PARSING PARADIGMS AND LANGUAGE LEARNING

Michael G. Dyer April 1986
Uri Zernik CSD-860079

——— - — _.

Parsing Paradigms and Language Learning

Michael G. Dyer
Uri Zernik

Artificial Intelligence Laboratory
Computer Science Department
University of California -
Los Angeles, CA 90024

1. Introduction

In many artificial intelligence applications, where it is advantageous to use natural language input, text
must first be converted into an internal representation, suitable for further manipulation by inference and search
processes within the specified task domain. It would be desirable to have a natural language front-end indepen-
dent of any given task domain. However, language comprehension relies heavily on world knowledge, which varies
according to the differing assumptions and underlying semantics of each task domain. Thus a diversity of
language processing paradigms continue to exist, ususlly distinguished by the nature of the application:

(a) In database applications, input sentences express queries and modifications to the database. A typical input
query might be: Hov many ships ars curreatly losdizg vhich veigh sbove 3000 tons? For such retrieval
tasks, natural language queries are often parsed into logical expressions, where the major semantic elements
consist of quantifiers, variables, and predicates over these variables.

(b} In knowledge-based systems (e.g., MYCIN [Shortliffe78]), the task is to find the cause of a situation, or to
project a consequence, such as: What could be the vorst result of prescriding penicillin to my patient?
Answering such questions requires identifying and activating cause/effect relations, often represented in the
form of if/then rules.

(¢) A planner-adviser such as UC [Wilensky84] is intended to support the user by suggesting plans. It must
figure out the goals and intended plans of the user. A typical input would be: I need mors space. Hov do I
remove some files? where the program must dynamically update the goal-plan situation from the input.
Here, understanding the text may require maintaining a model of the user's current knowledge state and use
this to guide comprehension.

(d) Information-gathering and analysis systems are required to read documents and relate the facts into an
intelligible picture. Such systems require deep-analysis of the input, where conceptual representations of
goals, affects, beliefs, plans, justifications, reasoning, and abstract themes must interact. For instance, affect
analysis is essential in understanding: The tbird lsunching sttempt vas rather frusiraling since the veather
changed again. Here we are not told that the attempt failed. This is inferred from knowledge of the affect
Jrustrating combined with knowledge that good weather enables launches.

In all these applications, input text is converted into an internal representation geared to the semantics of -
the task domain. Parsing by a program is a difficult task, which is contrasted by the apparent ease with which
people communicate in natural language. In designing algorithms for language processing, we discover the com-
plexity of the cognitive tasks involved.

1.1 Problems in Language Comprehension

Some of the problems encountered in parsing are described below:

“In Proceedings of First Annual Artificial Intelligence & Advanced Computer Technology

Conference, Long Beach, CA 1985.

259

(a) Reference resolution: For example, in: Joka got bit by Bill. He fell down, which of the two charseters
does he refer to? The solution to this problem lies in understanding the causality of actions.

(b) Word-sense disambiguation: For example, in: She looked up the wvord, as opposed to: She looked up when
he entered, two separate word-senses are involved. Ambiguous word-senses must be resolved using the con-
text as well as semantic and syntactic clues.

(c) Idioms: A sentence such as: Her father put bis foot dowvn vhex be heard her plans should not be interpret-
ed literally as 8 movement of a body-part down toward the floor, but rather that the {ather expressed an ob-
jection. A program must be able to distinguish figurative from literal phrases in text.

{d) Til-formed input: In people’s communpication, most sentences do not perfectly conform to textbook grammar.
Ill-formedness appears through ellipsis (e.g., continuing the sentences and thoughts of cthers), corrections
{e.g., changing utterance plans while in the middle of & sentence) and style/space circumstances {e.g., tele
graphic navy messages}.

(e) Feature-interaction: Linguistic features are easy to account for when they appesr in isolation. For example,
one feature is recipient movement in English, which causes give verbs to appear in two different forms, as in:

I lent Mary the book and I lent the book to Mary. Another English feature is passive-veice. Now what is the
correct interaction of these two features? Clearly, the following is incorrect: To Mary vas lenat the Book.

In all these cases, features which appear natural and pass unnotieed by s humaa listener pose non-trivial
problems for a computer-programmed analyzer.

