ASSIGNMENT OF FUNCTIONAL RESPONSIBILITY
IN PERCEPTRONS

Rik Achiel Verstraete May 1986
CSD-860090

3.2.4, EXAMPIE ..oviiiiiivrivresnr i ses e nercene et see e eresses s eesens 84

3.3, INTERPRETATIONooiiiicrrevenriieeeceieeeeessive e ereseeees oo 89
3.3.1. Positive Rules ONlY ...ttt e e e e 89
3.3.2. Positive and Negative RUIESoveovouveeiieieeeeeee e 93
3.3.3. Complete and Consistent Rule Basecccooovevevvveeineeeerseonenn, 96
3.4. CONCLUSIONSoeecnrinreseinaressrssssesassssosieemssrsnsesssssesensossserans 101
CHAPTER 4: DECOMPOSITION OF BOOLEAN FUNCTIONS ON

PERCEPTRONSooiicrenienietennneinsonisescsesnonessnssssssnssensonns 103
4.1. INTRODUCTIONcccoierimrererrsnssnnersnssssssessssseessssesessasssssessssesnens 104
4.1.1. DefINtioNScccereermrinrermmtenrrsnserimmsesssseressssesssesesssssesssnsesessssessase 104
4.1.2. Problem DesCriPtioncceceeeenieereseemsieseessiesesesessressssssessosens 107
4.1.3. ImpIEMENLALION ..ovvrverirrrreesrrrernsrerssesesnreaesrssescosensessessessesssessseas 107
4.1.4. Literature REVIEWccccoceieveecerrnnrminiresisesseteeeersssasesssssssssseserens 109
4.2. A SPECIAL-PURPOSE SOLUTIONooiveieteecerereerecenssesrsenns 110
4.2.1. The 3-Input NetWOrkcccvecurerureenenmreersseessseseeeereesssssessessenees 111
4.2.2. The n-Input Networkcceeueveneee. sk ts e sasasenesens 113
4.3. BASIC PRINCIPLES OF THE DECOMPOSITION

ALGORITHMcovrrrirnrensseneererinssannensessesssosisssssosecmsossassseses 117
4.3.1. Theory of Decomposition of Boolean Functions 117
4.3.1.1. Simple disjunctive decCOMPOSItON ..ocvceerreerrererrereeresrereesessnnen 118
4.3.1.2. Simple nondisjunctive deCOMPOSItION ..cv.ceeeeevereevnsvereeeeeniarienns 122
4.3.2. REAUCHION ..uecoiiirecinitiiininieecnsesnr s sessssestseseseressessssesssssssmsesans 125
4.4. GENERAL DECOMPOSITION ALGORITHMcocooeevverene... 130
4.4.1. Principles of the Search Algorithmccocvvvreceeneneereeennnn, 130
4.4.2. Binary Tree NEtWOrKScccoccvrvrverireiccieereeeseereesessnsssssessssssans 135
4.4.3. General Perceptron Networkscccoevereriseereennass rreerrerresnaenas 138
4.4.3.1. Cautious Selection CrItEriONccvrerernreeeeeersrenenesississennns 139
4.4.3:3?_%3?&?%%&5 selection Crterionc.uuvvmvereerereeemeeerenreesins 143
4.4.3.3. Characteristics of the adventurous algorithm 147
4.4.3.4. 'TMPIEMENIAtONovvecccveeecccenreemenssseanessesesessssssssssssssssnseen 152
4.5. CQPIE&U&QPIS ... trsener e reeeaeaensenarens 160

snerivial redondan

© Copyright by
Rik Achiel Verstraete
1986

The dissertation of Rik Achiel Verstraete is approved.

m@m\\

Edward C. Carterette ~

a7 N

Allen Klinger

E»-%%ﬁ

Tomis Lang

47700&%

John'B. Schlag O

Jagqpes J. Vidal, Committee Chair

University of California, Los Angeles
1986

i1

UNIVERSITY OF CALIFORNIA
Los Angeles

Assignment of Functional Responsibility

in Perceptrons

A dissertation submitted in partial satisfaction of the
requirement for the degree Doctor of Philosophy

in Computer Science

by

Rik Achiel Verstraete

1986

Figure 1.1:

Figure 2.1:
Figure 2.2:
Figure 2.3;
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:
Figure 2.10

Figure 2.11:
Figure 2.12;
Figure 2.13:
Figure 2.14:
Figure 2.15:
Figure 2.16:
Figure 2.17:
Figure 2.18:
Figure 2.19:
Figure 2.20:
Figure 2.21:
Figure 2.22:
Figure 2.23:
Figure 2.24:

LIST OF FIGURES

Computational decomposition

Schematic representation of a node of a perceptron
Example of a perceptron
Schematic representation of a threshold gate
Changing the weights of a threshold gate
Changing the threshold of a threshold gate
A RAM and a ULM as nodes of a perceptron
Example of an incomplete digital node
A ULM tree and a binary decision treecccovvvvnnennnio
Sepatation of data processing and function selection
: A perceptron with a regular interconnection geometry ...
Structure of the simple perceptroneeeeeeeeeevveeevennn
Multi-output and dual-output perceptrons
Cross-coupling and back-coupling in perceptrons
A structured multilayered perceptroncoeveeveeerneennnn..
The ULM as the UCLA building block
The basic node of a UCLA perceptron
Typical 3-input UCLA perceptrons
A 4-input UCLA perceptron
Alternative complete 3-input UCLA perceptron
A complete 4-input perceptron
A binary tree perceptron with 4 inputs
Complete 3-input perceptron
Example of trivial redundancy in a perceptron
Example of nontrivial redundancy in a perceptron

ooooooooooooooooooooo

ooooooooooo

...........................
............................

.................................
..

..............
..
.............................
...
................

vil

The dissertation of Rik Achiel Verstraete is approved.

Edward C. Carterette

University of California, Los Angeles
1986

i

Figure 4.20: The adventurous algorithm does not find all solutions 145

Figure 4.21: A simple 5-input Perceptroncveecvveeeeveesverueemsseveresns 149
Figure 4.22: A 3-input PEICEPIION ..cvveceeievvrvinieieiceerereseeerssesessossenaseae 151
Figure 4.23: A multilevel PErceptronuuiisvvereenesrereernesnssosesnes 153
Figure 5.1: A node of a perceptron with its local controller 173
Figure 5.2: Structure of a Madalinecocevevereveeenneesseeneeesesnesennnss 179
Figure 5.3: Structure of a committee machinec.oouvoveererrrenennen.en. 180
Figure 5.4: A two-level committee machineccoevuereemerccverennnnn, 181
Figure 5.5: Karnaugh map of the incomplete node of figure 2.7 182
Figure 5.6: The operation of 2 RAM as a node of a perceptron 184
Figure 5.7: Aleksander’s single-output networkocuveeecvrevevennnnn. 185
Figure 5.8: Structured input connections in a RAM network 186
Figure 5.9: Incompleteness in the RAM network of figure 5.8 186
Figure 5.10: A disjunctive binary tree networkceeeevevrvererrnennn. 189
Figure 5.11: Decomposition chart for node 1 in figure 5.10 191
Figure 5.12: A 4-input disjunctive binary tree and a decomposition

CHAML ettt s sese e e s s sasas s e esas s en 195
Figure 5.13: Two examples from different columns have the same

80&l VAU ...ttt e senane 195

ix

2.2. THE CLASSICAL PERCEPTRON RESEARCHouoveoe, 30

2.2.1. The Simple PerCeptronccceeeeeverivrieteieeeereereseeeossees s 32
2.2.1.1. SHUCKUTE .covviiviiiiecinecnienitresestsrescrssnsssseesenssmssssesssessens sessse e 32
2.2.1.2. LRAIMUNG .ivivrirsrernsrnaesernesesensammserssisessssncrnsnsnsssssssseesosessssnenen 34
2.2.1.3. LIMItALONS uvivcrevraenrerereensssesinrsesssersasssssssnsessessossmsssnessssemeen. 35
2.2.1.4. SUMMALY .occieiicriinnrenintsssssrssesseressssesesssrmssssosssesessessomesssesnns 36
2.2.2. Other PEICEPIIONSccveueemrerercrisissrecscsessssssesssssesssesssssssssnsoenns 37
2.2.2.1. Multi-OUtPUL PEICEPITONScvrereriverissiemrreesssesessesessssessnsenss 37
2.2.2.2. Cross-coupled and back-coupled perceptronsc..u.n........... 38
2.2.2.3, Multilayer PErCeptronscevivseererisesrorescerersessseassnssessssessssens 38
2.2.2.4. Perceptrons with different n0descocoveveevvnresevseerininonnns 40
2.3. THE UCLA PERCEPTRONScooioeiieeenesereeeeeressessssssessenns 42
2.3.1. SHIUCHULE oviuniiieeririsisienrneinnsiesaresesernienereseessasasssnseesssessessansemsasans 42
2.3.1.1. TRENOAE ...ccvviriirrricrenieincereresersssssstsessteensssnssessosessnssomssssesnne 42
2.3.1.2. TR NEIWOTK ..ccecciirerrrerennieesnseeniseseeseessasesssesssnsssssesssesssmsnsnnn 43
2.3.2. Functional CharaCteriStiCsce.cveeerveresenseeesemreressersasssssenmseen 45
2.3.2.1. COMPIELENESSocvecirerrirenrrerseeriacsessicesenesessessesssenssmossnsssssas 46
2.3.2.2. RedUndancycccrvvcereresrisesssssecescsisesessessssnsmssesssssssssssnnennns 49
2.3.3. SUMMATY eovierrernreciienne st esneeesesesssnssesssssesssssssssssssisssn 57
2.4. OTHER PERCEPTRON RESEARCHccoomermeeevevrereseeessnins 58
2.4.1. Neuron MOEISccocervrivenreimseresnseensressssansessessessnersssssssosessans 58
2.4.1.1. Threshold gate modelcovveeeeeveeierieececeeseererer e oo 58
2.4.1.2. Function-set MOelccevvvvreveeeeisieieceenecenreseeesresensenssensneess 59
2.4.2. NetWork OPHONSccoveremerererivnnernsessserisieeeerenssssesssssesenssesssesons 60
2.4.2.1. Interconnection COMPIEXILYcceveveriveerrevscrersesencsorersessennenne 60
2.4.2.2. Interconnection tOPOLOZYcccccververeeererveresmseeerenssesnsssssssssssons 60
2.4.2.3. Number of adjustable nodesccccoceerverevnne.... rresrreatennenanes 63
CHAPTER 3: COMBINATIONAL RULE-BASED SYSTEMS 65
3.1. RULE-BASED INFERENCE SYSTEMScccoooeeeeeeereveerresrenss 66
311, SHUCIUIR ..u.eiecrecnieveereetste e senerae s nsresenesssssbebssesmsessensssssssessans 67
3.1.2. Development and Useccccoceeermeeevveinernsneisirinnesseseseeeeseessnsone 70
3.1.3. FOMALISINS ..vcineieceveriinee st ieresess s seeserssnsesaseesensaes sesssmanesssnnes 71
3.2. COMBINATIONAL RULE-BASED SYSTEMS ...c.ooeecvvvernnnn. 73
3.2.1. Definition and Descriptioncceecerenveernrrenneenseescsrersssnsnee. 74
3.2.2. Propositional-Logic Rules and Boolean Functions 79
3.2.3. Integration of RUIESccccveuveeeeeeieeieieiere ettt e 80

iv

Table 4.1: A list of possible partial assignmentsccoevvvvvrrrrennnn..
Table 4.2: Size of the node memory for different traversals
Table 4.3: Experimental data for the adventurous decomposition

PLOZTAML vciriieisunntiinossinsnesinssonssrnnesessassensasnsrasssessenseeesesssnreses

X1

CHAPTER 5: TOWARDS LEARNING BY EXAMPLE IN

PERCEPTRONS ...ttt seeesess s e sersses s 163
5.1. OVERVIEW OF LEARNING BY EXAMPLE IN

PERCEPTRONS ... ercnteeeieeessaenesieeesssseeseseesesenssone 164
5.1.1. INtrOGUCHON iviiiesirrrereererrnsesarssssssmrecsssssssesescrmsnsesssnsssseessssassesssens 164
5.1.2. Learning by Example in PErceptronsceeeevveseervsereneneesnns 166
5.1.3. Perceptrons with Centralized Controlc.coeeveveverveevvennnnn. 169
5.1.4. Perceptrons with Distributed Controlecoeveveeeveeeeeereeeevennan, 172
5.2. THRESHOLD GATE PERCEPTRONScoviromrvereeeeeeeresssonens 175
5.2.1. The Simple PErCePLIONccoveeeecverrereriresiessessesssssssesssesessssss 175
5.2.2. Single-Layer PEICEPIIONSccceeeevrmveiecisiiieeenereesssnnasesssseessosses 178
5.2.3. Multilayer PEICEPLIONSccceeervererervrsenriseesoseennersnsaessssssassessnenes 180
5.3. DIGITAL PERCEPTRONScceottreinireeecessesessemesenesessenssssessens 182
5.3.1. Single-Layer RAM NEIWOIKScccecerveererrnivereessecsesnessesersessos. 183
5.3.2. Disjunctive Binary Trees with Incomplete Nodes 189
5.3.3. Disjunctive Binary Trees with Arbitrary Nodes 194
5.4. CONCLUSIONSoivtiirinineneennserorissssssesssssssensssssssssenses J 198
CHAPTER 6: CONCLUSIONS ...t secscesssssnenssssssssmnns 201
6.1. CONTRIBUTIONScooivrierrnrinrencnmresresesesesiossaseas sesreesisreenes 201
6.1.1, PEICEPIIONS ..cvvtrvcrecriennnereresireasassessssssssssesesensssessessasnssssensesnses 201
6.1.2. APPLICAHONS ...ovvevvruecerineireerenseernsereressssssassses seeesesnesssssssssenses 202
6.1.3. Assignment of Functional Responsibilityccoeveueeeveverennna. 203
6.2. FUTURE RESEARCHccocvvvieerrrnreniinrsnsesaessssnceseossesssnesssnsoons 205
6.2.1, PEICEPIIONS ...covrererereresonnmmrrrnrerssesssesrasssseseesessssessssssessnssessessasnsans 205
6.2.2. APPUCALIONS .viveevirreerierareesreisessreesssereeserenesssssssstsssesseseesenssns 206
6.2.3. DECOMPOSILION ..ovecrurcerreereeerererieesssesssesisresesesessssssiesnsesessensesnrens 206
6.2.4. Learning by Example renre s etesen st eaeteearanareeenssasnrernaons 208
BIBLIOGRAPHYoootiicimicrrnierntenierinnnnroreroresssesassssssesssesssomeseneans 210

vi

I owe a lot to my colleagues in our research group. I thank Tony Mar-
tinez and Antoine Cornuejols for patiently reading and commenting an early
draft of my dissertation. I enjoyed working and meeting with them over the
years, and I thank them for their contributions. Gabriella Adler worked with
me on some detailed issues regarding functional decomposition in percep-
trons; [owe some insight to her. In my work, I interacted with many other
people of our group: I thank Paul Salas, Savio Chau, Mark Juckler, and Peter
Berke.

I am also extremely grateful to Dr, Gerald Estrin, Chairman of the Com-
puter Science Department at UCLA, for his stimulation and many construc-
tive comments. Additionally, I thank all the graduate students in the CS202
Advanced Computer Science Seminar; without their endless stream of ques-
tions during my presentations I would have been unable to focus my work in

as clear a fashion as [have now.

It may seem a formality, but [also thank my parents. They shaped my
life and are directly responsible for my education and interests. Without

them this work would not have existed.

Major financial support for my graduate study has been provided by the
I.B.M. T.J. Watson Research Center in Yorktown Heights, NY, in the form
of a Graduate Fellowship, and by Aerojer ElectroSystems Corporation in
Azusa, CA, in the form of a Research Assistantship. I thank both corpora-

tions for funding my academic research.

xiii

Figure 3.1: The three components of a rule-based inference system

Figure 3.2: Development and application of a rule-based inference

SYSLEIML eeivuriveniuenenntisieninssstecanennensensessensnssstsssiomesnsnneses eeeeene

Figure 3.3: Hardware implementation of a combinational rule-based

SYSIEIML woiirinienieiiircsieeerisnrrer st sre e eensssneeressees saressnessasssnesans
Figure 3.4: Example of a combinational problemc.eoveevvvvne..

Figure 3.5: A combinational rule-based system with only positive

TULES oorireiiirii ittt s s e eresae e s se s e e re o
Figure 3.6: Implementation of a rule base with only positive rules

Figure 3.7: A combinational rule-based system with positive and

NEZALVE TUIES ...ooviniiiiircsicirecceniesae e ser e ereeeneaesssaassssanans

Figure 3.8: Implementation of a rule base with positive and negative

TUIES ottt it rens et besseberesans oo bateseseesessnteennssans
Figure 3.9: Implementation of a rule base with conflicts

Figure 3.10: Decision of a complete and consistent rule-based

INfErence SYSIEMcccivveevermmrmmnerrerenessestinseessnsossenessensessnenns
Figure 3.11: Implementation of a complete and consistent rule base ...

Figure 4.1: A perceptron with a central controllerocvvvevevvinnnes
Figure 4.2: 3-input complete perceptron with a partial assignment
Figure 4.3: Recursive design of a complete n-input perceptron
Figure 4.4: Decomposition of a Boolean functionco.oeoven.......
Figure 4.5: Decomposition Chartc.eeveeveerivnnsceeeceeeeeeeseerenenn,
Figure 4.6: 3-variable disjunctive decompositionccceceevevvrennn....
Figure 4.7: 5-variable disjunctive decompositionocoeeeevveerennnn.
Figure 4.8: 5S-variable nondisjunctive decompositioncceun........
Figure 4.9: Making a nondisjunctive decomposition disjunctive
Figure 4.10: Schematic representation of reductioncceurvernrncs
Figure 4.11: 3-input reductionccveevvrevminirecneneecseceresnenecessesennas
Figure 4.12: Reduction as a mapping from one truth table to another .
Figure 4.13: Example of 2 decomposition problemccccovverenn......
Figure 4.14: Example of an 8-input disjunctive binary tree network
Figure 4.15: Backtracking in a nondisjunctive binary tree network
Figure 4.16: Cautious selection with one virtual variable
Figure 4.17: Virtual decomposition chart with 2 virtual variables
Figure 4.18: Adventurous SEleCtioncceerceveveeciersereensrseresesennans
Figure 4.19: Compatibility in a map with don’t caresc.............

viii

69

72

78
85

90
92

94

97
99

ABSTRACT OF THE DISSERTATION

Assignment of Functional Responsibility

in Perceptrons

by

Rik Achiel Verstraete
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1986
Professor Jacques J. Vidal, Chair

Perceptrons are defined to be multilayered networks of fixed topology
that consist of adjustable combinational nodes. These nodes are not neces-
sarily threshold gates, and the functional flexibility is present in all the layers

B (not just a single node or a single layer). The resulting network implements
a modifiable Boolean function. The fundamental problem addressed is thus

assignment of functional responsibility in a multilayered network.

The original perceptron research is reviewed and its extensiveness is
- demonstrated. Other existing implementations, both analog and digital, are

also presented, and an implementation developed by us is discussed at

Xv

LIST OF TABLES

page

Table 2.1: The 2-input Boolean functions and linear threshoid

fURCHONS ..ot sase s eesesens e e senens 23
Table 2.2: The 4 2-input nonconstant increasing functions 27
Table 2.3: The 2-input linear and polynomial threshold functions 41
Table 2.4: The 16 possible Boolean functions of 2 inputs 45
Table 2.5: The number of different implementations for all 3-input

Boolean functions on the perceptron of figure 2.22 53
Table 2.6: Summary of the fault tolerance of the perceptron of figure

222 st er e sab e et e s s st eaes 55
Table 3.1: The conjunction and disjunction in tri-valued logic 75
Table 3.2: Truth table of the goal proposition for the example

PIODIEM ettt ettt e e 38
Table 3.3: Summary of the conclusions when the rule base contains

ONlY POSILIVE TUIESocevrveririrrecrrerenrennneiersensrere e eeeeeenesesnns 91
Table 3.4: Truth table and interpretation for a rule base with only

POSILIVE TUIES .ocoviiisiiecrcreece s e resecee s e eees s e eseseans 92
Table 3.5: Summary of the conclusions when a rule base contains

both positive and negative rules e e s b enees 94
Table 3.6: Truth table and interpretation for a rule base with positive

and negative rulesooccenineriienerne e 96
Table 3.7: Truth table and interpretation for a rule base that contains

CONBUCES ettt r ettt s 98
Table 3.8: Summary of the possible conclusions for a complete and

consistent rule basecccoeviniiiirnn 99
Table 3.9: Truth table and interpretation for a complete and consistent

TUIE DASE .oceeiieiiciirccct s et an e e 100

CHAPTER 1

INTRODUCTION

Perceptrons originated around 1958 in the work of Rosenblatt {RoseS8].
He proposed a network of threshold gates as a model of pattern recognition
in nervous systems. The topology of the proposed network is fixed, but the
weights and threshold of the gates are modifiable. This flexibility can be
used for adaptation and learning. Perceptrons are thus parallel and adaptive

pattern recognition devices.

Later, Minsky and Papert formally proved several limitations of a sim-
ple perceptron structure [Mins69]. Their work, however, did not address the

question of adaptive parallel processing in more general perceptrons.

The concept of adaptation in a network of adjustable threshold gates has
receivgd continued attention over the years. Many researchers, up to the
present time, have shown possibilities for learning in specific classes of per-
ceptrog‘vpe.twgrk_s_, but this work is not extensible to alternative networks
[BanS{JIS:Et,C ‘?gg?‘;,i‘_Fuku'JS. Fuku80, Fuku84, Miya84, Koho82, Taki78,
Takg8; lies an e

This dissertation examines the perceptron in its fullest generality. For

instancg, the,nodg.of a perceptron is not restricted to a threshold gate, but can

ACKNOWLEDGEMENTS

It is a pleasant duty to begin this dissertation by acknowledging those

who contributed to it.

First of all, I thank my advisor, Dr. Jacques J. Vidal, without whom 1
would not have been at UCLA. I thank him for his guidance, advice, and
support; for carefully reading the draft of this text and giving so many
suggestions for improvement; and for his inexhaustible enthusiasm for any

york in the area of neuromimetics.

Much of the work reported here resulted from interactions I had with
Don Moore. From the beginning to the end, he encouraged and helped me in
many different ways. I thank him for an infinite number of discussions and
for providing so many ideas.

[am also grateful to the members of my committee, who showed con-
siderable interest in my work. I thank Dr. Allen Klinger, who taught me the
principles of pattern recognition and perceptrons. I thank Dr. Tom4s Lang,
who read and commented the draft of my dissertation. I thank Dr. Edward
C. Carterette and Dr. John D. Schlag, who evaluated my work from their
point of view, respectively psychology or biology.

[thank Dr. Judea Peari, who wanted to be on the committee but was

unable to, for his enjoyable support over the years.

xii

1.1.1. Parallel and Sequential Computing

Consider the decomposition of a computation into 4 subcomputations
(figure 1.1). The size and complexity of these subcomputations depend on
the particular levél of interest. For instance, they could be Boolean functions
of up to 3 inputs, AND gates or OR gates of a certain maximum fan-in, a 1-

bit numerical operation, etc.

The steps 2, 3, and 4 in this figure are independent of each other and can
execute in parallel. On the other hand, step 1 takes the outputs of steps 2, 3,
and 4 as its inputs and therefore it can execute only when these three steps
have completed their computations. Hence, steps 2 and 1 are sequential
computation steps. The determining factor in parallel and sequential compu-
tation is the interdependence of data: parallelism requires independence;

dependence implies sequential execution.

When a computation is broken into parts that are executed one after the
other, the computation is said to be implemented in a sequential fashion.
Sequential computing consists of a series of computational steps that must be
executed in a proper order. -'.Thg cause of the sequential nature of a computa-

tion can be either extrinsic or intrinsic to the problem itself,

In some problems, the éxternal inputs are presented over discrete time
steps and these problems must:be implemented in a sequential fashion. The
computational system thefs reltes: oninternal memory to interpret the rela-
tionship between the data at.different time steps. A detailed treatment of

such extrinsically sequential..problems can be found in textbooks on

May 18, 1958

July 15, 1981

December 1982

1981-1983

VITA

Bom,

Lendelede, Belgium,

Burgerlijk Ingenieur Computerwetenschappen,
Katholieke Universiteit Leuven,

Leuven, Belgium.

M.S. in Computer Science,
University of California,
Los Angeles, California.

Teaching Assistant,

University of California,
Los Angeles, California.

Xiv

1.1.2. Perceptrons as Parallel Pattern Recognition Devices

Perceptrons implement an »-input dual pattern classification, assigning
each input vector to a class C or C according to the value 0 or 1 of its out-
put. This patternr classification is implemented as a network that has both
width and depth. Each node of the network implements an atomic binary
classification (a Boolean function). Figure 1.1 illustrates a possible structure

of a small perceptron.

In the literature, perceptrons are usually associated with linear discrimi-
nation. The operation of a threshold gate, the basic building block of the
carly perceptrons, is indeed to weigh and sum its inputs and compare the
result with a threshold value. The power of the perceptron idea, however,
lies not in this weight-and-threshold operation, but in the possible use of net-

works of such units.

The multilayeredness is an essential characteristic of a perceptron. Yet,
width in parallel computations is much more tractable than depth and most
studies of computation therefofe concentrate on width. A perceptron, on the
other hand, is a simple model of parallel computation in which processing is

distributed in a multilayered fashion.

Throughout this dissertation we will use Boolean algebra as our basic
tool. Boolean logic is implementation independent and is the basic formal-
ism for any digital computation. Furthermore, Boéfean functions represent
an asynchronous data flow model of computation {§ée for instance [Ager82,

Kabl83]) and represent an extreme form of concurrent information

length.

Perceptrons are useful in applications that require a fast and modifiable
implementation of Boolean functions. An important emerging application
domain is presented: combinational rule-based systems. It is shown that
some propositional-logic rule bases can be transformed into a pair of

Boolean functions, which could be implemented with perceptrons.

Next, one aspect of the responsibility assignment in multilayered sys-
tems, namely the decomposition of a Boolean function on a given percep-
tron, is treated in detail. The theory of decomposition of Boolean functions
is applied to this problem. The solution to the decomposition problem can
be obtained in a straightforward fashion if tae network has no fan-out con-
nections. In a more general case, the decomposition problem is solved with
a bottom-up search algorithm. At each node a few assignments are selected
by a local selection criterion and tried in sequence. A reduction step

between two nodes coordinates assignments to different nodes.

Finally, the requirement ihat the given network function be specified
completely in advance is mlaxeq. Two approaches towards distributed learn-
ing by example in binary tree networks, taken from the literature, are
reviewed, followed by our contribution. The theory of decomposition of
Boolean functions is again the basic tool in this study.

-
Pl e

xvi

require them to exhibit adaptation and learning.

In the remainder of this section we give a short review of adaptation in
general, and how it is treated in the perceptron research and in our disserta-

tion.

1.2.1. General Notions of Adaptation and Learning

The field of machine learning is still young and immature, and there is
no commonly accepted definition of the terms adaptation or learning. In the
literature one may find ‘‘gradual improvement of system behavior as a result
of past experience,”’ or a similar definition. Adaptation is not a well defined
capability, but includes a wide spectrum of interpretations, and it is not clear

where programming stops and where learning begins.

The simplest form of adaptation is the ability to absorb and follow
instructions. This assumes an a priori specification of a task as a set of com-
plete instructions. A deduction process decomposes this task into a form
suitable for the internal structure of the computational system. The complex-
ity of this decomposition depends on the format of the instructions, the inter-

nal structure of the system, and the specifics of the task itself.

A more powerful form of learning is obtained when the task is specified
incrementally, for instance as a series of examples provided by a teacher. A
deduction process is then needed to adjust the internal computations to match
the changing specifications. The system starts with incomplete knowledge

and it must adapt to ever more precise specifications.

be any functionally adjustable gate. Furthermore, the functional flexibility of
a perceptron is not restricted to a single node or a single layer of the network,
but it is a property of all the layers in the network. By taking a generic point
of view, we show that parallel processing and adaptation in perceptrons are

broader issues than what is typically perceived by others.

This chapter introduces the three concepts related to the perceptron
research, namely parallel pattern recognition (section 1.1), adaptation and
learning (section 1.2), and neuromimetics (section 1.3). An overview of the

remainder of the dissertation is given in section 1.4.

1.1. PARALLEL PATTERN RECOGNITION

The increasing demand for fast information processing is pushing the
capabilities of sequential computers to a limit. In domains such as pattern
recognition or artificial intelligence, the performance of even the fastest pro-
cessors is already less than adequate. Furthermore, the demands are increas-
ing at a faster rate than the improvements in speed of the components. With
the price of hardware decreasing rapidly, parallel processing becomes more

attractive.

The first section below reviews some notions of parallel and sequential
computing. The next section then describes how perceptrons address the

topic of parallel pattern classification.

1.3. NEUROMIMETICS

A large part of the work related to perceptrons has been motivated not
only by the necessity to build faster and more adaptive machines, but also by
the desire to build computer systems that embody characteristics found in
animal brains. The emerging field of neuromimetics borrows some observa-
tions from neurophysiology and brain theory in the search for improved
computer systems. These observations are of course not used literally, but
are guiding principles. The premise is that the structure and operation of

intelligent machines will necessarily mirror those of animal brains.

The perceptron model postulates that extreme fine-grain concurrent
cbmputing, combined with distributed learning, is a neuromimetic concept.
Each node of a perceptron, combinational and adjustable, is a simplified
model of the nerve cell. A parallel asynchronous flow of data through a net-
work of combinational adaptive units is a closer model of the brain than the
classical computer concept of centralized memory and a single sequential
processor, the so-called von Neumann concept [von58]. The processing of
data is fast and asynchronous, but the adaptive changes can occur at a slower
pace. Furthermore, there is no explicit memory or state associated with the
data processing. The state of the system consists of the function executed by

each node. It is in other words active memory.

Figure 1.1: Schematic representation of a computation that is
decomposed into 4 subcomputations.

automata theory {Hopc79, Lewi81].

Another form of sequential constraint on computing is intrinsic: the
subcomputations at one level depend on results at the previous level (for
instance the computations 2 and 1 in figure 1.1). This sequential constraint is
not prescribed by external requirements, but is entirely intrinsic to the way
the computation proceeds. This type of constraint creates depth of a compu-

RN,

tation.

In parallel computing, on the other hand, subcomputations execute con-
currently and independently of each other. The number of independent sub-
computations at any level corresponds to the Qz‘dzh of the computation.
Since the results of these parallel subcomputatiohs must be subsequently

combined, width and depth are always both present [Pate76].

given perceptron. We apply the theory of decomposition of Boolean func-
tions to this problem and explain what makes the responsibility assignment
difficult. A decomposition algorithm is presented and a brief analysis is
given.

In chapter 5 we give a preliminary treatment of learning by example.
By borrowing results from chapter 4, we demonstrate difficulties in a few
schemes available in the literature. An attempt to extend these strategies
exposes the fundamental problem in any perceptron research, namely the
extreme distributedness of the control and hence the necessity for global

information to each node of the network.

Chapter 6 presents conclusions and directions for future research.

