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ABSTRACT OF THE DISSERTATION

Proving Correctness of Asynchronous Circuits

Using Temporal Logic
by

Mark Joseph Bennett
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1986

Professor David F. Martin, Committee Chair

The recent advances made in VLSI have prompted new ideas for hardware. As
it becomes more difficult to rely upon a global clock and as the need for increased
speed arises, asynchronous circuits become more attractive. Since asynchronous cir-
cuits operate at a speed determined by the input and gate delays only, they can operate
faster than their synchronous counterparts and generate completion signals. Unfor-
tunately current validation techniques are cumbersome and do not instill much

confidence in designs.

Proving correctness in a deductive system for propositional temporal logic
(PTL) is shown here to be an attractive validation alternative. Axioms describing the
behavior of atomic elements (gates or modules) are formulated in PTL. Desired pro-
perties of the circuit are formulated as specifications in PTL. As gates or modules are

composed to form larger modules, their corresponding PTL formulas are combined

viii



using PTL theorems. Using the methods introduced here, the specifications can be
proved correct with respect to the axioms. Verified examples range from latches to a

self-timed asynchronous pipeline.

A method for proving steady-state circuit properties is introduced which is
based upon a deductive system for temporal logic. A method for proving global-time
properties is also presented which is an extension of the steady-state method. Proving
global-time properties involves a collection of heuristics such as forward reasoning for
liveness, backward reasoning for safety, and proving transition safety and non-
interference properties. PTL timing diagrams are introduced as a tool for informally

reasoning about complex until-formulas.

A graph representation of a circuif’s execution is provided with the Execution
Graph Method (EGM),. which is introduced to address the lack of behavioral informa-
tion in a circuit schematic. The execution graph is formed from a set of PTL formulas
proved from the axioms. Safety and liveness properties can be shown to hold on the
execution graph by using an algorithm which traverses paths in a depth-first manner. It

is shown that EGM can be used to verify gate- or module-level circuits hierarchically.
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CHAPTER 1

Introduction

1.1 Overview

The recent advances made in VLSI dcvice technology, VLSI circuit design, and
VLSI CAD systems have made possible the rapid design of computer hardware. No
longer do engineers rely on a few standard logic chips. The age of more custom and
more complex systems is here. As a result, there are more types of computer

hardware than ever before.

The intent of this work is to increase the level of confidence in hardware designs
by constructing mathematical proofs of correctness. Verifying hardware through
correctness proofs is a way of convincing oneself that no errors exist in the design.
The formalism used for describing and writing assertions about the hardware will be
‘temporal logic. Temporal logic is a logic which incorporates the notion of time into
the traditional formal reasoning system of first-order logic, and as such it is particu-
larly useful when timing is the main issue. Temporal logic, in fact, is a formalization

of the timing diagrams used by designers.

Hardware designers currently use various validation approaches at different



stages of the design process to increase the level of confidence in the design:
+  logic simulation

+  analog simulation

*  testing

Logic simulation is an exccution of the circuit with logic values. The circuit is
essentially executed with certain input values and initial storage values. The approach
cannot account for every combination of input and storage values (called a case)
except in simple circuits since the number of possible input values is of exponential

order.

Analog simulation consists of modelling the circuit as a network of analog dev-
ices. Gate-level properties such as switching time can be determined, and it is here
that the effects of parasitic capacitances and wire resistance are studied. This step is
necessary to implement the circuit in a particular device technology, such as nMOS or

CMOS.

Testing is done after a prototype is available, In the case of VLSI, it has the
disadvantage that the chip must first be fabricated, which is very costly. Testing also
cannot account for every possible case, although automatic test equipment is making

this less true.

Verification should be done before any of the other processes are done.
Verification is not a substitute for any of them, but it is one more way to increase the
level of confidence. It has the property of being able to handle every case, since it

consists of mathematical proofs.

While verification might not be warranted by conventional applications, it is

imperative in security applications where true confidence requires a proof that the



system is logically secure, and in life-critical applications where anything less than

absolute confidence is unacceptable.

Hardware may be roughly classified as being either synchronous or asynchro-
nous. Synchronous systems have a common clock throughout. Most register transfer
systems, ALUs, and memories may be considered synchronous. Asynchronous sys-
tems may either have no clock or just appear to ltave no clock to the external observer.
Arbiters, peripheral controllers, and self-timed VLSI circuits [Mea80] are examples of
asynchronous systems. As the trend toward architectural support for operating system
functions continues [Dit82] more circuits which c¢dn be viewed in an asynchronous
framework will be embedded in hardware, Examples of these include hardware prior-
ity queues [Lei81] and FIFO buffers [Mea80], items previously implemented in

software.

For verification purposes, synchronous systems are analogous to sequential pro-
grams. The primary properties of interest are partial correctness and términation.
Asynchronous circuits possess properties like those of concurrent programs such as
mutual exclusion (in the case of circuits such as the arbiter [Sei80b, Boc82]) and
responsiveness. The ultimate goal of hardware verification is to treat both synchro-
nous and asynchronous systems. Although synchronous systems can be treated with
traditional first-order logic as demonsirated by Wagner [Wag77], we believe that hav-
ing one specification language, tempotal logic, capable of dealing with both function

and timing will prove beneficial.

1.2 Asynchronous Circuits

Asynchronous communication using request/acknowledge signalling is a useful

technique when synchronizing two devices with different clocks. As VLSI and WSI



(wafer-scale integration) clock distributi?n becomes difficult due to the excessive
delays in long wires, asynchronous systems and globaily-asynchronous locally-
synchronous systems [Cha84] become atiractive. In addition, asynchronous systems
are generally faster. Synchronous systems must be designed using a worst-case
assumption. All devices are reduced to the speed of the slowest device. But using
existing validation methods for asynchronous circuits, including race and hazard
analysis [Fri75] and those mentioned in Section 1.1, are not exhaustive and thus are

prone to ignore faults.

In this thesis, we concentrate on speed-independent [Arm69, Ung69] or Muller
[Mul59, Mil65] asynchronous circuits. Speed-independent circuits operate correctly
regardless of the gate delays. Some forni of completion signalling is necessary, and
adjacent modules communicate through this completion or request/acknowledge sig-

nalling. Those circuits using request/acknowledge signalling are called self-timed.

Through most of the thesis gates are assumed to have unbounded, but finite,
delay. Lines are assumed to have no delay. This simplifies the analysis without loss
of generality since line delays can be included in gate delays or modelled as non-

inverting delay elements.

1.3 Hierarchical Verilication

In order to ‘manage the complexity of the verilication process and limit the
number of circuit states which need to be considered at one time, verification is done
hierarchically, beginning with gates as the lowest-level devices and working up to
sequential machines. Initial assumptions (called axioms) describing the properties of
the lowest-level devices are stated and then the specifications describing the properties

of larger modules are proved correct relative to the axioms. The specifications of the



larger modules are then taken as assumptions, and specifications of even larger
modules composed of these are proved correct. The process continues in a bottom-up
fashion. When complete correciness has been proven, then it has been accomplished

with only the lowest-lecvel device axioms assumed,

The functional specification technique is employed where the specifications of
more complex modules are functions of the specifications of the simpler constituent
parts. Circuits are treated as "black-boxes” which perform a function according to
their specifications and communicate with adjacent circuits through input and output

lines. Intemal lines are hidden.

1.4 Safety and Liveriess

Most properties of hardware and softwire systems can be classified as either a
safety or liveness property., Safety propertics ate thos¢ where nothing bad ever hap-
pens. These include partial correctness (if the systems terminates, it has not reached
any bad states), deadlock freedom, mutual exclusion (such as in an arbiter), and latch
stability (e.g. if a memory device has a certain value, it will retain that value until
some write action removes it). Safety properties are usually stated something like "up
until some point in time, property P is true" or "from now until forever, property @ is
true." Liveness properties are those where something good eventually happens.
These include termination, fairmess (a process will get dispatched eventually), and
responsiveness (e.g. if the bus is requested, it will eventually be granted). Liveness is

usually expressed "eventually property R will be true."

1.5 Theorem Prover



Propositional Temporal Logic (PTL) is the primary assertion language. This is
propositional calculus (PC) with the 4 temporal operators added. It is a decidable
language, and tableaux procedures are provided in [Wol84]. Frank Yellin at Stanford
wrote a theorem prover which implements the decision procedure for PTL. We will
refer to it as the Decision Procedure or just DP. This became available roughly mid-
way into this research and eliminated much of the need for hand proofs of temporal

logic theorems.

The notions of validity and satisfiability used by the DP come from mathematical
logic. A valid formula is one which is true in all state sequences. A satisfiable for-
mula is one which true in at least one state sequence. The program accepts temporal
formulas expressed in terms of the 4 basic operators and outputs whether the formula
is valid. It does so by negating the formula and using a satisfiability algorithm
[Wol84] to determine whether the negation is satisfiable. The negation is satisfiable if
and only if the original formula is valid, Since PTL is complete [Gab80], any valid

formula is derivable in the PTL deductive system and is therefore a theorem.

1.6 Contributions of this Thesis

We introduce PTL timing diagrams to address the need to informally reason
about temporal logic formulas, especially those involving the "until” operator. They
are a conceptual tool rather than a formal tool. We demonstrate their use in deciding

whether a temporal logic formula looks reasonable.

The proof rules for steady-state propertics are the product of a syntax-directed
proof method introduced here. The proof rules for global-time properties come out of
an extension of the steady-state method, the global-time method. We prove the proof

rules and demonstrate their application to formal reasoning about circuits.



The theory of the Execution Graph Method involves a collection algorithms and
theorems. We present the theory and demonstrate the application of it in a correctness

proof of a self-timed asynchronous pipeline,

In addition, several other small circuit proofs and original temporal logic

theorems are presented in detail.

1.7 Organization of this Thesis

Chapter 2 describes temporal logic, some of its theorems, and its use in hardware
verification. Chapter 3 discusses previous related work in hardware verification.
Chapter 4 is an introduction to the PTL proof process. Steady-state properties are
considered and proof rules are introduced and demonstrated. Chapter 5 extends the
steady-state method to global-time propertics. Forward and backward reasoning are
introduced, as well as PTL timing diagrams. Chapter 6 discusses the execution graph
method for proving safety and liveness properties. Chapter 7 considers anomalous

behavior. Finally, Chapter 8 discusses conclusions and remaining problems.



CHAPTER 2

Temporal Logic

We introduce temporal logic, First we give a definition in terms of its syntax and
semantics, then an axiomatization in line with the current temporal logic literature
[Man81, Gab80, Wol83], followed by uscful operator properties in the form of

theorems. Then we provide examples of its use in hardware specification.

2.1 Definition of Temporal Logic

Temporal logic is classical first-order logic augmented with four temporal opera-
tors: [ (henceforth), V (eventually), O (next), and U (until). The formula Olw
intuitively means that w is true now and at all times in the future. V w means that
there is a time in the future when w will hold. Ow means that at the next point is
time w is true. wy; U w, means that w is true now and up to, but not necessarily
including, the point in time when w4 holds; if w, never becomes true, w is true for-
ever. Later we add an additional operator, U 4, for convenience. w; U 4 w, abbrevi-
ates w, U (w; & wy). wy U4 wy means that w is true now and up to and including

the point in time when w, holds. Again if w, never becomes true, w is true forever.



Two types of underlying models for temporal logic are linear-time and
branching-time. Both represent time as going from now infinitely far into the future.
Linear-time is a deterministic viewpoint. Every stale has only one possible next state
which can be determined. Time appears to be an infinite sequence of states.
Branching-time is a nondeterministic viewpoint. Every state has a set of possible next
states. Time appears to be an infinitcly long branching tree beginning at the root,

corresponding to "now." In this thesis we deal only with linear-time temporal logic.

We deal primarily with propositional temporal logic (PTL), an extension of pro-
positional logic or propositional calculus (PC) which includes the temporal operators.

A definition of PTL follows.

Syntax
A PTL formula w (in , the set of formulas) is built from the following com-

ponents:
(i) atomic propositions p{, Pa, ..
(ii) temporal operators: (1, V, O,and U .

(iii) logical operators & and =,

The formulas are formed from the rules:
(i) Any atomic proposition is a formula.

(ii) If w and w4 are formulas then the following dre formulas:
wi & Wi, Wy,

DM’], VW], OWI, Wy U Wa.



As in propositional logic the symbols V (inclusive OR) and > are used for abbrevia-
tion. The unary operators (—, [, V, and O) have highest precedence. Among the
binary operators, the precedence from highest to lowestis & , U,V,theno. U
is right-associative so that w,U waU -+ Uw, is equivalent to

wi U wo U (-++ U w,) ). Parentheses are used to resolve any ambiguity.

Semantics
A model for a temporal logic formula is a pair (11,X) where

(i) u is a function which determines the truth value of a formula w € in a state

sequence o e 3. p has functionality

p: — X - {true,false}

(ii) Z is the set of infinite state sequences g= <0,0p, ' * * > where 0 is the state
at time k. A state is an assignment of values to atomic propositions. The notation o)

is used to mean the state sequence G with its first i states removed.
W is defined over the set of formulas as follows:
() pIp1(c) = oylp] where o=<0y0p, " >
() p[ Owle) = Vi20plw](c®)

(ii) pL V w1(o)

i 20w (e
@) L[OWI(0) = pIwl(c™)
¥) tliwy U wal(0) = Vi0pfw i)
V 3200w, 6% & Vj,0<)<inlw,dc?).
The function W is a semantics of PTL formulas. A formula w is said to be valid

if it is true in all models (j1,Z) written | w. We also introduce the until-after U A

10



operator used as an alternative to the until opdrator U used in much of the temporal
logic literature [Wol83, Man81, [1ai82]. Until-after is more convenient when express-
ing safety axioms of certain hardware devices because it guarantees a point in time

exists when both w, and w5 are true. Itis defined in terms of U .
Wi UA wa Edef W U (Wl & Wz)

We can also give a semantics of {/, even though it is ttot one of the primitive opera-
tors. The semantics can be derived from the semantics of U/ and the definition of
Uy, .
wiwy, U 4 wall(0) = Viz0plw,1(c"?)
V 3i20.pfw,l6%) & Vj,0<i<infw (6.

Note that the until operator is defined with j ranging over 0<j<i rather than 0<j<i.
Both of these until operators are weak in the sense that they do not imply the eventual
occurrence of the second operand, that is, neither wy U 4 w4 nor wy U wy imply
V w,. In most of the previous temporal logic wotk [Man81, Hai82] the formula
w, U w, implies V w,. This strong version of until wiil be written U here to

emphasize the "eventually” aspect. U E will be defined

wq UE W Sdef (wq U wj) & VWz.

In addition to the basic temporal operators, some operators will be defined for
convenience. The ¢ (assign) operator is used to state that a variable is assigned a
value. In the formula B < A the value of A is copied to B over a time interval. The

assign operator is defined

x —w=3dg[w=dy& Ox =dy)].
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(For a minute we go butside PTL and use a quantifier. The « operator is only used
in the informal section on hardware description, Section 2.5 below.) The =
(entails) operator, when used in a formula such as wy => w,, abbreviates the entail-
ment formula [J(w; > w,). Entailment is a concept introduced in [Hug68} meaning
that w, can be inferred from w throughout time. The —» (yields) operator states a
liveness relationship betwcen two formulas., wj; - w, is an abbreviation for
[J(w; D> V wy), a relationship between two formulas known as an eventuality. It
says that, throughout time, if w; becomes true then w, must eventually become true.
The T (high-transition) operator states that a formula changes from false to true over
one time-interval. The T operator in T w is an abbreviation for - w & Ow. Simi-
larly the | (low-transition) operator used in 4 w is an abbreviation for w & O—w.

We will also use the expression }i: w; = 1 to say exactly one of the w; is true.

2.2 Axiomatization of Temporal Logic

Gabbay, Pnueli, Shelah, and Stavi [Gab80] give a complete axiomatization of
PTL with the strong until operator UZ , Wolpet [Wol83] gives a different axiomati-

zation based on the weak until operator U,

Axioms
- Vw=a O-w (AD)
- Owiowy) o (Ow; o Owy) (A2)
- O-w=- 0w (A3)
|~ O(w; D wy) 2 (Ow 2 Ow,y) (A4)

12



FOwowd& Ow & OLlw (AS5)

- O@w > Ow)o(w > Ow) (A6)

- Owyow, U w, (A7)

ew U wyz=w,y ¥V (wi & O(w U wy)) | (A8)
Inference rules

If w is a propositional tautology, then |~ w. (R1)

If |-wy D wyand |- wy, then |- wy (R2)

If |- w, then |- Ow (R3)

The |~ symbol preced.ing a formula as in |- w means that w is an axiom or theorem
which is derivable within the system, [-w may be read "w is derivable" or "w is
provable.” Axiom Al states that if it is not the case that at all times w is false, then w
must eventually become true. Axiom A2 says that if w, entails wj then [Jw, can be
inferred from [Jw,. Axiom A3 defines how the O and — operators may be tran-
sposed. The one-way distributivity of O over D is stated in axiom A4. Axiom AS

gives three inferences possible from [lw. Individually these are:
- Owow
- Ow > Ow

- Ow>o O Ow

13



Axiom A6 is the "computational induction” axiom, stating that if a property is inher-
ited over all states, then the property being true in the inital state suffices to deduce
that the property is invariantly true, Axioms A7 and A8 define weak until. Axiom A7
states that U is weak since Clw, is sufficient to infer that wy; U w,, and that w,

need never occur. Axiom A8 is an infinite recursive definition of the operator.

Wolper's axiomatization replaces U axiom A8 with
Fud& Ouo@p & OuVg) oplUgq (A9)
FpUq > @Vp&OwUaqy (A10)

A9 is quite useful for proving p U ¢, The axiom is a form of induction with u as the

basisandu o (p & Qu Y q) as the induction hypothesis.

Rule R1 includes all tautologies of propositional logic as theorems. Temporal
versions of propositional tautologies are also theorems. For example, Ow> Ow,
the temporal version of the tautology p ©Dp, is a theorem. Rule R2 is the rule of
modus ponens. Rule R3 holds since if |- w then w is true in all models (1,Z) (and all

state sequences o), hence it is true throughout time. Rules R1 through R3 are sound.

The notion of propositional reasoning is used to obtain inference rules from

theorems. Propositional reasoning is discussed in [Man81]. The idea is that if
v, & wyk - & w,)DwW
and if |- w through |~ w, then |- w. This is stated

|_(w1&w2& o &kow,)Dw I"wl » |—W2 T

W
% (PR)
|- w

Rule PR is, in a sense, a meta-inference rule which makes inference rules out of
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theorems. When rule PR is used, the antecedent
-(w, & wy & -+ & w,)Dw

is usually omitted and is implicitly assumed. ‘The justification for rule PR is the pro-

positional tautology
Flwi & wa& - &w)owl D WD (WD (- W, Dw) )]

Applying modus ponens (rule R2) to this n+1 times yields |- w.

Manna’s temporal logic axiomatization for sequential program verification
includes a few other derived tules which we will borrow [Man81]. The equivalence
rule (ER), which allows substitution of equivalent formulas, is proved by induction on

the structure of formulas and is stated as follows.

Let w’ be the result of replacing an occurrence of a subformula vy in w by v,.

Then

Fvi=vy
-w=w’ (ER)

The [J operator can be introduced or eliminated in formulas. Henceforth-

introduction ( [11) is done by rule R3.

R @

Henceforth-elimination ( [1E) is done by using the following rule, justified by the

axiom AS, stating }- 3w > w, and propositional reasoning.

-"T[:J}‘i (CE)
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Derivable implications can be tranformed with the [J [J and V V Rules:

|"'W1 :)\Vz

. 00

- Ow; > Ow, B
[-wiowy

. 'A%

- Vwio Vw, V)

Throughout we will be deriving assertions s which are specifications for a given
circuit. s will usually be proved from sote initial assumptions which we (somewhat
confusingly) call axioms. These differ from the temporal logic axioms. The temporal
logic axioms state a transforthation of formulas and can be proven sound with respect
to the semantics. The gate axioms dictate the behavior of gates and other atomic dev-
ices and cannot be proven sound without inventing a semantics of gates, which would

simply be tailored to proving the axioms sound.

Proving a specification s with respect to assumption G is written
G |-

In temporal logic the deduction theorem takes one of two forms: [Man81]

wy l-wy (DED)
F(Owp)ow,’
the temporal logic version of the predicate logic deduction theorem, or
Wi~ W
1 w2 (RDED)

|- wi>wy’

where no application of (31 was used in any step in proving w |- w,,
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a restricted version. We use DED primarily because of lack of restriction on the
deduction of [~w5,. G |-s can be converted to the implication |- G o s by the fol-

lowing process.

Formulate all gate axioms as holding "forever." This means inserting a [ in

front of all axioms. If the conjunction of gate axioms i{$ G then
Gs(OGp& -+ & (LIG,)
for gate axioms Gy, * * *,G,. Thenif
G |-s
then

(OGP & -+ & (OG,) |- by def. of G

- O0@aep& --- & (JG,) os byDED

000G, &+ &G,) D s by theorem T4
of Section 2.4 below
FO@G, & - &G,) > s by ER using T1

of Section 2.4 below

and, finally,

-G o s

by the definition of G. Stating the axioms as "forever” formulas allows us to acheive

G |- s without the restrictions of RDED.
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2.3 PTL Timing Diagrams

PTL timing diagrams are introduced in this thesis to reason whether a formula
expressed in PTL is likely to be a theorem. A timing diagram is not a proof technique;
for that we turn to the PTL tableaux decision proceduré {Gab80, Wol83]. It is an
informal, preliminary way of convincing oneself that the formula would be a theorem
if tested on the decision procedure. Formulas involving U are the hardest to intui-

tively reason about, and it is primarily these for which the technique is used.

For linear-time PTL we can picture the formula (w; U w,) as being satisfied by

the model of the timing diagram in Figure 2.1.

i ' Y1 Wa

o 00

Figure 2.1, Model for (w; U wy)
The nodes are instances of time or states (interchangeably). One very useful property

of U is
Fw Uwp & walUway& Oa(wy& wi) o (w U wy) 2.1)

The PTL timing diagram for this implication is in Figure 2.2. The arrow from the
node labelled w3 to the one labelled w, shows the dependency of the event of w,
occurring on the event of w4 no longer being in effect. Since 3= (wy & ws), v;vz
and w3y are in conflict throughout time, and w, cannot occur until w4 is no longer in
effect. The diagram shows the one possible situation, but it allows the case when w,

takes much longer to occur. The rightward arrow says that wy could take much longer
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Figure 2.2 Timing diagram for Implication (2.1)
(possibly forever) to occur, but it must at least wait for ws. So, in a sense, wj is

allowing w, to occur,

The diagram does not show the cases where wy and w4 never occur, which is
allowed with our use of the weak U operator. It so happens that those situations do
not invalidate the theotemhood of the formula, but the timing diagram gives no indica-
tion of this fact. We intend not to address these "forever" cases in the diagrams, since
complexity of the diagrams would be too great for their usefulness. In practice, we
have found that if a formula has all weak U or all strong U/ E operators, which is

usually the case, then the extra "forever’ cases are insignificant.
The diagrams consist of nodes, which represent points in time or states where
formulas hold, and arrows which indicate the partial ordering of the nodes. Many

more examples occur in the subscquent sections.