1.2 Problems in Language Learning

Learning is called for when the system fails to analyse input text using the knowledge it has been set up
with. This is similar to learning as experienced by humans. Naturally, two groups experiencing extensive learning
are children and foreign-language speskers, who face similar problems in these areas:

(2) Novel phrases: For example, suppose that both look and up are familiar when the program receives the in-
put: How do I look up the word "text-editor® in the help systes? A human can learn the new phrase,
look up, from the context. Since phrases and word senses are ever-changing, programs must also be able to
acquire the mesnings of new lexical items from the context.

(b) Grammar-idlom interaction: The interaction of grammar rules with idioms of various types has not been
addressed by theories of grammar. Can the idiom: I gave her s piece of ay mind interact with recipient
movement and thus appear as: I gave a piace of my sind to her! Or can the idiom: Her father put bis
foot-down interact with the passive voice: The foot was put dova by her father! Since these phrases appear
to be idiosyncratic, an expensive solution would be to include all possible correct interactions in the lexicon.

In order to communicate effectively in natural language, parsers must address the problems listed in Section
1.1. However, in order to appear robust and to face new situations, s program must learn new phrases and ac-
quire the correct interaction between idioms and grammar.

3. Three Paradigms in Parsing

In the following sections we introduce three trends in parsing. These approaches do not really contradict
one another, but rather each empbasize different aspects of language processing. Syntax-based parsing emphasizes
aspects of feature interaction, lexicon-based parsing focuses on word-sense disambiguation, while expectation-
based parsing highlights interaction with the context.

2.1 Syntax-Based Parsers

260

e e a s

Syntaz-based parsers as opposed to semantics-based parsers proceed in two stages. First, input tokens are
anticipated and accepted according to syntactic rules. Second, the semantic structure for the entire sentence is
constructed from the semantics of its constituents. '

2.1.1 Augmented Transition Networks

Traditionally, Augmented Transition Networks (ATNs) [Woods70] have provided the mechanism for
syntax-based parsers. In parsing, a sentence is accepted or rejected according to grammar rules and a semantic
structure may be generated as a by-product. A typical use for this approach is in the generation of predicate-
calculus expressions, applicable for querying a database. For example, in the figure below we show a sentence and
the logical expression constructed by the parser.

Every car that moves is driven by a driver

all(X) : (car(X) & moves{X) => exists(Y) : (driver(Y) & drive(Y,X}})

Figure 1: Sentence and Constructed Expression

ATNs may best be viewed as state machines (which by their nature can express only context-free grammars
(CFGs)), augmented in two ways:

{a) Agreement rules {which generally require context-sensitivity) can be implemented by the use of registers. For

example, number and tense agreement along verb phrases can be maintained in dedicated registers and tested
in ATN transitions.

(b) The construction of the required logical structure is accomplished by actions which are associated with the
transitions.

2.1.2 Logic Parsing

With the advent of PROLOG and logic programming, the focus in syntax-based pa?sing_ has shifted to
Definite Clause Grammars (DCGs) [Pereira80]. Since DCGs supersede ATNs in bot.h theoretical interest an po-
tential application, we will describe parsing using DCGs. Again, it is helpful to think of DCGs as extensions to
CFGs.

Definite Clanse Grammars as Extended Context-Free Grammars

The simplified set of rules below demonstrates the ease of writing a parser, simply by specifying a numbgr
of context-free rules. (To be readable by PROLOG, these rules need to be translated into PROLOG clauses. This
translation can be performed by a simple preprocessor.) The parsing itself is carried out by any standard PRO-
LOG interpreter. For example, the sentence: John loves Mary can be parsed by a set of context-{ree rules such as:

sentence -->> noun-phrase, verb-phrase
noun-phrase -->> name

verb-phrase --> trans-verb, nouan-phrase
name --> Mary

name --> John

verb-phrase -->> Joves

Figure 2: Context-Free Rules

261

5

Such grammars are denoted by a set of non-terminals (e.g., noun-phrase), a set of terminals (e.g., John), and a set
of rules which allow one non-terminal on the right-hand side and 2 list of terminals and non-terminals on the
left-hand side. DCGs extend CFGs in two ways.

