pattern and the expectation extended messages have a non-null
implementation slot, then an independent clause of the following format is

produced:

{ implementational-MTU partern and expectation }

182

The following text illustrates the output of this rule: “*As you already
know, it is possible to perform this operation, because x% is a factor com-
mon to both terms, and we hope to get a factor common with the rest of the

equation.”’

ii. If the pattern extended message has a non-null implementation slot and the
implementation slot of the expectation extended message is empty, then an
independent clause shall be generated. If the implementation slot of the pattern
extended message is null, a dependent clause is produced. This rule precludes
the generation of a sentence like the following: ‘‘Next, we collect terms, since,
as you know, the terms on the right hand side are simple terms,’’ in favour of
““Next, we collect terms. As you know, we are able to perform this operation,
because the terms on the right hand side are simpie terms.”” Notice that these
sentences do not have the same meaning. While in the first one the implemen-
tational MTU conveys that the fact that is known to the user is that there are
simple terms on the right hand side of the equation, the second sentence states
that the pattern of an algebraic rule is known. If an expectation statement is
required as well, an independent clause shall be generated following the pat-

tern statement.

ii. Finally, if a pattern extended message is not featured in the rule cluster, but an
expectation extended message is, then unless otherwise determined by the
Expectation Generator, the expectation statement will have a dependent clause

form.

After the relative order of the extended messages has been determined, the text

is generated by activating lower-level Utterance Generators.

183

6.3.4.4 The Rule Generator

When the Rule Generator is activated, only a few MTUs remain to be deter-

mined. These MTUs are featured in the following sentences:

“‘Nevertheless, we can still remove parentheses.’’
This type of sentence is generated if the rule extended message contains an

expectation-violation MTU-code.

‘““We continue by collecting terms.’’
If the previous condition does not hold, and a temporal MTU was not gen-
erated before, then a temporal MTU in clause form is produced, yielding this

type of sentence.

If none of these MTUs are required, a rule statement like the following is pro-
duced: ‘“You factor out x from the first and second terms.”’ Notice that if a pattern
statement precedes the rule, a pronoun will have to be generated, instead of an explicit
reference. In this case, the text generated for the last example would be: “‘Since x is a
factor common to the first and second terms, we factor it out.”” If additional pronouns

are required, they shall be partial.

Finally, the Rule Generator produces an implementational MTU pertaining to
previous applications of the rule under similar circumstances. This results in sen-
tences like the following: ‘‘We factor out x again,”” ‘“We can still collect terms, like
in previous equations’’ or ‘“You begin by removing parentheses, like in the second

alternative.”’

184

6.3.4.5 The Pattern Generator

The Pattern Generator produces several types of sentences, according to the

following considerations.

iv.

A pattern extended message can have an implementational MTU-code only.
Tn order to avoid generating misleading text, this type of MTU entails the gen-

eration of an independent pattern clause.

If an independent clause is required, and the rule has already been presented,
then a sentence like the following is produced: *‘It is possible to apply this

method, because 3x is a factor common to the first and second term.”’

Otherwise, if an independent clause is required and the rule has not been stated
yet, the Pattern Generator might generate the first part of the following sen-
tences: ‘“The terms on the left hand side are simple terms, therefore we can
collect them’’ or **Since 4 multiplies both sides of the equation, we can divide

these sides by it.”’

Finally, if none of these conditions holds, a dependent clause is generated,
yielding text like the following: ‘“We factor out xz, because it is a factor com-

mon to the terms on the left hand side.”’

Since the pattern and rule statements are closely related, the generation of pro-

nouns to reference the same items is essential. This issue is resolved by means of a

rather simple rhetorical rule:

185

T

A full pronoun is generated for an item featured in the acror slot’ of the technical part
of a pattern extended message, and a partial pronoun is produced for any other items,

if necessary.

This rule is applicable if a pattern statement precedes a rule statement and vice

2

versa, yielding sentences like the following: ‘‘Since x“ is a factor common to the first

and second terms, we factor it out from these terms.”’
6.3.4.6 The Expectation Generator

The generation of an expectation extended message is performed by applying

the following rhetorical rules.

i. If the expected event has a probability of 1, i.e., it represents the purpose of an
action, an MTU like *‘in order to’’ is generated, otherwise the MTU ‘‘hoping

to’’ is produced.

il. If an independent expectation clause is required, and the rule has already been
stated, then a sentence like the following is produced: ‘“We perform this

operation hoping to get rid of terms of third degree.”

iii. Otherwise, if a dependent expectation clause has to be generated, a sentence
like the following is issued: ‘“We factor x out, in order to get a factor com-

mon to other terms in the equation.”

iv, Finally, a2 human tutor may also generate an independent expectation clause, if
the rule has not been stated. The following sentence represents this type of

text: ‘“We would like to eliminate terms of third degree, to this end we

t See Appendices 2 and 3.

186

remove parentheses.”” However, this format can be used only if the object of

the expectation statement is independent of the rule and pattern statements.
6.3.4.7 The Result Generator

The Result Generator produces an independent clause, either if it is so
specified by the Rule-sequence or Rule-cluster Generators, or if the result statement
requires some introductory MTUs. The following sentences illustrate the output of

this component:

1. ‘“Unfortunately, contrary to our expectations, this operations yield the fol-
lowing result.”’
This independent clause is generated from an extended message featuring an
expectation-violation and a negative affect-related MTU-code. The decision to
generate an expectation-violation MTU in clause form, is based on the posi-
tion of the result technical utterance relative to the expectation technical utter-
ance. If the result technical utterance appears immediately after the expectation
technical utterance, the following text would be generated: ““We remove
parentheses and collect terms hoping to eliminate third degree terms. Unfor-

tunately, however, we get”

2. ““After performing the last operation, we get the result we were hoping
for.”
This independent clause represents a result extended message containing a

focus-close and an expectation-realization MTU-code.

3. ““We collect terms, arriving at the desired result.”

Since no introductory MTUs are required, unless otherwise specified, the

187

Result Generator produces this type of dependent clause for a result extended

message containing an expectation-realization MTU-code.
6.3.4.8 The Finish Generator

This component of the Sentence Composer determines the text to be generated
to signal the conclusion of a solution alternative. If the alternative is successful and no
MTUs are required, no text shall be generated. Otherwise, if the finish extended mes-
sage contains focus, digression and affective MTU-codes, the MTUs corresponding to

the last two MTU-codes are generated first, yielding sentences such as:

1. ‘“Anyway, after performing the last operation the equation is solved.”’
This sentence is generated if a digression-close and a focus-close MTU are

required.

2. ‘‘Anyway, the above mentioned approach solves the equation.”’
This sentence is produced if a digression-close MTU appears in the extended

message.

3. ‘‘Unfortunately, there is nothing else we can do here.”
This sentence pertains to an alternative which did not succeed in solving the
equation, and whose finish extended message is accompanied by a negative

affective MTU.
6.3.4.9 The Continue Generator

The generation of text representing a continue extended message resembles the
generation of a finish extended message. The following sentences may be produced by

this generator:

188

L. ““After performing the last operation, we complete the solution of the equa-
tion by removing parentheses and collecting terms.”’
This type of sentence is generated if the operations which are not presented

still have to be mentioned, and a focus-close MTU-code is required.

2. ““From this point you can reach the solution by yourself.”’
This sentence represents a continue extended message which requires no men-

tion of the remaining algebraic operations, and does not need any MTUs.
6.3.5 The Intervening-Utterances Generator

This generator produces text which describes the methods used to solve cer-
tain types of equations, and also general commentaries. These technical utterances
may appear virtually at any point in an explanation, and may interrupt the flow of the

discourse.

The Intervening-utterances Generator scans the list of extended messages for
consecutive appearances of these utterances. For each utterance it activates the
appropriate lower-level generator, namely a Method Generator or a Commentary Gen-

i

erator .
6.3.5.1 The Method Gene'rator

The Method Generator produces one or more statements containing the
methods available to solve equations of a certain type. The system generates two

kinds of method statements:

Existential — In which the existence of a method or lack thereof is mentioned; and

T The Commentary Generator has not been implemented.

189

Enumerative — In which the actual names of the methods are mentioned.

In addition, each of these statements may either refer to general methods,

which solve all instances of a given class of equations, or specific methods, which are

applicable only under certain circumstances.

ment.

iv.

The following rhetorical rules are applied in order to generate a method state-

If the MTU-code also appears in the implementation slot of the extended mes-
sage, signaling that the previous extended message contains a method techni-
cal utterance too, and if the current extended message has no expectation-
violation or digression MTU-codes, then an additive conjunction 1s generated
between the current and the previous method statement. Otherwise, the MTU-
codes featured in the preliminary section of the extended message are gen-

erated as explained in section 6.3.1.

If two method statements regarding the same topic or type of equation, are
presented consecutively, and both have non-null implementation slots, then a

common implementational prefix is generated for both of them.

If the digression slot of a method extended message is non-null, then since the
object of the method statement is not equal to the item currently in focus, it
can not be referenced by means of a pronoun, and has to be explicitly stated.
Otherwise, a partial pronoun may be generated, unless the Pronoun Generator

decides differently (see section 6.1.3).

A statement regarding general solution methods may be formulated as follows:

190

“In general, we can solve linear equations by ... ** or ‘“There is no general
method to solve .. .” Whereas statements referring to specific solution
methods may have the following representations: ““We can solve certain

linear equations by ... *” or ‘‘There are no particular methods to solve”’
By means of these rules, the Method Generator produces the following text:

“‘Unfortunately, we shall not go over a general method for solving this type
of equations.’’

This sentence is generated from a method extended message referring to a
general method, whose affective slot contains a negative MTU-code and

whose technical part has the value not-teach.

‘‘Fortunately, however, there are a few particular methods for solving third
degree equations.’’
The specific method extended message corresponding to this existential sen-

tence has an expectation-violation and a positive affect-related MTU-code.

“In general, we can solve linear equations by removing parentheses, collect-
ing terms and dividing by a constant.”’
This enumerative sentence represents a method extended message for a gen-

eral method.

191

CHAPTER 7

Conclusions and Future Research

In this research we have modeled Meta-Technical Utterances in terms of their
anticipated effect on the listener comprehension, and have incorporated these models

in a text-generation facility as tools for generating fluent and cogent discourse.

We have classified MTUs according to their function, as seen by the speaker,
in transmitting the subject matter, thus distinguishing between Knowledge-

Organization, Knowledge-Acquisition, and Affect-Maintenance MTUs.

Based on this taxonomy, we have designed and implemented the text genera-
tion components of an Intelligent Tutoring System called FIGMENT. Specifically, we
have demonstrated the generation of Knowledge-Organization and affect-transference
MTUs from the structure of the knowledge to be transmitted, and the generation of
Knowledge-Acquisition and consolatory MTUs by consulting simplified models of
the comprehension processes activated by the listener. We have shown that a text
generation process based on such models would capture important rhetorical features

that support natural discourse.
7.1 Limitations of this Research and Future Work

The system implemented in this research generates believable text, i.e., com-
parable in many respects to discourse produced by a human tutor. As a next step, it is

important to test the transferability of this facility to alternative domains. This

192

depends -primarily on the adaptability of the Comprehension-Processes Module. Most
of the processes activated by the Comprehension-Processes Module rely on the
hierarchical problem-solving structure of the transferred knowledge. This property is
shared by many technical tutoring domains. The extensibility of the Comprehension-
Processes Module to these domains hinges on its ability to incorporate new types of
technical utterances, since the presence of a technical utterance or its accompanying

MTUs may influence the need for MTUs in subsequent utterances.

The development of FIGMENT has opened issues which are basic for the

enhancement of the quality of machine-generated text.

i. The design proposed in this work distinguishes between the strategic and the
tactical components of the system. However, like the generation of MTUs, the
choice of material to be discussed may also be influenced by affect-related
considerations. Therefore, it would be profitable to explore a text-generation
scheme in which both, the subject matter and the MTUs are produced at the
same time, by activating processes similar to the ones applied by the

Comprehension-Processes Module.

ii. A tutor often qualifies estimational and attribute-related MTUs by means of
short-term-implementational or adversative MTUs, yielding sentences like
““This method also requires several computations’ or ‘‘Unlike the previous
equation, this exercise is easy,”” respectively. The presence of the qualifying
MTUs lends an impression of intelligence on the part of the speaker, in that he
exhibits recollection of previous discourse. To generate these MTUs, a system
should use a model of the listener’s short-term memory, and a set of rhetorical

rules that weave these MTUs into the text.

