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Along with the development of contemporary computer science the limitations of
sequential "von Neumann" machines have become more apparent. It is now becoming
clear that to handle projected needs in speed and throughput, massively parallel archi-

tectures will be needed.

In this dissertation we propose a special purpose architectural model that satisfies
a general class of propositional logic problems in a totally distributed and concurrent
fashion. The architectural model is identified as ASOCS (Adaptive Self-Organizing
Concurrent System).

Problem specification is incremental and takes the form of if-then rules
(instances) expressed as Boolean conjunctions. Possible applications include sym-
bblic decision systems, propositional production systems, digital pattern recognition

and real-time process control.

Xiii



The approach is based on an adaptive network composed of many simple com-
puting elements (nodes) which operate in a combinational and asynchronous fashion.
Control and processing in the network is distributed amongst the network nodes.
Adaptation and data processing form two separate phases of operation. During pro-
cessing, the network acts as a parallel network of Boolean gates. Inputs and outputs of
the network are also Boolean. During adaptation the network structure and the node
functions can change to update the overall network function as specified. As new
rules are added to the rule base, the network independently reconfigures to a logic cir-
cuit that remains both minimal and consistent with the rule base. Thus, there is no
explicit programming. Desired network response is simply presented to the system,
following which the network adjusts itself accordingly. Although the functionality of
the network can be observed from the outside, the internal network structure is

unknown.

The control of the adaptive process is almost completely distributed and
efficiently exploits parallelism. Most communication takes place between neighboring
nodes with only minimal need for centralized processing. The network modification is
performed with considerable concurrency and the adaptation time grows only linearly

with the depth of the network.
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Chapter 1

INTRODUCTION and MOTIVATION

In this chapter we introduce the dissertation by first giving a brief overview of
the model proposed. Section 2 begins a discussion of the motivation and rationale for
this research. This is done by first giving an informal and brief historical background
retracing the intellectual steps that led to this work. The overall features of the model
are given in section 3. Section 4 discusses the realm of possible applications of the
proposed system. The final section lists the remaining chapters of the dissertation and

briefly describes their contents.

1.1. Model Overview

In this work we propose an architectural model and three specific algorithms
tailored for this architecture which solve a specific class of problems in a concurrent
fashion. The basic problem is to design concurrent digital networks able to solve
problems defined by propositional calculus. Inputs and outputs of the network are
boolean. These types of problems include symbolic decision systems, propositional

production systems, digital pattern recognition, and real-time control.

The system is composed of many simple computing elements which operate
asynchronously in a combinational fashion. The control of this network of computing
elements is distributed amongst the elements themselves. Central control is not neces-

sary. The specific domain of application is that of propositional logic, where problem



specification is given by incremental input of boolean if-then rules. As new rules are
input to the system, it maintains a rule-base which is both consistent and minimal.
The architectural model is identified in a later chapter with the acronym ASOCS
(Adaptive Self-Organizing Concurrent System). Control and processing are separated
into two phases of operation. During processing, the network acts as a parallel net-
work of digital gates. During the control, or adaptation phase, the qodes within the
network are responsible to change the overall network structure to fit the new function

specified by the incremental input of rules.

In addition to proposing a novel parallel solution of the propositional logic prob-
lem, this research shows the possibility of distributed control, or self-organization,

within a massively parallel network of nodes solving a specified function.
1.2. Research History

1.2.1. Concurrency and Brain Function

Traditional sequential computing is not sufficient to solve many types of prob-
lems in acceptable time. As we attack more knowledge intensive problems! we find
glaring inadequacies, in terms of speed, in a purely sequential computing scheme.
Physical limitations, including the speed of light, are now becoming the determining
factor in how fast a single stream of data can be processed. By contrast, human and
animal brains, using relatively slow processing units, are able to process huge amounts

of data in a very short time. This suggests that there are approaches to computing

! And we are just scratching the surface of problems requiring huge amounts of data processing.



with concurrency and massive parallelism which could compute orders of magnitude

faster than the current Von Neumann? strategies.

The computing world is fast approaching an impasse, where new techniques of
concurrent computing will be necessary to solve large classes of problems in realistic
time. To be sure, there are many types of problems which match the Von Neumann
methodology. Sequential and numeric computing will always be necessary even if
massively parallel machines are available. There will always be a limit on space and
hardware that will force decomposition of a large problem into a sequence of smaller

ones.

My initial research interest was neuromimetics. We certainly know too little
about the brain to be able to use it as a detailed model. However, there does appear to
be a style of information processing in the brain which can be contrasted with that of

Von Neumann machines. Table 1.1 lists some of these.

Von Neumann Brain

Sequential Massively Parallel

Single or Few Processors Many Processors
Addressable Storage Active Memory Distributed
Separate from Processor Through Connections
Instructions and Data Fetched Direct Data
and then Executed at Single Processor Flow Execution
Programmed Self-Adapting

Table 1.1 - Von Neumann vs. Brain Style

Each of these contrasts is briefly discussed below. Each of these points is subjective

2Von Neumann is here used as a descriptor for the current computing architectures and software
methods commonly used for data processing.



and meant only to give a historical perspective.

Information processing in Von Neumann machines and brains is neither purely
sequential nor purely parallel. They both depend on a mix in order to properly func-
tion. However, the basic paradigm of computing in the Von Neumann machine is a
sequential execution of instructions. The basic paradigm of the brain appears to be a

combinational flow of data between inputs and outputs.

Although some Von Neumann machines use more than one processor, the
number is always very limited and in practice, the overall speed of the system actually
often decreases once the number of processors grow beyond a relative few. In con-
trast, the brain uses an enormous number of processing neurons, approximately 10'1,

to fulfill its functionality.

Memory in the Von Neumann machine is stored in a structured addressable
storage where a single cell is dedicated to each bit of data. It would appear that in the
brain, memory is distributed throughout by means of the interconnections and func-

tions of its neurons.

"The Von Neumann machine functions by fetching data and instructions across a
bus between the processor and the memory, and then executing the instruction Jocally
at the processor. The brain apparently operates in a more data flow fashion. Rather
than fetch instructions, data is implicitly processed as it flows through the neural struc-

ture.

Finally, the Von Neumann machine must be programmed "prescriptively” and

each detail of a desired function must be foreseen and covered by the program. If the



function changes, the programming must be changed. The brain has the ability to

adapt to a changing environment with only unstructured or generic "instructions."

The initial goals were then to explore architectures and propose methods® exhi-

biting some of these brain-like features.

1.2.2. Adaptive Networks and Combinational Architectures

The central object of this research is a network of adaptive processing elements
assumed to interact with its environment by a set of sensors and effectors. Figure 1.1
gives a picture of what is intuitively meant by a network which functions in a con-
current and data flow fashion. Inputs enter from the environment and flow through the
nodes of the network at propagation speed. The flow is asynchronous and combina-

tional. Output values can both change the environment and feedback into the inputs.

Logic elements are primitives of all calculation and a network of logic gates is in
theory a universal model of computation. However, almost all work done with logic
networks has been limited to the synthesis of a structure, given a complete function
specification. Rather than look for one-time synthesis strategies, we are more con-
cerned with the notion of adaptation. The basic question is: Assuming the existence of
a network already solving a function, how do we modify the network when the function
changes (perhaps slightly) without resynthesizing the nerwork. When an incremental
change to the network function is specified, then a relatively small modification to the

network should be accomplished, allowing it to correctly accomplish the new function.

3In Von Neumann terminology, methods would refer to programs, operating systems, control
schemes, efc,



Sensor Motor
Units Units

Figure 1.1 - Data Flow Network
This would provide a form of network Learning. One would not have to start with a
fully specified function, rather the function could grow and become more precise with

time.

Because of the above, we assume two basic modes of operation for an adaptive
logic network: Execution and Adaptation. In execution mode, the system is process-
ing input to output in the normal data flow fashion of a fixed circuit. When new
knowledge is introduced to the system in adaptation mode, the network is modified to
handle the added information. After modification it can return to execution mode.

Switching between modes can continue indefinitely.

We defined an adaptive network as one which had three basic capabilities:



1. The functions of the network nodes can be modified.
2. The interconnections between nodes can be modified.

3. The number of active nodes in the network can change.

We originally assumed that an external agent, probably a Von Neumann machine,

would have to work with the logic network in the following ways.

1. The external agent would have complete knowledge of the network
structure.
2. The external agent would make all modification decisions and apply

them to the passive logic network.

From these initial assumptions developed several approaches They basically
reduced to heuristic search techniques which were exponential since the number of
states of the logic network grows exponentially with the number of nodes. Thus, the
time necessary for the external agent to do adaptation would grow exponentially with
the number of nodes in the network. In this initial effort, it was assumed that there
could only be a single output variable in the network, and that there would be no feed-

back.

1.2.3. Self-Organization

The initial results were disappointing and unlikely to be very useful for the above
mentioned reasons. The next step was to realize that concurrent computing power
used during the execution mode could be used to aid in the adaptation process. Using

this principle we found that it was possible to devise faster algorithms which enlisted



the aid of the logic network for adaptation. This was done by no longer using search,
but a deterministic technique which always assured a correctly functioning network
after a bounded number of steps. However, there were still many problems arising
from the use of one central controller which needed complete knowledge and control
of the network. As the network got large, the time necessary for the external agent to
be effective would still grow beyond reasonable limits. The need for the agent to be
able to address each node within the network would make VLSI implementation
difficult, Also, testing and recovery measures become unpractical with one central

controller.

In line with neuromimetic thinking, the solution was to let go of the central con-
trol, and allow the nodes of the network to accomplish most of the adaptation process.
In order to allow the network to self-adapt, more functionality and communication
capability became needed at each network node. However, control became distributed
throughout the network. After discovering algorithms which functioned within these

parameters, the two initial assumptions changed to the following.

1. There is no knowledge (by any agent) of the complete network
structure.

2. The network is Self-Organizing.

Given these conditions we were able to show that the time necessary for adapta-
tion grows linearly with the depth of the network. Self-organization became the key
paradigm in the adaptive concurrent architecture. It is probably the key to adaptation

in any large complex system. As the amount of information within a system grows,



the ability for it to be controlled and made adaptive by an external agent diminishes.
We see this daily in systems we are involved with. Even a large software program
becomes virtually un-modifiable because of the tremendous amount of information
regarding the interaction of the many pieces of the system. In order to have complex
adaptive systems, we may have to abandon the pervasive use of complete knowledge

and control over each aspect of the system.

Under the self-organization principle the system can be viewed as a black box

(figure 1.2).

Outputs

{}

Knowledge Fast Execution

) Fast Adaptation

Self-Organizing

{}

Inputs
Figure 1.2 - Self-Organizing System

There is no strict prescriptive "programming” of the internals of the system. Rather,
one gives specifications of the problem regarding what the desired function is, and it is

left up to the system itself to accommodate them. By contrast, most of the effort in



current programming is spent detailing how to solve a problem, rather than what to

accomplish.

1.3. Features of the Model
In this sectibn we discuss some of the features of the architectural model.

The first is that of concurrent processing of data. The data path is a combina-
tional hardware circuit able to compute data at the propagation speeds of the network
nodes. During execution, the speed of computation is O (d) where 4 is the depth of

the network.

The next feature is adaptability. Using the concurrent logic network, and the
self-organizing mechanism, the system is able to reconfigure itself to adjust its func-
tion to new requirements. The time necessary for the system to self-adapt is also

O (d). This will become apparent during the discussion of the algorithms.

Perfect optimality, in terms of the number of nodes necessary to solve a function,
has not been a goal in this research. Rather the desire was to use redundancy and
Sflexibiliry in order to achieve the goal of adaptability. However, nodes within the net-
work are able to discover when they are no longer a part of the overall computation of
the network function. When this is detected, the node deletes itself from the network.
Furthermore, it sends commands to its children and they recursively delete, thus prun-
ing whole sections of the network. Because of this self-deletion notion the network

maintains a relatively optimal number of nodes to compute the current function.

The method of knowledge input is assumed to be in the form of if-then rules,

where the variables in the rules are boolean. This type of knowledge specification is

10



ratural for many types of problems related to propositional logic. The rule base
allows for multiple outputs and feedback. Rule input is a natural method to allow

incremental change of an overall function.

The fact that the system is built out of many nodes, each with exactly the same
structure has many potential advantages. One is efficient VLSI design. Basically, one
node must be designed, then copies of that node are placed in a regular array with a
consistent connectivity structure. Outputs from one node become inputs to the next.
Another important VLSI constraint is that of pin requirements. As the number of cir-
cuits put on a normal chip increases, the ability to control the circuits from the outside
decrease. One reason is that it is not possible to put sufficient pins on the outside of
the chip in order to control specific units within. In the proposed model, because of
self-organization, the number of pins on a chip can stay constant regardless of how
many nodes there are inside of the chip. In fact there is neither need nor means to
address nodes within a chip. Only pins for input, output, and rule introduction are

necessary.

Since there is no way to control or even know the state of the internal structure of
the network, it is essential to provide for self-rest and self-recovery. The proposed
systems are indeed able to fulfill both of these functions, and self-repair of faulty cir-
cuits will take place without any outside control. Both fabrication faults, a common
occurrence in VLSI fabrication, and faults that develop over time are handled by the

systems fault tolerance mechanisms.

Another feature of the model is that it is amenable to decomposition. Because

11



inputs and outputs are compatible, any number of systems can be combined together

with the outputs of one system becoming inputs to another.

1.4. Possible Applications of the Model
In this section we discuss possible practical applications of the model.

The model is best fitted to Symbolic computation, rather than Numeric computa-
tion. This is do in large part to the tendency of symbolic application;; to have a rela-
tively sparse amount of important outputs in a large input domain. This contrasts with
many numerical applications having a very dense input-output mapping. For example,
in an integer multiply it is essential that there be a defined output for every permuta-
tion of the input variables. This is not the case in many symbolic applications. This
follows for two basic reasons. First, there are typically many don’t care variables in a
symbolic function. At any given time only a subset of the input domain is essential to
make a decision. The other factor is that of impossible states. Given a large domain
of input variables, only a small percentage of the possible permutations may actually
occur in nature. If-then rule bases are natural for defining outputs in domains includ-
" ing many don’t care variables and impossible input states. Many of these symbolic
problems are also combinational in that all inputs are presented simultaneously and the

output is not bound by sequential constraints.

Another important feature of applications fitted to the current effort is that of
adaptabiliry. There are two general reasons for it. The first is that we seldom do any-
thing right the first time. Nor do we correctly understand the problem during initial

implementation. This equates to the constant debugging and design changes of current

12



systems. The second main reason is that many problems are adaptive by nature, in
that their function must change in time in order to pursue changing goals. If the func-
tion changes over time, then it is essential that the application be built on a methodol-

ogy which allows that change.

1.4.1. Examples of Applications

In this section we discuss classes of applications in which the current model
could fit. For ease of communication, the model is referred to by its generic name

ASOCS.

One class of system which many times has the need of high speed and adaptivity
is that of embedded systems. These systems are generally doing real-time decision
making with environmental sensor data as input. Because of real-time requirements,
these applications are candidates for combinational computing. A controller in a satel-
lite is a typical example. If it is desired to change slightly the function of the con-
troller it would not be efficient to bring down the satellite, make physical changes, and
then relaunch it. Instead, it would be better to send the specification modifications to
the satellite and allow it to reconfigure. With the ASOCS, the same high speed could
be maintained after reconfiguration. Many embedded systems must be adaptive, and
currently the only method is to carry a Von-Neumann machine aboard. However, this

method can be too slow and too costly in terms of space for many applications.

Robortics is an example of embedded system technology where high adaptivity
will be required. Current robots do not display the amount of adaptivity which will be

required for new applications. If adaptivity is desired, the current solution is to run a



robot by a communication link from a Von Neumann machine. Again, this is much

too slow for the types of applications now being discovered for robotics.

The field of production systems, including expert systems and knowledge based
systems, is one of the most promising applications of artificial intelligence [Wate78,
Haye8&3, Buch84]. However, as the size of the knowledge bases grow, the search tech-
niques used in Von Neumann systems do not allow these systems to function in rea-
sonable time. If concurrency can be used in the knowledge retrieval process then
expert systems with large rule bases will become feasible. Expert systems have
shown that many applications can be specified as a set of rules. Thus there is a natural

link between the ASOCS methodology and many expert system models.

Another point about production systems has to do with execution. Using com-
pletely sequential mechanisms, a production system functions by selecting one of
many possible rules, sometimes in a random fashion, and then causing that rule to be
fired. By using a concurrent mechanism all applicable rules could be discovered and

fired simultaneously.

Control and decision systems in general are those which cause or output control
information depending on the input state. These are very natural for a rule-based and
concurrent system. An example of this type of system is a fault isolation and recovery
system. In this case, a number of sensors in a machine, for example a jet aircraft, are
connected to a high speed control unit. When certain states of these sensors arise, sig-
naling a fault condition, then immediate recovery steps must be taken. The control

unit, an ASOCS, can both recognize the fault states and map these into recovery states

14



which cause aircraft 'mechanisms to be utilized in the recovery. This mapping of fault
state to recovery state is naturally defined in terms of rules. As new sensors and func-
tionality are added, the control unit is easily modified by the addition of new rules. In

this light, the ASOCS functions as a parallel pattern recognizer and classifier.

The whole class of problems which are currently processed on Programmable
Logic Arrays are all based on boolean rules (truth tables) and are naturally amenable
to the ASOCS structure. One example of this type of application is a fault isolation
and recovery system prepared for the space shuttle which is fully described by boolean
production rules [Hell84]. In the simulation chapter a detailed example of a similar

NASA system used for flight control is discussed.

1.4.2. The Model as an Integrated Tool

In the preceding section, the ASOCS is discussed as a potential methodology for
solving a class of applications. Another way in which it could be used is as an
Integrated Tool working together with conventional machines. The ASOCS could be
used either as a component in building up other machinery, or as a special purpose

Processor.

A first obvious use of the ASOCS is for building adaptive logic components.
Most basic MSI or LSI devices can be built using an ASOCS, including applications
currently accomplished by a PLA. The advantage in using the ASOCS is its flexibility
and the fact that it automatically does the minimizing and configuring to the given

application.
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Let us consider a simple logic device. Assume that we want to build an encoder
which maps » inputs into logy(n) outputs, for example a 4 to 2 encoder. For each of
the four input possibilities 2 rules could specify the output. The system would then
function as a normal encoder. However, assume that we now want to add a reset pin.
Then a new rule specifying a reset input and its corresponding output is given. If an
enable pin, one which only allows the output to change when it is high, is desired, then
this function is again described by a set of rules. The advantage of the scheme is that
it is only necessary to specify rules, and the ASOCS will take care of making the sys-
tem consistent and of doing all reconfiguration. Thus, a user only need know how to

specify the desired function.

Of course, if the function is completely predetermined, then it is not necessary to
use an ASOCS. However, one particular need is in prototyping and testing. If a high
speed system is being built which is controlled by logic, then it can be built and tested
using real time adaptive components. An ASOCS could be used for this prototyping.
Once a final design is reached, the logic could be set into a fixed structure. This is
much cheaper than having to build a custom logic device for each phase during system

design.

Using feedback, ASOCS can also be used to build asynchronous sequential cir-
cuits. By adding a layer of flip-flops at the output of the ASOCS, it can be used to

build finite state machines.

As mentioned above, the ASOCS could be used as a combinational special pur-

pose processor together with other machinery. Figure 1.3 shows a possible integration

16



of an ASQOCS with a Von Neumann machine.

PN

Von Neumann
Machine :> ASOCS

]

Figure 1.3 - ASOCS as Special Purpose Processor

In this case inputs and outputs come from and return to the Von Neumann machine,
although they could be mixed with environmental inputs and outputs. The rules are
fed from the Von Neumann machine. Thus, time intensive sections of computations
could be computed in a concurrent network in an integrated fashion within sequential
software. The ASOCS function could be specified by applications programmers who
need high speed concurrency to build practical applications. Any number of ASOCS
could be allocated to or contained in a Von Neumann system to be used as tools.
Thus, in a sense, the programmer would have the ability to actually configure the

hardware on which he works to a structure which naturally fits the current problem.

In this environment, one utilization example would be a truth-maintenance sys-
tem for an Al knowledge base system. Since some ASOCS algorithms use the net-

work to keep the knowledge base consistent and minimal they provide a concurrent

17



method to solve the inherently slow problem of truth-maintenance.

1.5. Layout of Dissertation

In this section we discuss the layout of the complete dissertation, including the

contents of each chapter, and how the chapters correlate.

Chapter 2, Combinational Architectures of Programmable Nodes, reviews work
done with with both fixed and adaptive networks composed of programmable comput-
ing elements. Models are discussed which have led to or have similarities fo the
current research model. Similarities and differences between this research and other

efforts are discussed.

Chapter 3, Knowledge Base, describes the way in which knowledge is incremen-
tally input to the system by means of boolean rules. The growth and maintenance of

the rule base as a consistent and minimal structure are aiso discussed.

The goal of chapter 4, System Architecture, is to define the basic modules,
together with their functionality, which make the foundations of the model. This
chapter also defines communication capabilities needed between the defined modules.

Some implementation issues are also mentioned.

Chapter 5, Primitive Mechanisms in ASOCS Systems, explains the basic mechan-
isms, or primitives, which are the building blocks out of which ASOCS systems can
be built. There are four basic mechanisms discussed in this chapter which are used in
different forms in the three different algorithms presented in detail in the following

chapters. Fault tolerance is also discussed.



Chapter 6, Adaptive Algorithm 1 (AAl), is the first of three chapters discussing
detailed ASOCS algorithms. These three chapters do not cover all possible methods
of using the architecture and functionalities defined in the previous chapters. Rather
they present three effective methods which could be implemented. There are a
number of extensions to each of the algorithms and a few of the most important are
mentioned within the chapters. Adaptive algorithm 1 is probably the least efficient as
a physical implementation, yet it contains many interesting features not found in the

other algorithms.

Chapter 7, Adaptive Algorithm 2 (AA2), details the second adaptive algorithm
which is quite different in its approach than AA1. It does not use all of the primitive
mechanisms defined in chapter 5. It does, however, efficiently solve the basic problem

discovered in AA1, that of memory growth within the network nodes.

Chapter 8 discusses Adaptive Algorithm 3 (AA3), which is similar in many ways
to AA2. It is however simpler in its approach than AA1 or AA2, and it solves some
of the implementation difficulties inherent in AA2. Adaptive algorithm 3 is perhaps

the most implementable of the three algorithms, although all three are realizable.

Chapter 9, Algorithm Simulations, describes simulations used to simulate the
three adaptive algorithms. Statistics about the structure and efficiency of the network
for both the learning and execution phases are given for the different algorithms.
Worst case scenarios are shown and discussed. Also, a real world problem is detailed,

together with its mapping into boolean rules and the structure of a network to solve it.

Chapter 10, Future Directions, discusses extensions and future research direc-
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tions for the model. *
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Chapter 2

COMBINATIONAL ARCHITECTURES of
PROGRAMMABLE NODES

In this chapter we review some of the work on parallel networks composed of
programmable nodes, with emphasis on aspects that lead to the current research. The
first section discusses networks based on threshold gates. Much of the work on adap-
tive networks has been done in this arena. The next section discusses digital networks
built from Boolean nodes. Very little work has been done on adaptive digital net-
works, but much effort has been put into methods of synthesis of fixed networks. The

third section introduces the type of network element used in this research.
This chapter is by no means meant to be a complete survey of relevant topics.

For a broad survey of highly parallel computing see [Hayn82]. One key feature of the

networks mentioned in this chapter is that they function in a concurrent fashion.

2.1. Threshold Networks

Many of the studies on adaptive networks have used threshold gates as the basic
"processor” [Stra6l, Hans63, Hu65, Muro71, Weav75, Bobr78]. Figure 2.1 is a pic-
torial representation of a threshold gate. A threshold gate is a module which computes

a linear weighted sum of its inputs {x; } to some threshold 8, to produce an output z €

{0,1}. Thus
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Figure 2.1 - Threshold Gate

r

n

1 if ZO);.X,‘ 20
i=1
n

0 if Za);x,— <9

i=]

™

where 0 is a threshold value and w; are weights. Without loss of generality € and o;
can be limited to integers and x; to the binary values {0,1}. By adjusting the weights
and threshold, the threshold gate can compute different boolean functions of its inputs.
Threshold gates are linear discriminators. They separate the boolean input vectors
into two classes. However, threshold gates are limited to linearly separable classes,
the percentage of which are very small for large n and the corresponding 22" possible
boolean functions. The two input threshold gate cannot compute all 16 of the possible
boolean functions of two variables. A single threshold gate cannot be configured to
compute the exclusive-or or the equivalence functions. A network of threshold gates,
however, made large enough, can implement any boolean function. Any function
which a threshold gate can compute can also be realized by a network of boolean

gates.

Rosenblatt’s perceptron was one of the earlier attempts to use threshold gates to
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simulate an adaptive neural network capable of learning boolean classifications
[Rose58, Rose62a, Rose62b, Bloc62, Mins69]. In so doing, He laid the foundation for
an important line of research to which the effort can be related. The perceptron in its

simplest form is shown in figure 2.2.

weight

weight z

weight

Figure 2.2 - Simple Perceptron
Each A-unit (Association unit) is a threshold gate with fixed weights. The inputs to
the A-units come from sensors called S-units (Sensor units). These inputs are con-
nected randomly to the set of A-units. The R-unit (Response unit) together with the
weights represent a tunable threshold gate. Example patterns with their correct output
are presented to the perceptron and the weights and threshold of the R-unit are
modified to make the perceptron correctly classify the given input. Rosenblatt proved
that there are learning algorithms which are guaranteed to cause the simple perceptron

to classify a finite linearly classifiable set in finite time.

The Perceptron learning algorithms share some similarities with the current

effort. Both are incremental in that desired classifications are given one at a time. In
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the convergence algorithms given by Rosenblatt it is assumed that the input examples
are consistent (i.e. the output of a given example is always the same), as opposed to
the current research where the desired output of an instance may be changed with
time. Also, the modifications made to the weights after each examiale do not guaran-
tee that the perceptron will function correctly; an example may have to be shown more
than once. In the current model on the other hand, the network always solve the
correct function immediately after each change. Another important difference is that
the perceptron’s network structure is usually fixed; only the weights of the inputs
change. In this research the network can be dynamically restructured to absorb new

information.

Much work on adaptive devices has been performed since the seminal work of
Rosenblatt: [Widr64, Feld81, Bart81, Hint84]. Many are analog models in that the

inputs and outputs to the system are analog values.

2.2. Boolean Network Synthesis

The major efforts in the area of digital networks has been in the development of

methods for synthesis of optimal boolean circuits.

Implementation of boolean functions using minimal networks of gates has been
studied in depth from the 40°s until the present. Methods of minimization and decom-
position of boolean functions continue to appear [Curt63, Kamm79, Roze79, Sing80,
CrisSO, Bran83, Roth83]. The motivation has been very practical. The desire has
been to build optimal circuits with such criteria as the total number of computing ele-

ments, minimization of the longest path in the network, and minimization of fan-out of
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individual elements. Though there have been many algorithms presented to minimize
the above costs, the majority of them break down as soon as the number of variables

in the network becomes large (n >10).

2.2.1. Universal Logic Modules and Multiplexer Trees

Most conventional network synthesis is aimed at networks built with fixed gates.
However, around 1960, some researchers investigated the possibility of realizing more
uniform structures with ULM’s or Universal Logic Modules capable of producing all
boolean functions of its inputs. By far the most studied building block for universal
boolean networks is the multiplexer. A 2" x n multiplexer can be perceived as a
universal boolean gate with n inputs. For example, a 4 by 2 multiplexer is a universal
boolean gate of two inputs. This multiplexer can be configured to compute any of the
16 functions of 2 variables by placing appropriate values on the 4 multiplexed lines.
The multiplexer in figure 2.3 computes the XOR function of the variables x, and x,,

where x, and x, are viewed as two input variables.

X1 X2

|

0—
1 —
1] —

0 ——

Figure 2.3 - Multiplexer
By choosing the values of the four multiplexed lines appropriately, the multiplexer can

be set to any of the 16 boolean functions of two inputs.
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The theoretical foundation for using the multiplexer, forthwith called a universal
logic module (ULM), as a unit for building universal networks is Shannon’s Theorem
[Shand9].

[ Gixg ) =x1 f (Lxg,e%y) + X1 f (0x9,...%,)
Using the above theorem, one layer of 2 by 1 ULM’s can be used to decompose the
original function into a function of one less variable. Thus # layers of 2 by 1 ULM’s
are sufficient to implement any boolean function of n variables. Shannons theorem
can be expanded to work for any 2" x n ULM. In the case of the 4 by 2 ULM the
equation is as follows:
f Xy x)=xxo f (L1xg,..x,) +xx2 f (1,0,x3,...%,) +

x1x2 f (0,1,x3,....%, ) + X1X3 f (0,0,x3,...,x,)

The ULM network shown in figure 2.4 solves the boolean function:
F = EEpKaxy + XXX gxy + X[ XpT3%4 + XXk gk, +
X1X9X3X 4 + X (XXX 4+ X1 XXXy
There have been many algorithms expounded to synthesize ULM networks
[Yau68, Ande69, Yau70]. Typically the criterion being optimized is again the number
of modules necessary to implement a function. The ULM network shown in figure 2.4
is complete in that there is a stored bit in the network for every minterm of the func-
tion. Most boolean functions can be simplified such that not every minterm is needed.
For example, the following functions are equivalent:
XXy +X1X9=X,
The function computed by the ULM network of figure 2.4 can be simplified to the fol-

lowing:
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Figure 2.4 - ULM Tree
[ =X1x3+x %304 + XXX 5%y
The network of figure 2.4 used 5 ULM’s, while a more optimal ordering of the func-

tion variables produces a network with 3 ULM’s as shown in figure 2.5.

2.2.2. Binary Decision Trees

Another form of the same class of structure is the binary decision tree (BDT)
[Aker78, Cemn79, More82, Quin83]. In a BDT each node of the binary tree tests a sin-
gle boolean variable. Depending on the outcome of the test control is passed to one

child or the other child. The testing starts at the root of the tree and proceeds towards



XaXy

0 —» X1X3
| — \ I |

Figure 2.5 - Simplified ULM Network
the leaf nodes. One single leaf node is always selected as control passes through one
path of the tree. Usually each layer of the tree tests one boolean variable, but like the
multiplexer structure, an optimal ordering of the variables tested can allow for
simplification of the tree structure. Thus a complete BDT will have a normal depth of
n where n is the number of variables to be tested. The outputs of the function are

found at the leaves of the tree.

Logically, a BDT is completely analogous to a ULM network and optimality
algorithms for the multiplexer or BDT structures can be used interchangeably. Figure
2.6 gives the BDT representation of the ULM network of figure 2.4. Figure 2.7 shows

the BDT form of the simplified ULM network of figure 2.5.