11

processing; no time sequences are involved. Boolean logic is therefore a

simple but powerful formalism to represent parallel computations.

Perceptrons address at the simplest possible level (that of Boolean
operations) the most crucial question in the development of parallel systems,
namely assignment of functional responsibility: Decide what parts of a task
must be assigned to which parts of a given system. More specifically, how
does one accomplish a pattern classification task with a given multilayered
network of adjustable Boolean nodes? This question has remained practi-
cally unanswered to this date. Our work on perceptrons, which directly
addresses it, is therefore a contribution to functional responsibility assign-

ment.

1.2. ADAPTATION AND LEARNING

The second key topic in the perceptron work is adaptation and learning.
There are strong pragmatic reasons for studying learning in computational
systems and for developing adaptive machines. The cost of programming
computers is currently enormously large because little of the programming
effort is automated, Leamning techniques would alleviate this problem since
a learning system infers the necessary steps in a computation from an
abstract specification (for instance a set of examples) that does not include
the internal computational steps. Moreover, it is an essential characteristic of
intelligent behavior to be able to interact with an unknown or changing
environment. Designing adaptive machines is therefore important in

artificial intelligence research. In short, making computers more useful will

2.1. WHAT ARE PERCEPTRONS?

The term perceptron is not the name for one specific system, but it
includes a broad class of neural network models. What is called a simple
perceptron, sometimes referred to as the classical perceptron, is only an ini-
tial model that was studied to analyze and demonstrate some properties of
the concept. Perceptrons in general, however, include a large class of other
structures as well [Rose62a, Bloc62b, Rose62b]. Yet, many treatments of
the subject consider the simple perceptron to be the only perceptron
[Mins69, Rals83]. A clarifying discussion of this misinterpretation is given
in [Bloc70]. In this dissertation we will use the term perceptron to denote
the general class, as opposed to simple perceptron or UCLA perceptron,

which refer to a restricted subset of perceptrons.

In this section, a formal definition of perceptrons is given first, followed
by an explanation of its neuromimetic features and an overview of possible

implementations.

2.1.1. Formal Definition

% péi’tégﬁ on is a multilayered network of polyfunctional combinational

nodes. Each node i of the perceptron has k; inputs, X;=(X; 1. .., % ;). The

outputozjraf nede i is a Boolean function of the inputs:

ey

I .:.‘:"-H“ s
RN 5 =fix)=filxp 0% p)

This function f; of the node is adjustable (by some external means),

13

1.2.2. Perceptrons as Adaptive Devices

Adaptation implies a multipurpose system; a system cannot adapt if it
implements only a single computation. Each node of a perceptron imple-
ments a Boolean function and adaptation consists of changing these func-
tions. As a result of these changes, the pattern classification implemented by

the perceptron is adjusted.

A perceptron learns and implements a Boolean function, which
represents a classification of a number of simultaneously available inputs.
The simplicity and implementation-independence of Boolean logic is also an
advantage in describing learning. We refer to [Gall85b] and [Vali84] for a
nore detailed discussion of the representational power of respectively thres-

hold logic and Boolean logic.

The classical perceptron work introduced a simple prototypical model of
adaptation, namely learning by example. In our work, we suggest that the
case where a complete specification of the task is given in one step needs to
be understood first, instead of examining different possibilities for learning
by example immediately. One-step leamning is by far the simplest possible
learning environment and the results of this study can be used later in other

cases of learning.

The crucial issue in this context is again the question of assignment of
functional responsibility: How can the local functions of the constituent
nodes be adjusted such that the global network function matches the instruc-

tions, whether they be specified in one step or incrementally?

¥ i,j, either 3 r such that X; j=2,, of 3 5 such that X; 1 =Xs.

¥ r, either 3i,j such that 2,=x; ;, OF 2,=2.

Xs is a network input, se{1,...,n}; z is the network output. An exampie

of a perceptron is shown in figure 2.2.

z=F(x1.. - .x’)

Figure 2.2: Example ek a.pexceptzon. It has S inputs and consists
of 10 nodes with 2 inputs each.

nOD Ty T
In this dissertation, no loops are allowed in the perceptron network and

Ll:;i, L0l Wl

it is assumed to have a single output. The resulting network then implements
a Boolean function of n inputs x=(x [,X,) and the network output z can

I RN U E

be expressed as:

15

1.4. OVERVIEW OF THE DISSERTATION

This dissertation presents a unifying study of perceptrons, their applica-
tions, and the problem of functional responsibility assignment. An

implementation-independent Boolean treatment is used throughout.

Chapter 2 gives a detailed overview of perceptrons. It begins with a
formal implementation-independent definition of perceptrons: they are mul-
tilayered networks of fixed topology consisting of combinational nodes with
adjustable logic. This definition incorporates the essential concepts, namely
the functional flexibility of the nodes and the multilayeredness of the inter-
connections. Several implementations, both analog and digital, are then
presented. Next, we .eview Rosenblatt’s original perceptron research and
show the extensiveness of his ideas. A particular class of digital perceptrons
developed at UCLA is then discussed in detail. A review of other literature

concludes the chapter.

Chapter 3 discusses a class of possible applications for perceptrons:
combinational rule-based systems. More specifically, we show that, subject
to some restrictions, a propositional-logic rule base can be transformed into a
pair of Boolean functions. If speed and flexibility are important, such sys-
tems can be implemented with perceptrons. This chapter may be of interest
by itself to some readers because it shows the relationship between rule-

based and combinational systems,

Chapter 4 is a detailed treatment of one-step learning, namely the

decomposition of a Boolean function such that it can be implemented with a

10

-9
Y= S2

Since 0<Q <2%" it follows that 0 < y< 1.

!
If the perceptron contains / nodes then P =]TJp; different combinations

i=1
of node functions are possible. P is typically larger than O and different
combinations of node functions may result in the same global network func-
tion, that is, a given network function can be obtained by different combina-
tions of nodal functions. This phenomenon is called functional redundancy.
If P>Q then the perceptron is said to be redundant; if P=0Q then it is non-

redundant,

We define the redundancy factor p of a perceptron as follows:
p= L
Q

Since Q cannot exceed P it follows that p21.

2.1.2. Neuromimetics

An important motivation for the perceptron ﬁ?ﬁ?é‘mh is neuromimetic in
nature. The object of neuromimetics is to develop computer systems or com-
ponents that embody, to some practical extent, principles found in animal
brains. A secondary goal of neuromimetics is to belp in an understanding of

the basic principles of the central nervous system. _, _

Naturally, the internal operation of the brain is still largely unknown,

but some general characteristics can be listed: fine-grain distributed

17

CHAPTER 2

OVERVIEW OF PERCEPTRONS

The principles behind the classical perceptron work have received
extensive attention in the literature, up to the present time. Although many
times the word perceptron is not used explicitly, the concept is fundamen-
tally involved in most of the later work. Unfortunately, the same concepts
that form the basis of so much work have also been misunderstood by many
people. In this chapter we clarify the perceptron concept and expose the
issues in their proper perspective.

Section 2.1 gives an introductory overview of perceptrons and shows
the extensiveness of the idea. Section 2.2 presents a treatment of the early
perceptron research. The well known simple perceptron is reviewed first,
but some of the more general proposals are also presented. Section 2.3 is a
more specific discussion of the perceptrons studied at UCLA. Finally, a

short review of other perceptron-related research is presented in section 2.4.

12

therefore concerned with modeling simple reflexive interactions with the

environment and not with complex *‘thinking processes.”’

2.1.3. Implementation Options

This section lists some options for implementing perceptrons. No
specific perceptrons are reviewed (see sections 2.2, 2.3, and 2.4), but we
present, in a general framework, alternatives for the nodes and the network

interconnections.

2.1.3.1. The node

The node of a perceptron is a simplified model of the input-output
behavior of a nerve cell (a neuron). Neurophysiology teaches us that in a
neuron signals of different strengths are summed and cause an all-or-none
response [Moun80]. The result is a unidirectional processing of input sig-
nals. The effect of incoming signals is subject to change over time (called
adaptation, conditioning, habituation, etc.).

For practical and analytical purposes the model of a neuron must neces-
sarily be simplified, yet it must be good enough to exhibit some of the unique
properties of neural systems. In perceptrons the simplifying assumptions are
twofold: the input and output signals are assumed to be entirely digital, and
the neuron is assumed to be combinational. In other words, a nerve cell is
considered to be a Boolean gate. The behavior of a neuron is modifiable,

and so is the function implemented by the Boolean gate.

19

independent of the inputs and output of the node, and independent of other
nodes. In other words, each node can implement any one of a set of possible

functions:
fi€ b ={fiy....fip} where |¢;|=p;

k
If p;=2%" then the node can implement all possible functions of its k; inputs
and it is called complete or universal. A schematic representation of the

node is shown in figure 2.1.

z

Xil Xk

Figure 2.1: Schematic representation of a node (labeled i) of a per-
ceptron.

The interconnections between the nodes are done in a hierarchical
fashion, that is, the inputs of a node are connected to the outputs of other
nodes or to the external environment. Similarly, the output of each node is
connected to either the input of another node or to the external environment.

In other words,

14

-

LN A

| . |
panc IR

| I

Xy Wy t

(a) (o)

Figure 2.3: Schematic representation of a threshold gate. (a) De-
tailed picture of the internal operations. (b) Simplified representa-
tion,

Le done, for instance, by computing the output value for all 2% possible input
vectors of the fhreshold gate. However, the set of all threshold functions is
not equal to the set of all Boolean functions of the same number of variables.

For instance, the exclusive-or function
fx 1:X2) =X 1 ©Xx3 =X 1Xo+X X5

is not a threshold function [Vers82]. A threshold gate is therefore a func-
tionally incomplete gate. With increasing number of inpuis k the complete-

ness factor of a threshold gate decreases and in the limit [Came60]:

limy < 272"
k —aca

An important characteristic of threshold gates is the analog nature of the
functional adjustments, namely the values of w and 8. Historically, this

model has received almost exclusive attention because of its close

21

2=F(X)=F(xp... %)
where
F=f1(f2f3)
=f 1 26 of hSf 3 ef 1]

A number of Boolean functions {f;} are composed to form a larger function
F. By changing the functions of the constituent nodes, the network can

implement a set of different Boolean functions:

Fed=(F,... Fo}, where |®|=Q
Again, if @ =2%" then the network can implement all possible functions of its
inputs and is said to be complete or universal.

A perceptron implements a Boolean function and hence it classifies its

inputs into two classes:
Co={x|F (x)=0}
Cy={x|F(x)=1}

where F (x) is the Boolean function implemented by the perceptron. There is
a direct relationship between Boolean logic and digital pattern classification;

one is equivalent to the other.

We define the completeness factor ¥ of a perceptron as follows:

16

Boolean functions), but how the Boolean function is selected. In other

words, the difference lies in the control interface.

To illustrate these similarities and differences consider a 2-input thres-

hold function

z =f(x1x9) = [w1x +wyx,20]

For different values of weights and threshold this function corresponds to
different Boolean functions. Table 2.1 lists all 2-input Boolean functions

and for each of them a possible threshold function (if it exists).

Boolean Function | Threshold Function
0 X +x 223
X1X5 X 1+X 522
X1X5 X =x521
Xy x2l
XX, ~X 1+x 4921
X9 X 221
X 1Dxy none
x 1+x 2 X +x 4921
X1 X5 =X 1=x 220
x1Qx4 none
X, -x,20
X +X 5 x| ~x420
x 1 -X 120
x 1+X2 ~X+x 220
X+X, —X 1=x92-1
1 X +x 2?.0

Table 2.1: Implementation of the 2-input Boolean functxons as a
linear threshold function.

23

processing and memory, a layered and hierarchical structure, largely regular
interconnections, adaptiveness, etc. The specifics of these attributes are
unclear, yet it is worthwhile to evaluate their usefulness for the design of

computer systems.

Rosenblatt proposed perceptrons as a model of biological pattern recog-
nition and partly as a proposal for a special-purpose computer [Rose58]. But
in later publications he stresses that brain modeling is the major goal of his

work [Rose62a].

More recent perceptron work, including ours, tends to diverge from an
abstract brain modeling goal towards a more pragmatic objective. Rosen-
blatt must be credited, in his attempt to model the brain, for posing the right
questions, discovering the important principles, and proposing a basic imple-
mentation. It is up to today’s computer engineers to incorporate these con-

cepts in practical systems,

One question addressed by Rosenblatt is how and in what form is infor-
mation stored in the brain, and how does this information influence later
behavior? It is generaily accepted that experiences are not explicitly stored
in a centralized memory, but that these experiences facilitate particular
responses and that information is contained in the many connections in the
stimulus-response chain. The cells in this chain can change their function
and learn by making use of positive or negative feedback. In summary, the
memory or state of a perceptron corresponds to the particular function it exe-

cutes; its knowledge 1s how to react to stimuli. Perceptron research is

18

0010 toog] | [0100] | [ooot
0 (0511 1010 1100 ;OIOI [or11]
1011 1110 1101 0111

1111

Figure 2.5: Functional transitions when changing the threshold of
a 2-input threshold gate.

is also important for practical implications. The threshold gate model is
derived from an analog implementation and a digital realization would be
complex. The function-set model, on the other hand, lends itself to a digital
implementation. Possible physical implementations of these Boolean models

are now presented.

Figure 2.6.a shows a Random Access Memory (RAM) with k address
lines and 2* bits of memory. The 2* bits of the RAM store the truth table of
the Boolean function selected for that node, which is therefore complete. By
prescégi‘xégﬂén input vector X on the address lines, the RAM reads one bit
from rr;mory. Changing the Boolean function of the node is done by rewrit-
ing th{ewzzppropriate bits in the RAM. This requires selecting the bits to be

changed via the address bus, setting the z-line to the desired value, and

25

relationship to the sum and threshold operation of neural cells. The analog
interface is also closely related to the adaptation in living systems, namely
the process of reinforcing or depressing certain inputs by increasing or
decreasing the associated weights, or the process of raising or lowering the
activity level of a neuron by decreasing or increasing its threshold. How-
ever, from a pragmatic point of view, a threshold gate is a Boolean gate, and

a fully digital model may be more appropriate for implementation.

b. Function-set model

In our work the node of a perceptron is a polyfunctional unit that can
implement any one of a set of Boolean functions. A particular function of ¢
is assigned to a node by a process called control. In the function-set model,
the control occurs in an abstract way, independent of any particular imple-

mentation.

This model is more flexible in that it allows different choices for the set
of nodal functions ¢. In a threshold gate model ¢ is always the set of thres-
hold functions, but in a function-set model ¢ could be any.set. For example,

it could be complete.

Although this model includes the threshold gate model (indeed, any
threshold function is a Boolean function), the conceptual difference is impor-
tant. Working with weights and threshold is different from selecting a
Boolean function from a set. The difference between the threshold gate

model and our model is not what is accomplished (both implement a set of

22

table can be done without interfering with the data processing. The contro!
process is totally separate from the data processing. The separation of con-
trol and data is implied by the perceptron definition and is also present in the
threshold gate model. The ULM-based implementation is therefors more

appropriate. On the negative side, a ULM implementation requires more
control lines than a RAM.

A Boolean node with an incomplete set of functions can also be imple-
mented with digital circuitry. For example, Armstrong introduces 2-input
nodes that implement only the nonconstant increasing functions (see table

2.2) [Arms78]. An implementation of this node is given in figure 2.7.

Cp €3 { flx1xy)
0 0 xlxz

0 1 | x,

1 0 2'2

1 1 | xy4x,

Table 2.2: Selection of one of the four 2-input nonconstant in-
creasing functions.

2.1.3.2. The network

ArAr

A perceptron is a model of a neural network. A number of nodes are
interconnected in a layered fashion, corresponding to the present-day under-
standing of neural systems. The simple perceptron, for instance, is a two-

layer network of threshold gates.

27

If only the weights of the threshold gate are changed then the
corresponding Boolean function obeys the transitions shown in figure 2.4.2
and 2.4.b. In this figure each function is represented by a string of 4 binary
digits “‘zqz,z523,"" where zg=f(0,0), z,=f(0,1), z,=f(1,0), z4=f(1,1).
Moving upwards in this transition graph corresponds to an increase in w .
The same holds for w in the horizontal direction. The set of 14 threshold
functions is separated into 2 disconnected subsets by a change in sign of the

threshold value.

foot) (toi0}—1011 |
(0010}~—{0011 L1l (1010 1110 1111
w1
[6oo0}—ooat 0101] 1000 1100 1101]
4000 0100 [0101] 1100]
w3 Wi
(a) 850 (b) 8<0

Figure 2.4: Functional transitions when changing the weights of a
2-input threshold gate.

The transitions when modifying the threshold are shown in figure 2.5.
This diagram shows how the transitions from always true (1111) to always

false (0000) can be achieved in 1, 2, or 3 steps.

The difference between a threshold gate model and a function-set model

24

X
TET I i i

Co Cis

(a) {b)

Figure 2.8: Typical example of a ULM tree (a) and 2 binary deci-
sion tree (b).

from the process of selecting this function. Both modes can be envisioned as
being orthogonal to each other (see figure 2.9). Only when F must be
changed gradually (as a result of adaptation or learning) do both processes
interact. In a ULM tree or a binary decision tree, no separation of control

and data is present.

There are several options for the interconnection topology of a percep-
tron. Some of the earlier perceptron research dealt with a largely random
topology, partly because this perceptron was only a simple initial prototype.
The reason for the randomness was also partly because, at that time, it was
believed that the human brain was indeed interconnected in a largely random
way. Later research examined more structured: topologies using specific
interconnections for detecting certain features (lines, corners, etc.). The
advantage is improved efficiency. The disadvantage is their special-purpose

nature and therefore restricted application domain.

29

toggling the READ/WRITE port. The RAM was used in the work of Alek-
sander [Alek79].

Figure 2.6.b shows a slightly different implementation. It shows a 2-
input Universal Logic Module (ULM) with attached to it a 4-bit register. A
ULM is a multiplexer: presenting an input pattern to the x-lines selects one
of the 4 bits of the register, and the selected value is routed to the z-line.
The function is changed by modifying the contents of the 4-bit control regis-
ter via the separate c-lines. A k-input node requires a kx2* ULM and a 2%-

bit register. We refer to [Yau68, Yau70] for more details about ULM:s.

| |
READ/WRITE —= (T ITT] gg% ULM
- i

(3)]

Figure 2.6: Two digital nodes of a perceptron. (a) RAM. (b) ULM.

A ULM node is similar in operation to a RAM, except that in the former
the data processing and function selection are totally independent of each
other. In a RAM, the Booleaﬁ function is changed by using the input and
output lines, and normal data processing must be halted while the function is

being modified. In a ULM node, on the other hand, the changes in the truth

26

Ca T
L

S X3

Figure 2.7: Example of a digital node that implements only the 2-
input nonconstant increasing functions.

With a digital node, however, the class of perceptron networks is some-
times misunderstood. In a ULM node, the inputs and output are digital, but
so are the four control lines that select the function. It is therefore possible
to interconnect the output of one node to the control lines of another. A typi-
cal example of such an approach is the work on ULM trees (figure 2.8.a)
(Yau68, Yau70, Ston71] or binary decision trees (figure 2.8.b) [Aker78,
Cern79, Mato83]. This class of networks is not included in the definition of

perceptrons.

A similar approach is not possible with threshold gates since the control
of a threshold gate (the weights and threshold) is analog and can therefore

not be connected to the digital outputs of other nodes.

The definition of perceptrons introduces the important concept of a clear
and explicit separation of data and control. The data processing mode of a

perceptron, that is, the computation of z=F (x,, . .. ,x,), is entirely separate

28

2.2.1. The Simple Perceptron

2.2.1.1. Structure

The structure of the simple perceptron is shown in figure 2.11. On the
left is a set of transducers for physical signals outside the network. It would
typically be an array of light sensors (a retina). When a sensor is excited it
produces an output signal 1, else it signals a 0. The outputs of the sensors
are connected to a layer of threshold gates called association units or A-
units. These connections are generated randomly. The weights and threshold
of all the A-units are selected a priori (for instance at random) and are never
changed once the system is built, The outputs of tke A-units are connected
10 a single threshold gate, called the response unit or R-unit, which has vari-
able weights and a variable threshold. Functional flexibility of the simple

perceptron is therefore restricted to this node.

Constraining the flexibility of the system to the R-unit is a strong res-
triction, but it was imposed for reasons of simplicity. The theoretical
analysis of a simple perceptron reduces to the study of the capabilities and

adjustment pspoednnesofs singfe threshold gate.

The assodiatioir layer implements a preprocessing of the raw input data
and generates featurés of these inputs. If the interconnections are random
then the featupésisprdduced by the A-units are equally random. By not
imposing any specific interconnections, and hence features, it is hoped that

the necessary feature detectors for the given application are present. In other

32

CONTROL

Figure 2.9: Separation of data processing and function selection in
perceptrons.

The interconnection topology favored in our research at UCLA is one of
maximum regularity. This means that the network is generated by a sys-
tematic replication of 2 basic interconnection principle [Malo82]. A typical
example of a UCLA perceptron is the triangular network shown in figure
2.10. A regular interconnection topology has many advantages for a VLSI

implementation [Moor85a]).

2.2, THE CLASSICAL PERCEPTRON RESEARCH

The earliest perceptron work (1957-1964) was conducted by Rosenblatt
and his group at Comell Aeronautical Laboratory in Buffalo, NY, and Cor-
nell University in Ithaca, NY. It was an extensive research effort with many

good ideas, unfortunately many unfinished.

30

layer and the association layer were possible.

2.2.1.2. Learning

Although leamning in perceptrons is not discussed until chapter 5, a
treatment of the simple perceptron would be incomplete if it did not briefly

present its capabilities for learning by example.

The simple perceptron leams in the following way. Initially the values
of the weights and the threshold of the R-unit are arbitrary. Example inputs
are presented by a teacher and the output of the R-unit is compared with the
desired value. If the perceptron produces the right output then nothing hap-
pens. However, if an incorrect output occurs then the teacher sends a nega-
tive feedback to the perceptron. A reinforcement rule then increases or
decreases the weights or threshold of the R-unit. When enough examples
have been shown, a set of weights and threshold results that correctly

classifies the examples, provided such a set exists.

An important premise in the algorithm is the assumption that an
appropriate set of weights and threshold exists. This means that, obviously,
the leaming scheme cannot ﬁndla solution if none exist. The work addresses
how an implementation of a task (é Booléan function) can be found by trial
and error. The question of which Boolean functions a given simple percep-

2 o000 mens
tron can achieve is a different issue, and is reviewed next.

34

Figure 2.10: A perceptron with a regular interconnection geometry.

In the more recent literature, however, there is some mitunderstanding
about the class of perceptrons introduced in the early work. Rosenblatt
pointed out that what is sometimes referred to as the perceptron is only a
simple perceptron, a small prototype of a large class of neuromimetic sys-
tems. He explicitly objected to writing the word perceptron with a capital
letter and stressed that the term perceptron was ‘... intended as a generic

name for a variety of theoretical nerve nets’’ [Rose62a].
The section below discusses the simple perceptron and its limitations.
Many of these limitations, however, do not apply to other, more powerful,

perceptrons, which are discussed in the second section.

T .
EEES N B N

31

The main weakness of the simple perceptron is a lack of computational
power. A possible improvement consists of adding more layers to the net-
work, that is, using more depth and less width. Additionally, more than one

node or layer of the perceptron should be adjustable.

2.2.1.4. Summary

The simple perceptron is a prototype perceptron that shows the feasibil-
ity of a simple strategy for learning by example. It is, however, too res-
- tricted and too inefficient for many advanced tasks. The characteristics of
the simple perceptron that contribute to its deficiencies can be summarized
as follows:

1. It has only two layers of functional nodes.
2. The interconnections are largely random.
3. The nodes have a large number of inputs, which grows with the number

of network inputs,

4. The nodes can only implement threshold functions, which is an incom-

plete set.

5. Only one node, the R-unit, is adjustable and contributes to the flexibility

of the perceptron.

6. The nodes have analog internals and are difficult to implement with

digital circuitry.

36

fixed weights

Figure 2.11: Structure of the simple perceptron.

words, randomness is chosen in the hope of maximizing the completeness
factor of the perceptrons. However, this approach is inefficient and more
structured interconnections improve the capabilities of perceptrons [Rose59,

Rose62b].

Many experiments examined the performance of this simple perceptron.
Simulation experiments are described in -[R.ﬂé?gtsofil"]f Mc'>re importantly, a
prototype, called the MARK [perceptron, was built at the Cornell Aeronauti-
cal Laboratory and used in experiments [I-Iay60] The system used elec-
tromechanical integrators and transistor-drivey relay circuits. Its input layer
consisted of a 20x20 square of photosensiti:/; cel\l;_ _;onnected to a camera.
Alternatively, 400 toggle switches could be uséd to assign values to its inputs

directly. There were 512 A-units. 16,000 connections between the sensory

33

(a) , (b)

Figure 2.12: Example of a multi-output (2) and a dual-output (b)
perceptron,

2.2.2.2. Cross-coupled and back-coupled perceptrons

Cross-coupling means interconnecting different nodes of the same layer
(figure 2.13.a). Such perceptrons were proposed in [Rose58, Rose60b,
Bloc61]. Back-coupling means connecting the output of a node to an input
of one or more nodes in layers closer to the inputs, for instance connecting
the output of the R-unit to an input of an A-unit (figure 2.13.b). Examples
can be found in [Rose64]. Such structures are excluded from our treatment

here.

2.2.2.3. Mutltilayer perceptrons

Perceptrons with multiple layers of adjustable nodes were reported in
[Rose60b, Bloc61, Bloc62b, Konh62, Rose62b]. Such perceptrons are

difficult to treat formally, and no satisfactory scheme for learning by

38

2.2.1.3. Limitations

Minsky and Papert [Mins69], and others [Uesa75, Abel77], examined
the functional limitations of the simple perceptron. Specifically, they
showed what geometrical patterns can or cannot be classified by the simple

perceptron.

Minsky and Papert’s work is a study of the incompleteness of a single
threshold gate, namely the R-unit of a simple perceptron. Since the R-unit is
restricted in its functional capabilities, certain parts of the function intended
for the perceptron must be assigned to the gates in the association layer.
Minsky and Papert examined how much of the perceptron function can be
implemented by the R-unit, and interpreted these results in geometrical
terms. In other words, they did a geometrical interpretation of the incom-
pleteness of the threshold gate. Their work formally proved that many of the
random connections between input sensors and A-units (as allowed by
Rosenblatt) produce a perceptron that is unable to classify some geometri-

cally simple input patterns.

The simple perceptron has a fixed preprocessing layer and one decision
element that makes its decision according to a learned linear rule. To
achieve a larger functional capability, the perceptron must have more A-
units, and hence the R-unit must have more inputs. Yet, the completeness of
a threshold gate decreases rapidly with increasing number of inputs. As a
result, the functional capabilities of a simple perceptron are severly con-

strained.

35

b

b
he N

Al Az R

Figure 2.14: Example of a structured multilayered perceptron.

2.2.2.4. Perceptrons with different nodes

Linear threshold gates are not the only possible building blocks for per-
ceptrons [Rose62a). Rosenblatt mentioned for example comtinuous units
that have no threshold operation and therefore have analog outputs. More
interestingly, he also suggested to replace the weighted sum of a threshold
gate by a more general analog function of weights and input values. These
nodes are called nonlinear threshold gates, as opposed to linear threshold

gates.

EXAMPLE 2.1: A 2-input linear threshold function
f(xxq) = [w X 1+wWox,20]

can represent only 14 of the 16 2-input Boolean functions. On the other

40

2.2.2. Other Perceptrons

Rosenblatt suggested possible ways of improving the functional charac-
teristics of the simple perceptron and he developed many extensions. Some
of these more general perceptrons are reviewed in [Rose62a, Rose62b]. The
overly negative impression that currently surrounds the perceptron work is a
result of an ignorance of these more general systems and a too concentrated
focus on the limitations of the simplest initial prototype of a large class. See

for example [Bloc70] for a discussion of this misunderstanding.

A brief overview of these more general perceptrons is given below.

2.2.2.1. Multi-output perceptrons

An obvious extension of the simple perceptron consists of connecting
more than one R-unit to the same association layer (figure 2.12.a). Such per-
ceptrons were already included in the earliest perceptron literature [Rose58].

For example, the MARK I perceptron had 8 R-units [Hay60].

If only the R-units of such a perceptron are adjustable then the same
straightforward learning algorithm as in the simple perceptron applies.
However, if the nodes of the association layer participate in the functional
change as well then a more general theory is necessary. Multi-output per-
ceptrons are not treated in our study, and we also exclude dual-output per-
ceptrons. In the latter structures, two R-units inhibit each other such that
only one can output a 1 (figure 2.12.b). This is an implementation of the

well known winner-take-all concept.

37

el s s
.

2.3. THE UCLA PERCEPTRONS

The goal of our research at UCLA is to develop a general but practical
model of perceptrons and to investigate the functional properties and learn-
ing capabilities of a few small prototypes. The learning aspects are the sub-
ject of chapter 5; in this section we concentrate on the functional capabilities.

The reader is referred to [Vers82, Vers83] for some precursor work, and
to [Moor83, Sala83, Moor85a, Moor85b, Moor85c, Moor85d] for some
practical implementation issues. [Vida83, Vida85] outline the general scope

and goals of the research,
2.3.1. Structure

2.3.1.1, The node

The node of the UCLA perceptrons is a direct implementation of a com-
plete function-set model. Each node consists of a 2-input Universal Logic
Module (ULM), as described in section 2.1.3.1. A ULM implements the fol-

lowing Boolean function:
[=cokXoke (X yxptegx (Xpte e 1xy

It is a multiplexer selecting one of the c-lines as specified by the x-lines

(figure 2.15.a).

In our perceptron design the ULM is used sideways. The control lines
(c-lines) represent the entries of a truth table and specify a Boolean function

of the data lines (x -lines), which now become the real inputs (figure 2.15.b).

42

=0
=<5

(a))]

Figure 2.13: Example of cross-coupling (a) and back-coupling (b)
in perceptrons.

example exists. Therefore, the connections are designed to implement
specific feature detectors necessary for a particular application. For example,
the first layer Ay might extract lines and the next layer A, might combine
these outputs into position-independent features (figure 2.14). Such a hierar-
chy of property detectors allows a more focussed data processing and a more
directed learning. This approach was later supported by results obtained by

Hubel and Wiesel in their neurophysiological work [Hube62].

In summary, more general perceptrons are more powerful, but require
more complex learning schemes. No general theory exists and hence

special-purpose systems were developed.

39

z=f (x.xy)

xy £2
Figure 2.16: The basic node of 2 UCLA perceptron.

also redundant,

Figure 2.17.b shows an assignment to the nodes such that the network

implements the following Boolean function:
2 =F (XXX 3) =X X% 34X 1 X0 3

In this figure (and in others that will follow) we use the notation of table 2.4

to specify the functional assignments.

The UCLA perceptrons include a large class of systems and not just one
OML N el e '

prototype. Ap example of a 4-input perceptron is shown in figure 2.18. This

perceptron, however, is incomplete,

A]p’L‘JAIlL:lL r.l. [TV

| ~ I
G a complete

hand, a polynomial threshold function of the form
f(x l,xz) = [W 1% 1+W2X2+W 12X 11229]
can generate all 16 functions (see table 2.3). 3

The set of polynomial threshold functions constitutes a much richer set
than linear threshold functions. Polynomial threshold functions of any

number of inputs can form a complete set if the degree of the polynomial is

large enough.