First Extension: Pumc&n in Non~Terminals

A DCG non-terminal may be any PROLOG term (rather than a simple stom as in CFGs). For example, th

first rule in the grammar in Figure 2 is extended as shown in the figure below.. :

sentence --> noun-phrase, verb-phrase

sentence(s{NP,VP)) --> noun-phrase(N,NP), verb-phrase(N,VP)

Figure 3: Allowing Arguments In DCG Non-Terminals

This extension enables the following two features:

Structure-conslruction: The argument to sentence (i.e., s(NP,VP)) specifies the construction of the entire
parse tree {rom the structures of its two constituents.

Agreement: The variable N guarantees the "number® agreement betwsea the noun<phrase and the verb-
phrase. This prevents sentences such as We loves Mary.

Second Extension: Procedure Calls

The right-hand side of a rule may also include transparent procedsra calls. For example, in the grammar for
the generation of dates as month-day pairs (shown in Figure 4), the single rule is mutated to constrain the days of
the month.

date --> month, day

date (D,M) --> month(M), [D], {integer(D), 0<D, D<32})

Figure 4. Allowing Transparent Procedures ia DCG Rules

The tranzparent procedure call delimited by { } above, which checks that D is within range, is not reflected as a
token in the generated sentence.

Evaluation

Logic-programming has assumed a central role in language processing, especiglly in implementing
syntactic-based parsers, its main advantages being (s} No need to write a parser (PROLOG backtrack and
unification provide the mechanism), (b) Rules are declarstive, thus perspicuous, (¢} DCGs may emulate a variety
of linguistic grammars such as case grammar [Fillmore6s), and transformational grammar [Akmajian7$},

Current problems with DCGs are: (a) Top-down parsing, making use of knowledge structures, is not yet possible.
This should go beyond a syntactic parsing with semantic interpretation as implemented by McCord {McCord8g).
(b) Since the process is controlled by PROLOG itself, it is difficult to handle ill-formed input, or perform relaxed
parsing which could be done naturally by semantic parsers. (c) Since syntax and form restrict the allowed sen-
tences, human behavior such as ellipsis and correction is difficult to handle.

262

3.3 Expectation-Based Parsing

Expectation-Based parsing was developed in ELI [Riesbeck74], SAM [Cullingford78| and PAM {Wilensky83]
which viewed comprehension in a broader scope than just determining the syntactic components of sentences,
Parsing proceeds relative to a dynamically updated context, and text is said to be understood when the structures
brought to mind are linked appropriately. For example, in understanding the following text: Wilms wvas bungry.
She looked Up a restaurant in the Michelin Guide the first sentence instantiates the satisfy-hunger goal. The
realization of this goal involves three subgoals: find-food, get-food, and eat-food, where the guide-consulting aet in
the second sentence realizes the find-food subgoal. Understanding is sccomplished by linking the top-level goal
through the subgoal to the action.

How is the verb look analyzed in the presence of many different meanings (e.g., lock at her, look up
the restaurant, look up the monument)! Two types of processes take part in the analysis of 1cok in the ex-
ample above. First, bollom-up processes use input clues to distinguish a set of candidate-senses by syntactic and
semantic expectations. Two senses of the verb lock are distinguished: to ook up in the sense of searching for an
item, and to look up in the sense of lifting the face vertically. Since there are two candidates, further disambi-
guation is required. A top-down process is used to determine the appropriate meaning by ezpeelations stemming
from a central structure such as a goal or a script. The expectation here is find-food which is satisfied by the
guide-consuiting act. '

BORIS [Dyer83] implements such expeétations by demons. A demon can be viewed as an extended pro-
cedure. Like a procedure call, a demon can be spawned with a set of input arguments. However, unlike a pro-
cedure which is executed as soon as it is called, a demon fires only when its lest is satisfied. The test may be any
event observed in the system or the appearance of a certain token in the input. A word-sense is associated with a
demon-template. Figure 5 shows the demon-template for the phrase look up s guide. When the word 1ook is en-
countered, the demons in the template are spawned. Each demon expects a set of events. When all the demons
have fired, the template is instantiated yielding the appropriate concept.