Close inspection of the multiplexer and BDT networks reveals that the structure
is a memory addressing scheme where memory cells lie at the leaf nodes, and the

input variables are addresses which are decoded to give access to one of the memory



Figure 2.7 - Simplified Binary Decision Tree

cells. Thus, except for some amount of optimization, there must be an actual binary

rhemory cell for every possible output of a given set of function variables.
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2.2.3. Adaptive Digital Networks

There have been some attempts to model adaptive digital systems that perform
recognition on boolean patterns: [Alex68, Holl78, Arms79]. In all of these systems, in
contrast with this research, the control algorithms are centralized. It is also the case
for most current adaptive and synthesis algorithms, that the methods can only be used
for a specific subset of boolean functions. The current research applies to all classes

of boolean functions.

By contrast, one distributed computing model which shows some similarities to
the our effort is the connection machine [Hill84]. Although the goals and applications
of the connection machine are more general and less defined, they both use broadcast
and self-organization as a paradigm for node interconnection, rather than external con-

trol.

2.3. Dynamic Programmable Logic Module

A recent variation of the ULM is called the Dynamic Programmable Logic
Module (DPLM). The DPLM is not one specific architecture, but a family of pro-
grammable universal logic gates. DPLM’s have been under study at UCLA, with a
special emphasis on a specific network of these modules known as the general purpose
perceptron (GPP) [Moor83, Vida83, Vers83]. In this research, the DPLM is a 2 input
gate which can be dynamically set to realize any of the 16 boolean functions of 2 vari-

ables.

Previous work done at UCLA involving the DPLM has been based on taking a

fixed network of DPLM modules and changing the functions of different modules
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until the network is able to compute a pre-defined boolean function [Mart83, Vers86].

At the single module level a DPLM can be considered as a ULM rotated 90 (Fig-

ure 2.8).

Mux

-

Figure 2.8 - DPLM as a Multiplexer
At the network level, however, the similarity ends. Figure 2.9 shows a picture of a
DPLM network which can realize any function of 3 variables. This particular network
has been studied in fair detail at UCLA and is known as the GPP-3. All function vari-
ables are input at the bottom of the network. There is no longer a natural mapping of
layers to function variable, since all layers of the GPP-3 work on all variables avail-
able. If we consider the DPLM network as a memory which outputs a unique bit for
any given set of variables, we see that the memory is a property of the functions and
connections of the nodes in the entire network. This is different from the ULM net-
works where there is an explicit location in which each bit of memory can be found.

In a DPLM network the memory is distributed amongst all the nodes of the network.

An important property of DPLM networks is their "enormous™ redundancy. Any
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Figure 2.9 - GPP-3

network of DPLM’s will have 16% states, where k is the number of DPLM’s in the
network. For any set of n boolean variables there are 22" possible functions of those
variables. Thus, the GPP-3 can compute any of the 256 functions of 3 variables. Yet,
the GPP-3 can be in any one of 16° or 16 million states, where each state maps to one
of the 256 functions. For instance, there are 3,261,376 ways in which the GPP-3 can
be configured to compute the simplest of the functions of 3 variables; i.e. True and
False. There are 2496 ways in which it can compute the most difficult functions of

the 3 inputs.

2.4. Conclusion

Progress has been slow with computing models based on adaptive networks with

learning. This appears to stem from two basic problems.

1. The perceptron algorithms and its late variants deal with a single
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layer, and cannot handle multi-layer structures.

2. Convergence learning requires a large amount of computing time
before the correct function is guaranteed. (i.e. it is unknown whether

an applied modification will aid or worsen the function of the network).

As will appear, these problems do not occur in this effort. The multi-layer problem
becomes manageable when a self-organizing paradigm is used for control. There is no
convergence problem, since the network, while adapting incrementally to each new
data, is every time effectively programmed. In learning terminology, each input

brings "one-shot” learning to the system.
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Chapter 3

KNOWLEDGE BASE

In this chapter we discuss the knowledge base and the method of knowledge
input into the system. The knowledge base is basically a rule set which describes what
outputs the system should have for certain states of the environment. The first section
gives an informal overview of the rule base. Section 2 gives a brief informal example
of the incremental growth of the rules. The remaining sections give a more detailed

and formal treatment of the different aspects of the knowledge base.

3.1. Informal QOverview

The atomic knowledge element of the system is the instance, which is a boolean
rule defining what the system should output when confronted with a given input. Each
instance is an if-then statement where the antecedent is a conjunction of boolean vari-

ables, and the consequent is a single boolean variable.

An instance is a type of Production Rule, which production rules are used in
many expert system applications. A production rule, like an instance, has an

antecedent which can evaluate to either true or false. It is an implication of the form

If Condition |, Condition,, - - , Condition,, Then

Action, Action,, * -+ | Action,,

An instance is a special type of production rule where the consequent of the rule is a
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boolean variable. Thus, the instance is a lower level representation of a production
rule. However, any production rule can be represented by some number of instances,
where the sum of the instance consequents represent the production consequent, or
where a number of boolean instance outputs are encoded to represent a multi-valued

output. An instance can be thought of as a boolean horn clause.

Following are examples of instances.

XX, 2 Z,
X, X,X3 D Z,

X,X12Z, = Z,

Each variable in the instance is a boolean variable. The —> is the boolean implica-
tion operator that states "if the consequent is true, then the antecedent must be true."
Note that an output variable can be used in the antecedent of the instance. Thus, each
instance can be viewed as a state transition in a finite state machine. Discussion of
instances with output variables used in the antecedents, know as feedback variables, is

given in a later section of this chapter.

It would also be reasonable to allow the consequent of an instance to be a con-
junction of output variables. However, no generality is gained by allowing this, since
an instance containing » variables in its consequent is equivalent to » instances con-

taining one variable in each consequent.

Instances are input to the system by an outside agent incrementally, and the
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current totality of instances is called the Instance Set. The instance set is the
knowledge base of the system and it is maintained Consistent and Minimal. By con-
sistent it is meant that no two instances in the instance set can contradict each other;
i.e. no two instances can specify an opposite output for the same input. Minimality
means that the instance set is stored using a minimal representation. These terms are

defined in detail later.

3.2. An Intuitive Example

We now go through an example of what the instance set represents, and how
incremental addition to the instance set causes its overall representation to change.
The purpose of this example is to give an intuitive overview of what the knowledge

base represents and how it relates to the system.

Let us assume that we wish to control whether or not to open {use) or close an
umbrella. There are initially no variables defined in the system. Variables become
defined in the system when a new instance contains the variable. We specify the
opening of the umbrella by the boolean output variable Z. The command to close the

umbrella is controlled by Z.

The first instance entered into the rule base is R —> Z. R is active when it is
raining and inactive when it is not raining. Thus, whenever it is raining the umbrella
will be opened. However, it is soon seen that it is not necessary to open the umbrella
if one is inside. The next instance input is O —> Z, where O represents if one is
outside. This instance contradicts the first instance because it is possible for it to be

raining while one is inside. The first instance is modified so that it represents all that
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it did before, with the exception of the new constraint implied by the new instance.
The first instance will be changed to R 0 —> Z in order to make the set consistent.

The instance set then appears as follows.

The next instance states that if one is outside and it is sunny and hot then one
should also open the umbrella. This instance is givenas S H O —> Z where S and
H represent sunny and hot respectively. This new instance does not contradict any
instance in the set. Note that a new instance can only contradict an instance which
gives the opposite output. This instance is simply added to the set. To aid in the
understanding of what the current instance set represents, figure 3.1 gives a Karnaugh
map representation of the 16 possible environment states represented by the 4 defined
input variables. Z is represented by a 1" and zZ by a "0". The instances in the set
only imply what the output should be for those states of the environment which match
the instances. They say nothing about those states which are not matched by any

instance, and those are represented by "?", signifying a don’t know state.

Thus, the instance set represents a partial boolean function of the inputs. The
instance set represents a complete 3-state function of the input variables. Note that an
instance does not describe a current state of the environment, rather it specifies how
the system should change the environment when the instance is matched. Thus, the

rule set defines a temporal logic function.
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R
0 1 ? 0
S
0 1 1 0
H
0 1 ? 0
0 1 ? 0
0
Instance Set
RO — Z
0o = Z
SHOC — Z

Figure 3.1 - Instance Set Representation

It is found that due to a skin condition the umbrella’s owner should open it any
time it is sunny and the location is outside. The new instance is S O —> Z. This
instance does not contradict any instance, but it does cause minimization. After addi-
tion of the new instance, the old instance S H O —> Z will be deleted, since its con-
ditioned is covered by the new instance. Minimization can only occur between
instances implying the same output. Minimization can never change the consistency
of the set, since minimization only causes a change in the representation of the same

knowledge.
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3.2.1. Rule Base and Network Function

A logic network fulfills the current instance set when for any set of inputs which
match an instance in the instance set, the network outputs the variable as defined by
that instance. When for a given input, no instance in the instance set is matched, the
logic network may output either 1 or 0. Although the instance set represents a 3-state
knowledge space, a boolean logic network always computes a complete 2-state func-
tion. Figure 3.2 shows a possible complete function computed by a logic network

which would fulfill the instance set as it was represented in figure 3.1.

0

Instance Set

RO — Z
o0 —> Z
SHO — Z
Figure 3.2 - Possible 2-State Implementation

The cells which used to contain don't knows, now contain eithera 1 or a 0. There are

any number of ways to configure a logic network to fulfill a given instance set. The
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main effort of this research is to show how to modify a given logic network, after the

instance set is modified.

3.3. Instances

For ease of -explanation we make two assumptions which will hold for the fol-
lowing sections. First, during this initial discussion, we assume that output variables
do not occur in the antecedent of an instance. A section at the end of this chapter
discusses this concept in detail, and shows that the same concepts as here explained
carry over for the case of output variables occurring in the antecedents of instances.
Second, we assume that there is only one output variable being referenced by the
example instances. We do not lose generality under this assumption because instances
implying different variables are treated separately anyway. Consistency and minimi-
zation occur only between instances which imply the same variable. It is equivalent to
have n instance sets, where n is the number of output variables, or just have one

instance set containing instances implying n different output variables.

The relationship between the number of input variables and the number of output
variables is dependent upon the application. There can be any number of output vari-
ables corresponding to input variables, although there can only be 2%* unique output

variables for n input variables.

It is assumed that there is an Environment made up of some number of boolean
features. These features are represented as boolean variables arbitrarily labeled by
letters A, B, etc. These variables are called Input Variables. There are also some

number of boolean Qutput Variables in the environment. In this section we limit the
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environment to one output variable Z. In a general system, the number of input and
output variables in the environment can change with time. Any time a new instance is
introduced which contains variables heretofore not defined, these variables become
part of the environment. In fact, the only way in which input or output variables are
defined as part of the environment is when they first appear in an instance given to the

system.

Knowledge, or the rule base, is input to the system in the form of Instances. An
instance is a logical implication in which the antecedent is a conjunction of input vari-
ables and the consequent is a single output variable. The variables in the antecedent of
an instance are a subset of the variables in the environment. At any given time, each
of the variables in the environment has the value "1" or "0". The values of all vari-

ables at a given time is called the State of the Environment.

A variable in the antecedent is Acfive for that particular instance if the value of
the variable in the current state of the environment is 1 for a non-negated variable in

the instance, or 0 for a negated variable,

A Positive Instance is an instance with a consequent of Z, and a Negative
Instance is an instance with a consequent of Z. Recall that we are assuming that only

the single output variable Z is defined for this environment.

An instance is Matched by the environment state when all variables in the
antecedent are active for the current state of the environment. Any variable not expli-
citly specified in an instance is considered as a Don’t Know variable for that instance,

and does not effect whether the antecedent of the instance is matched.
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Instances, as defined, are a logically complete method of function description, in
that any boolean function can be represented by a set of instances. However, the
natural use of instances is in the representation of partial functions, rather than com-
plete boolean functions. Instances are rules and imperative by nature which make them
a very natural knowledge element for this type of application. The instanceA —> B
represents the same knowledge as the boolean construct A +B, where + 1s the Or
function. The boolean construct, however is not intuitive and is only understood when
expanded into a complete truth table for all possible permutations of the input. The
instance is naturally incomplete, in that one need only consider the single state when

the antecedent is active.

3.4. Instance Set

In this section we discuss the relationships between instances. These relation-
ships only occur between instances defining the same output variable. The instances

A — Z,and B —> Z, are in no way related.

For any two instances, a variable which occurs in one of the instances, but not in
the other, is a Disjoint Variable in terms of those two instances. A variable occurring

in both instances is a Shared Variable in terms of the two instances.

For any two instances, a shared variable can either be a Concordant Variable or
a Discordant Variable. A concordant variable is one which is not negated in either
instance, or negated in both instances. A discordant variable is one which is negated
in one instance and not negated in the other instance. A single instance cannot contain

both the negated and non-negated form of a variable. Following is an example of this.
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ABB — 2

The above instance could never be matched in an environment, and is not allowed.

Any two instances are Concordant Instances if they are both positive instances,
or both negative instances. Any two instances are Discordant Instances if one is a

positive instance and one is a negative instance.

Any two instances which are both matched for some state of the environment are

called Overlapping Instances.

An Instance Set, as here defined, is a set of instances which fulfills the assump-
tions of Consistency and Minimization.

For all proofs regarding instances we note that only the conjunctions of variables
in the antecedents of instances are compared. The proofs derived are all about the
relationships of the antecedents of the instances within an instance set, and boolean

theorems and identities will be used in proving these relationships.

3.4.1. Instance Set Consistency and Minimization

A consistent and minimal instance set is represented as £ which is initially the
empty set ¢. € is divided into two disjoint sets €2, and €2,,. €2, contains all the posi-
tive instances of Q and €, contains all the negative instances. Each of these sets can
be represented as ,, where ¢ is the Polarity of the set and ¢ can be replaced by either
p or n. The set Q is the Discordant Set to Q,. Any set representation with a polar-
ity subscript contains only concordant instances. It thus follows that the members of

the polarized sets need only be products of boolean variables, without necessity to
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include the implication operator and the consequent value.
A consistent but possibly non-minimal set is represented as A, .

Each instance in a set is represented as f;, where i ranges from 1 to the number

of instances in the set. Each [B; takes on the type of the set which it is a member.

A new instance which is to be added to the IS is represented as a, or o, depend-

ing on the type of the new instance.

When a new instance (NI) is added to the IS a new IS is created by application of
the consistency operator ), and the minimization operator y. The operators | and 'y are
meant as proof of theory operators and do not necessarily reflect the manner in which

these methods are implemented.

3.4.2. Consistency Operator

The consistency operation is

u(oy Q) = Ar.
A new instance is only applied to the discordant set of instances. An instance cannot

contradict a concordant instance.

M is broken down into the operations of expansion € and deletion .

e(0,Qp) = A7

yloy A7) = Ar

Both operations are parallel in that the ¢, can be simultaneously applied to each B in

the discordant set.
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The expansion’ operation is applied first and it is appled to each B in the set as

follows.

If discordant variable Bz

(o, ,By) & If no discordant variable ¢(o, B | |d), e(oy,B; | |d)

where d is a single variable which occurs in o and not in §;. Recall that a discordant
variable is a shared variable which is negated in one of the instances. €— signifies
that the B will be replaced by the right hand side of the equation. The if-part decides

whether there is a discordant variable between ¢, and ;. The || operator causes the

concatenation of of a variable to the given B. € is a recursive function.

The expansion operator is followed by the deletion operator which is applied to
every instance in the new set A,” as follows.

If discordant variable Ba
wlay,By) If no discordant variable ¢

Thus, the new instance set is consistent since:

1. There are no discordant instances which contradict the NI, since all
instances without a discriminant variable are deleted by the W operator.

2. Q, was already consistent with all Q- before application of L.

A Consistent set of instances is one in which no two instances Confradict each
other. Two instances contradict each other if and only if for some state of the environ-
ment, they are both matched, and they are discordant instances. Thus, no overlapping

discordant instances can exist in an instance set. Following are three inconsistent sets
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of instances. Each is followed be an example environment state for which the
instances contradict each other. (Note that they are not instance sets by definition,

since they are inconsistent.)

AB — Z (set 1)
AB &> Z

A=1,B=0,C=1 Environment State
AB &> Z (set 2)
BC > Z

A=1,B= Environment State
A —>Z (set 3)
B —Z

A=1,B=1 Environment State

Theorem: Contradictions occur when, for two discordant instances, no discor-

dant variables occur.

For the proof of the above theorem, we need only show that two antecedents of
instances with no discordant variables, can for some value of the variables both be

matched,

We prove this by contradiction. Assume two instances, X ~—> Z and¥Y —> zZ
where X and Y represent any two legal antecedents which contain no discordant vari-
ables. Since any variables not occurring in the first instance are don’t know variables
for that instance, the instance X ¥ —> Z follows from the first instance because all
variables in Y are don’t know variables or concordant variables with X. But by the

same argument, the instance ¥ X — Z follows from the second instance. These
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new formed instances contradict each other for all states of the environment for which
they are matched.

There are in fact, 2" expansions of the two instances with no discordant vari-
ables which overlap, where u is the number of concordant variables in the two
instances and » is the number of variables in the environment.

A corollary to the above theorem is that all instances of one polarity contain at
least one discordant variable for each discordant instance.

Another name for a discordant variable is a Discriminant Variable. All other
variables contained in the two instances are called Non-Discriminant Variables.
There can be any number of discordant variables between two instances, but one
discordant variable is sufficient to Discriminate between the two instances. Any two

instances which are discriminated can never contradict each other for any state of the

environment.

3.4.3. Minimization Operator

Before the minimization operation 7 is applied, ¢, is added to €2,. 7yis applied to
both €, and Q. 7y only needs to be applied to the set discordant to the NI if that set

was modified during the | operation.

The minimization operation is defined as

o, A ) =K.
Minimization can only occur between concordant instances. Minimization can never

cause new inconsistencies.
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Minimization of boolean sum-of-products forms is well established in the litera-
ture and the proofs will not be reproduced here. 7 is based on repeated application of

the following 3 identities between all combinations of B in the set:

L x+xy=x
2. xy +xy =x

.x+xy=x+y

The resultant minimal set always has the least possible number of instances, and no
instance in the set is reducible to an instance with less variables. However, the
minimal set is not unique, and there may be many equivalent sets having the same

number of instances with differing variable combinations.

The instance A B —> Z is really a simplified representation of many possible
instances. If the environment consists of the variables A, B, C, and D, then the one
instance A B —> Z is a representation for the following set of instances.

ABCD — 2Z
ABCD —Z
ABCD — Z
ABCD — Z
The exact same information is given by the single instance as is given by the set of

four Fully Expanded instances. The total instances represented by a single instance is

the Representation Set of the instance.
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A set of instances is Minimal if no two concordant instances can be equivalently

represented by one instance, or by two instances with fewer variables.

For a state of the environment, it is possible to have more than one instance
matched, as long as all the matched instances are concordant instances. For example,
A — Z and B — Z are minimal with respect to each other, and both would be

matched in an environment state where A and B were both equal to 1.

3.5. Addition to the Instance Set

In this section we define new terms describing ways in which the addition of a
new instance causes modification to the instance set. Although a formal discussion of
this concept has already been given, it is necessary to decompose this process into
specific categories which will be used in later chapters which describe the algorithms

used on the ASOCS system.

Knowledge is continually given to the system by the Incremental addition of
new instances. Instances are input one at a time. When an instance is input to the sys-

tem it is known as the New Instance (NI).

The addition of new instances to the instance set allows the overall system to be

Adaptive, in that its overall function changes in time.

When a NI is added to the instance set (IS), it is necessary to insure that the IS is

: both consistent and minimal. Order of instance input can then influence the outcome.
When there is a contradiction, one of the instances in the contradiction must be deleted

from the instance set. A Precedence must be given to the instances if a deterministic

methodology is desired. It is decided that highest precedence is given to the newest
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instances. Once the IS is consistent, there is no need to remember chronological pre-
cedence amongst the instances in the set. This follows from the assumption of con-
sistency. When the set is consistent, each instance is independent of each other, and

none has precedence.

The method of presentation here given is geared towards making explanations in
future chapters simpler. In order to do this we give a summary table of the types of
changes which will occur in an instance set, when a certain type of new instance is
input. There are three basic categories of IS change occurring between instances.
They are contradiction, normal minimization, and one-difference minimization. Nor-
mal minimization occurs between instances containing no discriminant variables (i.e.
x +xy =x). One difference minization refers to the two identities:

X +Xy =x+y
Xy +xy =y
In terms of these types of changes, the relationship between the NI and a single OI can

be categorized as:

1. Subset - The NI is a subset to the OL

2. Equal - The NI and OI share all of the same variables.

3. Superset - The NI is a superset to the OL

4. QOverlap - The NI and the OI overlap.

5. Discriminated - Thel"e is at least one discriminant variable in the NI

and OL.

Discriminated instances will never participate in any change when a NI is added, and
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thus this category is not included in the table below. Table 3.1 gives a brief summary

of the IS modification necessary for the different permutations of the above features.

Subset Equal Superset Overlap
Contradiction Delete Delete Do Overlap Do Overlap
Old Instance Old Instance Modification | Modification
Normal Delete Delete Delete No
Minimization || Old Instance | New Instance | New Instance Change
Replace the
QOrne Minimize the | Old and New | Minimize the No
Difference Old Instance | Instances with | New Instance Change
Minimization a Minimized
Instance

Table 3.1 - Instance Set Modification in terms of the NI Type
In the table it is assumed that contradiction is considered only between discordant
instances, and minimization between concordant instances. A little liberty is taken
with the category terms. An equal one-difference instance really contains one discrim-
inant variable. Also, subset equal, and superset instances are subsets of overlap

instances. Overlap modification is defined below.

The following subsections detail each type of change which can be made to an IS

for all classes of NI to IS interaction.

3.5.1. Simple New Instance Addition

If the NI does not contradict any Old Instance (OI), and it cannot be minimized
with any OI, then it is simply added to the IS with no further change. The network

may already fulfill the NI, or it may have to be modified.
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3.5.2. New Instance Consistency

When a NI contradicts an OI in the IS, there is always a change made to the IS.
The NI, in this case, is added without modification since it has precedence. A NI may
contradict any number of OI's. Once the IS has been made consistent it may be neces-
sary to minimize the set. The NI in this case cannot not be minimized. There are only
two unique ways in which contradiction can occur upon input of a NI These are

explained in the following two subsections.

3.5.2.1. Subset Contradiction

When the NI is a subset or equal instance to an OI, the Ol is deleted from the IS.

This type of contradiction is called Subset Contradiction. An example of subset con-
tradiction follows.

ABC ™ Z (On

AB — Z (NT)
In this case the OI is removed and the NI added. This is equivalent to the deletion

operator .

3.5.2.2. Overlap Contradiction

When an OI overlaps with the NI and is not a subset of the NI, Overlap Contrad-
iction takes place. In this case the OI is removed, but one or more modifications of
the OI are added to the IS. The change to the IS is such that the IS includes the inter-
section of the representation sets of the OI and the NI. Thus, the added instances are
always of the form of the OI concatenated with one discriminant variable of the NI

Following is an example.
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AB > Z (0D

ACD > Z (ND)
ACD — Z Consistent and Minimal Set
ABC > Z
ABD —> Z

The modified OI instances added to the set are called Overlap Modifications.

By adding one instance for each discriminant variable in the NI the set is made
immediately minimal. Thus » overlap modifications are added for each overlap
instance, where n is the number of discriminant variables which occur between the NI
and the OI. Note that the key point is that there must be at least one discriminant vari-
able between all discordant instances.

As shown in the formal description, it is also be correct.to add 2"-1 overlap

modifications to the IS, where n is the number of discordant variables between the OI

and the NI. This is equivalent to the expansion operator £. Following is an example.

A —>Z (oD
ABC > 2Z (NI)
ABC = 2Z Consistent Set
ABC & Z
ABC = Z
ABC — Z

This set would then be minimized such that there would be two overlap modification
instances each with one discriminating variable. The final set is the same regardless of

the method used.
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Note that a NI which is a superset to a discordant OI is also a type of overlap

contradiction.

3.5.2.3. Contradiction and Network Function

An important point about contradiction modifications is that only the NI can
cause any change to be made to the current network. Any instances deleted are trivi-
ally fulfilled and all overlap modifications are already fulfilled by the network. This is
because by definition the network already fulfilled any OI's which were contradicted
by the NI. The representation sets of the overlap modification instances are subsets of
the representation sets of the OI's which were removed. Thus, the overlap

modifications must still be fulfilled by the current network.

3.5.3. New Instance Minimization

If a modification was made to either £, or £, by the 1L operation, or by addition
of the NI, then it is possible that minimization must take place within the respective
sets. As specified earlier, precedence and order do not effect minimization, If two
instances are not minimal with respect to each other, the change to the IS will be the
same regardless of which instance is the NI. Again, this is because upon addition of
the NI to the IS, all information is consistent, only the representation, not the content,
of that information is to be changed. However in terms of the algorithms used to

modify the logic network, it is necessary to distinguish which instance is the NI.

For use in the later chapters on algorithms, five categories of minimization are

defined. The first two are types of normal minimization, and the last three are types of
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one-difference miniinization.

3.5.3.1. New Instance Superset Minimization

If the NI is a superset or equal instance to an OI, then the NI is removed from the
IS. Superset Miﬁimization, (and Subset Minimization, which is explained in the next

section), is based on the boolean identity

X t+Xxy=Xx.
The NI may be a superset instance to more than one OI, but it is a sufficient con-

dition that there be just one, for removal of the NI from the IS. When a NI is a super-
set instance, there is never a need to change the network, since the IS is not changed.
Following is an example of this kind of minimization. In the examples which

follow, an initial consistent and minimal IS is assumed. The OI's are numbered and

the NI is labeled as such.

A —>Z (1)
B > 2Z (2)
AB & Z (NI)

Either OI 1 or 2 is sufficient to cause removal of the NI.

3.5.3.2. New Instance Subset Minimization

If the NI is a subset instance to an OI then the OI is removed from the IS. A NI

may be a subset to any number rof OI’s, and all of those OI’s are removed from the IS.
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ABC D Z (1)

BD = Z (2)
AE > Z (3)
A —Z (ND

In the above example, OI’s 1 and 3 would be deleted from the IS. OI 2 would not be
deleted because for subset minimization there must be a non-null subset. The NI
would be added to the IS. For this type of minimization, the network may or may not

have to be changed.

3.5.3.3. New Instance One-Difference Equal Minimization

One-Difference Minimization refers to the case when two concordant instances
contain one discordant variable, and one instance is a subset of the other. When the
instances are proper subsets, the minimization is called One-Difference Equal

Minimization, and it is based on the boolean identity

Xy +xy =x
In this case, the two instances are replaced by one instance without the discriminant

variable.

The NI may match up with a maximum of » OI’s at once in this manner, where
n is the number of variables in the NI. This follows from the fact that in one-
difference minimization only one discriminant variable can occur in any OI, together
with the assumption that the IS is minimal before the NI addition. Below is an exam-

ple.
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ABC > 2 (1)
ABC > Z 2)
ABC — 2 (NI)
In the above example both 1 and 2 can be minimized with the NI. The NI and 1

reducetoA C —> Z, and the NI and 2 reduceto A B ~> Z. The new IS would be

made up of these two instances.

3.5.3.4. New Instance One-Difference Subset Minimization

A NI, fulfilling one-difference requirements, which is a subset instance, may be
minimized with any number of OI's simultaneously. One-Difference Subset Minimi-
zation, (and One-Difference Superset Minimization, which is explained in the next

section), is based on the identity

X+xy=x+Yy
Following is an example.
ABCD —>Z 4))
ABD — Z 2
ABC > Z 3)
AB > Z (NI)

The NI is added as is to the IS. Instance 1 is reducedto ACD — Z , and 2 is
reduced to B D —> Z. 3 cannot be reduced since there is more than one discordant

variable between it and the NI.
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3.5.3.5. New Instance One-Difference Superset Minimization

When a NI, fulfilling one-difference requirements, is a superset to an OI, it may
simultaneously be minizable with less than 2" instances in that category, where 7 is
the number of variables in the NI. In this case only the NI is modified. This is a case
where the minimization can be non-unique. In the example below the NI is a one-
difference superset to both of the OI's. Although it could be minimized with either
one, once it has been minimized with one, it cannot be minimized with the other. The
NI can be modified to B C D —> Z with 1, and to A C D —> Z with 2. Either

representation is minimal.

AB > Z (1)
ABD > Z )
ABCD > Z (NT)

The above example demonstrates that the minimal IS in not a unique IS, although
it always represents the same knowledge. The non-uniqueness of minimal boolean

representations is a well established fact in boolean algebra.

3.5.3.6. Algorithmic Issues of Instance Set Minimization

Following are a couple of points about NI minimization which can be useful in
terms of algorithms used to minimize the IS when an NI is presented. Two basic

methods of accomplishing minimization are here discussed.

The first way is to compare the NI against all OI's simultaneously. This is the
parallel method of minimization. It is also equivalent to the algebraic method, where

all of the instances, including the NI, are put into one large boolean equation and
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minimized using methods of boolean algebra. Two of the defined algorithms do a

parallel maintenance of the instance set in the network.

The other method is the sequential method which compares the NI individually
against each Ol and minimizes the NI only against one given OI at a time, by repeated
applications of the three boolean identities shown in an earlier section. This is the
natural method for programming on a Von Neumann machine, and this method is used
in the first defined algorithm. When using a sequential algorithm, one which tests the
NI individually against each OI, to minimize the IS, the following considerations

occur.

3.5.3.6.1. Mutual Exclusivity of Minimization Categories

When an NI is initially added to the IS, it can be minimizable with single OI's
under only one of the NI minimization categories, normal or one-difference minimiza-
tion. For example, if the NI is a superset instance to an OI, then it cannot be minim-
ized with any other Ol, except as a superset instance. This follows from the assump-
tion that the IS is already minimal. This property holds for all types of NI minimiza-

tion.

3.5.3.6.2. Minimization Ripple

Although a NI can only initially be minimized under one NI minimization
category with any OI, after that minimization has taken place, it is possible that the
modified instance(s) can be minimized with other OI's under a different NI minimiza-

tion category. This notion is referred to as Minimization Ripple. Following is an
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example of minimization ripple.

AB & Z ¢y
ACD &> Z (2)
ABC O Z (NT)

Initially the NI can only be minimized with 1 as a one-difference minimization. After
the NI has been minimized to A C —> Z, it can then be minimized with 2 using sub-

set minimization. In this case, OI 2 is deleted from the set.

The notion of ripple does not occur when making the IS consistent. One com-
parison, and possible modification, of the NI to each discordant OI, in parallel, is

sufficient to make the IS consistent.

3.5.3.7. Why Keep the Instance Set Minimal

The assumption of minimality is not necessary for the correct functioning of the

system. The assumption is desirable though, for two basic reasons.

The first has to do with efficiency of hardware usage. The computer storage of
fully expanded instances can be orders of magnitude greater than that necessary for the
minimal set of instances. Other memory and communication necessities are also

greatly reduced by using a minimal set.

The other reason is heuristic. If one desires to find a minimal hardware circuit to
compute a boolean function, one usually minimizes the function in order to find which
groupings of variables can be‘st be utilized to synthesize the minimal circuit. An
instance which is minimal, a Prime Implicant, gives information about which group-

ings of variables tend to best discriminate the desired output. Thus, a minimal IS is a
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resource for aiding in the formation of optimal networks to fulfill the IS. When for-
mulating algorithms to cause adaptation of the network, the minimal instances in the

IS will allow for higher efficiency and optimization.