-

linear or polynomial threshold function.

[A

41

Boolean | Linear Threshold | Polynomial Threshold
Truth table . . .
Function | Function Function
0 0 0 00 X 1 +x423 X (+x423
0 0 0 1| xx, X +x 4922 X y+xo
0 0 1 0 xlfz xl-xzal Xl—szl
0 0 1 1/|x x,21 x21
0 1 0 0] xx, —X 1+x 521 —-x 1+x 921
0 1 0 1] x, x 921 X921
0 1 1 0] x;@&x, none X 1 +Xy—2x 1x 521
0 1 1 1| x;+xq x +x 421 X +x,21
1 0 0 0 flfz —X1==x 220 X=X 220
1 0 0 1| x,®x, none =X | =X 9+2% ;X 520
1 0 1 0] x, -x 520 —x 520
1 0 1 1] x+x, X =x,20 x1=x520
1 1 0 0]x, -x 120 -x 120
1 1 0 1] Xp+x, =X +x 420 =X 1+x 420
1 1 1 0 x 1+i'2 —X =X 22—1 . 22“'1
1 1 1 1]1 X 1+x 520 x 1 4x,520

Table 2.3: Implementation of the 2-input Boolean functions as a

2=F (X ,%2,%4) I=X (XX 14X (X%

o
ANAN

0 LEFT EXOR
x) X2 Xy
(2) (b

Figure 2.17: Typical 3-input UCLA perceptrons. (a) Structure.
(b) Sample assignment.

2.3.2.1. Completeness

Completeness (sometimes referred to as universality) is a property of
the functional set @ of a perceptron. A complete set of Boolean functions of
n inputs is a set that contains all 22" Boolean functions of n inputs. A com-

plete perceptron is one that can implement a complete set of functions.

The question of how to build a complete perceptron is a complex one
and no systematic solution exists. Compl‘eténess in perceptrons has been stu-
died for some specific threshold gafé networks. For example, [Came60]

shows a complete 3-input threshold gate network consisting of 3 nodes. A

46

¢o

ULM €1
L x, . ULM
]

1T ‘s |

Co Cl Cz C3

X eF!

(a) (b)

Figure 2.15: The ULM as the basic building block of the UCLA
perceptrons. (a) Basic operation of the ULM as a multiplaxer. (b)
The ULM used as a functional node.

Additionally, the c-lines of 2 ULM are connected to a 4-bit local regis-
ter that holds the desired truth table (figure 2.16). Such a node is function-
ally equivalent to a small RAM. It can implement any of the 16 2-input
Boolean functions, listed in tabie 24.

F20Teal v
=

2.3.1.2. The network

A typical example of a UCLA perceptron is shown in figure 2.17.a. The
network has 3 inputs and consists of 6 nodes, each of which can implement
16 functioﬁs. This network is complete: it can implement 22’356 Boolean
functions of 3 inputs. Because of this property it has sometimes been called

a General Purpose Perceptron (GPP) in the past [Vers82). The network is

43

P20
24)(1 > 22'
4; 22"
[>9n -2

The number of nodes in a complete UCLA perceptron is always larger than
22,

An extensive set of 3-input perceptrons has been investigated for com-
pleteness [Vers82]. Figure 2.17 shows a complete perceptron. A proof of
the completeness of this perceptron will be given in chapter 4. Another com-

plete 3-input network is shown in figure 2.19.

Complete perceptrons could in theory Ee designed for any number of
inputs (see for example figure 2.20), although it is not practiéal if n is large,
The number of nodes involved in a complete network, as well as the number
of layers, grows exponentially with the number of inputs. Therefore, if n is

large, any perceptron is always incomplete.

This raises the question of the incompleteness of a specific perceptron.
What is the functional set ¢ of a given perceptron and how large is it? Such
questions are difficult to answer in their full generality. A preliminary treat-
ment can be found in [Urba68, Alek78, Vers82].

An example of an incomplete perceptron is the tree network shown in
figure 2.21. This perceptron cannot implement for instance the following

function:

43

€Cg €y €3 ¢35 f(x1x9) | Name

0 0 0 0 [0 0

0 0 0 1 IIXZ AND

0 0 1 0 | x,x, AND NOT
0 0 1 1 xl LEFI'

0 1 0 0 | Xix, NOT AND
0 1 0 1] xy RIGHT

0 1 1 0 | x;©x, EXOR

0 1 1 1 X l+x2 OR

1 0 0 0 | x5 NOR

1 0 0 1 | x;®x, EQUI

1 0 1 0 | x5 NOT RIGHT
1 0 1 1 | x+x, OR NOT

1 1 0 0 | x; NOT LEFT
1 1 0 1 | X+x, NOT OR

1 1 1 e | Xy+x, NAND

1 1 1 1 1 1

Table 2.4: The 16 possible Boolean functions of 2 inputs.

2.3.2. Functional Characteristics

Two functional characteristics are important in the context of percep-
trons: completeness and redundancy. Some: general notions of these issues

were presented earlier; this section gives more specific details and examples.

45

2=F (%X 3%4,%4)

Figure 2.20: A complete 4-input perceptron.

z =F (x1,09,03) =X X 3% 44X X 2X 3

can be achieved many different ways, for example

50

1=F (X, X3,%1,%4)

Figure 2.18: An example of a 4-input UCLA perceptron,

ULM tree (section 2.1.3.2) is an example of a complete logic network, but it

is not a perceptron.

In UCLA perceptrons, a minimum requirement for completeness is that
the total number of control bits (4 per node) be larger than 2". Indeed, the
number of different internal states of the network is 2=2" (/ is the number
of nodes). If the perceptron is complete then Q =2%" and since P is an upper

limit for @ :

47

Table 2.5 gives a partial list of the number of different implementations for

the Boolean functions of 3 inputs, as determined by experiment [Moor85¢].

Redundancy is important because it implies a potential for fault
recovery: certain functions can still be implemented on the perceptron if a
node malfunctions. Let us assume that, when a node malfunctions, its output
is stuck at some constant value and that its parent node must ignore this
input. Through experimentation we have found that a malfunction in any of
the nodes of figure 2.22, except the top node, always reduced @ to 192 func-
tion. This means that any malfunction removes only 64 functions from the

set D, unless the top node fails.

52

2=F (x1,%5,%4)

X1 X3 X3

Figure 2.19: Alternative complete 3-input UCLA perceptron.

2 =F (X1 20% 3.0) =X X p+x X yhx 32y

Chapter 4 will show why this is so.

2.3.2.2, Redundancy

Redundancy is another important topic in the study of perceptrons. One
Boolean function may have more than one implementation on the same net-
work, or vice versa, changing the internal assignments of a network does not
necessarily change the network function. In perceptrons redundancy is the
rule rather than the exception.
EXAMPLE 2.2: Consider the perceptron of figure 2.22. The network func-

tion

49

Which functions are affected by a particular fault, and how many faults
can each function tolerate? The answer to this question is summarized in
table 2.6, which groups the 256 functions according to what maifunction
they can tolerate. The first five columns list the nodes with a single fault; the
last column summarizes how many functions can tolerate a malfunction in
these nodes. For example, the first row shows that 24 functions cannot
tolerate any fault in the network. 8 other functions can only tolerate a fault
in node 5 and not in any other node (second row). 8 functions can tolerate a
single fault in either node 2 or node 4; 8 others can tolerate a fault in node 3
or 6; and so on. 136 functions can tolerate 2 single fault anywhere in the net-

work, except the top node.

The 24 functions that cannot tolerate a single fault can be grouped into

two categories represented by the functions:
J QX 0X 3)=x X ok px gk x|
f 1% 2% 3)=x 1 X 2 @x 51 @x 3%

In the context of fault recovery, two types of redundancy must be dis-

tinguished.

~ a. Trivial redundancy.

" Consider an interconnection of the output of one node of a perceptron to
the input of another node (figure 2.23). The following operation will not
~ change the network function: negate the output of the first node (change f ,

to f 1) and invert the corresponding input of the second node (change

54

X1 X3 X3 X4

Figure 2.21: A binary tree perceptron with 4 inputs.

Fr=zovz3 fo=2425: f3=2s26) f 4=% 193 f 55%9@©x4; f g=x 4% .
F1=2273 [1=24@75 f 3=z f 4=% %3 f s=x 0% 3 fg=x 3%
Frmzo%z3 f=24@24; f3=2 576 f 4=x 123 [s=x 3% 3; f g=x 9%y .
Fr=23: f =00 fy=z 526, f 4=0; f 5=% 25 f =3O .

etc. O

In figure 2.22, each of the structure’s 6 atoms can implement 16
Boolean functions, hence P=165. This perceptron implements Q =256 dif-

ferent functions. The redundancy factor is

51

fa

7T

Figure 2.23: Example of trivial redundancy in a perceptron.

b. Nontrivial redundancy.

A more important form of redundancy is shown in figure 2.24. This
figure shows how one function, namely F (x ;,x,,x3)=x 1xo¥ 1+¥ X 5% 5, can

be impleme_nted in two entirely different ways. One implementation cannot
ol neural.maders)
be derived from the other by a trivial operation such as negating inputs or

outputs. Other implementations were listed in example 2.2.
snlair these jian
The cause of this redundancy is the fan-out at the inputs and inside the
LWL HeLWOIK -
network. Nontrivial redundancy is 2 much more powerful property for fault
LG e a e

recovery than trivial redundancy.

v O il dwees an

56

Function Function Number of
number truth table implementations
0 00000000 3261376 |
1 00000001 128192
2 00000010 128192
3 00000011 113600
4 00000100 128192
5 00000101 113600
6 00000110 19776
7 00000111 22720
3 00001000 128192
9 00001001 19776
10 00001010 113600
11 00001011 22720
12 00001100 113600
13 00001101 22720
14 00001110 22720
15 00001111 127168
16 00010000 128192
17 00010001 188608
18 00010010 22528
19 00010011 20608
20 00010100 22528
21 00010101 20608
22 00010110 2496
23 00010111 2624
250 11111010 113600
251 11111011 128192
252 11111100 113600
253 11111101 128192
254 11111110 128192
255 11111111 3261376

Table 2.5: The number of different implementations on the com-
plete 3-input UCLA perceptron of figure 2.22 for all 3-input Boole-
an functions.

53

is much simpler to deal with, as will become clear in chapter 4.

2.4. OTHER PERCEPTRON RESEARCH

2.4.1. Neuron Models

2.4.1.1. Threshold gate model

The history of the threshold gate as a simplified model of the neuron
goes back to the seminal paper of McCulloch and Pitts [McCu43]. Based on
the apparently all-or-none activity of a neuron, it was postulated that neu-
rons communicate through binary signals. The behavior of a neural net is
then expressible in Boolean algebra. The internal operation of a nerve cell
was assumed to be one of excitation and inhibition (weighted sum) combined
with a threshold operation. Hence the threshold gate as a neural model.
McCulloch and Pitts used both open-loop and closed-loop systems. They did
not, however, take advantage of the modifiability of the threshold gate func-
tion. In summary, their work introduced two simplifications, namely the use
of Boolean algebra in the study of peural madels, and the threshold gate as a

model of the neuron itself,

Rosenblatt was the first to exploit these ideas and to propose a working
model of a pattern recognizing neural network {later built in hardware). He
was also the first to introduce the.gencept.of a.changing neural net by modi-
fying the weights or thresholds of e nodes<and to develop an effective

learning algorithm. His work forms the basis for nearly all later work on

58

node number of
2 3 4 5 6 | functions
no no no no no| 24
no no no yes no 8
no yes no no yes 8
yes no yes no no 8
0 yes no yes yes 16
yes no yes yes no 16
no yes no yes yes
yes no yes yes no 8
yes yes yes no yes 16
yes yes yes no yes 8
yes yes yes yes yes 136
256

Tabi: 2.6: Summary of the fault tolerance of the complete 3-input
perceptron of figure 2.22. It shows how many functions can
tolerate a single fault in the network.

fa(x,..) to fo(....%;,...)). These changes cancel each other.

Such operations are not always possible; the set ¢ must be closed under
negation of the output or inputs, which is indeed the case for threshold gates
or ULM nodes. Hence, most:, perceptrons are trivially redundant. Such
redundancy, however, does not contribute to fault recovery. If a fault occurs,

these negation operations cannot be used to reconfigure the network.

55

Recognition Device’’) was built {Alek83a). Their design has been used suc-
cessfully for recognizing facial pictures projected onto a 512x512 array of
photocells. A general overview of the work by this research group can be
found in [Alek83b].

The work of Armstrong at the University of Montreal in Canada uses
2-input incomplete nodes [Arms79]. A physical implementation of their
work is described in [Arms71, Arms76]; it was used for LANDSAT image
processing [Arms78)]. The major goal of this work is the demonstration of a
feasible learning strategy [Arms79], and we will return to it in chapter 5.

2.4.2. Network Options

2.4.2.1. Interconnection complexity

The interconnections in a perceptron can be either open-loop or closed-
loop. Open-loop perceptrons are combinational logic networks. In addition
to most of the original perceptron research and our work at UCLA, other
open-loop perceptrons are for example the committee machine studied by
Takiyama [Taki78, Taki81] and some of the work by Aleksander and
Armstrong.

Cross-coupled and back-coupled systems are sequential in nature and
are harder to analyze formally. The work in this area is, as a result, less for-

mal and consists of only a few isolated examples. No unifying theory exists.

The cognitrons proposed by Fukushima [Fuku75, Fuku80, Miya84] are

60

0 LEFT EXOR

X X2 Xy

(a) {b)

Figure 2.24: Example of nontrivial redundancy in a perceptron.

2.3.3. Summary
The perceptrons discussed in this section are simple, vet they embody

the two major properties of perceptrons.

The first property is the multilayered nature of the network. Dividing a
network function among multiple layers is difficult. Single-layer systems, on
the other hand, always have a straightforward solution. Gaining insight into

the topic of multilayered functional flexibility is the first goal of our research.

The second property is the fan-out interconnections. A disjunctive

binary tree (figure 2.21) does not have this characteristic, and such a network

57

interconnection scheme. A thorough understanding of the cause of this sta-
bility is important, not only in the context of automata theory, but also in the
context of brain modeling. The brain is also capable of stable behavior even
with imperfections in its underlying neural interconnections. It is an intrigu-
ing question why and how such random networks can exhibit characteristics
that are useful or exhibit capabilities for such complicated functions as pat-

tern recognition or associative recall.

b. Structured interconnections

In addition to connecting threshold gates in a random fashion, Rosen-
blatt also proposed to structure the network interconnections with a specific
application in mind. The goal is to obtain a hierarchy of deshed feature
detectors by observing a set of rules for interconnecting the nodes in dif-
ferent layers. The interconnections then result in a given application-
dependent set of low-level or high-level features. A typical example of a
modern structured perceptron is the cognitron proposed by Fukushima
[Fuku75, Fuku80, Miya84].

The perceptron interconnections can also be structured with a different
goal in mind, namely its physical implementation. Issues regarding the
impiementation of a perceptron may at times introduce more important con-
straints. than feature-dependent issues. Regularity, for instance, is an impor-
tant implementation constraint. Rectangular arrays are examples of networks

with a regular interconnection pattern [Hopf82, Cruz83].

62

neural networks and learning systems,

Around the same time, Widrow used the same concept of an adjustable
threshold gate in his systems called Adaline and Madaline [Widr60,
Widr62]. A prototype was built using an electrochemical technology. His

work, however, was not as general in scope as the perceptron research.

Most of the neural modeling research that followed is based on a thres-
hold gate model. However, none of the proposed systems have been built in
hardware; the simple perceptron and the Madaline remain the only physical
implementations. On the other hand, all the function-set models reviewed in
the next section form the basis of a hardware implementation. The threshold
gate model, or even more complex analog models, are undoubtedly impor-
tant for theoretical studies, but for practical implementations with current

technology a digital approach is necessary.

2.4.1.2. Function-set model

The function-set model is 2 more practical and more powerful model for
perceptrons, yet it has received little attention. Besides our group at UCLA,
only two research groups have worked with such a model and both have

practical implementations.

The group of Aleksander at Brunel University in the UK has worked
with a digital model since 1968 [Alek68a, Alek70b, Alek71]. Recently they
concentrated on practical implementations with RAMs [Alek79, Ston85]. A
prototype system called WISARD (‘‘Wilkie, Stonham, and Aleksander’s

59

the threshold gates in the bottom layer are adjusted; other nodes are fixed. In
the work by Aleksander [Alek70b, Alek79] only the bottom layer consists of
RAMs; the output node is fixed to an AND function, an OR function, or a

voting function.

The work by Barto (University of Massachusetts) on the associative
search network is also restricted to a single layer of threshold gates [Bart81a,
Bart81b]. However, the output of each threshold gate is an output of the per-

ceptron and all the threshold gates are independent of each other.

¢. Multilayer perceptrons

Perceptrons with adjustable nodes in more than one layer are the most
difficult to analyze. In the extreme case all the nodes in ail the layers of the
network are adjustable. Some preliminary learning schemes for multilayered
perceptrons were proposed [Rose62b, Widr62, Widr64]. Other preliminary
work was done by for instance Bobrowski [Bobr78], Fukushima [Fuku7s,
Fuku80, Fuku&4], Barto {Bart82b], and Armstrong [Arms79]. In our work at
UCLA it is our explicit goal to study only multilayered perceptrons.

64

cross-coupled perceptrons similar to Rosenblatt’s proposals [Rose60b). Inhi-
bitory cross-connections in the layers improve the efficiency of the system.
(Fuku84, Miya84] also include back-coupling. The work by Hinton [Hint81]
and much of Aleksander’s work [Alek68b, Alek70b, Alek84b, Alek85] inter-
connects the output of the system to its inputs. Rectangular arrays of mutu-
ally communicating nodes (similar to cellular automata) are treated in
[Wils76, Wils80, Hopf82, Cruz83]. The work on the Boltzmann machine
also uses a rectangular array, but it is unique in its learning capabilities (see

chapter 5) [Hint84, Hint85].

2.4.2.2. Interconnection topology

It is almost impossible to find two independent research groups studying
exactly the same perceptron interconnection topology; every group has its
own typical structure. These differences make it difficult to compare and

integrate results obtained by different people,

The possible interconnection topologies found in the literature can be

classified into two groups: random or structured.

a. Random interconnections

Generating the interconnections in a random fashion is the simplest but
least efficient option. For instance, [Kauf70] and [Atla81] examine the limit
cycles of randomly constructed networks of Boolean nodes. They show that

these cycles are sometimes surprisingly independent of the particular

61

other rule-based applications. This chapter discusses the class of combina-
tional rule-based systems and shows how perceptrons can be used as embed-

ded systems in such applications.

Section 3.1 gives a brief overview of rule-based systems. Section 3.2
introduces combinational rule-based systems and their implementation with
perceptrons. An overview of possible interpretations of the output of a per-
ceptron in this context follows in section 3.3. Conclusions regarding this

application domain are presented in section 3.4.

3.1. RULE-BASED INFERENCE SYSTEMS

The term rule-based inference system represents a broad class of
artificial intelligence (AI) systems, namely those that use a set of rules and a
set of facts to arrive at conclusions. Other names are rule-based deduction
systems, knowledge-based systems, and expert systems. The latter term has a
meaning in Al that is somewhat incompatible with what we discuss in this
chapter. For example, the user interface (the consultation session) is of cen-
tral importance in an expert system, whereas in this chapter we assume that
@y Lol ultere is no user involved, and therefore no consultation session is needed.
---...Names such as production system or pattern directed inference system are

+'~also- related to rule-based inference systems, but imply a slightly different
- yuais ful programming strategy. However, the result is the same, namely a decision

. derived from a set of facts and rules. The relationship between rule-based
- iiowu inference systems and perceptrons as studied in this chapter therefore applies

to a general class of decision-making systems.

66

2.4.2.3. Number of adjustable nodes

The number of adjustable nodes in a perceptron is important not only
because it determines the functional capabilities of the perceptron (the com-
pleteness factor), but also because it influences to a large extent the complex-
ity of the algorithms necessary to control the functional changes. Simplified
networks may have trivial programming or learning procedures; more gen-

eral systems are more complex to control.

Based on this observation we divide the flexibility of perceptrons into

three classes, listed here in order of increasing complexity.

a. Single-node perceptrons

In a simple perceptron only one threshold gate is involved in the func-
tional adjustment. The same holds for the Adaline, which consists of only a
single threshold gate, introduced by Widrow [Widr60]. Another example of

a single-node perceptron is [Bart82a).

b. Single-layer perceptrons

Extensive work has been done on perceptrons with a single layer of
adjustable nodes. A historical example is the network of Adalines, called
Madaline, proposed by Widrow [Widr62, Widr64]. A number of Adalines
(threshold gates) are connected to a set of inputs, and their outputs are con-
nected to a voting gate. More recent examples are the committee machine

[Taki78] and the two-level committee machine [Taki81]. In both cases only

63

system the data base would consist of the set of data relating to one specific

patient, for instance lab test results, symptoms, intermediate conclusions, etc.

b. Rule base

The rule base is sometimes called the knowledge base. It contains the
generic ‘‘expertise’’ of the system, the ‘‘knowledge,’” expressed as a set of
if-then causal relations. The rule base is a set of rules applicable to a class
of problems. The rules are case-independent, but constitute domain-specific
knowledge. In medical diagnosis a rule would for example express a causal

relationship between symptoms and diseases.

¢. Inference engine

The purpose of the third component, sometimes called the control struc-
ture, is to integrate the rules and data in a way that simulates expert reason-
ing in the solution of a problem. The function of the inference engine is not
only case-independent but also domain-independent. It can be used for dif-
ferent sets of rules belonging to different application domains. It implements
a certain stzategy fotusing the rules and the data, based on notions of impli-
cation, truth-maintepance, probability theory, etc. The inference engine
represents ‘sirategy-dependent meta-knowledge. One inference engine will
not be apprepriate-fosall. possible rule-based inference systems, but only for
a class of .similar problem domains. Different classes of problem domains

may require different strategies of reasoning.

68

CHAPTER 3

COMBINATIONAL RULE-BASED SYSTEMS

Two-dimensional digital pattern classification is the typical application
domain for perceptrons. Tutorial treatments of perceptrons are found in text-
books on pattern classification [Duda73, Kova80, Bow84]. Under a more
general description, however, the application domain must be extended to
encompass any problem expressible 75 a Boolean function. This chapter
shows that the applications for perceptrons include other well known
domains and, in particular, an important subset of the class of rule-based

inference systems.

Perceptrons are networks of fixed topology consisting of nodes with
adjustable logic. Because of the concurrency, processing is extremely fast
and therefore suited to real-time applications. Perceptrons, are comparable in
speed to ordinary combinational circuits, but do not need rewiring to adjust
to a range of functions. The function of a perceptron can be modified
without changing its physical structure.

Perceptrons are therefore useful in applications that require fast and
modifiable decision-making logic. Examples include aircraft or satellite con-

trol systems, intensive-care units, monitoring and alarm systems, and many

65

As mentioned earlier, a typical expert system will, for convenience,
have other components to deal with the user interface (not shown in the
figure). A knowledge acquisition component facilitates the interface between
the expert and the rule base. A consultation component facilitates the inter-
face between the user and the data base. Other possible components include
an explanation system, a debugging system, etc. The core of the rule-based
inference system, however, consists of the three basic components described
earlier. These components form the minimal configuration of any rule-based

inference system.

3.1.2. Development and Use ©

A rule-based sysiem has two distinct phases. In one phase the rule base
is being created or modified; in the other phase these rules are applied to the
data base. These two phases can be, and typically will be, alternating as the

rule base is being designed. The two phases are described below.

a. Development of the rule base

This process is called the knowledge acquisition session in expert sys-
tems. In this phase the expert is the only human involved. The expert is the
source of the case-independent domain-specific knowledge, expressed as a
set of rules (see figure 3.2.a). These rules are entered into the rule base, or

existing rules are modified or deleted.

70

We refer to for example [Forg81, Brow85] for a detailed treatment of
production systems, and to [Wate78] for a treatment of pattern-directed
inference systems. The principles of rule-based inference systems are dis-
cussed in detail in for example [Nils80, Haye83]. A theoretical treatment of
the process of deriving conclusions from the set of facts and rules is given in

(Kowa79].

This section reviews the principles of rule-based inference systems as an
introduction to the later discussion on the relationship between these systems
and Boolean logic. First we discuss their structure and knowledge hierarchy.
A treatment of how they are developed and used follows. Finally, a few pos-

sible formalisms for expressing the rules are reviewed.

3.1.1. Structure

A rule-based inference system consists of three distinct components: a
data base, a rule base, and an inference engine. Other components may be
added for convenience or to ii‘nprove the user interface, but these additions

are not part of the core of the system.

a. Data base

The data base of a rule-based inference system is sometimes called the
working memory in the expert system literature. The data base consists of a
set of facts, intermediate results, and conclusions about one specific problem.

It is therefore case-specific data. For example, in a medical diagnosis expert

67

RULE
EXPERT BASE

Domain-Specific Knowladge

-
=4

Case-Independent Knowledge
DATA
RULE BASE
BASE
Case-Specific Results @ﬁ Case-Specific Data
USER

(a) (b)

Figure 3.2: Schematic representation of the two separate phases in
a rule-based inference system. (a) Development. (b) Application.

valve -open and pump -on — pressure

b. Predicate logic

Predicate logic is a more general formalism because it uses variables,
universal quantifiers, and existential quantifiers. Such rules atlow statements

about the truth or falsity of a whole class of propositions. For example:
Vx,y : dz : parent (x,z) and parent(y,z) and male (x) — brother(y x)

represents the rule that for all x, y, if there exists a z such that x and y have

72

A schematic representation of these three components is shown in figure
3.1. It also shows the two humans who interact with the system. On the one
hand, the exper: provides the rules for the rule base; on the other hand, the
user is the source of case-specific information and is also the person who

wants the case-specific results.

EXPERT

@ Knowledge

Domain-Specific RULE
Case-Independent BASF

Strategy-Specific
mg%E Domain-Independent
Case-Independent

Case-Specific | DATA
BASE

Data

USER

Figure 3.1: Schematic representation of the three components of a
rule-based inference system. Two humans interact with the sys-
tem: the expert and the user.

69

available. The environment is therefore entirely combinational, hence the
name combinational rule-based systems. Such systems can be used as

embedded components in a real-time environment.

A definition and description of this class of rule-based systems is given
first. Next it is shown how the consequent of a rule can be expressed as a
Boolean function of the antecedent propositions. A study of the integration
of multiple rules into one Boolean function follows. An example concludes

this section.

3.2.1. Definition and Description

We define the data base of a combinational rule-based system to be a

set of 4 propositions:
D={p;li=1,...,d}

Some of the propositions have a known truth value (true or false), either
because they were asserted by sensors, or because they were derived from
these propositions by the available rules. The remaining propositions have
an unknown truth value, 2lso called a don’t know value. The possible values
associated with each proposition in the data base are thus {0,1,}, where 2"’

represents a don’t know value. We therefore use tri-valued logic.

The complete truth tables (including the don’t know value) for a con-
junction and disjunction in tri-valued logic are given in table 3.1 {Turn84].
A conjunction is false if one of its propositions is false, it is true only if ail

the propositions are true; in all other cases it is wunknown. The

74

complementary observations hold for the disjunction. A disjunction is true
if one of its terms is true, it is false only if all the propositions are false; in

all other cases it is unknown.

P1 P2l P1P2| P1tP2
0 0 0 0
0 1 0 1
0 ? 0 ?
1 0 0 1
1 1 1 1
1 ? ? 1
? 0 0 ?
? 1 ? 1
? ? ? ?

Table 3.1: Truth tables for the conjunction and disjunction in tri-
valued logic. '

The rule base of a combinational rule-based system is a set of r rules

Rx{R"[f=l,. .. ,r}
Each of these rules has an antecedent and a consequent:
5;
Ry fi@iypiz - »Pig) = i)

8;€{0,1}; (p)° denotes p and (p)' denotes p. p;;eD, i=1,...,r,
J=1,...,k. f; is a Boolean function of the variables p; 1,...,p; . If
fi@)=fi@i1s---.Pig) =1, then the rule R; applies to the data base; its

antecedent f;(p;) is matched by the data base. This rule is in a more general

75

form than is typically found in expert systems, since f; can be any Boolean
function and not only a conjunction. In our treatment we assume that all
rules with the same consequent are Iumped together into one rule, This is
done by combining the antecedent functions as a disjunction. Rules with the
same proposition but a different sign §; in their consequents cannot be

grouped. For example, the following four rules:
P1P2—Po
P2P3P4 Py
P2pP3 Py
P4—pq
can be groupen into two rules:
P1P2tP2P3 P
P2P3P4*P4 Py

We also assume that the rule base does not contain loops or circular reason-

ing. For example p ; — p, combined with p5 —p is not allowed.

The propositions p; that represent the real-time measurements do not
appear as the consequent of any rule in the rule base. Let us assume that »
such propositions exist and that they appear first in the data base, labeled
P1 .. .,0,. Assume further that the goal proposition is the last proposition,
labeled p;. The propositiens py, . . ., p, are continuously assigned a value 0

or 1 by the sensors. When the inferencing starts, the remainder of the data

76

base (including p,) is assigned a don’t know value. The inference engine
applies a chain of rules to the data base with the goal of assigning 0 or 1 to
P4

Since the set of external propositions {p{, . ..,p,} and the goal propo-
sition p, are known a priori, the partial truth table of the output p; as a func-
tion of the input propositions {p,...,p,} can be generated. This is
achieved by considering all possible input assignments and recording for
each assignment the decision arrived at by the inference engine. Given a
certain input assignment, the antecedent of a number of rules is matched and
the inference engine produces the truth values of their consequents. These
conclusions may cause other rules to apply, and so on. Eventually, when no
new antecedents are matched, the truth value of the proposition p; can be

observed.

Combinational rule-based systems are conceptually simple, but the
implementation possibilities for the inference process have been overlooked
with few exceptions. For instance, Helly describes an implementation of
malfunction procedure logic on programmable-logic arrdys [Hell84]. The
rule base of such systems can be implemented in hardware as a combina-
tional circuit. The rule base is prestructured a priori and transformed it into a
Boolean function. The inferencing then reduces from a sequential applica-
tion of rules to an input-to-output asynchronous data flow. An explicit data
base is not needed. If implemented on a functionally adjustable combina-

tional circuit, for instance a perceptron, then changes in the rule base can be

77

achieved by modifying the functionality of the hardware. Strategies for
doing this will be discussed in chapter 4. This implementation is schemati-

cally represented in figure 3.3,

R orer
.

RULE
BASE

1y

BOOLEAN
FUNCTION

REAL-TIME DATA REAL-TIME OUTPUT

CTIONALLY
ADJUSTABLE
COMBINATIONAL
HARDWARE

sxur. - Figure 3.3: Hardware implementation of a combinational rule-

—q

based system.