193

il

iv.

FIGMENT generates a particular Knowledge-Acquisition MTU based only on
the affects evoked by a technical-utterance. The non-technical goals of the
listener are not explicitly taken into consideration. Fér example, an estima-
tional MTU like ‘“this technique is quite difficult’’ may imperil a student’s
goal of quickly mastering the method in question, and might require the gen-
eration of a consolatory MTU. At present, the generation of the latter MTU is
not goal-based, but reflects only the disparity between the capabilities of the
student and the difficulty and/or length of the technical-utterance in question.
It is our contention that it is worth while incorporating and consulting an

explicit model of the student’s goals.

The expectations modeled by FIGMENT concern only the solution of an equa-
tion. However, during a tutorial session a student experiences other expecta-
tions, e.g., he may expect a particular topic to be discussed or the forthcoming
equation to be of a certain difficulty, he may be tired and wish the session to
be finished, etc. The latter case should prompt a sentence such as: “‘Let us
solve just one more equation.”” The incorporation of a richer model of the

listener’s expectations will improve the quality of the generated discourse.

A text-generation system should be able to present a relasive evaluation of the
entities under consideration, generating a sentence such as ‘*This technique is
more efficient than the one used in the last alternative.”” Currently FIGMENT

presents only absolute attributes of the mathematical entities in question.

194

APPENDIX 1

Taxonomy of Conjunctions by Wilkins

This section contains an excerpt of the taxonomy of the English Language per-

formed by Wilkins (1668):

"Conjunctions are such Particles as serve for the joyning together of
words, or rather of sentences. Of these there may be reckoned these
four Combinations or twelve paire; though all of them be not alike
simple and of equal necessity, yet there is none of them without its

particular convenience.

Interrogative, || Affirmative, or Negative.
WHETHER YEA?

WHETHER NO?

Conjunctive || Affirmative, or Negative,
AND

NEITHER

Conditional || Affirmative, or Negative,
IF, so that

UNLESS.

Approbative, or Discretive and restrictive,

INDEED

195

BUT

Concessive or Exceptive
ALTHOUGH

YET

Disjunctive || Definite, or Indefinite,
OR

EITHER.

The third combination are all of them Causal

Adjunctive of the end; whether cause or Event; || Affirmative or Negarive,
THAT, to the end that,

LEAST THAT

Rariocinative, belonging to the Antecedent; whether || that which
makes if follow the consequent: or that which may indifferently
precede or follow.

FOR

BECAUSE

Rariocinative belonging to the Consequent; whether || interrogative
and indefinite: or illative, and demonstrative,

WHY, wherefore, what is the cause or reason,

THEREFORE.

Declarative; whether || of the cause or of the event,
WHEREAS, seeing that, sith that,
THEREUPON

Additional, and transitional, whether || continuative, or supletive,

196

LIKEWISE, aiso, together with, moreover,
AND SO FORTH, &ec.

Expositive; either || by Synonyme, or by Instance,
TO WIT, wiz.

FOR EXAMPLE, EXGR.

The three last of these are not properly Particles or single words, but
rather the Contractions .of several words, they are here added to the rest
for greater convenience, partly for compleating the number and fiiling
up the vacancies; and partly in Complyance with the use of most vulgar

Languages, when they write contractedly.”

197

APPENDIX 2

Output of the Tutoring Strategist

The input to the tactical components of FIGMENT is a list of technical utter-

ances (TUs) which have the following format:
((technical-information) processing-information)

The technical-information part contains information pertaining to the subject
in question, e.g., the name of the topic, the operation to be applied, etc. Unless direc-
tives to the contrary have been provided, this information should be transmitted to the
student. The processing-information part contains data required for the text genera-

tion task.

The TUs appear in a partially predefined sequence, which is depicted in Fig.
2app.1. We recognize three types of TUs: Independent, Rule-dependent and Interven-

ing.

Independent.
These TUs describe the topic and equation under consideration (sopic and
equation) and the actions taken to solve it. They signal the beginning of a
solution alternative (alternative) and its termination (continue or finish), and

present the algebraic operations performed to solve the equation (rule).

198

Rule-dependent.
These TUs are optional and may only appear after a rule TU. They pertain to
the rationale of applying a rule (pattern), the expectations it triggers (expecta-
tion), its mode of application (description) and its result (resulr). The relative
order of the rule-dependent TUs is immaterial, and together with the preceding

rule they form a rule cluster.

Intervening.
These TUs are statements, which can appear anywhere in the TU-list, except
inside a rule cluster. The TUs included in this type are method-statements and

commentaries.

In a fully implemented Tutoring System, the list of TUs should be generated

by the Tutoring Strategies Module, however in the present system it is hand-coded.

The following technical utterances are representative of the domain of algebra.

((topic topic-name) mention).
This utterance contains the name of the topic to which the forthcoming equa-
tion belongs (e.g., linear, quadratic, third degree, etc). The argument mention

may have one of the following values:

¢ (default value) — The name of the topic is to be mentioned;

nil — It is not necessary to mention the topic’s name as far as the Tutoring
Strategist is concerned. This directive may be overridden by considera-

tions applied by the Comprehension-Processes Module; or

199

topic
[intervening TU-s]
equation
[intervening TU-s]
alternative,
[intervening TU-s]
rule1
pattern
expectation
result
[intervening TU-s]
rule
resu%t
rule3
le
nuiey

1'u1::-<:1ust.er1

rule-clustcr2

[intervening TU-s]
continue/finish

[intervening TU-s]
all:t:rna.tivc:2

[intervening TU-s]
continue/finish
[intervening TU-s]

Fig. 2app.1: Input Sequence of Technical Utterances

The anticipated number of equations — Since a tutor is seldom certain of the
exact number of equations he wishes to present, and usually has a
range in mind (e.g., few equations, several, many, an entire session),
this argument shall be a pointer to a particular range in a range-list. For

example, given the following range-list:

200

1 2 3 4 5 6
0-1] 2-4 | 5-8 | 9-12 [13-17 | 18-30

If mention=3, it means that the tutor plans to present between 5

and 8 exercises in a given topic.

((equation equation-representation) (existing-alternatives mentioned-alternatives
certainty) (similar-equations qualifier) complexity).
This utterance presents the current equation. The equation-representation
argument appears in string form (e.g., “'x -3x-4=0’"). The existing-
alternatives argument contains the number of different approaches that can be
used to solve this equation, while the mentioned-alternatives argument
represents the number of alternatives the tutor is about to present. The cer-
tainty argument shall have value if all the solution alternatives to be
presented are certain to solve the given equation; otherwise its value shall be
nil. Notice that the certainty of a solution not only depends on the method
being considered (e.g., a quadratic equation can always be solved by removing
parentheses, collecting terms, and applying the quadratic formula}, but also on
the particular equation and the knowledge status of the student. For example,
if a particular solution alternative was not guaranteed to solve an equation, but
eventually did, then if the next equation has the same pattern, this sequence of

operations is expected to solve it.
The similar-equations argument may have one of the following values:

A Pattern-name — This is the name of a well-known pattern, like a linear
canonic form (“‘ax+b=c’’), or a quadratic canonic form

(“ax2+bx+c=0”), which the student should be able to recognize; or

201

A list of equation numbers — This list contains references to equations which
were given lately, and the tutor recognizes as having a pattern similar
to the current equation. As opposed to the previous value, in general,
the referenced equations would not have been remembered if they had

not been presented recently.

The qualifier contains information which restricts the similarity
between the current equation and similar ones. For example, an unqualified
similarity statement could be: **This equation is similar to the previous one.”
While the same statement accompanied by a qualifier would be: *“This equa-
tion is similar to the previous one, however, it has another term.” In the
present implementation, the qualifier has a string form. It is well known, that
this format is not conducive to the generation of fluent text. Nevertheless, its
mere presence enables us to recognize some features which are needed for the

generation of cogent text (see section 5.2).

Finally, the complexity argument is a number between O and 1, which
measures the difficulty of the current equation (where O represents the easiest

equation and 1, the most difficult).

((alternative solution-certainty) alternative-number (actual-steps mentioned-steps}).
This utterance signals the beginning of a solution to the equation. Like before,
the solution-certainty argument has value ¢, if the tutor wishes to convey that
the forthcoming sequence of operations is certain to solve a given equation.

Otherwise, its value is nil.

202

{(rule

Next, the alternative-number argument contains the sequential number
of the current alternative. Finally, the actual-steps argument contains the total
number of operations applied to solve the equation, while the mentioned-steps

argument contains the number of steps that shall be mentioned.

rule-name rule-slots) rule-number number-of-applications similar-usage
repeat approach).

Throughout this work, we shall refer to high-level algebraic operations like
reméving parentheses, collecting terms, factoring out common factors, etc, as

rules.

rule-slots contains a possibly empty list of arguments which are related
to the application of the rule. The types of the arguments remind us of the slots
used in Conceptual Dependencies (Schank and Riesbeck 1981), e.g., actor,
action, object, from, to. However, their contents differ from traditional CD
values, in that they are oriented towards the gemeration of text concerning
mathematical entities. The following example contains a stylized representa-
tion of the technical part of a rule TU (for a detailed description of the rule-

slots see Appendix 3).
(rule factor-out ((object ‘*3x’’) (from “‘the first and second terms’")))

This representation enables us to generate a sentence like: ‘““We factor

out 3x from the first and second term.”’

The rule-number argument contains the number of the current rule in

the sequence of operations.

203

There are some rules which are usually applied only once for a given
instance (e.g., quadratic formula), thus requiring a constant number of compu-
tations. Whereas the number of computations required for other rules (e.g.,
remove parentheses, collect terms) depends on the number of times they are
applied. The number-of-applications argument contains the number of times
the current rule is applied, thus enabling us to distinguish between inherently
lengthy operations and computationally short operations, which due to repeti-

tions demand many computations.
The similar-usage argument may have one of the following values:

A list of equation numbers containing the numbers of equations in which the

current rule was applied under similar circumstances;

t — If a list of similar application instances was already given in a previous
rule or a list of similar-equations was given in the equation TU, and
the current rule was used under similar circumstances than the equa-

tions in these lists; or

nil — If the tutor does not recall using the current rule under similar cir-

cumstances in previous equations.

Notice that it is not sufficient for a rule merely to have been used previ-
ously in order to merit a non-nul similar-usage argument. The manner n
which it is applied, and the mathematical entities on which it is applied have to

be similar to a previous pattern and mathematical entities, respectively.

204

The repear argument resembles the similar-usage argument, however
in this case, the similarity of use pertains to the same equation. It can either be
nil, or it can contain a list of tuples such each tuple has the format

(alternative-number rule-number).

When learning to solve algebraic equations, the main challenge of an
equation typically appears at the beginning. After having successfully applied
one or more rules, the equation reaches a format the student is already familiar
with, and the solution process becomes routine. The last argument, namely
approach, serves to distinguish between the first part in the solution, and the
second one. It has value ¢, if the current rule is regarded as one of the rules

used to attack the current equation, and nil, otherwise.

((pattern patrtern-siots)).
This TU contains information about a successfully matched pattern which
enables us to apply the rule under consideration. As stated above, it appears
after a rule TU. The pattern-slots have the same format as the rule-slots, and
are described in detail in Appendix 3. A stylized representation of the techni-
cal part of a rule TU and its accompanying pattern TU is given in the follow-

ing example:

(rule factor-out ({object “xz”)))

(pattern ((actor object) (object *the rest of the terms on the 1hs’")))

Notice that the actor slot of the pattern refers to the object of the rule.
This representation enables us to generate a sentence containing pronouns,

e.g., ‘Since x2 is a factor common to the rest of the terms on the left hand

205

side, we factor it out.”’

((expectation applicable-case expectation-slots)).
This TU contains information regarding the expectations awakened when

applying a rule.