For neither of the above cases is it necessary to have perfect minimization; i.e.
the smallest theoretical set of instances which can represent the information. Having
Relative Optimality, defined as being within a "reasonable” distance of perfect
optimality is a notion which we hold to throughout this research. Perfect optimality is

rarely worth the effort it takes to find it and usually requires global knowledge.

3.6. Feedback Variables

Once an output variable is defined, by having been used in an instance in the
instance set, it can be used in the antecedent of instances later input to the system.

When an output variable is thus used, it is called a Feedback Variable.

There are two basic ways in which feedback variables can be used. The first is to
accomplish Rule Chaining. Rule chaining is a commonly used method for
simplification and efficiency for both storage and modification requirements. Assume
the following instance set.

X, X, = Z,
X_l X3 “""‘) Zl

Now we wish to add an output variable, Z,, which should always be 0 when Z; is 1.

We can reproduce all instances which cause Z; to become 1, and give them the
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antecedent Z ». This method is not only wasteful of storage, but is incorrect, since Z
could be 1 for states of the environment which do not match any instances. The obvi-

ous answer is to allow the new instance to be defined directly.

Z, = Z,

Rule chaining is also a useful method to do instance decomposition. Rather than
have instances with very long antecedents, rule chaining can be used to create higher
abstractions of variables which in turn can be used in a more parsimonious and adap-
tive manner (i.e. It is much easier to change the definition of a single variable, than to

change the definition of all instances which define that variable).

The other use for feedback variables is for actual Feedback. The rule "if X is 1

and Z is currently 1, then cause Z, to become Q" is represented as:
Xz, 2 2,

This example demonstrates that the knowledge base defines a finite state machine
which maps partial state to partial state. Note that through the use of feedback vari-
ables it is possible to create continuous oscillations between output vanables which

can be used for both sequencing and timing.

It might initially appear that allowing feedback variables in instances would
make it very difficult to keep the instance set consistent and minimal. Indeed this is
the very cause of inefficient truth-maintenance systems in many Artificial Intelligence

applications. However, there is a simple solution. We state that for consistency and
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minimization maintenance, a feedback variable is treated as if it were any other input

variable.

Assume the instance set is made up of the following two instances.

X = 2,

X, ™ 2,

Now we add the instance Z; —> z 5. This NI contradicts the second instance. In this
case, since Z; is treated like any other input variable, the second instance becomes
X, z 1 —> Z,. This new instance is always transient at best, since the first instance
will never allow this condition to remain. Perhaps this very transience between states
will be a key in allowing sequential solutions to problems in this new paradigm. The
overall result, though, is that the new instance is fulfilled; i.e When Z, is 1 then Z,

becomes 0.

At first glance of the above problem, one might be tempted to say that for con-
sistency it is necessary to substitute all occurrences of feedback variables with the
antecedents that define them. However, this initially intuitive notion can not succeed
because of the partiality of the instance set function. The fact that we replace a feed-
back variable with the antecedents that define it, does not account for the times when
the variable is active even though the environment state does not match any instance in
which the variable is defined. For example, assume that we have the case as just
defined above. One might suggest that we replace Z, —> Z_2 with X; — Z,, since

X — Z, is the only instance that defined Z, as an output variable. However, that
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definition of Z, is only a partial definition. There are cases in which Z; could equal 1
while X ; would be 0, in which case Z, would not be sct to O if the substitution were
allowed. Thus, we see that substitution is not a correct method since it can change the

meaning of the instance set.

3.7. 3 State Inputs

In the earlier section explaining how the logic network fulfills the instance set,
we assumed that the logic network is a boolean network. This is the way in which it
will probably be used in terms of fulfilling the instance set. However, the logic net-
work to be proposed is sometimes a ternary network. The 3-state capabilities are
needed for some algorithms to make the network amenable to adaptation. Thus, if it
were desired, one could allow 3-state inputs from the environment and 3-state outputs
from the logic network. But, even though this is possible, it is not allowed to define
instances in terms of 3-state variables. For example, one could not input an instance
which states that when a certain variable is "don’t know" then the output should be at
some 3-state level. These kind of instances could be made acceptable if it proved to
be a desirable functionality, but the current definition of instances allows only boolean

variables in an instance.

If 3-state inputs from the environment were used within the current definition of
instances, the overall change to the network function is minor. When only boolean
environment variables are allowed, the cells in the state space which are "don’t
knows'" become either a 1 or a 0. When 3-state variables are input from the environ-

ment, the "don’t know" cells become 1, O, or "don’t know".



Throughout the rest of this paper, we assume that boolean variables are used in
the environment, having mentioned that a ternary network could be used with 3-state

variables.
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Chapter 4

SYSTEM ARCHITECTURE

The overall System Architecture is discussed in this chapter. Details of physical
implementation, such as memory sizes, bus widths, and detailed interconnection
schemes and protocols are not discussed in this chapter. Physical Implementation is
referred to throughout the dissertation, but is beyond the scope of this document.
Thus, for example, we can simply say that there is a communication path between two
elements allowing passage of certain types of messages, without having to state details
of how the message would be packaged and communicated. Although VLSI and
wafer-scale implementation efforts are ongoing, these are not covered in this disserta-

tion,

Another reason to delay implementation discussion is that implementation
depends on the particular Algorithm which is used. The basic architecture presented
is amenable to a number of different algorithms. For example, each node of the net-
work can be designed as a simple finite state machine. The exact capabilities of this
simple unit would be different for each algorithm. However, there are some basic

characteristics shared by nodes in all algorithms, such as RAM.

Explanation as to why each method was chosen and ways in which the architec-
ture can be used are discussed in the next chapter on primitive mechanisms. First the

overall architectural structure is discussed. Each part of the system is then discussed
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in more detail in the following sections. Communication between subsystems are
mentioned in the next section. The final sections discuss methods of ASOCS usage
which allow for more efficient use of the architecture. Discussion of the integrated
functions carried out by the modules of the architecture is found in the next chapter on

primitive mechanisms.

4.1. Overall Structure

The generic name given to the system is Adaptive Self-Organizing Concurrent
System (ASOCS). If the system were thought of as a black box, it would appear as in

figure 4.1.

Outputs

{}

Instances

—
)

ASOCS

{}

Inputs
Figure 4.1 - ASOCS System

The system has two modes of operation: Execution and Adaptation. During execu-

tion, the system receives boolean inputs and maps them into boolean outputs. This
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mapping is done in a combinatorial and data flow fashion, thus enabling execution at
very high speeds. When in the adaptation mode, new instances can be added to the
system. During adaptation mode, inputs from the environment are ignored, while the
system reconfigures itself to accommodate the change to its function. These are the
only modes of operation, and there are no other necessary inputs or outputs to the sys-
tem other than those shown in figure 4.1. The Adaptation mode could also be called

the Learning Mode.

4.1.1. Input/Qutput Relationships

The number of inputs and outputs are limited by the number of nodes within the
network. Figure 4.2 shows the representation of the system, where x; are the input

variables and z; are the output variables.

2y 2p Iy z

Fast Execution

Instances
) Fast Adaptation
Self-Organizing
X1 X3 X3 X,

Figure 4.2 - Input/Output Variable Relations
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Logically, there is no limit on either the number of inputs or the outputs or the rela-
tionship between them. For n inputs there can be any number of outputs defined,

although there can only be 2?" unique outputs having differing functions.

Thus, the overall topography of an ASOCS network can be very diverse. The
network could have a converging topography like a triangle where a number of inputs
converge to a few outputs for decision and classification. It could have a diverging
topography, like an upside-down triangle for coordinated control of multiple motor

units.

4.1.2. ASOCS Structure Overview

This section gives a brief summary of the modules contained in the ASOCS sys-
tem. Figure 4.3 shows the structure of the system. The two main entities are the
Adaption Unit (AU) and the Logic Network. During execution mode, only the logic
network is active. Data comes in at the inputs and flows asynchronously through the
network with only propagation delays. Figure 4.4 shows that part of the total ASOCS

system which is active during execution mode.

During adaptation mode, the other parts of the system become active. The AU
and the logic network are connected by a Broadcast Bus. The AU can broadcast a
message to the entire logic network by placing the message on the broadcast bus, but it
cannot address a specific node within the network. A node within the network can
aiso place a message on the broadcast bus, which can be read in turn by the AU or any

other node within the network.
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Figure 4.3 - Overall System Structure

The AU can feed test data into the bottom of the network on the Presentation
Path and through the Execute/Adapt Input Selector, which is controlled by the AU.

During adaptation, the input selector gets its input from the AU, which it then passes
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Figure 4.4 - ASOCS during Execution Mode

to the network. During execution, the input selector passes the boolean inputs from

the outside through to the network.

It is also necessary to bind variables, in a flexible manner, to actual hardware
lines. This is done for both input and output variables by the Input Binder and Out-
put Binder. Thus when new (not previously used) input or output variables are used
in a new instance, an input or output line will be allocated for the new variable. The
bindings take place under direction from the AU. The Feedback Path allows output

variables bound in the output binder to be fed back to the input binder.

The AU also has the ability to monitor the outputs of the logic network by use of
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the Test Path.

As earlier stated, only the logic network is active during execution mode.
Boolean variables enter the system from the environment and flow through the logic
network in a combinatorial fashion. Qutput variables can also be fed back to the net-
work in an asynchronous fashion. The AU and binders become active in the adapta-

tion mode. This mode is triggered by the input of new instances to the system.

Each part of the system architecture is now discussed in more detail.

4.2. Network Node

A single node within the logic network is represented in figure 4.5. A node in the
network is made up of two basic parts; The Control Unit and a dyadic Dynamic Pro-

grammable Logic Module (DPLM).

During execution mode the DPLM is the only active element, as shown in figure
4.6. (It would of course be possible to allow the control unit to perform unrelated

activities, such as self-testing, while the system is in execution mode.)

During adaptation the control unit has the ability to change the function of the
DPLM. It can also send and receive messages to or from neighbor nodes, and can
change the interconnections between itself and neighbor nodes. The control unit has

the ability to read from or write onto the broadcast bus.

4.2.1. Dynamic Programmable Logic Module

The DPLM is a 2 input single output logic gate. The lines going in and out of

the DPLM are called the data lines. The DPLM can be a 3-state, or ternary, device
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Figure 4.5 - Single Network Node
rather that the typical 2-state boolean gate. Thus, an input or output variable can have
any one of three values which are called positive, negative, and don’t know. These

three values are represented as before by "1", "0", and "7".

When an input or output has a value of positive or negative, it is considered as

asserted. The positive and negative levels could be thought of as being equivalent to
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Figure 4.6 - Single Node during Execution Mode
the two states in the boolean world, while a level of don’t know means that the line is

bound but has not been asserted.

The DPLM must be a ternary device in order to accomplish certain functions
during the adaptation mode of the adaptive algorithm 1. The DPLM need be only a
2-state gate for the adaptive algorithms 2 and 3. Thus, the discussion of the ternary

DPLM is not important for all algorithms.

During execution mode, boolean values appear on the data lines, and the DPLM
is used as an ordinary boolean gate. It is however possible to extend the system and

use 3 state inputs from the environment, as discussed in chapter 3.

Although the DPLM can be a 3-state device, it can only be set to any one of the

16 boolean functions of 2 inputs, which are shown in Table 4.1. Figure 4.7 shows the
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x1x3 | x1x3 | xpxq § x1X3
00 01 10 11 Function
0 0 0 0 Neg
0 0 0 1 Xy1Xq
0 0 1 0 XX,
0 0 1 1 x
0 1 0 0 xxy
0 1 0 1 Xy
0 1 1 0 XOR
0 1 1 1 X +xy
1 0 0 0 XX
1 0 0 1 Equiv
1 0 1 0 X,
1 0 1 1 x+x,
1 1 0 0 X,
1 1 0 1 X+x,
1 1 1 0 X +x,
1 1 1 1 Pos

Table 4.1 - Boolean Functions
symbolic representations that will be used in future examples to represent these 16

configurations.

The DPLM is a universal 2 state device, since it can compute any 2 state func-
tion. It is not, however, universal for 3 state functions. The allowable 3 state func-
tions are defined in terms of the 16 boolean functions which the DPLM can perform.
For instance, table 4.2 shows the truth table for the 3-state DPLM for the And, Or, and
Negation functions. The truth table for any other function can be extrapolated from

these three.
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Figure 4.7 - DPLM Representations

4.2.2, Control Unit

The control unit is a small special purpose finite state machine, with some ran-
dom access memory, and the ability to communicate with the nodes to which it is
directly connected. The amount of memory needed and the function accomplished by
the control unit differ depending on which algorithm is being used to run the system.

Each network node is identical, except for the contents of its memory, and the function
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Table 4.2 - 3 State Truth Tables

of its DPLM.

There is a 4 bit unidirectional line from the control unit to the DPLM. This line
can be dynamically set so that the DPLM can operate using any one of its 16 possible
functions. The number of boolean functions which a node must be capable of comput-

ing is dependent on the specific algorithm.

The control unit can both read and write the broadcast bus The types of messages

passed on this bus will be defined in terms of each algorithm.

The control unit can also send messages on the bidirectional path, called the
Control Path, which connects it to its immediate neighbors. The two nodes which
give input to a node are known as the Child Nodes to a given node, while those nodes
to which the node sends its output are Parent Nodes. There may be more than one
parent node for a given node, but there cannot be more than two children, although
there can be less than two children if one or more inputs are not connected. (i.e. If a

node is only doing a function of one of its inputs). The two nodes which input to a
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parent node are called Sibling Nodes with respect to each other and their parent node.

Figure 4.8 shows a representation of interconnected network nodes.

gar 4 gar Ul

Figure 4.8 - Network Node Interconnections

Each node is numbered for identification. In this case node 3 is the parent to nodes 4
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and 5. Node 4 is the Left Child and node 5 is the Right Child to node 3. Nodes 4 and

5 are sibling nodes. Nodes 1 and 2 are both parent nodes to node 3.

4.2.3. Physical Implementation Consideration

It is deemed useful to here make a brief note regarding the difference between the
basic architecture and the physical implementation of the logic network. In the
representational view, we assume that we can just connect the output of a node to any
other node. We also assume that we can remove old nodes and allocate new nodes as
needed. It is assumed that the interconnections between nodes can be changed at will.
In reality, there must at some level be hardwired paths between nodes, which cannot

change in time.

One possible model for a physical system would be a large array of intercon-
nected nodes with some form of Interconnection Swilches between layers of nodes.
The flexibility of interconnections would be handled through these switches. Figure
4.9 is an example of how one might represent a simple network of 3 nodes at an
abstract level. Figure 4.10 is a possible implementation of the same 3 nodes within a
physical structure, where the labels A, B, and C represent the same nodes. If a change
of connection is desired, the routing would be changed within the switches which sit
between groups of nodes. Control of the switches can be handled locally by the nodes
themselves, without need of central control from an external agent. In a physical
implementation the size and number of switches in between layers would depend on

the algorithm and applications.

Interconnection switches between layers of nodes are not necessary for all
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Figure 4.9 - A Network Representation
ASOCS systems. As will be seen, adaptive algorithm 3 requires no interconnection

flexibility between nodes, and the node interconnections can be static.

4.3. Adaption Unit

The Adaption Unit's (AU} main function is to guide the logic network through
adaptation. It does this by receiving new instances, directing variable binding, and

broadcasting commands to the logic network.

4.3.1. Knowledge Base Maintenance

In adaptive algorithm 1 (AA1) the AU is also responsible for storage and mainte-
nance of the instance set. In the other algorithms the instance set is both stored and

maintained consistent and minimal implicitly in the network.

In AA1, the AU keeps in memory the complete instance set (IS), which is the

knowledge base for the system. When a new instance (NI) is entered, the AU must
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Figure 4.10 - Possible Network Implementation
modify the IS to insure both consistency and minimality. The method used to keep
the IS minimal and consistent is independent of the rest of the ASOCS functions, and

methods were alluded to in chapter 3.

For all algorithms, the AU has an interface to the outside environment. Using
this interface, new instances are entered into the system. It is not necessary for this
interface to be bidirectional, but it may be useful to have it be so in a system imple-
mentation. Information conceming variable Binding could also pass through this

interface.
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4.3.2. Variable Binding

When an instance is entered into the system, it must be stated to which output
variable this instance applies. When the output variable is a new! variable, then it
must be bound to an output line. When the AU receives instances for a new output
variable, it sends this fact to the output binder. Both the input and output binders are
connected to a large number of boolean ports. Each port has a physical address.
Upon receipt of knowledge of a new output variable, the output binder could allocate
an unused port and send the address back to the AU, which in turn would inform the
user so that a physical connection could be made for the new output. Another method
would be for the AU to keep a list of allocated and unallocated ports, thus enabling the
binders to be passive, and the AU would send the new address to the binder. In this
case it would also be possible for the user to specify a port address together with any
new variable input to the system. The same methodology used for binding output

variables could be used for binding input variables.

Note that by adding a layer of flip-flops at the output binder, the system can be

used as a sequential finite state machine.

4.3.3. Adaptation Guidance

For the logic network to be able to properly adapt, it requires some global gui-
dance. This is supplied by the AU by use of the broadcast bus. Upon receipt of a new
instance the AU can communicate information about the new instance to the network.

The AU can broadcast a command to the nodes in the network, which can then

1One which has not previously been used in the network.

82



simultaneously execute procedures triggered by the command. The AU can also send
information to the network through the input selector, and it can monitor the output of

the network.

4.4. System Communication

This section discusses the basic communication paths within the ASOCS system.
The data lines and control paths which reside within the logic network were discussed
in an earlier section. Also the interface to the outside where instances are input to the

AU was mentioned in the section on the adaption unit.

The path which connects the AU and the input selector is called the Presentation
Path. 1t is a unidirectional point to point path from the AU to the input selector and
binder. It has two basic functions. The first is for presentation of instances to the net-
work. This is explained in the next chapter. It allows the AU to send data to the bot-
tom layers of the network which can then flow upwards through the network. The
other use of this path is in directing the input binder when a new variable is introduced

in a new instance.

The path connecting the AU and the output binder is called the Test Path. It
consists of two unidirectional point to point paths. One comes from the output binder
to the AU and contains the current settings of all the output variables. Thus, the AU is
able to monitor the output of the logic network. The other path initiates at the AU and
can send messages to the output binder concerning the binding of new output vari-

ables.



The bus directly connecting the AU and the logic network is the Broadcast Bus.
It is a general bidirectional bus which all nodes in the network can both read and
write. It is the only true bus in the system, since many different modules are con-
nected to it. Only one module (AU or a node) can write on this bus at a time, but all
modules can simultanecusly read the bus. It is not essential that the broadcast bus be
a unique physical entity, since it would be possible to use either the presentation path
or the test path to fulfill the broadcast function. In this case either the test or the
presentation path would send the broadcast message to the top or bottom layers of the
network, and the message could then flow concurrently down or up through the net-

work.

The path between the output binder and the input binder is called the Feedback
Path. The feedback path is a unidirectional point to point link initiating at the output
binder. The feedback path allows for bound output variables to be fed back to the
input binder where they can enter the logic network. This mechanism allows output
variables to be used in the antecedents of instances (as input variables), thus allowing
feedback within the network. It also makes it easy to use intermediate variables in

instances, which allows for chaining of rules and rule decomposition.

4.5. Hierarchical Composition and Decomposition

As discussed so far, the ASOCS system is made up of one entity containing a
singlc adaption unit together with a logic network. When problems become large, it is
many times advantageous to compose or decompose a problem solving system from or

into many subsystems. Not only does one gain the advantages of modular and smaller
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subsystems, but indépendent subsystems can be created, allowing easier independent
adaptation. This and the following sections discuss two ways in which the ASOCS

system is easily amenable to decomposition.

The main reason that ASOCS is easily decomposed is the regularity of its overall
structure, and the equivalence of inputs and outputs. Since outputs of the system have
the same form (i.e boolean variables) as inputs, the outputs from one ASOCS system
can become inputs to another. Any number of ASOCS systems can be combined in

this manner. Figure 4.11 is an example of this type of decomposition.

This type of decomposition is called Hierarchical Decomposition. This follows
because outputs of systems at lower levels are fed into systems at higher levels. For
example, ASOCS systems at low levels could receive low level sensor inputs, in turn
combine these into more abstract outputs, which become the inputs at a higher level.
The regularity of the ASOCS structure allows any number of these systems to be com-
bined. Note that this can be equally considered as a composition technique to build up

an ASOCS system using a bottom-up approach.

Instances are input independently to the different ASOCS modules, and each
module keeps its own instance sét. This method also allows for the use of rule chain-
ing and feedback. Variables output from an ASOCS system can become input to a
system at a lower level either directly or after having passed through any number of

other systems.
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Figure 4.11 - Hierarchical Decomposition
4.6. Layered Architecture
A concept to be used in actual implementation of the ASOCS structures is that of

a Layered Architecture. It was earlier stated that there could be any number of output

variables in relation to the input variables. In theory this is true. However, for an
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ASOCS system, structured as shown in the previous sections, there is typically a
growth in the amount of interconnection connectivity needed between nodes as the
number of output variables increase. In order to allow the ASOCS system to function
within the set interconnection bandwidths of a physical implementation, it is necessary
to constrain the number of output variables being computed by a single system. Yet,
we do not want to severely limit the number of output variables which can be com-

puted. One answer to this problem is to use a layered architecture.

For this type of system, we assume that the ASOCS system as previously defined
(with some changes to be explained) is a single Adaptive Plane. The ASOCS system
so far discussed is basically a 2-dimensional architecture. In the layered architecture
we build a 3-dimensional architecture by stacking some number of adaptive planes

contiguously. Figure 4.12 show the representation of the layered ASOCS architecture.

With the layered architecture it is possible to divide up the total number of output
variables amongst a number of adaptive planes. If their are n current output variables
and m adaptive planes, then each plane could be responsible for n/m output variables.
Each plane can still receive as many input variables as are used in defining the output
variables since this does not cause a critical increase of connectivity between the
nodes. In this case, each plane will usually compute a converging function with more
input variables than output variables, while the overall ASOCS system can be con-
verging or diverging.

There are a couple of basic architectural differences. The adaptive plane in this

methodology is simpler than the system discussed earlier in the chapter. The input
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Figure 4.12 - Layered Architecture
and output binders no longer reside within the adaptive plane. There is a single input

and output binder which serve all of the adaptive planes in the system. The feedback
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path is also no longer in the adaptive plane, and one feedback path from the output
binder to the input binder is sufficient to serve all planes. The AU is relieved of the
duties of variable binding. This function is taken over by the Instance Router. The
instance router receives instances from the outside, causes variable bindings when
necessary, and routes the instances to the adaptive plane which is responsible for the
output variable defined by the new instance. Since each plane is responsible for a
non-intersecting subset of the output variables, all of the planes can undergo adapta-
tion simultaneously. Also, any plane which is not undergoing adaptation, may con-

tinue in the execution mode.

There are many other methods for decomposing the ASOCS system due to its
regularity. One intuitive method which would fit in with the layered architecture
would be to have a layer of primitive functions between the input binder and the adap-
tive planes. These would consist of commonly occurring values which could in turn
be shared by many of the adaptive planes so that redundant work within planes could
be diminished. One could also use hierarchical decomposition to solve this problem,
by having layered ASOCS systems at a lower level feeding into systems at a higher

level.
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Chapter 5

PRIMITIVE MECHANISMS IN ASOCS SYSTEMS

Given a brief understanding of the architecture and its capabilities, we can now
discuss the basic primitive mechanisms, or methods, used to make the system work in
a functional manner. These mechanisms are techniques used in solving a goal
specified by the constraints of the system. The following methods are the building
blocks out of which useful algorithms can be built. In this sense, the algorithm is the
overall strategy used to implement a desired functionality on the ASOCS architecture.

Not every method is used with every algorithm, but the majority are used with each.

We first discuss the communication capabilities necessary to build the basic
primitives. These communication abilities allow the system to adapt in a self-
organizing and concurrent fashion. System communication is divided into the
categories of Global and Local commands. Using these techniques, four basic primi-

tives are defined, out of which all current algorithms are built. These four are

1. Instance Introduction
a. Presentation
b. Instance Broadcast.
2. Node Selection.
3. Node Addition and Combination.

4. Self-Deletion
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Each of these topics will be discussed in separate sections. The last section will

cover the general methodology used for fault detection and recovery.

5.1. Global Commands

In order to allow the ASOCS structure to adapt there must be a method by which
all nodes can simultaneously be working towards a specific goal. Although each node
can accomplish most of its function using only local knowledge, there must be a
method by which all nodes can know what they should be working on at a specific
time. For example, a node should not change its function during execution mode.
Thus, there must be a global message to tell nodes when the system is in the adapta-
tion mode, at which time changes are permissible. The communication abilities dis-

cussed in this section are used only during the adaptation mode of ASOCS operation.

These goals are accomplished by the use of Global Commands. A global com-
mand is a message written onto the global broadcast bus. The adaption unit initiates
all global commands. By placing a predefined message on the broadcast bus, the AU
can allow all nodes in the network to execute specific procedures. The action which a
node takes will depend upon its current state. Thus, the system is not "single instruc-
tion multiple data", rather the global instruction restricts the independence of the net-
work nodes to actions compatible with the common goal. It is in this sense that the

AU guides the network through adaptation.

A node in the network, when uniquely selected, may also place a message on the
broadcast bus which can in turn be read by the AU and all other nodes in the network.

In these cases it is essential with the single node be uniquely chosen, so that bus
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conflicts due to multiple nodes simultaneously trying to write on the bus do not occur.
This selection is performed by a primitive process called the selection wave. For some
commands, any node may have the ability to hold a ready line inactive until it has
completed the action defined by the global command. Thus, the AU can time global

command issuance in an orderly sequence.

5.2. Local Commands

The other type of communication, Local Commands, occur under the restrictions
placed by the global commands. Local commands consist of a message originating at
one node and sent to one or more of its directly connected neighbors. A global com-
mand can allow execution of one or more types of local commands. Each of the prim-
itive mechanisms discussed below is achieved by a combination of global and local

commands.

5.3. Instance Introduction

There are two basic ways in which the AU can send information to the logic net-

work about specific instances. They are Presentation and Instance Broadcast.

5.3.1. Presentation

The AU presents an instance to the network by setting the network data lines to
the values matching the instance which is being presented. In this way, each node can
detect what its output currently is for that instance. The node can then use that infor-
mation to evaluate its ability, in terms of the instance, to intervene in the network

adaptation,
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Since instances are incomplete (they do not contain all the variables in the
environment) there are many different environment states which could match the
instance being presented. Those input variables which occur in the instance being
presented are set to a 1 or a 0, (i.e. asserted), and all remaining variables are set as
don’t knows, since their value in a given environment state does not affect what the
final output of the network must be. Thus the ASOCS must use 3-state DPLM’s if

presentation is to be used as the instance introduction mechanism.

Assume, for instance, that there are currently 8 bound input variables entering the
network from the environment: X ; — Xg. The AU presents the instance
XXX, D Z
to the network, through the input router. The router asserts the variables X; and X7 to
1 and the variable X5 to 0. The other 5 variables are set to don’t know. This data then
flows combinatorially through the network data paths (DPLM’s). This situation is

shown in Figure 5.1.

The AU would then send a global command to the network signaling the nodes
that a presentation is taking place. Each control unit can detect and store the output of
its particular DPLM. The AU can also read the output of the top node relating to the
output variable Z on the test bus, which is either 1, 0, or 7. If the example instance
were a new instance, and the output of the top node corresponding to Z were 1, then
the network would require no adaptation because it already fulfills the new instance
for all states of the environment. If the output were a O or a ?, then network adaptation

would have to take place.
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Figure 5.1 - Instance Presentation

Without 3-state logic each possible state of the environment matching the
instance presented would have to be sequentially presented to the logic network to
achieve the same results. For a given instance, 2" ™™ states of the environment would
have to be shown to the network, where n is the number of bound variables in the
environment, and m is the number of variables in the instance. For the above exam-
ple, 28-3_ or 32, enironment states are represented by the single instance presentation.
Thus, the problem which is exponential with the number of instance variables for a 2-

state scheme, can be solved in a single iteration using 3-state presentation.
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5.3.1.1. Presentation and Learning by Example

In the foregoing, it was assumed that the AU would cause the input variables to
be set to a 3-state value. However, it is equally reasonable to allow the environment to
to set the value of the variables during presentation. This is a another form of learning
by example.

For example, assume that the logic network is to be used in controlling robot
motion. Assume that control of a part of the robot, the arm, is the current concemn.
Sensors could be connected directly from the arm into the input binder. Inputs not
critical for arm motion would be disconnected and could thus be don’t cares. The arm
could then be put through sets of motions, and only the output required for successive
arm positions would be entered into the ASOCS system. The system could then
adapt, and the arm could be moved to a new position and different outputs could be

specified.

This technique could be carried one step further if the outputs are also connected
to a mechanical device, rather than input manually. Thus relations between input and
output could be entered into the ASOCS without having to manually derive or specify

the rule base.

5.3.2, Instance Broadcast

The alternate method of communicating information to the network about a sin-
gle instance, Instance Broadcast, uses the broadcast bus. The actual instance is
- placed on the broadcast bus in a symbolic form. For example, using the same instance

defined in the previous section, an encoding of the exact instance X, X 2X7 = Z4,
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or a list of the variable names, could be broadcast on the broadcast bus. In this case, a
node must know what its function is in terms of the input variables of the system. For

example, figure 5.2 shows a node receiving an instance broadcast.

Broadcast Bus
And

ABCDE (Pos) _
BDE

Figure 5.2 - Instance Broadcast

In this case the node knows that it does the And function of the variables B, D , and
E. The instance broadcast consists of a list of the input variables occuring in the
instance, together with whether the instance is positive or negative. By comparing its
function and variables, with the variables written on the broadcast bus, the node can
determine its potential involvement in network modification relating to the broadcast

instance.

5.3.3. Combination of Presentation and Instance Broadcast

The technique used to inform the network about a new instance has a strong
effect on the type of ASOCS algorithm used. In the presentation method a node need
know nothing about the semantics of the variables it is acting upon, rather the nodes
need only know the funcrion it produces for different states of its inputs. AAl uses
the presentation technique. The network node need no nothing about the variables

coming into it, it is only concerned with what it outputs (functions) for different input



patterns.

AA2 and AA3 use instance broadcast as the method of instance introduction. In
this case each node must know something about its function in terms of the semantics
of its variables (i.e. A node would know if the variables A and B were part of its func-
tion). However, AA2 and AA3 use DPLM’s which only compute the And function

and thus a simple list of the variables computed at a node can be stored.

A variation of instance broadcast can be used to allow more general functions in
the DPLM. If the function becomes complex, then the memory required to represent
the function will increase. Complex functions occur when inversions are allowed
between nodes in the network. For example, figure 5.3 shows two nodes with their

outputs going to a new node.