78

3.2.2. Propositional-Logic Rules and Boolean Functions

Both a propositional-logic rule and a Boolean function express the truth

or falsity of one proposition in terms of others.
Consider for instance a positive rule, which contains a non-negated con-
sequent:
fi(p) = pig
The meaning of this rule is that the truth of f;(p;) implies the truth of p; .
In other words, if the propositions p; 4, . . . , p; &, are such that f;(p;)=1, then

it follows that p; 4=1:
| if f;(p;)=1 then p; =1
This rule does not mean:
if f(p;)=0 then p; =0

A positive rule cannot be used to make conclusions about the falsity of p; .

If the antecedent f;(p;) is unknown then the conclusion is also unknown:
pd=?.
Direct hardware implementation of this rule requires expressing the con-

sequent p; o as a Boolean function of the antecedents p; 1, pj ¢ :

pio=ri(pi)
The equality in this expression has a stronger meaning than an implication,

for the former is a bi-implication. The equality would allow a conclusion

regarding p; o both if £;(p;)=1 and if f;(p;)=0.

79

Similarly, a negative rule is one where the consequent contains a

negated proposition:
fipj)=p;0
Again, the rule has no valid conclusion if the antecedent is false, and there-

fore it cannot be used to make conclusions about the truth of p ;,0- By con-
trast, the equality
17;‘,0 =f;(p i)

represents a bi-implication and allows a conclusion regarding p; o both if
fi(pj)=1andif f;(p;)=0.

In summary, rules do not allow conclusions sbout both the truth and
falsity of a proposition. If a rule is implemented as a Booiean function and
its output is 1 then this implies the truth or the falsity of the consequent,

depending on whether it represents a positive or negative rule. If the output

is O then no conclusion can be made.

3.2.3. Integration of Rules

This seotiohuséxariines the relationshipship between the reasoning
mechanism.in:an inference engine and the derivation of the Boolean function
that expresses the truth value of a conclusion in terms of the known facts.
The exhaustive procedure described in section 3.2.1 is a possible but
inefficient algorithm for deriving the Boolean function equivalent to a com-

plete rule base. In this section it is shown that substituting two Boolean

80

functions is similar to linking two rules. By repeating such substitutions the
global Boolean function that expresses the conclusion of the rule base can be

obtained in a more efficient way,
Consider a rule base with two rules R; and R;:

R; : fi(p;) — (Pi,o)s"

Rj :fj(pj) - (Pj,o)sj
Assume p; o to be a proposition that appears in the antecedent of the first
rule, meaning that for some I: p; o=p; ;. Assume also that the function f; is
in disjunctive normal form (a disjunction of conjunctions). Obtain the func-
tion g;(p) by seplacing every occurrence of (p j’o)sfz(pi J)a" inf; by f fl\: 2
This operation is similar to substitution except that fj(p ;) does not replace
@; ,0)1_5". In other words, a proposition and its negation are treated as two
different propositions.
THEOREM 3.1: (p;)%/ can be proven true using R; and R; if and only if
& (@)=1. |
PROOF: If the antecedent of rule R; is matched then it follows that
(p j,0)6,=1, and this knowledge can be used in the antecedent of rule R;. The
implication and the bi-implication are now equivalent. Hence, the function
fj(p;) can replace the occurrence of (p j’o)s" in the antecedent function
fi(p;) of rule R;. In other words, the substitution of the Boolean function is
equivalent to the linking of rules.

On the other hand, if f j(p j)=0 then the implication has a different

81

meaning than the Boolean equivalence, and R; cannot be treated as a

Boolean function assignment. Rule R; would conclude nothing regarding

p; .0)5" whereas a Boolean function would assign (p j_0)8f=0. Therefore, if

®; '0)8" is replaced by f;(p;) then a don’t know value is replaced by a 0 in

the antecedent of R;. What is the effect of this change? Could it result in a

true value when it is not justified? Three cases are possible:

1.

If fi(p;)=0 for a particular set of propositions in which p; ;=p 0=
then changing the value of p; from a ? to a 0 cannot change the value
of f;(p;)- Indeed, since f; is in disjunctive normal form, all its terms,
which are conjunctions, must be O in order for f;(p;) to be 0. This
means that each term has at least one proposition with a value ¢ (which
cannot be p; o), and this value is unaffected by the change in the value
of pj o- The antecedent f;(p;) thus remains 0. Therefore, both R; and

its functional equivalent conclude don’t know.

If £;(p;)=1 then changing (p; _0)5‘i from ? to 0 cannot affect the value of
fi(p;). Again, f;(p;)=1 occurs only if at least one term of the disjunc-
tion has a value 1. In this term, all the propositions mﬁst be 1 (implying
that p; 5 cannot be in this term). Hence, the antecedent f;(p;) remains

1. Both R; and its functional equivalent conclude yes.

If f;(p;)=? then rule R; does not apply and the conclusion for (p; ‘0)5.- is
don’t know. If the antecedent of R; becomes 0 as a result of changing

pjo from ? to 0, then R; still does not apply and no incorrect conclu-

82

sions are derived. A change such that f;(p;) becomes 1, however, is
not allowed because this would lead to a conclusion (p j,0)5f=1, and this
is not justified. However, since f;(p;)=" all terms of the disjunction are
either ? or 0. With the change of (p j’o)sf from ? to 0, the terms that are
0 remain 0. The terms that are ? could become O but not 1 because only
@ j,o)af and not (p j‘0)1-8, is replaced. Hence, both the rule and the

Boolean function conclude don'’t know.

In summary, after the substitution process the Boolean function will be
1 if and only if the rules indeed allow a positive conclusion for (p; ,0)8‘; the
function value will be 0 when no conclusion is possible. O

Substitutions can therefore be done for all the rules in the rule base, pro-
vided a proposition and its negation are treated as separéte propositions. If
one starts with the goal proposition p; and substitutes propositions as
specified by the rules, then the result is a Boolean function F* that expresses
the truth value of p, in terms of all the external propositions py,...,p,.
Starting the substitution procedure with p,; gives a Boolean function
F~=(py,....p,). The truth of F*(p,,...,p,) implies the truth of pg; the
truth of F~(p 4, . ..,p,) implies the falsity of p;. But the falsity of F* and
F~ doés not allow any conclusion. In summary, by a process of repeated
substitution one arrives at one or two global Boolean functions that represent

the knowledge in the given rule base.

83

3.2.4. Example

We now present a didactical example of a combinational rule-based sys-
tem. This example will be used throughout the remainder of this chapter. It
is extremely simple, yet it illustrates the issues that occur in any rule-based
system of this form.

Consider an environment where a hydraulic system must be monitored.
The system consists of a collection of pipes, pumps, valves, turbines, etc.
Consider a subsystem with a primary and secondary circuit, a valve control-
ling each circuit, and a pump feeding both circuits. The following proposi-
tions describe the state of the physical system (their value is monitored by
input sensors):

P 1=pump -on : the pump is on and is generating pressure

P s=prim-valve -open: the valve between the pump and the primary circuit is open

P y=sec -valve -open : the valve between the pump and the secondary circuit is open
Intermediate propositions can be deduced from these measurements:

p 4=prim-pressure : the fluid in the primary circuit is under pressure

p s=sec -pressure : the fluid in the secondary circuit is under preséure

P g=interconnected: the primary and the secondary circuit are interconnected
The requirement for this system is to keep either circuit pressurized, but not
both, in which case it is safe to turn on a certain turbine. The goal proposi-
tion is:

p y=turbine -safe : it is safe to have the turbine on

If this goal proposition is false then the status is ‘‘it is unsafe to have the

84

turbine on.’’ In a real system, this status may trigger the action of turning the

turbine off. We refer to figure 3.4 for a representation of the problem.

primary secondary
cucull circuit

Figure 3.4: Representation of the problem for the example combi-
national rule-based system,

The knowledge regarding the safety of operation of the turbine can be

expressed as a set of rules:

85

Rule 1. pump -on and prim-valve-open — prim-pressure

Rule 2. pump-on and sec -valve -open — sec -pressure

Rule 3. prim-valve-open and sec -valve-open — interconnected

Rule 4, not pump -on — not prim -pressure

Rule 5. not pump-on — not sec -pressure

Rule 6. not prim -valve-open — not prim-pressure

Rule 7. not prim -valve -open —» not interconnected

Rule 8. not sec-vaive-open —» not sec -pressure

Rule 9. not sec -valve-open — not interconnected

Rule 10. prim-pressure and not sec -pressure and not interconnected — turbine -safe
Rule 11. sec-pressure and not prim -pressure and not interconnected — turbine -safe

Rule 12. interconnected — not turbine -safe

These rules are specified by an engineer with expert knowledge regarding the
operation of the system. This person also selects the intermediate proposi-
tions and decides on their importance. There is a priori no guarantee that the
set of rules can deduce the goal proposition in all possible cases, or that the

rules are not contradictory.

Using the symbolic propositions p,...,p7 the rule base can be

expressedras-follews: .

w3ed as 2 Boow.

86

Rule 1. pypa—p4

Rule 2. p1p3—ps

Rule 3. p,py—pg

Rule 4. p | > p,

Rule 5. py—=ps

Rule 6. py—=p,

Rule 7. 5, =P

Rule 8. p3—ps

Rule 9. p3 = pg

Rule 10. p4psps—p3

Rule 11. pspaps— Py

Rule 12, ps—p4

The partial truth table that represents this rule base can be derived as

follows. Let us assume that both valves are closed and the pump is off. The
rules 4 through 9 allow a conclusion that the propositions prim-pressure,
sec-pressure, and interconnected are all false, but no conclusion regarding
the proposition turbine-safe is possible. Hence, the conclusion is don’t
know. When both valves are open, but the pump is off, rule 3 concludes that
the two circuits are interconnected, dnd’ u¥iiiydrile 12 this implies that
turbine-safe is false. If on the other hand the pump is on and only the pri-

mary valve is open, then rules 1, 8, 9, and 10 imply that turbine-safe is true.

This analysis can be repeated for all possible combinations of the input
propositions p =pump -on, p,=prim-valve-open, and pi=sec-valve-

open. The result is summarized in table 3.2, « - . .

87

P1 P2 P3 P17 Rules

0 0 0 | don'tknow | -

0 0 1 don’t know | -

0 1 0 | don'tknow | -

0 1 1 false 3,12

1 0 0 | don'tknow | -

1 0 1 true 2,6,7,11
1 1 0 true 1,8,9,10
1 1 1 false 3,12

Table 3.2: Summary of the truth values of the goal proposition p 4
for all possible values of the input propositions and the rules that
were used to arrive at the conclusion,

Alternatively, the Boolean functions that express the truth value of p,
can be derived by a substitution process. Combining rules 10 and 11 into

one rule results in:
P4PsPetPsPaPs—P1
Similarly, the rules 4 and 6, 5 and 8, and 7 and 9 can be grouped into:
P1tP2— Py
P1+P3—ps
Pty B
The goal proposition is expres's;gd as a Boolean function:
no formal o
P1=P4PsPeP4aPsPs

and by substitution it followsy./,. 17~ =

38

P1=p4PsD¢tPaPsD§
=P 1pDP1+P)P+)P 1+P)@ 1 P3) P 2+D 3)
=p1P2P3tP1P2P3

= F+(p 1P 2P 3)

Starting from p 5 results in

P1=pe=p2P3=F (pyp2py)

3.3. INTERPRETATION

An inference engine integrates the rules in a rule base to derive conclu-
sions. A combinational rule-based system derives conclusions by applying
one or more Boolean functions to the external propositions. Below is an
overview of the possible interpretations of the output of these Boolean func-

tions.

3.3.1. Positive Rules Only

If the rule base contains only positive rules then it can be represented by

a single Boolean function:

pa=F @p,)=F*p)

The output of this function can take 2 values: F*(p)=0 or F*(p)=1. An out-
put 1 implies that p; is true. For these particular values of the external pro-

positions, the given rules allow a proof that p, is true. An output F*(p)=0

39

means that a positive conclusion is not possible, but neither is a negative one
since no negative rules are available. The conclusion is therefore don’t
know. The possible conclusions can be represented using a Venn diagram
(figure 3.5). The same figure also shows schematically the combinational
circuit implementing that Boolean function. The interpretation of the output

of F* is summarized in table 3.3.

F+

F*=0

T D e

P

(a) (b)

Figure 3.5: A propositional-logic rule base with only positive rules
expressed as a Boolean function. (a) Combinational circuit imple-
menting the Boolean function. (b) Venn diagram representing the
conclusions. '

In practical systems the inference mechanism will usually assume truth
or falsity for p; even if F*(p)=0. In other words, the inference engine will
assume a specific conclusion even when there is no formal basis for doing
so. By far the most common strategy (if not the only one) in present-day

rule-based inference systems is to assume p, to be false if F*(p)=0. Typical

90

F*(p) P4

0 don’t know
1 true

Table 3.3: Summary of the conclusions regarding p; when a rule
base is expressed as a Boolean function F*(p 4, ..., p,).

examples of languages for rule-based inference systems based on this
approach are Prolog [Cloc81] or OPSS5 [Forg81]. In such languages, if a pro-
position cannot be proven then it is assumed to be false. This approach is
equivalent to assuming each rule to represent a bi-implication instead of an
implication [Aida83, J aff83].
EXAMPLE 3.1: The followiné positive rules are extracted from the rule oase
given in section 3.2.4:

Rule 1. ppy—p,

Rule 2. py1p3—ps

Rule 3. pap3—ps

Rule 10°. p4—p,

Rule 11”. ps > p4

The resulting truth table for this modified rule base is given in table 3.4.

Compare this with table 3.2. The corresponding Boolean function is now:

FYpupap3)=p1P2tP1P3

A possible implementation of F* on the perceptron of figure 2.17 is given in

figure 3.6. O

91

pr P2 P3| F'pypaps) | Pq
0 0 0 0 don’t know
0 0 1 0 don’t know
0 1 0 0 don’t know
0 1 1 0 don’t know
1 0 0 0 don’t know
1 0 1 1 true
1 1 0 1 true
1 1 1 1 true

Table 3.4: Truth table for F* and the interpretation for the goal
proposition p 5 for the case of a rule base with only positive rules.

Figure 3.6: A possible implementation on a UCLA perceptron of
the example rule base containing positive rules only.

92

3.3.2. Positive and Negative Rules

If the rule base contains both positive and negative rules then the substi-

tution process results in two separate Boolean functions:
Pa=F (@1ps)
Ed =F-(p1, e ,pu)

This is shown schematically in figure 3.7.a. To follow our previous assump-
tion of single-output perceptrons, we consider the two functions to be
separate. Typically, however, the set of rules leading to a positive and a
negative conclusion are not entirely separate and the system implementing
these two functions would consist of two overlapping combinational circuits.
We refér to [Mart86] for an approach that reduces the combinational

hardware necessary for multi-output combinational rule-based system.

Four different output combinations are possible. A Venn diagram
representing these combinations is shown in figure 3.7.b. A theoretically
justified conclusion for p, is possible only if either F *(p) or F ~(p) are 1, but
not both. If F¥(p)=1 and F~(p)=0 then applying the rules to the given data
base allows a proof that p; is true. Vice versa, if F *(p)=0 ‘and F™(p)=1 then
p4 can be proven false. If both F*(p) and F ~(p) produce an output 1 for the
given data then there is a conflict in the rule base. If both F*(p) and F ~(p)
are 0 then the conclusion is don’t know. A summary of the conclusions is

given in table 3.5.

If both F*(p) and F ~(p) are O then in theory no conclusion is possible.

In practical systems, however, the inference engine will typically still assign

93

F* F-

F*=0, F~=0

condlict

T T

Pn

don’t know

(a) (b)

Figure 3.7: A propositional-logic rule base with positive and nega-

tive rules expressed as two Boolean functions. (a) Combinational
circuits. (b) Venn diagram.

F*(p) F~(p) P4
0 0 don't know
0 1 false
1 0 true
1 1 conflict

Table 3.5: Summary of the conclusions regarding p; when a rule
base is expressed as two Boolean functions £ * and F .

a value true or false to p,, even though there is no formal basis for doing so.

For instance, it might assume p; to be faise if F*(p)=0, or alternatively
pg=true if F~(p)=0.

94

Since the rule base contains both positive and negative rules, it is possi-
ble to have conflicts in the rule base. These conflicts surface when the goal
proposition p; can be proven to be both true and false, in other words both
F*(p)=1 and F~(p)=1. If this occurs then the inference system should alarm
the expert who designed the rule base, point out the conflict, and have the
rule base modified in such a way that the conflict is resolved. In the mean-
time no decision can be made. Practical systems will typically still assume
truth or falsity if a conflict occurs, for instance by giving priority to the posi-

tive rules, or to the rules that were most recently added to the rule base.
EXAMPLE 3.2: Consider again the rule base of section 3.2.4. The two
corresponding Boolean functions are:

F'pupap3)=pP1P2P3tP1P2P3

F (pup2ap3)=P2P3

A summary is given in table 3.6. A possible implementation of these func-

tions on two perceptrons is shown in figure 3.8. O

EXAMPLE 3.3: Inconsistent rule base. Assume rules 10 _and 11 are altered

as follows:

95

p1 P2 P3| F "eupapy) | F @ 1o2p3)| Pg Rules

0 0 0 0 0 don'tknow | -

0 0 1 0 0 don'tknow | -

0 1 0 0 0 don't know | -

0 1 1 0 1 false 3,12

1 0 0 0 0 don'tknow | -

1 0 1 1 0 true 2,6,7,11
1 1 0 1 0 true 1,8,9,10
1 I 1 0 1 false 3,12

Table 3.6: Truth table of F* and F~ and the interpretation for the
goal proposition p, for the case of a rule base with positive and
negative rules.

Rule 10'. Pa—p7
Rule 11”. ps > p,

In this case:
F'ppap3)=p1P2+P1P3

F(ppap3)=pP2P3

and a truth table is given in table 3.7. Rules 10" and 11’ are inconsistent. A

possible implementation on perceptrons is given in figure 3.9. O

3.3.3. Complete and Consistent Rule Base

In the development of a rule base for an expert system, the goal is to
improve, by a process of trial-and-error, the rule base and strive towards a

system where conflicts and don’t know conclusions do not occur. To reduce

- don’t know conclusions, the don’t know regions in figure 3.7.b must be

96

AXA AXN
PN

ARam

P1 Pz P P21 P2 P

Figure 3.8: A possible implementation on two UCLA perceptrons
of the example rule base containing positive and negative rules.

identified and reduced, or even eliminated if so desired. In theory, it is pos-
sible to design a complete rule base, although it is in practice hard to
achieve. Additionally, conflict cases must be identified and eliminated.
Both don’t know and conflict cases could be found, for instance, by a simple
exhaustive searcﬁ! "ian'“\r;'iwrh"ié:lfllE all the possible input assignments are examined.
However, reasoning about the positive and negative rules is a more efficient
strategy to find these problem cases. See [Suwa84] for an example of such
an approach. Don’t know or conflicting conclusions can be reduced or elim-
inated by removing or modifying existing rules in the rule base, or by adding

new ones. If the rule-base is-complete and consistent then the Venn diagram

97

p1 P2 P3| F'pwpapy)| Fopapa)| P Rules

0 0 0 0 0 don’t know | -

0 0 1 0 0 don’t know | -

0 1 0 0 0 don’tknow | -

0 1 1 0) faise 3,12

1 0 0 0 0 don’t know | -

1 0 1 1 0 true 2,11’

1 1 0 1 0 true 1,10

1 1 1 1 1 conflict 1,1073,12

Table 3.7: Truth table for F* and F ~ and the interpretation for the
goal proposition p, for the case of a rule base that contains
conflicts.

representing the possible decisions is as in figure 3.10. The corresponding

list of possible outputs and conclusions is summarized in table 3.8.

F*=1 F=1

true false

Figure 3.10: Venn diagram representing the possible decisions for
an inference system with a complete and consistent rule base.

In’ suchr an ‘inference system, F* and F~ are perfect complements of

ihe case ol o 0.
each other, which implies that one suffices for a decision. In other words,
only the positive (or the negative) rules are needed, and a don't know can be

assumed to be false (see figure 3.5 and table 3.3).

98

F* F-

flm /AN

OR 0 RIG o

AND AND 0 0 AND 0

Figure 3.9: A possible implementation on perceptrons of the ex-
ample rule base containing conflicts.

F*p;) F=(p) | pa

0 1 false
1 0 true

Table 3.8: Summary of the possiblé conclusions for an inference
system with a complete and consistent rule base.

In the development of the rule base, the expert is constantly revising the
set of rules and doing experiments to try them out. In this phase there is no
guarantee that the rule base is complete, nor that it is consistent. A decom-

position of the knowledge into positive and negative rules is therefore

99

desirable. Therefore, practical rule-based inference systems should process
both positive and negative rules. A hardware implementation, for instance

with perceptrons, then requires two separate circuits.

EXAMPLE 3.4: Complete and consistent rule base. Assume the following

rule is added to the rule base of section 3.2.4:
Rule 13. };4]35 -'-)P-';

The Boolean functions now become:
FYppap3)=pP2P3P1P2P3
F(upaP3)=P4PstP6=P1+D2P5+P2P3=F (P 1.p2p03)

with a summarizing truth table given in table 3.9. A possible impleiaenta-
tion on perceptro.is is given in figure 3.11. The two perceptrons are identical

except for an inversion of polarity in the top node. O

P1 P2 P3| F'pypap3)| F-(p1p2p3)| Py | Rules
0o 0 0 0 1 false | 45,13
0 0 1 0 1 false | 45,13
0o 1 0 0 1 false | 45,13
o 1 1 0 1 false | 3,12
1 0 0 0 1 false | 6,8,13
1 0 1 1 0 true | 2,6,7,11
1 1 0 1 0 true 1,3,9,10
1 1 1 0 1 false | 3,12

Table 3.9: Truth table of F* and F~ and the interpretation for the
goal proposition p 4 for the case of a complete and consistent rule
base.

100

F* F-

AND
NO

AXA AXA

AT RS

P P2 Pa P P2 P3

Figure 3.11: A possible implementation of the complete and con-
sistent rule base on perceptrons.

3.4. CONCLUSIONS

The discussions in this chapter have shown that Boolean functions are
useful tools for implementing a class of rule-based inference systems. Com-
binational rule-based systems address problems of diagno.sis, interpretation,
monitoring, control, and so on. These applications are indeed problems of
pattern recognition or combinational logic. By contrast, expert systems for
design, planning, computer aided instruction, which are sequential in their
human interface, would not benefit from being implemented with combina-

tional circuits.

The requirement that the rule base contains rules in propositional logic

101

is too strong and some rule bases using predicate logic are also combina-
tional. The transformation of the rule base into a Boolean function is more
elaborate for predicate logic because unification must be used. Future
research should explore in detail this larger class of combinational rule-based

systems.

In the context of combinational rule-based systems, perceptrons are
always dealing with completely specified Boolean functions. When imple-
menting a complete and consistent rule base, the corresponding Boolean
function may be either F* or F~. Both are complements of each other and
both are completely specified. If the rule base is not complete or consistent
then two Boolean functions and therefore two perceptrons are necessary to
represent the rule base. Both functions F* and F~ are again completely

specified.

e U

102

CHAPTER 4

DECOMPOSITION OF BOOLEAN FUNCTIONS
ON PERCEPTRONS

This chapter discusses one aspect of the control of a perceptron, namely
the selection of the functions at each node such that the perceptron imple-
ments a given network function. This problem of implementing a given
function on a network is similar in purpose to programming a sequential
computer. However, we view it as the decomposition of one large Boolean

function into a set of smaller Boolean functions.

The decomposition problem is a degenerated form of learning. The
desired network function is assumed to be specified in advance and incre-
mental changes in the function are not considered. Changing the network
function in any way will require starting over to find the nodal functions that
accomplish the new function. More flexible forms of learning will be dis-

cussed in chapter 5.

The central topic in the decomposition problem is the assignment of
functional responsibility: what parts of the given global function must be
assigned to which nodes of the network? We apply the theory of decomposi-

tion of Boolean functions to this problem and show that in certain simple

103

networks the solution to the decomposition problem can be obtained in a
straightforward fashion. In more general perceptrons, however, a search
strategy is required and a direct assignment of responsibility is not possible.
We develop a heuristic criterion that reduces the amount of search necessary
to find a decomposition.

Section 4.1 presents introductory issues such as definitions, problem
description, implementation possibilities, and literature review. Section 4.2
presents a special-purpose solution to the decomposition problem, a solution
that applies only to specific perceptron structures. Section 4.3 is a treatment
of the concepts that will be used in the decomposition algerithm. The algo-
rithm itself is developed in section 4.4, including a program that implements

the method. Section 4.5 presents some conclusions.

4.1. INTRODUCTION

4.1.1. Definitions

Perceptrons consist of polyfunctional combinational nodes. In this
chapter, the nodes of the network are assumed to be all identical because it
simplifies the description. However, the principles and methods outlined
here are generalizable to heterogeneous networks.

Each node i has k inputs x;=(x;;,...,x; ;) and its output z; is a

Boolean function of its inputs:

104

i =fix)=filx 10 0% y)

The nodal functions are adjustable independently and input or output values
do not influence these functions directly. In other words, the function f; can

be any one of a set of possible functions:
O={f 1. fp)
The node of a perceptron is formally defined to be a pair:
N = (k.9)

where k is the number of inputs and ¢ is the functional set.

Each input of a node is connected to the output of another node, and the
interconnections form a single-output loop-free network. The interconnec-

tions are defined by a set of node interconnections:
l={G,z;,x)|i=1,...,1}
where:
i is a unique label for the ‘node;
z; is the output label of the node;

X;=(X; 1,...,% ;) are the input labels of the node, an ordered set of
either output labels of other nodes or labels of the network inputs;
! is the number of nodes in the perceptron.

Each node interconnection (i,z;,Xx;) specifies that the inputs of node i are
connected to respectively x; y, . . ., X; 4, and that its output is labeled z;. The

latter can be used in other node interconnections.

105

The definition of an entire perceptron is a 4-tuple:
P =[N,z,x,1]
where:
N is the definition of the node;
z is the network output;
x=(xy,...,X,) are the network inputs;
! is the set of node interconnections.

The resulting network implements a Boolean function of # inputs:
z=F(x)=F(xy,...,x,)

This network function F is derived from the choices f; for the functions of
the constituent nodes. By changing these functions the network implements

a set of different functions:
O={Fy,... Fp}
® is not part of the definition of a perceptron, but can be derived from it.
An assignment of node functions to a perceptron is a mapping
o:fl,... . l[}Jod:iof;
meaning that the node labeled i is assigned the function f;e¢. The
corresponding network function is represented by F,. A partial assignment

(one in which not all elements of the domain are mapped) is a subset of a

complete assignment.

106

4.1.2. Problem Description

Assume that a perceptron definition P and a Boolean function G are
specified. The problem is to implement the given function with the given
perceptron by finding an appropriate assignment for all the node functions,
Stated differently, the problem is to decompose a Boolean function of n
inputs into a set of smaller functions of & inputs each (k<) in such a way
that it matches the given perceptron structure. More formally, a decomposi-

tion problem is defined as follows:
Given: a perceptron definition P =[N,z X,I] and a goal function
Gx)=G(xy,... ' X)y
Find: an assignment o such that F a(X) = G ().

As a secondary problem, it may be required to find different (or all) possible

assignments {o ;J that implement the goal function, if more than one exists,

4.1.3. Implementation

The implementation of the decomposition schemes proposed in this

chapter assumes that one central controller, for instance a conventional

-

1ot oehe o

sequenual computer, receives the desired network function from the user and
k generates the appropriate control bits for all the nodes in the perceptron
(ﬁgure 4.1). This approach implies two separate phases in the operation of
) the slystem In the first phase, the decomposition phase, the controller
| ‘decomposes the given network function and generates the control. In the

~ second phase, the data processing phase, the perceptron processes external

107

data.

OUTPUT

CENTRAL
CONTROL
desired
network
function

Figure 4.1: Implementation of a perceptron with a central controll-
er.

Alternatively, in an implementation with distributed control each node
of the perceptron has a small local controller attached to it. These controllers
receive the same goal function, run autonomously, communicate only with
neighboring nodes, and exchénge as little information as possible. This
implementation would have many practical advantages, but it is a topic for

future research.

RS g FEIE O

108

4.1.4. Literature Review

Despite the extensiveness of the perceptron literature, no general solu-
tion to the decomposition problem is available. The literature, dealing
mainly with threshold gate networks, does not address the decomposition

problem. Instead, it concentrates on two related topics.

Most of the threshold gate literature is in the area of learning by exam-
ple; it will be reviewed in chapter 5. The decomposition problem, however,
can be a first step towards understanding the problems encountered in learn-
ing by example. A formal approach to the general decomposition problem
provides principles that can be used in learning by example. The usefulness
of Minsky and Papert’s work [Mins69}, for instance, lies in their theoretical
treatment of what subpart of a given task can or cannot be assigned to the R-
unit of a simple perceptron, independent of any learning scheme. Further-
more, a strategy for learning by example, where knowledge of the goal func-
tion is distributed, incremental, and incomplete, cannot perform better than a
strategy for decomposition, with centralized, a priori, and complete informa-

tion.

The second part-of the thfeshold gate literature deals with the incom-
pleteness of threshold gates and how to synthesize a threshold gate network
that implements a given Boolean function. The set of threshold functions is
known to be incomplete, but deciding whether a2 Boolean function is a thres-
. hold function has not been solved in its generality. Examples of partial treat-

ments of this question are [Came60, Muro61, Muro62, Sing62, Windé3,

109

Nils65, Wind6S, Yaji65, Sriv77]. With networks of threshold gates the
issues become even more complex. The problem addressed in the literature
on threshold gate networks is also different from ours. Instead of treating the
perceptron as a given, all the literature discusses how to synthesize a network

of threshold gates that implements one given Boolean function. See for

example [Minn61, Miil62, Amar64, Negr64, Tohm64, Sriv78].

The little work in our context is in a digital domain, unrelated to thres-
hold gates, and consists of the theory of decomposition of Boolean functions
{Curt61, Curt63, High73, Frie75]. It also focusses on synthesizing minimal
networks, but provides a set of tools and principles that can be applied to the

decomposition problem. These principles will e reviewed in section 4.3.

4.2. A SPECJAL-PURPOSE SOLUTION

In this section the flexibility of a class of UCLA perceptrons is reduced
by fixing the functions of certain nodes, while leaving the remaining nodes
adjustable. For this special case, a solution to the decomposition problem
exists, but it is limited in two respects. First, the restricted networks have
adjustable nodes in the bottom layer only and the decomposition problem for
such perceptrons is straightforward (the assignment of responsibility can be
done in a“-tﬂViél"fashion). Secondly, the strategy applies only to a restricted
subclass-of perceptrons. In other words, this solution does not address the

general issue of multilayered decomposition.

Nevertheless, we study this subset of perceptrons and the corresponding

110

decomposition strategy because it identifies a class of complete perceptrons.
More specifically, we will prove the completeness of the perceptrons of

figures 2.17 and 2.20.

4.2.1. The 3-Input Network

THEOREM 4.1: Consider the 3-input perceptron of figure 2.17 with the fol-

lowing partial assignment (figure 4.2):

node 1: z =f(z5,2z3) =z3+23.

node 2: z5=f1(z425) =2425.

node 3: z3=f4(z52¢) =252

node5: zg=f4(xo.x3)=x,Dx3.
Call f ,-“,-’ and f,-J? the entries of the truth table of the function at the nodes 4
and 6 respectively, that is, f,-j-'=f 4(i,j) and f,-?=f 6(i,j). Let G(xx5,x3) be
the goal function for the perceptron and G its truth table entries, that is,
Gij=G (i,j,k). The following assignment for f 4 and f ¢ constitutes a solu-
tion to this decompesition problem:

F50=Goo1+f61=Goio: f =G 101> f 11=G 110

f8=Goo>f§i=Go11»f =G0 f =G 11

PROOF: The given assignments imply that -

111

t4
24 y Zg

fa XOR fe

X, X3 Xy

Figure 4.2: 3-input complete perceptron with a partial assignmeht.