The applicable-case argument selects the appropriate expectation from
a list of expectations which accompany each rule in the database. The
expectation-slots argument is similar to the rule-slots argument and is
described in detail in Appendix 3. The following example contains a stylized

representation of the technical part of an expectation TU:

(expectation common-factor ((object *‘other terms’’)))

Through this representation we can generate a clause such as “‘hoping

to get a factor common to other terms.”’

((result equation-representation) similar-result (similar-equations qualifier)
expectation-fulfilled).
This TU contains an equation representing the result of an algebraic operation.

Like for equation TUs, the equation-representation has a string format.

The values accepted by the similar-result argument are the same as the
values accepted by the similar-usage rule-argument, namely a list of equation
numbers, ¢ or nil. If this argument has a non-null value, it indicates that a simi-
lar result was encountered in a previous equation. Moreover, a value of ¢ sig-
nals that the current result is in keeping with a similarity pointed out by a pre-

vious argument. Through this argument, the similar-usage rule argument and

206

the similar-equations equation argument, a tutor can express the fact that a
solution to an equation is similar to a previous solution and also call attention

to an eventual divergence between the solution paths.

The values accepted by the (similar-equations qualifier) arguments are
the same as the values accepted by these arguments in equation TUs. A non-
null argument of this type means that the current result is similar to a previ-
ously encountered equation. This argument differs from. the similar-resuit
argument in that it references an equation, as opposed to a result that was
obtained during the solution of an equation. It serves to indicate that the
approach to be used after obtaining the result under consideration should be

the same as the approach used for solving the equations in the argument.

Finally, the expectation-fulfilled argument may have one of the follow-
ing values: ¢, if a previously stated expectation was fulfilled and nil, otherwise.
If this argument is omitted, it either means that no expectations were previ-
ously stated, or that the current result is irrelevant to any previously stated
expectations, i.e., neither a violation or a realization of a stated expectation has

been evidenced.

((finish solved)).
This TU signals the completion of a solution path. The argument solved was
value ¢ or is omitted, if the equation was successfully solved, and nil, other-

wise,

((continue) lisr-of-remaining-rules remaining-length mention-rules).

This TU signals the eventual successful compietion of a solution alternative,

207

i.e., the last steps may be omitted, and it should be clear to the student how to
solve the equation from this point on. The list-of-remaining-rules argument
contains a list of the operations to be performed in order to complete the solu-
tion of the equation. If an element in this list is also a list, its elements are
alternative operations. For example, the following list-of-remaining-rules
represents sequence of operations: ‘‘remove parentheses, collect terms, and

then apply the quadratic formula or complete the square.”

(remove-parentheses collect-terms

(quadratic-formula completion-to-square))

As stated before, each high-level algebraic operation has a length attri-
bute, which consists of the number of computations associated with it. The
remaining-length argument contains the sum of the lengths of all the remain-
ing operations, taking into consideration the number of times they have been

applied.

Finally, the mention-rules argument has value ¢, if the list-of-

remaining-rules should be mentioned, and #il, otherwise.

((method) general-state specific-state s’;z‘iﬂ'-conraxr).
This TU indicates that the tutor wishes to inform the student about the
methods available to solve different types of equations. For a given topic or
distinguished equation pattern, the Tutoring Strategist may transmit informa-

tion about general methods, specific methods or both.

The argument general-state has value nil, if the tutor does not wish to

make any statement regarding general solution methods, or (general state),

208

otherwise. Similarly, the argument specific-state has value nil, if no informa-
tion is to be transmitted regarding particular methods of solution, and value
(specific state), otherwise, Notice, however, that a method TU requires at least

one of these arguments to be non-null.

The types of the method statements to be issued depend on the values
of their state arguments. If szate has value 7, the names of the solution methods
are to be explicitly stated. A null value, however, elicits a statement about the

existence of solution methods or lack thereof.
The shift-context argument may have one of the following values:

(topic-name nil nil nil) — Signals that the methods pertaining to a particular
topic (e.g., linear, quadratic, third degree) are to be presented;

t — Signals that the methods pertaining to the topic under consideration are to

be stated; or

nil (defauit) — Indicates that the methods to be stated pertain to the latest
mathematical entity mentioned for which such methods are relevant.
This entity can either be an equation with a distinguished pattern or a

topic.
The following examples illustrate the semantics of the method TU:

((method) (general nil) nil) = **Give information regarding the existence of

general methods.”’

((method) (general t) (specific nil)) = ““‘Give a list of general methods, and

209

information regarding the existence of specific methods.”’

210

APPENDIX 3

Arguments of the Technical Part of a Technical Utterance

The technical parts corresponding to a rule, pattern and expectation technical
utterance have many elements in common. In the following sections we shall discuss

their arguments in detail.
3.1 Arguments of the Technical Part of a Rule Technical Utterance

When an algebraic operation is applied, the following types of arguments may

be present:

Object — The object to which the rule is applied. For example, in ‘‘factor out x-1"’

the object is “‘x-1.”’

To — The target location of an algebraic operation, €.g., “‘transfer x to the left and

side of the equation.”’

From — The source location of an algebraic operation, €.g., ‘‘transfer terms from the

right hand side.”’

Instrument — The manner in which an algebraic operation is performed, e.g., “‘divide

both sides of the equation by 3.”’

Target — A certain form resulting from an algebraic operation, e.g., ‘‘rewrite -x-1 as

-(x+1).”’

211

The mathematical rule base supplies the arguments required and allowed by
each rule, the order in which these arguments are to appear in the generated text, and
also default values for the required arguments. For instance, if the rule facror-our was
given with no arguments, the database supplies the object, yielding *‘factor out a com-

mon factor.”’

Notice that the CD-slots actor and action are absent from the above given list.
The reason for this is that the actor of an algebraic operation is the person performing

it, and the action is the name of the operation itself.

Most of these arguments can be applied to mathematical entities on the left
hand side and on the right hand side of an equation. Therefore they have the following

format (argwnent-type lhs rhs).

Where either [hs or rhs could be nil (but not both of them at the same time).

The format of ks and rhs is discussed in Appendix 4.
3.2 Arguments of the Technical Part of a Pattern Technical Utterance
When referencing the pattern of a rule, the following slots are required:

Actor — This slot has to be supplied by the Tutoring Strategist, and can not have a
defauit value. For example, the actor of a pattern could be: “x®” in the

expression “x2 is a factor common to""
Object — If this slot is absent, a default value can be retrieved from the rule base.

These slots differ from the ones used in the rule TU in two aspects. Firstly,

together with an action slot, they are necessary and sufficient to create a legal pattern

212

TU. In addition, they accept two types of arguments:

(slot-type lhs rhs) , or
(slot-type rule-slot-name)

The last argument type is a reference to a slot in rule-slots. 1t is used to pre-
clude duplication of reference, and enables the system to perform appropriate pro-

nominalization.
3.3 Arguments of the Technical Part of an Expectation Technical Utterance

The format of the arguments required by expectation-slots is the same as the
format of the rule-slots arguments. However, typically, expectation-slots require less
arguments than rule-slots. Most expectation TUs need only an object argument, which
can also be provided by the default value in the database, in addition to the action-
slot, which is inherent in the expectation under consideration. Furthermore, there are
instances of expectations which are independent of parameters, and therefore require
no arguments. An instance of this case is illustrated by one of the purposes for remov-

ing parentheses, which is ‘‘to get simple terms only.”

213

APPENDIX 4

Referencing Mathematical Entities

When referencing mathematical entities, we may either use an implicit
representation (e.g., ‘‘the first and second terms’’), an explicit representation (which
contains copies of the entities referenced), or both. Therefore lhs and rhs may have

one of the following formats:

t or nil or

(implicit-representation explicit-representation)

The value ¢ indicates that an entire side of an equation is being referenced, the
explicit representation contains a list of the elements we are referring to, and the

implicit representation has the following format:

(elements total-number-of-elements element-name mention-side other-information)

Where:

elements contains the number of elements referenced by an algebraic operation, or an

actual list of the positions of the elements referenced;

total-number-of-elements contains the total number of elements of the same type as

the elements in the first argument;

element-name contains the name of the element. This could either be a simpie name

214

like ““term’’ or “‘factor’’ or a composite name, such as “‘common factor’’;

mention-side has value r if the corresponding side should be mentioned, and nil, other-

wise; and

other-information contains keywords which help refer to the mathematical entities
under consideration. For example, ‘‘each,”” ‘‘other,” “rest,”” etc. This

parameter is optional.

The following examples clarify the use of the implicit representation:

(2 3 term t) — *‘terms on the left/right hand side of the equation’’

((1 3) 3 factor nil) — ‘‘the first and third factors’’
This representation is geared towards the expression of simple mathematical entities,
and does not allow us to refer to more complicated ones, like “‘the third factor in the
first term.’’ Nevertheless, it is sufficient for most explanations required in the realm

of high-school algebra, and enables us to illustrate the capabilities of the system. A

more accurate representation could be easily substituted for the present one.

215

APPENDIX 5

Output of the Comprehension-Processes Module

The Comprehension-Processes Module adds requirement-codes corresponding
to the MTUs to be generated for each technical utterance, and may add information to
the technical part of a technical utterance. As mentioned in Chapter 4, it may also
insert an alternatives technical utterance or delete an alternative technical utterance. In
the following sections we present the modified technical part and the different MTU-

codes, which may be produced by the Comprehension-Processes Module.

Before we proceed with the explanation, we would like to introduce the fol-

lowing notation:

The parameters in italics have to be substituted with arguments. For instance, a

number between 0 and 1 has to appear in the position of the parameter degree.
A parameter enclosed in square brackets is optional.
If a list of parameters is separated by slashes, one of them has to be selected.

5.1 Topic Extended-Message

Technical-part

(topic topic-name)

216

MTU-codes

Motivation

knowledge-preservation

(increment-knowledge degree)

(practice-reassure number-of-previous-motivations)
(highlight-attributes ropic-name (auribute,; attribute, ... antribute)
obligate

Focus
(close open-topic)

Implementation-mode
continue

return

new

(known (egqn, eqn, ... ean))

Length

add

(premature-end previous-topic)

(mention range-of-equations)

apologize-length

Complexity

(complex/simple relative-complexity ((like-before (eqn; eqn, ... eqn, D)
complexity-reassure

Digression
close

5.2 Equation Extended-Message

Technical-part
(equation equation-representation [t/nil])
MTU-codes
Motivation
knowledge-preservation
(increment-knowledge degree)

(highlight-attributes pattern-name (attribute ; attribute, ... attribute)
obligate

217

Focus
(close open-equation)
open

Implementation-mode

new.

(similar ((eqn; eqn, ... eqn,) [qualifier])}
(similar (pattern-name [qualifier]))

Length
apologize-length
(mention/exist number-of-alternatives t/nil)

Complexitj'
(complex/simple relarive-complexity [(like-before (eqn; eqn,, ... eqn,))])
complexity-reassure

Digression
close

5.3 Alternatives Extended-Message

Technical Part
(alternatives)
MTU-codes

Motivation
(motivation-type number-of-rules)
(motivation-type
[(highlighted-attributes rule-name
(attribute; attribute, ... antribute nh _
where morivation-type € {knowleﬁge-preservation,
(increment-knowledge degree)}
(introduce-method
(highlight-attributes rule-name (attribute ; attribute., ... attribute))
{(comparison-purposes number-of-compared-alternatives)))

5.3 Alternative Extended-Message

Technical Part

(alternative t/nil)

218

MT U-~codes

Motivation
(motivation-type number-of-rules
[(another number—oﬁprevious-aIrernarives-with-same-motivation)]
[rule-name (attribute 1 attribute, ... attributen)])
where motivation-type € {knowzle ge-preservation,
(increment-knowledge degree), attempted}
(highlight-attributes rule-name (attribuse atribute,, ... antribute)
(obligate)

Focus
(close open-alternative)

open
Length

apologize-length
(mention/exist number-of-operations [mentioned-operations])

Temporal

(alternative-number ordinal/cardinal)
last

Affect
positive

Digression
close

Expectation-solution
(violation expectation t/nil)

5.4 Rule Extended-Message

Technical Part
(rule rule-name rule-siots)
MTU-codes
Motivation
knowledge-preservation
(increment-knowledge degree)

obligate
(highlight-attributes rule-name (attribute attribute., ... attribute)

219

Focus
(close open-rule)
refer-motivation

Implementation

(again (operation; operation, ... operation,))

(like-before alternative ((alternative, operation 7 (alternative, operation,) ...
(alternative operation)))

(like-before equation (equation; equation, ... equation))

(known (equation; equation, ... equation %)

new

n

Length

apologize-length -

(long-rule rule-length [(like-before (equation,; equation,, ... equationn))])
(long-situation situation-length)

Complexity
(difficult/easy relative-complexity
[(like-before (equation, equation,, ... equationn))])
complexity-reassure
Temporal
rule-number
last

Digression
close

Expectation-solution
(violation expectation t/nil)

Expectation-event
(violation event [rule])

Expectation-similarity
(violation/realization (similarity (alternative, alternative, ... alternative,)))
(violation dissimilarity)

5.5 Pattern Extended-Message

Technical Part

(pattern pattern-siots)

220

MTU-codes

Implementation
(like-before (equarion; equation, ... equation.))