Figure 5.3 - Network Representation
If the function of the top node is the And function, then the top node is the conjunc-
tion of the union of the bottom nodes, which is ABCDE . When the instance is broad-
cast the node need only compare its variable list with that of the instance. However if

the right input to the top node was inverted, and the top node were still an And gate,

97



then its function woild be

ADBCE =AD (B +C +E)
This type of function would become increasingly "messy"” as it passed through more
inversions. It would also be more difficult to compare this type of function with the

list of variables given in the instance broadcast.

There is a simple way of solving this problem. Rather than store the function of
the node, just store the list of variables. Together with the NI broadcast of a list of
variables, do a presentation of the instance to the logic network. Thus, instead of
comparing to ascertain if it matches the complex function, the node need simply look
at its output during presentation, to see if it matches the instance. In order to allow

this extension, a 3-state DPLM must be used.

5.4. Selection Waves

1t is often necessary to select a node or nodes in the network for a specific action.

It is desirable that this node selection accomplish three basic conditions.

1. It must select "useful” nodes.
2. It must be able to select a single network node.

3. It should use the network concurrency to speed up the selection.

The method of Selection Waves fulfills all of the above criteria.

For ease of explanation of this method, and the other methods to follow in this
chapter, we assume without loss of generality that there is only one output, and thus

one top node in the logic network. The methods discussed are general and can be used
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for multiple output networks with nodes having responsibility for more than one out-

put.

When a selection wave is to take place, a global command is given. Upon receipt
of this command, each node calculates a locally derived criterion, or score, defined by
the algorithm and global command. After calculation of its own score, which is sym-
bolized as a discrete value, a node waits for its two child nodes to send their own
scores with a local command. The node then chooses the maximum score between its
own and that of its two children. The node then sets its Selection State. The selection
state is a ternary value which can be set to Self, Left, or Right. In summary,

self  if node has maximum score

selection state(node) = { right if right child has maximum score
left  if left child has maximum score

Ties are decided depending on system goals. After setting its state the node passes up
to its parents either its own value if its state is self, or the value of the maximum of its
children. After the data has flowed upwards, the top node receives the maximum
value that exists in the network. The time for this to happen is proportional to the

maximum depth of the network.

The wavelike action is equivalent to a heap sort where the top node will always
be sent the highest score in the network. This wave, being half of the total selection

wave is called the Sort Wave.

Once the upward sort wave is completed, the downward flow may optionally be
initiated. The downward wave is called the Arbitration Wave. A binary token is

passed down to obtain the selection of a single node. The top node may start the
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passing down of this token, or it can be started from the AU if nodes do not test

whether they are the top node.,

Each node follows the same steps.

1. If a Qis received from all parents, then pass a O to both children.
2, If a1 is received from any parent, then
a. If state is self, then this node is selected. Send a 0 to
both children.
b. If state is left, send a 1 to the left child and a O to the
right child.
c. If state is right, send a 1 to the right child and a O to

the left child.

Thus, one node is always uniquely selected during the arbitration wave. The total time
necessary to select a node in the selection wave is proportional to 2 times the number
of levels in the network. Thus, selection time O (d) and = O (log (n)) where d is the

depth of the network and » is the number of nodes.

Following is an example of a selection wave in a logical network. Figure 5.4
shows a logical network where each node has calculated its own local score. Each
bottom node sets its selection state to self and passes up its value to the second layer.
In this case the first node in the second layer sets itself to right and the second node

sets itself to left. Both of these nodes pass an 8 up to the top node. The top node can

IRecall that the AU can monitor the result of the sort wave.
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Figure 5.4 - Network with Deduced Scores
arbitrarily decide to set its self to either right or left. Assume that the top node sets
itself to right. Then it passes a 1 to its right child and a O to its left child. The right
child has a state of left, so it would pass a 1 to its left child, which is the bottom mid-

dle node. Upon receipt of the 1, this node would know that it had been selected.

If the left node on the second layer had been an eight, rather than a 0, it would
have decided during the sort wave whether to set its state to self or right. The decision
regarding this choice in case of ties could be made (a priori) on the basis of whether
deeper or shallower nodes were best for the overall goal of the selection. Depth and

other decision factors could also be part of the criterion evaluation.
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5.5. Node Addition and Combination

When a new instance is entered which causes the network to no longer fulfill the
instance set, network modification or update must take place. The first step in the
modification of the network is the Selection of Nodes which will participate in the
growth process. When a node is chosen to participate in the growth process, it is

labeled as a Growth Node.

5.5.1. New Node Addition

The nodes selected during the selection phase, are not always sufficient to bring
the network to complete fulfillment of the instance set. In this case, New Node Addi-
tion is necessary. New node addition refers to the situation when new nodes are allo-
cated for the network, under the guidance of the AU. These are also labeled as growth

nodes.

5.5.2. Node Combination

Once a sufficient group of growth nodes has been selected, (or added by new
node addition), the nodes are combined. Node Combination is the method by which
growth nodes are connected together until the top node of the modified network is a
complete discriminant node. The order of connection and the decision about which

nodes should combine is dependent on the algorithm. Node combination consists of

1. Allocation of a new node.
2. Connection of two growth nodes as children of the new node.

3. Setting of the new nodes function and memory by the children.
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Figure 5.5 is a representation of a logical network in which nodes A and B and E

have been selected during the selection phase.

A A A
[ P 1 1l 1 I

Figure 5.5 - New Node Addition

Nodes C and D are new nodes which have been allocated by new node addition, given
variable inputs and functions, and have also been set as growth nodes. Figure 5.6is a
possible node combination which could take place when the AU gives the global
growth command. The nodes which are labeled with an "x" are the nodes which had
to be allocated to allow the con;xbination of the growth nodes. There will always be
n—1 new nodes allocated for n growth nodes, since that is the number of connections

necessary to reduce n inputs to 1 output.

The order in which the nodes combine may or may not be important, depending
on the algorithm. The function of the new parent node is defined locally by the child

nodes in each case. In a local growth sequence, two nodes become siblings, a new

103



Figure 5.6 - Node Combination

node is allocated to which they send their outputs, and each sibling node sends a Set
Function local command to the newly allocated node, which causes the new node to
be set to the correct function. Details of the set function command are algorithm
dependent. It may also be necessary at this time for the memory of the new node to be
loaded with some information from its children. This loading of information is called

Memory Inheritance.

A key issue is the method by which two nodes are selected to combine together
and how a new node is allocated for them. The method used to select which nodes
combine together are both algorithm and implementation dependent. However, a few

possible methodologies are outlined here.
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1. They could be chosen according to topographical location, depend-
ing on shortest distance or shortest path between nodes, or other related
measures. Local search wave commands would be used to find closest

neighbors.

2. A simple method would be chronological combination. The first

node selected would automatically join with the second node, etc.

3. A daemon, called the Allocator, having extended knowledge of the
network structure, could be in charge of both selection of nodes to join,

and allocation of new nodes.

4. The AU directs the network through node selection and monitors
information on the broadcast bus about nodes which have been
selected. The AU could then select which nodes should join together,

using the information garnered during node selection.

5. Combination can also be performed on a purely local basis by using
the information output by selected nodes. Since all nodes can read the
broadcast bus, each node can collect information about each node
selected for growth. Since each node has the same deterministic algo-
rithm, each growth node could locally decide which growth node it

must combine with, and no cutside intervention is needed.

105



5.6. Self-Deletion

Theoretical optimality, in terms of the number of nodes necessary to fulfill the
instance set, is not the goal of this system. However, Self-Deletion is performed to
make the network relarively optimal. If a node is no longer playing an active role in
the functioning of the network, it can be deleted or removed from the network. It will
be seen in the following chapters that it is possible for a node, on a local basis, to
decide whether it is useful or not. This section discusses the mechanics of node dele-

tion assuming it has been determined that the node can be deleted.

Self deletion occurs only when the self-delete global command is issued, after
which actions are undertaken by the network nodes through the use of local com-
mands. A node which determines that it is deletable sends local commands to those of
its neighbors which should also be deleted because of their relationship to the original

node.

5.6.1. Node States

There are three basic states of nodes in the network, with respect to the instance
set. A node which if deleted would not prevent the network from fulfilling the
instance set, is called a Non-Discriminant Node. A non-discriminant node can be

deleted from the logic network.

A node which gives the correct output for a given bound output variable, for all
states of the environment, is a Complete-Discriminant Node. Every top node

corresponding to a given output must be a complete discriminant.
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Any other node which is not one of the two above types, is simply called a
Discriminant Node. A discriminant node discriminates between at least two discor-
dant instances in the instance set. A node discriminates between two discordant
instances when it asserts one truth-value level for all environment states matching one
of the instances, and it asserts the opposite level for all environment states matching

the other instance.

Proofs showing that nodes can be deleted from the network without changing the

network function will be given in the context of a given algorithm.

5.6.2. Non-Discriminant Deletion

The exact method of non-discriminant deletion is detailed for each algorithm.
The basic procedure is for the non-discriminant node to delete itself and to send com-
mands fo its two children for them to delete themselves. The children recursively send
this command to their children and a complete subtree can be deleted. If a child,
receiving the delete command, has more than one parent, then the link to the deleted

parent is removed.

5.6.3. Complete-Discriminant Deletion

If a node is determined to be a complete discriminant, then the following steps

can be made:

1. The node sends a local command to its two children which sets them -
as live nodes. The child nodes recursively send this same command to

all of their children.
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2. The node sends a local command to all of its parent causing them to

self-delete.

3. Before each parent self-deletes they send a local command to both
their parent and child nodes, causing them to recursively send the delete
message and then self-delete. Using this method, all nodes in the net-
work will receive the seif-delete command. If a node has been set as
live, then it ignores the self-delete command and will not send it to its
neighbors. Thus all nodes in the network will self-delete except the
nodes in the directed graph rooted at the new complete discriminant

node.

4. The output of the complete-discriminant node is bound to the output
variable for which it is a complete discriminant. This is done by having
the node send a local command up to the former complete discriminant,
or to the output binder, which causes the change in binding. The com-
plete discriminant node becomes the new top node in the network for

the given output variable.

5.6.4. Locally Redundant Deletion

Another type of self-deletion can occur when a node is determined to be Locally

Redundant. A locally redundant node is a discriminant node, which by passing of
local information between itself and its neighbors, or other network nodes, is found

not to be necessary to the overall fulfilling of the instance set. In other words, the
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nodes directly around it already compute a superset of the information computed by
the locally redundant node. The processing required to discover if a node is locally
redundant can be carried out during execution mode since the control unit is not used
during that time. The methods for discovering local redundancy are very diverse and

are briefly mentioned in the algorithm chapters.

5.7. Fault Detection and Recovery

In a system which is self-organizing, the ability for the system to repair itself
without outside intervention is critical. There is no method for an outside agent to
address or test specific modules within the system. In the ASOCS system there is a
very natural way for both Self-Testing and Self-Recovery to occur without any outside
awareness of the occurrence. Since during execution mode, the control unit of a net-
work node is not used in the execution process, it can constantly be used for the pur-

pose of self test and recovery.

5.7.1. Self-Testing

Self-testing in the ASOCS system does not really consist of a single node testing
itself for faults. Rather, testing of a given node is done by the neighbors to that node.
This is because if a node is already faulty, then the self-test mechanism could also be
faulty. So, rather than leave the testing responsibilities to a single node, test responsi-
bility is given to all neighbors of a given node. Neighbors to a node include children,
parent, and sibling nodes. Depending on implementation the neighbors could also be
physically connected nodes which are not logical neighbors. Each neighbor can store

information concerning the function of a given node when the node is allocated or
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modified. Then, the neighbor nodes can constantly check each other, in a round-robin
fashion, to assure that the tested node is doing the function that it is supposed to. The

type of stored information necessary for testing is dependent on the algorithm used.

There are two parts of each node which need testing. They are the control unit
and the DPLM. The communication paths associated with each unit are considered
part of the unit. The control units can be tested by a derived protocol which in essence
asks the tested unit to tell its current function to the asking neighbor. If the answer no
longer matches what it was doing, and if no adaptation phase has occurred to cause a
change then the tested node can be marked as bad by all of its neighbor nodes. Again,

since the node is assumed faulty, it cannot be counted on to mark itself as a bad node.

The other part of the system to be tested is the DPLM. This test is done by
cooperation of the children and a parent to the tested node. The children know what
the outputs of their DPLM’s currently are. They send this information to the parent
node (their grandparent). The parent node knows the function of the tested DPLM and
what its current output is. If it is incorrect then the node can be marked as bad. If thé
outputs of the child nodes.are changing at too fast a rate to allow this sort of test, then
the AU would have to intermittently enter a DPLM test mode where each gate could

be tested while the inputs were held steady.

One other important consideration is the use of Majority Logic to decide whether
a node is faulty. It is not sufficient to mark a node as bad because one neighbor node
makes that claim. Either a unanimous or a majority decision is necessary to set a node

as bad. If only one single node claims a neighbor is bad, and if this claim is unsub-
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stantiated by the other neighbors, then the accusing node is marked as a bad node,

since its testing ability must then be faulty.

For this same purpose of majority decision making, it would be possible to
expand the definition of the neighbors of a given node to those nodes within 2 or more
immediate connections from a tested node. In this way, second opinions can be used

before the decision to mark a node as bad.

5.7.2. Self-Recovery

If a faulty node is found then Self-Recovery must take place. One method of
self-recovery which could be done without leaving execution mode is that of Horizon-
tal Self-Recovery. If a node is marked as bad by its neighbors, then any unused avail-
able node on the same physical level can be chosen as a replacement node. The two
child nodes connect their outputs to the newly allocated node, and load it with the old
function and memory of the bad node. The output of the new node is then connected
to any nodes which used to have a connection from the bad node. Figure 5.7 show an
example of this type of self-recovery. The solid lines represent the initial
configuration of the connections of the middle node. When the node is discovered as
faulty, its connections are routed by its neighbors to the unused node to its right. The
new interconnections are shown with dashed lines. It is possible that a glich in the
output could occur during this self-recovery phase, yet an incorrect output is possible

during the entire time after a node has gone bad, until it is replaced.

Another type of self-recovery, which could also be combined with horizontal

self-recovery, is Guided Self-Recovery. In this case, when a node has been discovered
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______

Figure 5.7 - Horizontal Self-Recovery
to be bad, any neighbor node can assert an interrupt line to the AU, which will cause
the AU to enter a self-recovery phase. A neighbor node can put information regarding
the function of the bad node onto the broadcast bus, and the AU can guide the network
through recovery by replacing the function, or by other methods similar to the normal

adaptation mechanisms.
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Chapter 6

ADAPTIVE ALGORITHM 1

In this chapter we discuss one particular algorithm which can be implemented on
the ASOCS architecture, which for identification we call Adaptive Algorithm 1 (AAl).
The first section gives a description of the specific ASOCS architectural requirements
needed for AAl. Section 2 discusses the memory structure of the system and the
detailed layout of the network nodes. Section 3 gives an informal description of the
algorithm. The following section gives a formal description of the algorithm in the
form of a structured language. Next an example is shown. The final sections discuss

the multiple-output case and gives a summary of AAl.

It is assumed that the primitive mechanisms and architecture discussed in earlier
chapters are understood, and they will not be reproduced in each chapter discussing an

adaptive algorithm.

For simplicity, we assume that there is only one output variable, Z. However,
the algorithm is suitable for any number of outputs, and the multi-output case is dis-

cussed later.

In AA1, there is always a single top node for each output variable which is a
complete-discriminant node for that variable. When a new instance is added to the set,
and if the top node does not already fulfill the new instance, a new node is created

which discriminates the new instance from all old discordant instances. This node is
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created by combining nodes within the network which already discriminate a subset of
the old discordant instances from the new instance. If the union of these selected
nodes is not sufficient to discriminate the new instance from all discordant instances,
then new nodes are allocated which discriminate the remaining instances. Once the
new node (which discriminates the new instance from all discordant instances) is built,
it can be combined with the old top node (which discriminates all old instances, but
not the new instance) creating a new top node which is a complete discriminant node

for the given output variable.

6.1. Architectural Constraints

Each adaptive algorithm requires a particular version of the basic ASOCS archi-
tecture. AAl uses the complete architecture discussed in Chapter 4, while the two
algorithms to be defined later use a subset of the basic ASOCS architecture. AA1 uses
presentation as the mode of instance introduction, and thus it requires 3-state DPLM’s
and use of the presentation bus. Interconnection switching between layers of the

nodes is also necessary.

6.2. Memory and Node Descriptions

6.2.1. Instance Table

The instance set is maintained consistent and minimal in the adaption unit and is
stored in a data structure called the Instance Table (IT). The instance table is struc-
tured as a table with three columns. In the first column, all positive instances are sym-

bolically stored. This column is called the Posirive (P) column. The second column
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contains all negative instances and is called the Negarive (N) column. The third
column contains a one-bit discrimination flag and the column is labeled with (D).
This column is used during the selection and new node addition phases. There is no

relation between positive and negative instances in the same row.

Initially each cell in the instance table is empty, which state is represented by a
"." (empty marker). When a new instance is input to the AU, it is stored in the first
empty location in the instance table. For example, if the NI is a positive instance, then
it is stored in the first empty cell in the positive column. Each cell in the positive or
negative column of the table corresponds to one instance of the instance set. An

example of an instance table is shown in figure 6.1.

P N D
ABD | ABE
BCD | BCDF
AEF | ABD
- ABC
ABC | BCDEF
ABC | BCEG
ABD -

Figure 6.1 - Instance Table
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6.2.2. Node Table

Each node control unit in the network contains a Node Table (NT). The function
of the NT is to store the value of its DPLM output (1, 0, or 7) when the environment
matches a given instance in the instance set. The structure of the NT (i.e., its index-
ing), in terms of what each cell represents, is the same as that of the instance table.
Thus, the third positive cell of every NT, corresponds to the instance in the third posi-
tive cell of the instance table. A location in the NT stores only its DPLM output for
the instance stored in the same location of the IT. When a new instance is presented
to the network, all nodes allocate the next free space in their node table, which is

identical for every node, to correspond to the new instance.

Consequently, in the NT there is a four state cell corresponding to each instance
in the IT. The four states are represented by "1", "0", "?", and "-". In the presentation
phase a node determines its output for all environment states matching any given
instance. If a node outputs a 1 for all states of the environment which match the
instance assigned to a given cell, then a 1 is put in that cell. If the node outputs O for
all states of the environment which match the instance, then a 0 is placed in the cell.
If the node outputs a 1 for some states and a O for other environment states matching
the instance, then a "?", signifying don’t know, is put in the cell. If no instance is

"ot

currently assigned to a cell in the table, then a "-" is placed in the cell.

Figure 6.2 shows an example of a NT which corresponds to the instance table

shown in figure 6.1.

When a global command corresponding to a given instance is broadcast to the
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PN} D
110
710
0] ?
- 1
2710
01
0| -

Figure 6.2 - Node Table
network, only an index value is necessary to specify which cell in each NT
corresponds to the instance. Thus, if the third positive instance in the instance table
were to be deleted, a global message "Delete third positive instance” would be sent

out. Each node would then set the third cell of its positive column to empty.

6.2.3. Instance Discrimination

At this point we show how a node in AA1 can discriminate between instances.
If a node always outputs one asserted level for all states of the environment matching
a particular positive instance, and the opposite level for all states of the environment
matching a particular negative instance, then that node discriminates between those
two particular instances. Refer to the node table of figure 6.2 for an example. The
node always outputs a 1 when the environment matches the positive instance
represented in the first cell in the positive column. The node always outputs a 0 when
the environment matches the negative instance represented in the first cell of the nega-
tive column. Thus, this node discriminates between these two instances. Just because

the node outputs a 1 does not mean the positive instance represented by the first cell
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has been matched, but it does mean that the negative instance in the first negative cell
has not been matched. This node discriminates the first positive instance from the
first, second, and fifth negative instances. It also discriminates other positive instance

from other negative instances.

For any given cell in the node table which is asserted, (a 1 or a 0), that node
discriminates the instance represented by that cell from all discordant instances which
have the opposite assertion. Thus, the next asserted positive instance, in the third cell
of the positive column in figure 6.2, is discriminated from the negative instances

represented in the fourth and sixth cells.

Note that it is never necessary to discriminate between concordant instances,
since they can never contradict each other. Thus, addition of a NI can never cause an
old concordant instance to be modified (except for minimization). This also follows
from the partiality of the network which allows it to output any value when an instance
is not matched. Thus the system is a discrimination network which is responsible for

discriminating positive instances from negative instances.

To fulfill the instance set, every positive instance must be discriminated from
every negative instance. Thus, when a NI is input, a node need only compare the NI

with cells corresponding to discordant instances.

6.2.4. Node Status

In this section the four basic states of nodes in AA1 are described. A node, by
looking at its node table, can categorize and mark itself as one of the four following

node states. When discussing values of cells within node tables, only non-empty cells
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are considered.

6.2.4.1. Discriminant Node

A Discriminant Node was defined in chapter 5 as a node which discriminates at
least one positive instance from one negative instance. In terms of a node table, this
means that there must be at least one asserted cell in the positive column, and at least
one opposite asserted cell in the negative column. In other words, the node must
discriminate between at least one pair of instances. Figure 6.2 is an example of a

discriminant node.

6.2.4.2. Non-Discriminant Node

A Non-Discriminant Node is a node which does not discriminate at least one
positive instance from one negative instance. In terms of the node table, a non-
discriminant node is any node that does not contain an asseﬁcd cell in the positive
column and an opposite asserted cell in the negative column. Figure 6.3 is an example

of a non-discriminant node.

Pi{N|D
1|1
71 ?
1| ?
- |1
74 ?
1 1
1| -

Figure 6.3 - Non-Discriminant Node
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6.2.4.3. Complete Discriminant Node

A Complete Discriminant Node is one which discriminates every positive
instance from every negative instance. In terms of the node table, it is one in which all
positive cells are asserted at the same value, and all negative cells are asserted at the

opposite value. Figure 6.4 is an example of a complete discriminant node.

ool o)
[ Y e il il B4

(o)

Figure 6.4 - Complete Discriminant Node
The top node of the network must always be a complete discriminant node in order to
correctly fulfill the instance set. In a multi-output system, there is typically one top

node for each ocutput variable.

6.2.4.4. One-Sided Discriminant Node

A One-Sided Discriminant Node, which was not mentioned in chapter 5, is a
discriminant node which always asserts one value for either all positive or all negative
instances, but which can output any value for the discordant instances. The one-sided
discriminant node can discriminate a single instance from all discordant instances and
is the type of node built to discriminate a new instance from all old discordant

instances. Using the node table, a one-sided discriminant node is one in which either
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the positive or negative column is set to one asserted value. Figure 6.5 is an example

of a one-sided discriminant node.

P|N]|D
1| 1
? | 1
0| 1
- 11
2 [ 1
o1
0 -

Figure 6.5 - One-Sided Discriminant Node

6.2.5. Extensions to Memory Tables

One variation to the way in which node tables are stored, which would be advan-
tageous for some instance sets, is now discussed. The purpose of node tables is to
allow each node to know which instances it discriminates between. Don’t know
values do not contribute to the discrimination to be made. Thus it is not really neces-

sary to store any cells which contain a don’t know value.

In order to avoid storage of don’t know cells, it is necessary to use a more flexi-
ble storage structure. Rather than have each NT in the image of the instance table,
each instance must be given a label or identifier by which it can be addressed. By
doing this, each node can only store those cells for which it always outputs an asserted
value. Thus, when the AU sends a command corresponding to a given instance, it

sends an identifier rather than an offset.
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The price to be paid is that an identifier must be stored along with each cell. The
size of the identifier must be at least n bits, where n is the total number of instances in
the IS. The total memory needed at each node may be greater than that needed when
the original storage method is used. If each node contains many don’t know cells, and
this is dependent on the instance set, then this second methodology would be more
parsimonious. In this chapter we continue to have node tables in the image of the

instance table.

6.2.6. DPLM Functions

DPLM’s, in principle, can be set to any one of the 16 boolean functions of two
inputs. In AA1l the Exclusive-Or and the Equivalence functions have not been
exploited, although it is possible to conceive schemes where they could be used to
minimize the number of nodes in a network. The remaining 14 functions are neces-
sary for an AA1 implementation (some for actual processing and others for communi-
cation purposes). In the virtual network, we are not concerned about physical inter-
connections, and the only necessary functions are the And and Or functions with all
poséibilities of inverted inputs. Thus, only the 8 functions shown in table 6.1 are

used.

6.2.7. Node Subparts

Besides the node table described above, the memory of each node must contain
other information. Each node has a left child and a right child. The children can be
either another node or a literal variable. Each node also has a set of parent nodes

which is empty for the top node. The node memory contains the current function of
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XiX3 t XXy [ XXy | XpXp

00 01 10 11 Function
0 0 0 1 XX,

0 0 1 0 XX
0 1 0 0 XyXp
0 1 1 1 x+x,

1 0 0 0 X%,

1 0 1 1 xX+x,
1 1 0 1 X +x,

1 1 1 0 X +x,

Table 6.1 - And and Or Function Permutations
the DPLM and two information flags: growth-flag marking whether the node is a
growth node, and a growth-polarity-flag marking whether the node is a positive or

negative growth node.

6.3. Informal Description

In this section we discuss AA1 in an informal less formal manner. Section 4
gives a formal description which is meant to clear any ambiguities or questions arising
from the informal description. The most effective way to understand the algorithm is
to integrate the reading of the fonnal section with the informal. This same structural

order is used when explaining the other two algorithms in the next chapters.

Again, the current system is dealing with only one output variable. We signal the
end of one algorithm cycle, that of processing a new instance, by stating that the sys-

tem returns to execution mode, or to the input of a new instance.
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6.3.1. Instance Set Maintenance

In AA1 the instance is made both consistent and minimal in the adaption unit,
Upon receipt of the new instance the instance set is first made consistent. This con-
sistency modification, explained in chapter 3, can cause deletions and modifications of
old instances discordant to the NI. Minimization can also cause both deletion and

modification to instances which are concordant to the NI

The algorithmic method used to maintain the instance set is not critical to AAl
and is not discussed here. The result of the maintenance process is two lists of
instances. The delete-list is a list of old instances which have been deleted from the
instance set. The add-list is a list of instances which have been modified by the NIL
The NI is also a member of the add-list. It is possible that either or both of these lists
be empty, in which case the modification cycle would be complete for the given NI

The add-list can only be empty when the NI was deleted by superset minimization.

Following is an example. Assume a current instance set containing the the single
instance AB — Z. The NIC — Z is given. The old instance A B —> Z is
now contradicted and will be changed to A B A Thus, the delete-list will

contain A B —> Z and the add-list will containedA B C —> Z andC — Z.

6.3.2. Network Update: Instance Deletion Broadcast

An old instance which is deleted brings about Instance Deletion Broadcast. Old
instances can be deleted by subset contradiction or subset minimization. One instance
deletion broadcast is necessary for each instance deleted during the process of making

the IS consistent and minimal. In an instance deletion broadcast, the cell location of
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the deleted instance is broadcast to the network. Every node in the network places an
empty marker in the cell corresponding to the deleted instance. An empty marker is

also placed in the instance table.

The network will always fulfill the instance set after instance deletion broadcast,
because the top node of the network will still remain a complete discriminant node,
since making a cell within a complete discriminant node empty can never cause incon-
sistency. It may be possible for nodes to self-delete after instance deletion broadcast,
even though the add-list is empty. In either case, the self-deletion phase will occur

just before the retum to execution mode.

6.3.3. Network Update: Instance Presentation

All instances in the add-list can be treated the same way. However, instances
which are not the NI can typically be handled with much less processing. The
mechanisms of AA1 reduces the processing for these cases. In this section we explain
the overall modification process for a NI. In a later section we discuss the other types
of instances that could be part of the add-list and how their processing can usually be

trivially carried out.

If the NI is to be added to the set, then Instance Presentation takes place as fol-

iows.

1. Set network inputs to the values of the NI.
2. Send Present global command with the polarity (positive or nega-

tive) of the NI.
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3. If the output of the top node correctly matches the NI then no further
processing is necessary.

4, Otherwise, go to the Selection phase.

If there are any new input variables in the NI, the AU binds these variables to a

port, through the input binder.

The AU, through the execute/adapt router, causes the input variables which occur
in the instance to be asserted, and the rest are set to don’t knows as explained in
chapter 5. The data then flows up through the network, and each node can record the

output of its DPLM.

The global present command is sent to the network, together with the polarity
(positive or negative) of the NI. The NI is added to the instance table in the AU. The
AU places the NI in the first empty cell in the column corresponding to the polarity of
the NI. Each cell in the network also allocates one cell under the same criteria. Thus,
each node selects the same cell position in its own NT.

The AU monitors the output of the top node in the network. If the output after

presentation matches the consequent of the NI, then the network already fulfills the NI

and no modification is necessary.

If the output of the top node does not match the NI then the network must be

modified and the system will go on to the selection phase.

I1f the output is either a don’t know or the opposite assertion of the consequent of the new in-
stance, then the output does not coirectly match the instance.
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6.3.4. Network Update: Node Selection

If network modification must be done, then selection waves are used to select
nodes within the network to be part of the modification. The steps for the selection

process follow.

1. Set all cells in the discriminate column of the instance table and
node tables to 0.

2. Each node calculates its discriminant count.

3. A sort wave is initiated.

4. If the result of the sort wave, as seen by the AU through the top
node, is a 0, then exit the selection process and proceed to New Node
Addition.

5. Otherwise, select a node with an arbitration wave.

6. The selected node broadcasts its discriminant-vector and marks
itself as a growth node.

7. All nodes and the instance table Or their discriminate columns with
the discriminant vector.

8. If the discriminate column still contains 0’s, goto 2.

9. Otherwise, go to the Combination Phase.

This process is now illustrated by an example. Assume that one node in the net-
work has a node table as shown in figure 6.6 after the presentation of a new negative
instance. The bottom cell in the negative column (shown in bold) was the first empty

cell in the negative column. The output of the DPLM for this instance is a 1, so that
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Figure 6.6 - Node Table after New Instance Presentation

value is placed in the cell.

At the beginning of the selection process, each node sets the values in its

discriminate column to Q.

The node in figure 6.6 discriminates the NI from the old positive instances in the
third, sixth, and seventh cells of the positive column. Thus, the node discriminates the
NI from 3 of the old instances. This value is called the Discriminant Count for that
node. Each node calculates its own discriminant count by summing the number of
cells in the column opposite of the new instance which have an opposite assertion to
the value in the cell representing the NI, and which have a 0 in the discriminate cell in
of their corresponding row. Thu's, a node outputting a don’t know for a NI always has

a discriminant count of 0 since it cannot discriminate any instances from the NI

Thus with AA1, the discriminant count is the local score used during the selec-
tion wave as explained in chapter 5. Using the discriminant count, a single node hav-
ing the highest value is selected during one selection wave. Once the node is selected,

it sets itself as a Growth Node. At this point it puts a 1 in the discriminate column
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wherever it lines up with an old instance which the node can discriminate from the
new instance. For the current example node the discriminate column would appear as

in figure 6.7.
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Figure 6.7 - Discriminate Column Setting
The node then places the contents of this column, which is called the Discriminant
Vector, on the broadcast bus. Each node in the network then does the logical Or of
the discriminant vector on the broadcast bus with its own disc.:riminant vector in its
discriminate column. After each selection wave, all nodes have the exact same

discriminant vector,

The adaption unit is also able to read the broadcast bus, and it also must Or the
broadcast discriminant vector with its own. Any 0’s remaining in the discriminant
vector represent instances which are not yet discriminated from the new instance. If
this is the case, another selection wave is started. The discriminant count is again cal-
culated at each node, and cells are not counted if they have a 1 in their corresponding
discriminate column cell. Thus, only those instances which have not been discrim-

inated yet can be counted towards the discriminant count of a node. An instance
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which is already discriminated by an earlier selected growth node, is not included in

the new discriminant count of the node, even though it may also discriminate it.