2.4 PTL Theorems

Now we present some useful PTL tlicorems, The reader may want to skip some
of them (or, at least, their proofs) until they are referenced later in the thesis. If the
proof was done in the PTL deductive system, then a " |-" precedes the theorem. If the

proof was done in the PTL semantics either by hand or by the decision procedure, then
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a "|" precedes the theorem. By the completeniess of the PTL deductive system

[Gab80], any theorem proved valid in the semantics is also derivable in the deductive

system. Many of the theorems have been proved elsewhere in which case the refer-

ence is given.

I— lev DWZ = D(WIVWZ)

Theorem 25 of [Man81a).

- Ows= 00w
T2 of [Man81].

- Vws V Vw
T3 of {Man81].

I"‘ D(WIDWZ):)(VWID VWz)

T5 of [Man81].

- Ow; & wy=(Ow; & Uwy)

T6 of [Man81].
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(T0)

(T1)

(T2)

(13)

(T4)



- Vv Vwys(Vw Y Viwy) +  (T5)

T7 of [Man81].

- Viwy & wp)D Vw & Vg (T6)
T8 of [Man81].
T10 of (Man81].

FV Ow & V Owyz VO & wy) (T8)

Theorem 18 of [Hai82].

Ew U wys(w U wy)& Vw, (T9)
This is by the semantics of U/¥ which is
ulw, UE wol(0) = 3i20.ulw,lc?) & Vj,0j<ipulw;l(c?)

and the semantics of U .

Ew U wy= Ow, V(w, UE wy) | (T10)

This is by the semantics of U% and U .
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Fw U wys Ow Vw U wp)d& Vwy)

This is by T9 and T10.

Fw Uy woz Owy ) V(w  Upgw)& Vwy)

This is by T9 and T10.

i=(W1 U WZ)& D(WIDW'_‘;) = (W2UW3)

Proved on the DP.

Ew U wp)& Owyowy) 5 w U ws)

Proved on the DP.

Ew, U - Uw)&
OwowH& - & Ow,ow,) o
(WI'U v UW,")

Proved on the DP.

l=(w1UE UEW,,)&

B(YVIDW{)& o & D(\-VHDVVRI) -
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(T11)

(T12)

(T13)

(T14)

(T15)

(T16)



(Wl' Ut ... UE W"’)

Proved on the DP.

EOQOw= OOw

T17 of [Mang1].

LOVw= VOw

T18 of [Man81].

EOw=wd& O0Ow)

T19 of [Man81]).

EVws=wVYOVw)

T20 of [Man81].

’= O(Wl & W2) E(OWI & OW2)

Theorem 19 of [Man81a).

E O, Vwy=(Ow;V Owy)
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(T17)

(T18)

(T19)

(T20)

(T21)

(T22)



Theorem 20 of [Man81a].

¥= O(Wl o W2) E(OWI o sz)

Theorem 21 of [Man81a).

l= O(Wl 5W2)?='(OW1 = OWz)

Theorem 22 of [Man81z].

F D(WIDWZ) > (—1W1UW2)

Proved on the DP.

i=W1U(W1UW2) > WIUW2
Proved on the DP.
Ew,Uw, U - UwUwyosw Uw,y

Proved on the DP.

}:(wl& Wz)UA W3E(W1UA Wz)&. (WlUA Wwi)

Proved on the DP.
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(T24)

(T25)

(T26)

(T27)
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Ew, Uy waVways(wy Uy wp)Vwy Uy wa) (T29)

Proved on the DP.

Ew Uwp)& waUwyp)& Oa(wy& wy) o (wy U wy  (T30)

from implication (2.1) above. Proved on the DP.

-w> Vw (T31)

T1 of [Man81].

2.5 Describing Hardware with Temporal Logic

Temporal logic is a natural language for describing static and dynamic properties
of hardware systems. The ability to talk about time in both the specific sense (e.g. "at
time i") and abstract sense (e.g. "at some point in the future") make it a powerful rea-
soning language. In a sénse, temporal logic is a formalization of the timing diagrams
usually associated with describing circuit behavior. It may be used as both a hardware
description language to desctibe implementations and an assertion language to

describe properties and behavior.

2.5.1 Signal Specification

The shape of a signal may be specified. Consider, for example, a device with a
Reset line which is active low. The device may be a flip-flop, a register, or a compu-

tational unit. Reset is pulled low in order to reset the device. The formula
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4 Reset & OT Reser & O2 [ Reset. (2.3)

specifies that Reser makes a low-transition followed by a high-transition, as shown in
Figure 2.3. This formula, expanded based on the definitions of the T and | opera-

tors, is equivalent to
(Reset & Q- Reset) & O(— Reset & OReser) & C? O Reser

which may be simplified to

———

Reset & O= Reset & O U Reser. (2.4}

Both Formula 2.3 and Forimula 2.4 describe the signal in Figure 2.3. Either may be

used as an assertion of how the reset signal is to behave for the device to be properly

reset.

Figure 2.3 A Reset signal to a device
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2.5.2 Memory Properties

Safety and liveness propettics of memory dévices may be specified. The opera-
tion of the register R0 in Figure 2.4 may be specified in temporal logic by the pair of

formulas

RO=x = RO=x U LoadR0O (ROsafe)
T LoadR0 => [RO « Selector[0]] (ROlive)

where Selector [0] is the selector’s output line 0,

/
S 0 7/ \|/
€ LoadR0O
| / RO
1 7
/ e
/ C
' i
t 2 /
o
r 3
YV WV

Figure 2.4 A Register and Associated Circuitry

Formula ROsafe is a safety assertion, stating that RO will retain its value until the
LoadR 0 line goes high, Formula ROlive is a liveness assertion, stating that when the
LoadR 0 line goes high, RO will accept 4 new value, the selector output value. The

timing of the load operation is shown in Figure 2.5.
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LoadRO /
o A

Figure 2.5 Timing of the Register Load Opération

2.3.3 Asynchronous Comimunicatioti

Asynchrohous communication can be specified using safety and liveness asser-
tions. Consider a bus arbiter with & request line Reg and acknowledgement line Ack
shown in Figure 2.6. Two safety assertions ensure that thc'Req line is held in the

proper state until an acknowledgement ig received.
Req = Req U, Ack (ArbSafel)
—Req = —1Req U, —Ack (ArbSafe2)
Two more safety assertions ensure that the Ack line responds properly to the Reg line.
Ack = Ack U, —Req (ArbSafe3)
- Ack = —Ack U, Req (ArbSafed)

Two liveness assertions cnsure that the requests are eventually followed by
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acknowledgements, This guarantees responsiveness of the arbiter.
Req — Ack (ArbLivel)
—Req —— —Ack (ArbLive2)

The last liveness assertion ensutes that the user cannot Hold the arbiter indefinitely

without releasing it with 4 Req.
Req —> —Req (ArbLive3)

The timing of the bus arbiter Req and Ack lines is shown in Figure 2.7.

Req

arbiter

Ack

N

Figure 2.6 A Bus Arbiter and Control Lines
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ArbLive3

Req _/ \
Arblive2 ﬂ
Ack —

ArblLivel

Figure 2.7 Timing of Bus Arbiter Contro] Lines
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CHAPTER 3

Related Work

Recently hardware verification has been getting more attention in the literature.
This has been accelerated by the increasing number of hardware description languages
and design automation systems. The work varies in nature from the theoretical foun-

dations to fully implemented verifiers,

Research in i)ardware verification may be classified into two approaches:
semantics-based verification, where one is concerned with what a circuit is, and
logic-based verification, where one is primarily concerned with what properties a cir-
cuit or a portion thereof possesses. The logic-based work can be further classified as

predicate logic-based and temporal logic-based, the latter being closest to this work.

3.1 Semantics-Based Verification

Semantics-based verification is a model-theoretic approach. It hinges on finding
a suitable mathematical model which can explain all aspects of interest. Formal rea-
soning is done within the model and it is #ssumed that all objects and operations in the

model correctly represent circuit behavior. As Is the case with proofs in denotational
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semantics, semantics-based proofs can require a rather complicated manipulation sinee
all information about the behavior of a device must be available in the mathematical
object denoted by the circuit. Gordon [Gor81a, Gor81b, Gor81c] and Milne [Mil82,
Mil83a, Mil83b] are the primary proponents of this approach, which was inspired by

Milner’s semantics of concurrent processes [Mil80].

3.1.1 Milner’s CCS

Calculus of Communicating Systems (CCS) [Mil80] is a semantics of communi-
cating processes which has stimulated further work in the semantics of hardware.
With CCS each process in the system to be modelled is roughly a finite state machine
which can connect and communicate with the other processes. A CCS system is usu-
ally described by equations, each equation describing a process. Since CCS is a
semantic meta-language much like denotational semantics [Sto77], the syntactic con-
tructs of a programming language can be translated into CCS expressions, allowing

one to formally describe and reason abaut their behavior,

The primary primitive concepts which give CCS its modelling power are value-
transmission or message-passing, the notion of a port, and the rules governing how
processes connect and interact, Each process has a set of input ports and output ports.
Output port names are distinguished from input port names by having a bar over them
(e.q. &). An output port of one process may connect to an input port of another when
the two processes are composed if the two ports have the same name (except for the
bar). If two ports are connected by composition then the output value of one process
is the input value of the other, as in the message-passing found in Hoare’s Communi-

cating Sequential Processes [Hoa78].
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A CCS expression denotes a CCS behavlor, The binding of variables in expres-
sions is similar to A-calculus. Each port name o which precedes a variable as in
ox.E (x) may be thought of as the A in A-expressions. Here x becomes a bound vari-
able in the expression E (x). In CCS, however, the bound variable value may be either
an input value, just as in A-calculus, or an oufput value with the side-effect of being

sent out through the output port,

The primary operators are composition, alternation, and restriction. If By is the

domain of CCS behaviors with the set of port names L, then the operators have func-

tionality
composition: /B XBM -, UM
alternation: + 0 By xByy B, oy
restriction: fo: BL "’BL —foL,t)

Composition is the port connection and paralle] composite behavior of two processes.
It can be applied repeatedly, building large networks of processes. Processes which
are composed operate in parallel and cominunicate though the ports. Alternation is the
nondeterministic selectiof of two or mor¢ behaviors. Each of the behaviors usually
has at least one guard with the port name and an optional bound variable (as in
ox.E (x)). Restriction is used to hide port naines from the composition operation. If a
port is hidden by restriction it cannot connect with other ports with the same name in
other processes. The behavior of a reil-time system demonstrates the use of the three
operators.

Figure 3.1 illustrates a real-time system of three processes communicating

through the ports ot,a,B, and l_} The behavior of the SENDER process is expressed
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recursively:
SENDER (x} = o.px.SENDER (x} + ¥y.SENDER (y).

SENDER stores a value and sends it (through E) to RECEIVER periodically, i.e.,
when signalled by ALARM (through a). If SENDER receives a new value y through
input port v, this becormes the new stored value, The '+’ operator denotes alternation:
either action can take place nondeterministically, The RECEIVER process accepts an
alarm signal, then accepts a valu¢ from SENDER, then calls procedure P to process
the value. P takes RECEIVER as an argumetit so that it can call it when it is done

processing. The behavior i§
RECEIVER = o.fz.P (z ,RECEIVER).

ALARM counts like a clock continuously. Every 100th tick it sends an alarm signal

out to the other processes. ALARM 18 expressed
ALARM (i) = if i =100 then . ALARM (1) else ALARM (i +1).
The behavior of the entire system is

(SENDER (xy) | RECEIVER | ALARM (0))/cu/B.

CCS can also be used to model hatdware systems by considering each device as a
process. Ports are used to represent lines and fnessage-passing may be thought of as

signal transmission. For example, it multiplexor can be described
MUX = Oyygpes -OXNEMUX + Pogpocy Prye.MUX

meaning that if either an Oy OF Pyereer Sighal is received a value is accepted through
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ALARM

p

RECEIVER

SENDER

Figure 3.1 CCS Model of 3 Real-Time Processes
o or P respectively and passed on through ? When clocked, a register outputs the

current value x and accepts and stores a new value,
REG (%) = Yotouk -Ox:Y9-REG (¥)
An incrementer increments the input and passes it on.
INC = &x.B(x+1).INC

Composing the three devices yields a system whereby a value can be loaded with
Osereer then repeatedly incremented with Yepee and Bogeq . 5 is where the output is
taken from. Figure 3.2 shows the CCS model of the circuit. The complete circuit

description is
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(MUX | REG (x) | INC)ou3

where x is the inital register contents.

Figure 3.2 CCS Model of 4 Simple Register-Transfer System

Devices modelled as CCS processes dre active entities which are unlike either
combinational or sequential devices. The CCS multiplexor must wait for a select sig-
nal before the value can pass through. An actual combinational device is a function of
its inputs which is continuously operational. The CCS register outputs the stored
value once per clocking. It should output it contiitnously or, at least, as many times as
needed. These deficiencies are addressed by Gordon in his synchonous hardware

model.

36



3.1.2 Gordon’s Synchronous Hardware Model

Gordon’s model of register transfer systems [Gor8la, Gor81b, Gor8lc] is a
semantics of hardware which extends the CCS framework. The notions of composi-
tion, restriction, and ports are roughly as in CCS, but Gordon's model is of a more
synchronous nature. The model is used to vetify circuits using a synthesis approach.
Individual devices are described by equatiohal specifications which are assumed to be
correct. When a circuit is built by composing devices, the equation describing the
behavior of the composite circuit is found by consulting the model. If the resulting

equation describes the correct behavior then the circuit is correct.

Gordon’s model may be considered a denotational semantics of sequential sys-
tems with domains, equations, and a translation from the syﬁtactic devices to the equa-
tions of the meta-language. Just as in the denotational approach, the semantics of
composite objects is described in terms of the semantics of the constituents. Since cir-
cuits consist of two types of devices (combinational and sequential) there are two pri-

mary domains.
Com[X;Y]=Sig[X]—SiglY]
SeqlX;Y])="Sig|X]— (Sig[¥1xSeq[X;Y])

A combinational device with input line (port) names inX (X = {x, - x,}) and out-
putline names in Y (¥ ={yy, ' - *,y,/) belongs to Com [X ;Y ], the domain of functions
from signals on X, Sig [X ], to signals on ¥, Sig |Y ]. Sequential devices are inherently
recursive. A sequential deyice is a function (fstof e Com[X ;Y] from an input value
to output value until it is clocked. It then becomes a function (snd (f (i ))e Seq [X ;Y]
where ieSig[X] is the input line value when clocking occurs. The sequential

behavior of a sequential machine M is given by the function BI[M J: Sy —>SeqlX;Y]
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defined
BIM (o) = M.(otity (i ,0),BIM I(nexty (i,00))

where & is the internal stdte, i is the input value, outy is the output function, and
nexty; is the mext-state function. This equation is the denotational semantics of
sequential machines [Goi80].

A device specification equation determines the behavior of a device in all situa-

tions. The specification of a device behavior has the general form
N(sy, o) =Mxy o X Wy 1=E 0 Yy SER N (B w0 HEg))

where N is the device name, ;s are state variables, x;’s are input line names, y,’s are
output line names, and E’s are expressions defining output and next state values. The
A in the specification indicates that x;'s are bound variables to be substituted for in the
expressions by the input values. Upon clocking, the device accepts the inputs, produc-

ing the current output and next state.

Composition and restriction operations are as in CCS. Composition of two
behaviors £ and f4 is written [ f1 | £2 §. The composition theorem determines the
behavior of 4 circuit constructed using cotnposition. When two devices are composed
the output of one device becomes the input of another because of the connection of

ports with the same name. The composition tlicorem is stated
(A(x |xeX ) ({y=E, |yeY LE) |+ | Mx|xeX ) ({y=E, |ye Y, LE VL
=Ax [ xe UX;—UY;}

letrec {y=E, |y e (X)) UY i)
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in ({y=E, lye UYi-LLLEy | + | £, 1/L).

It says that if n devices are composed and restricted by the set of ports L, then the
resulting circuit has fewet input lines x (x| X;—_Y;) due to internal feedback and
has output expressions E, such that ye (\_X; )N\(UY;) are recursively replaced for
x’s in the composite expression since output lines are connected to input lines of the
same name. The derived expression for the composite behavior may be judged correct
by inspection or shown equivalent to gnother higher-level specification using a tech-
nique called simulation induction which is an induction on the number of times the
two circuits are clocked. Two machines which satisfy the simulation induction

theorem can effectively simulate each other in lock-step and are considered equivalent.

Consider again the system introduced in Figure 3.2 which consists of a multi-

plexor, register, and incrementer, In Gordon's nolatioh the device behaviors are
MUX = Afselect ,0.,B).({y=if select then P else o], MUX)
REG (n)y = MY .({8=n},REG (Y))
INC =\{8).({B=6+1],INC).

Figure 3.3 shows the system as described by Gordon’s model. Using the composition

theorem, the circuit behavior is
COUNT (n)
= Afselect i},
letrec {y=if sclect then [ else o,0=n ,3=0+1}

in B=8+1,IMUX | REG(y) | INC1/y/d
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select
MUX

REG(n)

INC

Figure 3.3 Gordon’s Model of the Register-Transfer System

= A{select 0} ({P=n+1],COUNT (if sclect thien n+1 else o).

which is correct (by inspection).

Nowhere in Gordon’s specifications does a clock appear. A common clock is
assumed to be attached to each register. This is a cledn assumption, but it eliminates a
class of circuits like the ripple counter, which uses the output of one stage as the clock
of another.

Barrow discusses VERIFY [Bar83], u« PROLOG program which implements
Gordon'’s verification method and, in patticular, the composition theorem. It performs
automatic verification by composing device specilications and simplifying expressions
to show that the composite behavior of the circuit is as is expected. It is claimed that

VERIFY has been used to verify VLSI circuits of up to 180,000 transistors.
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3.1.3 Milne’s CIRCAL

Milne's CIRCAL (Circuit Calculus) [Mil82] Is a CCS-based hardware model
which is suitable for modelling low-level elements such as nMOS and CMOS transi-
tors, inverters, gates, and storage elements. Porls, cotniposition, alternation, and res-
triction are defined much like in CCS, but restriction is known as "abstraction” in CIR-
CAL, and the ports are simpler than CCS ports in that they involve only the
occurrence of events and nid value-fransniission, Applications include silicon compiler

correctness [Mil83a] and timihg analysis [Mil&3b].

O—7F0

23

L4

D— §'1

-0

vy

Figure 3.4 A NOR Gate Described in CIRCAL

Since CIRCAL ports do not transmit or receive values, a two-valued line must be
represented by a pair of ports: a0,01. Coniposite ports, a CIRCAL concept not in
CCS, allow a device to require that two eveats, o and B say, occur simultaneously.
This is written, for example { o B ). The behavior of the NOR gate shown in Figure

3.4, for example, is expressed recursively a8
NOO= (el Y0)N10 + BLY0)NOL + (ol BLyO)N11
N10=(a0y1) NOO + PIN11 + (a0 1) NOL

NOL=BOYHNOO + al N1l + (ol BO)N10
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N11=a0NO! + BONI0 + (o0 B0 y1) NOO

where Nxy determines the behavior for o port value x and B port value y. (The bar,
as in &1, is used to denote input directionality.) The above equations effectively con-
tain the truth-table for the NOR function. Since CIRCAL (unlike Gordon’s model)
has no logical operators or concept of a storage device, these devices must be built
from the primitives. A correctness proof in CIRCAL is similar to one in CCS and

Gordon’s model: a proof of equivalence of two expressions,

Two primary axioms are used to derive the behavior of composite systems: the
composition axiom and the abstraction axiom. The composition axiom determines the
behavior of a new object consisting of the composition of two objects. The abstrac-
tion axiom determines the behavior of an object whose parts are being hidden by

abstraction.

Milne uses CIRCAL to prove the functional correctness of a simple silicon com-
piler [Mil83a]. The cofnpiler is a4 function L (for layout) which maps NOR-
expressions (neNE) into a layout language (LL). Two scmantic rﬁappings, N and §,
give the CIRCAL-semantics of NOR-expressions and layout language expressions

respectively. The proof consists of showing that

VneNE.S(L{(#)=N(n).

3.2 Predicate Logic-Bascd Verificalion

Predicate logic approaches are closest to the traditional Floyd/Hoare axiomatic
verification method for sequential programs. The assertion language is first-order

predicate logic, axioms and inference tules dre used to carry out the proofs, and timing
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issues are essentially ignored The disseitations of Wagner [Wag77] and Patterson

{Pat76b] are milestones in this general area,

3.2.1 Wagner’s llardware Veritication System

One of the earliest efforts in hardware verification is Wagner’s method which
uses first-order logic as the assertion language and a non-procedural hardware descrip-
tion language for device and circuit specifications [Wag77]. Like the semantics-based
approaches, the method is a synthesis one: individual device specifications are com-
bined and manipulated to yield a circuit specificdtion, The resulting specification is
then checked for correctness by inspection.

The hardware description lahguage is simplé bt appropriate for the application.
Register transfer operations are writien with the condition for transfer first which is
usually a predicate about the clock or reset lines. For example, a negative edge-

triggered JK flip-flop would be described
IVClk1 Q (T & =)V (K & Q); (3.1)
I~ LClk! Q «Q;. (3.2)

Line 3.1 says that, when clocked with a negative edge (1 Clk ), the flip-flop is set or

reset, depending on J and K, Line 3.2 says that at all other times it retains its value.

A set of axioms are given which allow several individual assertions to be reduced
to a more concise one. A software tool gids the symbolic manipulation by applying

the reduction axioms, as directed by tlie user.

3.2.2 Patterson’s STRUM
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STRUM is a system developed at UCLA by Patterson for proving the correctness
of microprograms [Pat76a, Pat76b]. STRUM consists of an Algol-like high-level
microprogramming language, a microcode compiler, a verification condition genera-
tor, and an algebraic simplifier, The verification method is analytic. A microprogram
is written with invariants and pre- and post-conditions. It is verified using the
verification condition generator and algebraic simplifier. The main research contribu-
tion is experimental: demonstrating that Hogre axiomatics can be used as the basis of a

useful automatic program verification system.

3.3 Temporal Logic-Based Verilication

The desire to make assertions about the timing of events in circuits has lead to
temporal logic as a language for writing specifications and reasoning. Conventional
predicate logic must be augmented with time variables in order to deal with time.
Doing this would yield a system with the exptessivengss of temporal logic, but not the
elegance. Temporal logic is naturally suited to dealing with time on an abstract and

concrete level.

3.3.1 Malachi and Owicki’s Temporal Specilications

In [Sei80] Seitz introduces self-timed VLSI circuits which operate asynchro-
nously and generate completion signals. Malachi and Owicki [Mal81] demonstrate
how temporal logic can be used to formally specify the operation of self-timed combi-

national logic, including pipelines and state machires.

We introduce a bit of the notation to give 4 feel for the specifications. Double
rail codes are used to encode the data values {0,1,A}, where A is undefined. For a sig-

nal line x, let "x is defined" be abbreviated d(x). For a set of lines X let
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d(X) =g (Qx € X)d(x) and D(X) =y (Vx e X).d(x).