24 =G 01X 1% 2+G 0108 1% 2+G 101X 1X 4G 110% 15‘2
26 =G goo% 1X 3+G 011X 18 3+G 100% 1X3+G 111% 1% 3
and we know that
25 =X@x3 =X X 3+X X3
Hence, by substitution:
22 =242 5= G 1% 1% 2% 3% 010% 1¥ 2X 3+G 101% 1X 2% 3+G 110% 1X 2% 3
23=2526=G 000X 1X 2% 3+G 011 1X 2¥ 3+G 100% 1X X 3+G 111X X 2% 3

which makes

112

z =29+23 = G 00X 1X 2% 3+G 001X 1 X 2% 5+G 010X 1X 2X 3+G g1 1 X 1 X oX 3+
G 100% 12X 3G 101% 1 X 2% 3+G 110% 1X 2% 3+G 1115 1 X 2% 3
This shows that for any goal function G and V x,x,x5: 2=G (x| ,x5,x4)

and hence, with this assignment: F(x ;,x5,x4) =2 G (x |, x5,x4). O

In this strategy, the truth table entries of the goal function are assigned
to specific local truth table entries at the nodes 4 and 6. These two adjustable
nodes each have 16 functions, totaling 256 different combinations (P =256).
This particular perceptron can implement any of the 3-input Boolean func-
tions {Q =223=256). It therefore follows that y=1 and p=1: the perceptron is
complete and nonredundant. This proves the completeness of the perceptron

of figure 2.17.

Many alternative partial assignments can be derived from the one in
figure 4.2 by negating inputs or by symmetry operations. An exhaustive
search showed that 1024 configurations are possible. Some of them are
listed in table 4.1; for a complete list we refer to [Moor85a]. Different par-

tial assignments would require different permutation strategies.

4.2.2, The n-Input Network

Completeness proofs and decomposition strategies of the type presented
above can be obtained for any number of inputs by applying the same princi-
ple in a recursive way. Figure 4.3 summarizes the approach for n inputs.

The left subnetwork is complete and takes all inputs except x, ; the right sub-

113

node 1 node 2 node 3 node 5
F1lzpza)= | falzazs)= | falzsze)= | fslxpxs)=
22+':’3 - 2425 ?526 x2®x3
22923 5—425 2_526 x2®x3
Zy24 Z4+E-5 ZgtZg X2GX3
z2,@z5 4tz ZgtzZg X,@x4
Zyt+Z3 Z4Zs Zgtzg X,Dx4
z220x3 2475 25024 X% 3
z2,0Dz4 T4+ Zg XaX4
z2,@z4 Z4Z5 25Qz4 Xot+x 4
22923 24925 2_526 x2®x3
22923 Z4 ZS+26 x2®x3

Table 4.1: A list of possible partial assignments for the complete
3-input perceptron structure.

network is also complete and takes all inputs except x;. The center node is
an exclusive-or gate and takes only x; and x; as inputs. In this network the
network function of n variables is decomposed into two functions of n-1
variables. These two functions are implemented by the two (n—1)-input
complete subnetworks; their outputs are combined by the four remaining

nodes.
-.f N
THEOREM 4.2: Consider the perceptron of figure 4.3 with goal function

G(xy,...,x,). Call the functions of the two subnetworks

Fr&xy oo XXty - - -, X%,) and f(xyq, ... s X -1 X141 - - - 1 %), Label

the truth table entries as follows:

114

5
)

Ao

‘@_

- - - L] »
* X1 Xk Xl Xpop X X141 Xa

[}

Zg

Figure 4.3: Recursive design of a complete n -input perceptron.

Giliz'l"l',;G(il’iZ’ Ce 'in)
l P .. .
Fivoovipmip 100 ety -+ n)

r — » . . -
fil---i,_li,,,,---i_-fr(‘ URRRI /B I FO PR M

with i;=0 or 1. The following assignment for f; and f, implements the goal

function G

115

l -
fi[""t-l’hl""l""n FEREES AN APREES PRy
froe e i =G e

L3 b bt ia i bt 7 Baplpdpyy "0

PROOF: If the input to the network is x=(iy,...,é,...,i,...,i,) then

the output z becomes

Z=2y+z4
=25241252¢
O3 V7 1CR TR /ST PURTIUNY 0 Y A=Y} 8 (RUUS /R SO 1)
= @i iy PO i

=GONG i iy, OG-,

=Gi1"'ik"‘ir"‘i.

It follows that with this assignment, for any goal function G:

Foxq,....x)=G(xyq,...,x,). O

In the theorem above, all possible choices of k.l e{1, ..., n} (k#l) are
allowed, but most of them do not result in a network with régula: topology.
A simple choice is k=n and [=1. For instance, for n=4, k=n, and I/=1, a
network results that is a substructure of the network of figure 2.20. In other
words, figure 2.20 can be obtained by adding extra nodes to the 4-input
structure of figure 4.3. This proves the completeness of the perceptron of

figure 2.20.

116

4.3. BASIC PRINCIPLES OF THE DECOMPOSITION ALGORITHM

In this section the basic principles behind the decomposition strategy, to
be developed in the next section, are presented. The strategy consists of the
repeated application of two basic operations, namely selection and reduc-
tion. The first subsection below gives an overview of the existing theory of
decomposition of Boolean functions, which forms the basic tool for the
selection step. The second subsection presents the concept of reduction,
used to determine the function of the remainder of the network after one or

more nodes have received a functional assignment.

4.3.1. Thepry of Decomposition of Boolean Functions [Curt61, Curt63,
High73, Frie75]
A Boolean function G(x,x,,...,x,) is decomposable if G can be

realized as a composition of functions of fewer than n variables each. Let

X={x1%,,...,x,} tepresent the set of input variables and assume that

k
\UA;=X, then

i=1

GX)=G'(f ADSf 242, .. fr(AL))

ApAy, ... Ay are sets of input variables such that

is a decomposition of the function G. This decomposition is shown
schematically in figure 4.4.

Decompositions of Boolean functions can be classified as either disjunc-
tive or nondisjunctive. In a disjunctive decomposition the input variables to

different functions f; are disjoint, that is, Yi,j, i#j : A;NA;=D. If, for

117

A 1 A 2 Al’
Figure 4.4: Decomposition of a Boolean function.
some i,j, i#j, A;MA;#J, the decomposition is called nondisjunctive.

4.3.1.1, Simple disjunctive decomposition

A simple disjunctive decomposition is a decomposition of the form
G(X)=G'(f (A1)A9), with A | NA,= and A {UA,=X. It can be charac-
terized by arranging the truth table of G as in figure 4.5. The rows of the
map represent entries with equal values for the variables in A5 and the
columns represent entries with equal values for the variables in the set A ,.
The truth table arranged this way is called the decomposition map or decom-

position chart with respect to the variable sets (A (,A5). If A; has u input

118

variables (|A|=u) and A, has v input variables (|A,|=v), and hence
| X |=n=u+v, then each row of the decomposition map has 2* entries and

each column has 2" entries.

Ay | lAz

Ay

Figure 4.5: Decomposition chart for the variable sets (A ,A).

THEOREM 4.3: [Frie75] A completely specified Boolean function G (X) has
a simple disjunctive decomposition, G (X)=G‘(f (4 1),4 9), if and only if its
decomposition chart with respect to the variable sets (A 1,4) has at most two
distinct columns (columns with different patterns of 0’s and 1’s). O

EXAMPLE 4.1: A simple disjunctive decomposition of the function
G (xx9.X3) = xDx,@x4 with respect to A ={x1,x,} and A,={x4} is:
Gxpxaxy)= G'(flxxahxs) with z;=f (xx5)= x;®x, and
G'(z1,%3) = z{@©x3. Its decomposition chart, shown in figure 4.6, has two

distinct columns, namely ‘01"’ and “*10.”” OJ

EXAMPLE 4.2: In figure 4.7 G (x |,x5,% 3,% 4,% 5) is decomposed with respect

119

A=(x,,xy}
00 01 11 10

A2={13} X

Figure 4.6: Example of a simple disjunctive decomposition of a
Boolean function with 3 variables.

t0 A 1=(x 1,x5,x1} and A y={x 4,x 5}. In this example
G (x 1% 2% 3,% 4,X 5) = X 4(X 1 X 2+X 2% 3)+% 5(x (X X 5X 3)
Z21=f 1% 1% 2X 3)=K 1 X o +X % 5

G(z 1% 4% 5)=X 42 1+X 57

Again, the decomposition chart of G has only 2 distinct columns, namely
‘0110’ and “‘0011.’ O

Rioiee If all the columns of a decomposition chart are identical then the func-
- tion is independent of the variables in the set A . Hence, G(X)=G’(A,) and
. any choice for the function f | is valid. If the decomposition chart has two

JQeLlooi T o distinet columns, but the column patterns consist of all 0’s or all 1°s, then the

120

Ay=(xx5x4)
000001011010 110111 101 100

ooiolojolololojolo
A{S}0110001101 L
={x 3
=EES a1
olofi1{t]1]olol1]o
X, x3 x3

Figure 4.7: Example of a simple disjunctive decomposmon of a
Boolean function with § variables.

function is independent of the variables of the set A,, G(X)=G'(f (4),
and f, is determined by the column differences of the decomposition chart.

In a typical case the decomposition map will have 2 nontrivial columns.

The decomposition map for an incompletely specified function has don't
care entries. Two columns (rows) of a decomposition map are compatible if
the don’t care entries can be assigned 0’s or 1’s such that the columns (rows)
become identical. The decomposition of an incompletely specified Boolean
function is generally not unique since different assignments to the don’t care

entries may result in different decompositions. If more than two columns of

121

the decomposition map are mutually incompatible then a simple disjunctive
decomposition with respect to the particular variable sets is not possible.

A classical problem in logic circuit design is to find the sets A; and A,
such that a simple disjunctive decomposition is possible. In the decomposi-
tion problem, however, the network, and therefore the sets A, and A,, are

given and one needs to find the functions G’ and f 4, if they exist.

4.3.1.2. Simple nondisjunctive decomposition

In a nondisjunctive decomposition the input variables of different func-

tions f; have some common elements. Hence, if

GE)=G'(F (AS 242, fr(AL)

k
with _UIAFX and 3i,j, i#j such that A; ﬁAj;t@, then the expression
i=

represents a nondisjunctive decomposition. A Boolean function G(X) has a
simple nondisjunctive decomposition if GX)=G'(f(A)A,) with
A |UA=X and A,r\Az:&@; Let A\NA,=A 5, |Appl=v, Bi=A-A
|B |=uy, By=As=A 13, |Bl=u,, and hence u+u,+v=n=|X|. For each
of the 2¥ values for the variables in A , we define a decomposition map with
2% rows (corresponding to B ,) and 2“! columns (corresponding to B ;).

THEO]{!?Mﬁ_.4:_Il[Frie75] A completely specified Boolean function G (X)) has
a simpl; nbndigjtinctive decorﬁposition if and only if each of these 2* maps

has not more 2 distinct columns. O

EXAMPLE 4.3;:.In figure 4.8, B |={x ,x}, Ba={x4,x s}, and A 5={x4}. The

122

functions of the two nodes are:
F1lx 1 2%)= 3(x x o) +x 3(x 1+x)

G'(zx 3% 4% 5)=X 3[2 | @ (x g+x 5)]+x 5[z 1Hxaxg)l O

o\
A X4 Xg

Xy x: X3

B=(xxy} B={x1,xy)

00 01 11 10 00 01 11 10

o1 1|01 00|01t 111
01j0(0|1|0 o1jol1)1¢1]|
B=(exd | 19ToT10] 220+ nniiin
10{010}11]|0 10(011]1]1

x4=0 x3=1

Figure 4.8: Example of a simple nondisjunctive decomposition of
a Boolean function with 5 variables.

In our work we treat the nondisjunctive case in an alternative but
equivalent way because it shows the decomposition process in a simpler
way. Every nondisjunctive decomposition is converted into a disjunctive
decomposition by introducing for each input x; € A ;5 an additional virtual

variable x;”. This virtual variable x;’ ‘must always be equal to x;, and

123

therefore the truth table entries with x;"#x; are don’t care.

EXAMPLE 4.4: In figure 4.9, B =(x,}, A ;2=(x,}, B4=(x3}. The introduc-
tion of x3 makes the network disjunctive with A ;={x |,x,} and A ,={x} x5}.
However, since x}=x, half of the new decomposition chart contains don’t

care entries (represented by ‘‘*’’ in the figure). (J

[\ [\

A *s3 A X3

.

Xy X2 X X3
x,xz xle
00011110 ’ 0001 1110
0(0|1]|0]1L 0010=|*(1
AR ISV R o1[0] |1
: s ot
SUgh 10{=j1(0]|»

Figure 4.9: Example showing how a nondisjunctive decomposition
can be made disjunctive by introdicing virtual variables.

Each virtual variable introdrices don’t cares equal in number to the size

of the original truth table. The decomposition chart that results is called the

124

virtual decomposition chart. The original one is called the real decomposi-
tion chart.
The theorem below follows directly from theorems 4.3 and 4.4; it is

given here without proof.

THEOREM 4.5: A Boolean function G(X) has a simple nondisjunctive
decomposition if and only if its virtual decomposition chart has not more

than two mutually incompatible columns, [

4.3.2. Reduction

The process called reduction answers the following question (figure
4.10). Suppose that a perceptron implements the function G and that one of
its nodes in the bottom layer, labeled 1, implements the function f ;. What is
the residual function G” of the remainder of the network?

In figure 4.10 G is a function of (x ;,x4,x3,x4) and G’ is a function of
(z1Xx3X3,%4). If G’ were known then G could be deduced by substituting

fl(xl,xz) forzl inG”
G (x 1 x2x 3% 4) = G'(f (¥ 1.x) x 9. 3% 4)

In the decomposition problem, instead of G’ and f; being given, G and f,

are given and G’ must be deduced.

EXAMPLE 4.5: Suppose

125

Figure 4.10: Schematic representation of reduction in a perceptron.

G (XXX 3%) = (¥ 1 +x) B(x3x)
and f 1(x 1,x9)=x ;+x 4, then
Gz xax3.04) =21 D(x3xy)
If f {(x 1,x2)=X X ,, then
G'(z 1% 2% 3%) =2 D (X 3x4)

However, if f {(x {,x5) = x x then reduction is impossible for the following
reason. If the network input is (x . x,5x3.x4) = (0,0,0,0) then the network
output should be z=(G(0,0,0,0)=0; the output of node 1 for this input is
z =f 1(0,0)=0. If the network input is x=(1,0,0,0) then the network output
must be z=G (1,0,0,0)=1; z ;=f 1(1,0) is still equal to 0. What should be the

126

truth value of G’ for (zy,x4,x3x4)= (0,0,0,0)? The two requirements
imposed by G are conflicting. Hence, the assignment f (x ,x5)=x ;x, can
never be correct for this function. [J

Another important feature of reduction is that, besides sometimes being
impossible, it sometimes also generates don’t care entries in the truth table
of the residual network function.
EXAMPLE 4.6: Consider figure 4.11 with G(x,x9x3)= (X xq)xx3 =
(x1x9)x3. Assume node 1 implements f {(x,x4) = X;x,. Is in this example
G'(z1x9x3)=2x9%3 of G'(z(,x5%x3)=2x3? The answer is: neither of
them, Since z, cannot be 1 if x5 is 0, nothing is specified regarding G’
when (z ;,x5)=(0,0), and hence G(1,0,0) and G’(1,0,1) are don't cares.

Z)

X X3 X3

Figure 4.11: Example of reduction in a 3-input perceptron.

Figure 4.12 shows how the reduction proceeds in this example. It is a

mapping from the truth table of G to the truth table of G’. Some truth table

127

BT

entries of G are mapped into the same entry in G’. For instance G (0,0,0)
and G (1,0,0) are both mapped into G’(0,0,0). If these entries of G were dif-
ferent then a conflict would occur and the reduction would not be possible.
Some truth table entries of G’ do not receive a value, for instance G*(1,0,0)

and G’(1,0,1). These entries are don’t cares. O

x; x3 xX3| G |2, z; x5 x3|G’
0 0 0|00 0 0 00|
0 0 1{0]0 0 0 10
0 1 0|01 0 1 010
0 1 1|1]1 0 1 1/o0
1 0 o|ofo J 1 0 0=
t 0 1/o0/o 1 0 1|
1 1 o0]o]oO 1 1 00
1 1 1|00 1 1 11

Figure 4.12: Reduction as a mapping from one truth table to anoth-
er.

The algorithm for the reduction process, expressed in a Pascal-like

pseudo-language, is as follows:

128

function reduce(G, £ ,conflict);
begin initialize G’ to all don’t-care;
conflict « false;
for all se(0,1)}"
do begin z « £ (s,);
if G'(z,s,) = don't-care
then G’'(z,s,) «~ G{(s)
else if G'(z,s,)#G(s)
then conflict « true
end;
return(G’)
end;

s is an input vector for the network; s, is the part of it received by the
current node and s, is the part received by the remainder of the network.

*“+"’ denotes incompatibility:
atb <> a#don’t care and b#don’t care and a#b
The opposite is compatibility:
a~b < a=don "t care or b=don’t care or a=b

The procedure reduce can also be used if G itself contains don't cares. A
don’t care entry in G may be mapped into any entry of G without causing a

conflict.

129

4.4. GENERAL DECOMPOSITION ALGORITHM

This section describes an algorithm to solve the decomposition problem,
Nothing is assumed about the structure of the given perceptron. Instead of
designing a specific special-purpose algorithm that applies only to a res-
tricted set of perceptrons, we develop a general-purpose strategy that applies
to any perceptron. The algorithm is a search strategy consisting of the
repeated application of a selection and reduction process. With a disjunctive

binary tree the search strategy degenerates into a straightforward scheme,

The skeleton of the search strategy is presented first (section 4.4.1); the
case of binary trees is discussed next (section 4.4.2); and the same strategy is

then applied to general perceptrons (section 4.4.3).

4.4.1. Principles of the Search Algorithm

A brute-force solution to the decomposition problem might exhaustively
generate all possible combinations of nodal assignments until a combination
is found that produces the desired goal function. If redundant assignments
are sought then the search continues until more solutions are found. In other
words, the strategy consists of exhaustively generating all possible assign-

ments o; and for each assignment verifying whether Fast .

Denote N the number of ways G can be implemented on the given

perceptron:
Ng =| {0|Fe=G} |

The probability that a randomly selected assignment & achieves the function

130

G is:

Prob(F.=G] = 8
o[=]_P

where P=p’ is the total number of possible assignments for the perceptron.
Denote A the number of assignments examined before the correct one is
found. Bounds for A are: A ;=1 and A ,,,=P~Ng+1. If the assignments
are tried in a random order then A obeys a negative hypergeometric distribu-
tion with parameters N, P~Ng, and 1 [John77]. The mean of such a distri-

bution is

_ P+l
av Ng‘i'l

The decomposition strategy discussed here generates a limited number
of assignments (less than P) in an order such that A, is as small as possible.
The algorithm tries only assignments selected by a selection criterion. lts

strength is measured by how well it succeeds in reducing A .

The selection criterion islglobalz which assignments it selects depends
on the goal function and the entire structure of the perceptron. In our
approach, however, the global assignment is decomposed into a sequence of
nodal assignments, and the selection criterion is also local to each node. The
nodes are treated in a sequential bottom-up fashion and at each node a few
candidate functions are selected and tried one after the other. The decompo-
sition algorithm then becomes a search through a tree structure. Every leaf

of the tree corresponds to a complete assignment and A is the number of leaf

131

nodes that are examined.

In a search procedure the computational time is not directly related to
the number of leaf nodes examined, but depends on the size of that part of
the tree that is traversed. We call § the number of nodes of the tree that are
traversed. Bounds for § are: S ;,=!, the number of nodes in the perceptron
(the depth of the search tree), and § m=p’ =P, the total number of assign-
ments (the size of the exhaustive tree). There is no direct relationship

between S,, and 4,,.

The search procedure has 2 major components. First, a local selection
procedure reduces the number of functions to be considered at each node
from p=|¢| to some smaller number p =|¢’}. It is based on the observation
that some functions can be excluded from examination and that a few func-
tions are likely to achieve the given goal function. This component of the

search procedure can be expressed as:
¢' «— S(¢,G,i,P)

where S is the selection procedure, ¢ is the functional set of the node, G is
the given goal function, i is the label of the current node,' and P is the per-

ceptron definition,

A second component of the search procedure is necessary because the
function to be assigned to a node depends on previous assignments to other
nodes. Therefore, the selection procedure S should be coordinated between
different nodes. This coordination is accomplished by using a reduction

computation between two nodes. The first node (in the bottom layer) selects

132

an assignment based on the given goal function. It then passes a residual
goal function, obtained by reduction, to the next node, which makes a selec-
tion based on this residual function, and so on. The coordination between

nodes is therefore achieved by using successively modified goal functions.

The decomposition process is a repeated application of a selection step,
followed by a local assignment and the corresponding reduction. This pro-
cess is repeated for all the nodes of the network in a bottom-up order. Back-
tracking occurs when all selected local functions have been examined or

when the reduction is impossible.

EXAMPLE 4.7: Figure 4.13 shows a simple perceptron. Suppose the given
goal function is G (x 1,%2,%4) = (x ;®x5)(xo+x4). Treating the nodes in the

order (2,3,1), the decomposition might proceed as follows:

Node 2: G (x,x2.%3) =(xBx3)(x+x3)
fafxxy)=x,@x,
G(z3x2x4) =25(x %X 3)

Node 3: G (22.x2.x3) =25(x+x3)
falxaxq)=xy+x,

G'(23.23) =222

Node 1: G(z5,23)=12,24

F1(zaz3)=2325

G'(z)=z

This example demonstrates redundancy. Indeed, since

133

Z; Z3

Xy X2 X3

Figure 4.13: Example of a decomposition problem.

(x 1 @x9)(x 9+x 3) = X 1x2% 5, an alternative solution might be:

Node 2: G(xlﬂz,xg):fllej
fax1x)=%1x,
G'(zaxx3) =237,

Node 3: G(z3,x3,x3)=2%4
falxaxs)=x3
G(z323) =224

Node 1: G(22,23)=2223

Filzaza)=2223

G'(z)=z

Alternative assignments, obtained by equivalence or inversion operations,

are listed below:

134

Node 2;: G(xx3.%3) =X ;x5x5
falxxa)=x1+x;,

G'(z22x2%3) =22%4

Node3: G(z3,x3.%3)=75x3
falxaxi)=X;

G ’(Z 22 3) = 2_2?3
Node 1: G(Zz,Z?,) =;2;3

Fizaza)=12,24

G'(z)=z O

4.4.2. Binary Tree Networks

We now apply the principles discussed in the previous sections to

binary tree networks. Extensions to ternary or higher-order trees are trivial.

A disjunctive binary tree network is a network where the 2 input values
of a node depend on a disjoinf set of input variables, that is, each input vari-
able is connected to only one node. In a rondisjunctive binary tree network
the 2 inputs to a node may depend on an overlapping set of input variables.
A nondisjunctive tree can be reduced to a disjunctive one by the introduction
of virtual variables. Figure 4.14 shows a disjunctive binary tree with 8
inputs.

The number of virtual inputs for the network is m=2', where i is the

number of layers in the tree. For a disjunctive tree m=n; for a

135

2 \NEVL N/ AN\

X Xy X3 X4 Xg Xs X1 Xy

Figure 4.14: Example of a disjunctive binary tree network with 8
inputs. It has 7 nodes and 3 layers.

nondisjunctive tree m>n. The number of nodes in the network is I=m~1.
A disjunctive tree is not complete (Q <22"; y<1) and it exhibits only trivial
redundancy. By contrast, a nondisjunctive tree can be complete provided
there are enough fan-out connections in the inputs and its redundancy will
typically be nontrivial.

The algorithm for decomposing a given Boolean function onto a binary
tree (assuming a solution exists) works as follows. Starting with any node in
the bottom layer, for instance node 4 in figure 4.14, a function is assigned
using the decomposition chart with respect to A,={x,x,} and
A,={x4,...,x,}. (Inadisjunctive tree, only a single function and its nega-

tion are possible. In a nondisjunctive tree, the assignment is not unique as a

136

result of the don’t care entries in the virtual decomposition chart, and a
search is necessary.) Next, the residual function is determined by reduction.
(It may generate don’t care entries unless the tree is disjunctive.) The pro-
cedure treats the remaining nodes in a similar fashion, taking them one by
one in a bottom-up order, that is, child nodes are assigned functions before
their parent node. For the example of figure 4.14 two possible traversals of
the nodes are (4,5,6,7,2,3,1) and (4,5,2,6,7,3,1).

To conclude, disjunctive binary trees have a simple decomposition stra-
tegy; no search is necessary and S,,=S nin=5 max=!{. For a nondisjunctive
binary tree, a search is typically required and S,,,S pmax>1.

EXAMPLE 4.8: Figure 4.15 iliustrates a decomposition in a nondisjunctive
binary tree. The function for the network is G (x ;,x5,x3) = x (x5+x3x4. The
figure shows the real and virtual decomposition charts. A possible assign-
ment for node 2 would be f (x, x5) = X ;x,, resulting in a residual function
G’ as shown. However, no assignment is possible for node 3 since its
decomposition chart has 3 mutually incompatible columns, and backtracking
is required. The assignment f ,(x;x4)=x x5 leads to a different residual
function and f 4(x},x3)=x3x5 is a possible assignment for node 3. This

leads to a correct global assignment. (I

137

X%
. 0|0]|1]0
MoliT1]o
X1 X X3
G G’
X1X2 24
Ol=l=10 _ 0]
ot Ol=]=]0 fa=xx; oty Of»
23‘11‘ - 2311
|01 1|0
=X1%2
Za Zs
O|» fa=x3xs 01
, 0* S 231
xzxsll
0|1

Figure 4.15: Example of backtracking in a nondisjunctive binary
tree network.

r
L
o

werk an wer. o« 443, General Perceptron Networks

Crene pivher of The search algorithm is now extended to include all possible percep-
trons. Two possible local selection criteria, resulting in two different algo-
rithms, are presented. The cautious algorithm finds all possible (redundant)

solutions, but it is by necessity defocussed and may require excessive search.

138

The adventurous algorithm is more focussed, but it does not aim at finding
all the solutions. These two selection criteria are presented first. A prelim-
inary analysis of the complexity of the adventurous algorithm follows. The

last section presents a program that implements the adventurous algorithm.

4.4.3.1. Cautious selection criterion

Consider a node in the bottom layer of a perceptron and suppose it takes
x1 and x; as inputs. If neither x; nor x, are inputs to the remainder of the
network then the decomposition is disjunctive and only two functional
assignments (negations of each other) are applicable for that node. If the
goal function contains don’t care entries then multizle assignments may be

possible and must be tried in sequence.

Now consider the case where x, is an input to the remainder of the net-
work as well. The virtual decomposition chart must be used to determine the
nodal assignment; mutually incompatible columns must have a different
functional value. For node 2 in figure 4.16 only the columns G §; and G,
are mutually incompatible and should be assigned different functional
values. Hence 8 nodal assignments are possible, as the figure shows. For
this particular net;avork the virtual decomposition chart has at most 2 pairs of
mutually incompatible” columns, namely (G gy,G 1) and (Ggy,GY{p). If
these 2 pairs are indeed incompatible then only 4 local assignments must be
tried. If only one pair is incompatible then 8 assignments are possible. In

the extreme all 16 possible functions of 2 inputs have to be examined.

139

X1Xq X1Xq
0j011]0 Ol=+|=|0
3 lolt]1]o .. [01*]+T0
X2%3 [111
*» 0|1 =
POSSIBLE ASSIGNMENTS:
XXy 0010 Xy X2 Xy
xy 0011
i'[x; 0100
X19x; 0101
x],@Xz 1010
X +X, 1011
Xy 1100
X +xy 1101

Figure 4.16: Example of cautious selection with one virtual vari-
able x3.

If both x| and x; are inputs to the remainder of the network as well
then a pair of columns is never incompatible (see figure 4.17) and therefore
all thdecal-funations have to be examined. |

-1t general; if a node has & inputs, v of which are inputs to the rest of the
netwoikcas el (0Sv <k), and if the goal function is completely specified,
then Bhéuiuribér of functional options for that node is at least 22°. The selec-
tion procedure réduces ¢ to ¢’ with the size of ¢’ bounded by

ihe sclootion.

. 140

XXy

—_—
o——
o)

xixixq- - x,

\\: o———]

Figure 4.17: Virtual decomposition chart with two virtual variables
x] and x3.

2% <pr=1¢) s 2%

If the given goal function contains don’t cares then the lower bound is
larger. Hence, don’t cares increase the amount of search needed to find a
decomposition. Fan-out connections in the network introduce don’t care
entries in the residual goal truth tables, and they constitute a major source of
search complexity in the decompoﬂﬁgn p;gbl;m. '

The cautious selection procedure S_, selecting functions that have dif-
ferent values for mutually incompatible columns of the virtual decomposition

chart, is listed below:

141

function S_($,G,1i,P):
begin G¥Y & virtual(G,i,P):
¢ « O
for all rfed
do begin retain ¢« true;
for all (s,s’)e((0,1}%)2
do if (G/#G.)) and (f,=f,)
then retain ¢« false:
i retain
then ¢ « $'UTr
and;
retuzna (¢")
end;

virtual is a function that generates the virtual truth table. G/ is the s-th
column of the virtual decomposition chart; f; is the s-th entry of the local

function.

The program listed above implements the test
Y 5,5 €{0,1}F : GY+GY & fo#f,

This test, however, is automatically included as part of the reduction process.
Indeed, the reduction will return a conflict if and only if two mutually incom-
patible columns of the virmtuak deeomposition chart receive the same func-
tional value. In other words, a function selected by the cautious selection
will not cause a conflict:in:the-reduction step, and, vice versa, a conflict in
the reduction computationioccurs only for a function not selected by the cau-
tious criterion. Hence, S, is.redundant and one may as well use the reduc-
tion process to make thm@plee;;_;i@n.‘-_'_‘__Therefore, the procedure can be

simplified to: wonode are

142

function S.(9,G,1i,P):
begin return($)
end;

In other words, the cautious criterion does no selection but feeds the reduc-
tion phase with all possible local functions. This program is therefore doing
the maximum amount of search and relies only on the reduction step to cut
down the number of assignments. In return, it generates all possible redun-

dant assignments after successive backtrackings.

4.4.3.2. Adventurous selection criterion

We now discuss a possibility to further reduce the size of ¢’, based on
the real decomposition chart. This decomposition chart generally contains
more than two mutually incompatible groups of columns. How can local

functions be selected based on this contradictory decomposition chart?