Another node is then selected from within the network. The AU checks the max-
imum discriminant count of the network at the output of the top node after the upward
sort wave. As long as the count is greater than 0, a downward arbitration wave is ini-
tiated, which selects a new growth node. The selected node then broadcasts its
updated discriminant vector and again all nodes update their discriminant vectors
accordingly. Once the discriminant vector contains only 1’s, then enough nodes have
been selected to discriminate the new instance and combination can be started. By
contrast, if the outcome of the sort wave is 0 and there are still one or more zeros in
the discriminant vector (instances which have not been discriminated), then new node

addition must be done before node combination.

Because the selection process is distributed, there is no guarantee that the
minimal set of nodes will be selected. Although all OI's are always discriminated, it
is possible that a smaller set of nodes could have discriminated the same number of

OrI's. A more complex scheme could be used to assure optimal selection.

It should be noted that nodes which have already been selected as growth nodes,
and nodes which output a don’t know for the NI, still participate in the selection pro-
cess, although these nodes always calculate a discriminant count of 0 and thus will
never be selected. Yet, they must still pass information to parent and children nodes
during the sort and arbitration waves, and it is simpler to treat them like any other

node.
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6.3.5. Network Update: New Node Addition

If after the selection phase there are still old instances which cannot be discrim-
inated by nodes currently within the network, then it is necessary to add new nodes to

the network. This addition of new nodes is called New Node Addition.

If there are still non-discriminated instances, the AU will have a ( in the discrim-
inant column across from each non-discriminated instance. New nodes are added to
the network as follows. For each non-discriminated instance in the instance table, one
discriminant variable is chosen. New nodes are then allocated and the inputs to these

nodes come from the set of selected discriminant variables. Following is an example.

Assume that after the selection process the instance table appears as in figure 6.8,

where the NI is the bottom negative cell.

P N D

ABD ABE 0

BCD | BCDF 1
AEF | ABD 0
- ABC 1

ABC | BCDEF | 1

ABC | BCEG 1

ABD ABDE 1

Figure 6.8 - Instance Table after Selection

The possible discriminant variables which can be used are the complement of the vari-
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ables in the NI. Thus, the possible discriminant variables are: A ,B,D,and E. Ttis
sufficient to choose one of these variables from each of the non-discriminated
instances. We know that each discordant instance must contain at least one of these
variables, otherwise there would be a contradiction and the instance set would not be

consistent.

We must choose one of the above discriminant variables from each of the two
instances: A B D and A E F. From the first instance we can use the variable D and
from the second instance we could use either A or E. If a discriminating variable
were shared amongst the two non-discriminated instances, then one variable would
have been sufficient to discriminate both instances. Thus a minimal set of discriminat-
ing variables, where at least one variable is found in each non-discriminated instance,

is sufficient to build the new nodes.

Assume that D and A are chosen. Since there are two variables, one new node
will be added. The new node must assert either 1 or 0 when the discriminating vari-
ables are both matched by the current state of the environment, and the complement
when either is not matched. For two inputs this can always be done using either an

And gate or an Or gate (Figure 6.9).

The AU could either broadcast a message to the network or send a message to the
router to cause an unused node to be allocated for this function. The method depends
upon the implementation. The node table of the new node must be initialized to
correct values. The AU can calculate the positive and negative columns for the new

node, since the inputs to the new node are literal input variables, which is the way that
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R o1

D A D A
Figure 6.9 - Possible New Node Implementations

instances are stored in the instance table. The AU could then send this information to
the node. The new node(s) is then set as a growth node, and it is ready for the combi-

nation phase.

If only one variable need be used to do discrimination, or if the number of
discriminant variables is odd, it is not necessary to add a new node for the single vari-
able. The variable may be directly combined with a growth node during the combina-

tion phase.

6.3.6. Network Update: Node Combination

Node Combination is the process by which growth nodes combine such that a
complete discriminant node is formed. The method used to select which nodes to
combine is implementation dependent. Some of the options were briefly discussed in
chapter 5. For this section, we assume that two nodes are grouped as growth siblings,

and an unused node is allocated to be the new parent node. Below are the basic steps.

1. While there are growth nodes in the network

a. Growth nodes are paired and a new node is allocated
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for each pair of growth nodes.

b. The function and the memory of the new node are set

by the child nodes.
3. The last created growth node (a one-sided discriminant node) and
the old top node combine.
4. The function and memory of the new top node are set by the child

nodes.

The order in which nodes are combined, or which nodes are connected to which,
is not critical except in terms of the depth of the network. The same number of com-
binations take place regardless of the connection order. For this section we assume
that any two growth nodes can be combined, since the combination criteria is not here
defined. The top node of the network is set as a growth node after all other growth

nodes have combined.

Every growth node in the network, except possibly the top node, outputs an
asserted value for the NI. A growth node which outputs a 1 when the NI is matched is
called a Positive Growth Node. A growth node which outputs a 0 when the NI is
matched is called a Negative Growth Node. A positive growth node outputs a 0 when
any of the old instances which it discriminates from the NI is matched by the environ-
ment, and vice versa for a negative growth node. The function of the newly allocated
parent node is determined by the growth polarity of the children nodes. For each com-
bination of children growth polarities, the parent node can be set in two possible

manners: one which makes the parent node a positive growth node and one which
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makes it a negative growth node. Except for the top node, it does not really matter
whether a new node is a positive or a negative growth node. It would be sufficient to
force all nodes to a single growth polarity. This information is passed to the new
parent by the Set Function local command. Table 6.2 shows the functions which a
new parent node can take on depending on whether the children nodes are positive or

negative growth nodes.

Left Child | Right Child | Parent Function | Parent Growth Polarity
Negative Negative xy+x; Negative
Negative Negative X[ Xq Positive
Negative Positive x|+ X, Negative
Negative Positive X| X, Positive
Positive Negative X+ X3 Negative
Positive Negative x| X Positive
Positive Positive X;+Xxg Negative
Positive Positive X1°Xa Positive

Table 6.2 - Function Settings for New Nodes
The same functions are used, as shown in the table, regardless of whether the NI is a

positive or a negative instance.

After the function of the new node is set, it can have its node table loaded by its
two children nodes. This is done by applying the new function to the cell values of
the children cells, and then putting the output into the node table of the new node.
This, as before mentioned, is known as Memory Inheritance, Once the new node’s
table is filled, it sets itself as a growth node, and can then be combined with some

other growth node. These combinations of nodes can go on concurrently. For n origi-
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nal growth nodes in the network, there are exactly n—1 combinations that take place,

adding n—1 new nodes to the network.

Following is an example of the combination of two growth nodes. We continue
to assume for the following examples that the NI is represented by the bottom cell of
the negative column. Figure 6.10 shows the node tables of the two growth nodes

which are about to be combined.

OHO|~—=|Of =] "
e I k=l B =1 =] 4
——lolol~lo|lo|ld
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Figure 6.10 - Left and Right Child Tables
If the parent node is chosen to be a positive growth node, then the function of the
parent node must be x; - X5, as shown in table 6.2. Figure 6.11 shows the table of the
new parent node after combination has taken place. After combination of these two
nodes, only the first positive instance remains non-discriminated. The discriminate
column was filled in for explanation purposes. It would not actually be updated dur-
ing combination. Note that the number of instances discriminated by the NI cell

always increases as nodes are combined.

When all of the growth nodes have been combined, with the exception of the top

node, a one-sided discriminant node has been created which discriminates the NI from
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Figure 6.11 - New Parent Node with DPLM Function x, - x5
all of the old discordant instances. The one-sided discriminant node is either a posi-

tive or negative growth node, and it has a form as shown in figure 6.12.

olo|lo|lo|o|o|ol™
I k=1 B =1E=] V4
e Ll L L e e e (e

Figure 6.12 - New One-Sided Discriminant Node
This one-sided discriminant node is then combined with the old top node to form a

new complete discriminant node.

The top node, which was a complete discriminant node before presentation, will
now be a one-sided discriminant node with the node table shown in figure 6.13, since
only the NI cell will have changed. The cell corresponding to the NI in the old top

node is always either a don’t know, or the opposite assertion of the consequent of the
Y ppo q
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Figure 6.13 - Old Top Node
NI If it had been the same assertion as the consequent of the NI, then the network
would not have needed to be modified, and this would have been detected in the
presentation phase. Note that the discriminant vector of the old top node always con-
tains all (’s because the NI cell is either a don’t know, or it is the same as all the
discordant instances. Thus, it cannot discriminate any OI from the NI, although it
discriminates all of the other positive instances from all negative instances. The new
one-sided discriminant discriminates all OI’s from the NI and thus by combining these

two, all instances can be discriminated.

The way in which the new one-sided discriminant node and the old top node are
combined is not immediately obvious. There are four ways in which the nodes can
combine, depending on whether the new one-sided discriminant is a positive or a

negative growth node, and whether the NI is positive or negative (Table 6.3).

To explain this intuitively; assume that we have the old top node and new one-
sided discriminant (NOSD) as shown in the above figures. If the output of the NOSD

is a 0, then we know nothing, in terms of the NOSD, about what the network output
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New Instance | New One-Sided Discriminant | New Top Node Function
Negative Negative X1 Xg
Negative Positive x| Xa
Positive Negative X1 +Xxq
Positive Positive x| +x,

should be, because the NOSD can output O for either positive or negative instances.
However, if the output of the NOSD is a 1, then we know that the network output
must be a 1, since the NOSD outputs 0 for all negative instances matched by the
environment. Now, if the NOSD outputs a 0, then we know that the NI has not been
matched, since the NOSD always outputs a 1 when the NI is matched. So, when the
NOSD outputs a 0, then the output of the old top node gives the correct network out-
put, since it outputs correctly for all instances except the new instance. For this case,

having a negative new instance and a negative NOSD growth node, the function is

Table 6.3 - New Top Node Function

X - X, as shown in table 6.3.

At this point the network again has a complete discriminant as the top node. The

system will then go to the self-deletion phase.

6.3.7. Network Update: Self-Deletion

The basic steps for self deletion are as follows.

1. Do complete-discriminant deletion.

2. Do non-discriminant deletion.

3. Do locally redundant deletion.
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4, Return to execution mode.

After the network has been modified, or if the node tables were modified by
minimization or subset contradiction, the seif-deletion global command is issued.

Each node tests its node status to see if it can be deleted from the network,

In AA1 the self-deletion phase is initiated after all network modifications have
taken place. Alternatively, it is possible to do the seif-deletion after the instance dele-
tion phase and before the modification phase. This variation causes trade-offs in the

overall network efficiency and will be evaluated in the simulation chapter.

6.3.7.1. Complete Discriminant Deletion

The deletion process for a complete-discriminant node was described in chapter

5. However, one remark about complete discriminant deletion in AA1 is necessary.

If a node discovers that it is a complete discriminant, it can begin the deletion
process of all nodes above it. The output of the complete-discriminant node will
replace the output of the old top node. The node must then check itself to be sure that
it outputs a 1 for positive instances. If it currently outputs 1 for negative and O for
positive, then the function must be inverted by inverting its inputs and changing from
And to Or or vice versa. This also inverts its node table. The node would then

correctly fulfill the output.

6.3.7.2. Non-Discriminant Deletion in AA1

This section is divided into two parts. First we show what type of nodes are

non-discriminant and prove that the network can function correctly without them.
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Next, the method of non-discriminant deletion, once a node is determined to be non-

discriminant, is shown.

6.3.7.2.1. Proof of Non-Discriminant Nodes

The proof of whether a node is non-discriminant in AA1 can be obtained exhaus-
tively. That is, we show that for each type of non-discriminant node, combined with a
discriminant node, that the parent node can never discriminate more than the discrim-
inant child node. The parent node can therefore always be replaced by the discrim-
inant child. In the following examples the left columns of the table represent the non-
discriminant node (NDN). The next two columns represent the discriminant node
(DN), and the 4 right columns the parent node for the And (PA-and) and the Or (PA-
or) functions. It is only necessary to show the And and the Or functions since an
inversion of a line only complements a node table and this can be undone by an inver-
sion of the output of the PA. We show the positive and negative columns of a node

but do not show the discriminate column.

The first example is the case when the non-discriminant node contains only one

type of value (Table 6.4).

Children Parent
NDN DN PA-and || PA-or
P|INJ|IP|N|P N P| N
1 1 1 1 1 1 1 1
1 L{{ofof{o{ 0 1 1
i 1 ? ? ? ? 1 1

Table 6.4 - NDN with One Value
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A unary value NDN combines to either make a copy of itself or of the DN in the
parent. It is not necessary to show the unary value NDN which is all 0’s since the two
cases are complementary. The same complementary notion applies for the following

examples.

Table 6.5 shows an example of a binary NDN, containing two values.

Children Parent
NDN DN PA-and || PA-or
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Table 6.5 - NDN with Two Values
The result of combining a binary NDN with a DN is either a copy of the DN or

another NDN.

The last case is the NDN with all three values (Table 6.6).

Children Parent
NDN DN PA-and || PA-or
P|NJ|JIPIN||P| N}||P|N
o] 71 1 {0 ? 1 1
or?27H0] 0|0 0 [|O ] ?
ot 211?21 210 ? ? 1 ?
1 ? 1 1 1 ? 1 1
1 71H0| 010 0 1 ?
1 TH? T ? ? 1 ?

Table 6.6 - NDN with Three Values

This case is a little more tricky. We can just look at the PA-and since the PA-or is

142



complementary. The instances discriminated in the PA are a subset of those discrim-
inated in the DN. In the DN each of the 4 asserted positive cells discriminates 2
discordant cells. In the PA, only one of those 4 positive cells discriminates any
longer, and it discriminates the same two instances that it did in the DN. Thus, the PA

always discriminates a subset of the DN, and can be replaced by the DN.

6.3.7.2.2. Non-Discriminant Deletion Procedure

If a node is determined to be a non-discriminant node (NDN) then:

1. The NDN sends a local command telling its children to self-delete.
Each child node will self-delete unless it has another parent link, in
which case only the connection to the deleting parent is removed. This
process repeats for the child nodes and a deletion wave will continue
recursively until all descendants either have another parent link, or until
the bottom of the network is reached. In the latter case any input vari-
ables entering the node can be removed and unbound unless used in

another node.

2. The NDN sends a local delete command to its parent nodes. The
sibling of the NDN is then combined with each parent of the NDN’s
parent nodes (i.e. all of NDN’s grandparent nodes). The function of the
grandparent nodes is the;l reset by the modify function command which
independently originates from each parent of the NDN, and is sent to

the parents of each parent.
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3. The non-discriminant node, and the parent node self-delete.

For example, figure 6.14 shows a logical network (where each node is numbered

Fo
2¢

3
4
.,. >< 9
11 11 11 I 1

Figure 6.14 - Logical Network

only for identification).

10

Assume that node 6 has been determined to be a non-discriminant node. Following

the above steps:

1. Node 6 is deleted.

2. Node 10 and all nodes under it are deleted, except nodes with multi-
ple parents. Node 9 is not deleted since it has an output to node 3.

3. Node 3 is deleted.

4. Node 5 connects to node 1 using the modify function local
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command which passes the old function of node 3 and which of node

3’s children were deleted, to node 1.

The modified network would appear as in Figure 6.15.

Figure 6.15 - Modified Network

6.3.7.2.3. Modify-Function Local Command

The modify-function command is only needed if a non-discriminant node has one

or more parent nodes. When the deletion of a node has taken place, the parent of the

deleted node has only one input going into it from the sibling of the deleted node. The

parent node then becomes a one input-one output node which can do no more than

either invert or not invert its input. Thus, the parent can be deleted and the output of
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the sibling node can be sent to the parent of the parent node. However, the output of
the sibling may need to be inverted before entering its grandparents. Whether or not it
is to be inverted depends on the old function of the parent node. If that function
caused the input of the sibling to be inverted, then it must also be inverted. This
inversion must now be done at the grandparent nodes, rather than at the sibling, since
the sibling could have other parent nodes. These inversions must be done by changing

the function of the grandparent nodes.

In the following explanation the numbers of the nodes in figure 6.14 are used to
aid in understanding. When a non-discriminant node (6) is to be deleted, it sends a
message to its parent node (3) which then sends the modify-function command to its
parent (1). Parameters of this command are a) the function of the parent node (6), and
b) which of its children is the sibling (5) to the non-discriminant node (6). This
allows the grandparent (1) of the non-discriminant node to know whether and which
variable it should invert. Table 6.7 summarizes for which functions of the parent node
(3), must the grandparent (1) change its own function. The function column is the
function of the parent node (3). The next two columns tell whether the grandparent
(1) would have to change its function if the sibling node of the non-discriminant node
were the left input to the parent or the right input; x; or x, respectively. The new
function columns show what the new function of the gran‘dparent (1) to the non-
discriminant node, which will become the parent to the sibling, would be changed to if

the sibling were either the x or the x5 input to the parent (3) node.

In the special case when the sibling to the non-discriminant node is a child of the

grandparent of the non-discriminant node, then the parent of the non-discriminant
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Function Invert if New Grandparent Function if
of Parent | Sibling is Sibling is
X1 X, x| Xy
X1'Xa no | no { NoChange No Change
XyX, no | yes | NoChange X[y
X%, yes | no X Xg No Change
x1+x, no | mo | NoChange No Change
XX, yes | yes XX, X%y
x 4%, no | yes | NoChange X1+x,y
X+xs yes | no X|+x, No Change
X+xq yes | yes x1+x; X +xy

Table 6.7 - Modify Function Table

node is recursively flagged as a non-discriminant node also.

6.3.7.3. Locally Redundant Deletion in AA1

As discussed in chapter 5, locally redundant deletion can be as general as desired.
For this algorithm, we discuss two examples of locally redundant deletion. Neither of

these methods is shown in the formal algorithm although they could easily have been.

One method follows the same steps as non-discriminant deletion. If the discrimi-
nation done by a parent node is a subset of one of its children, then the parent and the
sibling branch can be deleted. However in this case, none of the three nodes indepen-
dently are non-discriminant nodes. The rule for whether a parent node is locally
redundant is as follows; If a node does not assert a don’t know cell of a child, and it
docs not invert an asserted cell of a child using its function (And, Or) and not the
inversion of a line, then the node is locally redundant. If a parent node table has not

matched one of the two conditions in the above rule, then it is discriminating a subset,
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possibly proper, of the child node and can be replaced by the child node. This follows
from the fact that the only way in which any cell in a node table can discriminate
more2 instances in a modified node table, is if at least one discordant cell, which was

not asserted opposite before, has been asserted opposite to the discriminating cell.

Another type of redundant deletion which could be carried out periodically, like
garbage collection, is to have each node, in a round robin fashion, place the contents
of its node table on the broadcast bus. It would also send a token to its children nodes
marking all its descendants. Then, any node which is not a descendant of the broad-
casting node which has a node table which is a subset, in terms of discrimination, of
the broadcast node, can mark itself as a non-discriminant node. It could then delete
itself and all of its children. The output of the broadcasting node would then be input
to the parent of the deleted node at the input which used to come from the deleted

node.

There are many methods by which locally redundant deletion could be imple-

mented in order for the network to approach theoretical optimality.

6.4. Formal Algorithmic Description

In this section we give a formal description of AAl in the form of a structured
programming language. The goal of this section is to have a description which is

unambiguous and which explains completely the algorithm.

The language used to describe the algorithm follows the generic syntax of a

20r a different set of instances.
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Pascal-like programming language. Some unique language constructs are here
defined in order to show where parallelism is inherent in the problem. Language con-
structs are shown in bold type. Procedures and functions are italicized. Procedures
which return arguments as results have those arguments marked by "result”. For each
is a sequential operator and for all is a parallel operator. * signifies all elements of an

array dimension. € signifies element of a set.

The data types and data structures of the language are first defined. A high-level
algorithm then follows giving the overall flow of AAl. The procedures used in the
high level description are then defined in detail. The empty marker for a cell is

represented as "nil".

Detailed procedural descriptions for Present, Sort Wave, Arbitration Wave, and

Complete-Discriminant Deletion are not included below, since they were detailed in

chapter 5.
Data Types
set:
list:
boolean:
integer:
function: One of the 16 dyadic boolean functions.
variable: Variable which occurs in an instance (i.e. 4, B , etc.)
instance: Represents a single instance, Its subparts are:

instance.variables is a list of the variables in an instance.
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instance.polarity is positive or negative. polarity is the complement

of polarity.
Data structures

instance-table 3 column array. Columns are labeled: negative, positive,
and discriminated.
Each cell contains the instance.variables for a single instance.
node-table 3 column array with the same structure as the instance-table.
Cell values in the node-table canbe 1, 0, 2, or nil.
broadcast-bus Represents the broadcast bus.
node Represents a single network node. Its subparts are:
node.left-child - Either a node or a variable.
node.right-child - Either a node or a variable.
node.parents - Set of nodes.
node.dplm-function - Function of the node’s DPLM.
node.node-table - Node-table of node.
node.dpim-output - Current output of the node’s DPLM.
node.growth-flag - Tells if node is a growth node or not.
node.growth-polarity - Either positive or negative growth polarity.

top-node Top node of the network

High Level Description

procedure: AAl-Update(NI)

declare NI: instance
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declare Delete-List: list of instances
declare Add-List: list of instances
begin
Make-Consistent-and-Minimal(NI , result: Delete-List , result: Add-List)
Delete-Instances(Delete-List)
Add-Instances{Add-List)
Self-Deletion

end

Individual Procedures

Make-Consistent-and-Minimal receives a new instance (NI) as a parameter. It assumes the
instance set as a global structure and can modify it. It makes the instance set consistent and
minimal. It returns a list of instances which have been deleted (Delete-List), and a list of new
instances to be added because of consistency and minimization modifications (Add-List). The
Add-List also includes the NI. Either or both lists may be nil. Implementations for this routine

are independent of AA1 and are discussed in chapter 3.

procedure: Delete-Instances(Delete-List)

declare Delete-List: list of instances
declare row: integer
begin

for each instance in Delete-List
begin

row < index of cell of instance in the instance-table
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Broadcast (instance.polarity , row)® of instance
for all nodes node.node-table(instance.polarity , row) «- nil
instance-table(instance.polarity , row) «- nil

end

end

procedure; Add-Instances(Add-List)

declare Add-List: list of instances
declare row: integer
begin

for each instance in Add-List
begin

row - index of the first cell in the instance-table with value nil

in column instance.polarity.

instance-table(instance.polarity , row) « instance.variables

Present(instance)?

for all nodes node.node-table(instance.polarity , row) < node.dplm-output

if top-node.dplm-output # instance. polarity then Reconfigure(instance , row)’
end

end

procedure: Reconfigure(instance , row)

Instance.polarity specifies the positive or negative column, while row specifies which cell in the
column,

4 Presentation causes dplm-output to be set to 1, 0, or ? for each node.

5 This can only occur if the instance is the NI, or if it is discordant to the NI and it was modified
due to minimization.
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declare instance: instance
declare row: integer
begin
Node-Selection{instance , row)
Node-Addi tioﬁ(instance)
Node-Combination(instance)

end

procedure: Node-Selection(instance , row)

declare instance: instance

declare row; integer

declare done: boclean

declare Selected-Node: node
declare Discriminant-Count: integer
declare Wave-Result: integer

begin

for all nodes node.node-table(discriminated , *} < 0
Done « false
while not Done
begin
for all nodes
begin
Discriminant-Count « 0
if node.node-table(instance.polarity , row) # " 7" then

begin
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for each index (i) if node.node-table(instance polarity ,i) =
Complement(node.node-table(instance.polarity , row)) then
Discriminant-Count ¢ Discriminant-Count + 1
end
end
for all nodes do Sort-Wave(Discriminant-Count , result: Wave-Result)
if Wave-Result > 0 then
begin
for all nodes do Arbirration-Wave(result: Selected-Node)
Selected-Node.growth-flag < growth-node
broadcast-bus « Selected-Node.node-table(discriminated , ¥)
for all nodes node.node-table(discriminated , *) «
[node.node-table(discriminated , *) OR broadcast-bus]
instance-table(discriminated , *) «
[instance-table(discriminated , *) OR broadcast-bus]
end
else Done « true
end

end

procedure: Node-Addition(instance)

declare instance: instance

declare discriminant-set: set of variables
declare discriminant-variables: set of variables
declare discriminant: variable
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declare new-node: node
begin
if instance-table(discriminated , *) # all 1’s then
begin
discriminant-variables ¢~ Complement(instance.variables)
discriminant-set ¢~ ¢
for each row in instance-table
begin
if instance-table(discriminated , row) = 0 then
begin

discriminant « any one variable where

variable £ instance-table(instance.polarity , row) AND
variable € discriminant-variables
discriminant-set « add-to-sef(discriminant)
end
end
while size-of(discriminant-set) = 2
begin
new-node < allocate-new-node()
new-node left-child « select-and-delete-one-element{discriminant-set)
new-node.right-child «- select-and-delete-one-element(discriminant-set)
new-node.dplm-function < function according to Table 6.26

load-node-table(new-node.dplm-function , new-node.left-child ,

6The tables are found in the corresponding section of the informal discussion.
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new-node.right-child)
new-node.growth-flag ¢~ growth-node
end
if size-of{discriminant-set) = 1 then’
begin
new-node « allocate-new-node()
new-node.right-child « select-first-element(discriminant-set)
new-node.dplm-function « right
load-node-table(new-node.function , nil , new-node.right-child)
if instance. polarity = new-node.right-child.polarity then
new-node.growth-polarity < positive
else new-node.growth-polarity « negative
new-node.growth-flag « growth-node
end
end

end

procedure: Load-node-table(function , left , right)®

declare function: function
declare left: node or variable
declare right: node or variable
begin

7 This method is not necessary. Rather than allocate a node for a single variable, it is sufficient to
let that variable act as if it were a growth node when the node combination phase is reached.
However, in order to have a uniform node combination routine, a node is allocated.

81f a child is a variable, then the values are taken from the instance-table
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for all rows
node-table(negative , row) ¢
[(left.node-table(negative , row)) function (right.node-table(negative , row))]
for all rows
node-table(positive , row) «
[(left.node-table(positive , row)) function {(right.node-table{positive , row))]

end

procedure: Node-Combination(instance)

declare instance: instance
declare new-node: node
begin

while number of growth nodes in the network 2 2

begin
new-node « allocate-new-node()
new-node.left-child « any single growth node
new-node.left-child.growth-flag < non-growth
new-node.right-child « any single growth node
new-node.right-child.growth-flag <~ non-growth
new-node.dplm-function « function according to Table 6.2
load-node-table(new-node. function , new-node.left-child , new-node.right-child)
new-node.growth-flag « growth-node
new-node.right-child.parents «— new-node.right-child.parents + new-node
new-node.left-child.parents ¢« new-ncde.left-child. parents + new-node

end
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new-node « alloc¢ate-new-node()

new-node.left-child « last growth node’

new-node.right-child ¢ top-node

new-node.dplm-function « function according to Table 6.3
load-node-tabl-e(new-node.function , new-node.left-child , new-node.right-child)
top-node « new-node

new-node.right-child.parents < new-node.right-child.parents + new-node
new-node.left-child. parents « new-node.left-child.parents + new-node

end

procedure: Self-Deletion
begin
for all nodes
begin
if (node.node-table(negative , *) = (all 1’s or all 0’s)) and
(node.node-table(positive , *) = Complemeni(node.node-table(negative , *) then
begin
C omplere-Discrimina‘nt Deletion(node)
if node.node-table(negative , 1) # 0 then
node.dpim-function « inverf{node.dplm-function)
end
end

for all nodes

9The last growth node will be a one-sided discriminant node.
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begin
if there does not exist (node.node-table(negative , i) = (1 or 0) and
(node.node-table(positive , j) = Complement(negative , i)) then
Non-Discriminant-Deletion(node)
end

end

procedure: Non-Discriminant-Deletion(nd-node)
declare nd-node: node
begin
Delete-Wave(nd-node.left-child , nd-node)
Delete-Wave(nd-node.right-child , nd-node)
for all nd-node.parents (nd-node-parent)
begin
for all parent-nd-node.parents (grand-parent)
begin
if grand-parent € Sibling(nd-node).parents then

Non-Discriminant-Deletion(nd-node. parent)

else if parent-nd-node.dplm-function inverts nd-node according to Table 6.7 then

Set function of grand-parent according to Table 6.7
end
Remove-Node(nd-node—parent)l 0

end

10Remove-Node removes the node from the network.
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Remove-Node(nd-node)

end

Delete-Wave(d-node , parent-node)

declare d-node: undetermined!/
declare parent-node: node
begin

if d-node is a node then
begin
if Size-ofld-node.parents) > 1 then
d-node.parents < d-node.parents - parent-node
else
begin
Delete-Wave(d-node.left-child , d-node)
Delete-Wave(d-node.right-child , d-node)
Remove-Node(d-node)
end
end

end

6.5. Add-List Instances other than the New Instance

Any instance which has been modified but not deleted will pass through the same

modification mechanism as the NI. One instance modification cycle is necessary for

117t could be either a node or a variable.
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each modified old instance. These modified instances are placed in the add-list by
either overlap contradiction with the NI, or one-difference superset minimization.
However, although these instances are in the same add-list as the NI, the effort of the
modification cycle will usually be much simpler. Following is an explanation of how

the two types of modified instances are handled.

A modified instance caused by overlap contradiction always has one more vari-
able than it did before and thus its representation space is cut in half. Following the
proof in the knowledge base chapter, a cell in a node can either not change, or go from
a don’t know to an asserted value, when the modified instance is presented. Since the
top node cannot then be changed by this method,’2 the network never needs
modification following the presentation. Thus the modification cycle does not proceed
beyond presentation phase, since network modification is never needed. The only

action is to update the node tables within the already extant nodes.

A modified instance caused by one-difference superset minimization has one less
variable than it did before. Thus, its representation space is double what it was before.
Thus, a cell in a2 node can either not change, or go from an asserted value to a don’t
know value. This type of change could cause the network to no longer fulfill the
instance set, since a top node could lose its complete discriminant status. In this case,
the rest of the modification cycle must be completed to restore the complete discrim-

inant top node.

12This is because all cells in the complete discriminant node are already asserted.
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6.5.1. Extension to Modification Cycle

Because of the situation explained in the previous section, it is possible that more
than one modification cycle will be necessary in order to change the network. These
multiple cycles are called Modification Iterations. Simulations indicate that
modification iteration is not typically a major concern. However, there is a way to

avoid them completely. This extension is explained in this section.

Addition and presentation of instances in the add-list, with the exception of the
NI, cannot cause the network to cease to fulfill the instance set. This is trivially shown

above for instances modified by overlap contradiction.