5.6 Expectation Extended-Message

Technical Part
(expectation applicable-case expectation-slots)
MTU-codes

Implementation
(like-before (equation, equation, ... equation))

5.7 Result Extended-Message

Technical Part
(result representation)
MTU-codes

Focus
close

Affect
negative

Expectation-result
(violation/realization expectation t/nil)

Expectation-similarity

(violation/realization (similarity (alternative, alternative, ... alternative)))
(violation dissimilarity)

221

5.8 Finish Extended-Message

Technical Part
(finish ¢/nil)
MTU-codes

Focus
close

Digression
close

Affect
negative

5.9 Continue Extended-Message

Technical Part
(continue [(rule; rule, ... rule)])
MTU-codes

Focus
close

Digression
close

5.10 Method Extended-Message

Technical Part
(method tu-type tu-name t/nil ((method, method, . .. method,)])
(method m-type tu-name t/nil not-tcach%not—exisg/ il)
where tu-type & {topic, equation}
MTU-codes

Implementation
(like-before (equation; equation., ... equarion))

222

also

Category
general

specific
Digression
(open context)
(change context)
close

Affective
negative
positive

Expectation
violation

5.11 Report Extended-Message
Technical Part

(report t/nil ((length value,) (complexity value,) (number-of-steps value,)
(etror-proneness value ;) (rest-of-alternatives successful-alternatives))

223

APPENDIX 6
Thresholds for the Generation of Estimational MTUs

In the following sections we shall discuss the thresholds used by FIGMENT to
determine whether a student will benefit from receiving an estimational MTU. These
thresholds were empirically reached, by comparing the result of using them with deci-

sions reached by introspection.
6.1 Thresholds for Complexity-Related MTUs

In order to determine the need for generating a complexity-related MTU, the

following expression is calculated:
RELATIVE-COMPLEXITY — TALENT

Where:

COMPLEXITY ~OF -TECHNICAL ~UTTERANCE

RELATIVE-COMPLEXITY =
VRELATIVE -EXPERTISE + 0.25

It is then compared with the following thresholds:

A very
easy | difficult difficult

-0.4 0.1 0.3

The meaning of these thresholds is that if the relative complexity of a techni-

cal utterance exceeds a student’s talent by more than 0.1, then FIGMENT anticipates

224

that the student shail have difficulty in processing the technical utterance under con-
sideration, if he uses default computational power. If the relative complexity exceeds
the student’s talent by more than 0.3, then the student is very likely to fail in process-
ing the technical utterance, even if he applies high computational power. Finally, if
the relative complexity fails below the student’s talent by more than 0.4, then the sys-

tem predicts that the technical utterance shall be easily processed by the student.

Notice, however, that the above given formula is applied only if the student
was already exposed to the utterance under consideration. Otherwise, the concept of
RELATIVE-EXPERTISE is meaningless. In this case, only the complexity of the techni-

cal utterance and the talent of the student are taken into consideration.

Fig. 6app.1 contains some values of the complexity of a technical utterance,
which would entail the generation of complexity-related MTUs for a student with a

given talent and relative-expertise.

According to this table, if a student has a talent of 1, and a relative expertise of
1 in a given type of technical utterance, then if the complexity of this utterance is less
than 0.67, he shall be advised of its simplicity. Notice that a student with talent 1 and
expertise 1 in a particular technical utterance shall not require a complexity-related
MTU Vadvertising the difficulty of this utterance. A student whose talent is evaluated
at 0.75, and has succeeded in processing half of the technical utterances of the type
being considered, shall be advised of the difficuity of an utterance, if its complexity
exceeds 0.74. The starred entries in the table contain measures of complexity for
which no MTUs shall be generated despite the result of the above presented formula.
As stated in section 4.4.1, the difficulty of technical utterances whose complexity falls

below 0.2 shall not be advertised, regardless of the lack of talent or expertise of a

225

Relative Complexity
Talent . . Very
Expertise Easi Difficult Difficult
1 1 0.67 - -
1 0.75 0.6 - -
1 0.5 0.51 0.96 -
1 0 0.3 0.55 0.65
0.75 1 0.39 0.96 -
0.75 0.75 0.35 0.85 -
0.75 0.5 0.3 0.74 0.91
0.75 0 0.17 0.43 0.53
0.5 1 0.11 0.67 0.39
0.5 0.75 0.1 0.6 0.8
0.5 0.5 0.08 0.52 0.7
0.5 0 0.05 0.3 0.4
0 1 - 0.12* 0.34*
0 0.75 - 0.1* 0.3*
0 0.5 - 0.09* 0.26*
Q 0 - 0.05* 0.15*

Fig. 6app.1: Selected Values of Talent, Relative-Expertise and Complexity

student. Neither will FIGMENT produce a complexity-reassure MTU for technical

utterances whose complexity is lower than 0.4.
6.2 Thresholds for Length-Related MTUs

FIGMENT decides whether to generate a length-related MTU, by comparing
the RELATIVE-LENGTH of a technical utterance with a threshold, where the RELATIVE-

LENGTH is calculated by the following formula:

UTTERANCE -LENGTH
Jmax{DILIGENCE,0.2)

RELATIVE-LENGTH =

226

The threshold used to determine the need for a length-related MTU is defined
as the greatest utterance length, which can be processed by a student with diligence 1,
without causing him to experience negative affects. Unlike the thresholds used for
generating complexity-related MTUs, each type of technical utterance has its own
threshold. This is due to the fact that, the length of most technical utterances can be
measured, and different technical utterances require different measurement units. The

table 6app.2 contains the thresholds used to generate length-reiated MTUs.

utterance too extremely measurement
type lengthy lengthy units
topic 5 9 # of exercises
equation 3 5 # of alternatives
alternative 8 12 # of steps

of operations
rule 0.8 0.9 (normalized)

of clauses
statement 0.8 0.9 (normalized)

Fig. 6app.2: Thresholds Used to Generate Length-related MTUs

According to this table and the above given formula, if a student has a dil-
gence of 1, then a length-related MTU would be issued for an equation with more
than 3 alternatives. Table 6app.3 contains some values of the length of a technical
utterance, which would entail the generation of a length-related MTU for a student

with a given diligence.

According to the table in Fig. 6app.3, if a student has a diligence of 0.3, he

will be notified of the length of a topic if the tutor is about to examine more than three

227

topic equation |alternative| rule

diligence| 1, very| too ver | too very|too very
long long|long long|long long|long lon

0.1* 2 311 213 4 10.26 0.29
0.2 3 512 3| 4 6 |0.36 0.41
0.3 3 512 3|5 7 10.44 0.5
0.4 4 62 416 8 |0.51 0.57
0.5 4 713 4|6 9 10.57 0.64
0.6 4 713 4| 7 10062 0.7
0.7 5 8| 3 5 7 11 [0.67 0.76
0.8 5 9|3 5 8 11 |0.72 0.81
0.9 5 913 5 g8 12 [0.76 0.86
1.0 6 10| 4 619 13]0.81 091

Fig. 6app.3: Some Values of Diligence and Length

equations. If more than five equations are to be discussed, the tutor also has to extend
his apologies. The system does not take into consideration diligence measures below
0.2, in order to avoid generating length announcements and apologies for short techni-

cal utterances (see starred entry in Fig. 6app.3).

228

\\

APPENDIX 7
Rules Applied for Selecting 2 Motivation

When selecting a motivation FIGMENT’s tries to imply the least possible lack
of knowledge. According to this policy it will generally favour a motivation which
highlights the attributes of a technical utterance over a knowledge-status related
motivation. Among the latter, it will prefer an equation motivation over a topic
motivation, and an upwardly-propagated method motivation over an equation motiva-

tHon.

The following rules are applied to the structure produced by the motivation-
determination process to determine the motivation for the entire equation. The
Comprehension-Processes Module then checks if any alternative is not covered by the

inheritance property and requires a separate motivation.

i. If the student should be motivated to attend to the current topic, and more than

one equation shall be mentioned, then motivation through the topic is manda-

tory.

it Otherwise, if all the methods in the typical sequence of each alternative have
been recently motivated, then all alternatives are considered to be motivated,
and so is the entire equation. Notice, however, that this rule affects only the
global motivation of the entire equation, and individual alternatives which are

presented after the equation is solved still have to be motivated.

229

iv.

vi.

vii.

If 2 highlight-attributes topic motivation is to be presented, then a subset of the
topic’s attributes is selected from the Problem Solving Expert’s domain
knowledge. This selection process is based on the value of each attribute, i.e.,

the higher the value of an attribute, the better its chances to be chosen.

In order to imply the least possible lack of knowledge, the system prefers to
motivate a student through a narrow area of knowledge, instead of a broader
domain. This preference is expressed by the policy that only in 25% of the
cases in which the topic motivation is not mandatory, a knowledge-status
related motivation shail be attempted. In addition, no social motivation of the
topic shall be performed at this point. The system shall resort to this type of

motivation only if no other type is applicable.

If an equation requires a highlight-attributes motivation, it shall be motivated
in this manner if a highlight-attributes topic motivation was not presented, and
in 60% of the rest of the cases. This motivation may seem redundant if a stu-
dent is already motivated to attend to the topic, however, since a new type of
equation is being introduced, a tutor would generally wish to inform the stu-
dent of its attributes. Like for a topic motivation, the attributes of a dis-
tinguished equation pattern are selected from the Problem Solving Expert’s

domain knowledge.

If a topic motivation was selected, any other type of motivation required by
the equation shall be ignored. Otherwise, a knowledge-status related motiva-

tion of the equation shall be attempted in 50% of the cases.

If neither a motivation through the topic nor through the equation was per-

230

Viii.

formed, then an upwardly propagated motivation through the alternatives is
tried. If successful, this type of motivation is incorporated in an alternatives
extended message. This message contains only a motivational MTU-code, and
is inserted in the extended file after the equation extended message. It is used
to generate a sentence such as *“This equation enables us to exercise several

techniques which demand some more practice.”

Finally, if none of the attempted motivations succeeded, then the system tries
again a knowledge-status related motivation of the equation, and if this fails,
this type of motivation is attempted again for the topic. If the system does not
meet with success once more, then in 60% of the cases the equation is
motivated by obligation and in the rest of the cases, the topic is motivated by

obligation.

When attempting to motivate a student to attend to an equation by means of an

upwardly propagated motivation of its alternatives, the system applies the following

rules.

If one of the alternatives introduces a new technique by means of a highlight-
attributes motivation, an introduce method motivation may be stated with the
equation. This type of motivation creates an expectation for the immediate
presentation of the new method. However, as stated in section 3.3, the Tutor-
ing Strategist would generally postpone the introduction of a new technique to
the last alternative. In this case, a violation of expectation MTU has to be gen-
erated, and the presence of the other alternatives has to be justified by means
of a comparison purposes statement. This policy would yield a motivation

statement like the following: ‘“This equation enables us to introduce the very

231

important and useful technique of substitution, but first let us consider two

other ways of solving this equation, for comparison purposes.”