EXAMPLE 4.9: In figure 4.18 there are 3 mutually incompatible classes of
columns in the real decomposition chart of node 2, namely C1=(G 00.G 11/,
C,={G 1}, and C+={G jp}. We select three functions (plus their negations)
by mapping these 3 mutually incompatible classes into 2 groups and assign-
ing the same functional value to columns of the same group. The conflict
that results from assigning two incompatible columns the same value is
ignored for the time being; we assume it wilt be taken care of by the
remainder of the network. Three groupings are possible: {C{JC,,C4)},

{C3C,Cyf, and {C,UC4,C). Each grouping results in a functional

143

assignment, as figure 4.18 shows. (O

G
xX3
x 0 1
Yol1]1 o
POSSIBLE ASSIGNMENTS:
X1Xg co0o1o0 X %3 X3
i-le 0 1 0 0
X3 0 11 0
x5 1 001
X +Xy 1011
X+, 1101

Figure 4.18: Example of adventurous selection.

This selection is based on the incompatibilities in the real decomposi-
tion chart only and does not need any knowledge of how many or which

local variables are inputs to the remainder of the network as well.

If the goal function G contains don’t care entries then one column (con-
taining don’t care entries) could be compatible with two other columns that
are mutually incompatible (see for example figure 4.19). Two alternative

assignments are then possible, and both must be.frigd. .

EXAMPLE 4.10: Figure 4.20 illustrates that the.adventurous algorithm does
not necessarily generate all solutions. :< With: the goal function

G (x 1% 5,x 3)=x ;X 4, the only functions tried for node 2 are f5(x [,x5)=x x5

144

X1%2

X3

Figure 4.19: Column G o is compatible with both G4, and G5,
but G o; and G ; are mutually incompatible,

and its negation. However, the choice f ;(x ,x2)=x and f 3(x3,x 3)=x,, also

a valid solution, is not found. O

X3

X} X3. X3

Figure 4.20: Example showing that the adventurous algorithm
does not necessarily generate all solutions to 2 decomposition prob-
lem.

The adventurous algorithm neglects some correct assignments but

reduces the total size of the search tree. Is it possible that the algorithm

145

excludes all solutions from consideration? In other words, is it possible for
the algorithm to be too adventurous and work itself into a corner, never

finding a correct assignment even though one exists?

The adventurous criterion is intuitively appealing. Consider the exam-
ple of figure 4.20: why should f,(x1,x3)=x or f4{x,x9)=X x4 be tried?
They do not cause a reduction conflict and might be part of a solution, but
£ 2(x 1, x2)=x 1x 4 is definitely the most appropriate choice, the most likely to
lead to a correct assignment. In general, different local assignments lead to
different residual functions G’ and it depends on the structure of the

remainder of the network which G’ is implementable.

The program for the adventurous algorithm is listed below:

funetion 5,(9,G6,1,P);
begin ¢ « I;
for all fed
do begin retain « true;
for all (s,s’)e ((0,1}%)?
do if (G,~G,) and (f #f)
thean retain « falsa:;
if retain
then ¢ « ¢'UF
end:
return (¢’)
end;

In summary, the adventurous selection criterion is the complement of
the cautious criterion. Instead of assigning different functional values to

incompatible columns of the virtual decomposition chart, it assigns equal

146

functional values to compatible columns of the real decomposition chart,
The relationship between both selection criteria is as follows. The cautious
selection is based on the formal property (theorem 4.5)

VY s,s'€{0,1)% : GY+G). » f #f, (4.1)
The adventurous selection uses:

Vs,s'€{0,1}F: G,~G,» » fo=f 4.2)

The latter is not a theorem (we showed a counterexample above) but a
heuristic. By contrast, (4.1) is a theorem that holds for all goal functions and
for all assignments implementing the given function. It remains to be proven
that for il goal functions there exists a corresponding assignment for which

(4.2) holds. This question is left for future research.

4.4.3.3. Characteristics of the adventurous algorithm

The combined adventurous decomposition program is listed below:

147

proceadure decomp(G,i,a,P);
bagin 1f i=0
then print assignment «
else begin ¢ « S,(¢,G,1i,P);
for all r; ;e¢’
do bagin o « QU {i—f, ;};
G’ « reduce(G, f; ;,conflict);
if not conflict
then begin i’ « next(i,P);
decomp (G’, i, o, P}
end
end
end
end;

‘G and G’ are respectively the goal function and the residual goal function
for node i; the latter is passed to the next node. The procedure next calcu-
lates the label of the next node in a bottom-up fashion; label O is returned
when the top node is reached. If /=0 then the top node has been assigned a
local function and, since the corresponding reduction succeeded, the com-

plete assignment implements either the given goal function or its negation.

The performance of the decomposition algorithm can be measured by
the amount of memory required per node and the number of search steps
before a solution is found. The amount of memory required for each node is
equal in size to the goal truth table. However, the goal truth table decreases
in size as the algorithm proceeds through the network. For example, the
sizes of the goal truth tables for two different node traversals of the network
of figure 4.21 is shown in table 4.2. The first traversal is superior in terms of

memory requirements.

148

GEpogram o

Assume each node has k inputs and the network has » inputs. The
number of different columns in the real decomposition chart is less than 2%,
the total number of columns in the decomposition chart. Additionally, the
length of each column is 2"* entries and therefore at most 22" columns
are possible. If C' represents the number of different columns in the decom-
position chart then

C <min{2*,2¥ "} =C .
This upper bound is smallest for k=2 and for k=n~-1 (C ,,,=4) and is largest
for k=2""*, that is, logs(k)+k=n. If C different columns exist then the
adventurous criterion will select 2¢ local functions, which is bounded by
26,
The size of the goal function changes from node to node, and so does

C max- If n; is the number of network inputs when node { is considered then
I ny
S max SU =T[2% with C;=min{2*22")
i=]

A tighter upper bound for § ,,,, would have to take into account the assign-
ments excluded by the reduction conflict detection. Furthermore, this would
still only give an upper bound, namely the number of steps if the resulting

tree is traversed entirely.
Simulation showed for the 3-input perceptron of figure 4.22: S ,,=99
and S;,=26. This is certainly an enormous improvement over the upper limit

U=2%. Further experimental results, using the program described in the

next section, are given in table 4.3. Different numbers in the column S are

150

node 7 8 9| 10 4 5 6 213 | 1] total
size 32 132 |32 (32|16 16|16 88| 4 196
node 7 8 4 9 5 2| 10 6 (3] 1 |ftotal
size 32 132 |32 321323232 (16]| 8| 4| 252

Table 4.2: Size of the memory required at each node for different
traversals of the nodes of the perceptron shown in figure 4.21.

z=F(x;,..., x,)
2 3
5 6
7 ANANIA
Xy X2 X3 X4 Xs

Figure 4.21: A simple 5-input perceptron.

The number of search steps necessary, §, depends not only on the par-
ticular perceptron structure, but also on the given goal function. The follow-

ing analysis leads to an upper bound for §.

149

for different goal functions G.

Figure 4.22: Example of a 3-input perceptron.

I S U_|
6 | 11,55, 58 2227
4 | 95,246,288 | 222

12 | 158,613,775 | 2%

24 | 61,178,205 | 2%

28 | 236, 592,695 | 2110

18 | 39 240

ST N N NNy
NN W N

Table 4.3: Experimental data for the adventurous decomposition
program.

151

4.4.3.4. Implementation

The adventurous algorithm decomp has been programmed in Pascal.
It uses a more efficient formulation of the adventurous selection process.
Instead of testing all members of ¢ with the criterion, it generates the set
of all functions that satisfy the criterion. It then checks each one for

membership in ¢. In other words, S, is implemented as:

function S, (9$,G,1i,P):

begin ¥y & generate-all(G,i,P};
¢ — yMe;
return (¢’)

end;

If ¢ is complete then ¢’=y. This approach is more efficient in time and in

storage requirements than the version presented earlier.

The program was written to be able to invoke itself recursively on a
subnetwork. This allows the user to define a perceptron as a network of
atomic nodes and then use this perceptron as a macro-node or module in the
definition of a larger perceptron, and so on (see for example figure 4.23).
THéhpfég‘r'am decomposes the goal function and assigns functions to each
subnetwork assuming they are atomic nodes of the network. It then further
subdecomposes the assigned functions for these smaller networks, and so on.
The dqgomppsmon is organized in a depth-first order, that is, the subdecom-
p9§;tggqs ;ire treated before the next macro-node is considered. The decom-
position backtracks if the current subnetwork cannot implement its assigned

function.

152

7=F (X1,X2,%3,%,)

Figure 4.23: Example of a multilevel perceptrdn.

As a result of this multilevel strategy, backtracking can be done in a
more radical fashion than would be possible in a single-level definition of the
same perceptron. The rationale is the following. If a dead-end is found for
example at macro-node 3 of the perceptron in figure 4.23 (that is, all the
options selected for this node generate a reduction conflict) then there is no
need to continue with different assignments for the nodes in the macro-node
2. In other words, there is no need to backtrack inside the subnetwork 2 and
try different assignments for the nodes 21, 22, or 23 with the same assign-

ment for the subnetwork 2. Such different assignments would only cause the

153

same dead-end at macro-node 3. Hence, the backtracking can be continued

until the next assignment for macro-node 2 is found.

The program reads the definition of the perceptron P=[N,z,x,I] from a
file. N defines the node, z and x label the network output and inputs, and |
defines the interconnection structure. The perceptron specifications are writ-

ten in a simple language whose context-free grammar is listed below.

<networkdescription> ::= <atomdefinition> ; <networkdefs>
<atomdefinition> ::= defline <representation>

functions { <truthtableset> } |

define <representation>

functions complete
<representation> ::= <identifier> =

<identifiex> (<parameterlist>)
<identifier> ::= <letterordigit> [<identifier> }
<letterordigit> ::= <letter> | <digit>
<parameterlist> ::= <identifier> [, <parameterlist>]
<truthtableset> ::= <truthtable> [, <truthtableset>]
<truthtable> ::= <zeroocrone> [<truthtable>]
<networkdefs> ::= <networkdefinition> [; <networkdefs>]
<networkdefinition> ::= define <representation>

interconnect { <nodelist> }
<nodelist> ::= <nodedefinition> [; <nodelist>]
<nodedefinition> ::= <identifier> : <representation>

The definition of the perceptron of figure 4.22 is listed below.

% Definition of a 3-input perceptron with 6 nodes.

% Definition of the noie
define z = atom(xl,x2} functions complets:;
% Definition of the 3-input perceptron
define z = F(xI,x2,x3)
intercorinect { noded4 : z4 = atcem (x1,x2);
nodeS : z5 = atom (x2,x3);
node6 : z6 = atom (x3,xl):

154

node2 : z2 = atom (z4,z5):
node3 : 23 = atom (z5,z6):
nodel : z = atom (z2,z3) }.

The definition of the perceptron of figure 4.23 is:

$ 4-input perceptron built with 3-input perceptrons.

% Definition of the atomic node
define y = atom(xl,x2) functions complete:
% Definition of the 3-input perceptron:
define z = f(x1l,x2,x3)
interconnect { a2 : z2 = atom(xl, x2):
a3 : z3 = atom(x2,x3);
al : z = atom(z2,23) }:
% Definition of the 4-input perceptron:
define z = F(xl,x2,x3,x4)
interconnact { m2 : z2

£(x1,x2,x3);

m3 : z3 = f£(x2,x3,x4);
m4 : z4 = £(x3,x4,x1):
ml : 2z = f£(z2,z3,z4) }.

Lines starting with a “‘%’’ are comment lines. The first few lines of the
definition specify N=(k,$). Each define statement lists z and x and the

following interconnect statement defines .

The basic node (called atom in both cases) could be defined arbitrarily

by giving a list of local truth tables. For example:

% 2-input node implementing AND, LEFT, RIGHT, OR
dafina z = atom(xl, x2)
functions { 0001, 0011, 0101, 0111 }

The decomposition program treats the nodes (or macro-nodes) in the

order given by the perceptron specification. Therefore the node connections

155

| should be ordered in a bottom-up sequence. A label cannot be used as
input to a node unless it was defined earlier as the output label of another
node or unless it is a network input. Additionally, the subnetworks must be
defined in a depth-first order, meaning that the node must be defined first,
then the subnetworks, and finally the global network. A subnetwork must be
defined before it can be used as macro-node in another interconnection

definition.

This language allows the specification of any perceptron with only a
single node, as defined in section 4.1. The adventurous algorithm described
earlier, however, does not require all nodes to be identical, and the program
and definition language could be extended in this direction. Nevertheless,
except for this restriction the program is completely general. It does not
make any assumptions regarding the completeness of the node, the complete-
ness of the network, the structure of the interconnections, or the size of the
nodes. Furthermore, it finds multiple solutions, but not all.

Below is a partial script of the program using the 3-input perceptron of
figure 4.22. The goal function is G (x {,x5,x3) = X X y+xox3+x3x;. Inputs

typed by the user are in bold face.

specify network file: Nw3.6
specify truth table of 3 variables (xl1,x2,x3):

01101011
1: 1 | noded: 0000... ck.
2: 1 | node5: 0000... conflict.
3: 1 | node5: 0010... conflict.
4: 1 | node5: 0100... conflict.
5: 1 | node5: 0110... ok,

156

node6: GQ000... conflict.
nodeé&6: Q001... conflict.
nodeé: 0100... conflict.
node6: 0101... conflict.
node6: 1010... conflict.
nodeé: 1011... conflict.
node6: 1110... conflict.
node6: 11l11... conflict.
nodeS: 1001... ok.

[»« JEEN I)

11:
12:
13:
14;

'_l
o
H o e e e

node3: 0101... conflict.

45: 1 |
46: 1 | node3: 0110... ok.
47: 1 | nodel: 0000... conflict.
48: 1 | nodel: 01l1ll... ok.
implementation found after 48 steps:
| noded4: 0001
nodeS5: 0011

node2: 0001
noded: 0110
| nodel: 0111
continue? [y,n,#] no
search aborted.

i
| nodeb: 0110
|
I

o R e

number of steps: 48
maximum stack size: 366 words
other memory used: 286 records

do you want to run another decomposition? no

An example of a decomposition problem for the perceptron of figure

4.23 with goal function G (x ,x 5,% 3,5 4) = X (X 3+x o(x ; Dx 4} is given below:

specify network file: Nwd.4.3
specify truth table of 4 variables (xl,x2,x3,x4):
0110100100110011

1: 1 | m2: 000004C0... ok.

2: 2 | m2.a2; 0000... ok.

157

11:
12;
13:
14:
15;
16:
17:
18;
19;
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

145:
146;
147:
148:
149:
150:
151:
152:

X~ e W

HEHPBPRPHRERERPRRRFRHRBERHEFPRPRDONNONNNNEREREPRHEHBENDN

N NN HE RN

m2.a3: 0000...
m2.al: 0000...
m3: 00000000...
m3: 00010010...
m3: 00100001...
m3: 00110011...
m3: 01001Q00...
m3: 01011010...
m3.a2: 0000...
m3.a2: 0011...
m3.a3: 0000...
m3.a3: 0101...
m3.al: 0000.
m3.al: 0110...
m4; 00000000...
m4: 00000101...
m4: 00001010...
m4: 00001111..
md4: 01010000...
m4;: 01010101...
m4: 01011010...
m4: 01011111,
m4: 10100000...
m4: 10100101...
m4: 10101010...
m4: 10101111...
mg: 11110000...
m4: 1111Q101...
m4: 11111010...
m4: 11111111..
m3: 01101001..
m4.al: 0100...
ml: 00000000...
ml: 00000101...
ml; 001¢10Q010...
ml.a2: 0000...
ml.a2: 011l1..
ml.a3: 0000Q..
ml.a3: 0001...

ok.
ok.
conflict.
conflict.
conflict.
conflict.
conflict,
ok.
conflict.
ok.
conflict.
ok.
conflict.
ok.
conflict,
conflict.
conflict.
conflict.
conflict.
conflict.
conflict.
conflict.
conflict.
conflict.
conflict.
conflict.
conflict.
conflict.
conflict.
conflict.
ok.

ok.
conflict.
conflict.
ok.
conflict.
ok.
conflict,
conflict.

158

153: 2 | mi.a3: 0010... conflict.
154: 2 | ml.a3: 0011... conflict,
155: 2 | ml.a3: 0100... conflict.
156: 2 | ml.a3: 0101... ok.

157: 2 { ml.al: 0000... conflict,

158: 2 | ml,al: 0010... ok.
implementation found after 158 steps:

1 | m2: 00000101
2 | m2.,a2; 0011
2 | m2.,a3: 0101
2 | m2.al: 0001
1 | m3: 01101001
2 | m3.a2: 0110
2 t m3.a3: 0101
2 | m3.al: 0110
1 | m4: 01010000
2 | mg.a2: 0011
2 | m4.a3: 0101
2 | m4i.al: 0100
* } ml: 00101010
2 | mi.a2: Q111
2 | ml.a3: 0101
2 | ml.al: 0010

continue? (y,n,#] no
search aborted.

number of steps: 158
maximum stack size: 802 words

other memory used: 453 records

do you want to run ancther decomposition? no

Answering the question ‘‘continue? [y,n, #]” with ‘‘yes’ will

make the program backtrack and find another solution.

159

4.5. CONCLUSIONS

The decomposition problem in its most general form is a hard problem
that can require a large amount of search. Sometimes a solution is found
early in the search, but there is no guarantee that this will always be the case,
or that it will be true on the average. If on the average the size of ¢ is
reduced to p’=|¢’| then it would require O ((p*)’) steps to traverse the tree
in its entirety. In the worst case, the solution for the decomposition problem

requires an almost exhaustive search.

The main issue is not so much the amount of search needed, but the
nature of the responsibility assignment task. When can an assignment of
functional responsibility be done uniquely? When is it simple and when is it

~ difficult?

The multilayered nature of the perceptron by itself is not an obstacle in
determining which part of the network should implement a certain piece of
the goal function. The example of the disjunctive tree shows that for any
goal function implementable on this network the assignments for all the
nodes can always be decided by a straightforward algorithm. The number of
node assignments is linear in the number of nodes in the network, What is it
that makes the assignment so simple in a disjunctive binary tree and so com-

plex in other networks?

The size of the node versus the size of the whole network is an impor-
tant issue. If the node or subnetwork to be assigned responsibility is only a

little smaller in size than the whole network, then the problem is simpler than

160

if the node is much smaller. The goal function must then satisfy strict
requirements for the assignment to be focussed to one or a few possibilities
(as in a disjunctive binary tree). In the former case most goal functions
allow a straightforward solution. If the goal happens to depend only on the
variables that are inputs to a given node then the assignment is solved trivi-
ally.

In general, the sources of difficulty are the fan-out connections (external
or internal). Fan-outs introduce virtual variables and hence don’t cares in
the virtual decomposition chart, or an opportunity for many incompatible
columns in the real decomposition chart. As a result, the local selection
(both cautious and adventurous) is not focussed and the decomposition
requires a search. Furthermore, in such a case the responsibility assignment

is not unique, because the structure is redundant.

The fundamental reason behind the necessity for a search is that the
assignment cannot be entirely local and must use some global knowledge of
the network structure. If multiple assignments are possible at a given node,
each one will produce a different residual goal. Deciding which local assign-

prpadMENLS are correct requires kno»lving which residual goals are implementable
. on the remaining network. Coordinating local assignments with global
requirements is therefore of crucial importance. The local assignments
_.depend not only on the assignments previously made to other nodes, but also
_._on the structure of the remainder of the network (the part that has not yet
__been considered by the search). The question whether a (residual) goal is

implementable on a (remainder of a) perceptron is different from the

161

HTUNOniby-dezer
Jlid, ansag
waladee o

B T URORL:

GHUEICiita, vt

C slTUClions heg.

v, the learnin

problem of finding an implementation. The former is a binary question; the
latter is a search for a particular solution. We do not yet know whether the

former is computationally simpler.

Different traversals of the nodes are possible, opening a possible
improvement to the decomposition algorithm. Some orderings might lead to
a faster solution (less backtracking) than others. Which order should be pre-
ferred? It depends on the goal function. The node with the simplest assign-
ment, the smallest set of selected functions ¢, should be taken first. This
node has the smallest number of mutually incompatible groups of columns in
its decomposition chart, or the maximum number of mutually compatible
columns. Finding ‘his node is different from the original decomposition
problem, and its complexity remains to be evaluated. An ordering of nodes
such that at each step p’=|¢’| is minimal could reduce the complexity of the
problem substantially, Finding this optimal order of traversal can be facili-
tated by using parallelism. Assume that all the nodes in the bottom layer
receive the global goal at the same time and compute ¢’ concurrently. A glo-
bal control mechanism can then designate a single winner to execute the
reduction step. The same process can be repeated for the nodes in the bot-
tom layer of the remainder of the network, and so on. By using parallelism
the nodes are treated in an optimal order at no cost in time. Comparing the
size of this optimal search path with the size of an average search path would
determine if the extra cost of parallelism is offset by the improvements in

speed.

162

CHAPTER §

TOWARDS LEARNING BY EXAMPLE
IN PERCEPTRONS

There exists a wide spectrum of possible schemes for using perceptrons.
Decomposition is at one extreme end of this spectrum. By contrast, the
current chapter investigates opportunities for learning by example in percep-
trons by relaxing the requirement that the entire goal function be specified all
at once. We do not treat or define learning in general, but concentrate
exclusively on a specific form of learning by example in perceptrons. The
work by Rosenblatt dealt only with this form of learning, and the later

research (see section 5.2) has followed the same leaming paradigm.

Recently, the field of machine learning has become a very active and
much broader area of research [Mich83, Mich86]. However, almost all the
current work. concentrates on thé implementation of learning on a sequential
von Neumann computer. Little of the modern literature on the subject of
learning deals with the direct implementation of learning paradigms on per-
ceptrons, and; then, only. limited classes of perceptrons (see sections 5.2 and
5.3). This chapter presents an overview of this work and develops a possible
improvement to an existing scheme for learning by example in disjunctive

binary trees. Decomposition charts are again the basic tool in this study.

163

Section 5.1 gives an overview of the concepts of learning and learning
by example, specifically in the context of perceptrons. Section 5.2 reviews
the existing literature on learning by example in threshold gate perceptrons.
Next, section 5.3 discusses two strategies for learning by example in digitat
perceptrons and presents an extension of this work. Some conclusions are

presented in section 5.4.

5.1. OVERVIEW OF LEARNING BY EXAMPLE IN PERCEPTRONS

This section first presents an introductory overview of machine learning
and learning by example. A formal definition and detailed discussion of
learning by example in perceptrons is give s next. Two different implemen-
tations, perceptrons with central or distributed control, are discussed and pos-
sible schemes for leamning by example in these implementations are

presented.

5.1.1. Introduction

A precise definition of the term learning is virtually impossible; no
commenty-aecepted definition is available in the literature. Intuitively,
leaming implies improving performance over time, or acquiring new skills or
knwwledge ikeaming also implies the ability to absorb unspecific or incom-
Plgtsindngipuctions’” and change internal operations to satisfy these external
requirgments,.The latter are presented in an incremental fashion and hence
the instructions become more complete and more specific over time. In sum-

mary, the leaming system must be able to intemnalize this unspecific

164

information and integrate it with what was previously learned. The distinc-
tion between programming and learning, however, is a matter of degree.
Programming is one extreme embodiment of a broad spectrum of learning

schemes.

In a learning system there is a clear separation between the learner and
its environment; some knowledge is transferred from the environment to the
learner. The teacher is part of the environment and may be a human or
another machine. In supervised learning a separate teacher is involved in the
learning process; in unsupervised learning the system learns by itself without

explicit help from a teacher.

In learning by example the learner must optimize its operation based on
a set of examples. We assume here that the examples are provided by the
teacher and that each example is accompanied by an immediate signal speci-
fying the desired system output. Learning by example as discussed in this |
chapter is therefore supervised learning as it depends on explicit guidance

from a teacher in its learning phase.

There exist two different schemes for learning by example. In one
scheme each example is presented to the leamer accompanied by the
corresponding desired output. In another scheme the leamner classifies each
example and the teacher then specifies whether the output was correct. In
the former scheme the teacher’s input is a feedforward signal; in the latter
scheme it is a feedback signal. The leamer is expected to change its opera-

tion in response to this signal.

165

Two properties are important in a strategy for learning by example.
First, it should correctly classify the examples that are shown in the learning
phase. Secondly, new examples should be assigned to the most likely class
based on the earlier examples. The latter property is called generalization. It
assumes a metric in the input space to decide the nearest example previously
shown. This metric depends on the application domain, the nature of the
examples, the type and form of the knowledge to be leamed, and many other

issues that differ from case to case.

5.1.2. Learning by Example in Perceptrons

A perceptron is a network of combinational nodes and impk.ments a
Boolean funtion. This Boolean function constitutes the knowledge to be
learned by the perceptron. Initially the system implements an arbitrary func-
tion, and the purpose of the examples is to convey a desired Boolean func-

tion to the perceptron.

An example is a completely specified input vector for the perceptron.
All the input variables of an example have a specific value, In other words,
an example corresponds to a mtl'nterm. Although some related work allows
don’t cares in the examples [Vali84, Mart86], virtually all extant work in

perceptrons uses completely.specified examples.

In a session of leatningi sy example, the teacher presents a discrete
sequence of examples to the inputs of the perceptron. This sequence is

represented as

166

E=[xpxp...1=[x]

In a theoretical treatment E can be infinitely long, but in a practical imple-
mentation E is always finite. In what follows we will assume the sequence
of examples to be of finite length L,

The examples in the sequence are not necessarily all different; typically,
some examples reappear. Each subsequence of examples E, = {x,, ... ,x;]

has a corresponding set of distinct examples:
Di ={x;|i<k and X;#X;,Vj<i}
obtained by deleting all duplicate examples from E, .

Each example presented to the perceptron is accompanied by a
specification of the corresponding value for the goal function. In other
words, when an example x; is presented, the teacher determines the correct
output y; and sends this value to the perceptron. An example that reappears
in the sequence must have identical output values.

We view this sequence of events as an incremental specification, one
minterm at a time, of a goal function G for which Vi : G{x;)=y;. As long
as the examples have not been shown exhaustively, the goal function is
specified only partially. We define the partial goal function after k¥ exam-
ples, G, to be the function that contains don’t care values for examples not

in the sequence E;. In other words

167

Ge(x;) = don’t care if x; €D,

If all 2" possible examples are in the sequence then G; =G, which is a com-
pletely specified function.

A network function F is compatible with the partial goal function G,
represented as F ~Gy, if G can be made identical to F by filling in the don’t

care values of G;. In other words
F—Gk <« VY X; € Dk : F(x,-)=Gk(x,-)=y,-

We view the sequence of examples and teaching signals as a sequence
of partially specified goal functions [G;]. The task of the control of the per-
ceptron is to derive a sequence of assignments [0], and hence a sequence of

network functions [F o), from this sequence [G;]. This incremental transfer

of a goal function G is one form of learning by example and will be studied

in the remainder of this chapter.

A strong requirement for a learning algorithm, called strict conver-

gence, is the following: _ e

If a learning system exhibits strict convergence then each example needs to

be presented only once. This requirement can be relaxed to
Fo, -G (5.1)

This means that the network function F converges to G; and that it is

168

compatible with G; when enough examples have been shown.

Note in (5.1) the appearance of G; instead of the real goal function G .
G, is identical to G only if D, is the complete set {0,1}*. Hence (5.1) does
not specify the values of F, for input vectors not in D;. No immediate
information is available regarding these examples, but it is possible to extra-
polate, that is, to generalize. For instance, F could assign an unseen exam-
ple the same value as the closest example in D;. Such an approach is
natural in an analog domain with continuous distances. In a general digital
domain of Boolean logic, however, generalization assumes a priori
knowledge about the class of goal functions to be leammed. If such
knowledge is not available then all goal functions are possible. If all possi-
ble examples are shown then D, is complete (G; =G) and no generélization

is needed.

5.1.3. Perceptrons with Centralized Control

How can the incremental transfer of G proceed in a perceptron with a
central controller? In particular, how can the desired output value y;=G(x;)
be communicated to the controller of the perceptron? Two approaches are

possible.

In one approach the teacher specifies the desired goal value for an
example by sending a positive or negative feedback to the controller
[Rose62b]. This feedback signal specifies whether the perceptron made the

correct decision for the current exampie. If the feedback is positive then

169

there is no reason to change the assignment, hence o;=qr;_; and Fo=Fq, -

If the feedback is negative then strict convergence requires that o;_; be

changed such that Fa',(x,-)= _u.--x("i)'

In a different approach the teacher presents the desired goal value
¥i=G(x;) as a feedforward signal along with each example [Alek79,
Arms78]. The central controller takes immediate action by changing the
assignment, if necessary. Both approaches (feedback or feedforward) are in
theory equivalent.

The examples are sometimes taken directly from a real-world environ-
ment, and then neither the learner nor the teacher have control over the
sequence order. Sometimes the teacher selects the examples, and then there
is a training phase entirely separate from the use in a r;:al-world environ-
ment. The latter approach is more efficient in that the length of the sequence
necessary to transfer a certain goal function can be minimized by properly
selecting the set and the order of the examples. Finally, the learner itself is
sometimes the source of thet examples, which are then called oracles
[Vali84]. In what follows we will assume that the teacher provides the

examples.

Three strategies for achieving convergence towards the goal function
are described below [Alek68b].

.......

170

a. Search in the assignment space

In this strategy the central controller tries all possible combinations of
node assignments one by one in some arbitrary order. The assignment
remains unchanged until an example incompatible with the current network
function is presented. When this occurs the central controller tries the next
assignment. The error signal therefore triggers a sequential search through
the set of assignments. The search space is of size P=p’. If there exists an
assignment that implements a network function compatible with the goal
function G;, then eventually it will be found since the controller tries all

assignments one by one.

Thus siraegy does not have the property of strict convergence. Indeed,
changing the assignment may not classify previous examples (or even the
current example) correctly. It is a blind exhaustive search. As a result, the

number of examples needed to reach a correct assignment is typically large.

b. Search in the network function space

An improvement in efficiency can be achieved if the controller searches
directly in the space of the network functions. When a discrepancy with an
example occurs the controller takes a new network function and generates
the appropriate assignment. The controller must therefore be able to deter-
mine all network functions and a correct assignment for each of them. The
search space is now of size Q=|®|. This approach also lacks strict conver-

gence as it does not take into account previous examples.

171

¢. Search in the input space

By far the most efficient strategy for learning a Boolean function is to
integrate the goal values of all examples shown into a partial goal function
G;(x). In this way a complete goal function can be specified with only
log,Q examples. For any goal function there are only 2" different exam-
ples, namely the 2" entries in the truth table of the goal function. Showing

all examples just once conveys the goal function to the perceptron.

This strategy has the property of strict convergence, but it requires more
work from the central controller than the other strategies. The network func-
tion must always correctly classify the current example and also all previous
exariples. We will discuss some examples of this strategy later in this

chapter.

5.1.4. Perceptrons with Distributed Control

In a perceptron with distributed control each node has a small local con-
troller that selects its function.’ A 2-input node with its local controller is
represented schematically in figure 5.1. The wide arrow represents a global
communication bus, used for instance to broadcast the feedback signal from
the environment, or used by the controllers to communicate with each other.
Each controller has access to the local input and output values of the node,

and has a certain amount of local memory.