As we saw, for instances modified by superset one-difference minimization, it is
possible that the top node no longer be a complete discriminant node. However, once
the NI has been added to the set and any modifications made to the network, the net-
work will fulfill the entire instance set, regardless of whether network modification
followed the presentation of minimized old instance. Yet, the top node could still con-
tain a "?" for the cell corresponding to the modified old instance. This is best shown

by an example.

Assume the instance ABC —> Z exists in the IS. The instance AB —> Z is
then input. The old instance is changed to AC —> Z by superset one-difference
minimization. Assume that the cell corresponding the OI in the top node changes
from a I to a "?". In the new top node created after network adaption (as explained in
this chapter) the cell for the NI will contain a 1 and the cell for the modified OI will

still show a "?". Thus, the top node would not be a complete discriminant node as
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defined in the node $tatus section. However, we know that the network will still out-
put a 1 when ABC is matched because no modification has taken place to the network
under the old top node; only the node table has been changed. The pattern ABC which
the old cell does not correctly represent is correctly fulfilled by the NI since it covers
that case. Thus, the network will still function correctly although the top node has a

don’t know cell.

This approach is parsimonious in terms of processing, but has a cost in the
representation of the instance table. The AU must still maintain a correct copy of the
instance set in order to make future consistency changes correctly. Two alterations are

needed.

First, the AU must store two different instance tables. One is a copy of the

instance set. The other is an image of the tables which are stored in all the nodes.

Second, the AU must mark some cells of the image copy with a flag stating that
while a top node may contains a "?" for that cell, it still fulfills the instance set. Thus,

the overall tradeoff is between adaptation time and memory overhead.

6.6. AA1 Example

In this section we give an example of the algorithm. We start with a null
instance set and begin adding instances and building the network. When starting the
algorithm works in a slightly different manner than when the instance set is already
large. This is because more effort is needed to add new input variables, and there are
none or few nodes in the network available to discriminate new instances. We avoid

restating fine detail which has already been discussed. For example, if it is necessary
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to select a discriminating variable for new node addition, one will simply be chosen

for use, rather than to go through looking at each possible variable.

Assume that we are concerned with one output variable Z. The first instance
input to the sysfem is A B C — Z. Since there are currently no nodes in the net-
work the delete-list is empty and the add-list is just the NI. The algorithm will go to
the new node addition phase. If we choose A as the discriminating variable, then a
node could be added to the network as shown in figure 6.16, where only the positive
and negative columns are shown, and the function of the DPLM of the node is shown

under the node table.

Figure 6.16 - Initial Node
This node would indeed fulfill the instance set, but it is more than necessary. In fact,
since the node is a non-discriminant node, as earlier defined, it will delete itself from

the network.

Rather than have a network to fulfill the current set, the system would simply set
the Z output to a 1. This could not be done by a node, since any node would delete

itself at this point. Thus, this is a special boundary condition in which the output
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could be set by the AU, the output binder, or any way which was most efficient for a

given implementation.

Two more positive instances are then added to the system: B C D E —> Z and
AB CE — Z. Since these are positive instances, they cannot contradict the posi-
tive instance in the IS. In this case, they also cannot be further minimized. No change
to the system can be made. Any node which was added to the network to fulfill this IS
would still self-delete, since it would be a non-discriminant node. At this point the

instance set is as follows.

ABC — 2
BCDE —Z
ABCE — Z

When displaying the instance set during this example positive instances are shown
first, followed by the negative instances. We assume that the image in the node tables

match the order in which we show the instances.

The next instance added to the system is A B C D — Z. This instance does
not contradict any of the earlier instances, and thus it is added to the IS with no
modification to the OI's. Since this is a negative instance, and since Z is currently
always positive, there must be an update. Because there are still no nodes in the net-
work, the system proceeds to new node addition. Since the negative NI is not yet
discriminated from any of the positive OI’s, it is necessary to add sufficient nodes to

do this discrimination. Variables C and D are discriminating variables which together
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are sufficient to discriminate the NI from the three original OI’s. A new node is allo-
cated with these two variables as input. The new node can be either a positive or a
negative growth node. If the node became a negative growth node, it would switch to
positive upon recognizing that it is a complete discriminant. The allocated node is

shown in figure 6.17.

C
Figure 6.17 - Modified Node

The cell representing the NI is shown in bold.

The next instance inputis A C D E —> Z. This instance does not cause either
contradiction or minimization, and thus it is added directly to the IS. Now that there is
a node in the network, the algorithm will go through all of its steps. The NI is
presented to the network and the output is a 0. Thus, the network already fulfills the
NI and no modification to the network is necessary. At this point the instance set

appears as follows.

ABC > 2

BCDE — Z
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The next instance added is A B C F — Z. This instance does not cause
minimization, but it does contradict the first instance in the set. Thus, the NI is added,
the first positive instance is put in the delete-list, and the overlap modification

ABCF — Zis put together with the NI in the add-list. The new instance set is

shown below.
ABCF &z
BCDE > Z
ABCE — 2
ABCD > Z
ACDE > Z

ABCF — Z

The index of the deleted instance is broadcast and an empty marker placed in the
first positive cell. The modified instance is presented to the network, and a 1 is placed
in the empty cell. The node continues to be a complete discriminant node. When the

NI is presented, the output of the network is 1. Since this is incorrect, network
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modification must take place. One selection wave results in a 0 from the top node,
since the single current node does not discriminate the NI from any OI. New node
addition must then take place. Variables B and F can be used as discriminating vari-
ables, as explained in the new node addition section, to discriminate the NI from the 3
positive OI's. A new node is added, combining these two variables. This new node is
the only original growth node and it is a one-sided discriminant node. It is then com-
bined with the old top node and the new top node is given a function according to

table 6.7. The modified network is shown in figure 6.18.

Z

st |t |t
o oo

' Or
B F C D
Figure 6.18 - Modified Network

The next instance added is A C D F —> Z. This NI can not be minimized
with any concordant instance, nor does it contradict a discordant instance. When the

NT is presented to the network, the output of the top node is a don’t know. After the
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NI presentation, the state of the network would be as shown in figure 6.19.
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Figure 6.19 - Modified Network

A selection wave is then initiated, and the bottom right node is selected as a
growth node, having a discriminant count of 2. Another selection wave is then ini-
tiated, but O reaches the top node, since no other node can discriminate the NI. The
AU chboses one discriminant variable from the single instance, the third negative
instance, which is not yet discriminated. The only possible variable is A. The vari-
able A is combined with the selected growth node, and the resulting one-sided
discriminant node is combined with the old top node, to form a new complete discrim-
inant node. Figure 6.20 shows one possible combination scheme where the first new
node was made a negative growth node. The self-modification phase is entered, but

no nodes are deleted, since they are all discriminant nodes.
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Figure 6.20 - Modified Network
The last instance input to the system is A C —> Z. This instance causes both
minimization and contradiction. It does a subset contradiction of the second negative
instance, causing that instance to be deleted. This fact is broadcast to the network and
an empty marker is placed in the cell of each node which corresponded to that
instance. The NI also does a subset minimization with the first positive instance. It is
also deleted and the same information is sent to the network. The NI also causes one-

difference minization with the last concordant instance. This is a case where a

170



modification iteration would be necessary since the top node will no longer be a
complete-discriminant. This modification iteration is left as an exercise to the reader
since the final network outcome will be the same regardless. The NI can then be

added to the IS. The new instance set is shown below,

AC = Z
BCDE = Z
ABCE — 2

ABCD — Z

At this point, the NI is presented to the network. The NI is placed in the first cell
of the positive column, since that cell just became empty when the OI was deleted.
After presentation, the state of the network is as shown in figure 6.21. In this case the
output from the top node is correct and it would not be necessary to modify the net-
work. However, since minimization was done to the instance set, the system enters
the self-deletion phase before it returns to execution mode. The bottom right node has
now become a complete discriminant node. Everything above it will be recursively
deleted when the complete discriminant node sends a local command up to its parent.
After the network finishes the self-pruning process the total network fulfilling the

current instance set is as shown in figure 6.22.
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Figure 6.21 - Modified Network
This example has shown each of the major steps which occur during network
reconfiguration. The network acts as a discrimination network which keeps itself rela-
tively optimal. In the example there were 7 variables, but only a few instances, and
the number of nodes necessary to perform the correct discrimination for all 27, or 128,

environment states is quite small.
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Figure 6.22 - Final Network

6.7. Multiple Outputs

The basic change needed for multiple outputs is for each node to maintain one
node table for each output. In this way, a single node can be used in the discrimina-
tion of any number of output variables. Global commands include which output vari-
able they affect. The node status depends on the output variable. If a node becomes
non-discriminant for one output variable, but it is still a discriminant for a different
variable, then it cannot be deleted. If it were a NDN for all of its output variables then

it would be deleted.

Instances for each output variable need to be kept in independent instance sets
within the AU. There is no min.imization or contradiction possible between instances
defining different output variables. The same is true for feedback variables. In each
independent instance set, a feedback variable is treated exactly like any other input

variable,
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6.8. Comments on AA1l

In this section we make some comments on the features and problems of AAL.

Statistical analysis is given in the simulation chapter.

In AAl, discrimination is measured only in terms of the function allocated to the
DPLM. There is no local knowledge at a node about the overall function, or the vari-

ables involved in the function.

In AAl the discrimination is truly distributed, since there is no particular node
which has responsibility for a given instance. The discriminatory responsibility for a

single instance can be spread out over a large number of nodes.

There are two main problems with AAl. The first and most obvious is memory
use. AAl needs a node table which can grow as large as the instance set. The
instance set used in any system would have to remain smaller than the fixed size of the
network node tables. Larger instance sets could be processed by using hierarchical
decomposition. Extensions of the algorithm allowing nodes to process over a subset
of the instance set, in order to maintain a small node table size, is a current research

effort.

It is also necessary to have one node table for each output variable. This shows
the need for the layered architecture discussed in chapter 4. Each logic plane, and
thus the nodes that are in the logic plane, would be limited to some fixed number of
output variables. By using multiple output planes, a large number of output variables

can be computed.

The other problem comes up when considering implementation of interconnec-
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tion. In selecting nodes, AA1 allows any discriminant node to be chosen. If the nodes
selected are far apart topographically it becomes difficult to efficiently combine those
nodes. If interconnection multiplexers were as wide as the network, then this would
not be an obstacle. But, in order to have high speed through these routers it will be
necessary to limit their width, and use many non-connected or lightly-connected mul-
tiplexers. The algorithmic way to solve this problem is to make topog_raphy an impor-
tant part of the locally computed criterion used during selection. Thus, nodes can be
selected, not just by their discrimination ability, but also according to the ease by

which they can be connected to other growth nodes.

As will be seen in later chapters, the first problem (node memory) is alleviated in

both AA2 and AA3, and the second (node interconnections) in AA3.
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Chapter 7

ADAPTIVE ALGORITHM 2

In this chapter we discuss the second adaptive algorithm developed for the
ASOCS architecture: Adaptive Algorithm 2 (AA2). The chapter presents the basic

aspects of AA2, with some comments on possible extensions.

The first section discusses the architectural requirements for AA2, The third sec-
tion gives a formal description of AA2. Section 2 gives a informal overview of each
phase of the algorithm. Section 4 illustrates the algorithm with a simple example.

The last sections discuss muitiple outputs and summarize AA2.
To simplify the exposition, we assume only one output variable Z.

AA? uses a method much different than that of AA1. Instead of having a single
top node for an output variable, there can be a number of top nodes for an output.
These are divided into positive and negative nodes. If any positive node outputs a 1,
then the output of the network must be a 1. If any negative node outputs a 1, then the
output of the network must be a 0. Outputs from top nodes are OR’ed together. This
same methodology is used in AA3. However, in AA2 there is one top node matching
each instance in the instance set. Thus the network is maintained as a consistent and
minimal instance set. There is no need to maintain the instance set in the AU, since
the network implicity maintains it. All nodes use a gate which does only the And

function. Nodes are combined until the overall conjunction matches a single instance.
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This node then becomes a top node and is set as positive or negative depending on the
polarity of the instance being matched. When a new instance is broadcast to the net-
work, each node is able to compare its function with that of the new instance and con-
sequently deduce its potential participation.

AA2 does not have the memory constraints found in AA1. The memory at a sin-
gle node does not increase as the size of the instance set increases. Neither is there a
significant increase in node memory for multiple-outputs. Another feature of AA2 is
that the network can tell if the current environment state does not match any instance
of the instance set. In many applications it is not desirable that the output be arbitrary
when the environment is not matched by an instance. The don’t know output allows
the output to be controlled differently when no instance is matched by an environment.
The maximum depth of the AA2 network is equal to the number of bound input vari-

ables.

7.1. Architectural Requirements

The architecture is basically the same as used for AA1. However there are some

important differences which are explained in this section,

7.1.1. Network Nodes

In AA2, each node of the logic network knows its logic function in terms of the
variables which are part of its function. Figure 7.1 is a representation of a node which
does the AND function of the variables A, B ,and D. In AA2 all node DPLM’s do

the dyadic And function. A node knows its overall function by storing a list of the
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P

Figure 7.1 - Node Representation
variables which it conjuncts. Each child of the node does a conjunction of a subset of
the variables stored at the node. A node does not know which variables correspond to

which child.

A node can be in one of two basic states: D-Node (Discriminant Node) or P-

Node (Primitive Node).

D-nodes can be either Positive D-Nodes or Negative D-Nodes. We compact the
terminology by calling the current state of any node its Polarity. A positive D-node
has positive polarity. A negative D-node has negative polarity. The P-node has nil
polarity; i.e. no polarity at all.

When any node in the network has a positive output for a certain instance, it is
called an Active Node in terms of that instance. If any positive D-node is active then
the output of the network must be positive. If any negative D-node is active then the
output of the network must be negative. A negative and a positive D-node cannot be
simultaneously active, but it is possible that more than one D-node of the same polar-

ity be simultaneously active.
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P-nodes do not directly control the output of the network, but they are the nodes

which make up the inputs to D-nodes.

Because presentation of the NI is not necessary in AA2, the DPLM need only be
a binary gate. The DPLM also needs to realize only a subset of the functions which it
was able to do in AA1. In fact, if inversions of literal variables are done in the input
binder, then the DPLM does not have to be programmable. It can be a simple two-
input And gate. In this chapter we continue to refer to the logic gate of the node as a

DPLM, although it need not be programmable.

AA2 is simpler in its mechanism than AA1l. More importantly, AA2 does not
require that the memory at the nodes grow with the number of instances. The memory
of a node contains the list of variables which its function covers, and that list will not
change as the IS grows. The largest possible list size at a single node is equal to the
number of bound input variables. Once a node is set to conjunct; a list of variables, the
memory at the node need never increase. This list of variables, unique for each node,

is known as the variable-list.

Each node has a Polarity Flag, marking whether it is a P-node or a D-node. If it
is a D-node, then the flag states whether it is positive or a negative. It is also possible
that the node is unused, which is another state. Thus the flag is a 4 state, or 2 bit,

memory cell.

Each node has a left and right child. The children can be either nodes or input
variables. Each node also has a set, possibly empty, of parent nodes. Finally, each

node has a State Flag which stores information regarding the current state of the node
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in reference to an instance.

7.1.2. Or-Planes

The outputs of all positive D-nodes enter into the Positive Or-Plane. The out-

puts of all negative D-nodes enter into the Negative Or-Plane.

Figure 7.2 shows a general representation of the structure of the logic network.

Qutputs

Or-Planes

D-Nodes

P-nodes

{}

Inputs
Figure 7.2 - General AA2 Structure

Inputs to D-nodes must be from either a P-node, or a literal variable (ie. 4, B, etc.).
The D-nodes are the top nodes of the network. However, D-nodes can be found at any
depth of the network. The inputs to the or-planes must be from D-nodes. Any time a
D-node is created or modified, a local command is sent to the or-plane, and the output

of the D-node is placed into the correct or-plane.

The or-planes need not be adaptive, The logical structure of the or-planes, which

includes the positive and the negative planes, is shown in figure 7.3. A 3-node
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Figure 7.3 - Or-Planes
structure handles the or-plane outputs. The middle node is the output node. It outputs
1 if the positive plane outputs a 1, and it outputs O if the negative plane outputs a 1. If
both or-planes output a 0 then Z is set to 0, since the node is set to an And function.
(The node could also be set to an Or function, making the default value a 1, when no

instance is matched.)

If both planes output a 0, then the don’t know output is active. With this output,
one can always know whether an instance is matched or whether the environment state

is a don’t know state. If both planes output a 1, then there is an error in the network.

As can be seen by viewing the AA2 structure, the algorithm implements a sum-
of-products expression. The products are the instances represented by the D-nodes in

the network and each D-node is equivalent to one instance in the instance set. The
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products represented by the D-nodes are summed by the or-planes.

Figure 7.4 shows a representation of the top of the logic network, which is the

place where the main difference with AA1 occurs.

Output Binder
t t 1 t

Zy Z, Z;
Or Or onn 77 Or
Planes Planes Planes Planes

[T {111 110

Logic Network

Figure 7.4 - AA2 Or-Plane Architecture
For each of the or-planes the left input arrow corresponds to the negative D-node out-

puts and the right input arrow to the positive D-node outputs.

- A more general architecture with the or-planes is to have an adaptive layer
between the or-planes and the output binder. Or-planes can then be dynamically
bound to output variables. Thus, if the number of D-nodes corresponding to a given
output variable becomes greater than the number of inputs to an or-plane, another or-
plane can be allocated for that output variable. The outputs of the two or-planes
would then be gated together with the Or function. In this way the number of

instances defining an output is not limited by the width of the or-planes.
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Finally, in terms of implementation, the or-planes are placed alongside the logic
network and run parallel to it. If a wired-or technology is used for the or planes, then
two single wired-or lines could be used as the or-plane for any output variable. These
lines run vertically along the side of the logic network. Outputs from D-nodes run
immediately perpendicular to the D-nodes and join the vertical or-plane. This would
resolve the problem of horizontal connectivity due to D-node outputs to the or-plane.
(Nodes within the network would not have to be used as simple communication
buffers passing output variables up to the or-planes.) The input binder could also be
placed parallel to the logic network, such that variables could easily be entered at any
level of the network. Figure 7.5 gives a representation of the ASOCS structure

(excluding the AU) for AA2.

7.2. Informal Description of AA2

This section gives the informal description of AA2. Refer to the formal descrip-

tion (in the next section) for the final word on ambiguities.

7.2.1. Broadcast and Instance Set Maintenance

In AA2 it is not necessary to store the instance set separately from the network,
and therefore it is not necessary to do instance set maintenance in the adaption unit.
The instance set is implicitly represented and maintained consistent and minimal
within the logic network. When a new instance is broadcast, the nodes in the network

adjust such that the network represents a consistent and minimal instance set.

Instance broadcast is the method of instance introduction in AA2. The broadcast
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to the network is simply a list of the variables (including their polarity) contained in

the antecedent of the NI, together with the polarity of the new instance.,

7.2.2. Node and New Instance Relationships

When a NI is broadcast, each node! relates with the instance in one of six possi-
ble ways. They are Subset, Equal, Superset, Overlap, One-Difference, or Discrim-
inated. These are the same terms defined it chapter 3 regarding the relationships

between instances. In the following explanations variables in the NI and in a node are

1The relation is between the variables of the instance and the variable list of each node.
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only considered to be the same if they are concordant variables. Figure 7.6 shows
examples of the six basic new instance to node relationships which can occur after the

instance broadcast.

ABD — Z New Instance
A>D7Z _ Subset Node
ABD — Z Equal Node
ABDE & Z Superset Node
BE > Z Overlap Node
CG > 2Z Overlap Node
ABD > Z One-Difference Node
ABD — Z Discriminated Node

Figure 7.6 - Node - New Instance Relationship Examples

A node is a subset node if its own variable-list is a subset of the variables of the

NI A subset node always outputs a 1 for all environment states matching the NI.

A node is equal if its variables are the same as those of the NI. An equal node

always outputs a 1 for all environment states matching the NI.

A node is a superset node if it has more variables than the NI, but every NI vari-
able occurs in the node’s variable list. A superset node outputs 1 for some states of

the environment that match the NI, and outputs O for others.

A node is an overlap node if there is no discriminant variable between the NI and
the node, and the node is not a subset, equal, or superset node. An overlap node out-

puts 1 for some states of the environment matching the NI, while it outputs a 0 for
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others.

A node is a one-difference node if the NI and the node are concordant, and there
is exactly one discriminant variable between the two, and except for the discriminant

variable, one is a subset of the other.

If there is one or more discriminant variables between the NI and the node vari-
ables, and the node is not a one-difference node, then the node is discriminated. A

discriminated node outputs O for all states of the environment matching the NI.

7.2.3. Node Action and Priority

The action that a node can take depends on both its relation with the NI and its
polarity. The permutations of these two values are similar to the types of minimiza-
tions and contradictions which can take place in an instance set when a NI is added, as

explained in chapter 3.

After broadcast of the instance, each node compares the NI with its own variable
list, and then sets its state flag to a corresponding priority. The priority will be used to
determine the order in which the nodes should be selected. For each NI-node relation-
ship there is a specific action which can take place. In AA2 some actions must take
place before others, and thus a priority is given to each type of relationship. Nodes
with the highest priority are chosen first to cause the action specified by the NI-node
relationship. A node only causes its specified action to take place when it is selected.
It is possible that the action of a high priority selected node is sufficient to cause

correct network update, in which case no more nodes are selected.
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Selection in AA2 must be implemented different than for AA1 since there are
multiple top nodes for a single output variable. These differences are implementation
dependent and will be explained in a later section. For ease of explanation, the same

selection terms used in Chapter 6 are used in the remainder of this chapter.

There are 15 different combinations of NI-node relationship and node polarity.

Table 7.1 gives an overall summary of the potential action states together with their

priority.

Node is Subset Equal Superset Overlap
Discordant DVA Polarity Self DVA
D-Node 3 Inversion ~ Delete (3)

(1) (6
Concordant || New Instance New Instance Self No
D-Node Fulfilled Fulfilled Delete Action
(1) (1 (6) (7
One Modify New Modify New Modification | Impossible
Difference Instance Instance. Iteration State
D-Node 2) ) 4)
Potential Complete
Growth Discriminant No No
P-node Node Deletion Action Action
5 Becomes D-node (7) @)
(1)

Table 7.1 - Node Actions

DVA is explained in a later section.

The priorities are the criteria used during the selection process which uniquely
selects nodes. Priority 1 is the highest. The only nodes which can initiate an action
during the main update phase are those with priorities 1-4. Priority 5 nodes can be

selected during node combination. Priority 6 nodes will initiate self-deletion after the
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update phase. A priority 7 node can never be selected.

The priority 6 nodes could be allowed to immediately self-delete after new
instance broadcast. However, for efficiency as explained later, the self-deletion is not
allowed to occur until after the network modification. AA2 Self-deletion, a type of

non-discriminant deletion, is explained in a later section.

The basic AA2 algorithm is as follows:

1. Input a New Instance.

2. Broadcast the New Instance.

3. Each node compares its variable list with the NI and sets its priority.

4. A sort wave is performed and the AU views the output score.

5. If the score is a 1 then
a. Do arbitration wave and selected node broadcasts its relation.
b. If the node is concordant-subset or concordant-equal then
exit.
¢. If the node is an equal p-node, then do complete-discriminant
deletion, then goto 4.
d. If the node is discordant-equal, then do polarity-inversion,
then goto 4.

6. If the score is a 2 then
a. Do arbitration wave and allow selected node to broadcast its
variables.

b. Minimize the NI in the AU and rebroadcast it to the network.
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c. Goto 3.
7. If the score is a 3 then
a. While there are still nodes with priority 3 select one node
with an arbitration wave, and do discriminant variable addition.
b. Goto 4
8. If the score is a 4 then
a. do arbitration wave to select the node.
b. recurse to 1 with the new instance built from the variable list
of the node and the node polarity.
¢. Goto 4
9. If no previously selected node had a priority of 1 do Node Combination to
create a new D-node matching the NL

10. Do Self-Deletion.
Each node action is now discussed in detail.

7.2.3.1. Priority 1 Nodes

There are four node states in the table which have priority 1. If a node has prior-
ity 1, then that node is sufficient to fulfill the new instance. Only one node in the net-

work can be a priority 1 node for any given instance. This follows from the consistent

and minimal structure of the network.

A subset or equal concordant D-node, which can never cause a contradiction,
already fulfills the NI. In this case, no change need be made to the network. This

corresponds to a NI immediately deleted by subset minimization.
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If the node is a discordant D-node? that is equal to the NI, then the node will
change its polarity from positive to negative, or vice versa. This change must be
accompanied by a local command sent to the or-plane, causing the output to be
switched to the discordant or-plane. This method of change is called Polarity Inver-
sion. The update cannot terminate at this point since it is possible that other nodes

contradict the NI. The algorithm continues by initiating another selection wave.

An equal P-node causes complete discriminant deletion. The procedure is the
same as that in AA1l. Since the P-node is an exact match of the NI, it can become the
new D-node responsible for that instance. All nodes above the equal P-node can be
deleted from the network. The polarity of the new D-node is set to the polarity of the
NI. After this deletion the node sets its priority to 7 so that it will not be selected in a
subsequent selection wave, and another sort wave is initiated. This is to see if any
priority 2 nodes had been set during the NI broadcast, which could now cause further

minimization to take place in the network.,

When a priority 1 node is selected, node combination will not be necessary,
regardless of whether further node selection is necessary. This is because the selected

priority 1 node will be the node corresponding to the NI,

7.2.3.2. Priority 2 Nodes

Both node states with priority 2, the one-difference subset and one-difference
equal nodes, cause the same action: to minimize the NI by removing one variable.

When the AU receives a 2 at the end of a sort wave, it selects the node. The node then

2Meaning that it contradicts the new instance.
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broadcasts its variable list. The AU is then able to minimize the NI, and rebroadcast it

to the network,

After the rebroadcast, all nodes will recalculate their priority and the algorithm
will continue as if the rebroadcast were the initial broadcast. However, because of
consistency, no node can ever contradict a new instance which has been minimized. If

one could, then the network would have been inconsistent.

7.2.3.3. Priority 3 Nodes

The discordant subset and overlap nodes have a priority of 3. They both cause
the same action, discriminant variable addition (DVA). DVA is explained in a later

section.

7.2.3.4. Priority 4 Nodes

The priority 4 node is the superset one-difference node. This node state is the
one which can cause efficiency problems for AA2. Each time one of these nodes is
encountered it is necessary to recurse through the whole modification cycle with the
new instance being built of the variables and polarity of the node.? Each one of these
recursions causes a modification iteration, an occurrence that is shown in chapter 9 to

be fairly costly.

This iteration is necessary because a more compact representation is sought in
this case. The node itself will always be deleted. However, it is not usually possible

to simply delete part of the subtree to obtain a D-node representing the correct

3Which polarity must be the same as the polarity of the new instance.
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instance. For example, assume a D-node with a variable list of ABCD built from two
nodes with lists AB and CD respectively. The concordant NI BC is then broadcast.
The D-node must be changed to ABD . The only way to do this is to combine the node
with AB together with the single variable D. This must be done by a modification

iteration.

A simple variate which allows real-time adaptation? is to ignore priority 4 nodes.
In this case the network will still fulfill the instance set, although the set it stores will

not be minimal.

This variate could then be extended by allowing the network to minimize itself at
some later time when no processing was being done. This minimization, or "garbage
collection,” would be a type of locally redundant deletion in which each node could, in
a round robin fashion, broadcast its variable list. Nodes able to do one-difference

minimization with the broadcast list could then cause modification iterations.

7.2.3.5. Priority 5 Nodes

The only priority 5 node is the subset P-node. It is the basic building block used
in building new D-nodes to match a NI. Subset P-nodes can be conjunctively com-
bined to create a new node having all the variables in the NI antecedent. Their use and

creation are described in the section on Node Combination.

4 Adaptation time guaranteed within a small upper bound.
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7.2.3.6. Priority 6 Nodes

Priority 6 nodes are those nodes which will initiate self-deletion after the network
update phase. Both discordant and concordant superset D-nodes fall into this

category.

7.2.3.7. Priority 7 Nodes

The priority 7 nodes are those which cannot be selected for any update function.
These nodes are the concordant overlap D-node, the overlap and subset P-nodes, and
the discriminated node (a node having at least one discriminant variable). The subset
P-node will always be deleted by a deletion wave initiated by its parent(s). The other
nodes may be deleted by a complete discriminant deletion initiated by an equal P-

node,

7.2.4. Discriminant Variable Addition

In AA2, D-nodes are only created to match a newly created instance. In the case
of Discriminant Variable Addition (DVA) these are new instances created by overlap
contradiction. Each discriminant variable of the NI is combined with the output of a
D-node to create new D-nodes. The old D-node becomes a P-node. The new D-nodes

take on the complement of the polarity of the new instance.

For example, assume there is a Positive D-node with a variable list of A and B.
The new instance ABCD —> Z is then broadcast. The node becomes a priority 3
node, and it will have to do DVA. There are 2 discriminant variables in the NI: C and

D . Thus, two new nodes will be created by combining the output of the old D-node
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with the inversion of each of discriminant variables. Figure 7.7 shows the change

made to the old D-node after this process.

P-node

| ]

c A B D

&

Figure 7.7 - Discriminant Variable Addition

The old D-node becomes a P-node. Note that there is still no new D-node match-
ing the NI. This is not accomplished by DVA. It will be accomplished by the later

step of node combination.

The above explanation of DVA is not quite complete, due to minimization con-
straints. It is not sufficient to simply add a D-node for each discriminant variable of
the NI. Unlike node combination, it is possible that the new D-node created by DVA
will not be minimal. The problem is solved as follows. When a priority 3 node is
selected, it broadcasts its variable list on the broadcast bus. The AU can then calculate
what new instances (D-nodes) have to be added before actually initiating the DVA.

The AU broadcasts, one at a time, each of the new instances. Each node sets its action
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state, and a sort wave takes place. If the priority returned by the wave is "1", then
some other node is already a subset of the new instance, and it is not necessary to add

it to the network. Following is an example of this case.

Assume that we have the same example as above with a positive D-node (1) with
a list of AB. Assume also that there is a negative D-node (2) with a list of C. The
new instance ABCD —> Z is then input to the system. This instance is broadcast to
the network, and node 1 sets itself as a subset node with a priority of 3. Node 2 does

not match the NI, thus it has a priority of 5. DV A must then take place.

However, before creation of any nodes, the node broadcast its variable list. The
AU calculates that ABC — Z and ABD —> Z are the two new necessary
instances. The AU then broadcasts each of these instances to the network to see
whether they are already fulfilled by some node. When ABC —> Z is broadcast to
the network, node 2 signals that it is set to state 1, because it is a concordant subset
node. Thus, the AU knows not to add the instance ABC —> Z to the network.
When ABD — Z is broadcast, no 1 is produced by the sort wave. In this case the
DVA will create only one new node by combining the output of node 1 with the vari-

able D to create a new positive D-node.