Otherwise, if only an obligation motivation can be used for all the methods in
a typical sequence of a solution alternative, then the upwardly propagated
motivation is abandoned, since a social motivation could be used for the equa-

tion or the topic.

If these conditions are not satisfied, the system tries to motivate a student to
attend to the equation by means of a knowledge-status related motivation
applicable to at least one rule in the typical sequence of each alternative. If
both types of knowledge-status related motivation are applicable to all alterna-
tives, the type which appears more times is selected. For example, given the
following alternatives and motivation MTU-codes for the rules in their typical

sequences:

ALTERNATIVE, (method,, increment-knowledge)

TERN (meth: increment-knowledge),
AL ATIVE, { (meth%; knowledge-preservation)

TERN (meth knowledge-preservation),
AL A 3 { (mcth&; increment-knowledge)

The increment-knowledge motivation would be selected, yielding a
sentence like the following: ‘“Through this equation we are abie to exercise a

few techniques which demand some more practice.””

If there is only one solution alternative, with one rule in its typical
sequence, a knowledge-status related motivation may be accompanied by

some of this rule’s attributes.

232

If FIGMENT decides to motivate a technical utterance by means of a
knowledge-status related motivation, it applies the following rules to determine the

need for accompanying MTUs.

i If an increment-knowledge motivation is required, and the technical utterance
under consideration was previously motivated by means of an increment-
knowledge motivation, then a consolatory practice-reassure MTU has to be
generated, since the student has already encountered this technical utterance
numerous times. This rule enables the system to produce a statement like the
following: *‘I know you have exercised this type of equation many times, but

it still demands some more practice.’’

i. A knowledge-status related motivation may be accompanied by some attri-
butes of the technical utterance under consideration. These attributes are
selected in the manner described above if they have never been stated before,

or in 30% of the rest of the cases.

Finally, after the motivation MTU-code for the equation has been selected,
each alternative which is not automatically motivated through the inheritance relation,

has to be separately motivated. The following rules perform this task.

i. If a student was motivated to attend to the equation by means of an upwardly
propagated motivation of its alternatives, then, if an introduce method motiva-
tion was used, the commentary should be completed by a statement comparing
the performance measures of the alternatives. Otherwise, if an upwardly pro-
pagated knowledge-status related motivation of the applied rules was used, the

motivation has to be repeated for all the alternatives but the first one, yielding

233

motivational statements like the following: ‘‘Another alternative through
which we can practice a couple of techniques we have not seen for a while

consists of the following operations.”

If the equation was directly motivated through its topic or its pattern, and if an
alternative contains a new method which is motivated by means of a
highlight-attributes motivation, then the system selects between one of the fol-
lowing ways to introduce this method (recall that if the equation has not been
solved yet, a motivation for an alternative is not necessary, and the rule shall

be accompanied by its attributes).

In most cases, the attributes of this method will be stated while introducing the
alternative. For example, ‘‘Through the following alternative we shall
introduce a very interesting technique, namely Patt’s guessing method
for solving quadratic equations.”” Next, if this technique is not the first
one to be applied, an expectation violation MTU has to precede the
first rule in the current alternative, and the method being motivated has
to be accompanied by a focal MTU, which indicates that this is the
method being referred to in the motivational statement. This rhetorical
rule would produce the MTU-codes needed to generate the following
sentences: ‘‘But first we remove parentheses from the first and second
terms on the left hand side. Next we collect terms. Finally, we apply
Patt’s guessing method for solving quadratic equations. This is the

method I was talking about before.”

In the rest of the cases, the alternative is introduced with an obligation motiva-

tion, by means of a sentence like the following: ‘‘Another solution I

234

ifi.

would like you to try consists of the following steps,”’ and the
highlighted attributes are presented together with the technique being

motivated.

In any event, if the alternative solves the equation, the commentary is
completed by a comparison between the performance measures of the alterna-

tives.

Finally, if a new technique is not being introduced, the student was motivated
to attend to the equation through its topic or pattern, and the equation is
already solved, then a knowledge-status related or social motivation has to be
presented for each remaining solution alternative. The selected motivation
corresponds to the first method in the typical sequence of the alternative under
consideration. Any other techniques in the typical sequence which share this
motivation are counted, in order to enable the system to express the motivation
in the proper grammatical person. This rule might yield a sentence like the fol-
lowing: ‘“The second alternative enables us to exercise a few rules which
demand plenty of practice.”” If a knowledge-status related motivation is not
applicable, an arrempted motivation MTU-code is generated, to signal that the
method being motivated is already known to the student. In this manner, the
systern is able to generate a motivational sentence such as ‘‘Another alterna-

tive you might have thought of consists of the following steps.”’

If there is only one technique in the typical sequence of the current
alternative, some of its attributes may be stated together with a knowledge-

status dependent or social motivation.

235

APPENDIX 8
Typical Output of the Comprehension-Processes Module and Sentence Composer

The following sections contain typical examples of actual listings of the input
to FIGMENT, the output of the Comprehension-Processes Module, and the output of

the Sentence Composer. The notation ***’’ is used by FIGMENT for exponentiation,

e.g., X2 =x2.

8.1 A Linear Equation

Input to FIGMENT

1 - ((topic linear))

2 - ((equation "3(x-1)-3=12") (2 2 t) nil 0.3)

3 - ((alternative t) 1 (4 4))

4 - ({rule remove_parentheses nil) 1 2 nil nil t)
5 - ((rule transfer_term nil) 2 2 nil nil nil)

6 - ((rule collect_terms nil) 3 3 nil nil nil)

7 - ((rule constant_divide nil) 4 2 nil nil nil)

8 - ((result "x=6") nil nil)

9 - ((finish))

10 - ((alternative t) 2 (4 4))

11 - ((rule constant_divide nil) 1 3 nil nil t)

12 - ((rule collect_terms nil) 2 1 nil ((1 3)) nil)
13 - ((result "x-2=12") nil nil})

14 - ((rule transfer _term nil) 3 1 nil nil nil)

15 - ({rule collect_terms nil) 4 1 nil ((2 2)) nil)
16 - ((finish))

Listing of the Qutput of the Comprehension-Processes Module

((topic linear))

activity: length (affect: ok)

activity: focus (affect: ok}

activity: focus (affect: confusion - no prepared space for topic)

activity: implementation (affect: disrespect - you put me in addition mode})
activity: motivation (affect: ok)

236

activity: temporary-focus (affect: ok)
((topic linear) (open) ((known (1 2 3 4))) nil nil nil nil nil nil nil nii)
((equation "3(x-1)-3=12") (2 2 t) nil 0.3)
activity: focus (affect: confusion - no prepared space for equation)
activity: implementation (affect: ok)
activity: length (affect: ok)
activity: complexity (affect: boredom - too easy)
activity: motivation (affect: ok)
activity: temporary-focus (affect: ok)
((equation | 3(x - 1) - 3 = 12]) (open) nil nil nil ((simple -0.5)) nil nil nil nil nil)
((altermative t) 1 (4 4))
activity: length (affect: ok)
activity: focus (affect: ok)
((rule remove_parentheses nil) 1 2 nil nil t)
activity: focus (affect: ok)
activity: implementation (affect: disrespect - you put me in addition mode)
activity: length (affect: ok)
activity: complexity (affect: boredom - too easy)
activity: temporary-focus (affect: ok)
activity: motivation (affect: ok)
((rule remove_parentheses nil) nil ((known (4))) nil nil ((easy -0.4422291236000336))
nil nil nil (1) nil)
((rule transfer_term nil} 2 2 nil nil nil)
activity: focus (affect: ok)
activity: implementation (affect: ok)
activity: length (affect: ok)
activity: complexity (affect: boredom - too easy)
activity: temporary-focus (affect: ok)
((rule transfer term nil) nil nil nil nil nil nil nil nil (2) nil)
((rule collect_terms nil) 3 3 nil nil nil)
activity: focus (affect: ok)
activity: implementation (affect: ok)
activity: length (affect: ok)
activity: complexity (affect: boredom - too easy)
activity: temporary-focus (affect: ok)
((rule collect_terms nil) nil nil nil nil nil nil nil nil (3) nil)
((rule constant_divide nil) 4 2 nil nil nil)
activity: focus (affect: ok)
activity: implementation (affect: disrespect - you put me in addition mode)
activity: length (affect: ok)
activity: complexity (affect: boredom - too easy)
activity: temporary-focus (affect: ok)
((rule constant divide nil) nil ((known (2 3 4 4))) nil nil
((easy -0.6 (like_before (2 3 4)))) nil nil nil (last) nil)
((result "x=6") nil nil)
activity: focus (affect: ok)
activity: temporary-focus (affect: ok)
activity: implementation (affect: ok)
((result | x = 6]) nil nil nil nil nil nil nil nil nil nil)
{(finish))

237

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

((finish) nil nil nil nil nil nil nil nil nil nil)

((alternative t) 2 (4 4))

activity: length (affect: ok)

activity: focus (affect: confusion - previous alternative is still in focus)

activity: temporary-focus (affect: ok)

((alternative t) ((close 1) open) nil nil nil nil nil nil nil ((2 cardinal)) nil)

((rule constant_divide nil) 1 3 nil nil t)

activity: focus (affect: ok)

activity: implementation (affect: ok)

activity: length (affect: boredom - too many operations)

activity: length (affect: extreme boredom)

activity: complexity (affect: boredom - too ¢asy)

activity: temporary-focus (affect: ok)

activity: motivation (affect: loss of attention)

((rule constant_divide nil) nil nil nil nil nil ((long_situation 0.9) (apologize length))
nil nii (1) nil)

((rule collect_terms nil) 2 1 nil ((1 3)) nil)

activity: focus (affect: ok)

activity: implementation (affect: disrespect - you put me in addition mode)

activity: length (affect: ok)

activity: complexity (affect: boredom - too easy)

activity: temporary-focus (affect: ok)

((rule collect_terms nil) nil ((like_before alternative ((1 3)))) nil nil nil mil
nil nil (2) nil)

((result "x-2=12") nil nil)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((result | x - 2 = 12]) nil nil nil nil nil nil nil nil nil nil)

((rule transfer _term nil) 3 1 nil nil nil)

activity: focus (affect: ok)

activity: implementation (affect: ok)

activity: length (affect: ok)

activity: complexity (affect: boredom - too easy)

activity: temporary-focus (affect: ok)

((rule transfer_term nil) nil nil nil nil nil nil nil nil (3) nil)

((rule collect_terms nil) 4 1 nil ((2 2)) nil)

activity: focus (affect: ok)

activity: implementation (affect: disrespect - you put me in addition mode)

activity: length (affect: ok}

activity: complexity (affect: boredom - too easy)

activity: temporary-focus (affect: ok)

((rule collect_terms nil) nil ((again (2))) nil nil nil nii nil nil (last) nil)

((finish))

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

((finish) nil nil nil nil nil nil nil nil nil nil)

238

Output File of the Comprehension-Processes Module

1 - ((topic linear) (open) ((known (1 2 3 4))) nil nil nil nil nil nil nil nil)

2 - ((equation | 3(x - 1) - 3 = 12}) (open) nil nil nil ((simple -0.5))
nil nil nil ail nil)

3 - ((rule remove_parentheses nil) nil ((known (4))) nil nil
((easy -0.4422291236000336)) nil nil nil (1) nil)

4 - ((rule fransfer _term nil) nil nil nil nil nil nil nil nil (2) nil)

5 - ((rule collect_terms nil) nil nil nil nil nil nil nil nil (3) nil)

6 - ((rule constant_divide nil) nil ((known (2 3 4 4))) nil nil
((easy -0.6 (like before (2 3 4)))) nil nil nil (last) nil)

7 - ((result | x = 6]) nil nil nil nil nil nil nil nil nil nil)

8 - {(finish) nil nil nil nil nil nil nil nil nil nil)

9 - ((alternative t) ((close 1) open) nil nil ((obligate t) 1 nil
(highlight_attributes constant divide ((useful 0.8 (like_before 2N
nil nil nil nil ((2 cardinal)) nil)

10 - ((rule constant_divide nil) nil nil nil nil nil ((long_situation 0.9)
(apologize length)) nil nil (1) nil)

11 - ((rule collect_terms nil) nil ((like_before alternative ((1 3))) nil nil nil nil
nil nil (2) nil)

12 - ((result | x - 2 = 12]) nil nil nil nil nil nil nil nil nil nil)

13 - ((rule transfer_term nil) nil nil nil nil nil nil nil nil (3) nil)

14 - ((rule collect_terms nil) nil ((again (2)}) nil nil nil nil nil nil (last) nil)

15 - ((finish) nil nil nil nil nil nil nil nil nil nil)

Qutput of the Sentence Composer

Let us look at the subject of linear equations, which you have seen a
couple of times. Here is a rather simple equation:

3(x-1)-3=12

First, you remove parentheses. You have seen this technique before,
and it is easy. Next, you transfer terms and collect terms. Finally,
you divide both sides by a constant. You have seen this method a few
times, and, as was said a couple of times, it is very simple. Through
this step you get the following result:

x=6

Let us now examine another alternative. By means of it you can
exercise the technique of division by 2 constant, which, as was
mentioned in exercise number 2, is quite useful.