— d(x), for example, expresses "all lines ate undefined.” One of the properties of a
self-timed logic module is that output lines in O are undefined until at least one of the
input lines in / are defined. This property can be expressed using the temporal until

operator U/ as
- d(0) o d@)U d{).

Another property is that sometime after all inputs / are defined, the output will be

defined. This can be expressed using the tempotal eventually operator V as
D)o YD)

The authors demonstrite that temporal logic is an elegant specification language.

They do not, however, address foinial veérfication,

3.3.2 Moszkowski’s ITL

Most of the temporal logic research has centered on the linear-time, four-operator
version which will be called "standacd" here. The concentration of effort provides a
sound foundation for anyone usiig this particular type of temporal logic, but this type
is not necessarily the best. Moszkowski iitroduces Interval Temporal Logic (ITL), a
specification language particularly suited 1o the ideosyncrasies of hardware [Mos83].
Moszkowski uses ITL to specily in detail the structure and timing of adders, latches,
multipliers, and ALUs, The specifications take advantage of the many ITL operators
to describe aspects such as clocking, feedback, signal dependences, and propagation
delay. It is intended that 1TL be used as both a hardware description and assertion

language.
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ITL’s semantics is based on finite state intervals rather than infinite state
sequences. The meaning of an ITL formuld w is determined by the model in a state

interval of length n: s¢, * ** 5,0
ey -5 LW 1 € {true,false}

This gives ITL a stricter dependence on the basic unit of time. Henceforth, for exam-
ple, no longer means "now and forever” but instead "now and until the end of the time

interval of interest." A len function returns the length of the interval of evalution
Moy oo 5 [ len I=n

This is generally not possible in a standard model since the state interval is infinite.

Specifications of devices are quite detailed and comprehensive, especially in the
area of timing. A special predicate struct is provided to declare values associated
with the device: the input and output line hames, internal values, and performance
parameters. For example, to declare predicate SimpleDFlipFlop (F ), which is true if

F is a D flip-flop we define
SimpleDFlipFlop (F ) = SimpleDFFStricture (F) & [ Store (F i), fori € (0,1}
where SimpleDFFStructure is defined
SimpleDFFStructure (F) = F : struct
(Ck,D): Bit  Yolnputs
(0,0): Bit %Ouiputs

(¢ 1,c2,¢3,hld Jat): time YeParameters
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and Store is defined
Store (F,i)=2[ T30k & Ck bIk"™ D & beg (D=i))
~>3 [beg Q=i & Q=—i) & Ck bIk™ <Q,05].

The Store predicate demonstrates ITL's specification of timing. The shape of the Ck
pulse is specified by the ¢ 1, ¢2, and ¢ 3 parametets, Tl eleedcy says that the pulse
must be low for ¢ 1 time intervals, then high far ¢ 2 time intervals, then low again for
¢3 time intervals. The blk operator is used to say that one signal blocks another. A
signal A blocks a signal B if, as long as A is stable, B is stable. The —- operator is
a sort of implication over time, If A —- B then if A is high B must become high
sometime later. Roughly speaking, tli¢ Stare ptedicate says that if D has the value i

when clocked, @ will have the value i aftet being clocked.
The main results of Moszkowski's dissertation dre

(i) the demonstration of ITL, a new temporal logic which is rich enough to

express detailed timing requirements of hardware deviced currently made in industry,
(i) theoretical complexity results regarding ITL,
(iii) specifications of several conventional hardware devices.

The same features which give 1TL its expressive power can make it cumbersome
in the proof process. There are many more operators to deal with, and so the number
of possible theorems is quite large. Automating the proving of ITL theorems is an

ambitious research project which would offcr a solution.
3.3.3 Bochmann’s Arbiter Proof
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Bochmann was the first to use temporal logic when formally verifying hardware
by proof construction [Boc82]. Bochmana verifies the arbiter appearing in [Sei80b]
by a reachability analysis of the interal states. Given several assumptions about the
arbiter’s environment and the behavior of 1ts constituent devices, safety and liveness

properties are shown to hold,

transfer
user 1
1 UR1 TR1 /[\ TA1
UA1 SR
arbiter - resource
uA2 SA
user UR2 TRZ\I/ TA2
2 |
transfer
L ]
2

Figure 3.5 Arbiter and Assoclated Modules

The arbiter module shown in Figure 3.5 determines the order in which two
requesting user modules obtzin access to a shared resoutce. The various modules
communicate via hand-shaking where requests are followed by acknowledgements

according to a four-cycle protocol. The four cycles ate:
(i) Reque.stor requests acknowledgement from responding unit.
(ii) Responder acknowledges request.

(iii) Requestor completes tequest,
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(iv) Responder acknowledges completion of tequest.
Lines labelled xRi (i=1,2) are request lines, and lines labelled xAi (i=1,2) are ack-

nowledgement lines.

The arbiter is the central control fot the r¢source. Oberatiorl is as follows. After
receiving requests from users the arbiter decides to which user it will grant access. It
then invokes the corresponding transfer module to receive parameters to be used by
the resource. The arbiter then request usdge of the tesource. After the resource ack-

nowledges the request and the yser is done usihg the resource, the cycle repeats.

Assumptions about the behavior of the tiser module may be expressed using the
temporal until U/ and eventually V opperators, The safety assumption that the
request lines for users Ui (i=1,2) must stay at 2 Boolean value x until acknowledged

by the arbiter is expressed
(URi=x) o (URi=x) U (UAi=x).

The liveness assumption that the user will eventually release the resource by pulling

URi low is expressed
UAi o V- URL

Starting with several similar assumption$, g key invariant assertion is proven: after
starting in initial state state 1, the atbiter will change state according to the state
diagram of Figure 3.6 where the states labelled i, {=2,...,6 are reached when user 1 is
chosen, and the states labelled i, i =2,...,0 are reached when user 2 is chosen. UAl
(UA2) is true in States 4, 5, and 6 (4°, 5' and 6’). Since every cyclic path from state 1
returning to state 1 goes through either state 4, 5, or 6 (4°, 5°, or 6°), the desired pro-

perty that an acknowledgement eventually follows a user request will hold.
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Figure 3.6 Internal Arbiter States

Bochmann assumes that pates within the arbiter module have zero delay. This
has the advantage of restricting the number of possible states, but it would not be a
valid assumption in asynchrorous cirguits Whose correct operation depends upon the
fact the gates have some non-zero delay.

The correctness proof itself requirés knowing the intimate details of the arbiter,
and this is to be expected. Since the proof is not done in a deductive system for tem-
poral logic, it is not as formal as it could be. This would limit the ability to use proof

checkers, and it may restrict the degree to which the proof could be automated.

3.3.4 Model Checker Approach

Clarke, Emerson, Mishra, and Dill |Mis83, Dil85] usc a temporal logic model
checker to check temporal specifications of a clrcuit on a finite state graph representa-

tion of the circuit’s execution, An reachability algorithm is used to generate the graph
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execution from the circuit schemadtic. Then the model checker is fed the tcmporal
specifications and the graph and determines whether the graph satisfies the
specifications. The method deals with gate-level circuits. Examples include the FIFO
queue [Sei80a] discussed by Scitz using a unit gate delay assumption and the arbiter

[Sei80b] using an unbounded delay assutnptiot.,

This approach does not involve probfs of correctness and the associated
creativity in symbolic manipulation, It primarily involves a graph algorithm and,
therefore, has been automated, It is not 48 fortnal as a correctness proof, -however,
because there is no guarantee that the graph is a correct representation of the circuit’s
execution. If an incorrect graph is produced, then the model checker may say that the

temporal specifications are cotrect without a sound basis.

3.4 Relation to Our Work

Bochmann’s arbiter proof was not done in a deductive system for temporal logic.
This limits the degree to which a proof checker could be used. The model checker
approach allows the possibility of incorrect models of execution to be considered.
Both are gate-level approaches. In addition, neither approach has the functional
specification property where specifications of complex modules are functions
(transformations in the deductive system) of tlie specifications of the constituent parts.
This limits the degree to which specifications of smaller ‘modules can be used in
proofs of larger modules containing the smaller modules.

We intend to focus on correctness proofs in the deductive system for PTL
described in Chapter 2. Doing this provides the desired level of formalism and allows
for proofs to be checked by a proof checker. The functional specification property is

adhered to throughout, providing the basis .for hierarchical verification. This is
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demonstrated most fully in Chaptér 6 where an asynchronous pipeline element is
verified at the module level. Qur Execution Graph Method of Chapter 6 employs the
notion of a graph representing the citcuit’s execution as does the model checker
approach. Our execution graphs, however, liave a one-to-one correspondence to a set
of temporal formulas which describe all allowable execution sequences. The formulas
are proved from the axioms and, therefore, the graph is formally correct with respect

to them.
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CHAPTER 4

Steady-State Properties

Applying input forever allows us to focus on steady-state properties, in the mean-
time establishing the flavor of the TL deduction process, If one were to apply an input
to a circuit forever and observe the corresponding response, the circuit would settle

into some steady-state, This liveness is expressed
IC & OStmulus o V O Response

where IC describes the initial conditions (initial circuit state), Stimulus describes
some input stimulus to the circuit, and Response describes some state the circuit will
remain in until further stimuli. We establish some proof rules (theorems of PTL)
which allow us to construct proofs of safety and liveness properties. The first example
circuit is a latch which is composed of two cross-coupled NAND gates. Then using
the latch and the gate again as primilive clements, an asychronous controller com-

posed of these devices is proved correct.

Since asynchronous circuils are primarily constructed out of gates in either com-
binational logic functions or fecdback loops making up latches, gates will be the basic

atomic component. A small proof system for proving the correctness of asynchronous
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state machines will be presented, It will be used to prove the correctness of a con-

troller taken from the literature.

4.1 A Proof System

The proof system begins with the axiomatization of temporal logic given in
Chapter 3. We add tautologies of propositional calculus as theorems as was stated in
inference rule R1, and we add theorems of tempotal logic proven in [Man81], [Hai82],
or this thesis in Section 4.1.8 below. This forms the domain-independent part of the
system which is valid whether the objects to be verified are circuits or programs. The
domain-dependent portion consists of axioms describing gates and proof rules which

manipulate the axioms into desired assertions.

The proof approdch is bottom-up. Axioms describe individual gates. As gates
are composed to form circuits, the axioms are transformed via the proof rules and PTL
formulas into the desired circuit specifications. We provide hand proofs of the proof
rules to illustrate the type of manipulation required for proving theorems in the PTL

semantics. The DP could be used instead of the hand proofs.

4.1 Steady-State Behavior

Consider an asynchronous state machine which is ordinarily in a stable state. It
will react to input changes and settle again in a stable state. The timing of such a
machine is shown in Figure 4.1. One interesting provable property of the machine is
that it changes state correctly when the input changes. Rather than specifying exactly
how long the machine is stable in tetms of the O operator, we say that it is stable

"forever” or "long enough." Thus we will use assertions of the form
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O InputChange > V [ CorrectStateChange

where the [ operator is used to state that the circuit is stable for a long time.

e

region

—an

[
internal and | /
outputlines

Figure 4.1 Timing of an Asynchronous Machine

4.1.2 Gate Properties

The output of a gate may be viewed as a time-dclayed function of its input. As
long as the inputs remain the same the output is constant. When the inputs change a

new output value is determined after some finite delay. These properties are to be
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expressed in the axioms of the proof system.

Let the box in Figure 4.2 represent a gate and B be the name of the output line.
o is a propositional calculus (PC) formula which must be true for the gate to produce a
1 output and false for the gate to produce a O output. For a two-input NAND gate as
in Figure 4.3, == (I, & ;) and, when o is true, B (which is O) will be true at
some time later. The two liveness axioms, Gl and G2, guarantee that the appropriate
output change, namely [ becoming true (false), will occur after an input change, o

becoming true (false).
o—p (G1)

Notice that the axioms come in pairs which are duals of each other. These axioms
state the expected gate property that, in the case of the NAND gate, when =1 Vi,
is true then eventually O will become true and when I & I is true then eventually

— O will become true.

T :

. gate
ﬂ

Figure 4.2 A Generalized Gate
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|1_ O

Figure 4.3 A NAND Gate
Gates retain the same output value as long as the inputs are constant. A safety
axiom pair G3-G4 guarantees that the output does not change as long as the input does

not change.
B = B UA =1 QO (G3)

-1[3===--1BUA(1 (G4)

Two more safety axioms form a restriction on the input behavior and the gate
delay. They say that an input must be held constant long enough for the gate to react

to the input.
a=oal,p (G3)
—l()!.=>—|(XUA-'1|3 (GG)

This axiom pair ensures that the gates obey a two-cycle protocol. One may think of
the event when the input predicale a becomes true {false) as a request for the gate to
switch. The event consisting of the output line } becoming true is then an ack-

nowledgement. A two-cycle protocol guarantees that each request is answered by an
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acknowledgement before another reqest can be made. Figure 4.4 shows o and B obey-
ing a‘two-cycle protocol. If the input changes before the gate reacts to the previous
change then these safety axioms are violated. Thes¢ axioms are included to avoid one
possible problem with the unbounded gate delay assumption: that the gate can take
longer to react to input changes than input changes occur, causing a build-up in gate
switching as shown in Figure 4.5. This would not mode!l gate behavior accurately
because the gate would appear to have a memory that would allow it to take its time in

reacting to input changes.

G1

G2

—

Figure 4.4 Liveness Properties Dictated by Axioms G1 and G2

Figure 4.4 shows what the liveness axioms (G1 and G2) dictate. The event of o
becoming true (false) precedes and causes the event of {3 becoming true (false). Fig-

ure 4.6 shows what the four safety rules (G3 through G6) will allow.

The latch of Figure 4.7 is composed of two two-input NAND gates, Six axioms
of the form G1 through G6 are needed to describe the behavior of each gate. For gate

gl the axioms are
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Figure 4.5 Physically Unrealizable Gate Switching

Figure 4.6 Switching Ordering Imposed by Safety Axioms

FS& Q-0 _ (g1.G1)
FO=0QU, (&) (21.G3)
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F=Q ==0 U, (=5V=Q) (81.G4)
FE&D=>E&QUs-Q (g1.G5)
F(SVad)=(SV-Q)U, G (21.G6)

For gate g2 the axioms are

FQ &R >0 (g2.G1)
F—QV-R-—»0 (g2.G2)
-0 =0 U, (@ &QR) (22.G3)
F=0 ==0 Uy =0 VaR) (82.G4)
I—(Q_&E)=:-<Q &RYU,-Q (g2.G5)
= QVaR) =2V U, Q (g2.G6)

Note that all the axioms use variations of the o operator. The liveness axioms

use the —— operator defined
wy = wys Ow o Vwy)
and the safety axioms use the => operator defined
Wp=> W= O3 (w D wy).

This is actually unnecessary since the [J/ rule will ensure that the axioms are valid

for all time. The six axioms could be written

Fas vp (G1%)
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92 Q

Figure 4.7 A Latch Composed of NAND Gates

=D V-
FBopU, —a
F=Bo-BU,a

Fanal, P

—oo-ol, B

and rule [J7 applied to obtain the other forms (G1-GG) when needed.

(G2¥)

(G3%)

(G4*)

(G5%)

(G6*)

When axiomatizing gate behavior and proving properties of the asynchronous

machines which the gates are composed of, the assumption of unbounded gate delay

has quite an impact. An alternative assumption of one-unit gate delays can lead to

simpler axioms and a simpler analysis but is less realistic [Mis83]. Under the one-unit
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delay assumption, the axioms needed to characterize gate behavior are

o= Op (G1")

|- o= O~ p (G2")

FR=BUs~a (G3)

l—-ﬂﬂéﬁBUA . (G4)

The first two axioms replace the G1 and G2 liveness axioms. Rather than having the
output change "eventually," G1’ and G2’ have the output change after exactly one
time unit. G3’ and G4’ are the same as G3 and G4, The property of holding the out-
put value as long as the inputs réemain constant is applicable under both assumptions.
No counterpart to G5 and G6 is needed because the output changes keep up with the
input changes. Since unbounded gate dclays will be assumed G1 through G6, rather

than G1’ through G4’, will be used from now on.

4.1.3 Input Elimination Rules

The input elimination rules are used to simplify gate axioms, eliminating the
effect of input lines when they are at a certain stable value forever. For example if a
two-input NAND gate always has a high-valued input, that input may effectively be
ignored and the NAND gate behaves like an inverter. A NOR gate becomes an
inverter if one of the inputs is low forever. Qutput safety axioms like G3 and G4,
which say that the output of a gate does not change value unless the input has changed,
may be simplified by the IEOS (Input Elimination Output Safety) inference rules.

w o> O=a; , |—w:3[3=-BUA(a1V‘az)
Fw o B=pBU 0

(IEOS1)
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-w > oy ~w 2 B=BU,4 (o & o)

[EQS2
-w o2 B=BU, o ( )

where .y, 0, and [ are PC formulas.

These rules are used to reduce the dependence of the output line B on the inputs o)
and 0, that is, to eliminate o (or 0y by commutativity). The rules may be proved

valid by

Theorem 4.1. The implications

FIO=0] & B=BU, (¢ Vel o (IEOSimp1)
[B=>BU, ayl
and
FIOwl & B=>PU,s (01 & ap)] o (IEOSimp?2)
B=BU, ol
are valid.

Theorem 4.1 is proved in Appendix A,

To establish the inference rules, use the PC tautology
(1D uz) D (WDup)>(w diy) (PC1)
to introduce w into each side of the implications. Applying the PC tautology

wD(ui & ug) = (woup & (w>Diuy) (PC2)
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to the antecedent of each of the implications and applying the rule of propositional

reasoning PR establishes the inference rules.

Input safety axioms which take the form of G5 and G6 may be simplified using

the Input Elimination Input Safety (1EIS) rules

Fw > O=0; , Fw > oyVop=>0Va,Uy B

Fw > oV, =0, Uy B (D
and
w o oy , Fw o aqydmp=0&ayU,B
-w o ay& =0 U, B (E1S2)
The 1EIS rules are proven valid by
Theorem 4.2. The implications
F1O=00 & [ Vo=V, U,y Bl 2 (IE1Simp1)
[0 Vo = 03 Uy B
and
FIOo) & [y & og=0; & Uy Bl 2 (IE1Simp2)
[y & ey = o Uy Pl
are valid.

Theorem 4.2 is proved in Appendix A.

The PC tautologies PC1 and PC2 are used to introduce the precondition w and
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propositional reasoning establishes the inference tules as above for the IEOS rules.

4.1.4 Stability Implication Rule

The Stability Implication (SI) rule allows one to deduce that henceforth the out-
put of a gate will not change given that henccforth the input does not change. The out-
put safety axioms (G3 and G4) can be simplified, eliminating the U/, operator. The

SI rule is stated

lw o Oa , Fw o p=PpU, (@

w 5 b= 0P ©h
It can be proved valid by proving
Theorem 4.3. The implication
FIOo) & B=PBU,s(=w] o [B= 0Pl (Slimp)

is valid.
Theorem 4.3 is proved in Appendix A.

The PC tautologies PC1 and PC2 are used to introduce the precondition w and

propositional reasoning establishes the inference rules as above for the TEOS rules.

4.1.5 Inverter-Inverter Stability Rule

When a pair of gate output safety axioms have been reduced by input elimination
to where only one significant input remains in each axiom, the Inverter-Inverter Stabil-
ity (IIS) rule may be applied to deduce that the gate output will remain stable forever.

The rule gets its name from the fact that it models two inverters in a feedback loop.
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When two cross-coupled inverters have line values (high or low) they retain those
values forever since tliere are no other inputs to upset the stability (please see Figure
4.8). When it is desirable to sliow that a latch composed of cross-coupled gates will

be stable, this rule can be used. The 1IS rule is
Fw o By ‘ (IIS)
l-w > B
Fw o B=PiUs (=B

l-w o Ba=>PB U4 (=8)
w o O@ & B

and can be proved valid by showing

Theorem 4.4. The implication
B & Br & Br=B1Us =B & 4.9

Ba==Pr U, (=B o OB & By

is valid.
Theorem 4.4 is proved in Appendix A.

The PC tautologies PC1 and PC2 arc used to introduce the precondition w and
propositional reasoning establishes the 11S infetence rule from formula (4.9) as above

for the IEOS rules.

4.1.6 Inverter-Gate Stability Rule
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Figure 4.8 Cross-coupled Inverters

The 1IS rule of Section 4,1.5 allows one to deduce that cross-coupled gates
reduced by input elimination to cross-coupled intverters are stable. Another situation
arises when one gate has been reduced by input elimination to an inverter and the
other cannot be reduced, but the circuit is stable. This situation is shown in Figure
4.9, The circuit in the figure is a NAND gate latch with the bottom NAND gate
reduced to an inverter by the assumption IR, Now the S line can be high or low
without affecting the latch state since it is already set. The goal is to be able to deduce
that the S input is insignificant and the circuit is stable. The Inverter-Gate Stability

(IGS) rule will be introduced for this purpose. The IGS rule is
Fw o B & B (GS)

Fw 2 Bi=pUs (=B
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e 1

Figure 4.9 A Stable Latch in the Set State
w2 B=BUs (=P & o)
Fw o O@ & B

The IGS rule may be proved valid by

Theorem 4.5. The implication
By & By & [Bi=P1Uy =Bl &
By=PUs(=Bi& )] o OB & P

is valid.
Theorem 4.5 is proved in Appendix A,

The PC tautologies PC1 and PC2 are used to introduce the precondition w and

propositional reasoning establishes the 1GS inference rule as above for the IEOS rules.
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A variation of the IGS rule is used when only the weaker condition V (B; & [2)

is known. This variation is called the Eventual Inverler-Gate Stability Rule (EIGS).
-w o V(i & B (EIGS)

Fw 2 B =B U, (=B

Fw o B=8U, B &
Fw o V O@P; & By

The associated implication is
VB &B) & Br=PBUs =B & (EIGSimp)
By =B, Up (=B & 0] o VOB & By

EIGSimp can be proved within the PTL deductive system.

Theorem 4.6. The implication
VB &B&Bi=BUs -B1&
Br=>BUp (=B & o]l o VOB & By

is valid,

Theorem 4.6 is proved in Appendix A,

4.1.7 Coincidence Rule

The Coincidence Rule (CR) is used {o deduce that at some point in time both o

and B are true if o U 4 B and V P are assumed. The rule is stated
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|"'0'UAB’ |_' VB

- V(& ) (R

and can be justified by

Theorem 4.7. The implication
F@UsBy& VB) o V(a& P) (CRimp)
is valid.

Theorem 4.7 is proved in Appendix A,

4.1.8 Additional Theorems

The following theorenis are useful when doing correctness proofs. They will be

used in proving a controller correct.