(MTRANS
actor !'x (demon-find-concept person before)
from ?y (demon-find-concept thing after)
{demon-find-word 'up)

to 7
object 7z (contents y)
instrument
(ATTEND
) actor ™
object o (default 'eyes)
to ! (information-source)
goal
{D-KNOW
owner x
fact 12)))

Figure 5: Lexical Entry For “Look up a Guide™

The entire template denotes an MTRANS (mental-transfer) act, intended to satisfy a goal of obtaining informa-
tion (D-KNOW) through attending a sense organ (probably the eyes) to an information source. Each variable in
the template body obtains its value by the return value of its associated demon. For example, (demon-find-
concept person before) is a call for a demon which anticipates a person-type before the verb in the sentence. The
concept retrieved by this demon gets bound to the variable ?x.

263

Two drawbacks characterize this approach, as implemented in BORIS: (a) Lexical expectations are pro-
cedural, and thus not perspicuous. (b) Idioms and figurative phrases are difficult to encode. On the other pand,
using semantic expectations rather than syntax to direct parsing, has two advantages: (1) Input tgxt can be inter-
preted if it still makes sense conceptually, even if it does not conform to textbook grammar, (2) Dnsarr_:blg}mtlon is
performed conceptually using top-down as well as bottom-up conceptual clues, thus yielding the meaning intended
by people.

2.3 Phrase-Based Parsing ' .

It turns out that idioms and figurative phrases are ubiquitous in human communication (e.g., turn out it-
self is a figurative phrase). A figurative phrase is a linguistic pattern whose associated meaning cannot be pro-
duced from the composition of its constituents. Indeed, an interpretation of the phrase based on the meanings of
its constituents often exists, but it carries a different meaning. The fact that this literal interpretation of the
figurative phrase exists is s misleading clue in learning and in comprehension. Becker [Becker75]‘ has described a
space of phrases ranging in their generality from fixed proverbs: charity begine at home through idioms: iay dows
the law, and phrasal verbs: put up vith one’s spouse, look up the nasms, to literal verb phrases, such as: eit oa
the chair. He suggested employing s phresal lezicon to capture this entire range of language structures.

Wilensky [Wilensky81) suggested a knowledge-based approach to the lexicon representation, \?hicl_a Was em-
ployed in PHRAN [Arens82}, using pattern-concept pairs for phrasal entries in the iexicon, as shown in Figure 8.

(1) pattern: !x:person look:verb <at 'y:thing>
concept: x ATTEND eyes to cbject 1y

(2) pattern: !x:person look:verb up ?y:concept in ?z:ref-book
concept: ™ FIND !y in !z

Figure 6: Two Phrases in the Lexicon

The pattern captures the linguistic form of the phrase (the way it appears in text) and the concept encodes its as-
sociated conceptual meaning. Parsing is done by matching the pattern with the input sentence, and consequently
instantiating the structures in the concept.

The Pattern Notation

In.the two patterns above, there are elements which are "fixed”, such as the word up, while there are ele-
ments which are left as variables, such as Tx:person, and ?y:ref-book, which stand for elements of the designated
semantic types (person-type and reference-book-type). Patterns do not dictate any specific order, unless the del-
imiters «C and > appear, enforcing an order on the enclosed elements. In principle, pattern (1) could be either
one of; he locked up the guide OF: he looked it up. Four questions are raised by this lexical representation:

{2} Token order is not completely specified. What would prevent the generation of undesired sentences such as:
looked he up the Michelin Guide!?

{b} What would account for correct feature interaction! How does passive voice interact with lexical patterns?
What is the interaction with verbs taking an infinitive form, such as: Mark decided to look at Mary! We cer
tainly do not want to enumerate all possible interactions of such pairs of verbs {decide and look, decide and
walk, etc.),

{¢) What is the selection principle when two or more patterns match the input sentence? How are they disambi-
guated?

264

(d) The lexicon holds many finely distinguished phrases. What efficiency measures could be taken to perform pat-
tern matching in a reasonable time?

The solution for the first two problems lies with the grammatical foundations given by funclional grammars
[Kay79] and [Kaplan75] which enable the definition of lexical as well as grammatical patterns in a uniform way.
The operation of such a system is described below.

Lexical Patterns and Ordering Patterns

Some lexical patteras for the verb 1cok, for example, are given in Figure 7.