First, you divide both sides of the equation by a constant. This
method requires plenty of computations in this case. Afterwards, you
collect terms, like in the last alternative, which yields:

x-2=12

239

You continue by transferring terms. Finally, you collect terms once
again.

8.2 A Quadratic Equation
Input to FIGMENT

1 - ((topic quadratic))

2 - ((equation "(x-3)"2 - 4(x-3) -12=0") 33) nil 0.7)

3 - ((alternative t) 1 (4 3))

4 - ((rule factor out ((object (nil ((x-3)))) (from (((1 2) 3 term nil)))) 1 2 nil nil t)
5 - ((pattern ((actor object) (object from))))

6 - ((expectation common_factor ((object ((1 3 term nil rest))))))
7 - ((result " (x-3)(x-7) -12=0") nil nil nil)

8 - ({rule remove parentheses nil) 2 4 nil nil nil)

9 - {(rule collect terms nil) 3 2 nil nil nil)

10 - ((result "x"2 -10x +9=0") nil nil)

11 - ((continue) (quadratic_formula) 0.7 nil)

12 - ({alternative t} 2 (3 2))

13 - ((rule remove_parentheses nil) 1 5 nil nil t)

14 - ((rule collect terms nil) 2 3 nil nil nil)

15 - ((result "x"2-10x+9=0") nil nil)

16 - ((continue) (quadratic_formula) 0.7 nil)

17 - ((altemmative t) 3 (4 4))

18 - ((rule substitute_expression ((object (nil (y))) (for (nil ((x-3)))))) 1 2 nil nil t)
19 - ((pattern ((actor (nil (x))} (object (nil ((x-3)))))))

20 - ((expectation canonic_expression))

21 - ((result "y"2-4y-12=0") nil nil)

22 - ((rule quadratic_formula nii) 2 1 nil nil nil)

23 - ((result "y=6") nil nil)

24 - ((result "y=-2") nil nil)

25 - ((rule substitute_back ((object (nil ((x-3)))))) 3 2 nil nil nil)
26 - ((result "x-3=6") nil nil)

27 - ((result "x-3=-2") nil nil)

28 - ((rule transfer _term ((object ((1 1 constant nif) (I-31))) (to 1))) 4 2 nil nil nil)
29 - ((result "x=9") nil nil}

30 - ((result "x=1") nil nil)

31 - ((finish))

Listing of the Output of the Comprehension-Processes Module

((topic quadratic))

activity: length (affect: ok)

activity: focus (affect: ok)

activity: focus (affect: confusion - no prepared space for topic)

activity: implementation (affect: disrespect - you put me in addition mode)
activity: motivation (affect: ok)

activity: temporary-focus (affect: ok)

((topic quadratic) (open) (continue) nil nil nil nil nil nil nil nil)

240

((equation "(x-3)"2 - 4(x-3) -12=0") (33) nil 0.7)

activity: focus (affect: confusion - no prepared space for equation)

activity: implementation (affect: ok)

activity: length (affect: boredom - too many alternatives)

activity: complexity (affect: ok)

activity: motivation (affect: ok)

activity: temporary-focus (affect: ok)

((equation | (x-3)2-4(x-3)-12=0}|) (open) nil nil nil nil ((exist 3))
nil nil nil nil)

((alternative t) 1 (4 3))

activity: length (affect: ok)

activity: focus (affect: confusion - what are you talking about?)

activity: temporary-focus {affect: ok)

((alternative t) (open) nil nil nil nil nil nil nil ((1 ordinal)) nil)

((rule factor_out ((object (nil ((x-3)))) (from (((1 2) 3 term nil))))) 1 2 nil nil t)

activity: focus (affect: ok)

activity: implementation (affect: ok)

activity: length (affect: ok)

activity: complexity (affect: ok)

activity: temporary-focus (affect: ok)

activity: motivation (affect: ok)

((rule factor_out ({object (nil ((x-3)))) (from (((1 2) 3 term nil)}))) nil nil nil nil nil
nil nil nil (1) nil)

((pattern ((actor object) (object from))))

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((pattern ((actor object) (object from))) nil nil nil nil nil nil nil nil nil nii)

((expectation common_factor ((object ((1 3 term nil rest))))))

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: disrespect - you put me in addition mode)

((expectation common_factor ((object ((1 3 term nil rest))))) nil ((like_before (6)))
nil nil nii nil nil nil nil nil)

((result "(x-3)(x-7) -12=0") nil nil nil)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((result | (x -3)(x - 7) - 12 = 0) nil nil nil nil ail nil nil ((violation expectation))
nil nil

((rule remove _parentheses nil) 2 4 nil nil nil)

activity: focus (affect: ok)

activity: implementation (affect: disrespect - you put me in addition mode)

activity: length (affect: boredom - too many operations)

activity: complexity (affect: boredom - too easy)

activity: temporary-focus (affect: ok)

((rule remove_parentheses nil) nil ((known (4)) nil nil ((easy -0.4422291236000336))
((long_situation 0.8)) nil nil (2) ni)

((rule collect_terms nil) 3 2 nil nil nil)

activity: focus (affect: ok)

241

activity: implementation (affect: ok)

activity: length (affect: ok)

activity: complexity (affect: boredom - too easy)

activity: temporary-focus (affect: ok)

((rule collect_terms nil) nil nil nil nil nil nil nil nil (3) nil)

({result "x"2 -10x +9=0") nil nil})

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((result | x*2 - 10x + 9 = Ol) nil nil nil nil nil nil nil nil nil nil)

((continue) (quadratic_formula) 0.7 nil)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

((continue) nil nil nil nil nil nil nil nil nil nil)

((alternative t) 2 (3 2))

activity: length (affect: ok)

activity: focus (affect: confusion - previous alternative is still in focus)

activity: temporary-focus (affect: ok) :

((alternative t) ((close 1) open) nil nil nil nil nil nil nil ((2 ordinal)) nil)

((rule remove parentheses nil) 1 5 nil nil t)

activity: focus (affect: ok)

activity: implementation (affect: ok)

activity: length (affect: boredom - too many operations)

activity: length (affect: extreme boredom)

activity: complexity (affect: boredom - too easy)

activity: temporary-focus (affect: ok)

activity: motivation (affect: loss of attention)

((rule remove_parentheses nil) nil nil nil nil nil ((long_situation 1.0)
(apologize length)) nil nil (1) nil)

((rule coilect_terms nil) 2 3 nil nil nil)

activity: focus (affect: ok)

activity: implementation (affect: ok)

activity: length (affect: ok)

activity: complexity (affect: boredom - too easy)

activity: temporary-focus (affect: ok)

((rule collect_terms nil) nil nil nil nil nil nil nil nil (2) nil)

((result "x*2-10x+9=0") nil nil)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((result | x"2 - 10x + 9 = 0f) nil nil nil nil nil nil nil nl nil nil)

((continue) (quadratic_formula) 0.7 nil)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

((continue) nil nil nil nil nil nil nil nil nil nil)

((alternative t) 3 (4 4))

activity: length (affect: ok)

activity: focus (affect: confusion - previous alternative is still in focus)

activity: temporary-focus (affect: ok)

((alternative t) ((close 2) open) nil nil nil nil nil nil nil (last) nil)

242

((rule substitute_expression ((object (nil (y))) (for (nil ((x-3))))) 1 2 nil nil t)

activity: focus (affect: ok)

activity: implementation (affect: ok)

activity: length (affect: ok)

activity: complexity (affect: boredom - too easy)

activity: temporary-focus (affect: ok)

activity: motivation (affect: curiosity - why a new rule?)

((rule substitute_expression ((object (nil (y))) (for (nil ((x-3)))))) nil nil nil nil
((easy -0.5)) nil nil nil (1) nil)

((pattern ((actor (nil (x))) (object (nil ((x-3)))))))

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok) '

((pattern ((actor (nil (x))) (object (nil ((x-3)))))) nil nil nil nil nil nil nil nil nil nil)

((expectation canonic_expression))

((result "y"2-4y-12=0") mil nil)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((result | y*2 - 4y - 12 = O]) nil nil nil nil nil nil nil nil nil nil)

((rule quadratic _formula nil) 2 1 nil nil nil)

activity: focus (affect: ok)

activity: implementation (affect: ok)

activity: length (affect: ok)

activity: complexity (affect: ok)

activity: temporary-focus (affect: ok)

((rule quadratic_formula nil) nil nil nil nil nil nil nil nil (2) nil)

((result "y=6") nil nil)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((result | y = 6[) nil nil nil nil nil nil nil nil nil nil)

((result "y=-2") nil nil)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((result | y = - 2|) nil nil nil nil nil nil nil nil nil nil)

((rule substitute_back ((object (nil ((x-3)))))) 3 2 nil nil nil)

activity: focus (affect: ok)

activity: implementation (affect: ok)

activity: temporary-focus (affect: ok)

((rule substitute_back ((object (nil ((x-3)))))) nil nil nil nil nil nil nil nil (3) nil)

((result "x-3=6") nil nil)

activity: focus (affect: ok) -

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((result | x - 3 = 6]) nil nil nil nil nil nil nil nil nil nil)

((result "x-3=-2") nil nil)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

243

activity: implementation (affect: ok)

((result | x - 3 = - 2{) nil nil nil nil nil nil nil nil nil nil)

((rule transfer_term ((object ({1 1 constant nil) (1-3D)) (to 1)) 4 2 nil nil nil)

activity: focus (affect: ok)

activity: implementation (affect: ok)

activity: length (affect: ok)

activity: complexity (affect: boredom - too easy)

activity: temporary-focus (affect: ok)

((rule transfer_term ((object ((1 1 constant nil) (1-3))) (to t))) nil nil nil nil nil nil nil
nil (last) nil)

((result "x=9") nil nil)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((result | x = 9|) nil nil nil nil nil nil nil nil nil nil)

((resuit "x=1") nil nil)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((result | x = 1)) nil nil nil nil nil nil nil il nil nil)

((finish))

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

((finish) nil nil nil nil nil nil nil nil nil nil)

Output File of the Comprehension-Processes Module

1 - ((topic quadratic) (open) (continue) nil nil nil nil nil nil nil nil)

2 - ((equation | (x-3)2-4(x-3)-12 =0|) (open) nil nil nil nil ((exist 3))
nil nil nil nil)

3 - ((alternative t) (open) nil nil nil nil nil nil nil ((1 ordinal)) nil)

4 - ((rule factor_out ({object (nil ((x-3)})) (from (((1 2) 3 term nil))))) nil nil nil nil nil
nil nil nil (1) nil)

5 - ({pattern ((actor object) (object from))) nil nil nil nil nil nil nil nil nil nil)

6 - ((expectation common_factor ((object ((1 3 term nil rest)))) nil ((like before (6)))
nil nil nil nil nil nil nil nil)

7 - ((rntﬁult | (x-3) x-7)- 12 =0l) nil nil nil nil nil ml ni} ((violation expectation))

i1 nil)

8 - ((rule remove_parentheses nil) nil ((known (4))) nil nil
((easy -0.4422291236000336)) ((long_situation 0.8)) nil nil (2) nil)