Theorem732. > O@ow )& o COvowy) =
u> 0w & wy))

Proof

M) wo> O ow)& @> O 3wy)
=u>(Owow)& O owy) by the PC tautology
(wou)&k (wov)=

wou & v)

@ Fuo(Ooaw)& O@owy)) =
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u>s O oW & (v D wy) by T4

B FuoO@@ow)& (vowy)) =
u>o O ow; & wy) by the PC tautology

(wou)& (wov)=

wD & v)
@ FuoDOeow)h)& o Owowy)) =
uod O ow; & wy) by o Trans. twice using
(1),(2),(3)

TheoremT33. | Vw; & dwy o Vwi & Owy)

Proof

() FVw & Owy, = Vw & 00wy by T1 and ER
2 FVw, & O(Owy)) o Viw & Owy) by T7

3) - Vw, & Owy o Vw & Owy) by o Trans. using (1),(2)

Theorem T34, |-(Ow; & V Owy) o V Ow & wyp)
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Proof

() |-Fwo Vw by T31

@ |- 0w, & V Ow, o
VOw; & VOwy by the PC tautology
w;DdwyD(w & uowy & u)

using (1) with V Owy=u

B3 FvOw & VOw, o

4 FOw;& vV Owyo V O(w, & wy) by D Trans. using (2),(3)

4.2 Proving Safety and Livencss

The proof system will be used to verily asynchronous circuits. First we consider
properties of latches constructed out of gates. Then we verify a controller composed

of gates and latches.

4.2.1 Latch Properties

The S—R latch is a basic memory element in asynchronous circuits. The latch of
Figure 4.7 has two active high inputs and no clock, A few predicates will be used for

abbreviation.
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ResetInput =— R
Setlnput = — S
ResetState s~ Q0 & O

SetState =Q & =4 E

The latch possesses static properties, which are assertions about its behavior

with no input change. These are defined

LatchStayReset = ResetState & [1— Setinput > [ ResetState

LatchStaySet = SetState & (- ResetInput > [ SetState.

LatchReset can be proved from the basic gate axioms as follows.

Let Lo = ResetState & [—Setnput = (~Q & Q)& 5. Then the

deduction of LatchStayReset proceeds as follows.

) Lo > OF

@ Q@ ==0Us=SV-0)

(3 Ly 2 [Q =-Q U, (=5V=0)]
@ Ly o [Q =-0U, 0]

G) FO =0 U, &R)

© Ly 2 (G =0U,@Q &R)

M |-Ls o =0

® FLy > 0

® Ly o O=Q & Q)
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by axiom g1.G4

by the PC t_autology w D (v DOw)
by IEOS1 using (1),(3)

by axiom g2.G3

by the PC tautology w D (v D w)

by IGS using (7),(8),(4),(6)



The dual property LatchStaySet is proved similarly. t

The latch also possesses dynamic properties, which describe its dynamic

behavior when one of the inputs change. These are defined
LatchReset = [J=Resetinput & V Setlnpur >V [0 SetState
LatchSet = [J-Resetlnput & V Sednpt >V [ SesState.

LatchSet says that if the reset input is never applied and the set input is applied at
some time then eventually the latch will be set and will continue to be set forever. The

proof proceeds as follows.

(1) I—V—‘.S_' 5 V=SV V-‘Q— ' bythePCtautologyuDqu
@ - V=§VVaQ o V(=SVag) byTs

3) F V=S 5 V(=SV-0) by o Trans. using (1),(2)
@4 |- O0=SV-Q o VQ) by axiom g1.G6

G) - V(=SV=0) o VVQ by T3

6) FV(=SV=0) o VQ by T2 and ER

(H V=S o VQ by = Trans. using (3),(6)

@ FDOR& VS o OR& VQ by the PC tautology
(wiDow))Du & wyDu & wy)

9 -OR& VQ o VR&Q) by T7

(10) - OR & V-5 o V(@ &R) by o Trans. using (8),(9)

Now the subgoal |- OR & V-85 > ¥(Q & R) has been achieved. Intuitively
this is saying that, with COR & V=S as an initial precondition, @ will go high (line

7) and eventually both inputs to gate g2 will be high simultancously (line 10).
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(1) - OR & V=S5 > OR

(1) FO&R =Q&RU,~C
(13) F(OR & V=S) o
Q&R =0&RU,~Q]

(14) -(OR & V=S) o
Q&R =0 U, 0]

(15) FQ &R = =0 |
(16) -OR & V=S > [Q& R = V-0]

17 -0OR & V=S 2 Q&R =>QU,;-Q)
& OR & VaSo[Q &R = V=0l

(18) - OR & V=S >
Q&R =>QUs-0)& V=0l
19 FIQ &R =>QU,-0)& V=(l
> [V(_Q&E)::
VQU,=Q)& V=Q)]
20) FOR & VS o
[V(Q & R)>
VQU4s=Q)& V=0)
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by the PC tautology

un&vou

- by axtom g2.G5

by the PC tautology

w D (v DOw)

by the rule IEIS2
using (11),(13)
by axiom g2.G1

by the PC tautology

wD(vDow)

by (Fu) & (|-v)o

|- u & v of Pred. Calc.

by T32 using (17)

by T3

by D Trans.



@ - V@&R) o
VQUL,-0)& V-0

(22) |- OR & V=5 o
[DE& V—1§D
VQUL=0)& V=0)

23) FOR& V=S o V
QUs-0)& V=Q)

@) FQUs~0&)V=0 2
V@& -0)

25 - V(@QU,-~2)& V-0Q) D
VVQ&-0)

26) V(@ U,-2)& V-0Q) D
V@ &-0)

QN -0OR& VaS o V@ &-Q)

28) =0 =0 U,y (=QV=R)
29 ~(OR & V-S) o
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using (18),(19)

by the PC tautology
uo>(vow)=

vouow)

by o Trans.

using (10),(21)

by the PC tautology

u>DuoOvV)=EuDYV

by CRimp

by V V Rule using (24)

by T2
by O Trans.
using (23),(26)

by axiom g2.G4



[0 =>=-0Ug=(=QV=R) by the PC tautology
WD ow)
(B0) (R & YV=S5) o
[0 = -0 U, ~0] by the rule IEOS1
using (11),(29)
Gl Fg=0U, S &Q) by axiom (g1.G3)
(32) F(OR & V=S5) o
[Q=0U,©S &Q) by the PC tautology

wDvDOw)

Lines 27, 29, and 32 are almost what is néeded for the Eventual Inverter-Gate Stability

inference rule (EIGS). Three more steps will yield the required antecedent.

GH) FOR& VAl » VIO &-Q)
&[0 =-0QU,-0l&
[Q =0 U, &Q) by the PC tautology
wou)y&k wov)=
wou & v)

applied twice

using (27),(29),(32)
B5) FV@Q&-0)&[~0 ==Q2U,~Q]
&Q=0U,8&Q0) > VQ&-0Q
&[Q=>-0U,~01&
[Q=0U,E&Q0 by T33

G6) FOR& V8§ o V@&=0Q
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&[0 =-0U,-01&
0 =0U,E &N by D Trans.
using (34),(35)

Applying EIGS to the line 36 yields the goal assertion that eventually the latch will be

set after toggling the set input.
G F(OR & V=58 o vOE&~Q)

This establishes the latch property LatchSet. Its dual, LatchReset is established simi-

larly.

4.2.2 Correctness of an Asynchronous Controller

Consider an asynchronous controller which accepts inputs, guiding it through a
cyclic sequence of states, If the controller is in state g; at the present time and input
P Occurs, then it enters the state g;4; (where all addition (+) is done modulo , the
number of states). The machine is assumed to have oulput lines which are combina-

tional functions of the state,

The controller implements the automaton M of Figure 4.10 which is defined as

the 5-tuple
M =(Q,P,5,q0,Q) where Q is the state set {qq, * " * \Gu-1}
~and P is the set of input symbols {pg, * * * \Pn-1}
and 8 is the transition function defined 8(q;,p;41) = 9i+1

and 8(q;.pj) = 4i, VJ #i+1
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Figure 4.10 An Asynchronous State Machine

and q is the initial state
and Q is the set of final states.

The machine, implemented with a one-fiot state assignment [Hol82] appears in Figure
4.11. With a one-hot state assignment one latch has a high value, the latch
corresponding to the state, and all others are low. If the machine is in state g4 where
Qo is high, for example, and input P goes high then the machine changes state to q;.

If any other input P; is applied with 04 high, then no state change occurs.

Operation of the machine is as follows. When the machine is in a settled state g;
and no input is applied, Q; is high and all other Q;’s are low as expressed by the

assertion

InState (q;) = SetStare{i) & ‘/\‘ResetState ().
i
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In addition, all the P;"s are low. Since the P;'s are input to the NAND gates, all the

latch set lines .ST, will be high as expressed by
n-1 _
SetLinesSettled = k/—\() Sk-

When any input P; other than ;4 is applied, it has no effect because of the low @;_;
line feeding into the NAND gate j. If Py, is applied, however, the high Q; line
enables the NAND gate i+1 and the latch set input is activated, setting latch i+1.
When the latch is set, then the ém output will go low, resetting latch i. Thus, after
settling, the state g;, will be reached, Now pulling Py, low has no effect because

NAND gate i +1 is disabled by the output line @; of latch i.

Correct operation of the machine is expressed by the temporal logic predicate

StateChange defined
StateChange = Vq; € Q.(InState(q;) & Input(p;,y) & SetLinesSettled
—> O1nState (g;11))
where
Input(p,) = (OPy) & _/\k O-p;.
J#
StateChange will be proved by proving some intermediate properties of smaller por-
tions of the machine. The latches and latch properties where already considered in the
preceding section. That part of the machine which changes during a state change,
hereafter called the dynamic portion, is first considered. This is the pair of latches and

associated NAND gates for the current state and the next state (as explained in the dis-

cussion of the machine’s operation. Then it will be shown that the rest of the latches
D
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Figure 4.11 One-Hot Implementation of the Controller
are not affected by the state change. After all of the intermediate properties are esta-

blished, StateChange follows naturally. The precondition for changing state

InState (q;) & Input(p;,;) & SetLinesSettled
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will be abbreviated Ag. Correctness of the machine will be established relative to this

precondition.

When establishing properties of the dynamic portion of the machine, a weaker

precondition implied by Ay called Ay will be used.
A, = SetState(i) & ResetState (I+1) & [0 Sednput (i) & [ — ResetInput (i+1)
& UPiy

The proof begins by dealing with the NAND gate associated with latch (i+1). The
latch properties LatchReset and LatchSet are used in the proof. The particular

instances of these latch propertics needed are
LatchSet (i+1) =
O ResetInput (i+1) & V Setlnput (i+1) o 'V O SerSrare (i+1)
and

LatchReset (i) = [O=Sednput(i) & V Resetlnpur(i) o V O ResetState (i ).

M) A D Py & O

2) P& Q> —|S‘:-+1 by axiom Gl
(3) ]—Pi+1& Q"D V—1§;+1 by DW oW
@ [-A; D V-~ '_;-+1 by > Trans. using (1),(3)

(5) A, o O=Resetnput (i+1)
(6) |-A; o = Resetlnput (i+1)

& VS by the PC tautology
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wou)& wov)yswd(u & v)
using (5),(4)
(N A o V O SetState (i +1) by o Trans. using (6),LatchSet (i+1)

Line 7 says that, with the initial assumptions A, latch i+1 will eventually reach the
set state and stay there forever. Line 7 is a subgoal needed to achieve another subgoal

which concemns latch i,

A o V OResetState (i).

@® A, o (VOQ& VO-Q;,y) byT8anddef. of SerState (i+1)
| using (7)
(@ |-A; o V QResetlnput (i) by PC tautology
wo@&v))o(w>du)
and O;41 2 R; = = Resetlnput (i)
using (8)
(10) | V OResetinput (i) o
V Resetlnput (i) by VUldwow
(A5and V V Rule)
(11) FA; o V ResetInput (i) by D Trans. using (9),(10)
(12) A, o O-Setdnpur (i)
(13) Ay o O=Sednput(i) &
V ResetInpur (i) by PC tautology
wou)d wWov)=wdD W &v)

using (12),(11)
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(14) |- Ay o V OResetState (i) by > Ttans. using (13),LatchReset (i)

The low (-2—,‘ 41 output of latch i +1 resets latch I and this is modelled by the dependency
of the goal of line 14 on the goal of line 7 in lines 8 through 14.

To get from the global machine assumption Ag to the assumption about the
dynamic portion A, requires the use of one inference rule and one static latch pro-

perty. The part of A; which is not implied directly by Ag is
O = Setlnput (i) & [ — ResetInput (i +1). (4.16)

This formula consists of two assertions of non-interference. They state that the
dynamic portion is not affected by any signals in the rest of the machine. These non-
interference properties are analogous to non-interference properties in verification of

concurrent programs with shared variables [Owi76]. They are proven as follows.

(15) | Ap> O-P;

(16) - O-pP;, > O=pP;VO-0i by the PC tautology

uouVy
a7 - 0O=pV OO0y o
OGP V=0 by TO
18 |- Ao O-P; Vo Q1) by O Trans. twice
using (15),(16),(17)
19) S =8 Uy P & Qi) by G3

0) Ay D [S; =S5 Uy (P; & Q)] by the PC taufology w D (v D w)

@l Ay o [S; = O8§] by SI using (18),(20)

Now the assumption SetLinesSettled is used on the entailment S; = [ S:.
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@) 0@ > 08) o ¢;o>08) by Owow
23) A, o 5> O8) by S Trans. using (21),(22)
24) |-S; o (Ag> OS) by the PC tautology

oW :)vQ)Ev Smow)
(25) |-Ag2S; by SetLinesSettled

26) |- A2 OS; by O Ttans. using (25),(24)

Since .S-', is = SetInput (1), one of the two non-interference assertions (formula (4.16))
has been proved. To prove the other assertion, steps 15 through 26 are repeated with

i +2 substituted for i, yielding the following.
Q27 Ay o O=Setdnput (i+2)
Further deductions on the results of lines 26 and 27 lead to the other goal.

(28) |- Ay O ResetState (i+2)
(29) Ay O ResetSrate (i+2) &
O = SetInput (i +2) by the PC tautology
wou)&k wov)=
wo(u & v)
using (27),(28)

(30) |- ResetState (i+2) & [ — Setlnput(i+2) >

O ResetState (i +2) by LatchSet
(31) |-Ay o [OReserState (i+2) by O Trans. using (29),(30)
B2 Ay o O=011%& 012 by defn. of ResetState
33) Ay o O-Qind OQin by T4
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(34) Ay o [O=Resetnput (i+1) by the equivalence
Qiv2 =Ry =

— Resetinput (i +1)

This establishes the other non-interference assertion of formula (4.16).

Having now established that
(35) FAq 2 Ay,
and that
(14) |-A; o V [OResetState (i)
and
(N |-A; o V OSetState(i+1),
it known that
l-A; o V OResetState (i) & V [jSetState (i+1)
by the PC tautology (w Du) & (w Dv)sw D (u & v), and that

-Ay o V OResetState () & V [lSerSrare (i +1).

Using the deduction schema of steps 15 through 26 again with the values 0, ...

and i+2, -+, n—1 substituted for { yields the n~2 implications

I-Ag o [O= Setinptt(0)
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Ay o [O—Setnput(i-1)

Ay o [ Sednput(i+2)

[-Ay o [~ Setlnput(n-1),
In addition, the following intplications hold.

|- Ay o ResetState(0)

l-A, D ResetState(i-1)

|- Ay » ResetState (i+2)

|- Ay o ResetState (n~1)

Using the PC tautology (w D u) & (w Dv)=w D (4 & v) the implications are com-

bined.

|-Ag D ResetState (0) & - SetInput (0)

|- Ay D ResetState(i-1) & O = Setnput (i-1)

|-Ag O ResetState (i+2) & [ - Sednput (i+2)
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|- Ay o ResetState(n=1) & [ = Setnpur(n—1)
Combining lines 14, 7, and the above n-2 implications yields
-Ag o OReseState(Qy & +++ & [lResetSeate (i-1)
V OResetState (i) & V [ SetState (i +1)
O ReserState (i+2) & -++ & O ResetState (n—1).
The final step is n—2 applications of theorem T34, yielding
|-Ay o V O(ResetState .(O) & +++ & ResetState (i—1)
& ResetState (i) & SerState (i+1)

& ResetState (i42) & +'* & ResetState (n—1)).

Since it is now known that
|- InState (q;) & Input(p;,,) & SetLinesSettled > V [OInState (q;41),

it can be generalized using 1. The eventuality is obviously true for any initial state

q; € Q. So this completes the proof of the StqteChange assertion.
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CHAPTER 5

Global-Time Properties

In this chapter the focus tumns to properties of asynchronous circuits which are of
interest throughout the entire time of normal operation: global-time properties. In

contrast to steady-state properties where stable eventualities take on the form
O Stimulus > V [dResponse,

and time is viewed locally, the global-time assumption dictates that stable eventuali-
ties (as in " V [JResponse") are not stable forever, otherwise the circuit is in some
kind of deadlocked situation where further stimulus will not produce corresponding
responses. With steady-state analysis the stimulus is applied forever and the expected
response is infinite stability, In contrast, the term global-time is used to denote when
the time of application of the stimulus and the time of stability of the response are lim-

ited. Liveness propertics then take the form
IC & (Stimulus U 5 LongEnough) o V (Response U 4 NexiStimulus)
where IC is a formula describing the initial condition (initial state), LongEnough is a

formula which is true when the stimulus has been sufficiently recognized by the
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circuit, and NextStimulus is true when nothing more can be assumed regarding the sta-
bility of the circuit’s response. For a latch, LongEnough would be a formula which is
true when the latch has completed its response to a set or reset request (i.e. when @
and Q are at appropriate values). NextStimulus would describe the complimentary
input situation of Stimulus, ie. if the stimulus is a reset request then NexzStimulus
describes a set request. For our familiar S-R latch of Figure 4.7, this would be

expressed
~R&S U, -0&0)> V(=0& QU, =S
For the asynchronous controller the livencss would be expressed
StateChange =4, InState (q;) & (Input (1}£+1) U 4 (InState(g;,1) & InputBeh)) >
V (InState (q;,1) U 4 Input(q;,2)).
where "InState (q;)" is the initial condition which must be assumed in order for the
consequent to be true,

5.1 Proof Tools

5.1.1 Forward and Backward Reasoning
Let a situation be a PC formula that partially describes the state of a circuit.

When proving properties about the sequences of events in asynchronous circuits,
two very important event relationships which must be expressible are:
(i) when situation r is present, it causes situation r to occur (liveness) and

(ii) 7, will not occur until ry has occurred (safety).
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An example of relationship (i) is expressed at the gate level by axioms Gl and G2.

Relationship (ii) is expressed by axioms G3 and G4.
Forward reasoning

Forward Reasoning provides a way to derive the causal relationship of situations
when composing devices. Forward reasoning is based on the following idea. Let for-
mulas of the form 7; be true when a certain situation is true about a line of a circuit.
If a situation r, implies the eventual occurrence of situation ra, and situation ry
implies the eventual occurrence of r3, then it is true that situation r, implies the even-
tual occurrence of situation 74. In a temporal logic framework, this corresponds to the
transitivity properity of eventualities of the form u —»» v. The forward reasoning rule

FR is stated
I— (Wl - Wj) & (Wz -3 W3) > (\#‘V]I = Wa). (FR)

It is justified by the transitivity of the operator combination > V and the yields
operator —-» , established as follows. (We use transitivity of implication so much

that we often do not mention that it was used or we abbreviate it simply as "trans.")

- wyiD Vw,

|- wy2 Vws

- Vw,o V Vws by VV Rule
- Vwyo Vwy by T2

|- wiD Vws by trans.

This establishes transitivity of © V. The transitivity of D V is used to show the
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transitivity of —- .

|~ wi o> wy
- wy> Vw, by OE
- wy—wy
|- wp,> Vwy by OJE
- w;> Vws; by trans,

= wy—=»wy by OI

Backward reasoning

Backward reasoning provides a way to derive the safety relationship between
events when composing devices. The safety relationship between two related situa-
tions dictates that if situation r precedes situation r5 then r, cannot occur until r
occurs. Backward reasoning is the property that if r| precedes r and r, precedes r;
then r, precedes r5. The U, operator is used to express this safety as in
(—ry U, ry). Backward reasoning (BR) is inherent in an U 4 -property called res-

tricted transitivity. One way to state restricted transitivity is

i Ugw)& (twa Uy wi) o (w Uy wy). (RT)
Restated in terms of situations, it becomes

FrUarp& (rsUpr) 2 (rsUprp (RTS)

Instead of RT above, a more general and useful form will be used from now on. The

restricted transitivity of U 4 , now stated more generally as
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1— (Wl UA W2) & (W3 UA W4) & D'W(W;y& W3) - (WI UA W4), (BR)

is established by reasoning that if wy occurs at time i and w4 occurs at time J then,
since wo and w3 are in conflict (they can never be true at the same point in time as dic-
tated by [ — (wy & w3)), i >j and so w is truc until wy. This situation is pictured
in Figure 5.1. The term "restricted" refers to the fact that the transitivity is valid only

when w, and w3 are in conflict. U, is not transitive in the ordinary sense.

Figure 5.1 A Valid Model for Restricted U/ 4 Transitivity

The arrow from the node labelled "j" to the node labelled "i" indicates that j must

precede i.

BR can be proved formally by using a Wolper-style (like A9) axiom for U :
u& Ouwo@p &)V &Ou)) oplU,qg

with w=s Uyw)& wylUywy)& O-(wy& wy) as  the induction
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hypothesis.
BR can be used to establish RTS by substifuting
—r,forwy,
ry for w,,
— rj for w,
ro for wy.
BR will be the form used from now on.
Generalizing the BR rule using the restricted transitivity property of U/, yields

the generalized backward reasoning (GBR) rule stated
k-1 | k k
- ‘_/=\1 Oy & vii) & ‘{__\l (; Uy v) o (i/'=\1 u) Uy vy (GBR)

and justified by BR used k~1 times.

Those familiar with program correcthess will hotice that forward reasoning is
somewhat analogous to the forward assignment axiom of Floyd [Flo67], and backward
reasoning is analogous to the backward assignment axiom of Hoare [Hoa69]. To see

this, picture a chain of inverters as analogous to the sequence of assignments
X=X 5 5 Ky S

When composing individual devices to form a circuit, we need to obtain new
specifications for the composite circuit and prove that it will behave according to the
new specifications. Here some small example circuits are considered, and a taste of
the usage of FR and BR is presented. The example of a delay element consisting of an

inverter chain is used to illustrate forward and backward reasoning.
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An inverter with input line L and output line L would have the following gate

axioms.
-L ==L
[ ey
L =>LU,L
ol ==L U,-L
FL=LUj~L

I"‘_"IL =¢—1L UA E

Figure 5.2 A Two-Inverter Delay Element

(G1)

(G2)

(G3)

(G4)

(G5)

(G6)

Consider a simple delay element consisting of the composition of two inverters,

shown in Figure 5.2. The liveness property pair

L1~—>—)L3

"1L1-—)—)""1L3

can be proved directly by forward rcasoning (the transitivity of —-»). The safety
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property pair

Ly & Ly=>LyUy —Ly Ly& —Ly=>L3U4 L,
can be proved as follows. Let Settled | =40 =1Ly & L.