(1) Ix:(person,actor) look:verb <at ty:thing>
(he looked at the wall)

(2) x:(person,actor) look:verb <up !y:dimension>>
(he looked up the wall)

(3) Ix:(person,actor) look:verb up z:(word-token) in ?y:ref-book
(he looked up the word in the dictionary)

(4) < !x:thing look:verb ?y:description >
(it looks shabby)

(5) < x:thing look:verb like ?y:thing >
(she looked like her sister)

Figure 7: Lexical Patterns of "Look” Phrases

In parsing, these patterns interact with a set of ordering patferns to form correctly ordered sentences according to
English language conventions. Some sample ordering patterns are given in Figure 8.
L]

(8) < Tu:actor ?v:(verb,active-form) >
(7} < ?wrecipient !v:(verb,passive-form) > by Tw:actor
(8) < Tu:object ?v:(verb,passive-form) > by Tw:actor

Figure 8: Some Basic Ordering Rules

These rules encode our knowledge about sentence structure. In many cases, parsing could be based on semantic
expectations only. For example, in the sentence: Jobn took the book it is clear that the book did not take John,
thus the first element is the actor. But in the sentence: He took Mary where both actor and object are persons,
only sentence-structure rules along with context reveal the appropriate roles.

How Does It All Work?

For example, assume the input sentences are:
{9) John needed a car. (10) He looked up "car® in the Yellow Pages.

The process, in parsing (10) above, proceeds as follows:

input; he Concept: (jobnl name:Joha class:person)

265

input: looked Word: look, voice:active
Apply all the lexical patterns of 2ook. ,
Apply ordering pattern (8) (active-voice, in Figure 8)
Unify the actor variable with Johnl.

input: up Matched in lexical patterns (2) and (3).

input: *car® Concept: (word1 class:word-token spelling:"car”)

input: in the Yellow Pages
Concept: (yell name:Yellow Pages class:ref-book)
Satisfy the expectation of pattern (3).
All the expectations of pattern (3) are satisfied,
therefore instantiate the concept ol phrase (3).

Disambiguation

Disambiguation is required when two or more phrases match the input. For example, the sentence (10)
matches both lexical phrases (7) and (8). The preference principles used in PHRAN [Arens82] are: :

(a) Select the phrase with the longer pattern.
(b) Select the phrase with the more specific pattern.

Since patterns (2) and {3) have the same length, pattern (3) is selected by its specificity: ref-book is a sub-class of
thing. '

Phrase ‘ateraction

Phrase interaction is required in sentences such as: vilma decided to look up the Michelia Guide. Notice
that two lexical patterns are involved. The pattern for decide: ?x:(person.actor) decide:verd <ts Ty:verb> and
pattern (3) for look: ?x: (person,actor) look:verd up ?y:ref-book The resulting conecept combines the concepts
of both patterns. ' :

3. Learning Phrases from the Context

Currently, no computer program is capable of acquiring new phrases from context and sutomatically aug-
menting its own lexicon. The computer program RINA [Zernik85] presents a first attempt at learning English
phrases by modeling a second language speaker. Some examples of learning dialogues are given below. In the first
dialogue the program is introduced to an unknown phrase: take on. The words take and on in isolation are fami-
liar to RINA, who also remembers the biblical story. The program interacts with a user who is a native speaker,

David vs. Goliath

User: Remember the story of David and Goliath? David took on Goliath.
RINA:David took Goliath some vhere?

User: No. David took on Goliath.

RINA: He took on him. He won the fight?

User: No. He took him on. David attacked him.

RINA:He took him on. He sccepted the challenge?

User: Right.

User: Here is another story. John took on the third exam question.
RINA:He took on a hard problem.

Another dialogue involves put one's foot dovn. Again, the phrase is unknown while its constituaats are known:

266

L n - W, — -

Going Punk

User: Jenny wanted to go punk, but her father put his foot down.
RINA:He moved his foot down? It does not make sense.

User: No. He put his foot down.

RINA: He put his foot down. He refused to let her go punk.

3.1 Issues in Phrase Acquisition
Three issues must be addressed when learning phrases in context.

{(a) Detecting failures: What are the indications that the initial interpretation of the phrase take kim oo as "to
take a person to a location” is incorrect? Since all the words in the sentence are known, the problem is detect-
ed both as a conceptual discrepancy (why would he take his enemy anywhere?) and as a aynlactse farlure (the
expected location of the assumed physical transfer is missing).

(b) Determining scope and generality of patterns: The linguistic pattern of a phrase may be perceived by
the learner at various levels of generality. For example, in the second dialogue, incorrect generalizatioas could
yield patterns accepting sentences such as:

Her boss put his left foot down.
He moved his foot down.