A perceptron with distributed control is an interconnection of such

nodes and therefore a network of small finite state automata. This network is

172

BUS

) oo
CONTROL

X X3

Figure 5.1: Schematic representation of a 2-input node of a per-
ceptron with its local controller.

used as follows. Each example is presented to the global input lines of the
perceptron and causes a computational flow through the data path. Each
controller receives a processed piece of the example, namely the local inputs
to its node. Other information that the controller might need must be passed

between the controllers directly.

Three desirable characteristics of distributed control are reviewed

below.

173

sedahe jueed i

[REAFRS a3 i W SN~ I

svemted o the R

a. Limited local memory

It is desirable to keep the size of the local memory used by each con-
troller as small as possible. A typical requirement is that its size be indepen-
dent of the size of the network. In other words, adding more nodes or inputs
to the network should not increase the size of the required local memory.
Enhancing the capability of the network is achieved by increasing the

number of nodes, not the local memory at each node.

b. Distributed memory

It is also desirable to distribute only limited information available from
a single example. “igirc 5.1 shows that each controller knows the local
inputs and output for the node, but it does not know the input values to other
nodes in the network. This implies that a controller can decide in which
column of the decomposition chart of the goal function the current minterm

example is located, but it does not know its location inside the column.

¢. Limited communication

Limiting the communication between the controllers or between the
controllers and the environment would also be important in a practical sys-
tem. Typically, only a feedback or feedforward signal is allowed on the glo-
bal bus, and the controllers do not use this bus to communicate with each

other.

The following three requirements represent extreme distributed control:

174

1. The size of the local memory is independent of the size of the network.
2. The controller has no knowledge of the input values of other nodes.

3. The global communication is restricted to a feedback or feedforward
signal.

Such extreme distributed control is present in all the extant research on learn-

ing by example in perceptrons, but it is a strong constraint on the system.

We will assume the same constraints in the remainder of this chapter.

5.2. THRESHOLD GATE PERCEPTRONS

The number of adjustable nodes in a perceptron determines not only the
functional completeness of the system and the complexity of the decomposi-
tion problem, but also, and even more so, the complexity of the problem of
learning by example, Below we review the work on learning by example in
threshold gate networks using the number of adjustable nodes as the basis for
the classification. The simple perceptron (a single-node system) is discussed
first, followed by single-layer‘ perceptrons, and finally multilayer percep-

trons.

5.2.1. The Simple Perceptron

The learning scheme used in the simple perceptron is straightforward
because only one threshold gate is involved in the learning. Below we
review the basic algorithm; for a more complete treatment we refer to

[Duda73, Bow84]. - .- -

175

Consider the R-unit of a simple perceptron (figure 2.11) and label its
inputs X =(xy, ..., x;). Its output is a linear threshold function of its inputs:
k
z =[T w;x;26] = [w-x20]
j=l
Each example shown to the perceptron produces an input vector x; to the R-
unit. Call w; and ; the values of the weights and threshold of the R-unit

when the i -th example is presented. The perceptron then produces an output
z; = fi(x;) = [W{-x;26;]

Assume that in the beginning of the learning phase the values w; and 8, are

chosen arbitrarily.

For each example shown, the teacher compares z; with the desired value
and issues a negative feedback signal if necessary. When the control of the
R-unit receives a negative feedback it changes the threshold function in the

following way:

Wi = Wi+ x;
{ 0;1 =6;-9;
wihert d; =k ifix;e C | (the desired response is 1) and d;=—1if x;eCy (the
desired response is 0). If no negative feedback occurs then the threshold
function-is not changed. This scheme for updating the values of w and 6 is
called thefxed lncrement rule.
THEOREM 5.1 " [Rose62b, Bloc61, Bloc62a] If a set of inputs (x;}

preseiifed't6- the R-unit is compatible with a linear threshold function and if

176

each of them is shown equally often, then the fixed increment rule will con-

verge to values for w and 0 that correctly classify all the examples shown. [

Stated differently, this theorem says that, if the examples are shown
often enough then the learning strategy will find a threshold function compa-
tible with the given set of inputs, if one exists. Historically this theorem has
been called the perceptron convergence theorem [Sing62], but the name
threshold gate convergence theorem would have been more appropriate.
The theorem says nothing about the examples that were not presented.
Furthermore, nothing is known a priori about the length of the example

sequence since it depends on the sequence order.
The fixed increment rule does not have the property of strict convar-
gence. A generalization of this rule is called the variable increment rule:
W1 = Wi §;x;
{ 841 =6;-p;9;
where p; is a positive scalar that differs from step to step. For a particular
choice of p; strict convergencé can be assured, that is, the current and all
previous examples will be classified correctly by the new threshold function

(at least if the examples are compatible with a'threshold function). We refer

to [Duda73, Bow84, Gall85a] for details on how to chose p;.

The convergence theorem is independent of the nature of the inputs
(analog or digital); digital inputs are considered a special case of analog
inputs. In any perceptron, including the simple perceptron, the inputs to the

nodes are always binary values because they are connected to the outputs of

177

other nodes. However, the theory also applies to the Adaline [Widr60],

which is a single threshold gate with analog inputs.

Variations on this error-correction scheme appeared in the early percep-
tron literature. For example, variations of the fixed increment rule were pro-
posed by Rosenblatt and received names such as uncompensated gain sys-
tem, constant feed system, parasitic gain system [Rose58]. More fundamen-
tally different was a proposal to change the R-unit even when there is no
negative feedback, called forced learning (Bloc62a). A variation of the vari-
able increment rule was used, namely the sign of p; is inverted if the feed-

back is positive. Convergence can still be proven in this more general case.

5.2.2. Singlc-Layer Perceptrons

Most of the later work in learning perceptrons concerns rietworks with a
single layer of adjustable nodes. We review three of the most important pro-

totypes, although many others exist.

The first structure is the Madaline proposed by Widrow [Widr62,
Widr64]. A Madaline is a network of Adalines (threshold gates). A layer of
threshold gates is connected to the inputs and the outputs are connected to a
voting gate (figure 5.2). The votmg gate produces an output 1 if more than
half of its inputs are 1 @l the we:ghts are fixed to 1 and the threshold is
equal to half the number g?mﬁﬁisi The learning proceeds as follows. If the
output is correct for a glven example then no change takes place. If the out-

SEUNTEER KO

put is incorrect then the ﬁxed mcrement rule is applied to the gates with the
cperiments i

178

highest sum before thresholding (w/-x;) and to as many threshold gates as
needed to correct the output. Widrow states that one of his doctoral students

proved the convergence of this scheme, but no reference is available.

Figure 5.2: Structure of a Madaline.

A similar approach was developed by Takiyama in a perceptron called a
committee machine. (figure 5.3). This perceptron is like a Madaline except
that the weights and threshold of the output node can be different from those
of a voting gate [Taki78]. Alternatives include an AND gate or an OR gate.
Takiyama developed and proved a general learning strategy that can be
adapted easily to the particular values of the weights and threshold of the top
gate. The strategy is similar to Widrow’s scheme except that the fixed incre-

ment rule is applied to all threshold gates of the first layer.

A two-level committee machine consists of one layer of adjustable

179

X1 q

fixed weights
and threshold

Figure 5.3: Structure of a committee machine,

threshold gates followed by two layers of fixed threshold gates (figure 5.4)
[Taki81]. The latter can take different forms, such as voting gates, AND
gates, OR gates, etc. Again, the learning algorithm is derived from the fixed

increment rule.

5.2.3. Multilayer Perceptrons

A formal analysis of learning by example Liin‘ Berceptx%nsthh more than
one layer of adjustable nodes is difficult. Widrow prc;bdsed to adjust the
nodes in the bottom layer more frequently than _t.hose in higher layers
[Widr62, Widré4]. A similar approach was used by Rosenblatt, who also
assumed a certain order in the sequence of' éﬁ!ﬁﬁ;ﬁes [ﬁbse62a]. These

S LIS e .
heuristic learning strategies converged for the experiments discussed in these

180

LA

Figure 5.4: A two-level committee machine.

publications, but a theoretical treatment was not given and indeed is missing
in all other research on Ieaminé in multilayer perceptrons. The strategy of
annealing used in the Boltzmann machine is one example of a formally
analyzed scheme for leaming by examplé’iti'a gétietil class of threshold gate
networks [Hint84]. This strategy, based on thermodynamic principles, con-
verges even for multilayer networks. However, it is extremely inefficient
because it requires many iterations and futhifitéhode communication for

26t Srw

each example shown.
1< the bBuilding

181

5.3. DIGITAL PERCEPTRONS

Implementations of digital nodes were described in section 2.1.3.1. In
these models, it is straightforward to change the local function such that a
given input produces a particular output. For a RAM or a ULM node (figure
2.6) this is achieved by setting the appropriate truth table entry to the desired
value. For an incomplete node (for instance figure 2.7) the change may not
always be possible. For the node of figure 2.7, for instance, the two control
bits ¢ | and ¢ represent two different entries in the truth table, as illustrated
by its Karnaugh map in figure 5.5. A given input can therefore not always

produce any output value.

X2

Figure 5.5: Karnaugh map of the incomplete node of figure 2.7.

.ure 5.6: The oDt
In summary, the function-set model makes local assignment straightfor-

ward and we can directly address the responsibility assignment problem in

Swsander’s singetworks.

PP ST
syt .

This section discusses three distributed implementations of learning by

A dll L 2 texample using a search in the input space. Two approaches are taken from

Wwoteacher.

*"thk literature and are discussed first, followed by our contribution. The

182

resulting observations and conclusions apply to all three as well as to many
other perceptron learning strategies. The first approach allows any order in
the sequence of examples, while the second and third impose certain con-
straints on this order. On the other hand, the first approach applies only to
single-layer perceptrons, while the second and third use a disjunctive binary
tree with respectively incomplete nodes and arbitrary nodes. In other words,
in this section the generality and complexity of the perceptron structure is

inversely related to the generality of the input sequence order.

In what follows we assume that the perceptron can implement the given
goal function G;. Furthermore, we assume that all 2" examples are shown
(Gy, is completely specified) and, as a result, no generalization is necessary.
Ultimately, generalization must be an integral part of learning by example,
and future research should extend the work reported here to include generali-

zation.,

5.3.1. Single-Layer RAM Networks

This section reviews work that started around 1965 by Aleksander at
Brunel University in the UK. Aleksander was the first to suggest a digital
model as a replacement for the classical threshold gate model [Alek68b].
Later, commenting on Yau and Tang's paper on ULMs [Yau70], Aleksander
saw ULMs as a possible implementation of this digital model and as a practi-
cal building block for adaptive logic systems (perceptrons) [Alek71]. More
recently, he has turned to Random Access Memories (RAM:s) as the building

183

block for learning systems [Alek79].

The operation of a RAM is illustrated in figure 5.6. It takes n inputs
and holds 2" bits. Each input pattern addresses one bit of the memory. In
the data processing mode, the value stored at this address is directed to the
output z. The operation is then a table lookup of a truth value. In the learn-
ing mode, the value of the TEACH input is written at the address specified
by the current input pattern. The entries in the truth table that correspond to
examples not yet shown remain arbitrary. Viewed as a functional node, a

RAM is complete and can implement any Boolean function of its inputs.

z decision
TEACH ""'}
READ/WRITE —=~ [| .- [T TT] 2* bits of memory
Xy x, n -bit address

Figury A peration of a RAM as the basic node of a percep-

tron.

——— e ——

TCAMDe o
Aleksander’s single-output network is shown in figure 5.7. It is a net-
work in which a layer of RAMs is connected to a fixed gate (typically an
ACcomnplateness

AND gate, an OR gate, or a voting gate). All RAMs receive the same signal

from the ‘teacher, which constitutes the only global communication. The

184

RAMs are totally independent of each other and their local control is the
usual READ/WRITE circuitry present in any conventional RAM.

X

\u
X2 RAM‘

!

RAM, e ;

t

————— —={RAM, fixed

%,] 7 gate

INPUTS TEACH OUTPUT

Figure 5.7: Aleksander’s single-output network.

The external inputs are connected to the address lines of the RAMs, and
these connections can be done either randomly or structured to suit the
intended application. Structured input connections are shown in figure 5.8,

where the inputs are taken from a 3x3 photo cell array.

In this figure the network is a disjunctive tree and it is incomplete. Fig-
ure 5.9 illustrates this incompleteness. The two input examples shown,
which have the same output, are used to train the system. As a result, the
third input pattern always produces the same output as the two examples,

regardless of what output is desired. In other words, if the first two examples

185

TEACH

Figure §.8: An example of structured input connections in a RAM
network.)

have an equal output value then the third example must have the same output
or the task cannot be implemented. A brief analysis of this incompleteness

issue is given in [Ullm69, Alek70a, Alek84a].

v, 7 7
4 0 Y7 0|04
0y 7 7

example 1 o eiﬁiﬁi:le"z
output=1 R igutpitat 7 e output=?

3 an array ot 1.

Figure 5.9: Example of ipgcompleteness, in the RAM network of
figure 5.8.
anctive The design

186

We now review how the transfer of the goal function occurs in this net-
work. First assume that the top node implements an AND function [Alek79]
and consider an example with desired output 1. Since the top node is an
AND gate, the outputs of all the RAMs must be 1 if the system is to behave
correctly. Hence, for each example of class C ,, the corresponding entries in
the RAMs must be 1. The responsibility assignment is straightforward,

namely all nodes in the bottom layer are responsible.

On the other hand, if an example of C ; is shown then at least one RAM
should output a 0. If none output a 1 then ar least one of the addressed bits
must be changed from 1 to 0, but which one? No obvious decision can be
made since it d2pands on the input connections and the particular goal func-

tion. Assignment of responsibility is not possible without more information.

One approach assumes that the RAMs initially contain nothing but zero
entries, that is, the nodes initially implement the always-zero function. It is
then never necessary to switch a bit from 1 to 0 since all zeros are already

present and those that change to a 1 never have to be changed back.

A different approach assigns responsibility for a zero -output to all the
nodes. Consequently, in the early phase of the training too many zero entries
are created, but these are changed to 1 by the examples in C;. In other
words, the initial learning phase directs the RAMs towards a zero initial

state, after which the proper learning can proceed.

To summarize, in each learning step the value of the desired output

(either 1 or Q) is written into all the RAMs at the addresses specified by their

187

local input. If initially all the RAMs contain only zeros, then this strategy
assures strict convergence and only examples of C (at most 2") are needed
to attain the goal function. If initially the RAMs are arbitrary then more
examples will be necessary (but less than 2x2*). If the examples of C o are
shown first followed by the rest then 2* different examples are always
enough, regardless of the initial state. These properties hold independently

of the particular arrangement of the input connections.

If the output node implements an OR function then all the nodes are
responsible for each example of C, whereas responsibility for C 1 depends
on the input connections and the particular goal function. The learning algo-
rithm is identical to the case with an AND gate except that the preferred ini-
tial state is the complement. If the RAMs are not in this initial state then

showing the examples of C , first improves learning speed.

If the top node implements any other (nontrivial) function (for instance
a voting gate) then direct assignment of responsibility is not possible. One
could for instance assign respénsibility to all the nodes or to a randomly
chosen subset, but this process will typically cycle and only for special ord-
erings of the sequence of examples will convergence Qgcur.

This simple structure and its learning strategy have been implemented
as a hardware device called WISARD (*‘Wilkie, Stonham, and Aleksander’s
Recognition Device’’) [Alek83a]. The device has an array of 512x512
inputs and a layer of 32,768 RAMs of 256 bits each (8-bit address), totaling

8 Mb of storage. The input connections are disjunctive. The design has

138

been used successfully for recognizing facial pictures projected onto a
512x512 array of photocells [Alek83b], although no specifics of these exper-

iments are given,

5.3.2. Disjunctive Binary Trees with Incomplete Nodes

This section reviews the work by Armstrong at the University of Mont-
real in Canada [Arms79]. The node used in this work is a 2-input Boolean
gate that implements only 4 functions (y=0.25), as discussed in section
2.1.3.1. The physical implementation of the node is shown in figure 2.7.
The nodes are interconnected to form a disjunctive binary tree network (see

for instance figure 5.10).

Voo by,

' Figure 5.10: Example of a disjunctive binary tree network.

- Each node implements the nonconstant increasing functions. An
eddge
mcreasmg functlon is a function that never changes its output from 1 to 0

Tt koo

189

when one of its inputs is changed from 0 to 1 (the output either changes from
0 to 1 or remains unchanged). A nonconstant function is one that is not
always zero or one. The class of nonconstant increasing functions is very
incomplete. For 2 inputs, it contains only 4 functions (table 2.2):
{AND,OR,LEFT,RIGHT}.

A disjunctive binary tree has the property that, if all its nodes implement
a nonconstant increasing function, then the network also implements a non-
constant increasing function [Arms79]. Hence, the networks considered by

Armstrong always implement a nonconstant increasing function.

Another property of increasing functions that will be used shortly is the
following. If F(x,,...,x,) is an increasing function then the four residual

functions
F(xy,...,x=0,...,x;=0,...,x,)
Fxy,....,.x;=0,...,x;=1,...,x,)
Fy...,x=1,...,x;=0,...,x,)
Fixy,....5=1,... ,x;=1,...,x,)

(Yi,j) are also increasing functions. The columns of the decomposition
chart for node 1 of figure 5.10, shown in figure 5.11, represent the residual

functions after fixing x, and x5 to the values 00, 01, 11, and 10 respectively.

Since the network always implements an increasing function, these columns

represent four increasing functions.

Transfer of knowledge in this network proceeds as follows. All the

190

XXz

00 01 11 10

%3 xy {

1L

Figure 5.11: Decomposition chart for node 1 of the network of
figure 5.10.

examples are shown to the network, in no specific order, and the associated
goal values are broadcast to the nodes in the bottom layer. The local func-
tions of these nodes are not changed immediately, but local controllers accu-
mulate the information. When all examples have been shown, the control
units in the bottom layer assign local functions to their nodes. The cycle
then repeats: all examples are shown again and the teaching signals are sent
to the nodes in the next layer, and so on until the top node has received its
assignment. The transfer of knowledge therefore proceeds in a bottom-up
fashion. A binar)\(:rgrg&mittlh L p@puts has log,n layers aﬁd therefore each
example must be shown logyn times. This implies an example sequence of
length 2"log,n. The order of the example sequence within each cycle is
arbitrary. Cbsen mper

The assignment, decision at. each node is based on the decomposition
chart and the knowledge that the network implements an increasing function.

Consider node 1 of the network in figure 5.10 and the decomposition chart of

191

a goal function (figure 5.11). There are at most 2 distinct columns in this
decomposition chart and the local function must be derived from these
column differences. When an example is shown, the column of the decom-
position chart it belongs to is specified by the local input to the node, but the
inputs to other nodes are not known locally. Since the goal function G is an

increasing function, it follows that
Vse {0,1)*2:Gyy=1 » Gg=1and G p=12and G =1
Vse{01)"2%:Gy=l » G=l
Vse (0,1} 2:G =l » G =l
This ‘neans that a difference in columns implies a difference in the number
of 1's and 0’s in these columns, and vice versa. Hence, the discrepancy
between columns can be deduced from a count of the number of 1's or (’s.
Denote the number of 1’s in each column O oy, Oy, O 44, and O 4, respec-
tively. Since the goal function is increasing, it follows that
0 0050 150
0 S0 1050 ;
The control bits ¢, and ¢, (the assignment) are selected based on whether
Og; and O g are equal to Oy or O ;. If Oy is equal to O, then both
columns should take the same functional value; this implies ¢ ;=1 since the

value of the 11-column is always 1. Otherwise ¢ ;=0. The same holds for c,

with respect to O ;. Therefore:

192

1
ey = 0
1
C2= 0

if 091=0 |4
otherwise

if 0,6=01,

otherwise

For nodes in higher layers of the tree the same strategy can still be used,

but now the fraction of observed ones and zeros must be used:

C2=*

if ———=—

1 Zoy 2y

=10 otherwise

Oy Oy
1 Zywy Zy
0 otherwise

Zoyw Loy, Z gy and Z, are the number of zeros in each column. We refer

[Arms79] for a proof.

Each local controller needs a small amount of memory to count the

occurrences of zeros and ones in each column of the decomposition chart

(4x2xn bits per node). All the controllers work independently and the glo-

bal communication is restricted to the presentation of examples and goal

values.

The approach described ‘here has been implemented in hardware

[Arms71, Arms76]. In one application for LANDSAT image processing a

32-input tree was built [Arms78].

193

5.3.3. Disjunctive Binary Trees with Arbitrary Nodes

Instead of restricting the node functionality to nonconstant increasing
functions, consider the general case with arbitrary nodes (complete or incom-
plete). The approach we develop below uses only binary trees, but is valid

for any disjunctive tree network.

The strategy is again based on the local decomposition chart for each
node. Since the nodal functions are arbitrary, a count of the number of ones
and zeros does not determine which columns of the decomposition chart are
different. Yet, this knowledge is the basis for responsibility assignment.

How can a node decide column differences?

Consider the decomposition chart for node 1 of a 3-node 4-input dis-
junctive binary tree (figure 5.12). In this example, the number of ones and
zeros is identical for all columns, namely 2. Hence, this count does not pro-
vide any information regarding the column differences. Furthermore, con-
sidering two separate examples does not provide any information either. For
instance x;=(0,0,0,0) and xi+1¥(0,1,0,1) have different goal values, yet the

columns are equal.

However. waicr By contrast, a difference in goal value for two examples with the same

L iew LYY Ch

values for x5 and x4 implies a difference in the corresponding columns, and

fructure. these ¢
therefore a difference in local function value. Consider the input pair

wder of cxample) . .
viger of -"amgj:(o,o’o,o) and x;,1=(1,0,0,0). Since in figure 5.12 G (x;)2G (x;,y), it fol-
Y S TSI ¥ S NV FY IO

lows that the corresponding columns are different, and this implies

v learning PIRCY0,00%f 1(1,0). On the other hand, the equality of the goal value for a pair

194

XX,

! 00 01 11 10

w001

/ \ ANZIE
X3xy

1 mn{ofo|o|1

[/\ wl1|1]1]o0

Xy X3 X3 X,

Figure 5.12: Example of a 4-input disjunctive binary tree network
and the decomposition chart for node 1 of a simple goal function.

of input examples does not imply the equality of the corresponding columns
of the decomposition chart. For example, in figure 5.13 the two inputs
x;=(1,1,0,0) and x;,,=(1,0,0,0) have the same goal value, yet their columns

are different.

X1X2

®W|ojo|lOo]|oO

o1] 1 1 1 0

X3X4
imlofo]olo

10 1 1 1 0

Figure 5.13: Two examples from different columns may have the
same goal value.

195

In summary, the local controller can make a valid conclusion based on
the current and previous examples provided the current example differs from
the previous one in its local input variables only, and provided they belong to

a different class.

One approach therefore imposes a strict order on the sequence of exam-
ples. A pair of consecutive examples should have different bits only for the
input variables connected to the same node. For instance, the sequence
could be such that two consecutive examples are a Hamming distance of 1
from each other. Each node in the bottom layer can then locally and
independently decide whether it is responsible for a difference in goal value.
If enough pairs of examples have been shown theu each node can determine

a local function (up to a negation).

As in the previous section, the transfer of knowledge proceeds by train-
ing the layers one by one. First the nodes in the bottom layer are taught the
correct assignment; the sequence of examples is then shown again to teach
the next layer; and so on to the top node. As the training proceeds upwards
in the tree, fewer examples suffice. For the top node only 4 examples are
needed. dowever,wehich exam;;les are needed depends on the assignments
made to.nodes;lower in. the tree. As the teacher has no knowledge of the
internal structiire, thesehassignments are not known and hence neither is the

optimal order of gxamples. We- will therefore assume that in each cycle the
same sequenee-Qf examples is shown.

The:leamingproceeds layer by layer; assignments to a node can be done

196

only if all its child nodes have received the correct assignment. Indeed, the
pairs of examples do not give information regarding nodes in different
layers, or even different nodes in the same layer. Hence, the incremental

transfer of knowledge only accrues to one node at a time.

A different strategy uses an explicit teach signal to start and stop the
knowledge transfer. Each time an example differs from the previous one in
more than a single bit, the transfer process is stopped. This is a more flexible
approach, but the perceptron still learns only when the examples differ in not

more than one bit.

The total number of pairs of £ -input vectors that differ in only one bit is
nx2"~!. The number of examples needed to train one layer is therefore at
most nx2". This implies n2"log,n example presentations for the whole
network, which is larger than the 2"log,n examples needed in the strategy of
the previous section. In spite of the ordering of examples, the learning is

slower.

The local controllers work independently of each other, except for a glo-
bal teach signal and a signal that enables the layer being trained. Each node
stores the previous and the current local input, as well as which columns are
different. The latter requires 2 bits per column (total 8 bits); the former
requires 2x3 bits (2 bits for the example and 1 for its goal value). Hence, 14
bits of memory are required per node, independently of the size of the net-
work. Compare this with the 8n bits needed in section 5.3.2. This suggests

that Armstrong’s strategy is more efficient in the number of examples it

197

needs at the expense of more memory requirements.

5.4. CONCLUSIONS

Aleksander discovered that in single-layer networks with an AND gate
or an OR gate as the output gate a simple assignment of responsibility
assures convergence. Armstrong discovered a class of networks that allows
a correct assignment of the responsibility based on a local counter. How-
ever, small extensions to both classes, such as for instance a voting gate as
the output node in Aleksander’s network or slightly more complete nodes in
Armstrong’s tree network, cause the strategies to collapse. A direct exten-
sion of these schemes to more general networks is not possible. Success

here is due to specific restrictions on the class of perceptrons.

What can be done in the general case? A first observation is that pairs
of examples give more information than single examples, especially if they
differ only in one bit. This allows a node with a difference in input variables
to assume that all the other variables of the pair are identical. This approach
works only if the teacher has control over the order of the examples.
Nevertheless, it makes intuitive ;sense if we compare it with the way humans
often teach new concepts, namely by showing examples and counterexam-

ples that differ only in one or a few distinguishing features.

The structure of the interconnections is again extremely important. We
studied only disjunctive binary trees; with fan-out connections the local

assignments are interdependent and not unique. The complexity of the

198

learning strategy is related to the completeness and (nontrivial) redundancy
of the network. The precise nature of these relationships are currently stiil

unknown.

Incremental assignment of responsibility in a perceptron with distri-
buted control is harder than in the decomposition problem. One reason is the
restricted and distributed nature of the allowable memory. Yet, these
requirements are fundamental in perceptrons, either with a threshold gate

model or a digital model, because of their practical advantages.

Most of the existing work in perceptrons (for instance [Hebb49, Klop72,
Klop82]) assumes that extreme distributed control can result in a globally
desirable functior.. In other words, it is conjectured that globally interesting
properties can emerge from a collection of small nodes whose operation is
guided by strategies that are entirely local. It follows from our work that
with extreme distributed control convergence cannot be guaranteed in gen-
eral. On the contrary, each node must have some global information to guide
its local operation. For instance, Fukushima proposes a learning strategy in
which each node communicates with a group of nodes in the same layer
[Fuku75, Fuku80]. Simulation experiments show a positive result, although
no formal proof is given.

Much work on learning by example in perceptrons makes random
changes in the assignments with each negative feedback; it is hoped that ran-
domness will imply proper, if perhaps slow, convergence. Typical examples

are [Alde75, Mart83]. Imposing constraints on the order of the examples is

199

the alternative strategy. The additional information in the order of the exam-
ples allows more informed local decisions at the nodes and hence a more
efficient strategy. These order constraints, however, are imposed by the par-

ticular internal structure of the perceptron.

ne-

200

CHAPTER 6

CONCLUSIONS

This dissertation has developed some initial steps towards an integrated
study of perceptrons, particularly the problem of assigning functional respon-
sibility. An abstract Boolean treatment was used and hence the results are

independent of a physical implementation.

A summary of the contributions is given first, followed by some direc-

tions for future research.

6.1. CONTRIBUTIONS

6.1.1. Perceptrons

Perceptrons have been traditionally identified with.specific and res-
tricted networks of threshold gates. Chapter 2 argued the existence of a
larger class of perceptrons and showed how the perceptron integrates a broad

field of research.

. We.defined perceptrons as multilayered networks of polyfunctional
combinational nodes. Central to this definition is the fact that the functional

_ flexibility is not restricted to a single node or a single layer of the network.

201

The fundamental problem addressed in the research is assignment of func-
tional responsibility in multilayered networks. In particular, our work
identifies two important properties that form the central problem for the
responsibility assignment in perceptrons: multilayeredness and fan-out con-

nections.

We presented an overview of existing and proposed implementations of
perceptrons, both analog and digital, and developed a model that integrates
them. In our model, different levels of completeness and redundancy can be

achieved, depending on the specifics of the node and the interconnections.

6.1.2. Applications

Chapter 3 showed that the domain of possible applications for percep-
trons covers an area larger than typically assumed in the literature. The com-
binational nature of the perceptron is suited to problems that can be

expressed as Boolean functions.

We showed how a subset of rule-based inference systems can be
reduced to Boolean functions and implemented with perceptrons. We also
showed that expressing a rule base as a pair of complementary Boolean func-.

tions can usefully expose incompleteness and inconsistencies in the rule set.

The characterization and preliminary study of this application domain is

the second contribution of our work.

202

6.1.3. Assignment of Functional Responsibility

The central issue in perceptron applications is the functional responsibil-
ity assignment in the multilayered network. Hence, the most significant con-

tributions of our work are related to this issue.

The problem of responsibility assignment can manifest itself in many
different forms. We first studied in some detail an extreme form of learning,
called decomposition. Steps towards learning by example were discussed
subsequently. Introducing decomposition as a reference to discuss learning

in perceptrons has provided new insights into the problem.

Chapters 4 and 5 applied the theory of decomposition of Boolean func-
tions to the learning problem and exposed what makes responsibility assign-
ment such a hard task. Perceptron networks have both depth and width. In
isolation neither of them is a source of difficulty, but jointly they determine

the degree of complexity.

The three most important conclusions are reviewed below.

a. Fan-out connections
SECHL SWily v G

If a perceptron has fan-out connections, that is, if an input to the net-
work or the output of an internal node is connected to more than one node,
the network becomes redundant in a nontrivial way. As a result, the assign-
ment of responsibility“is n&'longer unique. Furthermore, the local functional

assignments to diffetent nodes of the network are not independent of each

other. Therefore, an “assignment of responsibility based solely on local

203

information is not possible.

With no fan-out connections present (a disjunctive tree) responsibility

assignment becomes straightforward and can be done in an efficient way.

b. Decomposition

We approached the decomposition problem with a search algorithm.
The nodes are treated one by one in a bottom-up fashion. At each node a
few promising assignments are selected by a local selection criterion and
tried in sequence. A reduction process between two consecutive nodes
causes the assignments selected for a given node to depend on the assign-
mer.cs-made to previous nodes. The difficulty of the search is that this local
selection of assignments should also depend on the remainder of the percep-
tron structure, the part that has not yet been considered by the search. This is
the underlying pitfall of the responsibility assignment problem, namely, a
correct decision at each node requires some global knowledge of the net-

work.,

c. Learning by example

The same discrepancy between local and global knowledge occurs in
learning by example, which has also been briefly addressed in this disserta-
tion. We presented a simplified approach for binary tree networks that treats
the nodes layer by layer and makes assignments to one node at a time.

Therefore, with a multilayered network the learning remains confined to a

204

single node at a time.