- =Lyo=L Uy Ly

|- Ly2L3U, Ly

|- Settled>—=LyU, - L,

|- Settled; D L4 U, Ly

I Settled; 5Ly Uy =L,

b mLy& Ly=> L3 Uy =L,

The second-to-last step is justified by backward reasoning. The dual property follows
similarly. Note that in the final formula the assumnplion m L, & L3 is made. This is
required to guarantee that the neither of the gates are initially in the excited state
(where the output has not yet reacted to an input change). The slightly more elegant

formula
|“ L3 3[.3 UA —lLl

would not be derivable and rightfully so. It would allow L, to be high, and this would
mean that the second inverter is excited. If the second inverter is excited then the
safety property is not valid since Ly could go low before Ly goes low due to the unex-
pected 1 on line L,. Internal line L, must be have a value that is the compliment of

line L4 for the safety property to be valid.
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Figure 5.3 A Four-Inverter Delay Element
The same two-inverter delay element can be composed with itself again, produc-
ing a longer delay (and possibly an amplification of the signal). The delay element in

Figure 5.3 is composed of four inverters. Again the liveness property pair
Ly—»Ls =L —>~Ls
can be proved directly from the transitivit;i of — . The safety property pair
—Ly& Ly& ~Ly& Lg = LsU, =Ly
Lyd& mLy& Ly& =Ls = LU, L,
can be proved as follows. Let Settledy 24p — Ly & Ly & =Ly & Ls. Then
- L& ~Ly o =L U, Ly
|- Ly& =Ls o ~LsU, L,y
|- Settledy > — Ly UAALI
|- Settledy D = LsU, Ly

I— Settlcdg' o —1L5 UA Ll
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|— —le& L3& "1L4& L5 = LSUA_'ILI.

The second-to-last step is justified by BR.

GBR could also be used to derive the inverter chain safety properties in just 1

step. We go from
|- Settledy > =Ly Uy~ Ly
& LU, Ly
& LUy Ly
&LsUy Ly
to
|- Sestledy’ > Seriledy Uy - Ly

The latter formula states that, initially in Settled’, the chain will remain in that state

until disrupted by L going low.

So far inverter chains have been the only circuits considered. Composing the
various logic gates poses a problem called stage synchronization, which is an artifact
of the unbounded delay assumption. Consider, for example, the two AND gate chain
of Figure 5.3. If it is known that X, ¥, and Z are true now, it often desirable to con-
clude that V 'will be true some time later. If Z goes low during the time that the first
AND gate is switching, however, T will be high and Z low for the second AND gate,
causing V to become (or remain) low. Since the Z line bypasses the first gate, another
condition must be added to sychronize Z with 7', 1f it is known that (Z U, T) then

by the coincidence rule (CR) we may conclude that V (Z & T). Then from the
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liveness gate axiom for the second AND gate, Z & T —-V, the property
V(Z & T)> V V can be obtained by elimination of the [ (T1) and application of

the V V Rule. Then by transitivity of implication
FX&vY&@U,T)DVV

follows.

Figure 5.4 Combinational Logic the with Stage Sychronization Problem

5.1.2 Transition Safety Propertics

As a tool in proving certain livehess properties when the stage sychronization

problem (Section 5.1.1) is present, safety properties of the form
~BUEPUs~ 5.1
are used. Formula (5.1) is a stronger substitute for the weaker
VU, - (5.2)

which often appears in safety proofs. Formula (5.1) not only says eventually B is true

until — o, but also that B is not true up until that time.
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A formula like (5.1) is called a Transition Safety Property (TSP). TSPs are
safe.ty properties of propositions undergoing a transition. A TSP like (5.1) is a state-
ment about the safety of proposition B (which could be a line name or a propositional
logic formula) during a transition from — [} to 3. We call such a TSP a 1-TSP because
of the single transition. An n-TSP is a property about a proposition undergoing n tran-
sitions.

Using this definition of n-TSP then, we would conclude that the gate safety

axioms G3 and G4 are 0-TSPs. We could formulate 1-TSPs like
“B=-BUBU, -0
and 2-TSPs like
B=pUSpUPBU, 0.

and so on for gates. Note that each IJ opetator may or may not be strong, but the I/ 4

is usually weak, allowing for the proposition B to be in its final state forever.

5.1.3 Proof Rules

Global-time versions of the proof rules of Chapter 4 are similar their steady-state
counterparts, but with the steady-state stability formulas of the form [u replaced
with the global-time version (¢ U 4 ¥) where ¥ is true when the stability was in effect
long enough. The rules concern finite stability, and therefore we prepend the word
"finite" to the names of their steady-state counterparts to arrive at the names of the

global-times rules.

Finite Inverter-Gate Stability:
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-w o P& By
—w o Bi=BiUs =BVY

Fw 5 Br=PB U, (=B
Fw o B1&BaUny

Finite Gate-Gate Stability:
[-w > By & B2
Fw o B=BU,=RYY

_|"'W D By=PpU,4 (—'[51.& o)

Fw o B&BIUsy

Finite Eventual Gate-Gate Stability
w2 V(B & By

Fw o B=PUs=BYY

Fw 2 By=>BUp (=B & o)

Fw o VB &BUAY

5.2 Safety Strategy

(FIQS)

(FGGS)

(FEGGS)

The strategy for proving global-time safety is simply to use BR and GBR, aided

by any PTL theorems needed. This is illustrated in the safety of a latch and the safety

of the asynchronous controller.
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5.2.1 Latch Safety

With the global-time assumption in mind, the safety properties of latches can be

established. The latch safety properties
LatchStayReset =40 Reset => Reset Uy — S
LatchStaySet 24,0 Set => Set Uy R

where Reset =4 = Q & Q and Set S @ & — O state that nothing will occur to
the outputs of the latch until an appropriate input is pulled low. LatchStayReset says
that if the latch is reset now then it will remain so until a new stimulus from S occurs.

LatchStayReset is easily proved using FGGS. Assuming Ag =4, Reset we have

FAg D —-Q &0
FAg D 2@ ==0U,(=5V-0)
A2 Q=0U, (@Q &R)

|-Ag D Reset Uy ~§ by FGGS

5.2.2 Controller Safety

Figure 5.4 shows one cell of the controller, Cell,. For the controller, safety is
the property of staying in state g;,; after the state transition g; — ¢;,; until the next

input, p; ;», oOccurs.
|- InpuiBeh & 1S(q;01) = 1S (i) U a 1(Pis2) (5.3)

where we abbreviate InState as 1S and Input as I, In proving (5.3), the InputBeh
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assumption is necessary to guarantee that (the notation of Chapter 4 is used here)

- P U Ipi) (5.4)

It is not guarateed that the controller will be stable in new state g;,; unless Py,
stays low. InputBeh is an assumption that guaratees that after an input is applied,

there is a period when no input is applied, i.e. a period when Nolnput defined

n

Nolnput =, ‘Al - P;
i=

is applied. InputBeh is defined

I(P.i+l) U NOIﬁpllf U I(p£+2)

Derivation of our goal (5.4) from InputBeh proceeds as follows.

Ag=ger 1;41) U Nolnpur U 1(pi4)
W~ Od ;e :5 - P;9) by def. of I and [JI
()|~ Ag o — P U Nolnput U 1(p49) by T25

1o =Zger = Piaa U Nolnput U 1(pj42)

(3) |- 1o D Wolnpur U 1{p; o))V (= Piya & Oung) by def. of U A8

(4)}- O (Nolnput > = P, ,3) by def. of Nolnput
and OJ1
()1 (=P UIpia)V (=P & Oug) by T25, PC using 3,4

) Do (=P Ulpia) V(= Piya & Oug)y by OI
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(Nl-Ap 2 ug& O@ed (=P U (i)

V(= P2 & Oup)) by PC using 2,6
B)-Ag D =P U =P Ui by Wolper’s A10
DAg 2 ~Pia U Ipis2) by T27

Figure 5.5 shows the basic controller cell, Cell,.

We now return to the derivation of (5.3). To the n~2 pairs of safety formulas
F1S(qin) > ~ G Us =5,
1S (@is0) 2 Sk Us (Qi-1 & Po),

derived from gate axioms and latch propertics with & =i, i-1, ..., i+2, we apply the

general backward reasoning rule GBR, yielding
F1S(gi) 2 (5Qi & = Qi & 10 & 201 Uy (Qiny & Piy2)

and

FIS@is) D (5 & iy & 0 & Si) Up Qi1 & Pisa).
These, combined with formula (5.4) using BR yields

[-1S(@in) 2 Qi & = Qi & 0 & Qi) Uyg 1) (5.5)
and

1S(gi) D S & Siy & 0 & 5 Up 1), (5.6)

leaving Q; 4 and S, yet to be included in these two ‘safety formulas.
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Note that the Cell; S line, .S-‘-M, is left out of these two formulas. This is

because Cell;,, is in a different state from the others. 1t will be treated shortly.

Foreach k =1, i-1, ..., i4+2, we apply BR and T28, taking the n—2 pairs
1S 2 0; Up =5
FIS@i) © 55 Uy 1142)
into
IS 2 @ & Gia & " & 0 Up Tisd) 5.7

Again the Cell, , line is left out, 0; 41

Now we work on including the three line variables Q; 41, .ST,-H, and Q_I+l in the

safety formulas. >From formula (5.7) we know

1S (is) 2 Q2 Us 1 Gis2).
Using the LarchStaySet safety property, we also know

1S @is) @ Qivt Uy = Qisze

We use BR again on these two, then include the result into formula (5.5) with T28,

yielding
FIS(@is) D Qi & Qi & * 0 & = Qi & Q) Ux 1(ing) (5.8)
Using BR on the pairs

-1S(qa) @ St Ua O
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F1S(gi) @ =@ Up 1132
and
F1S(gis) 2 = Qi Up = Qs
IS 2 Q2 Un 1012)

and using T28 to combine these results with (5.6), (5.7) and (5.8) yields (5.3), the

desired salety formula for the controller,

5.3 Liveness Strategy

Proving liveness is much less straightforward than proving safety. A combina-
tion of forward and backward reasoning is used, and PTL timing diagrams are used to
clarify the ordering of signal transitions. The heuristics used in proving the liveness

of a circuit such as our controller are

Liveness Strategy
1.  Determine the active and non-active portions of the circuit
Partition the circuit into cells which are of manageable size
Prove cell properties
Prove non-interference properties

Determine any 1-TSPs

IS U S

Use PTL timing diagrams for intuitive reasoning

5.3.1 Latch Liveness
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Liveness of the latch is can be expressed in several ways. Adhering to the gen-

eral form of global-time liveness, liveness should be stated
(=8 & RYU, Set) = (Set Uy =1 R)
This form is provable in our system. A weaker form,
(=5 & (R U, Set)) = Set Uy ~R),
is also provable. In practice, though, an even weaker form is the most useful.
LatchSet =40 (V -5 & (R Uy Ser)) = (Set Uy -R),

This form allows the S stimulus to occur anytime from now into the future, assuming
that R remains high during that time. This is useful when the S input is the output of

a gate, as in the controller example.

In the derivation of LatchSet, let the initial assumptions be
AOEdcf V-S & (E U, Set)
The proof now follows,

(Dl-Ag 2 V=S

- V-85 > V(=8§V=0) by PCand V V Rule
A-SV-0 0 gate axiom

@- V=SV-0)0 VQ V V Rule

5)l-A, > VO trans. on 1,2,4

G~ Aq D (R U Set)
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(M- R Uy Set)y o OR
VIRUR & Q & -0))
& VR&Q & Q)

@Ay 2 (VQ & OR)
V(VQ& RU R & Q & —0)
& VR&Q & Q)

O Vo & OR o V(@ &R)

10V & RUR&Q & Q)
& VR&Q & Q) >
V(Q & R)

(ID-Ag > V(Q & R)

ADFQ &R =Q&RU, -0

UHFQ &R 0

Q&R > (Q&RU,~Q)& V-0

Q&R UL~ & V=0
:vm&f&ﬂé

(16)FQ &R > V@&R&-Q)

(ADFQ &R D V(Q & -0)

(8)- V(@ & R) > V(@ & -~0)
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by def. of U 4

by PC using 5,6,7

by T7

by T6

by PC using 8,9,10
gate axiom

gate akiom

by T4 and PC using 12,13

by CRimp
by trans. using 14,15
by T6

by V V Rule and T2



(NFAy 2 V@ & — Q) trans. using 11,18

20)-Ag D =0 = -0 Uy (=0 V=R) gate axiom
QDA 2 Q0 =0U, (§& 5) gate axiom
Ay > V(Q &-~Q Uy, —~R) by FEGGS using 19,20,21

Steps 1-11 are a derivation of the fact that applying the input will result in a
future time when @ and R are both high. These being high will cause O to go low
(step 13). Input safety (step 12) guarantees that O and R are high and é is low at
some point. This situation is stable by FEGGS (step 22).

The dual of LatchSet, LatchReset , is derived similarly.

5.3.2 Controller Liveness

For asynchronous controller, we have determined in Chapter 4 that the active
portion of the circuit for the StateChange property consists of the two latches and two
NAND gates labelled i and i+1. Figure 5.5 shows a single cell of the partitioning.
The Cells have also been determined in the partitioning discussed in Chapter 4. The

antecedent of StateChange is
Asc Sgor InState (q;) & (Input(p;yy) Uy (InState(q;41) & InputBeh))

Next we turn to proving the cell properties.

The cell property of Cell; is simply LatchReset, as the latch is reset by Cell;4,.
The cell property of Cell;,; is proved by using the liveness of the NAND gate and

LatchSet. Let us use
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\» 1

Figure 5.5. One Cell of the Controller
Ag=gy Eing & Piyy & Ry Uy Seti)

as our initial assumptions. The proof of the cell property for Cell; ,; is
-Ap D Eiy1 & Piyy by PC

Ei g & Py > V=S gate axiomand (J E
Ay D V=S & Ris Uy Setiyy) by PC

|—' Ao >V (.S'et‘-H UA - I€i+l) by LatchSet
Since Age D Ay, it is also known that

Asc © V(Setjy Up = Ri4y) (5.9)

and

-Age o V(Reset; Uy = 8;) (5.10)
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from LatchSet and LatchReset tespectively,

From the discussion of the steady-state behavior of the controller in Chapter 4, it
was determined that Cell; and Cell;,; ate the active cells during a state change.
Interference from adjacent cells was ruled out by the' non-interference properties.
Non-interference properties dre again establislied to allow focused reasoning about the

active portion of the circuit. The two hon-intetferenice properties are then
- Asc o 8§ Un 18 (5.11)
F Ase @ Ry Uy IS(qua) (5.12)
(5.11) is proved as follows.
A o S; Uy (E; & P;)  gate axiom
|- Asc 2 —"Pi Uy ISy  bydef.of Ay
- Asc 2 S; Uy IS(giv1) by BR

(5.12) is proved as follows.

D~Asc D2 " Qin @,,2 Uy- §:~+2 by LatchStayReset

@ Asc D 02 Up =8 by T28

B Asc 2 SiaUs Eisn & Piip) gate axiom
@k Asc D Q2 Up (Eria & Pijp) by BR using 2,3
G- Asc 2 =P U IS(g141) by def. of Agc
)~ Ase D Qiva U IS(q141) by BR using 4,5
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M- Ase D Riyy Ua IS(qin) by Q;42 = R;yy and ER

Keeping with the liveness strategy, we next determine the appropriate 1-TSPs.
We have found that it is a good idca to try to limit our ambition to proving only pro-
perties which involve 0 or 1 transition per line. StateChange does not quite meet this
requirement. The §;,; line changes from high to low, setting off the transitions in the
active portion of the circuit, then is set back to high again. But if we define

& [/'\ S_,-]
j=i+2

— { —
AlmostInState (q;41) Zgor Qi1 & 1 Ciy & [ /\+2 -0Q; & Q)

(abbreviated AIS (g;,1)) and
InState (@i41) 2o S; 41 & AlmostInState (g;,1),
then prove the pair of liveness properties
IS & I’ D V(AIS(qis) & 1) (5.13)
- AIS(gis) & 17 D V(IS (@i1)) (5.14)

where I =40 (I (pi41) U g US(gi41) & InputBeh)), we will find this more tractable.

The 1-TSP property of .S-'-,-H is
Asc D Siq U =S Uy (B E iV =Py

This can be assumed as a gate axiom. In fact, we simply augment the basic gate
axioms with any 1-TSPs needed. The 1-TSPs for Cell;,, to be derived for Cell;,; and

Cell,- are
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(Cell;,) Asc D = Setiy UE Setp g Uy IS (i) (5.15)

(Cell}) Asc D —Reset; UE Reset; U IS(gi41)- (5.16)

This proceeds as follows. (All line variables have their "i+1" subscripts omitted.}

D-Age D SUASUL (=EVaP)

DbAsc DEU,-Q
G)-Asc > PUL-Q
@A 2 QU4 S
G)Asc 2 SU-SU,-0

6)Asc > ~QUQU, (S & 0)

Dl-Asc > CU ~Q U, (<2 V=R)

@) Asc 2 Q@ Us=SV-0)
9)-Aqc > Q U, (Q & R)

(10 Ase 2 QYU

QUL & ON& QUL (=0 V=R

1-TSP gate axiom

by LatchStaySet (i)
by’

by LatchStayReset (i+1)
by DP using 1,2,3,4
1-TSI-’ gate axiom
1-TSP gate axiom

gate axiom (0-TSP)

gate axiom

by DP using 6,7,8,9

The intuition behind step 5 above is seen in the PTL timing diagram of Figure 5.6.

The intuition behind final deduction step is seen in Figure 5.7. Using the implication

used as the basis for proof rule FGGS, formula (10) of the derivation above can be

reduced to

- Asc o —Setiyy U Set; .y Uy SYINY
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Figure 5.6. PTL Timing Diagram for S;,, 1-TSP

Similarly, we derive
I— ASC o —!ReSGI" U RGSC’I" UA —!S—‘

We convert the weak U s into strong U £ g by using latch liveness, formulas (5.9)

and (5.10), and the definition of U% (T9).
l-" Age D= Sety UE Set; UA —|I€;+1 (5.17)
|- ASC :)—1Reser,- UE Reset; UA _IS-; (5.18)

Now, we turn to the problem of extending the TSPs (5.17) and (5.18) to until

IS (g;,1). Adding the non-interference properties (5.11) and (5.12) and the condition
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Figure 5.7 PTL Timing Diagram for Set;; 1-TSP
]" Agc 2 = I15(q;41) U (Reset; & Set; () (5.19)

which comes from the definition of IS, using T25, we have the situation depicted in

Figure 5.8, from which (5.15) and (5.16) can be deduced using the DP.

We now have the required TSPs for the active cells. For the inactive cells, Cell;

where j =i+2,i+3, -+, i, we need the safety property

l—' ASC - Resetj UA 1S (qu). (520)
This is derived as follows.
|- Asc D Reset; Uy — .S_'; by LatchStayReset (j)
|- Age D 5; Uja P; from gate axiom by T28
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-Reset Rgset i Reset &-S i

Figure 5.8 PTL Timing Diagrams for Reset; and Set; 4 1-TSPs
I— ASC ) —:Pj UA IS(QH-I) by def. of ASC and T28

I~ Age O Resetj UA IS{q;,1) by BR twice

We also need the property that the S lines for each Cell ; remain high through the

state change.

I— ASC = —'Pj UA IS (q“+1) by def. of ASC and T28
I— ASC = .S-‘; UA (—EPJ & "lEj) gate axiom
-Agc 25; Uy IS(gi4) by BR using (1),(2)

Using this result and formulas (5.15), (5.16), (5.20) and a variation of formula (5.19):
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-Reset i Reset i Reset; & 15

¥

-Set, Set .
: :l +1

&

Reset . Reset: & I5

PP

Figure 5.9 PTL Timing Diagram for Controller Liveness Goal 2
- Asc D —IS(qi41) U (Reset; & Set;yy & Resetj & S;)

which comes from the definition of IS using T25 the DP can be used to derive the first
of our two liveness goals, formula (5.13), The intuition is provided in Figure 5.9. We

now turn to proving the second goal (5.14).

The situation AIS (g;4) is stable as long the next input is not applied. Thus the
controller remains in AIS{(q;,q) until SetLinesSettled, i.e., the S:,; line goes high
again, With the assumption of our second goal, we are able to retain the non-
interference properties, since they were proved from I’ and gate axioms, both of which

are still in effect. Therefore
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42 8§ UpIS@iv) .21)
Ay 2 Ripy U IS (qra) (5.22)

where A, is the antecedent of goal (5.14). We use these non-interference properties to
derive the fact that the latches of Cell; and Cell;,, are stable after they undergo their

transitions. Since A, implies LatchStayReset;, we know that
I~ Ay o Reset; Uy =5,
Combining this with non-interference formula (5.21) using BRyields
|- Ay o Reset; U, 1S(g;4y) (5.23)
and, similarly for Sez; s,
|- Ay 2 Set; 1 Uy IS (g;4y)- (5.24)

n=2 other safety formulas must be proved, one for each of the non-active cells. For

J =i42,i43,...,0, we derive

Ay o (Reset; & 5;) U 4 1S (qi41)- (5.25)
-A, o Reset; Uy - S’; by LatchStayReset;
Ay o 5 Uy (Ej & P)) gate axiom
l— Az > —|PJ UA IS(C],'_,_I) by def, of I’

Ay o (Reser; & S;)) U, IS(q;41) by GBR

The one line remaining is the only one undergoing a transition, S;,;. This line is
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pulled high by Q; of the latch in Cell;.

(= Q V=P -8y gateaxiom

I—Az 2 —‘Qi by PC
A, 2 =0 V- Piy by PC
Ay D VS by trans. and OJ E

We combine formulas (5.23), (5.24), and (5.25) to obtain

i

=/‘\+2(Resetj & §) | Uz 1S(gi41)

Ay o [Ser & j
This is
- Az 2 AIS(gi4)) Up IS (qis1)
saying the circuit will wait for .§'.,-+1 to go high. Since
-FA; > V ‘S_‘;Hs
§,:+1 will go high, and

Ay o VIS(q41)

is derivable. This last step is proved by the DP using the additional condition
~IS(q;41) U S;4p derived from [J (IS (g41) D S:,1) by T25 using the definition of

IS. The intuition in the form of a timing diagram is presented in Figure 5.10.

5.4 Discussion
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i+ 1

Figure 5.10. PTL Timing Diagtain for Coniroller Livencss Goal 2

Global-time correcthess involves quite a humber of U -properties. The reason
for this is seen in the small example of Figure 5.3. Even for a two-gate circuit it was
necessary to specify that the input Z was high long enough for it to synchronize with
T to account for the stage synchtonization probletn, When carrying this out for a con-
ventional size circuit, the numbet of {/ -properties grows Imore than linearly in the
number of gates, due to all the gale-to-gate inter connections. The stage sychroniza-

tion problem takes its toll in the complexity of the proof.

In the previous chapter we were restricled fo single transitions and steady-state
behavior. This eliminated the stage synchionizdtion problem, and we were able to
prove every proof rule and theorem by hand. But global-time proving involves so

many complex U -properties that the timing diagrams and the DP must be used.

The framework of Chapter 4 add this chapler is a syntax-directed one where
gates are composed to form circuits, dnd proofs are contructed in a bottom-up manner
along with the circuit contruction. Little atfention is paid to the behavior of the cir-
cuits and subcircuits except in the PTL timing diagrams. In the next chapter, we con-
sider a different approach where the behavior is derived first, then properties are

proved using the information about the behavior,
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CHAPTER 6

Execution Graph Method

Rather than directly proving the desired circuit properties as we have done so far,
we now consider a proof method, called the Execution Graph Method, where a graph
is first constructed then used as a tool to prove properties. The graph is somewhat like
a finite state graph where every vertex is associated with a propositional logic formula.
Every path through the graph has a corresponding PTL formula dictating the allowable
execution sequence. Construction of the graph is an investment which is worthwhile

when several properties need to be proved.