He put down his foot, .
He put down his leg.

A decision is also required about the scope of the pattern (i.e., the tokens included in the pattern). For in-
stance, the scope of the pattern in John put up with Mary could be (1) fz:person put:verb up where with is as-
sociated with Mary or (2) Pz:person put:verd up with Py:person, where vith is associated with put up.

(¢) Finding appropriate meanings: The conceptual meaning of the phrase must be extracted from the current
context which may contain many concepts, both appropriate and inappropriate for hypothesis formation.
Thus there must be strategies for focusing on appropriate elements in the context.

3.2 Learning by Failure-Analysis

Learning of phrases is an iterative process. The input is a sequence of sentence-context pairs, through
which the program refines its current hypothesis about the new phrase. The hypothesis pertains to both the pat-
tern and the concept of the phrase. The basic eycle in the process is:

{a) A sentence is parsed on the background of a conceptual context.

(b) Using the current hypothesis, either the sentence is comprehended smoothly, or a failure is detected.

(¢} The analysis of a failure directs the update of the current hypothesis.

The crucial point in this scheme is to obtain from the parser an intelligible analysis of the failure. As an example
consider this part of the first dialog:

(1) RINA:He took on him. He won the fight?
(2) User: No. He tock him on. David attacked him.
(3) RINA:He took him on. He accepted the challenge?

The current hypothesis is shown in Figure 9.

267

pattern: Tx:person take:verb <on !y:person > _
concept: ?x wia the conflict with ?y .

Figure 8: The First Hypothesis

Notice that the preposition on is attached to the object !y, thus assuming that the pbrase is similar to He looked
st Mary which cannot produce the following sentence: He looked ber st. This bypothesis underlies sentence (1)
which is erroneous in both its form and its meaning. Two observations should be made by comparing this pattern
to sentence 2:

- The object is not preceded by the preposition on.
- The preposition on does not precede any object.

These comments direct the construction of the new hypothesis:

pattern: Ix:person take:verb on ly:person
. concept: ?x win the conflict with 1y

Figure 10: The Second Hypothesis

where the preposition on is taken as a modifler of the verb itself, thus correctly generating sentence 3. In Figure
10 the conceptual hypothesis is still incorrect and must itself be modified.

3.3 The Case-Frame Representation

The pattern representation discussed so far does not lend itself to error-analysis as given by the comments
above. A pattern matcher matching the input and the pattern would state simply that they do not match.
Therefore, RINA's pattern representation is Aierarchical, given in terms of case-frames. Schematically, the hierar-
chy is:

pattern -->> cases
case --> words and concepts

The entire pattern is constructed of frames where each frame itself is constructed of single tokens which are words
and concepts. Each frame has several slots which contain information about the case pertaining to: (1) its syntac-
tic appearance, (2) its semantic concept and (3) its role in the primary act of the sentence (actor, object, destina-
tion, etc.).

3.4.1 Examples The first example-pattern denotes a simple literal verb phrase:

take:verb

{id:1x class:person role:actor}

{id:?y class:person role:object}

{id:1z class:location role:destination marker:to}

Figure 11: Pattern for "He took her to school”

- Both the expected actor and object are people, the destination is & location, and the preposition to marks the case
in the sentence. The second phrase is figurative:

268

]

take:verb
{id:?x class:person role:actor})
{marker:to determiner:the word:streets}

Figure 12: Pattern for "He took to the streets”

The second case does not have any standard role, and does not have a semantic concept. Rather, it is represented -
as a sequence of words. However, the words in the sequence are designated as the marker, the deferminer and the
word itsell.

3.4.2 Advantages of Case-Frames
The advantages of hierarchical case-frame representation over "flat” pattern representation are:

(a) Case-frames provide clear and psychologically valid metrics for disambiguation. The length of a pattern is -
measured by the number of cases, and its specificity by the restrictions within cases.

{b) Case-frames support ill-formed parsing since pattern matching is done first on the basis of entire frames and
even if a syntactic element is missing, the frame can be recovered.

(¢} Case-frames support high-level error analysis, describing discrepancies in terms of frame parts (e.g., "the
marker is missing”).