When the variable list of a node to be created by DVA is broadcast to the net-
work, it is possible that concordant D-nodes are superset-one-difference nodes in rela-
tion to the newly created node. These nodes set their state to 4 and will be processed
during the phase of the algorithm serving priority 4 nodes. Only nodes which are ini-

tially discriminated (have a priority of 7) are eligible to have their priorities changed to
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a 4. This is because they must contain a discriminant variable between themselves

and the NI in order to be superset one-difference with a created DV A node.

7.2.5. Node Combination and New Node Addition

The new D-node created for a NI, which is not fulfilled by any node already
existent in the network, is formed by combining P-nodes which are a subset of the NI;
i.e. those with a priority of 5. Node combination will only take place if no priority 1
node was selected for the current instance. If combination of already existent subset
P-nodes is not sufficient to create a complete D-node, then the AU will cause new P-

nodes to be created by new node addition.

There is more than one way in which node combination can be performed. One
simple method is to use a Combination selection wave, which causes the subset P-
nodes to use the number of variables in their list which are also in the NI list as the
criterion. The selected node broadcasts the variables in its list. The AU can then, if
necessary, start another selection wave, having broadcast the abbreviated list. If the
P-nodes are not sufficient to build the new D-node then the AU will allocate new
nodes doing the conjunction of the variables not contained in the selected P-nodes.
The selected P-nodes and any newly created P-nodes then combine together to form

the new D-node corresponding to the NI. The D-node is set to the polarity of the NI

Assume that we use the example as shown above in figure 7.7. After DVA, it is
still necessary to create the new D-node to match the NI ABCD —> Z. A selection
wave is started and the P-node with AB is selected as one P-node. Assume that

another selection wave does not result in any other priority 5 nodes. Then the AU
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would cause a new P-node with a list of CD to be created. The outputs of these two
P-nodes would then combine to form the new negative D-node representing the NI.

The final configuration is shown in figure 7.8

g
D-Node
ABCD

P-node P-node
CD AB
¢ D C A B D

Figure 7.8 - Node Combination

7.2.6. Seif-Deletion

The concordant and discordant superset D-nodes initiate self-deletion. Their
deletion will take place after the network has been modified. The method of self-
deletion is carried out like non-discriminant® deletion in AA1, except that there is
never a parent node to the node initiating the self-deletion. Any superset P-node, a
node which has parent(s), will be deleted by a parent which must also be a superset

node.

3Complete discriminant deletion was explained earlier in the discussion of priority 1 nodes.
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The self-deleting node sends a local command to both of its children nodes for
them to also self-delete. This continues recursively, until a child has more than one

parent node, at which time it simply removes the link to the deleted parent.

Seif-deletion is done after network modification so that no P-node which might
be used in node combination, will be recursively deleted because it was a descendent

of a self-deleting node.

A D-node which self-deletes also sends a local command to the or-plane signify-

ing that it is no longer an output.

When looked at closely, it is seen that for AA2 complete discriminant deletion is
not really essential. The same goals are accomplished by using non-discriminant dele-
tion, together with node addition. However, it is more efficient to use both deletion
processes. In AAl, the two types of deletion are independent, and it is essential to

have both.

7.2.7. Node Selection in AA2

The logic network in AA1, for any single output variable, converges to a single
top node. This is very natural for the selection process, since there is a single termina-
tion and initiation point for the sort and arbitration waves respectively. This conver-
gence is not found in AA2. This could be handled by augmenting the or-planes such
that the D-nodes sent their sorted criteria to the or-plane which could then do a linear

maximization of the criteria, which could then be sent back down the highest D-node.

However, we note that the need for selection in AA2 is different than that for

AA1l. In AAI there can be any number of eligible nodes for selecting. The main

198



purpose of selection is just to make sure a subset of then are uniquely chosen. In AA2
each matched node, within a priority class, already knows it must be used, and the
purpose of selection is just to make sure there are no resource conflicts. This is
because sorting is no longer critical. Four distinct selection waves could be used, one
for each the four priorities which can initiate an action. Once within a class, it makes
no difference in which order they are selected, since they must all be selected. Thus,
rather than a sorting selection wave, a simple bus contention protocol could be used

until each node has its turn. The type of protocol used is an implementation decision.

7.3. Formal Description of AA2

In this section we use a structured language to give a formal description of AA2.
The language used is the same as for AA1 and its operators will not be redefined in

this section.

Data Types

set:

list:

boolean:

integer:

polarity: positive, negative, or nil.

variable: variable which occurs'in an instance (ie. A, B , Btc.)

instance: instance. variables is a list of the variables in an instance.

instance.polarity is positive or negative. polarity is the complement of polarity.
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Data structures

broadcast-bus Represents the broadcast bus.
node Network node whose subparts are:
node.left-child - Node or a variable
node.right-child - Node or a variable
node.parents - Set of nodes
node. polarity - Positive (D-node), negative (D-node), or nil (P-node)
node.state - Integer priority between 0-6

node.variables - List of variables which the node conjuncts

program: AA2-Update(NI)

declare NI: Instance
begin
Add-New-Instance(NI)

Non-Discriminant-Deletion

end

procedure: Add-New-Instance(NI)

declare NI: Instance

declare new-node-needed: boolean
declare done: boolean

declare current; node

begin

new-node-needed « true
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for all nodes Set-State(node , NI)
done « false
while not done
begin
if Sort-Wave(result: highest-priority) # 1,2,3, or 4 then done ¢« true
else
begin
Arbitration-Wave(result: current)®
if current.state = 1 then
begin
new-node-needed « false
if broadcast-bus = concordant-subset-d-node then done « true
else if broadcast-bus = concordant-equal-d-node then done « true
else if broadcast-bus = discordant-equal-d-node then
current.polarity «- NI.polarity
else if broadcast-bus = equal-p-node then
begin
Complete-Discriminant-Deletion(current)
current.polarity < NI.polarity
end
end
else if current state = 2 then

begin

6The selected node places its node state on the broadcast bus.
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done ¢ true
Add-New-Instance(Make-Minimal-Instance{
Nl.variables , current.variables , NI.polarity))
end
else if current.state = 3 then Discriminant-Variable-Addition(current,NI}
else if current.state = 4 then Add-New-Instance(Make-Minimal-Instance(
current.variables , NL.variables , NI.polarity))
end
end
if new-node-needed = true then Node-Combination(NI)

end

procedure: Set-State(node , NI)

declare node: node
declare NI: instance
begin

node.state < priority as shown in Table 7.1

end

procedure: Make-Minimal-Instance(vsetl , vset2 , polarity)

declare vsetl: set of variables
declare vset2: set of variables
declare polarity: polarity
declare new-instance: instance
begin
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new-instance.polarity « polarity
new-instance.variables « vset]l minus (discordant variable in vset2)
return(new-instance)

end

procedure: Discriminant-Variable-Addition(NI , current)

declare NI: instance
declare current: node
declare new-node: node
declare dvar: variable
begin

for all Nl.variables (dvar) not € current.variables
begin
Broadcast(current.variables + dvar )
if no node.state = 1 for (current.variables + dvar ) then
begin
new-node ¢~ Allocate-New-Node()
new-node left-child « dvar
new-node.right-child <« current
new-node.variables « current.variables + dvar
new-node.polarity « current.polarity
Set-Stare(new-node)
current.parents «— current.parents + new-node
for all nodes with state = 7 Ser-State(node)”

end
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end
current.polarity < nil

end

procedure: Node-Combination(N])

declare NI: instance

declare done: boolean

declare selected-node: node
declare share-set: set of variables
declare new-node: node

declare nodel: node

declare node2: node

begin

share-set < ¢
done « false
while (share-set # NI.variables) and (not done)
begin
selected-node « priority 5 node largest nonzero (node.variables intersect share-set)
if selected-node = nil then done « true
else
begin
selected-node.state «— growth®

broadcast-bus ¢ selected-node.variables

7This sets any node which is superset-one-difference with the newly created node to a state of 4.
8Growth is an integer constant unique from the other priorities.
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share-set «— share-set union broadcast-bus
end
end
if share-set # NI variables then
begin
share-set « share-set intersect NLvariables
while share-set # ¢
begin
new-node « Allocate-New-Node()
new-node.left-child & Extract-Element(share-set)
new-node.right-child « Extract-Element(share-set)
new-node.polarity « nil
new-node.state «— growth
new-node.variables « new-node.left-child and new-nodé.right-child
end
end
while there exists 2 2 growth nodes
begin
node! « any growth node
node2 « any other growth node
new-node « Allocate-New-Node()
new-node.left-child <« nodel
new-node.right-child < node2

nodel .state « 0
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node2.state ¢- 0
nodel.parents « nodel.parents + new-node
node2.parents « node2.parents + new-node
new-node.state ¢ growth
new-node.polarity < nil

end

new-node.polarity « NIpolarity?

end

procedure: Non-Discriminant-Deletion
declare node: node
begin
for all nodes if (node.state = 6) and (node.polarity # nil}/? then
begin
Delete-Wave(node.left-child , node)
Delete-Wave(node.right-child , node)
Remove-Node(node)
end

end

Procedure: Delete-Wave(d-node , parent-node)
declare d-node: undetermined’?

declare parent-node: node

9 At this point the last growth node will become the new D-node.
101f the node is not a D-node it will be deleted by it's parent.
/17t could be either a node or a variable.
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begin
if d-node is a node then
begin
if Size-of{d-node.parents) > 1 then
d-node.parents « d-node.parents - parent-node
else
begin
Delete-Wave(d-node.left-child , d-node)
Delete-Wave(d-node.right-child , d-node)
Remove-Node(d-node)
end
end

end

7.4. Example

We now give a short example which demonstrates the basic aspects of AA2.
Assume that the first instance input to the system is ABCD —> Z. There are no
nodes yet in the network. In this case the AU must guide the building of the new D-
node. A and B are connected to the first node, C and D to the second, and the two
outputs are combined. Figure 7.9 shows the initial network. In the figures, all nodes
which have a parent are P-nodes. A top node is always a D-node, marked P or N to
signify whether it is a positive or a negative D-node. The connection into the or-plane

is not shown.
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A B cC D
Figure 7.9 - Initial Network

The next instance added is ABDE —> Z. After broadcast and the sort wave, a 5
is produced at the top of the network telling the AU thét there is no contradiction or
minimization possible, that the NI will be entered, and that there are subset P-node(s)
to aid in building the new D-node. After arbitration the single subset P-node AB is
selected. It broadcasts its variable list, sets itself as a growth node, and sets its priority
to 7. Another arbitration returns 7, meaning that there are no more subset P-nodes. A
new node is created with D and E as the inputs. This new node is combined with the
selected P-node, creating a new D-node. The new D-node’s polarity is set to negative,
and its output is forwarded to the or-plane. Figure 7.10 shows the network structure

after this NI addition.

The next instance is ABCD —> Z. The sort wave returns a 1 from the right D-
node. This node then undergoes polariry-inversion and the modification is complete

since there are no priority 3 nodes. The right D-node is now a negative D-node.
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Figure 7.10 - Modified Network

Next, ABC —> Z is input. The right D-node sets itself to self-delete since it is
a superset D-node, and the highest output from the sort wave is a 5 from the middle
subset P-node. The priority 6 node must not begin self deletion until after any other
network modification is complete to insure that no children of the deleted nodes are
deleted before they could be used in node combination. The subset P-node is selected
and the AU causes it to be combined with the variable C. After this combination the
two nodes set to self-delete begin the self-deletion phase. The network now appears

as in figure 7.11.

If self-deletion had been allowed to take place before node combination, and if
the middle P-node had not had an output going to the left, that P-node would have
been deleted during the self-deletion phase and would have to have been subsequently

reallocated.

ABC —> Z is the next input to the system. The sort wave produces a 2 from
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Figure 7.11 - Modified Network

the right P-node since it is one-difference equal. The selected node broadcasts its vari-
able list and the AU modifies the NI to AB —> Z. The AU then rebroadcasts the
modified NI to the network. A 1 is produced by the middle P-node since it is equal to
the NI. This causes complete discriminant deletion, and all nodes of the network are
deleted except the middle P-node. The P-node then changes itself to a negative D-

node.

The final instance is ABE —> Z. A 3 is returned by the sort wave meaning that
overlap contradiction has taken place and that DVA must be performed. The node is
selected, it broadcasts its list, and then sets its priority to 0. At this point the AU
causes the selected node to be combined with a discriminant variable from the NI
Since there is only one discriminant variable, only one new node is created. The vari-
able list of the new node is first broadcast by the AU, to see if any node in the network

already fulfills it. The variable £ is combined with the old D-node, and a new nega-
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tive D-node is created. The old D-node becomes a P-node.

New node addition after DVA, when necessary, always consists of combining the
old selected D-node with the conjunction of the discriminant variables of the NI. This
list of discriminant variables is broadcast, and selection waves are used to select sub-
set P-nodes which can build the conjunction. Since no subset P-nodes exist in the
current network, the AU causes the old D-node to be combined with E , creating a new

positive D-node. The final network is shown in figure 7.12.

P

E A B E
Figure 7.12 - Final Network

7.5. Multiple Outputs

AAZ2 is easily extendible to multi-variate output. For multiple variables it is only
necessary that each D-node have one specific polarity-flag for each variable for which

it is a D-node. The variable list stays the same, regardless of the number of output

211



variables. Only 2 bits are required for each additional output variable for which a D-
node participates. A P-node can be used for any number of output variables without
any memory modification. This is because the extra polarity-flag is only necessary for

D-nodes of the output variables.

During any modification phase, only one output variable is under scrutiny, and
each D-node must check the polarity flag for that variable, if it exists, and act accord-
ingly. Nodes that do not have a polarity flag for the variable are still involved in the
modification process. If a node is a P-node, it can be used for node combination or
complete discriminant deletion. If it is a D-node for one or more other variables, it
can simultaneously be used as a P-node for the current output variable. if it becomes a

D-node for the current variable, it must create a corresponding polarity flag.

Thus, a node could be a P-node for one output variable, a positive D-node for
another, and a negative D-node for yet others. If a node is a D-node for more than one

variable, it requires separate outputs into the or-plane for each variable.

7.6. Conclusion

A possible variation of AA2 is to limit the system to instances of one polarity of
output assertion. This is a case of using a Single-Valued Logic. For example, the
system could accept only positive instances and guarantee a 1 whenever a positive
instance is matched. Otherwise a 0 would always be output. With this mechanism,
the size of the network is greatly reduced. However, it becomes impossible to deter-

mine whether the output of the network should be a don’t know.
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The depth of AA2 network will never exceed the total number of bound input
and feedback variables. Thus, the worst cast for execution time is O (n) where 7 is
the number of bound input and feedback variables. If minimization is not performed
during the regular adaptation process then the adaption time can also be O (). Other-
wise, the possibility of modification iterations prevent a guarantee that adaptation time

will be within that bound.

A unique aspect of AA2 is that the network always knows if an instance has been
matched, and it has the ability to output don’t know for unmatched environment states.

This aspect is only maintained when AA2 keeps the instance set minimal.
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Chapter 8

ADAPTIVE ALGORITHM 3

In this chapter we discuss Adaptive Algorithm 3 (AA3). The layout of this
chapter is similar, albeit shorter, than the previous chapter on AA2. The algorithms
are alike in many ways. Most of the constructs in AA2 are used unchanged in this
chapter. AA3 uses instance broadcast as does AA2. However, AA3 does not use

selection waves or modification iterations.

The first section describes the architectural and node requirements of AA3, Sec-
tion 2 gives an informal description of the algorithm, and section 3 gives the formal
description. The next section gives an example of the functioning of AA3. Section 5

discusses multiple-outputs. The following sections give extensions and a summary.

AA3J is similar, although simpler than AA2. Rather than have one D-node for
each instance in the instance set, it is only necessary to have sufficient D-nodes to
properly discriminate the instance set. When a new instance is broadcast, only discor-
dant D-nodes compare thcmselvés with the new instance, thus the only test is for con-
tradiction. The main features of AA2 and AA3 are the same except for two notable
exceptions. AA3J is not able to discern when the environment state does not match any
instance, as is done in AA2. waever, AA3 does not require flexible interconnections

between nodes, allowing for an easier physical implementation.
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8.1. Architecture and Node Requirements

In AA3 network nodes are similar to those in AA2. The DPLM function of each
node is always the And function. There are positive D-nodes, negative D-nodes, and
P-nodes. All nodes have one Variable Child and one Node Child. A variable child is
a literal variable, possibly inverted, which inputs to the node’s DPLM. The node child
is a network node. Each P-node has two parent nodes: Left Parent and Right Parent.
A D-node has no parent nodes. All nodes also have a variable-list and a polarity-flag.
The or-plane methodology explained in chapter 7 is used for AA3. Outputs from D-
nodes exit the network to the sides and join the or-planes. Since inputs enter at all lev-
els of the network the variable inputs also enter the networks from the side. Figure 8.1

gives a representation of the AA3 network structure.

This regularity of the node interconnections is unique to this algorithm and is not
found in the previous ones. Because of regularity, implementafion can be done with a
fixed node interconnection structure. There is no need for interconnection multi-
plexers between layers of nodes, since each node can be permanently attached to its

two parents.

The overall structure is that of a binary decision tree (BDT). The bottom node of
the network is called the Root Node and it is unique from all other nodes in the net-
work. It has no inputs, and its DPLM always outputs a "1". Otherwise it is identical
to any other node. The root node can be a D-node or a P-node. Figure 8.2 gives an
illustration of a possible internal network structure of AA3. The connections from the

D-nodes into the or-plane and from the input binder to the nodes are not shown.
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Figure 8.1 - AA3 Network Structure

In a physical implementation a hardwired tree structure would be used. Nodes
which are functioning would be Acrive nodes and unallocated nodes are Inactive
nodes. A deleted node becomes inactive and an allocated node becomes active. The
logical structure shown in figure 8.2 could reside on a fixed physical structure as is

LI

shown in figure 8.3. Nodes in the figure marked with an "x" represent the active

nodes, while all others are currently inactive.

The flexible portion of the network is at the input and output binders. The per-

pendicular traffic (variable inputs and outputs) needs to be dynamically modifiable. It
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Figure 8.2 - AA3 Internal Network
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Figure 8.3 - AA3 Fixed Network Implementation
is by changing the variable inputs to the nodes, and the polarity of the nodes, that the

network adapts.
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The maximum depth of the network is equal to the number of bound input and

feedback variables, plus the root node.
8.2. Informal Description

8.2.1. Overview

The overall functioning of AA3 is much simpler than the previous two algo-

rithms. The basic steps are outlined below.

1. Input a New Instance.

2. Broadcast the New Instance.

3. Each discordant D-node tests its relationship to the New Instance.
a. If the node is Equal or Superset, do Polarity Inver-
sion.

b. If the node is subset or overlap, do DVA.

4, Self-Deletion.

There are no loops or modification iterations. No selection waves are required and the
actions specified in step 4 can occur concurrently.

The. difference between AA2 and AA3 is the discrimination paradigm. When a
new instance is entered, AA3 considers only discordant D-nodes, like AA1. It ignores
concordant nodes that are matched, as long as no discordant node matches the NI.
Table 8.1 illustrates the contrast between AA3 and AA2. It has the same format as the
corresponding table in the AA2 chapter, but fewer action entries. An "X" signifies

that no action is needed for that node state.
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Node is Subset Equal Superset Overlap
Discordant || DVA Polarity Polarity DVA

D-Node 2) Inversion | Inversion (2)

(1) (1)

Concordant X X X X

D-Node

One Impossible

Difference X X X State

D-Node

P-Node X X X X

Table 8.1 - Node Actions
Nodes which are discordant equal or discordant superset D-nodes undergo polar-

ity inversion. This is accomplished by setting the nodes polarity to its complement.

Subset and overlap discordant D-nodes cause discriminant variable addition

(DVA). DVA for AA3 is explained in the next section.

All other nodes take no independent action. They may be deleted as part of the

self-deletion phase.

8.2.2. Discriminant Variable Addition

Discriminant Variable Addition (DVA}) is the only method by which new nodes
are created in AA3. The goal of DVA is to create a new D-node with the polarity of
the new instance which will always output high when the NI is matched. This node
need not be equal to the NI The other nodes created by DVA will cause the network
to output the complement of the NI polarity when environment states previously
matching the contradicted node, but not contradicted by the NI, are matched by the

environment.
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DVA is a recursive procedure which combines the contradicted D-node with
discriminant variables from the NI. Each variable in the NI which does not occur in
the variable list of the contradicted D-node is considered a discriminant variable. The

steps of DV A are then as follows.

1. Variable-list « list of all variables in the NI which do not occur in
the variable-list of the D-node.
2, Call DVA with the contradicted D-node as the node argument, and

the variable-list as the list argument.

DV A(node,list)
a. If list is empty then exit.
b. Allocate the two parent nodes of node.
c. Choose any one discriminant variable from list and
delete the variable from the /ist.
d. Make one parent a discordant D-node (in terms of the
NI) and make the inversion of the chosen variable the
nodes variable-child.
e. Make the other parent a concordant D-node (in terms
of the NI) and make the chosen variable the nodes
variable-child.
f. Set the polarity of node to nil. This makes it a P-
node.

g. Call DVA with the concordant D-node and /ist as the
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arguments.

The number of nodes added is equal to 2 times the number of discriminant vari-
ables in the NI. There will be one iteration in the procedure above for each discrim-

inant variable. We illustrate DVA with an example.

Assume that a positive D-node exists which has a variable list of AB. The new
instance ABCD —> Z is then input to the system. This instance is Broadcast to the
network, and the node sets itself as a subset discordant D-node. DV A must take place.
One of the discriminant variables, C or D must be chosen for the first iteration.
Assume that the variable C is chosen first. Figure 8.4 shows the state of the network

after the first iteration.

Neg
D-Node
ABC

P-ngde

C I I C

Figure 8.4 - Discriminant Variable Addition

In the figure the old D-node has become a P-node. The node which combined

with C is now a positive D-node. The right node is now a negative D-node.
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Variable D must be chosen for the second iteration. The node to undergo DVA
is the concordant D-node. This contrasts with the first DV A iteration which is always
with a discordant D-node. Figure 8.5 shows the final structure of this piece of the net-

work.

Pos Neg
D—I_\Ioge D—ﬁode
ABCD ABCD

D
-Node
ABC
C
P-node
AB

Figure 8.5 - Final Network

It is necessary to continue DVA for each discriminant variable in order to prop-
erly fulfill the instance set. If we had left the network as it was after the first DVA

then the instance set! which the network fulfilled would be

IWe can never deduce the original instance set by simple observation of the network.
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However, according to the rules defined in the knowledge base chapter, the correct IS

representation should be

This second and correct IS representation is fulfilled by the final network arrived at

when both iterations are done.

8.2.2.1. Alternate Network Implementation for DVA

This section describes an alternate network implementation which allows a two-
fold saving of traffic from the input binder. In figure 8.4, the variable B comes in on
two -scparatc lines, one for B and one for B. Figure 8.6 shows an alternative where B
can enter the network on one line, and then be inverted by the function of the new
discordant D-node. In this case, all network nodes which are left-parents would have

a set DPLM function of x - x,, while each right-parent would continue to do x - x.

8.2.3. Self-Deletion

After all polarity inversions or DVA’s have been accomplished, the network

enters the self-deletion phase. There is only one mode of self-deletion in AA3, in
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Figure 8.6 - Alternate Implementation of DVA
contrast to the multiple modes in the earlier algorithms. P-nodes do not initiate any
self-deletion. It is also sufficient that only modified D-nodes apply the self-deletion

test to themselves,

The self-deletion test and procedure is as follows: If the sibling of the D-node is
a D-node of the same polarity, then both D-nodes self-delete and the child becomes a
D-node with the polarity of its former parents. The new D-node then recursively

applies this rule to itself.

Assume that one branch of the network appears as in figure 8.7. Each node is
numbered for identification purposes. The new instance ABCDEG — Z is broad-
cast. This causes node 1 to do bolarity inversion. After any other necessary network
modification has taken place (in another part of the network), the AU issues the self-

delete global command. Node 1 tests its sibling (2) and sees that they are both posi-
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Figure 8.7 - Self Deletion Example

tive D-nodes. Both nodes will then delete themselves and the child node (3) will
become a positive D-node. Node 3 now test its sibling (4), which is also a positive
D-node. They both self-delete and node 5 becomes a positive D-node. Since the
sibling (6) to node 5 is not a positive D-node, no more self deletion can take place.

The final network appears as in figure 8.8.

8.3. Formal Description

In this section we give the formal description of AA3 using the same format as in

the previous two chapters.
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set:

list:

polarity:
variable:

instance:

node

Figure 8.8 - Self Deletion Example

Data Types

positive, negative, or nil.
variable which occurs in an instance (i.e. A, B, etc.)

instance.variables is a list of the variables in an instance.

instance.polarity is positive or negative. polarity is the complement of polarity.

Data structures

Network node whose subparts are:
node.variable-child - Variable
node.node-child - Node
node.left-parent - Node
node.right-parent - Node

node. polarity - positive (D-node), negative (D-nede), or nil (P-node)
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node.variables - List of variables which the node conjuncts

program: AA3-Update(NI)

declare NI: Instance
begin
Add-New-Instance(NI)

for all nodes Self-Deletion-Test(node)

end

procedure: Add-New-Instance(NI)

declare NI: Instance
declare current: node
begin

Broadcast(NI)

for all nodes (current)?
begin
if current.polarity = NI polarity? then

begin

if current.variable-list is superset or equal to Nl.variables then

current.polarity «- NIl polarity
else if (there are no discriminant variables between
NI.variables and current.variable-list)? then

Discriminant-Variable-Addition(current , NI)

Zcurrent is the instantiation for each node used in the "for all" construct.
#Note that only discordant D-nodes can ever be involved in modification.
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end
end

end

procedure: Discriminant-Variable-Addition(current , NI)

declare current: node

declare NI: instance

declare concordant-node: node

declare discordant-node: node

declare dvar: variable

declare discriminant-variables: set of variables
begin

discriminant-variables «— Get-Shared-Variables(Nl.variables , current.variables)
if discriminant-variables # ¢ then
begin
dvar & Select-Any-Element{discriminant-variables)
discriminant-variables ¢ discriminant-variables minus dvar
discordant-node « Allocate-New-Node()
discordant-node.variable-child «~ dvar
discordant-node.ncde-child « current
discordant-node.polarity ¢- W
discordant-node.variable-list « current.variable-list + dvar

concordant-node « Allocate-New-Node()

“1f the node is a subset or overlap node.
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concordant-node.variable-child < dvar

concordant-node.node-child ¢ current

concordant-node.polarity «— NI.polarity

concordant-node.variable-list <~ current.variable-list + dvar

current.polarity +— nil

current.left-parent « discordant-node

current.right-parent €- concordant-node

Discriminant-Variable-Addition(concordant-node , NT)
end

end

procedure: Get-Shared-Variables(NI-variables , node-variables , returns:new-set)

declare NI-variables: list of variables
declare node-variables: list of variables
declare new-set: set of variables
begin

new-set ¢ ¢

'while NI-variables not empty
begin
if Firsy(NI-variables) not an element of node-variables then
new-set « new-set + First(NI-variables)
NI-variables « Nl-variables minus First(NI-variables)
end
return(new-set)

end
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procedure: Self-Deletion-Tesf(node)
declare node: node
begin
if Sibling(node).polarity = node.polarity then
begin |
node.node-child.polarity < node.polarity
node.node-child.left-parent < nil
node.node-child.right-parent < nil
Remove-Node(node)
Remove-Node(Sibling(node))
Self-Deletion-Test(node.node-child)
end

end

9, Example

In this example each major aspect of AA3 is illustrated. Assume that the first
instance input is ABD —> Z. Since this is the first node, and it is impossible for any
discrimination to take place, the root node, which always outputs a 1, is set as a nega-

tive D-node. Thus, the initial network configuration is shown in figure 9.

Figure 8.9 - Initial Network
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In this and the following figures each node contains its variable-list and polarity. In
terms of polarity, P is positive, N is negative, and no entry means the node is a P-

node.

The next instance is ABDE —> Z. Since there are no positive D-nodes in the

network, no action can take place.

The following instance is ABC —> Z. The lone network node is set to action
state 2 for this case, and DVA must take place. Since there are three discriminant
variables in the NI, and since the root node has a null variable list, three iterations take
place. The order in which the three discriminant variables are processed is inconse-
quential. Assuming the order chosen is ABC then the network would appear as in

figure 8.10. Each node is numbered for identification purposes.

The next instance input to the system is AD —> Z. Node 2 is a subset node to
the NI so it must do DVA. The only discriminant variable is D so two new nodes are
created in the single iteration. No self-deletion can take place, and the new network

appears in figure 8.11,

ABC —> Z is entered next. Since no positive D-node matches the NI, the NI is

already fulfilled and no network modification takes place.

The final instance entered is B —> Z. This instance matches discordant nodes
6 and 8. Node 6 is a superset instance and thus polarity inversion immediately takes
place. Node 8 is an overlap node, and will be involved in DVA. B is the only
discriminant variable so one DVA iteration takes place, creating two new D-nodes. At

this point the self-deletion phase is started. The polarity inversion of node 6 has made
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Figure 8.10 - Modified Network

it concordant with node 5. Thus, nodes 5 and 6 both self-delete, and node 3 becomes
a new positive D-node. Since node 4 is a negative D-node, no further deletion takes

place. The final network is pictured in figure 8.12.

We can now view the distributed nature of AA3. There is no single node in the
network which is responsible to be active when B is asserted; corresponding to the
just entered instance B —> Z. Instead we see that the responsibility is spread across
three positive D-nodes: 3, 7, and 9. At least one of these nodes will always be active
when B is active. There is no single node which is always active when B is active.
This contrasts with the method of discrimination in both AA2 and normal BDT struc-

tures. In these methodologies there is one node or path responsible to be active when-
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Figure 8.11 - Modified Network

ever a specific instance is matched. For a minimal BDT it is still the case that one
node is always active whenever one of the set of minterms it is responsible for is

matched.

9.1. Multiple Outputs

AA3 is amenable to multiple outputs by simply adding a polarity flag for each
output variable at any node which is a D-node for that variable. For example, assume

that we have the network constructed for variable Z as shown in figure 8.12.

If the instance AB — 2_2 were added, then node 3 would become a negative
D-node (defined by the new polarity flag corresponding to Z,) for Z,, while remaining

a positive D-node for Z. Any instance additions for any other variable can never
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Figure 8.12 - Final Network

change the status of the variable Z D-nodes.

If the instance A —> Z o was then added, node 2, which is a P-node for Z will
become a positive D-node for Z,. The output of node 2 would be connected to the
or-plane of Z,.

Finally, assume that ABG —> Z,is added. This contradicts with node 3 which
was made a negative D-node for Z,. DVA would take place at this node, creating two
new D-nodes for Z,. Node 4. would still remain a positive D-node for Z just as

before, although it is now a P-node for Z,.
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9.2. Responsibility Lists

In AA3 no node (or any other agent) knows which instances it is responsible for.
The instance set is not stored inside or outside of the network. Recall back to the
example when the network was made up of only the root node (which was a negative
D-node) after the input of 2 negative instances. The instance ABC —> Z was then
entered. Since the node does not know which instances it is responsible for, it is
necessary to discriminate all 3 of the discriminant variables. Realizing what the initial
instances were, it is seen that only the variables A and B are necessary to do discrimi-
nation sufficient to fulfill the true instance set. Discriminating the variable C' does not
hurt, nor does it aid in this case. However, the state of the network, before the
modification, could represent an infinite number of instance sets. At the point when
ABC —> Z was input, any number of negative instances could already have been

input to the system, causing no change.