6.1 Execution Graphs

Like a program, a circuit has an execution which defines the states in which the
circuit may be and the order in which the states are entered. An execution graph is a

structure from which the allowable circuit exccutions can be inferred.

Definition 6.1. A state template for a circuit with input, output, and internal line vari-

ables vy, -+, v; is a set of PC forinulas

‘il Ed{‘f fl(vla .“vvl)

121



Gn Zdeg FnV1s * 05 V1)

involving the line variables such that no two of the ¢; are true at the same

’ n
time. Thus it must be true that [I1( 3 4; = 1).
i=1

Definition 6.2. A state template ¢, ***, ¢, for a circuit is said to cover the execu-

tion if it is true that

O Y <+ V).

This is an essential property of state templates. Only state templates with this
property are of interest here.

Definition 6.3. An execution graph (EG) for a circuit with a state template
41, >4, is a pair (V,S§) where V is a set of vertices gy, ** -, q,
corresponding to the formulas of the state template, and § is the set of
safety arcs S cVxV-{<q,q>|q e V}. S(g), the set of successor

states for state ¢ is defined
S@)=1{q’'l<q.,q’>€ S}

Note that ¢ cannot have itself as a successor by the definition of §. An

EG is a graph representation of the sct of safety formulas

dgi= VYV (¢ U4{g)
L e S T 0
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cfn = V )(fin U fj’"j‘)

q. € (‘h

where ¢ is true when execution is at vertex g;.

Each formula above says that if execution is in state g, then it will remain so
until execution goes into a state in S (g). g with safety arcs (single arrows) to €ach of
its possible successors ¢,’, ° ', ¢’ is depicted in Figure 6.1. The name safety arc
refers to the safety property that the circuit eithetr remains in ¢ forever or switches to
one of the successors at some point in time without any intervening undefined or unex-
pected behavior. In other words, nothing "bad" happens at ¢ until ¢ is left, at which

time the responsibility of safety is tranferred to the successor.

Figure 6.1. An EG Vertex with Safety Arcs

Qur attention now turns to execution graphs which not only dictate the allowable
states through which execution may go, but also which states are transient and must be
exited after some amount of time. These graphs are called safety/liveness execution

graphs, since eventualities are present also.
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Definition 6.4. A safety/liveness execution graphs (SLEG) for circuit with a state
template ¢, -, ¢, is a triple (V, S, L) where V and S are the set of
vertices and safety arcs, respectively, and L < § is a set of liveness arcs.
A SLEG is a graph representation of the set of safety and liveness formu-
las

d1== V. (4%4;)
! ‘U.ES(Q‘O CII‘: N

= N (4. 8dj)
In geS@) o

where each £ is either weak U , in the case of a safety formula, or strong

UE, in the case of a liveness formula. If a term is of the form

(§; U g;) then <q;,q;,> € S, but it is not true that <q;,q;> e L since

the arc is not a liveness arc. If a term is of the form (g; UZ 4;,) then

<qi.q;>€ L. The n PTL formulas associated with the n SLEG vertices

are called SLEG-formulas.

Since L < S each liveness arc is also a safety arc, A liveness arc is a special
kind of safety arc. Whereas the state transition may occur for a safety arc, it must

occur for a liveness arc.

When a SLEG is constructed, it may not always contain all known information.
In particular, a vertex, which has a mix of safety and liveness arcs extending from it to
successors, may be able to have the safety arcs transformed into liveness arcs. This
may be helpful or even necessary when proving liveness properties of the circuit,

which are stronger assertions involving UF .
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Theorem 6.1 (Arc Transformation). If a SLEG vertex ¢ has a safety arc <q,q;">, and |
it is known that |- ¢ > V =4 then the safety arc may be transformed

into a.liveness arc.

Proof Figure 6.2 shows the situation. Vertex g has # successors ¢;, ", g’ with
q; ’ 1<j<n a safety arc. The other successors are either safety (U ) or liveness

(UE ) arcs. The SLEG-formula corresponding to the vertex g is
n
g=| V. @8NV U4
Expanding the second term (by T10) yields

] =

which allows the possibility of (O ¢. If |-§ > V = ¢ then |- § - - ¢. Conjunct-

et

N Cm] Vg UE gHV O4 (6.1)

S EF

[

ing this with formula (6.1) above and reducing eliminates the disjunct O 4 because

O4g & V =4 is false. This leaves

.

n
q = ! V. Cfi;')]v(ff UE 4%
f=li#j

the situation in Figure 6.3.

In summary; if a circuit has a SLEG (V,S,L) where V={q, - -, 4,1} and q
is the initial state, then the following set of PTL formulas describe the execution of the

circuit beginning with state ¢ .

qi

for each safety arc <q.,q’>, § =>4 U ¢’
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Figure 6.2. Vertex with a Safety Arc before Transformation

Figure 6.3. Vertex After Transformation

for each liveness arc <q,q">, § =>4 UZ ¢’

Theorem 6.2. (Execution Covering). If the following SLEG-formulas for a circuit

with state template ¢, * -, 4§, are detivable
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T i U §;)
i q;.t*:S(ch)(q1 Ui

fn => V (A U q" )s
4n 4s€ S(a) Un i
and ¢ is derivable, tllen

F OG- Vi

and the execution is covered by ¢, * ', d,. Wecall ¢y, .., g, a closed

set of SLEG-formulas.

Proof The proof is by induction on ¢, the time index of the desired formula:
/\O(q‘IV -+ V4 ). For the basis t =0, At time 0, §; is true so (§; Y -+ V) is
1=

true. For the induction step, assume at time ¢ that (§; Y -+ V4,) is true. Then we
have n identical cases indexed by i, depending upon which ¢; is true. Let

S =1{q;, *-*,q;},suchthatk = | S(g" | ,andlet ¢’ = q;. Then the formula
¢ [@U gV V@ U]
can be transformed, by the definition of U (AB) into
4§ =1 V' & O Udqgm
V...V
G;, V@ & OG U ¢l

Since ¢’ is true, all the ¢; arc mutually exclusive (by definition 6.1), and none of the
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d; are g’ by definition of S (¢”"), we know that all of gj, " 4q, are false. The ‘ﬁxst
of the two disjuncts in each of the k disjuncts above, ¢;, is eliminated, leaving the

second disjunct in each case.
¢’ = [0 U g;)

V..oV
| @' U 4;)1
Expanding again using the definition of U yields
Ol Y -+ V) Va7

Note that all the above k+1 § are selected from the state templates 4y, -, g,.
Therefore O(f, Y -+ Vd,) is true at time . It is then trie that (¢, Y --- V4,) at

time 7+1, which is the induction hypothesis for time ¢+1. ®

The set of SLEG-formulas is “closed" in the sense that at no point in time is it
possible for the execution be outside the scope of the state template. If it is possible to
construct a state template so that the SLEG-formulas may be derived in the PTL
deductive system, then Theorem 6.2 says that the state template covers the execution
and is considered satisfactory. A bad state template is one for which SLEG-formulas

cannot be derived.

Consider the simple two-inverter delay element of Figure 6.4. Assume the usual
inverter gate axioms and the additional input contraint that the input must wait for the

output to settle through the inverters.

|—A =>A UAC
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-—A = =AUy C
If the state template

14 A & 2B &C

G254y A & "B & C

G3=4 A& B &C

§a=yr 2A & B & =C

is used, only half of the execution is covered. The formulas

are derivable from inverter gate axioms for some g5, but g5 is not in our state tem-
plate. In fact, no set of closed SLEG-formulas can be derived for ¢y,..., g4, the bad

state template. Only a G-state template will do.

6.2 Checking Specifications

Once the SLEG is constructed, checking the validity of the specifications
proceeds quite naturally. The specification is derived from the SLEG-formulas. We
partition the types of specifications addressed here into safety assertions of the form

£ => & U 1 and liveness assertions of the form § —-m. A method for checking
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Figure 6.4. A Two-Inverter Delay Element

whether these specification forms hold for a SLEG is presented below.

Definition 6.5. IT, the set of paths emanating from a vertex g is defined
g)={<qy, "> q%> | q1=q and g, € 5(q;), 1Sj<k}.

By the Definition 6.5, a path through a SLEG is finite but unbounded in length.
Since paths may be arbitrarily long, there is an infinite number of paths in any SLEG
with a cycle. Therefore IT is pdssibly infinite. We can eliminate paths which traverse
cycles more than one time as it is redundant to repeatedly traverse them when check-
ing whether specifications hold. The set A is defined to contain only paths which

traverse cycles once.

Definition 6.6. The finite set of Hon-repeating paths emanating from a vertex is

defined

A(q)={<ql: PN/ T I <qy s qE> € H(Ql)
andno cycleqy’, * ", qn-1 91

appears more than onceinqy, ", 4}
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Since there are a finite number of cycles, there are a finite number of paths which
may contain each cycle at most once. Letv = | V | be the number of vertices. The
number of cycles from a vertex ¢ back to itself of length a<v-1 using each of the
other vertices is (,P,), where (,P,) is the number of permutations of n elements

taken r at a time. The total number of such cycles is
¢ = (1Py-D)G-1Pv-2) " " P 1)
The number of non-repeating paths is bounded by b where
b=(P)cPe-) (P
A path with a repeated cycle of the form

<q, """ q1 " s Gm-1 Q1 Ty Q-1 q 15 “"q')

with length m loop ¢y, ***,qu,-1, @) appearing twice is transformed into a path

without the repeated cycle
<q, v aqn s Gmesqn 4>

by removing the duplicate vertices g, ..., §u—1, ¢1- A path with a repeated cycle of

the form

<G, "t aq1s s Gm-1d1 T 9 T s dm-1 49 "',q'>

with length m loop qq, ***,qm—1, q1 appearing twice is transformed into a path

without the repeated cycle

<G, G111 T v 1 ”"q’>
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by removing the duplicate vertices gz, «., Gm-1 91
We also restrict our attention to the longest paths which will demonstrate the pro-

perties we expect to hold.

Definition 6.7. The finite sct of maximal non-repeating paths emanating from a ver-

tex q is defined
O(@)={<qy, " @> | q1=qand<qy, 0, q> € M)
and no longer non-repeating path <q,, ***, qp-> € Alqy),

k'>k , containing <qy, "', qy> exists}

6.2.1 Checking Safety Specifications

We first define what it means for a safety fotmula to "hold" on a template. We

use the = symbol for "holds on a template.”

Definition 6.8. A safety formula & = & U m holds oh a template qy, ***, g, writ-

ten
{4 " ulEE=EUn,
if and only if
Vge{q, " ",an} [§ D8 D V<a), 7, qn"> € Pq).
<dis adm>EEUM
where

<qp L @a>EEUMN =4 Jgre gy, s qlh gromY 0&)
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1/-\1 )
& 2 [4; 2 &)

Lemma 6.1. If £ U m holds on a repeating path then it holds on the path’s non-

repeating counterpart.

Proof Consider a repeating path <qy, '+, q;>. If §U n holds on it then it is
because there is an / such that 1</<k where f; > (MY [0&) and ¢; D € for each j
such that 1<j<I. We have any or all of the following three cases depending upon

where the vertices are removed in the non-repeating path.

If elimination of repetition removes vertices after g;, then that still leaves g;
which implies (Y O &) and all the (0 or more) q; vertices which imply & so that

£ U m holds on the new path,

If elimination of repetition removes g;, then there must be another occurrence of
g; further leftward in the path, otherwise gq; would not be eliminated. Thus there is
another g, satisfying ¢; > m VY DE). The q; vertices which imply § are still there

from the original g4, ***,g;. Thus <qy, ", >EEU 1.
If some of the g; vertices to the left of ¢; are eliminated, then g, still remains
such that §; o (Y [J&) and the remaining g; still imply & Thus § U m holds on the

new path. *
Lemma 6.2. If £ U 1 hold on a non-maximal non-repeating path then it holds on the
path’s maximal non-repeating counterpart.

Proof Consider a non-maximal path <q,, ***, q;>. Let its maximal counterpart be
<Gy Q> where k’2k. If there exists a g; which implies (0 V &) and an
appropiate sequence ¢, " **, g;.] where & is implied in the shorter path then clearly

the longer path has the same ¢; and ¢;. So<qy, ***, q*> EEUN. *®
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Theorem 6.3 (Safety Checking). If {qy, ** ", gu}EE =& U n for a circuit whose

execution is covered by state template §, =+, ¢, then & =8EU n.

Proof The definition of {qy, **,q,3&=8EU M says to consider each
q; € {qy, * ', qs} separately. For each q; we have, say, p; maximal non-repeating
paths in ©(¢;). Lemmas 6.1 and 6.2 allow us to only consider maximal non-repeating
paths since if & U 1 holds on any path, it will hold on its maximal non-repeating
counterpart. By the definition of <q,’, ***, g;/>} & U 1 there is a ¢;” in this path
where ¢;’> MV 0O&) and ¢;" 2§ for each j such that 1, ---,/-1. So for path

<qy, ***,q; > there must be a set of /~1 SLEG-formulas

41 = (él'U d)Vwy

=i’ = @1" U GV wig

We can eliminate the w; since they are true for paths other than the one under con-

‘sideration. From the /-1 SLEG-formulas we can derive
g =q/'U - Uqg, Udqg’
by
Ew,=w Uw)& & Weoy =>w, U w,) D
wi=w UwsU - Uw,,
(proved on the DP) where g, is the vertex which implies (1 V [JE). By T15 then

¢y =8&U - UEU V¥ OE
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and therefore
¢ =¢U @Y 0§

by T27. Since EU MV O& o ¢Eo8U mV O%) from PC we know
FEU @V 08 = E28U mV &) by OI and so, by modus ponens,
¢y = E28U (VY O&)).

The same deduction process is used for each of the p maximal non-repeating

paths from g to convert

Fd' =gV U dy

V...V
qAIU -UquFI
into
F¢’= E28U MY OENY - VEDEU Y 09)
and into

Fd'= ¢28U mV O&) (6.2)
for every vertex ¢ in the state template. Since the state template covers the execution,
- O@ Y - V)

holds. Then for each of the n vertices, we apply the entailment (6.2) above yielding

-& = & U mV OE&). We then split the formula using ER and
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Ew, U (wyVwy)=w U wyV(w U wsy)
(Theorem 24 of [Man81a]) into
FEs>EUmVEoeU To).
The second disjunct can be reduced to
=}
by ER and the implication
EEU 0§ > O,

(proved on the DP). The entire formula becomes (using T11) E2 & U 1. Then, by
PTL inference rule R3,

FE=&Un

6.2.2 Checking Liveness Specilications

When checking liveness properties, the notion of a "live” path occurs. A liveness
formula is true on a path only if the path is live from the initial vertex to the vertex
where the desired eventuality occurs.

Definition 6.9. A live path is a path which consists of vertices connected by liveness

arcs. <qy, ***,q;>isliveif <g;, ¢;1> € L for each j, 1<j<k.
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We define what it means for a liveness formula to "hold" on a template.

Definition 6.10. A liveness formula & —— 7 holds on a template g, * - -, g, written
{qn, v atRE—2,
if and only if
Vg e {q1, "' san} [ DE D V<qy, 0, 9,5 € Q).
<qis " an>E VN
where
<qp >k Vnsge 3 e {q 0 a k- 40N

and <qq, ", q> is live.

Lemma 6.3. If Vn holds on a repeating path then it holds on the path’s non-
repeating counterpart.

Proof Consider a repeating path <qy, *** q,>. 1f V1 holds on it then it is because

there is an / such that 1</<k where <qy, ***, q;> is live and ¢; D 1. We have any

or all of the following cases depending upon which vertices are removed to obtain the

non-repeating path.

If elimination of repetition removes vertices after g;, then <qy, * -+, g;> is still
live and §; > 1 still.

If elimination of repetition removes g, itself, then there must have another
occurrence of q; further leftward in the path such that §; > M. Since the path is live

from q, up to g, it will be live from g up to the new g;.
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If some of the vertices to the left of g; are removed, then the new path is still live

and g; remains.
In each case V 1 holds on the new non-repeating path. ¢

Lemma 6.4. If V 7 holds on a non-maximal, non-repeating path then it holds on the

path’s maximal non-repeating counterpart.

Proof Consider a non-maximal path <q4, ** ', g,>. Let its maximal counterpart be
<qyi, *' ', qp>, where k’2k, If there exists a g; which implies 1 on live path
<qy, ***,q;> in the shorter path, then clearly the same is true on the longer path. So
<qp @k VR ®

Theorem 6.4 (Liveness Checking). If {qy, ** ", ¢, & —>n for a circuit whose

execution is covered by state template ¢y, ***, g, then |- —=m.

Proof The definition of {qy, ***,g,}E&—n says to consider each
q; € {91, ' q,) separately. For each q; we have, say, p; maximal non-repeating
paths in ®(g;). Lemmas 6.3 and 6,4 allow us to only consider maximal non-repeating
paths since if V m holds on any path, it will hold on its maximal non-repeating coun-
terpart. By the definition of <q,’, * -, qx’>k Vm there is a g,” in this path where
4’ >nand <q,, ‘', q; > is live. So for path <q,’, ***, q;"> there must be a set

of -1 live SLEG-formulas

¢y = (§y UE ¢ Vwy

=it = G’ UE @) Vi

We can eliminate the w; since they are true for paths other than the one under
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consideration. From the /-1 SLEG-formulas w¢ can derive
g = ¢ UE - UE g/ U g/
by
Ew,=w Ul w)& & (W,q => Wy Ufw,) o
wy=w; UEwyUE -+ UE w,,
(proved on the DP) where g,” is the vertex which implies . By T16 then
g1 =>§UE - UFEUET
and
g =EUE
and therefore
-4 == Vn

by T9. Since |- V1 2 (2 V) from PC we know |- V= (§> V1) by

O and so, by modus ponens, -4, = (2> V).

The same deduction process is used for each of the p maximal non-repeating

paths from ¢’ to convert

g’ = g UE - UE g/
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into
¢’ = &> VmY - VE> V)
and into
¢’ = (&> Vn) (6.3)
for every vertex q in the state template. Since the state template covers the execution,
FO@G Y V)

holds. Then for each of the n vertices, we apply the entailment (6.3) above yielding

|- £ > V n and then, by PTL axiom R3,

-

6.2.3 An Example

To illustrate the use of the framework just introduced, we now apply the Execu-
tion Graph Method to an example. A more ambitious example which more fully

displays the method follows in Section 6.4.

The two-inverter delay element of Figure 6.4 (without the input contraint of Sec-

tion 6.1) has 8 states. The following gate axioms determine 2 SLEG.
I*B = B UA A

I"""‘_‘IB =B UA - A
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A =AU, B
oA =AU, B
FC=CcU,B
F=C==CU,=-B
B =BU,-C
=B ==-BU,C
The state template is
d1 54 A & B &C
154 A & B & C
G3Sgf A &B&C
Ga=4y A & B & -C
fs=ger A& B & =C
G624 A & =B & = C
G754 A & B & ~C
s =ger A & B & C.
The SLEG-formulas

-d1=q¢1U ¢,
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A

- dy =>4 U ¢4
g3 =>¢3 U (§4V 7V )

-da=>daU gs

are derivable from inverter safety axioms, yielding the EG of Figure 6.5 with the
values of the variables A, B, and C appearing in the vertices.

A PTL timing diagram can be used to show the situation in each of the 8 states.
For example, in state g; we have the situation shown in Figure 6.6. There A is free to
go low at any time since it is not under any ini)ut constraint or restriction from a gate
axiom, B must stay low until A goes low because of an inverter output safety axiom,
and C must stay high because of another inverter output safety axiom. >From the

three signal time lines and the two dependencies we hypothesize that
1 =>q1U q2

from the diagram, and we use the DP to convince us of our hypothesis.

The EG should be converted to a SLEG next. Using Arc Transformation

(Theorem 6.1) with the known gate liveness axioms, the formulas

|~d2, > V=4
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Fd3 > V43
-ds > V=ds
[-de > V=146
~d7 2> V=dy
-4 > V—ds

are derivable. For example, for ¢,

|-do > ~B

|——,B > VC

I-C o —gqgs0 |- VC o Vageby V VRule

|- qo> V = ggby o -transitivity twice

Thus all arcs except <q,q2> and <q4,9s> can become liveness arcs by the Arc
Transformation Theorem, as depicted in Figure 6.7. Checking the liveness formula
A — C is done by checking all 8 states for whethier A is true. It is true in states g,
ds, 96 qg. For each of these vertices, we check for VC on all maximal non-
repeating paths béginning at the vertex. For example, from vertex gg it is seen that for
two live paths <qg, 95, g6, 71> and <qg, s, 96, 47, 92, 43, 93>> ¥ C holds. Using

-the Liveness Checking Theorem |-A = C.

6.3 Generation of SLEGs
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Figure 6.5. EG for Two-Inverter Delay

Up to now SLEGs have been constructed by hand from the set of assumptions,
the gate or moduic axioms and input contraints, using the PTL theorems and PTL tim-
ing diagrams. Their main contribution to the proof process is that they are a provably
correct set of intermediate formulas from which the desired specifications can be
proved. The SLEGs are a way of organizing known information into a form which
can be used by the algorithms presented for Safety Checking and Liveness Checking.

We introduce two algorithms for Safety Checking an Liveness Checking (given
in Theorems 6.3 and 6.4), we have not discussed and algorithm for contructing
SLEGs. Using the algorithm presented here, the SLEG can be automatically gen-

erated from the set of assumptions.

The algorithm tries to cover the execution of the circuit with a minimal number

of vertices. It begins with the trivial 1-vertex scts, then tries 2-vertex sets, and so on
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Figure 6.6. PTL Timing Diagram for Initial State g

until a EG which has a corresponding set of derivable SLEG-formulas and, hence cov-
ers the execution, can be constricted. "The DP is consulted for every vertex in a candi-
date EG. If the DP says that the SLEG-formula corresponding to the vertex is not
valid, then the EG is eliminated as a candidate, If all the SLEG-formulas for the ver-
tices are approved By the DP, then the graph covers the execution, and we accept it as

Our answer.

To derive the SLEG-formula for a vertex of a candidate SLEG, we use the
assumptions set forth at the outset (gate or module axioms and input constraints.} The
algorithm tries all combinations of successors for each vertex which are in the inner-
most two loops. For example, if a candiduate SLEG consists of vertices ¢4, ¢, and g3
and we are currently trying to discover the SLEG-formula for vertex gy, we try all

possible the successor sets S(q;) which are {}, {g2}, {93}, and {g2,93} by
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Figure 6.7. SLEG for Two-Inverter Delay

constructing the various EGs containing the appropriate arcs. In general, it will be the
case that only one of the successor séts ate corrgct or none are correct in which case

the candidate EG is discarded.

The algorithm appears below.

begin with state template ¢y, * -, §,.
foundSLEG ;= false;
forall i =1to 2! do /*for ! lines in circuit */
forall i-state sets g, ***, ¢; do
1: forall EGs formed from g4, - *, g; do
forall vertices ¢ in EG do
submit formula corresponding to ¢ to DP;

if DP returns not valid then
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leave 1;
end;
use Arc Transformation to convert safety arcs to liveness arcs;
foundSLEG := true;
exit;
end;
end;

end.