9 - ((rule collect_terms nil) nil-nil nil nil nil nil nil nil (3) nil)

10 - ((resuit | x*Z - 10x + 9 = 0|) nil nil nil nil nil nil nil nil nil nil)

11 - ((continue) nil nil nil nil nil nil nil nil nil nil)

12 - ((alternative t) {(close 1) open) nil nil ((obligate t) 1 nil) nil nil nil nil ((2 ordinal))
nil)

13 - ((rule remove_parentheses nil) nil nil nil nil nil ((long_situation 1.0}

(apologize length)) nil nil (1) nil)
14 - ((rule collect_terms nil) nil nil nil nil nil nil nil nil (2) nil)
15 - ((result | x*2 - 10x + 9 = 0|) nil nil nil nil nil nil nil nil nil nil)

244

16 - ((continue) nil nil nil nil nil nil nil nil nil nil)

17 - ((alternative t) ((close 2) open) nil nil
((highlight_attributes substitute expression ((efficient 0.8)))) nil nil nil nil
(last) nil)

18 - ((rule substitute_expression ((object (nil (¥)}) (for (nil ((x-3)))))) nil nil nil nil
((easy -0.5)) nil nil nil (1) nil)

19 - ((pattern ((actor (nil (x))) (object (nil ((x-3))}))) nil nil nil nil nil nil nil nil nil nil)

20 - ((result | y"2 - 4y - 12 = 0f) nl nil nil nil nil nil nil nil nil nil)

21 - ((rule quadratic_formula nil) nil nil nil nil nil nil nil nil (2) nil)

22 - ({result | y = 6|) nil nil nil nil nil nil nil nil nil nil)

23 - ((result | y = - 2) nil nil nil nil nil nil nil nil nil nil)

24 - ((rule substitute_back ((object (nil ((x-3)))))) nil nil nil nil nil nil nil nil (3) nil)

25 - ((result | x - 3 = 6|) nil nil nil nil nil nil nil nil nil nil)

26 - ((result | x - 3 = - 2|) nil nil nil nil nil nil nil nil nil nil)

27 - ((rule transfer_term ((object ((1 1 constant nil) (|-3[))) (to t))) nil nil nil nil nil
nil nil nil (last) nil)

28 - ((result | x = 9|) nil nil nil nil nil nil nil nil nil nil)

29 - ((result | x = 1) nil nil nil nil nil nil nil nil nil nil)

30 - ((finish) nil nil nil nil nil nil nil ail nil nil)

31 - ((report t ((length -1.7) (number_of_steps 1.5) (complexity -0.5)
(error_proneness -0.55)) (2 2)) nil nil nil nil nil nil nil nil nil nil)

Output of the Sentence Composer

We shall go on with the topic of quadratic equations. An equation
follows:

(x-3)2-4(x-3)-12=0

There are three ways of solving this equation. The first alternative
consists of the following operations:

First, since x-3 is a factor common to the first and second terms, we
factor it out from these terms. As you know, we perform this step
hoping to get a factor common to the remaining term. Contrary to what
we were expecting, it arrives at:

(x-3)(x-7)-12=0
Nevertheless, we can still eliminate parentheses. We saw this method
in equation number 4, it is easy, but requires a lot of computations
in this case. Thereafter, we collect terms, which yields the following
resuit:

x*2-10x +9 =0
From here you can complete the solution of the equation by yourself.

Let us now examine the second way to solve this exercise. Through this
alternative we can go over a solution, which you might have considered.

245

First, we get rid of parentheses. This technique demands plenty of
calculations in this situation. Next, we collect terms, arriving at:

x2-10x+9=0
From this point you can obtain the solution by yourself.

We shall now consider the last aiternative. This approach enables us
to introduce the method of substitution, which is quite efficient.

First, we substitute y for x-3, because x appears only in expression
x-3 and x-3 appears more than once in the equation. This technique is
rather simple. Through it we get the following result:

y2-4y-12=0

We go on by applying the quadratic formula, arriving at:

y=6or y=-2

We continue by substituting back x-3, yielding the following resuit:
x-3=6o0or x-3=-2

Finally, we transfer the constant, namely -3, to the left hand side of
the equation, obtaining:

x=9%9 or x=1

8.3 A Third Degree Equation
Input to FIGMENT

1 - ((topic third_degree))

2 - ((method (general t) (specific t)))

3 - ((equation "x"3-x"2-x+1=0") (3 1) nil 0.8)

4 - ((alternative nil) 1 (6 4))

5 - ((rule factor_out ({object (nil (x"2))))) 1 2 nil nil t)

6 - ((pattern ((actor object) (object (((1 2} 4 term nil) nil)))))

7 - ((expectation common_factor ((object ((2 2 term nil rest) nil)))))
8 - ((result "x"2(x-1) - x+1=0") nil nil)

9 - ((rule rewrite_expression ((object (nil (-x+1))) (target (nil (-(x-1)D)) 2 1 nil nil nil)
10 - ((resuit "x"2(x-1) -(x-1)=0") nil nil t)

11 - ((rule factor_out ((object (nil (x-1))))) 3 2 nil nil nil)

12 - ((resuit "(x-1)(x"2-1)=0") nil nil)

13 - ((rule factorization_formulal ((to (nil (x"2-1))))) 4 1 nil nil nil)
14 - ((result "(x-1)"2(x+1)=0") nil nil)

15 - ((continue) (product of factors) 0.7 t)

246

Listing of the Output of the Comprehension-Processes Module

((topic third_degree))

activity: length (affect: ok)

activity: focus (affect: ok)

activity: focus (affect: confusion - no prepared space for topic)

activity: implementation (affect: ok)

activity: motivation (affect: loss of attention - why a new topic?)

activity: temporary-focus (affect: ok)

((topic third degree) (open) nil nil nil nil nil nil nil nil nil)

((method (general t) (specific t)))

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((method topic third_degree t not_teach) nil nil general nil nil nil nil nil nil negative)

activity: implementation (affect: ok)

((method topic third_degree nil ((factor_out) (factorization_formula))) nil nil specific
nil nil nil nil ((violation expectation)) nil nil)

((equation "x*3-x"2-x+1=0") (3 1) nil 0.8)

activity: focus (affect: confusion - no prepared space for equation)

activity: implementation (affect: ok)

activity: length (affect: ok)

activity: complexity (affect: ok)

activity: motivation (affect: ok)

activity: temporary-focus (affect: ok)

((equation | x*3 - x*2 - x + 1 = 0]) (open) nil nil nil nil nil nil nil nil nil)

((alternative nil) 1 (6 4))

activity: length (affect: ok)

activity: focus (affect: ok)

" ((rule factor_out ((object (nil (x*2))))) 1 2 nil nil t)

activity: focus (affect: ok)

activity: implementation (affect: ok)

activity: length (affect: ok)

activity: complexity (affect: ok)

activity: temporary-focus (affect: ok)

activity: motivation (affect: ok)

((rule factor_out ((object (nil (x2))))) nil nil nil nil nil nil nil nil (1) nil)

((pattern ((actor object) (object ({1 2) 4 term nil) nil)))))

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((pattern ((actor object) (object (((1 2) 4 term nil) nil)))) nil nil nil nil nil nil nil
nil nil nil)

((expectation common_factor ((object ((2 2 term nil rest) nil)))))

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: disrespect - you put me in addition mode)

((expectation common_factor ((object ((2 2 term nil rest) nil)))) nit ((like before (6)))
nil nil nil nil nii nil nil nil)

((result "x"2(x-1) - x+1=0") nil nil)

activity: focus (affect: ok)

247

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((result | x"2(x-1)-x+1 = 0)) nil nil nil nil nil nil nil nil nil nil)

((rule rewrite_expression {(object (nil (-x+1))) (target (nil (-(x-1)[))))) 2 1 nil nil nil)

activity: focus (affect: ok)

activity: implementation (affect: ok)

activity: length (affect: ok)

activity: complexity (affect: ok)

activity: temporary-focus (affect: ok)

((rule rewrite_expression ((object (nil (-x+1))) (target (nil (|-(x-1)[))))) nil nil nil nil nil
nil nil nil (2) nil)

((result "x"2(x-1) -(x-1)=0") nil nil t)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect. ok)

((result | x*2(x-1)-(x-1)=0)) nil nil nil nil nil nil nil ((realization expectation))
nil nil)

((rule factor_out ({object (nil (x-1))))) 32 nil nii nil)

activity: focus (affect: ok)

activity: implementation (affect: ok)

activity: length (affect: ok)

activity: complexity (affect: ok)

activity: temporary-focus (affect: ok)

((rule factor_out ({object (nil (x-1))))) nil nil nil nil nil nil nil nil (3) nil)

((result "(x-1)(x"2-1)=0") nil nil)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((result | (X - 1)(x*2 - 1) = 0]) nil nil nil nil nil nil nil ni nil nil)

((rule factorization_formulal ((to (nil (x"2-1))))) 4 1 nil nil nil

activity: focus (affect: ok)

activity: implementation (affect: ok)

activity: length (affect: ok)

activity: complexity (affect: boredom - too easy)

activity: temporary-focus (affect: ok)

((rule factorization formulal ((to (nil (x"2-1))))) nil nil nil nil ((easy -0.6)) nil nil nil
(4) nil) :

((result "(x-1)"2(x+1)=0"} nil nil)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

activity: implementation (affect: ok)

((resuit | (x - 1)2(x + 1) = 0[) nil nil nil nil nil nil nil nil nil nil)

((continue) (product_of factors) 0.7 t)

activity: focus (affect: ok)

activity: temporary-focus (affect: ok)

((continue (product_of _factors)) nil nil nil nil nil nil nil nil nil nl)

243

Output File of the Comprehension-Processes Module

1 - ((topic third_degree) (open) nil nil
((highlight attributes third_degree ((interesting 0.8) (challenging 0.7)))) nil nil
nil nil mil nil)

2 - ((method topic third_degree t not_teach) nil nil general nil nil nil nil nil nil negative)

3 - ((method topic third_degree nil ((factor_out) (factorization_formula))) nil nil specific
nil nil nil nil ((violation expectation)) nil nil)

4 - ((equation | x"3-x"2-x+1=0]) (open) nil nil nil nil nil nil nil nil nil)

5 - ((rule factor _out {(object (nil (x"2))))) nil nil nil nil nil nil nil nil (1) nil)

6 - ((pattern ((actor object) (object (((1 2) 4 term nil) nil)))) nil nil nil nil nil nil nil nil
nil nil)

7 - ((expectation common_factor ((object ((2 2 term nil rest) nil)))) nil
((like_before (6))) nil nil nil nil nil nil nil nil)

8 - ((result] x"2(x - 1) - x + 1 = 0}) nil nil nil nil nil nil nil nil nil nil)

9 - ((rule rewrite_expression ((object (nil (-x+1))) (target (nil (|-(x-1)D))N nil nil nil
nil nil nil nil nil (2) nil)

10 - ((result | x"2(x - 1) - (x - 1) = 0I) nil nil nil nil nil nil nil
((realization expectation)) nil nil)

11 - ((rule factor_out ({object (nil (x-1))))) nil nil nil nil il nil nil nil (3) nil)

12 - ((resuit | (x - 1)(x*2 - 1) = O}) nil nil nil nil nil nil nil nil nil nil)

13 - ((rule factorization formulal ((to (nil (x"2-1))))) nil nil nil nil ((easy -0.6)) nil
nil nil (4) nil)

14 - ((result { (x - 1)*2(x + 1) = 0[) nil nil nil nil nil nil nil nil nil nil)

15 - ((continue (product_of factors)) nil nil nil nil nil nil nil nil nil nil)

Qutput of the Sentence Composer

Let us look at a challenging subject, namely third degree equations,
which is also quite interesting. Unfortunately, we shall not go over a
general technique for solving equations in this topic. Nevertheless,
we can solve certain kinds of third degree equations by factoring out
common factors, or, alternatively, applying the appropriate
factorization formula. Here is an equation:

x3-x2-x+1=0 4
First, since x"2 is a factor common to the first and second terms, we
factor it out. As you know, we perform this operation hoping to get a
factor common to the rest of the terms. Through it we get the
following result:

x2(x-1)-x+1=0

Next, we rewrite -x+1 as -(x-1), arriving at the result we were
hoping for:

x"2(x-1)-(x-1)=0

249

Afterwards, we factor out x-1, yielding:
(x-1)(x2-1)=0

Thereafter, we apply the factorization formula

a*2 - b2 = (a+b)(a-b) to x"2-1. This method is very simple.
By means of it we arrive at the following resuit:
(x-1)2(x+1)=0

We obtain the solution by solving separately for each factor.