The reason then, that DV A must iterate over all discriminant variables of a NI, is
that the network has no memory of the instance set. It fulfills it without ever knowing

what it is.

A very powerful extension can be made to both AA3 and especially AA2, caus-
ing both to produce reduced networks. First we realize that the self-deletion rule of
AA3 means that at any given node, if there is not both a positive and a negative D-
node in the tree above the node, then the tree above the node can be pruned, and the
node will become a D-node, having the polarity of the concordant D-node(s) in the

tree above it. Thus, a single D-node can represent many instances. If a memory is
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kept at the node, containing a list of instances for which the D-node is responsible,
then when DVA is done involving that node, 2 minimal DVAJ can always be accom-
plished. This list of instances, stored at each D-node, containing the instances for

which the D-node is responsible is called a Responsibility List.

Of course, the memory, or the size of the list, has to be set at a limit. If the
number of instances for which a single node is responsible grows beyond the memory
size of the node, then it will sprout two new D-nodes using the DVA method, itself
becoming a P-node, and the D-nodes will then each share a portion of the instance list

small enough to fit within the memory constraints.

The main disadvantage to this method for AA2, besides the memory addition, is
that it is no longer possible to ensure the don’t know output. For AA3, the cost is also
in node memory and the gain, as in AA2, is a smaller number of network nodes used

to fulfill the same instance set.

9.3. Features and Summary

The maximum length path in an AA3 network is equal to the total number of
bound input and feedback variables. Thus both execution and adaptation time are
O (n) where n is the total number of bound input and feedback variables. Because

there are no modification iterations in AA3 the adaptation process can run in real-time.

Because the system is represented by a binary decision tree, it could also be

represented as a ULM multiplexer tree. This is done by tumming the tree upside down,

SQOne which only iterates over the necessary discriminant variables.

236



and allowing nodes in the bottom levels of the tree to dynamically set their DPLM’s to
Positive or Negative. For the single output case this would be a more efficient archi-
tecture, because it would obviate the need for the or-plane. However, the ULM tech-
nique breaks down for the multiple-output case. This is because the data flowing
through the lines of the ULM network actually represent the output value. In the BDT
structure the data represents control which selects D-nodes, which can then flexibly

distribute data which manipulate the or-plane.

The perpendicular data lines on which input and output variables flow to and
from layers of the network will have a limited bandwidth. AA3, like the other algo-
rithms, could then use the layered architecture, and limit the number of output vari-
ables in an adaptive plane to a value which does not exceed the bandwidth of the I/O

paths.

Of course, at the limit, one could use only one output variable per adaptive plane
in the network. Because of the minimal amount of circuitry needed for AA3, this
could still be a reasonable architecture. The advantage of this technique, is that per-
pendicular busses could be cut way down. All traffic to the or-planes could flow verti-
cally through unused nodes of the network, since all D-nodes are at the top edge of the

used portion of the network for the single output case.

In AA3 there is no notion of a minimal instance set, since there is no instance set
stored. The network always computes a consistent form of the given instances.
Observation of the current network structure is not sufficient to extract the true

instance set. It is because of this lack of knowledge of the instance set that AA3 needs
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no modification iterations. This is because the perfect minimization of boolean func-

tions is provably NP-complete.

AA3 has a number of advantages over earlier algorithms. One is its comparative
simplicity. Another is the fact that adaptation time can be truly linear with the depth
of the network due to the fact that no modification iterations are ever necessary.
Perhaps most important in terms of implementation is the fact that it can operate on a
network with fixed interconnections between nodes. It is still necessary to have flexi-

ble interconnections between nodes, which is obviated in AA3.

238



Chapter 9

ALGORITHM SIMULATIONS and EXAMPLE

In this chapter we discuss the implementation and results of computer simula-
tions of the three adaptive algorithms discussed in the preceding chapters. The first
section discusses why and how the simulations were implemented. Section 2 gives a
detailed account of a specific simulation run on each of the algorithms and then com-
pares the results. Section 3 gives a comparative summary of the three algorithms.
Finally, section 4 illustrates the mapping of a concrete application into instances and

an example of its implementation using one of the algorithms.

9.1. Why and How

Simulations were undertaken with two goals in mind. The first was to determine
that the algorithms work as explained when the instance set grows large. The simula-
tions empirically demonstrated that point and new understanding and insights were

gained.

The second goal was to gather statistical data of the performance of the algo-
rithms. This statistical analysis is the main purpose of this chapter. The statistics
gathered are listed below. In the list, an adaptation means the overall modification to

the system following addition of a single new instance.

1. Number of instances in the instance set.
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2. Number of nodes in the logic network.

3. Maximum depth of the network.

4. Number of nodes deleted per adaptation.

5. Number of nodes created per adaptation.

6. Net change in number of nodes per adaptation.

7. Number of modification iterations per adaptation.

In order to obtain these statistics, three separate simulations were written, one for
each algorithm. They were written in T, a dialect of Lisp, and run on an Apollo com-

puting environment.

A separate program was provided to interface user and network. This program
stores the instance set and maintains it consistent and minimal. For AA1 this program
handles the instance set maintenance as would typically be done by the adaption unit.
AA2 and AA3 do not require external instance set maintenance and the instance set in
this program is only used for user aid and algorithm testing. A number of help and
user aid commands can be called from the interface program. For instance, at any
time the user can examine the nodes of the network, the instance set, or system statis-

tics.

A large part of the effort was invested in the testing of the network. The network
is tested after every adaptation to ensure that it correctly fulfills the instance set and

maintains all other claimed features.

In order to allow large simulations, the interface program can access files. A

separate program creates files of random instance sets of any given size. The input to
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this program is the maximum number of variables per instance, the number of
instances, and a seed for the random number generator. The program then generates a
file containing a list of random instances in a format compatible with the interface pro-
gram. These instances are then extracted incrementally from the file. After each

instance, statistics are written out to an output file.

A number of different instance files were generated and run on each of the three
simulations. The next section shows in detail the input and output of one of these

instance files, for each of the three simulations.

There are two main reasons to chose random lists of instances for simulation.
First, it would take a long time to build up a large set of instances from the semantics
of some real-world application. The second is that a random set tests a worst case
scenario in terms of the amount of adaptation needed in the network. We use the term
worst case to represent the class of adaptations requiring a large amount of computing
effort. We do not intend the term to imply the theoretically worst single example. A
set of random instances repeatedly causes contradictions to the instance set. Thus it is
possible to observe the working of the network in situations requiring large amounts

of adaptation. Real world applications should require much less network adaptation.

9.2. A Detailed Simulation

As mentioned in the previous section, many different instance files, varying in
the number of instances and number of variables, were submitted to simulation, The
same instance file could thus be tested against each algorithm and the results com-

pared. For this chapter an instance file containing 50 instances, each limited to a
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maximum conjunction of 12 variables, is shown. This case is small enough to be
easily followed and gives similar results to other simulations. In addition, it contains
a couple worst case (degenerate) situations which show weaknesses in the first two

algorithms.

The simulations were written for the single output case. Positive instances for
the output are those that imply T (true), and negative instances are those the imply F
(false). Each simulation receives the instances of the same file as input. The 50

instances in the file are shown below.

F

10. kdjbflheci T
11. be > F

12 kdiéljhfcba >T
13. h —DF

14, bklia —>T

15, cfgkldebahji =>F

6. cb DF
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17.
18.
19.
20.
21,
22.
23,
24.
25,
26.
27.
28.
29.
30.
31,
32.
33,
34,
35.
36.
37.
38.
39,
40.
41,

42,

J ™ F

jefgkba > F
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43. Tacjfibk =T
4, fbgji—T

45. b

4. lcajfgihed —F
47. ictjlegbha DT

48. Iljidakfhgh —>F
49, fikd >F

50. kji OF

Since the instances are the same for each simulation, the final instance set will also be
the same, regardless of what algorithm is used. Recall that the 3-state instance func-
tion is independent of the algorithm and network. The actual 2-state function imple-
mented by the network structures of each algorithm is different in each case. The final
consistent and minimal instance set contains 226 instances. Following is what the
instance set looks like at the end of each simulation, after the sequential input and pro-
cessing of each of the 50 instances.

LAIKCBGJ —T

LAKCDBGJ =T

FLAKHDEBGJ] —T

FLAKGI =T

FAIE —F

FAID & F
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FIDE —F
FLEB —F
FLCD —F
FICD —F
FLCB —F
FLAC —F
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FICE —F

FIKE F

i T T ) T ol B

N omowm o X

S TR I TR T

Q) &y W W
R S

w

o
o]l
by

"y
t~ kN
P =]
e TR~ B .
™ o)
R A A N
M T ™M

o
J« oy
"y

~

Mmooty M T
b~ N
mom

h
]
=]
l
-

245



LIDB —F
LIDG —=F
FLIG —F
LIBG —F
LIKEG = F
FLAI F

LAIB —F

ACDG —F
FLCG —F
LCBG —F
FACG —F
ACBG OF
KCBG —F

FICG —™F
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ICBG —F
FACB —F
ACBG —>F
FACE —F
ACEB —F
ACEG —F
FLKC —F
LKCB OF
LKCG —F
FAKC —F
AKCB - F
AKCG —F
FIKC =>F
IKCB > F
IKCG = F
FAKB —F
AKBG —F
AIBG —F

FAHB —F
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I1J —F
Ci—F
AJ] SF
ElI —&F
LI —>F
GJ] —>F
FHCB —F
FHCD —F
FIHC > F
FAHC —F
FHCE —F

FLHC D F
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FHCG —F

FHCJ] —F

FKCDB ~>F
FKCDE OF
FKCDG —F
FKCDJ —F
FAKCB —F
FAKCD —F
FAKCE —F
FAKCG —F
FAKCJI —F
FKCEB —F
FKCDE —F
FKCEG —F
FKCEJ] —F
FKCDB —F
FKCEB —F
FKCBG —F
FKCBJ —>F
FLKCD —F
FLKCE —F
FKCDG —F

FKCEG —F
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FIKHG

IKHBG F

FIKHD F
LKHD —F

FLAIG OF
FLAEG —F

FLABG —F
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AIKCDEBGI =T
FLKCDEBGJ =T
FLICDEBGI] T
LIKCDEBGT =T
LIKCDEBGT T
LAICDEBGT] =T
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After the input of each instance in the instance set statistics are generated and
output to a file. The statistics generated are the first 7 measures listed in the previous
section. Four output files are shown in this section. The first table corresponds to
AAl. Table 2 refers to a slight variant of AA1, which we here identify as AA1-b.

The third and fourth are for AA2 and AA3 respectively.

Recall that for AA1, it is possible to enter the self-deletion phase at two different
places. Self-deletion could be accomplished after all modification to the network has
taken place. This is how it was explained in chapter 6. It is also possible that self-
deletion occur after processing of the delere-list and before processing of the add-list.
Either way is correct in that there is no further minimization! possible to the network.
The first statistical file shows the original case, where self-deletion is the final opera-
tion. The second file shows the case where self-deletion takes place before node crea-

tion (AA1-b).

In terms of complete discriminant and non-discriminant deletion. Locally redundant deletions
was not programmed in the simulations.
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The results for the four cases are shown on the following pages followed by a

comparison and discussion of each.
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# of #of Nodes Nodes Net Modification
Instance Depth .
Instances  Nodes Deleted Created Change Iterations
1 1 0 0 0 0 0 0
2 2 0 0 0 0 0 0
3 2 0 0 0 0 0 1
4 3 1 1 ] 1 1 1
5 6 4 3 ] 3 3 1
6 23 11 4 ] 7 7 1
7 25 13 5 0 2 2 1
8 26 13 5 0 0 0 0
9 15 10 6 6 3 -3 2
10 15 10 6 ] 0 0 0
11 18 13 7 0 3 3 1
12 41 23 8 0 10 10 1
13 19 15 9 10 2 -8 2
14 26 20 10 0 5 5 1
15 26 20 10 0 0 0 0
16 25 25 12 0 5 5 2
17 27 28 13 0 3 3 1
18 27 28 i3 0 0 0 0
19 51 3s 14 0 7 7 1
20 51 as 14 0 0 0 0
21 51 35 14 0 0 0 0
22 98 41 15 ] 6 6 1
23 102 45 16 ] 4 4 1
24 a8 58 23 21 34 13 14
25 48 66 24 0 8 8 1
26 51 70 25 0 4 4 1
27 52 73 26 0 3 3 1
28 73 79 27 0 6 6 1
29 76 82 28 0 3 3 1
30 102 88 29 0 6 6 1
31 102 88 29 0 0 0 0
32 102 88 29 0 0 0 0
33 107 93 30 0 5 5 i
34 107 93 30 0 0 0 0
35 118 106 32 0 13 13 2
36 170 122 33 0 16 16 1
37 175 128 35 13 19 6 5
38 201 132 36 ] 4 4 1
39 201 132 36 0 0 0 0
40 201 132 36 0 0 0 0
41 100 133 46 21 22 1 13
42 100 133 46 ] 0 0 0
43 113 164 53 0 31 31 7
44 160 166 53 7 9 2 2
45 194 176 54 0 10 10 1
46 194 176 54 0 0 0 0
47 222 187 55 0 11 11 1
48 222 187 55 0 0 0 0
49 228 192 56 0 5 5 1
50 226 186 53 15 9 -6 2

Table 1 - Adaptive Algorithm 1 - With Self-Deletion Last
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#of # of Nodes Nodes Net Modification
Instance Dep .
Instances  Nodes Deleted Created Change Iterations

1 1 0 0 0 0 0 0
2 2 0 0 0 0 1] 0
3 2 0 0 0 1] 0 1
4 3 1 1 0 1 1 1
5 6 4 3 1 4 3 2
6 23 11 4 0 7 7 1
7 25 13 5 0 2 2 1
8 26 13 5 0 0 0 0
9 15 10 6 9 6 -3 3
10 15 10 6 0 0 0 0
11 18 15 7 9 14 5 h)
12 41 23 8 0 8 8 1
13 19 15 7 21 13 -8 5
14 26 21 9 1 7 6 3
15 26 21 9 0 ] ) 0
16 25 21 9 21 21 0 7
17 27 il 11 6 16 10 4
18 27 3l 11 0 ] ] 0
19 51 41 13 3 13 10 3
20 51 41 13 0 0 0 0
21 51 41 13 0 0 ] 0
22 98 43 15 11 18 7 5
23 102 53 16 3 8 5 2
24 38 24 10 16 7 -29 3
25 48 31 11 0 7 7 1
26 51 36 12 6 11 5 3
27 52 39 13 0 3 3 1
28 73 44 14 0 5 5 1
29 76 46 13 12 14 2 4
30 102 52 14 1) 6 6 1
31 102 52 14 0 0 0 0
32 102 52 14 0 0 0 0
1 107 60 16 6 14 8 3
34 107 60 16 0 0 0 0
35 118 68 17 0 8 8 1
36 170 30 18 0 12 12 1
37 175 80 18 36 36 0 6
38 201 88 19 0 8 8 1
39 201 88 19 0 0 1) 0
40 201 88 19 0 0 0 0

1 100 156 59 80 148 68 55
42 100 156 59 0 0 0 0
43 113 173 61 2 19 17 3

44 160 202 67 86 115 29 39
45 104 222 69 8 28 20 5
46 194 222 &9 0 0 0 0
47 222 231 69 6 15 9 3
48 222 231 69 0 0 0 0
49 228 244 72 9 22 13 5

50 226 264 78 34 54 20 12

Table 2 - Adaptive Algorithm 1 - With Self-Deletion First (AA1-b)
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#of # of Nodes Nodes Net Modification
Instance Dep i
Instances  Nodes Deleted Created Change Iterations
1 1 7 1 0 7 7 1
2 2 8 1 0 1 1 1
3 2 9 10 1 2 1 1
4 3 11 10 0 2 2 2
5 6 15 9 1 5 4 2
6 23 40 9 0 25 25 1
7 25 55 g 0 15 i5 1
8 26 59 9 0 4 4 2
9 15 50 9 12 3 -9 3
10 15 40 9 10 0 -10 1
11 18 44 9 3 7 4 1
12 41 81 11 0 a7 37 2
13 19 43 9 40 7 -33 5
14 26 59 9 0 11 11 1
15 26 59 9 0 0 0 1
16 25 55 7 11 7 4 2
17 27 59 8 0 4 4 1
18 27 59 8 0 0 0 1
19 51 91 8 0 32 12 1
20 51 91 8 0 0 0 1
21 51 91 3 0 0 0 1
22 98 162 8 0 Tt 71 1
23 102 171 8 0 9 9 2
24 38 123 7 50 2 48 25
25 48 138 11 0 15 15 1
26 51 144 11 0 6 6 3
27 52 144 11 1 1 0 3
28 73 177 11 0 33 33 1
29 76 184 11 0 7 7 1
30 102 233 11 13 62 49 1
31 102 233 11 0 0 0 1
32 102 233 11 0 0 0 1
33 107 239 11 0 6 6 5
34 107 239 11 0 0 0 1
35 118 266 12 1 28 27 1
36 170 327 13 4 65 61 1
37 175 358 12 55 86 31 5
38 i) | 416 12 5 63 58 2
39 201 416 12 0 0 0 1
40 201 416 12 0 0 0 1
41 100 206 12 222 12 -210 83
42 100 206 12 0 0 0 1
43 113 239 12 0 33 33 1
44 160 331 11 21 113 92 2
45 194 381 11 0 50 50 1
46 194 381 11 0 0 0 1
47 222 415 11 0 34 34 1
43 222 415 11 0 0 0 1
49 228 423 11 ) 8 8 1
50 226 415 11 22 14 -8 1

Table 3 - Adaptive Algorithm 2
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Instan #of # of De Nodes Nodes Net
nstance Instances  Nodes pth Deleted Created Change
1 1 1 1 1} 1 1
2 2 1 1 0 0 0
3 2 3 2 0 2 2
4 3 9 5 0 6 6
5 6 15 5 0 6 6
6 23 41 10 0 26 26
7 25 59 11 0 18 18
8 26 79 11 0 20 20
9 15 69 9 16 6 -10
10 15 69 9 0 0 0
11 18 71 9 3 10 2
12 41 101 13 0 30 30
13 19 111 12 10 20 10
14 26 145 12 0 34 34
15 26 139 11 6 0 6
16 25 125 10 14 0 -14
17 27 123 11 16 14 -2
18 27 109 11 14 0 -14
19 51 155 13 0 46 46
20 51 149 13 6 0 -6
21 51 141 13 8 0 -8
22 98 201 13 0 60 60

23 102 207 13 4 10 6
24 38 181 12 26 0 -26
25 48 197 12 0 16 16
26 51 197 12 24 24 0
27 52 185 12 20 8 -12
28 73 259 13 0 74 74
29 76 277 13 8 26 18
30 102 357 13 0 80 80
31 102 349 13 8 0 -8
iz 162 345 13 4 0 -4
3 107 349 13 4 8 4
3 107 349 13 0 0 0
Kh] 118 361 13 0 12 12
36 170 373 13 0 12 12
37 175 459 13 22 108 86
38 201 485 13 8 34 26
39 201 485 13 0 0 0
40 201 485 13 0 0 0
41 100 407 13 108 30 -78
42 100 357 13 50 0 -50
43 113 363 13 0 6 6
44 160 365 13 0 2 2
45 194 401 13 0 36 36
46 194 385 13 16 0 -16
47 222 403 13 2 20 18
48 222 3197 13 6 0 -6
49 228 407 13 2 12 10
50 226 395 13 26 14 -12

Table 4 - Adaptive Algorithm 3
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We first contrast the two versions of AAl. In terms of number of nodes AA1-b
(which does deletion first) usually has about 10% less nodes. This statistic is not born
out by the tables in this chapter, but it is over the course of many other simulations.
Average statistics for all simulations are shown in the next section. For the current
case AAl-b maintains a smaller network until instance 41 is reached.2 After that AA1
maintains a smaller network. However, the difference in node count is negligible.
The big difference is the larger amount of processing effort that AA1-b has to put
forth in order to gain a small advantage in terms of number of nodes. The net change
per modification is only slightly greater for AAl-b. The real difference is in the
modification iterations. For instance 41, AA1 requires 13 modification iterations. In

contrast, AA1-b needs 51 iterations.

Instance 41 is a worst case because it contradicts and is minimizable with a large
percentage of the instance set. Instance 41 is J —> F. It has only one variable and
thus has a very large representation space. Instance 24 is another instance of this type
and it can be seen that it also causes large changes to the network. These types of con-

tradictory instances should be infrequent in real world applications.

When an instance such as instance 41 is entered, it can minimize a large portion
of the instance set. When self-deletion is immediately undertaken, as in AA1l-b, a
large portion of the network gets deleted. However, the add-list is also very large, and
a long series of network modifications are subsequently necessary. For instance 41,

AAl-b deletes 80 nodes and then it creates 148 new nodes to fulfill the instance set.

2Instance 41 becomes infamous throughout the rest of this section, because it is a worst (degen-
erate) case,
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AA1 processes the add-list before doing self-deletion. It only creates 22 nodes, after
which it deletes 21. It was able to use most of the redundant nodes in the network to
satisfy the add-list. In most cases, AA1l-b can rebuild a more efficient network, with

the cost of extra processing, than AA1l.

We can now compare the three basic algorithms. The first two measures, number
of nodes and depth, characterize the structure of the network. In terms of number of
nodes, AA1 is better by a factor of 2 (AA2 and AA3 require approximately twice as
many nodes per instance). However, the depth (which determines execution and adap-
tation time) is always greater in AAl. The network depth of AA2 and AA3 are both

bound by the number of input variables.

The rest of the measures concern the amount of modification and processing time
necessary to do network updates. In AAl the net change, in terms of number of
nodes, is less than for the other two algorithms. The wbrst case number of
modification iterations in AA1 is also less than for AA2. Note however, that AA2
rarely has more than one modification iteration, but when they appear there can be
many. AA3 never performs modification iterations, and thus this column is left out of
the corresponding table. AA3 does have a large amount of net change compared to the
other algorithms. However, on a fixed structure much of the changes are node
memory updates rather than the interconnection modifications required in the other

two algorithms.

AA2 and AA3 distinguish between P-nodes and D-nodes. For AA2, the number

of D-nodes is always equal to the number of instances, since there must be one for
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each. Thus, for this case, AA2 ends up with 226 D-nodes (21 positive and 205 nega-
tive) and 191 P-nodes. AA3 has 201 D-nodes (41 positive and 160 negative) and 194

P-nodes.

Only one output variable was used in the simulations. The number of nodes per
output variable would always be less with several outputs, since nodes would typically

be shared amongst outputs.

9.3. Comparative Summary

Statistical measures for the three algorithms are empirical and thus tentative.
Table 9.5 summarizes the garﬁered statistics for the three algorithms. The first two
statistics represent the overall network structure at any time. The last three statistics
show the amount of change necessary to update the network after the introduction of a
new instance. These values represent the statistics gained from all simulations, not
just those reported in the preceding section. The average values are approximate and
have been rounded off. They are followed by the observed ranges in which they fall.
In the second statistic » is the number of instances. For modification iterations it is

assumed that one single iteration is required for the normal network update,

The number of nodes relative to the number of input variables was found to be
fairly constant for any number of variables. There is a slight and constant increase of
the percentage of nodes as the number of variables grow. The main factor affecting

number of nodes is the number of instances in the set.
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Measure AAl AA2 AA3
Nodes per Instance 1 (0-3) 2 (0-4) 2 (0-5)
Depth per # of Input Variables n*0<x <15 ] .9(0-1) .9 (0-1)
Average Nodes Deleted per Total Nodes 02 1 2
Average Nodes Created per Total Nodes .05 15 2
Average Modification Iterations 1.3 (1-1/5) 2(1-n/2) | 1 (none)

Table 9.5 - Statistical Summary

9.4. An Application to Fault Isolation

In this section we take a small real world application, map it into instances, and

then show a possible network structure that fulfills the instance set. The example

comes from the flight control of an experimental aircraft tested by NASA.

The system is originally described by the and/or/not graph shown in figure 9.1.
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Figure 9.1 - And/Or/Not Graph Representation of Flight Control Sub-System
From this graph we choose one major output variable, Actuaror S2 Indicator. The
solution required for this output variable illustrates the two basic types of system feed-
back. A network can easily be extended to use all of the output variables.

The paths for the single output variable can be reexpressed by the cyclic tree
structure of figure 9.2. The output variable Actuator S2 Indicator is at the top of the
tree. Two other variables are also defined as output variables: ar/drinormal actuator
and primary solenoid. These two are shown in bold wherever they appear as output

and in italics where they are input to other nodes.

The variable ar/drinormal is an intermediate variable. Its definition (in the left-
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Actuator 52 Indicator

&
S ©

ar/dr/normal actugtor

(or) i nd
actuator drive  actuator ds2 fail
current fail
dr mode normal mode ar actuator ar/dr/normal
monitor actuator
alld
@ ar/drinormal actuator
primary solenoid
@ actuator arm discrete
@
arldrinormal actuator
“actuator DS2 fail {8089)"actuator arm discrete
“actuator DS1 fail (o)
“arldrinormal actuator “primary solenoid

Figure 9.2 - Cyclic Tree Representation
hand part of the graph) is the disjunction of 3 variables. It is not strictly necessary to
make this variable an intermedfatc value. The alternative however, once the tree is
reduced to an instance set, is to replace each instance in which the variable occurs with
three separate instances, each containing one of the three variables whose disjunction

make up ar/drinormal actuator.

The other defined output variable, primary solenoid, is an essential feedback

variable. As can be seen in the tree representation, primary solenoid appears in the
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subtree which defines primary solenoid. Thus this variable is recursive, or cyclic, and

it is necessary to have a feedback variable.

From the cyclic tree shown in figure 9.2 it is possible to derive the following

three instance sets for the three defined output variables.

dr mode —>» arl/dr/normal actuator
normal mode —> ar/drinormal actuator

ar actuator monitor —> arl/dr/normal actuator

e e afe a6 e e e aje ol ok dfe ohe 3¢ e dfe sk dhe she sk e sle e dhe s S e e de D e e e ol she e o vfe e o v ke S M e afe ol s ke S dde ofe e sfe ke o e ook

ar /dr /normal actuator - actuator ds 1fail - actuator arm discrete -

actuator ds?2 fail - primary solenoid —> primary solenoid

35 2k 2k o e sk ok ok sie ok ok ok sk sk sk ok s sl ok ok s e e ok e vl sl ok ol s sk ok S e s S ol ake she s ok ofe o ok A e e ok e ol e ok sfe sje ok ke

ar /dr fnormal actuator - actuator ds?2 fail - actuator drive fail —>
actuator s?2 indicator
ar /dr /normal actuator - actuator drive fail - actuator arm discrete —»

actuator 52 indicator

We now show a possible network configuration for this example. For this case
we use the single-valued logic AA2 scheme in which only positive instances are
accepted. All states not matching the instances are set to negative by using the don’t
know comparison explained in chapter 7. Figure 9.3 shows one possible such AA2

configuration for the above three instance sets. Note that some nodes are single input
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ar/dr/normal actuator primary soclenoid Actuator S2 Indicator
] }

/ [\ D D P
dr mode normal ar actuator actuatgr _actuator Arm actuatoy
mode monitor  dsti fai discrete drive fajl
- actuator actuator arm
actuator ds2 fail discrete

ds2 fail

Figure 9.3 - AA2 Network Solution

nodes, since they match the instances having only one antecedent variable.

This example is a simple case of a multi-variate and feedback application. The

structure of the final network is order dependent.
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Chapter 10

FUTURE DIRECTIONS

In this chapter we briefly discuss some of the future research topics related with
this effort. The first section discusses distributed control. Section 2 lists some

research topics related to the ASOCS model. The conclusion is the last section.

10.1. Distributed Control

The main concept stressed during this dissertation is that of distributed control,
based on self-organization and concurrency. The communication mechanism required
for distributed control in this research is that of a broadcast capability coupled with
local communication between neighboring nodes. The current model is directed to
applications defined in terms of propositional rules. However, the present approach to
distributed control should be extendible to systems using higher level functions and
more complex data structures. A continuing research effort is directed at applying the

same approach to such systems.

10.2. Research Extensions

This section briefly lists the immediate research efforts which could be studied as

extensions to the current research model.

One possible extension is to relax the constraints on the way in which knowledge

is entered to the system. Currently only narrowly defined "instances” can be used as
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system input. One immediate extension would be to allow simultaneous input of mul-
tiple instances. The instances could be pre-processed and ordered in an optimal

fashion with respect to the update consfraints.

Another current project is the physical implementation of prototype ASOCS sys-
tems. There are a number of promising technologies which could be used for each
architectural component of ASOCS. For example, optical, wired, or non-wired broad-
cast mechanisms could be used in an implementation, At any rate, a conventional sili-
con layout and design appears to be immediately feasible. The government, under
auspices of the Rome Air Development Center, has already given a research grant to

develop a breadboard ASOCS demonstration.

As it is currently defined, at any given time ASOCS are dedicated devices struc-
tured to solve one overall function, even though that function can change in time. In
order to allow a single ASOCS implementation to be multiplexed between functions,
some method of context switching must be devised. This could be as simple as storing
the network image (node functions and interconnections) for each different function,
The image would be initially created using the adaptation mechanisms. A method of

saving and restoring a network image would then be required.

An important addition to the current system is the integration of sequencing and
memory. Although the current system can be used as a finite-state machine by the
addition of a flip-flop layer at the output binder, it may be useful to allow higher
degrees of sequencing. With a memory integrateded with the system some inputs may

come from memory rather than the environment, and some outputs could trigger direct
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memory changes. This mechanism would allow an integration of Von Neumann and
concurrent concepts. By controlling the contents of the memory in a time dependent
fashion, basic sequential and iterative processes could be accomplished with the con-

current network.

Perhaps the most immediately critical research is to gain a better understanding
of the types of real world applications which can be accomplished on a stand-alone or

integrated ASOCS system.

10.3. Conclusion

This dissertation has described a novel approach whereby self-organization and
concurrency can be used as methods of configuring parallel logic networks which
solve an incrementally defined function, and which can do the adaptation in time linear

with the depth of the network.

We initially gave a history of this research effort and motivation as to why
ASOCS systems could be applicable to real world problems. The instance was
defined as the atomic knowledge unit in ASOCS and the incremental addition of
instances was shown to allow a universal representation of changing propositional
logic functions. The basic architecture was then discussed. The primitive mechan-
isms which make up ASOCS algorithms are those of instance introduction, node
selection, node combination, and self-delerion. Using variations of these mechanisms,
three formal adaptive algorithms were presented. These algorithms underwent

software simulations and a survey of the garnered statistics was shown.

269



The ASOCS research has been recognized and continues to be funded by govern-
ment grants. A joint academic-industrial effort is currently ongoing to build prototype

hardware for ASOCS systems.
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