6.4 Application to Self-Timed Circuits

Self-timed circuits operate for an indefinite amount of time and send completion
signals when done. Unger [Ung69, Arm69] discusses the design of asynchronous cir-
cuits with completion signals. Seitz [Sei80a, Sei80b] discusses self-timed VLSI cir-
cuits with control signalling embedded in double-rail codes. As mentioned in Section
3.3.1 above, double rail codes use two wires labelled x! and x° to encode the three
values {0, 1,7} on a wire x where A is undefined. Malachi and Owicki write
specifications for several of these circuits, including a state machine and pipeline ele-
ment [Mal81]. We will consider their pipeliné element PL which is depicted in Figure

6.8.

6.4.1 Self-Timed Protocol

The "definedness" predicates d and D are defined over logic variables x and

variable sets X and Y as

d(X) =4y Qrx € X)d(x) and D(X) =4 (Vx € X).d(x)
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where
d(x) =y x!Vx0

That is, variable x is defined if either wire associated with x is high. In addition, the

properties
dX UY)=dX)Vd(¥) and DX\ Y)=DX) & D(Y)-

hold.

Self-timed circuits operate as follows. The initial state for most signals is usu-
ally all-undefined (-~ d). Inputs start becoming defined (d (7)), and the circuit begins
to react to the inputs. After some time all inputs are defined (D (1)) and this situation
is a signal for the circuit to evenutally complete its response with all the outputs
defined (D (0)). After all outputs are defined the next input can be presented. To dis-
tinguish between consecutive inputs, a spacer input of all-undefined is used. The input

becomes not all-defined (= D ({)) and then all-undefined (— 4 (/)) once again.

The output reacted to the all-undefined input by eventually becoming all-defined
(D(0)). It similarly reacts to the spaccr by eventually becoming all-undefined

(-~ d(0)). Thus a' set of signals generally obey the transitions

—d 5d D —>=D 5-d

6.4.2 Module Axioms

Rather than using gate axioms as our sct of given assumptions, we use module
axioms which are formulas axiomatizing the behavior of the modules constituting PL.

Malachi and Owicki give the following axioms for the combinational logic module
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(CL), with the stronger U, here in place of U . CL is the computational part of PL

and not a control module like the align and converter (C).

Ocr, -—d(B)=-dB)U, dl) | (CL1)
oc, F=D@B)=-DB)U, D) (CL2)
oc, FDU) > D(B) (CL3)
ocy FDWY=>D({)U, D) (CL4)
oc FDB)=>DB)U, D) (CL5)
ocr FdB)=>dB) U, —d() (CL6)
Ocr, - dd) == d(B) (CL7)
dcr F—dW) = —dIH Uy ~d(B) (CL8)

where cp, =4 ~d() & = d(B), the initial CL conditions. Note that speed-

independence is once again assumed,

The align module synchronizes the PLs of the pipeline. It waits until all inputs
are defined before it allows its output to be defined. When all inputs are defined, then
it simultaneously defines the outputs (and so the align module is not internally speed-
independent). We define the set of input and output lines for the align module are

I, = A\ B and O, = Aj O, respectively. Given this, we have align axioms
¢'ah'gn I“_'d(oa) = _'d(oa) UA D([a) ‘ (Al)

q)align I"' -d ([a) =3 d(oa) (A2)
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¢ah’gn I"D(Oa) = D(Oa) UA _‘d(la)
Oatign |- D Ug) == D (0,)

Oaiign |- LI(d(A)=D(0))

(A3)
(A4)

(A5)

where §apipn Sy md ) & ~d(0,). Al and A3 state that no output line of the

align module become defined until all of the inputs are defined. A2 and A4 are live-

ness axioms stating that when all of the inputs are defined that all of the outputs will

eventually be defined. A5 states that when the outputs become either defined or

undefined, they all do so simultaneously. Thus the output has two states, "all defined"

or "all undefined."

The converter module, which converts a defined signal into an undefined one and

vice-versa, has axioms
b Fd(A) = ~d(Ac) Uy —dto)
oc --d(Ag) > —d(Ag)
Oc |-d(Ac) = d(Ac) Uy d(Ap)
Oc - d(4p) > ~dAc).

where ¢c Edef d(Ao) & d(Ac)

Malachi and Owicki’s specifications fot the PL are
opy D)= D) U, d(Ap)

Opr [-=d(A;) = ~d(A) Uy —d(Ap) & D)
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condition,

Opp FdW)=>—=d) U, —d(4;)

Opr, -d(Ap) = dAp Uy ~dd) & d(Ao)
op FD(0)=D(0) U, d(4p)

opr |-—dAg) = —d(4p) U, D(O)
bpr, - 1d(0) = =d(0) Uy ~d(Ao) & D)
Opr |-d(Ap) => d(Ap) U~ D(0)

opy |-DU) = d(Ap)

¢p, -DWUT)—=>D(0)

Op -D(0) - d(Ap)

Opy, |- dd) =~ d(A))

¢rL |_-"'d(f)°-*“>-1d(0)

bpr - d(O) > d(Ap)

6.4.3 State Template and SLEG
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(PL4)

(PL5)

(PL6)

(PL7)

(PLS)

(PL9)

(PL10)

(PL11)

(PL12)

(PL13)

(PL14)

where py =g, —d()& =dB)& d(Ag) & ~d(A¢) & —d(0,), the initial PL

For PL, a state template and corresponding EG with 18 states can be defined.
Using the template of Table 6.1, it is possible to cover the execution. The state names

have an "H" or "L" prefixing the sct of lines which transitioned high (defined) or low



(undefined) in going from state to state.

The SLEG-formulas appearing in Table 6.2 were proved with the aid of the PTL
decision procedure. For example, consider the state HAp. When in this state, the fol-
lowing can be assumed. |

(i) d () is true.

() dB)U 4 = d{)) by d(B) and CL6.

(i) (d(Ag) U 4 = d(0)) by PLA for right neighbor.

(iv) d(A¢) is true.

W D0, Uy (~d(B) & ~d(Ac)) by A3.

(vi) (D (Q,) => D(0)) by definition of O,.

(vii) The liveness property that d(Ap) = - d(Ac) which allows the
arcs out of HA, to be tranformed to live arcs, using the Arc Transformation Theorem.
The PTL timing diagram for this state and SLEG-formula appears in Figure 6.9.

Using the DP with assumptions stated above, we deduce the SLEG-formula
HO, => HO, UE (LAc V LILAC V LIHAp)

It was necessary to assume that the left and right neighbor of PL obeyed the PL
specifications, in order for the SLEG-formulas to be proved. The SLEG appears in

Figure 6.10.

6.4.4 Checking PL Specilications

Let the initial state be LO,, With the SLEG having been constructed, We prove
the correctness of PL with respect to the Malachi/Owicki specifications using the
SLEG. Since the specifications use U, and not U, we first convert all PL

specifications of the form (u U, v)into (u U (u & v)). PL1 through PL14 can be
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PL State Template

State

Formula

Lo,
HI

HB
HILAg
HA¢
HBLA,
HIHAC
HAcHB

HO,

HAp

LIHAp
LAc

LBHA,
LILA;

LACLB

“DU)& =D (B) & d(Ag) & ~d(Ac) & —d(0,)
DU)& —~DB) & d(Ap) & = d(Ac) & —d(0,)
AD() & —D(B) & ~d{Ap) & —d(Ac) & ~d(0,)
DU)& D(B) & d(Ag) & —d(Ac) & —d(0,)
DU) & ~DB) & —d(Ay) & = d(Ac) & —d(0,)
~DU)& =D@B) & ~d(Ag) & d(Ag) & —d(0,)
DU)& DB) & ~d(Ag) & ~d(Ac) & —~d(0,)
DU)& ~DB) & —d(Ap) & d(Ac) & ~d(0,)

D) & DB) & ~d(Ag) & d(Ac) & —d(0,)
d) & d(B) & ~d(Ap) & d(Ac) & D(0,)
~d{) & d(B) & ~d(Ay) & d(Ac) & D (0,)
d) & d(B) & d(Ap) & d(Ac) & D(O,)
~dd) & —d(B) & ~d(Ay) & d(Ac) & D (0)
~d{) & d(B) & d(Ag) & d(Ac) & D (O,)
dU) & d(B) & d(Ap) & = d(Ac) & D(0,)
~d() & —d(B) & d(Ap) & d(Ac) & D (0,)
~d() & d(B) & d(Ap) & —d(Ac) & D (0,)
~d) & ~dB) & d(Ag) & —d(Ac) & D(0,)

Table 6.1.
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PL SLEG-Formulas
State/Vertex SLEG-Formula

Lo, LO, => LO, UE (LAy ¥V HILAp V HI)
HI HI = HI UF (tiiLAy V HBLAG V HB)
LAg LAg == LAy U (HAc ¥ HIHAG Y HILAy)
HB HB = B UF HBLAg

HILA, HILAp, = HILA, UF (HIliAc ¥V HAcHB V HBLAy)
HA¢ HAg => HAc U HIHA¢

HBLA, HBLAO =» HBLAy U¥% HA-HB

HIHA, HIHA; => HIHAc U® HACHB

HACHB | HACHB = HA-HB UE Ho,
HO, HO, = HO, UE (HAy V LIHA, V LI)
LI LI = LI UE (LIHA, V LBHAQ V LB)
HA, HAg = HAg UE (LAC VLILAC V LIHA)
LB LB = LB U® LBHA,

LIHA, LIHAy = LiHAg UE (LiLA¢ V LACLB V LBHA )
LA LAc = LAc U LILA.

LBHA, LBHA, => LBHAy U¥ LA-LB

LILA; LILAc => LiLA¢ UP LA LB

LACLB LACLB = LACLB UF LO,

Table 6.2.
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Figure 6.9. PTL Timing Diagtam for PL State
then be checked easily by inspection of the SLEG, starting in the states where & is true
and following all paths until condition is met, The formal justification is provided by

the Safety Checking and Liveness Checking Theorems,

This self-timed pipeline example demonsirates that with the execution graph
approach, we do not have to specify the value of every line variable to be able to con-
struct a state ‘grap'h. Reasonihg is done at the module level; it is hot necessary to go
down to the gate level. The EG and SLEG need only be detailed enough to be able to

show the desired correctness assertions.
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CHAPTER 7

Anomalies

Thus far we have only considered proying desirable properties such as liveness
and safety. For the controller in Chapter 4, the liveness property proved was that the
correct state change eventually occurs wheh a cortect input is applied. The safety pro-
perty proved was that it remains stable in the cotrect state after the transition. We
have not yet, however, specifically considered incorrect operation. We did not show,
for example, that the coiittoller daes not go through any erroncous states during the

transition to the correct state, This propetty would be the absence of a race.

Our focus now turns to propertics ihvolving anomalies. As a starting point, it is
first shown how temporal logic can be used to reason about the presence of a race in a
classical adder. We then show how to reison about the time behavior of inverter
chains Oscillation appears once again in this context, Finally we prove that the asyn-

chronous controller does nhot enter erroneols stiates.

7.1 Proving the Presence of Crilical Races

A race is present in an asynchronous séquential circuit when two or more state
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variables are changing simultancously, causing the circdit to go through an indeter-
minate sequence of intermediate (ron-final) states. A critical race is a race which
causes the circuit not to settle or to reach an incorrect state and settle there for a long
enough period of time to be considered a problen. Before proving race properties, let

us extend PTL to deal with spurious oscillation.

7.1.1 Grammar Operators

Wolper introduces the idea of augmenting tetporal logic with additional opera-
tors as needed [Wol83). Showing that temporal logic is not as expressive as one
might think, he motivates the idea of writing right-linear grammar rules which
describe state sequences satis[ying new operators, He gives a general axiomatization
for any temporal logic with O and any set of operators defined by right-linear rules.
He also shows how the standard operators may be tegarded as grammar operators.
For eiample, the standard condition p U ¢ could be described by the right-linear

grammar
Vo—p Vg
Vo= q.
Temporal logic does not have an aperator for the infinite alternating sequence

papq ‘.

Using Wolper’s method, we inttoduce a palt of oscillation operators, £y and £y,
where p Qg ¢ means "p now, then q, then p, thent q, ..." and p €; ¢ means "q now,

then p, then q, then p, ...". The grammar rules are
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VU -3 le
Vl - (IVO.

Vo generates unbounded words pgpg ++* on this grammar. A complete axiomatic

system for temporal logic with oscillation operatois has oscillation axioms:
) - p Qg 2p& O Q) (O1)
- wo& O@o 2> p & Oudd Oy > qg & Cug) o p Qg (02)
- p Qo DI g & O@ Qq9q) (03)
- & O@wgop& Cupddk Oy o g & OQug) o p Qg (04
We require that O and € by related by
}=d(u Qqv) 2 (Ou)Qy(Ov) (T35)

This is shown valid by the semantics of O and €.

Proof

W Q4 v

WO (1 Qg v)1(0)

Vi20.[ even(t) > pu 10 & odd (i) o plv1s™) ) ]

I

Vi20.[ even(i) D \[u I](G(i“)) & odd(i) > u[[v]]((&“*”) 1

1

Vi20.[ even (i) o W Ou @) & odd (i) o nIOv (64! ]

HI(Ou) 24 (O)l(o)

i}
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7.1.2 Reasoning About Races

The classical. end-around-catry, one’s-complement adder of Figure 7.1 has a crit-
ical race which theoretically ¢an manifest itself in infinite oscillation for certain inputs
and certain gate delays, In practice, the infinite oscilldtion eventually settles in an
indeterminate state. However, it may take so lopig to do so that a correct result is not

available when nceded. Shedletsky polnts out this problem (She77].

We may regard the adder witlt the ehd-iround-carry as an asynchronous sequen-
tial circuit (sequential because of the end-around carry feedback). For the inputs
shown in Figure 7.1(b) the adder produces # correct output, leaving the carry lines at
0101. These left-over carry values cause the oscillation problem for the subsequent
addition of 1101 and 0010 (Figure 7.1(c)) if the delays of the carries are equal. The

situation can be modelled int our extended temporal logic with Qg and € .

If we replace our unbounded delay gate axioms with unit delay axioms, the prob-
lem will manifest itself. Let the adder majority #nd exclusive-or functions be defined

as follows.
Maji =4 O & y)V (51 & )V 01 & )
Xori Edef X; XOR }"‘ XOR Z"

Unit delay adder axioms are (regarding the adders as the smallest device to be con-

sidered)

Maji = Oc;y - (Carryl)
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Figure 7.1 End-Around-Catry Adder
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- Maji = O=icpy | (Carry2)

Cipg = G U g 1 Muaji (Carry3)
= ¢ = ¢y Uy Maji ' (Carry4)
Xori = Oy - (Suml)
— Xori == O=z; (Sum?2)
z; = z; U, — Xorl . (Sum3)
—z; = =z Uy Xori (Sumd)

where the ¢; are carries atid the z; ar¢ outputs, Let the assertion that the set of lines
A={a,_j,"*,ag} have Boolean values i,_j, * - *,ig (i =0or 1) be written A; _ ... ;,

(e.g. ciop=c3& —¢3& ¢y & —cyg). Deflne
CarriesSettled =40 ¢ 0004

the initial carry line values, The inputs x and y are assumed to be 1010 and 1010 for
1 time-unit, then 1101 and 0010 forever after that, This is the simplest input which can
be applied for the oscillation problem to arlse. The inputs 1010 and 1010 set the carry
lines to 0101, which will then oscillate between 0101 and 1010 while the second input

is applied. The input assumption is
A =4y CarriesSettled & (xyo1p & y1010) & O O (x 1101 & Yo010)
We prove three conditions in the antecedent of O2. The first is

- Ap o Ocqyy (7.1)
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This is proved by PC. Next we show, for any »,
I Ap > OO (x1301 & Yoo10)

by the PTL axiom A5 |- Ow o (w & Ow & O Ow) (use » times to get
Ow o O" w, then use axiom A3 | Q(w;>wy D (Ow; > Owy)) Also,

from the adder axioms,
- OO™xyor & yoare) & OO" cqip @ OO0 (c1g50 & 21010)
So
Vn20.( |- Ag > OO* [cyiot 2 Oleypro & 210100 1) (7.2)

We now need the validity of a rule we will call generalization of deduction, stated

(FPON& - & (FP(K)
PO & & Pk

(GD)

for all k 20.

Proof The proof is by induction on k,
basis £ = 0. Trivially |- P (0) implies |- P (0),

induction Assume the theorem for £. Proving the theotem for k+1: if
FP@ & -+ & |-Pk)& |- PKk+1)

then, by the induction hypothesis for &,
|- Vi, 0gigk Pk) & |- P(k+1).

This is
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|- Fk) & |- Pk+1)

té which we apply the induction hypothesis lor Index 2, yielding
|- (F (k) &. P (k+1)).

Exapnding F,
|- Vi, 0sigk. P () & P (k+1).

We recognize this as

|- Vi, Osigk+1, P (i)

Applying GD to (7.2) and maving the "V# 20" inside (since n is not free in Ag)

yields
- Ay OVn20, Q" egpr 2 Olcinio & Z1010) ]
Since Dlw =4 vn20,0" w, we have
- Ay o> OO[egp = Olerow & 21010 |- (7.3)
Similarly we get
- Ag > O O[eyo10 © Ofegror & zoro0) I- (7.4)
Combining (7.1), (7.3), and (7.4) we get!
- Ap o Olcga & Hepor = Oleroto & z1010) (7.5)

& O(eypp @ Oleoror & zo101)) ]
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Formula (7.5) is in the form for axiom O2, Applying it with
ko = Cora1
W1 =Cho10
p s Oz
7 3 Qzpipts
leaves us with
I~ Ao @ OWOzg101) 2y (Oz1010)
Applying T35 yields
 Ag 2 OXzgig Qo 21010)

This last formula says, based ott our dssymptiohs Ag, that the adder will oscillate for-

€Vver,

7.2 Stability and Instabilily

As a demonstration of the use of forward und backward reasoning in the context
of stability, we consider the time behavior of ¢losed inverter chain loops. We know
from experience that 4 loop consisting of ant odd tiuhiber of inverters will oscillate for-
ever, never stabilizing, and that an éven fiumber of inverters will eventually settle in a

stable state, no matter what the ittitial stite is.

The inverter chain loop of Figure 7.2 has » inverters. If n is odd then, for initial

values 1010..., we have the following gate axiotits,
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FL{—= L)

|—-"1L2—-)—)L3

|~ Ly = Ly
|- Ly~ =Ly
Using FR n-1 times gives us
|- Ly—=-L,
Continuing the same reasoning, we haye
--L; =L,

Ly Ly

|~ Loy = = Ly
=L = Ly
Using FR n—1 times gives us
=Ly Ly
So

‘— D(le VﬂLl)& D("‘lLlD VLI)
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and, by T4,
I—' D((L]D V“'}Ll)& ("ILID VLI)),

stating that whenever L { goes high it will eventually go low, and whenever it goes low

it will go high, never settling, In fact, using the same reasoning, we can conclude
- O > VL) & (~L;D VL))

foralli.

If n is even, then we have the axioms
I"' L = Lg

I-—--:L;-—)-—)Lg

l" Ln—l ~+3 =L,
l-' - L“ - Ll

which do not yield L; o V —L;. So we cannot derive the instability property as
before, which is to be ¢xpected, but, by using GBR, we can derive the stability. The

axioms, assuming initial values of 1010..., are
I_Ll =L, UA L,

|—'-|L2#'—1L2 UA '—1[43
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Loy = Lyt Un Ly '
Ly ==Ly Ug = Loy
Using GBR we derive
(L& —Lo®& & Ly & ALy) =>
Ly & —Ly& o &Ly & -L)Uy Ly
which can be reduced to
F(Ly & —Ly& o & Ly & L) =
(Li& Ly » & Ly & = L,) U, false)
by the definition of U/ 4 and, finally,
(L& =Ly& &k Ly & <L) => (7.6)
O@w, & -Lyk ~* &L,y & —Ly,)
by the definition of U/, and the recusive definition of [, which is
Ow ez w & O Ow.

Formula 7.6 tates that the situation 1010.., for tven invetrter loops is stable.

7.3 Proving the Abserice of Critical Races

Backward reasoning can be used to prove the abseénce of a critical race. For the
controller example, a race might cause thie controller to be in a state other that g; or

q; 41 for some period of time. This could certuinly be a problem. Define
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L1 l: L2 | L L

n-1 n

Figure 7.2 Inverter Chain Loop

WrongState =4 1S (q1ya)V ++ - VIS(gi-y),
so that we are in a bad state for the transition q; —» g;,; if we go through any of g;,,,
- » @i—1- Each cell has a safety properly (Reser) U 4 1S(q;41)), for j =i+2, -+ i-1.
-Asc 2 (0Q; & é-j) Uy - S—’} by LatchSrayReset;
FAsc o 85Uy (Ej & P)) by gate axiom
I-Asc © =P; U IS(g;:41) by def, if Agc
Ase 2 00 & éj Uy 1S(g;41) by BR twice

We also know since
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s 2 0 & =0
that the contrapositive
F O VE 2 -I8g)) (1.7)
is true (introducing [ by [1) The last formula of our deduction above becomes
- - Asc 2 (=@ Vé-j)UA 18(qi41)
by T25. This yields

== 18a)) U5 15(qis1) - (7.8)

by T25 again using formula 7.7.

Combining each of the n~2 properties of the form (7.8) using T6 finally yields
|- Asc 2 (= WrongState U 4 1S (q1.41)). (7.9)

Formula 7.9 states that the controller will not enter a wrong state during the state

change q; — q;41-
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CHAPTER 8

Conclusions and Suggestions for Future Research

8.1 Summary

The goal of this research was to provide a framewotk for proving the correctness
of speed-independent asynchronous circuits. Speed-independent circuits operate
correctly regardless of the distribution of gate¢ delays. Temporal logic is a natural
vehicle since in temporal logic it is very natural and common to say that an event will
"eventually" occur without specifying exactly when. We focused on various speed-
independent circuits, specifying and proving their safety and liveness properties.

We have found the standard linear-time PTL (propositional TL) with the four
operators 1, V, O, and U and no quantification to be quite appropriate for our
application. This is also the version which has been most widely accepted by the com-
puter science research community, We did, however, add some operators. The until-
after ( U/ 4 ) operator is introduced for the axiomatization of gate behavior because we
need a form of U which guarantees that at some point in time the input and output of
a gate will be such that the gate is not excited. —— and = are added merely for
convenience. We also found that Wolper’s ETL (Extended TL) [Wol83] is quite use-

ful for defining operators which describe event sequences not expressible in PTL. In
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particular, oscillation is handled easily by introducing an oscillation operator and rea-

soning in ETL.

Assuming that gates have finite, unbounded delay and that lines have no delay,
we proceeded to axiomatize gate behavior. We also discussed the alternative assump-

tion of unit-delay.