\%

250

REFERENCES

Anderson J.R. (1980), Cognitive Psychology and its Implications, W.H. Freeman and
Company, San Fransisco.

Anderson J.R. (1983), The Architecture of Cognition, Harvard University Press, Cam-
bridge, Massachusetts.

Appelt D. E. (1982), Planning Natural Language Utterances to Sarisfy Multple
Goals. Technical Note 259, SRI Intemational, March 1982.

Bork, A. (1981), Learning with Computers, Digital Press.

Brown, J.S., Burton, R.R. and DeKleer, J. (1981), Pedagogical, Natural Language and
Knowledge Engineering Techniques in SOPHIE LI and III. In
D. Sleeman and J.S. Brown (Eds.), [nrelligent Tutoring Systems,
London: Academic Press, 1982.

Brown, J.S. and VanLehn K. (1980), Repair Theory: A Generative Theory of Bugs in
Procedural Skills. In Cognitive Science, 4, 379-426.

Bundy, A. (1983), The Computer Modeiling of Mathematical Reasoning. Academic
Press.

Burton, R.R. and Brown, J.S. (1981), An Investigation of Computer Coaching for
Informal Learning Activities. In D. Sleeman and J.S. Brown
(Eds.), Intelligent Tutoring Systems, London: Academic Press,
1982.

Carbonell, J.G. (1982), Meta-Language Utterances in Purposive Discourse. Report
No. CMU-CS-82-125, Camegie-Mellon University, June 1982.

Clancey, W.J. (1979), Transfer of Rule-Based Expertise through a Tutorial Dialogue.
Doctoral Dissertation, Computer Science Department, Stanford
University, California.

Clancey, W.J. (1981a), Methodology for Building An Intelligent Tutoring System.

Report No. STAN-CS-81-894, Stanford University, Stanford,
Qctober 1981. . .

251

Clancey, W.J. (1981b), The Epistemology of A Rule Based Expert System: A Frame-
work for Explanation. Report No. STAN-CS-81-896, Stanford
University, Stanford, November 1981.

Clancey, W.J. (1981c), Tutoring Rules for Guiding a Case Method Dialogue. In D.
Sleeman and J.S. Brown (Eds.), Intelligent Turoring Systems,
London: Academic Press, 1982.

Collins, A. (1976), Processes in Acquiring Knowledge. In Anderson R.C., Spiro R.J.
and Montague W.E. (Eds), Schooling in the Acquisition of
Knowledge, Lawrence Erlbaum Associates, Hillsdale, New Jersey,
1976.

Davey, A. (1979), Discourse Producrion. Edinburgh University Press, Edinburgh.

Davis, R.B. (1974), What classroom role should the PLATO computer system play?,
AFIPS - Conference Proceedings, Volume 43, pp. 169-173.

Davis, R.B. et al. (1982), The Roles of "Understanding" in the Learning of Mathemat-
ics, Part II of the Final Report of National Science Foundation
Grant NSF SED 79-12740, Curriculum Laboratory, University of
linois, Urbana/Champaign, April 1982.

Dunkin M.J. and Biddle B.J. (1974), The Study of Teaching, Holt, Reinhart and Wins-
ton.

Dyer, M.G. (1982), In-Depth Understanding, A Computer Model of Integrated Pro-
cessing for Narrative Comprehension. Report No. 219, Doctoral
Dissertation, Department of Computer Science, Yale University,
New Haven, Connecticut.

Farnes N.C. (1973 revd. 1975), Comprehension and the Use of Context, Unit 4, Read-
ing Development. Educational Studies: a Post-Experience Course
and 2nd Level Course P.E. 261.

Fikes, R. and Kehler T. (1985), The Role of Frame-Based Representation in Reason-
ing. In Communications of the ACM, pp. 904-920, Vol. 28 (9),
September 1985.

Forbus K. and Stevens A. (1981), Using Qualitative Simulation to Generate Explana-
tions. Report No. 4490, Bolt Beranck and Newman, Cambridge,
Massachusetts, March 1981.

Genesereth, M.R. (1978), Automated Consultation for Complex Computer Systems.
Doctoral Dissertation, Division of Applied Mathematics, Harvard
University, Cambridge, Massachusetts.

Genesereth, M.R. (1981), The Role of Plans in Intelligent Tutoring Systems. In D.

Sleeman and J.S. Brown (Eds.), Intelligent Tutoring Systems,
London: Academic Press, 1982.

252

Goldstein, LP. (1981), The Genetic Graph: A Representation for the Evolution of Pro-
cedural Knowledge. In D. Sleeman and J.S. Brown (Eds.), Intelli-
gent Tutoring Systems, London: Academic Press, 1982.

Grimes J. E. (1975), The Thread of Discourse. Mouton, The Hague.

Grosz B.J. (1977), The Representation and Use of Focus in Dialogue Understanding.
Technical Note 151, SRI International, Menlo Park, California,
July 1977.

Grosz B.J. (1979), Focusing and Description in Natural Language Dialogues. In A.
Joshi, B.L. Webber and 1. Sag (Eds.), Elements of Discourse
Understanding, Cambridge University Press, 1981.

Grosz B.J. and Sidner C.L. (1985), Discourse Structure and the Proper Treatment of
Interruptions. In IJCAI-85 Proceedings, pp. 832-839.

Hallyday M.A K. and Hassan R. (1976), Cohesion in English. Layman Press, London.

Hayes-Roth F., Waterman D.A., Lenat D.B. (eds) (1983), Building Expert Systems,
Addison-Wesley.

Hobbs J.R. and Evans D.A. (1980), Conversation as Planned Behaviour. In Cognitive
Science 4, pp. 249-377.

Hoey M. (1979), Signalling in Discourse. English Language Research, University of
Birmingham, Birmingham Instant Print Limited.

Knuth D.E. (1975), The Art of Computer Programming, Fundamental Algorithms,
Vol(1), Addison-Wesley, publishers.

Kukich K. (1983), Knowledge-Based Report Generation: A Knowledge-Engineering
' Approach to Natural Language Report Generation. Doctoral
Dissertation, The Interdisciplinary Department of Information

Science, University of Pittsburgh, Pennsylvania.

Linde C. Goguen J.A. (1978), Structure of Planning Discourse. In Journal of Social
and Biological Structures. Vol 1, pp. 219-251.

Longacre, R. E. (1976), An Anatomy of Speech Notions. Peter de Ridder Press Publi-
cations in Tagmemics No. 3.

Mann, W.C. and Moore, J.A. (1980), Computer as Author - Results and Prospects.
Report No. ISI/RR-79-82, Information Sciences Institute, Los
Angeles, January 1980.

Mann, W.C. et al. (1981), Text Generation: The State of the Art and the Literature,
Report No. ISI/RR-81-101, Information Sciences Institute, Los
Angeles, and University of Pennsylvania MS-CIS-81-9, Philadel-
phia, December 1981.

253

Mann, W.C. and Thompson S.A. (1983), Relational Propositions in Discourse.
Report No. ISURR-83-115, Information Sciences Institute, Los
Angeles, November 1983.

Mann W.C. (1984), Discourse Structures for Text Generation. Report No. ISI/RR-
84-127, Information Sciences Institute, Los Angeles, February
1984.

Mann, W.C. and Thompson S.A. (1985), Assertions from Discourse Structure, Report
No. IS/RR-85-155, Information Sciences Institute, Los Angeles,
April 1985.

Matz, M. (1980), Towards a Computational Theory of Algebraic Competence. In
Journal of Mathematical Behaviour, Vol. 3, No. 1.

Matz, M. (1981), Towards a Process Model for High School Algebra Errors. In D.
Sleeman and J.S. Brown (Eds.), Intelligent Tutoring Systems,
London: Academic Press, 1982.

McArthur D. (1984), A Graphical Interactive Tutorial Environment for Basic Alge-
bra. Rand Corporation, Santa Monica, California, July 1984.

McDonald, D.D. (1980), Natural Language Production as a Process of Decision
Making Under Constraint. Doctoral Dissertation, draft version,
MIT, Cambridge, Mass.

McKeown, K.R. (1982), Generating Natural Language Text in Response to Questions
About Database Srructure. Doctoral Dissertation, The Moore
School of Electrical Engineering, University of Pennsylvania, Phi-
ladelphia.

McKeown, K.R. (1985), Discourse Strategies for Generating Natural Language Text.
In Artificial Intelligence 27, pp. 1-41.

Miller P.L. (1983), ATTENDING: Critiquing a Physician’s Management Plan. In
IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol (5), No. 5, September 1983.

Minsky, M. (1975), A Framework for Representing Knowledge. In P. Winston (Ed.),
The Psychology of Computer Vision, McGraw-Hill, New York,
1975, pp- 211-277.

Quirk R., Greenbaum S., Leech G. and Starvik J. (1972), A Grammar of Contem-
porary English. Longman Group Limited, London.

Reichman R. (1978), Conversational Coherency. In Cognitive Science 2, pp. 283-327.

Reichman-Adar R. (1984), Extended person-machine interface. In Artificial Intelli-
gence 22, pp. 157-218.

254

Schank, R.C. and Abelson R.P. (1977), Scripts Plans Goals and Understanding,
Lawrencé Erlbaum Associates, publishers.

Schank, R.C. and Riesbeck, C.K. (1981), Inside Computer Understanding, Lawrence
Erlbaum Associates, publishers.

Sleeman, D.H. (1981a), Assessing Aspects of Competence in Basic Algebra. In D.
Sleeman and J.S. Brown (Eds.), Intelligent Tutoring Systems,
London: Academic Press, 1982.

Sleeman, D.H. (1981b), A Rule-based Task Generation System. In IJCAI7-81
Proceedings, pp.882-887.

Sleeman, D.H. (1982), A Rule Based Modeling System. In ECAI8 Proceedings,
European Conference on Al, pp. 160-164.

Suppes, P. (1967), Some Theoretical Models for Mathematics Learning. In Journal of
Research and Development in Education, 1, 5-22.

Swartout W.R. (1982), XPLAIN: A System for Creating and Explaining Expert Con-
sulting Programs, USC/Information Sciences Institute, Los
Angeles, March, 1982.

Sweet H. (1891), A New English Grammar Logical and Historical. Oxford, at the
Clarendon Press, 1892.

Waterman D.A. (1986), A Guide to Expert Systems, Addison-Wesley.

Watkins A.E. (1979), The Effect of the Symbols and Structures of Mathematical
English on the Reading Comprehension of College Students.
Doctoral Dissertation, School of Education, University of Califor-
nia, Los Angeles.

Wilkins J. (1668), An Essay Towards a Real Character and a Philosophical
Language. London, 1668.

Winter E. O. (1968), Some Aspects of Cohesion. In Sentence and Clause in Scientific
' English, by R. D. Huddleston et al., Communication Research
Centre, Department of General Linguistics, University College,

London, May 1968, pp. 560-604.

Winter E. O. (1977), A Clause-relational Approach to English Texts: A Study of
Some Predictive Lexical Items in Written Discourse. In /nstruc-
tional Science, Vol. 6, No. 1, January 1977, pp. 1-92.

Woods, P. and Hartley, J.R. (1971), Some Learning Models for Arithmetic Tasks and

their Use in Computer-based Learning. In British Journal of Edu-
cational Psychology, 41 (1), 35-48.

255

Woods, W. A. (1970), Transition Network Grammars for Natural Language Analysis.
In Communications of ACM, pp. 591-606, Vol. 13 (10), October

1970.

Zukerman, I. and Pearl, J. (1986), Comprehension-Driven Generation of Meta-
technical Utterances in Math Tutoring. To appear in AAA! Confer-
ence Proceedings, August 1986.

256