6.2. FUTURE RESEARCH

We view our work as an initial step towards a formal study of percep-
trons. Only a few issues in a large and difficult area were explored. The
questions that remain unanswered are numerous and many directions for

future research can be proposed.

6.2.1. Perceptrons

We have unified a broad class of structures and collectively labeled
them perceptrons. Detailed studies of the various alternatives and possible
trade-offs in this wide spectram of structures are needed. Specifically, little
is known about the functional capabilities and redundancy of multilayered
systems. For instance, the following questions cannot be answered at this
time. How does one determine the functional set @ of a given perceptron?
How does one design a network that implements a given set ®? Is there a
simple way to determine whether a given network can implement all the
functions in a set ©? How m'any different .ways.can a given function be
implemented on a given perceptron? How can redundancy be exploited for

fault tolerance?

The underlying problem is our present ignorance regarding the relation-
ship between the structure of a multilayered network and its functional capa-

bilities. Existing tools, such as conjunctive or ‘disjunctive normal form,

205

Karnaugh maps, and the like, are not appropriate for perceptrons.

6.2.2. Applications

Further research on the topic of combinational rule-based systems
should explore the rule-based inference systems that can be expressed with
Boolean logic. The restriction of propositional logic is too strong. Certain
rule bases expressed in predicate logic can also be converted to a Boolean
formalism. The specific methods and constraints for this transformation
have to be developed and analyzed. Considering the improvement in
efficiency, this area of research should be of significant importance for the

near-term future.

6.2.3. Decomposition

Three important aspects of the decomposition problem are open for

future research.

a. Existing decomposition algorithm

Many aspects of the decomposition algorithm, as described in chapter 4,
need to be explored to improve not only the performance of the algorithm
itself, but also provide more insight into the decomposition problem in gen-

eral.

Several improvements to the selection criterion are possible, which

would further focus the search. Further theoretical or statistical analysis of

206

the performance of the algorithm is needed. The development of estimates
(instead of a pessimistic upper bound) for S ., and S, would allow a better
characterization of the complexity of the decomposition. Finally, the possi-
bilities for exploiting parallelism in the decomposition process itself should

be explored.

b. Top-down versus bottom-up strategies

A complementary decomposition algorithm, proceeding in a top-down
fashion, has not been developed or explored. Still, a top-down procedure
would be intuitively appealing. The difficuities encountered in such an
approach are different from those in a bottom-up strategy, but the exact
nature of these differences remains to be exploied. Insight gained from
understanding a complementary strategy would undoubtedly shed additional
light on the bottom-up strategy as well. A unification of both approaches

may be the final goal.

¢. Incompletely specified functions.

The existing decomposition algorithm does not assume that the given
goal function is completely specified: it is already dealing with don’t cares
internally. However, so far we have always considered cases of completely
specified functions, and possible shortcuts with don’t cares have not been
examined. Intuitively, the decomposition problem is simpler if the goal
function is specified only partially. It would again be desirable to do a

theoretical or statistical analysis of this issue and identify appropriate ways

207

of treating don’t cares.

6.2.4. Learning by Example

Our research on this topic has been only preliminary, but the following

two issues appear worthwhile to explore.

a. Distributed control

The assumptions of extreme distributed control, where the nodes of the
perceptron are entirely independent of each other, result in great difficulties
for learning by example. In general, as in the decomposition problem, a
direct assignment is not possible if only local infformation is available. The
local controllers must be allowed to communicate with each other and

exchange information.

Additionally, fan-out connections introduce nontrivial redundancy and
hence the assignments are not unique. Therefore, a search mechanism is
necessary in the coordination between the nodes. Further research should

examine possible communication strategies that assign responsibility as each

-~

D e ien
example is shown.
Tiowr v ot

; o T TN
SEORLe T e

rome Psvchologk
nationat Fourne

Comments o

208

b. Incompletely specified functions

The case where not all examples are available is the most important
issue for future research. In typical applications, an exhaustive set of exam-
ples is indeed not available and the goal is to provide a generalization.
Furthermore, applications will often have don’t cares in the examples them-

selves.

Both cases of don’t cares have not been studied yet. Intuitively, they
make the problem of learning by example simpler, but how this can be incor-

porated into a learning strategy is unclear,

209

Abel77.

Ager82.

Aida83.

Aker78.

Alde75.

Alek68a.

Alek68b.

Alek70a.

Alek70b.

Alek71.

BIBLIOGRAPHY

Abelson, H., ‘‘Computational Geometry of Linear Threshold
Functions,”” Information and Control 34(1), pp.66-92 (May
1977).

Agerwala, T. and Arvind, ‘“‘Data Flow Systems,’”’ Computer
15(2), pp. 10-13 (February 1982).

Aida, H., H. Tanaka, and T. Moto-Oka, ‘‘A Prolog Extension for
Handling Negative Knowledge,”" New Generation Computing
1(1), pp. 87-91 (1983).

Akers, S.B., ‘“‘Binary Decision Diagrams,’’ IEEE Transactigns on
Computers C-27(6), pp. 509-516 (June 1978).

Alder, M.D., ‘A Convergence Theorem for Hierarchies of Model
Neurones,’” SIAM Journal on Computing 4(4), pp.491-506
(December 1975).

Aleksander, I. and R.C. Albrow, ‘‘Adaptive Logic Circuits,”’
Computer Journal 11(1), pp. 65-71 (May 1968).

Aleksander, 1. and E.H. Mamdani, ‘‘Microcircuit Learning Nets:
Improved Recognition by Means of Pattern Feedback,’’ Electron-
ics Letters 4(20), pp. 425-426 (4 October 1968).

Aleksander, L., ‘*Microcircuit Learning Nets: Hamming-Distance
Behaviour,”” Electronics- Letters 6(5), pp. 134-136 (5 March
1970). | R

Aleksander, 1., “Sorﬁé‘ﬁ?sycholbgical Properties of Digital Learn-
ing Nets,”” Interndtionat Journal of Man-Machine Studies 2,
pp. 189-212 (1970).

Aleksander, [., ‘‘Commefits on' *Universal Logic Modules and
wooand Sy Papers

210

Alek78.

Alek79.

Alek83a.

Alek83b.

Alek84a.

Alek84b.

Alek8S.

Amar64.

Arms71,

Arms76.

Arms78.

Their Applications’,”’ IEEE Transactions on Computers C-20(5),
pp. 586-387 (May 1971).

Aleksander, 1., ‘‘Structure/Function Considerations for Digital
Systems that Contain Polyfunctional Elements,”’ Computers and
Digital Techniques 1(4), pp. 165-170 (October 1978).

Aleksander, 1. and T.J. Stonham, “‘Guide to Pattern Recognition
Using Random-Access Memories,”’ Computers and Digital Tech-
niques 2(1), pp. 29-40 (February 1979).

Aleksander, 1., T.J. Stonham, and B.A. Wilkie, ‘‘Recognition
Apparatus,”” UK. Patent Application GB 2,112,194 A (13 July
1983).

Aleksander, 1. and P. Burnett, Reinventing Man, Holt, Rinehart
and Winston, New York (1983).

Aleksander, L., ‘“‘Memory Networks for Practical Vision Systems:
Design Calculations,”” pp. 197-214 in Artificial Vision for Robots,
ed. 1. Aleksander, Chapman & Hall, New York (1984).

Aleksander, L., ‘‘Emergent Intelligence from Adaptive Processing
Systems,’’ pp. 215-233 in Artificial Vision for Robots, ed. 1. Alek-
sander, Chapman & Hall, New York (1984).

Aleksander, 1., ‘‘Intelligent Digital Systems,’’ pp. 273-308 in
Advanced Digital Information Systems, ed. 1 Aleksander,
Prentice/Hall International (19835).

Amarel, S., G. Cooke, and R.O. Winder, ‘‘Majority Gate Net-
works,”’ IEEE Transactions on Electronic Computers EC-13(1),
pp. 4-13 (February 1964).

Armstrong, W.W., ““Trainable Digital Apparatus,’’ United States
Patent No. 3,613,084 (October 12, 1971).

Armstrong, W.W,, ‘‘Adaptive Boolean Logic Element,”’ United
States Patent No. 3,934,231 (January 20, 1976).

Armstrong, W.W. and J. Gecsei, ‘‘Architecture of a Tree-Based
Image Processor,”” Twelfth Asilomar Conference on Circuits,

211

Arms79.

Atla81.

Bart81a.

Bart81b.

Bart82a.

Bart82b.

Bloc6l.

Bloc62a.

Bloc62b.

Bloc70.

Systems & Computers, Pacific Grove, CA, pp.345-349
(November 6-8, 1978).

Armstrong, W.W. and J. Gecsei, ‘‘Adaption Algorithms for
Binary Tree Networks,”’ IEEE Transactions on Systems, Man and
Cybernetics SMC-9(5), pp. 276-285 (May 1979).

Atlan, H., F. Fogelman-Soulie, J. Salomon, and G. Weisbuch,
‘“‘Random Boolean Networks,’’ Cybernetics and Systems 12(1-2),
pp- 103-121 (January-June 1981).

Barto, A.G., R.S. Sutton, and P.S. Brouwer, ‘‘Associative Search
Network: A Reinforcement Learning Associative Memory,”’ Bio-
logical Cybernetics 40 (3), pp. 201-211 (May 1981).

Barto, A.G. and R.S. Sutton, ‘‘Landmark Learning: An Illustra-
tion of Associative Search,’” Biological Cybernetics 42(1), pp. 1-
8 (November 1981).

Barto, A.G., R.S. Sutton, and C.W. Anderson, ‘‘Neuron-Like
Adaptive Elements That Can Solve Difficult Learning Control
Problems,”” Coins Technical Report 82-20, Computer and Infor-
mation Science Department, University of Massachusetts,
Ambherst, MA (1982).

Barto, A.G.,, C.W. Anderson, and R.S. Sutton, ‘‘Synthesis of
Nonlinear Control Surfaces by a Layered Associative Search Net-
work,”’ Biological Cybernetics 43(3), pp. 175-185 (April 1982).

Block, H.D., ‘“‘Analysis of Perceptrons,”’ Proceedings of the
Western Joint Computer Conference, Los Angeles, CA, pp. 281-
289 (May 9-11, 1961). as

Block, H.D., ‘‘The Perceptron: A Model of Brain Functioning I,”’
Reviews of Modern Physics 34(1), pp. 123-135 (January 1962).

Block, H.D., B.W. Knight Ir., and F. Rosenblatt, ‘‘Analysis of a
Four-Layer Series-Coupled Perceptron II,”’ Reviews of Modern
Physics 34(1), pp. 135-142 (January 1962).

Block, H.D., ““A Review of ’Perceptrons: An Introduction to
Computational Geometry’ by M. Minsky and S. Papert, 1969,”

212

Bobr78.

Bow84.

Brow85s.

Came60.

Cern79.

Cloc81.

Cruz83.

Curt61.

Curt63.

Duda73.

- Forg81.

Frie73s.

Information and Control 17(5), pp. 501-522 (December 1970).

Bobrowski, L., ‘‘Leamning Processes in Multilayer Threshold
Nets,’’ Biological Cybernetics 31 (1), pp. 1-6 (November 1978).

Bow, S.-T., Pattern Recognition, Marcel Dekker, Inc., New York,
NY (1984).

Brownston, L., R. Farrell, E. Kant, and N. Martin, Programming
Expert Systems in OPS5, Addision-Wesley Publishing Company,
Inc. (1985).

Cameron, S.H., ‘‘An Estimate of the Complexity Requisite in a
Universal Decision Network,”” Bionics Symposium, Dayton,
Ohio, pp. 197-212 (13-15 September 1960).

Cerny, E., D. Mange, and E. Sanchez, ‘‘Synthesis of Minimal
Binary Decision Trees,”’ IEEE Transactions on Computers C-
28(7), pp. 472-482 (July 1979).

Clocksin, W.F. and C.S. Mellish, Programming in Prolog,
Springer-Verlag (1981).

Cruz, C.A. and H.J. Myers, ‘‘Associative Networks II,”’ Report
8/465-3135, IBM Palo Alto Scientific Center, Palo Alto, CA
{October 7, 1983).

Curtis, H.A., “‘A Generalized Tree Circuit,’’ Journal of the ACM
8(4), pp. 484-496 (October 1961).

Curtis, H.A., ““Generalized Tree Circuit - The Basic Building

Block of an Extended Decomposition Theory,”’ Journal of the
ACM 10(4), pp. 562-581 (October 1963).

Duda, R.O. and P.E. Hart, Pattern Classification and Scene
Analysis, John Wiley & Sons, Inc. (1973).

Forgy, C.L., ““OPSS User’s Manual,”” CMU-CS-81-135, Depart-
ment of Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA (July 1981).

Friedman, A.D. and P.R. Menon, Theory and Design of Switching
Circuits, Computer Science Press, Inc.,, Woodland Hills, CA

213

Fuku75.

Fuku80.

Fuku&4.

Gall85a.

Gall85b.

Haye83.

Hay60.

Hebb49.

Hell84.

High73.

(1975).

Fukushima, K., *“Cognitron: A Self-Organizing Multilayer Neural
Network,’’ Biological Cybernetics 20(3/4), pp. 121-136 (1975).

Fukushima, K., ‘‘Neocognitron: A Self-Organizing Neural Net-
work Model for a Mechanism of Pattern Recognition Unaffected
by Shift in Position,’’ Biological Cybernetics 36, pp. 193-202
(1980).

Fukushima, K., ‘‘A Hierarchical Neural Network Model for Asso-
ciative Memory,”" Biological Cybernetics 50(2), pp.105-113
(1984).

Gallant, S.I., ‘*The Pocket Algorithm for Perceptron Leamning,"’
Technical Report $G-85-19, College of Computer Science,
Northeastern University, Boston, MA (January 2, 1985).

Gallant, S.I., ““Knowledge Representation Using Linear Discrim-
inant Networks,’” Technical Report SG-85-29, College of Com-
puter Science, Northeastern University, Boston, MA (October 24,
1985).

Hayes-Roth, F., D.A. Waterman, and D.B. Lenat, ‘‘An Overview
of Expert Systems,’”’ pp. 3-29 in Building Expert Systems, ed. F.
Hayes-Roth, D.A. Waterman, and D.B. Lenat, Addison-Wesley
Publishing Company, Inc., Reading, MA (1983).

Hay, J.C., F.C. Martin, and C.W. Wightman, ‘“The MARK I Per-
ceptron - Design and Performance,’’ IRE International Conven-
tion Record 2, pp. 78-87 (1960).

Hebb, D.O., The Organization of Behavior, John Wiley & Sons,
Inc., New York (1949).

Helly, J.J. Jr., ““A Distributed Expert System for Space Shuttle
Flight Control,”” Report CSD-840038, Computer Science Depart-
ment, University of California, Los Angeles, CA (1984).

Hight, S.L., ‘‘Complex Disjunctive Decomposition of Incom-
pletely Specified Boolean Functions,”” [EEE Transactions on
Computers C-22(1), pp. 103-110 (January 1973).

214

Hint81.

Hint34.

Hint85.

Hopc79.

Hopf82.

Hube62.

Jaff83.

John77.

Kabl83.

Kauf70.

Hinton, G.E., ‘‘Implementing Semantic Networks in Parallel
Hardware,”’ pp. 161-187 in Parallel Models of Associative
Memory, ed. G.E. Hinton and J.A. Anderson, Lawrence Erlbaum
Associates, Hillsdale, NJ (1981).

Hinton, G.E.,, T.J. Sejnowski, and D.H. Ackley, ‘‘Boitzmann
Machines: Constraint Satisfaction Networks that Leam,”’ Techni-
cal Report CMU-CS-84-119, Department of Computer Science,
Carnegie-Mellon University (May, 1984).

Hinton, G.E., ‘‘Learning in Parallel Networks,”” BYTE 10(4),
pp. 265-273 (April 1985).

Hopcroft, J.E. and J.D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley Publishing Com-
pany (1979).

Hopfield, J.J.,, ‘‘Neural Networks and Physical Systems with
Emergent Collective Computational Abilities,”’ Proceedings of
the National Academy of Science of the USA 79, pp. 2554-2558
(April 1982).

Hubel, D.H. and T.N. Wiesel, ‘‘Receptive Fields, Binocular
Interaction and Functional Architecture in the Cat’s Visual Cor-
tex,’”” The Journal of Physiology 160(1), pp. 106-154 (January
1962).

Jaffar, J., J.-L. Lassez, and J. Lloyd, ‘‘Completeness of the Nega-
tion as Failure Rule,”’ Proceedings of the Eight International
Joint Conference on Aritificial Intelligence, Karlsruhe, West Ger-
many, pp 500-506 (August 8-12, 1983).

Johnson, N L and S. Kotz, Urn Models and Their Application,
John Wlley & Sons (1977).

Kableshkov, S. O " The Anthropocentric Approach to Computing
and Reactive Machines, John Wiley & Sons (1983).

Kauffni;h, S, ‘‘Behaviour of Randomly Constructed Genetic
Nets: Binary Element Nets,”’ pp. 18-37 in Towards a Theoretical
Bzology, Vol 3: Drafts, ed. C.H. Waddington, Edinburgh

215

Klop72.

Klop82.

Koho82.

Konh62.

Kova&80.

Kowa79.
Lewi81.

Malo82.

Mart83.

Mart86.

Mato8§3.

University Press (1970).

Klopf, A.H., “‘Brain Function and Adaptive Systems: A Heteros-
tatic Theory,”’ Report AFCRL-72-0164, Air Force Cambridge
Research Laboratories, Bedford, MA (3 March 1972).

Klopf, A.H., The Hedonistic Neuron, Hemisphere Publishing Cor-
poration, New York (1982).

Kohonen, T., ‘‘Self-Organized Formation of Topologically
Correct Feature Maps,’’ Biological Cybernetics 43(1), pp. 59-69
(January 1982).

Konheim, A.G., ‘A New Class of Multilayer Series-Coupled Per-
ceptrons,”’ pp. 485-502 in Self-Organizing Systems 1962, ed.
M.C. Yovits, G.T. Jacobi, and G.D. Goldstein, Spartan Books,
Washington, D.C. (1962).

Kovalevsky, V.A., Image Pattern Recognition, Springer-Verlag,
Inc. (1980). (Originally published by Nauka, Moscow, 1977.
Translated by Arthur Brown.)

Kowalski, R., Logic for Problem Solving, North-Holland (1979).

Lewis, H.R. and C.H. Papadimitriou, Elements of the Theory of
Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ (1981).

Malony, A.D., ‘‘Regular Interconnection Networks,”” Report No.
CSD-820825, Computer Science Department, University of Cali-
fornia, Los Angeles, CA (August 1982).

Martinez, T., ‘‘Convergence Algorithms for Fixed Structured
Logic Networks,”” M.S. Comprehensive Exam, University of
California, Los Angeles, CA (1983).

Martinez, T., ‘‘Adaptive Self-Organizing Logic Networks,”
Ph.D. Dissertation, University of California, Los Angeles, CA
(1986).

Matos, J.S. and J.V. Oldfield, ‘‘Mapping of Binary Decision
Diagrams into Silicon,”’ 1983 IEEE International Symposium on
Circuits and Systems, Newport Beach, CA 1, pp. 210-213 (May

216

McCu43.

Mich83.

Mich86.

Miil62,

Minn61.

Mins69.

Miyag4.

Moor83.

Moor85a.

Moor85b.

Moor85c.

Moor85d.

2-4, 1983).

McCulloch, W.S. and W. Pitts, ‘*A Logical Calculus of the Ideas
Immanent in Nervous Activity,”’ Bulletin of Mathematical
Biophysics 5(4), pp. 115-133 (December 1943).

Michalski, R.S., J.G. Carbonell, and T.M. Mitchell, Machine
Learning, Tioga Publishing Co, Palo Alto, CA (1983).

Michalski, R.S., J.G. Carbonell, and T.M. Mitchell, Machine
Learning, Volume 1I, Morgan Kaufmann Publishers, Inc., Los
Altos, CA (1986).

Miiller, H.S. and R.O. Winder, ‘‘Majority-Logic Synthesis by
Geometric Methods,’’ /RE Transactions on Electronic Computers
EC-11(1), pp. 89-90 (February 1962),

Minnick, R.C,, ‘“‘Linear-Input Logic,”” IEEE Transactions on
Electronic Computers EC-10(1), pp. 6-16 (March 1961).

Minsky, M. and S. Papert, Perceptrons - An Introduction to Com-
putational Geometry, MIT Press, Cambridge, MA (1969).

Miyake, S. and K. Fukushima, ‘‘A Neural Network Model for the
Mechanism of Feature-Extraction,’’ Biological Cybernetics 50(5),
pp. 377-384 (1984).

Moore, D.W,, “‘General Purpose Perceptron,”” Report CSD-
830817, Computer Science Department, University of California,
Los Angeles, CA (June 1983).

Moore, D.W., ““Communication as a VLSI Complexity Issue,”
Informal Report, Computer Séience Department, University of
California, Los Angeles, CA (March 7, 19835).

Moore, D.W,, ‘‘Amenable Logic Gate.and Method of Testing,”
United States Patent No. 4,542,508 (September 17, 1985).

Moore, D.W, and R.A. Verstraete, ‘‘Functionally Redundant
Logic Network Architectures,”” United States Patent No.
4,551,814 (November 5, 1985).

Moore, D.W. and R.A. Verstracte, ‘‘Functionally Redundant

217

Coe MRoseSQ.

% P
CE N IR

Moun80.

Muro61.

Muro62.

Negr64.

Nils65.

Nils80.

Pate76.

Rals83.

Rose58.

Logic Network Architectures with Logic Selection Means,"’
United States Patent No. 4,551,815 (November 5, 1985).

Mountcastle, V.B., Medical Physiology, Fourteenth Edition,
Volume I, The C.V. Mosby Company (1980).

Muroga, S., I. Toda, and S. Takasu, ‘‘Theory of Majority Deci-
sion Elements,”” Journal of the Franklin Institute 271(5),
pp- 376-418 (May 1961).

Muroga, S., ‘‘Generation of Self-Dual Threshold Functions and
Lower Bounds of the Number of Threshold Functions and a Max-
imum Weight,”' Proceedings of the 3rd Annual Symposium on
Switching Circuit Theory and Logical Design, Chicago, pp. 170-
184 (October 7-12, 1962).

Negrin, A.E., *‘Synthesis of Practical Three-Input Majority Logic
Networks,”’ IEEE Transactions on Electronic Computers EC-
13(3), pp- 296-299 (June 1964).

Nilsson, N.J.,. Learning Machines, McGraw-Hill, New-York
(1965).

Nilsson, N.J., Principles of Artificial Intelligence, Tioga Publish-
ing Company, Palo Alto, CA (1980).

Paterson, M.S. and L.G. Valiant, *‘Circuit Size is Nonlinear in
Depth,”’ Theoretical Computer Science 2(3), pp. 397-400 (Sep-
tember 1976).

Ralston, A. and E.D. Jr. Reilly, Encyclopedia.of Computer Sci-
ence and Engineering, Second Edition, Van Nostrand Reinhold
Company, New York (1983).

Rosenblatt, F., ‘“The Perceptron: A Probabilistic Model for Infor-
mation Storage and Organization in the Brain,”’ Psychological
Review 65 (6), pp. 386-408 (November 1958).

Rosenblatt, F., ‘“Two Theorems of Statistical Separability in the
Perceptron,”” pp. 419-472 in Mechanisation of Thought
Processes, Her Majesty’s Stationary Office, London (1959).

218

Rose60a.

Rose60b.

Rose62a.

Roseb2b.

Rose64.

Sala83.

Sing62.

Sriv77.

Sriv78.

Ston71.

Rosenblatt, F., ‘‘Perceptron Simulation Experiments,’’ Proceed-
ings of the IRE 48(3), pp. 301-309 (March 1960).

Rosenblatt, F., ‘‘Perceptual Generalization over Transformation
Groups,’’ pp. 63-100 in Self-Organizing Systems, ed. M.C. Yovits
and S. Cameron, Pergamon Press (1960).

Rosenblatt, F., Principles of Neurodynamics, Spartan Books,
Washington, D.C. (1962).

Rosenblatt, F., ‘‘A Comparison of Several I’erceptron Models,”’
pp. 463-484 in Self-Organizing Systems 1962, ed. M.C. Yovits,
G.T. Jacobi, and G.D. Goldstein, Spartan Books, Washington,
D.C. (1962).

Rosenblatt, F., *‘A Model for Experiential Storage in Neural Net-
works,”” pp. 16-66 in Computer and Information Sciences, ed.
J.T. Tou and R.H. Wilcox, Spartan Books, Inc., Washington, D.C.
(1964).

Salas, P., M. Juckler, S. Chau, R. Verstraete, D. Moore, and J.
Vidal, ““UCLM Research Notes,”” Report CSD-830818, Com-
puter Science Department, University of California, Los Angeles,
CA (June 1983).

Singleton, R.C,, ‘A Test for Linear Separability as Applied to
Self-Organizing Machines,”” pp. 503-524 in Self-Organizing Sys-
tems 1962, ed. M.C. Yovits, G.T. Jacobi, and G.D. Goldstein,
Spartan Books, Washington (1962).

Srivatsa, S.K. and N.N. Biswas, ‘‘Karnaugh Map Analysis and
Synthesis of Threshold Functions,”’ International Journal of Sys-
tems Science 8(12), pp. 1385-1399 (December 1977).

Srivatsa, S.K. and N.N. Biswas, ‘‘Karnaugh Map Synthesis of
Multigate Threshold Networks,’’ International Journal of Systems
Science 9(7), pp. 785-797 (July 1978). e il

Stone, H.S., ‘‘Universal Logic Modules,”’ pp. 229-254 in Recent
Developments in Switching Theory, ed. A. Mukhopadhyay,
Academic Press (1971). '

219

Ston&S5.

Suwa@4.

Taki78.

Taki81.

Tohmé64.

Turn84.

Uesa?5.

Ullm69.

Urba68.

Vali&4.

Vers82.

Stonham, T.J., *‘Practical Pattern Recognition,”’ pp. 231-272 in
Advanced Digital Information Systems, ed. 1. Aleksander,
Prentice/Hall International (1985).

Suwa, M., A.C. Scott, and E.H. Shortliffe, ‘‘Completeness and
Consistency in a Rule-Based System,”” pp. 159-170 in Rule-
Based Expert Systems, ed. B.G. Buchanan and E.H. Shortliffe,
Addison-Wesley Publishing Company, Inc. (1984).

Takiyama, R., ‘A General Method for Training the Committee
Machine,”’ Pattern Recognition 10 (4), pp. 255-259 (1978).

Takiyama, R., ‘‘A Two-Level Committee Machine: A Represen-
tation and a2 Learning Procedure for General Piecewise Linear

Discriminant Functions,’’ Pattern Recognition 13 (3), pp. 269-
274 (1981).

Tohma, Y., ‘‘Decomposition of Logical Functions Using Majority
Decision Elements,”” /EEE Transactions on Electronic Comput-
ers EC-13(6), pp- 698-705 (December 1964).

Tumer, R., Logics for Artificial Intelligence, Ellis Horwood Lim-
ited, Chichester, UK (1984).

Uesaka, Y., ““On the Learnability of Discriminant Functions in
Pattern Recognition,”” Systems-Computers-Controls 6 (5),
pp. 104-110 (September-October 1575).

Ullmann, J.R., ‘‘Experiments With the n-Tuple Method of Pattern
Recognition,”” [EEE Transactions on Computers C-18(12),
pp. 1135-1137 (December 1969).

Urbano, R.H., ‘‘Structure and Function in Polyfunctional Nets,”’
IEEE Transactions on Computers C-17(2), pp. 152-173 (February
1968).

Valiant, L.G., ‘‘A Theory of the Learnable,”’ Communications of
the ACM 27(11), pp. 1134-1142 (November 1584).

Verstraete, R., ‘‘General Purpose Perceptrons: a Boolean Treat-
ment,”’ M.S. Thesis, University of California, Los Angeles, CA
(1982).

220

Vers83.

Vida83.

Vida8s.

vonS8.

Wate78.

Widr60.

Widr62.

Widr64.

Wils76.

Wils80.

Wind63.

Verstraete, R., ‘“‘Renewed Interest in Perceptrons,”’ Symposium
IBM-NFWO, Brussels, Belgium, pp. 57-65 (December 8, 1983).

Vidal, J.J.,, *‘Silicon Brains: Whither Neuromimetic Computer
Architectures,”” Proceedings of the IEEE International Confer-
ence on Computer Design - VLSI in Computers, Port Chester,
NY, pp. 17-20 (31 October-3 November 1983).

Vidal, J.J., *“The Distributed Machine Intelligence Project,”’ The
UCLA Computer Science Department Quarterly 13(3), pp. 143-
148 (Summer 1985).

von Neumann, J., The Computer and the Brain, Yale University
Press, New Haven, CT (1958).

Waterman, D.A. and F. Hayes-Roth, *“‘An Overview of Pattern-
Directed Inference Systems,”’ pp. 3-22 in Pattern-Directed Infer-
ence Systems, ed. D.A. Waterman and F. Hayes-Roth, Academic
Press, New York (1978).

Widrow, B. and MLE. Hoff, ‘‘Adaptive Switching Circuits,”’ 1960
IRE WESCON, pp. 96-104 (August 23-26, 1960).

Widrow, B., ‘‘Generalization and Information Storage in Net-
works of ADALINE ‘Neurons’,”” pp. 435-461 in Self-Organizing
Systems 1962, ed. M.C. Yovits, G.T. Jacobi, and G.D. Goldstein,
Spartan Books, Washington, D.C. (1962).

Widrow, B. and F.W. Smith, ‘‘Pattern-Recognition Control Sys-
tems,”’ pp. 288-317 in Computer and Information Sciences, ed.
J.T. Tou and R.H. Wilcox, Spartan Books, Inc., Washington, D.C.
(1964).

Wilson, M.J.D. and 1. Aleksander, ‘‘Arraylike Learning Sys-
tems,”” Journal of Cybernetics 6(3-4), pp.271-284 (July-
December 1976).

Wilson, M.J.D.,, ‘‘Artificial Perception in Adaptive Arrays,’’
IEEE Transactions on Systems, Man, and Cybernetics SMC-
10(1), pp. 25-32 (January 1980).

Winder, R.O., ‘‘Bounds on Threshold Gate Realizability,’’ /EEE

221

Wind65.

Yaji65.

Yau68.

Yau70.

Transactions on Electronic Computers EC-12(5), pp. 561-564
(October 1963).

Winder, R.O., ‘“‘Enumeration of Seven-Argument Threshold
Functions,”” IEEE Transactions on Electronic Computers EC-
14(3), pp. 315-325 (June 1965).

Yajima, S. and T. Ibaraki, ‘‘A Lower Bound on the Number of
Threshold Functions,”’ /EEE Transactions on Electronic Comput-
ers EC-14(6), pp. 926-929 (December 1965).

Yau, S.S. and C.K. Tang, ““Universal Logic Circuits and Their
Modular Realizations,”’ AFIPS Conference Proceedings, Atlantic
City, NJ 32, pp. 297-305 (April 30-May 2 1968).

Yau, S.S. and C.K. Tang, ‘‘Universal Logic Modules and Their
Applications,”” IEEE Transactions on Computers C-19(2),
pp. 141-149 (February 1970).

~n @ ganerst o

wotla e

HICh internod

222