Applying input forever allowed us to focus on steady-state properties, in the
meantime establishing the flavor of the TL deduction process. If one were to apply an
input to a circuit forever and observe the corresponding response, the circuit would

settle into some steady-state. This liveness is expressed
IC & [Stimulus o V UResponse

where IC describes the initial conditions (initial circuit state), Stimulus describes
some input stimulus to the circuit, and Response describes some state the circuit will
remain in until further stimuli. We established some proof rules (theorems of PTL)
which allowed us to construct proofs of safcty and liveness properties. The first
example circuit was a latch composed of two cross-coupled NAND gates. Then using
the latch and the gate again as primitive elements, an asychronous controller com-

posed of these devices was proved correct.

In the course of the controller proof we proved non-interference properties which
state that certain portions of the circuit will not affect the behavior of another portion
of interest. The notion of non-interference is similar to that of concurrent programs
with shared memory. In the case of asynchronous circuits the analog of the shared

variables are "shared" lines.

If the steady-state frame of time can be regarded as "local-time” then we are cer-

tainly interested in properties which are valid if the input is not applied forever. These
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properties are valid for all future time. Global-time time properties are safety or live-
ness properties which are valid throughout out the time of normal circuit operation.

Global-time liveness properties take the form
IC & (Stimulus U 4 LongEnough) > V (Response U 4 NexiStimulus)

where IC is a formula describing the initial condition (initial state), LongEnough is a
formula which is true when the stimulus has been sufficiently recognized by the cir-
cuit, and NextStimulus is true when nothing more can be assumed regarding the stabil-

ity of the circuit’s response.

The method of proving global-time properties is a heuristic application of tech-
niques such as using forward and backward reasoning, using global-time versions of
the proof rules introduced in ghc discussion on steady-state properties, and using
known PTL theorems for reasoning. Forward and backward reasoning could be

regarded as proof rules also.

Programs have an execution which can be inferred from the semantics of the
language in which they are written, One of the problems with verifying a circuit given
its schematic diagram is that no representation of its execution is available. One may
construct a finite state graph to represent the execution and then reason about the
graph, but there is no guarantee the graph, and there¢fore the reasoning, is correct. Qur
Execution Graph Method (EGM) provides a formal justification for the contruction of
a circuit execution graph. The graph can used as a tool for reasoning about safety and
liveness properties. An application of EGM to proving global-time properties of self-
timed systems was considered; an asynchronous pipeline was verified, and in doing

this, we tested the method on a state-of-the-art VLSI device.

173



We also used temporal logic to reason about the presence and absence of races.
(i) Using Wolper’s ETL and an oscillation operator which we created ( Qy), we
proved that an end-around carry adder will oscillate forever for some distribution of
delays and some inputs (presence of a race).
(ii) Using forward reasoning, we proved that a loop consisting of an odd number of
inverters will oscillate forever.
(iii) Using backward reasoning, we proved that a loop consisting of an even number of
inverters which are initially unexcited will be stable foreve;'.
(iv) Using our techniques for global-time propetties, we proved that an example asyn-

chronous controller never enters a bad state (absence of a races).

8.2 Relation to Other Work

In philosophy, our approach is consistent with the idea that one constructs a logic
in order to reason abstractly about variables and their values (states). Other
approaches ([Cla83, Mis83, Dil85]) involve reasoning exclusively about states rather

than higher-level specifications.

The unbounded delay assumption means we must only work with speed-
independent circuits. Within this class, however, all verification is quite practical. We
did not assume some simpler model such as unit-delay and prove properties which

rely on this restrictive assumption.

Our approach has the desirable "functional specifications" feature: specifications

of higher level modules are functions of the specifications of lower level modules.

We are not limited to finite state machine underlying models. Thus reasoning
about groups of lines and devices as non-Boolean-valued objects is possible. This

would allow reasoning about data as well as control. Our approach requires human
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interaction, possibly aided by préof checkers and theorem provers. This relati\_fely
manual approach has the advantage that the person doing the proof is aware of what
steps must take place and, in fact, directs most of them. If the proof is not successful,
the person has a instinct for why not. He may need to change the original
specification of the desired property. This arose in the global-time liveness proof for

the controller.

Since PTL is decidable, one may raise the suggestion that instead of proving
everything within the PTL deductive system, wliy not just axiomatize the gates or
modules and feed the circuit specification and the axioms into the DP? There are three
reasons why this might not be a good solution, First, we cannot assume that PTL will
be powerful enough to specify the behavior of all circuits of interest. As soon as we
abstract a little and treat groups of Boolean lines as integers, we go outside the expres-
sibility and decidability of PTL. We need to use a quantified temporal logic which
consists of PTL augmented with quantifiers, data types, functions, and predicates. A
quantified temporal logic would be undecidable, therefore the DP would only be of
value on the decidable subset. Relying upon the decidability of the specification
language is limiting. Performing proofs in the deductive system, as we have done,
does not depend upon PTL’s decidability, A quantified temporal logic could be
treated with our methods. Secondly, for the recasons discussed above we want control
over the proof process. A completely automatic method is fine if the assertion turns
out to be provable. If the assertion is not provable, however, the automatic method
helps very little identifying what went wrong. Thirdly, if the DP were given full con-
trol, we would be placing all trust in the DP, a program which is not guaranteed
correct itself, Without secing the safety/liveness execution graph (SLEG), the user

has an invisible proof with only the "yes" or "no" answer for evidence.
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With our approach intermediate theorems and the SLEG provide an intuitive

explanation of why the circuit is believed to be correct.

8.3 Future Directions

EGM featured a method for checking safety and liveness formulas on a
safety/liveness execution graph. Any specification in one of two forms § = & Uasn
or £ —> 1 may be checked using the Safety Checking and Liveness C'hecking
Theorems. A logical extension of EGM would allow nested specification w where w
is any PTL formula. The algorithms for safety and liveness would require greater

sophisication. Recursive traversal of the SLEG would be required.

Automating the process is necessary in order to deal with the complexities of
realistic circuits. Automation comes in two forms: proof checking and proof contruc-
tion. Fully-automatic proof checkers could be written which would know the PTL
axioms, PTL inference rules, gate axioms, proof rules, and PTL theorems. They
would be used to check proofs.

Much of the proof contruction in EGM can be automated. After the human
selects a state template, the SLEG-generation algorithm of Section 6.3 could be
invoked to build the SLEG. Once the SLEG is built, the algorithms of the Safety
Checking and Liveness Checking Theorems can be used to check safety and liveness
assertions on the SLEG. For circuits which are built in a highly modular fashion, the
safety and liveness checking could done by hand as it was for the asynchronous pipe-

line.

8.4 Conclusions

176



From a theoretical standpoint, we have been able to demonstrate that the correct-
ness of circuits can be proven in a formal temporal logic deductive system.
Throughout the presentation the deductive system was used directly or indirectly
(indirectly in the case of EGM). The steady-state and global-time proof techniques
were a purely constructive approach. It was seen in Chapters 4 and 5 that as circuits
were constructed from devices, the specifications for the devices were manipulated
into the specfication of the circuit through the use of PTL theorems and pr90f rules.
The complexity of this process began to take its toll, however, and we introduced a

method which included behavioral information, EGM.

EGM has the advantage that a collection of behavioral information is organized
into a structure, a SLEG, which serves as a resource for checking specifications. We
can conclude that circuit verification requires a behavioral description in order to be
practical, even though it is possible to proceed without one (as was done in Chapters 4

and 5).

The concepts presented here are not limited to asynchronous circuits, but could
be applied to any parallel asynchronous system of computing agents. The flow of sig-
nals between gates, for example, models the passing of messages between processes in

distributed systems.

In the past, Boolean algebra has been the only mathematical tool for logic design.
Temporal logic adds the ability to formally reason about time behavior at the logic
level. Even if it turns out be impractical to verify every circuit, the formalization of
hardware behavior leads to better understanding, better modelling, and, as a result,

better designs.
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APPENDIX A

Proofs of Theorems 4.1 - 4.7

Theorems 4.1 through 4.7 state the validity of the steady-state proof rules. We

prove the theorems here.

Theorem 4.1. The implications

[O-oyl & B=PBU,s (Vo] > (IEOSimpl)
B=BU, o)
and
(Dol & B=BU, (V)] > (IEOSimp2)
B=BU, ol
are valid.

Proof The implication
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E[O=oal & B=pU,4 (Vo] o (IEOSimp1)
[B=BU, o]

is true intuitively since, if [} is waiting for either oy or ¢y and if ¢ will never become

true, then P is effectively just waiting for ;. First the validity of the implication
[O=oal& BoBUs (Yol o BoBU4 o) (A.1)

will be shown in the semantics, This amounts to showing that p of the implication is

true for any state sequence 0. Taking  of the antccedent, we obtain A .
A = Vi20p[-0yl(6) & (- pIBI©) Y Viz0pIBl©®)
V3iz0.pfey V agl(6™) & Vj,0j<inlBlic?))
Let us abbreviate
Vo = Vi20.u[- oy 1(c¥)
Vi =—uIBIo)
2 = Vi20ulple®)
3 =3i20.ufey V 051(6Y) & V/,08/<iuBl(6?).
Then A = wo & (y; Yy, V). Breaking up Wy by applying p to oy V o yields
s = 30200 pfoy 1@ V plol(6?) 1 & V5,08j<inlBl@?).
Distributing Vj,0<7 <i.u[B1 (c—s(j)) and applying the predicate calculus theorem

JPE& Q@E)) D QP3N & (FQUE)) (PredC1)
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yields
A=y & w1 VvV e, Y V)
where
Vo, = 3i200[e;1G®) & Vj,08/inIBlcY)
and .
Vo, = 3i20.p[01(07) & Vj,0¢/<iuIBIGY)
By the same theorem, PredCl,

Vo, 2 3i20.[ ploy1(0¥) ] & 3i20{ Vj,0j<iulBI(G ).

But this conflicts with VW, so VY, cannot be true. This leaves
A'=yo & (w1 VyaVy,)  which  implies v VwyVy,,  which s
RIB2B U4 0:2]](3). Hence the validity of formula A.1 is established. Implication

IEOSimp1 follows by the [J [J Rule, yielding
FO@O-~o]& BopUs (mVoph> OB>PU oy,

and then distributing [ over & (by T4 and ER) and reducing (0 Oy to Doy
(by T1 and ER).

The implication IEOSimp? is proved similarly.

Theorem 4.2. The implications
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FIO=-0] & g Vo) = (Vo) Uy Bl o (IEISimpl)
[0y Vo) = aa Uy B
and
FiOo) & [(log& o= (& o) U Bl D (IEISimp2)
oy & oy = a, Uy Bl
are valid.
Proof IEISimp1 is intuitively true because if o is never true, then just @, rather than
(ory ¥ 07) will be waiting for B in the until-after. First the validity of the implication
[0-e & (e Vo)V e Us Bl o e Vo) 20, Uy Bl (A2)
will be shown. Taking ) of the antecedent, we obtain A,
A = Vi20puf—od6%) & (= pley Y ol(o) V Viz0ufoy V oyl(c™)
V3i20.pIpIc™) & V¥/,08j<infoy V ayl(c?)
Let
Yo = Vi20.u[- a;J(c®)
vy == ploy Y 0,1(0)
vy = Vi20ufa, Y ay)(c®)

vy = 3200 BIc®) & V/,08<ipley V apl(c¥)
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Now
A=vy& (v Vv V)
=Wod V)V (Yo & vV (Wo & v3). (A1)
The goal is to eliminate o; from W, and \f3. Consider first the term Yo & .
Vo & ¥ = Viz0-plogd(©@®) & Viz0pfo, ¥ aglc®)
Applying the predicate calculus equivalence
(ViP@) & (VIQU)sVi(P(i)& Q@) (PredC2)

yields

Vo & Yy = Vi20[ - play1(c®™) & ploy V ol(c®) ]

Vi20.[ — pleyl(6®) & ploydc®) ] (A2)

]

V- uled©e®) & plogl(c®)]
The first of the two terms above in formula A.2 is a contradiction, therefore
Vo & W, = Vi20.[ - pfogl(6®) & ploylc)]
= Vi20.[ - uo1(6®) ] & Vi20.[ plozl(6) ]
and by PredC2 again'
= Yo & ¥y

Now consider the term gy & 3 of formula A.1.
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Yo & W3 = Vi20ufo(c!)
& 3201 & Vj 08/ il plou](c?) V plelie”) ]
Now, making use of the predicate calculus theorem which states
P& (ViQ(i) = ViP & Q@) (PredC3)

where i does not occur free in P, we change the bound variable i in g to & and apply

it, giving
Yo & 3 = 3i20.[ V20~ pley16®) 1 & V.08 sinlog 1Y) V plaglc??)

= 3020 Vk20- pfey (6% ] & /\0 T CA (AR RAT 2 [CGab)
J:

Using the simplification
— e 3@P) & (uIeyI6?) V ploal(e¥) = - pleyI@?) & ploy1(c?)
i+1 times, we obtain
Wo & W3 = Ji20 V20— ploie®) ] & V/,0<) <iuloylic??)
= Yo & vy

Since Yo & Yo=Yy & W, and Yo & Y3 =y & ;' formula A.l is equivalent to
Wo & (yy Yy V) which is plley V oy 2 oy Uy BI(S). Now the validity of for-
mula A.2 is established. Implication IEISimp1 follows by the UJ [ Rule, yielding

- O(O-o1& [y Voo Ve Uy B o Oty Ve o Uy Bl

and then distribing [J over & and reducing (J (o to O oy,
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Implication IEISimp2 is proved similarly.

Theorem 4.3. The implication

FiOal & B=>pU,s @) o [B=> OB (Stimp)
is valid.
Proof Intuitively, P is waiting for — o to occur but it never will occur because O

The implication is proved in the semantics. The initial assumptions are O o and

BB U, (— o). Taking p of the latter yields
RIBI©) D MIB U4 —al(o). (A3)

If u[BI(o) is false then W of the consequent of implication Slimp is trivially true.
Assume that u[[B]{(E) is true then for any state sequence o. Then by formula A.3 and
modus ponens it may be assumed that ufp U, ~ol. Now, by the definition of

Uy,

Vi20.ufB1c)

REB U — ol(0)

V2i20.u- (™) & Vj,0<i<iulplcY)

1§

vV,
Taking . of the other assumption, [Ja, yields

pf Oal(e) = Viz0plal(c®)
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= —3i20.u[- afc?) : (Ad)
By the theorem PredC1 above Y, which is
3i20.[ pi- al(6?) & V/,0¢j<iulple") ]
implies
3i20.[ pl— a(6) ] & =20 V;,08sinlBlc) 1. (A5)

But formula A.5 contradicts formula A.4 so \; cannot be true. This means y; is then
true since it is true that y; Yy, and — y,. Y is the p-translation of I P so it has

been shown that p[p > O pl(o).

Thus the validity of the implication
F Oca& BopU, -y o o 0P (A.6)

has been shown. Just as above for the input elimination rules, the entailment version
of the rule is justified by using [J [J Rule on fotmula A.6, distributing the (3 over

the & , and eliminating the redundant [J.

Theorem 4.4. The implication
Bi & Br & [Br=P1 Uy (=B] & (A7)

Br=>B Up (=B] o OB & By

is valid.
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Proof Intuitively, P, is waiting for — P, fo become true and B, is waiting for — B; to

become true. Since By and P, are initially true, they will wait for each other forever.

We begin the proof in the deductive system then switch o the semantics. With
the assumptions B; => By U4 (= By) and By = B, U4 (=~ By) by LIE it is known
that |-B, DBy Ua (=B and |- By 2Py U, (- By). By the assumption By & [,

and modus ponens,
GBI Us (=B &P Uy B
follows where G is the three assumptions. Then by RDED |
FG o BUs(=B2& B U4 (=B
follows. The implication
FBiULA P& B Us =B = DB & By (A.8)

is left to be shown. This will be done in the semantics. Expanding the p-translations

of the two until-after formulas over the & -operator yields

B, U 4 (= BI©) & RIB, Ux (- BYIO)

[Vi20.ulB 10 & Vi20.uIpl(c™)]

V[vi20uB,10D) & Fiz0pl- Bilc?) & H(Bai)]

V (3i20.0[- B,10@) & H(Pui) & Viz0plBlc™)]

V [3i20.u0- B10%) & H(BLi) & [3i20.0[-Bil(c®) & H Bl

= iV Yy Yy
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where

H(B,)=V;,0¢ sipniplcY)

The subformulas v, W3, and y, will be proved false, and this leaves only yy, which is

the translation of the consequent of (A.8).

To see that s, is false, let yp; = Vi20.u[B;1(c"?). Then
¥y = Yy & 3i20.0 ul- BiAe?) & H (i) 1.

By the theorem of predicate calculus PredC1,

3i20.[ pI- BiI(0") & H(Byd) ]

= 3i20.[ - B 1™ ) & i20.[ H (Bai) ),

and by the PC tautology

wm&vi&vow) D (u&w)
it follows that

W2 O Wy & 3i20. pl- By1(6%) ] & 3i20.[ H Byi) ]

=y & (= Viz0IBIGEW) & @20 H (Byi))

= Yy & Y & Yo

(PC3)

Notice now that y5; and f,, coniradict each other. It follows then that y, is false.

V3 is proven false similarly.
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v, is proven false by a double induction on the two time indices associated with

each of its two constituent clauses. Let y, be written

vy = 3i20.4,() & Fi20.9:0)
where

&) = pI- P10 & H(Byi)
and

02) = u[= B & H(Bai).

Proving that v, is false is equivalent to proving € where
§ = - L\__/oqncz) & j\__/0¢20)]-
Let
k !
Ekd) = = |V o,6) & V 6,()| forallk, L
i=0 j=0

Proving Vk20.V{20.E(k,!) will suffice to show E The proof of Vk20.VI20.E(k,!) is
a double induction proof. This consists of proving by single induction on k that
V120.E(k /), which is again proved by single induction on /.
k-basis Prove V{20.£(0,/) by induction on {,

1-basis £(0,!) evaluated at /=0 is

§0,0) = [ ¢1(0) & $,(0) ]

- [MI—- BAG™) & KIBIE®) & W= BIE®) & MBI |
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= f{rue.

Clearly £(0,0) is true.

l-induction Assume an induction hypothesis of £(0,/). Expanding §(0,/+1),

§(0,/+1)

[
J

i}
J

[ 1+]
Lctn(O) & ,-\io 4:20‘)]

i
00) & ,\2/0] & = [0 & 041 |

500 & - [0,0) & 0a+1) |

£(0,!) is the induction hypothesis and is therefore true, so — [¢(0) & ¢,(/+1)]

remains to be shown. Since ¢;(0) D UIB,1(6"?) and ¢,(1+1) D — uIB,1(c?), a

contradiction exists. Therefore —[$,(0) & §,(!+1)] is true. At this point

V120.5(0,/} has been proved, the basis of the induction on k.

k-induction Assume an induction hypothesis of VI20.E(k,l). VI20.E(k+1,!) is to be

proved. Expanding V/20.§(k+1,!),

VI20.£(k+1,0)

I

Viz0.—=

vi20.—

=0

k41 1 )
MACERAD)

-

k { !
(V0,60 & V 0,00 V (01k+1) & YV 620G
_l'=0 j=0 Jj=0

[ & !
Voirg v ¢2<f>] (A.9)
::0 Jj=0
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.
& VI20 [¢1(k+1) & _V0 %U)]
J=

The first factor of (A.9) is the induction hypothesis and is therefore true. The second

is left to be proved. It will be proved by induction on /.
!
1-basis - [¢;(k+1) & _V0 04(f)] evaluated at /=0 is — [¢,(k+1) & ¢,(0)]. Since
J:

0, (k+1) o pIP,1(0?) and ¢,(0) o — pIP,1(c'?), a contradiction exists. There-
fore = [¢;(k+1) & $(0)] is true.

!
l-induction Assume an induction hypothesis of = [¢;(k+1) & _\/0 0,(j)]. Then
J:

I\+/l )
- e & ¥ 0)

- -

1
ottt & V. 0y | & - [¢lck+1) & 40040 | (A.10)

Ih
-

The first factor in (A.10) is the induction hypothesis. The second factor remains
to be proved.
case k>I. Then k+1>[+1 and there is a j = [+1 in the range 0<j<k+1 such that
oy(k+1) D pIBI0YY) and ¢,(+1) > = 1IB;1(c’), a contradiction. Therefore
— [91(k+1) & $(I+1)].
case k<l. Then k+1</+1 and there is a j = k+1 in the range 0<j</+1 such that .
o, (k+1) > uIB1(0YY) and ¢p(/+1) > — piP,I(c’), a contradiction. Therefore
— [0 k+1) & §(I+1)]

This concludes the induction on ! and induction on k so V&20.VI20.E(k,!) has been

proved. This concludes the proof that vy, is false. Since yfp, Y, and y, are false and
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v Vv Vus Yy,
is true, y; must be true. Since

Wi 08, & OB,l(o)

Y1

pL OBy & B

tl

the validity of implication (A.8) is established.

Implication (A.7) can be obtained by noting that
FBi& P& Br=PBiUsBI& Br=BU,s =B o
BiUs =B & B Uys (=B

which is the antecedent of the implication A.8,

Theorem 4.5. The implication
B & B2 & Br=PU,s -P] & (A.11)
Br=BUp B & ] o OP1& By

is valid.

Proof Intuitively, B; is waiting for — B, to become true and B, is waiting for
(- By & o) to become true. Since PB; and P, are initially true, By will be waiting for-
ever for - P, to happen. B, will be waiting for — B; to happen to make (- f; & @)

true. The implication (A.11) can be proved just like implication A.9 was proved, the
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only modification being that " & «" is carried along throughout.

Theorem 4.6. The implication
VB1&B) & =P U, =B & (EIGSimp)
Br=>BUs(=B1& )] o VOB &P
is valid,
Proof Starting with the antecedent of the of EIGSimp, using theorem T33 of Section
4.1.8 twice yields
-V Bk B & [B=PyUs B & Br=> By Us APy & @] D (A1D)
ViB1& B & Br=5Us=Pl& B=>BU,s (=51 & 0)])

Using V V Rule, formula A.11 becomes an implication whose antecedent is in the

desired form.
- VB & B & By =PBr1U, CBN&[Br=B U4 =B & )]) D (A13)
v O@ & By

Transitivity of implication on formulas (A.12) and (A.13) gives us EIGSimp.
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Theorem 4.7. The implication

FaUs P& VP o Vied P) (CRimp)
is valid.
Proof The definition of U 4 says that either (i) o is true forever or (ii) P will eventu-

ally be true and at some point ¢ and [ are true together. These two cases correspond

to y; and y, below being true.
ulwy U x wal(0) = Vi20.u[ol(a)
V 3i20.u[p10%) & Vj,0<)sipfol(@?)
=y Vv
case ;. UL V B1(o) = 3i20.u[BI(c"). . Using the predicate calculus theorem
(ViP (i) & (0 G)) D Ji(PU) & QG))

on ;& p[VBIG) we obtain Ji20.pfolc®) & prBl?)) which s
ul V(a & B)I(0).

case ;.
v = 3i20.u[BI(c?) & Vj,0¢/ < plaf(c¥)

= 3i20.uIBI6) & [pLode®) & -+ & ploled ™) & pladc™)]
Applying the theorem PredC1 we obtain

3i20.0[BIG) & 3200 plal(@®) & -+ & nadc¥)]
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which implies
3i20.4pI(6") & pod(o)

which is u[ V (@ & B)I(o). *
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