4, Current Research and Conclusions

RINA maintains a declarative phrasal lexicon and performs demon-based pattern matching. Our imple-
mentation is directed towards integrating a PROLOG framework with demons which are used to implement ex-
pectations.

Qur theoretical interests lie in three areas: (1) exposing learner's strategies in extracting phrase meanings
from the context, (2) identifying strategies for error-analysis and error-recovery in forming pattern/concept pairs,
and (3) maintaining connofations with each phrase. Connotations are represented by establishing associations
between the current syntactic/semantic hypothesis and the episodic context within which the learning occurred.
This context is later used by RINA in generating examples of phrases that have been learned.

RINA is written as an experimental model of parsing, designed to explore processes underlying abilities to
learn the structure and meaning of new phrases automatically from context. RINA currently handles only a few
examples (including the David vs. Goliath dialog in Section 3) and is undergoing continuing design and develop-
ment. We hope that the insights being gained from this research will serve as the basis of future natural language
systems which are both flexible and robust.

269

[Akmajian75)
[Arens82]
[Becker75)
[Cullingford78)
[Dyer83}
[Fillmore8s]
[Kaplan75)
(Kay79]
[McCord82)

[Pereiragd)

[Riesbeck74]

[Shortliffe76}
[Wilensky83]
[Wilensky81]
[Wilensky84]
{Woods70)

[Zernik8s)

References

Akmasjian, A. and F. Heny, Iniroduction to the Principles of Tranaformational Syntsz, MIT
Press, Cambridge, Mass. (1075).

Arens, Y., “The Context Model: Language Understanding in s Context," in Proceedings Fourth
Annual Conference of the Cognitive Science Sociely, Ann Arbor, Michigan (1982).

Becker, Joseph D., “The Phrasal Lexicon,” pp. 70-73 in Proceedings Interdisciplinary Workshop
on Theoretical lssues in Natural Langusge Processing, Cambridge, Massachusets (June 1975).

Cullingford, R. E., “Script Application: Computer Understanding of Newspaper Stories,” 118,
Yale University, Department of Computer Science, New Haven, Connecticut (1978).

Dyer, Michael G., In-depth understanding: & computer model of i:;tcyrated processing for narralive
comprehension, MIT Press, Cambridge, MA (1983).

Fillmore, C., "'The Case for Case,” pp. 1-00 in Unsversals in Linguislic Theory, ed. E. Bach R.
Harms, Holt, Reinhart and Winston, Chicago (1968).

Kaplan, R. M., ““On Process Models for Sentence Analysis,” pp. 117-135 in Ezplorations in Cog-
nition, ed. D. A. Norman D. E. Rumelhart, Freeman, San Francisco (1975).

Kay, Martin, “Functional Grammar,” pp. 142-158 in Proceedings 5tA Annxal Meeling of the
Berkeley Linguiatic Society, Berkeley, California (1979).

McCord, M. C., “Using Slots and Modifiers i Logic Grammars for Natural Language,” Artificial
Intelligence 18, pp.327-367 (1982).

" Pereira, F. C. N. and David H. D. Warren, “Definite Clsuse Grammars for Language Anslysis; A

Survey of the Formalism and a Camparison with Augmented Transition Networks,” Artificiel
Intelligence 13, pp.231-278 (1080).

Riesbeck, C. K., “Computational Understanding: Analysis of Sentences and Context,” Memo
238, Al Laboratory (1974).

Shortliffe, E. H., Computer Based Medical Consultation: MYCIN, American Elsevier (1978).
Wilensky, Robert, Planning end Underetanding, Addison-Wesley , Massachusetts (1983).
Wilensky, R., “A Knowledge-Based Approach to Natural Language Processing: A progress Re-
port,” in Proccedings Seventh International Joint Conference on Artificial Intelligence, Van-
couver, Canada (1981).

Wilensky, R., Y. Arens, and D. Chin, “Talking to UNIX in English: an Overview of UC,” Com-
munications of the ACM 37(8), pp.574-503 (June 1984).

Woods, W. A., “Transition Network Grammars for Language Analysis,” Communications of the
ACM 183 (1970).

Zernik, U. and M. G. Dyer, “Towards a Self-Extending Phrasal Lexicon,” in Proceedings 23rd
Annual Meeting of the Associalion of Computational Linguistics, Chicago, Ill. (1085). (to ap-

pear). 270

