MULTIPROCESSOR SYSTEM EVALUATON AND
PROGRAMMING ENVIRONMENT

Milos D. Ercegovac April 1986
Final Report CSD-860066

UNIVERSITY OF CALIFORNIA
LOS ANGELES
COMPUTER SCIENCE DEPARTMENT
Sandia National Laboratories
Contract No.25-3074

"Multiprocessor System Evaluation and Programming Environment"
- Final Report -
Principal Investigator: Prof. M.D. Ercegovac,

Associated Faculty: Prof. T. Lang,
Prof. R.M. Muntz,

Graduate Research Assistants: P.K. Chan,
T.M. Ravi

April 1, 1986
Los Angeles

This is the final report summarizing the research and development
performed under the Sandia National Laboratories’ Contract No. 25-3074
"Multiprocessor System Evaluation and Programming Environment”. It con-
sists of four parts:

Part 1 describes a multiprocessor simulator.

Part 2 discusses allocation of tasks in a data-driven multiprocessor
and SANDAC IV System.

Part 3 and 4 contain the corresponding software on magnetic tapes.

The main contributions in the design of the simulator were made by
P.K. Chan and in the allocation of tasks by T.M. Ravi. The support of the
Sandia National Laboratories and technical cooporation with its technical
staff members George Davidson and Paul E. Pierce are greatly appreciat-
ed.

Part |

SANDAC Multiprocessor Simulation

University of California, Los Angeles
Computer Science Department

SANDAC Multiprocessor Simulation: Final Report

P. K. Chan and M. D, Ercegovac

Abstract - Sandy, a simulator for the SANDAC [2] muitiprocessor has been developed. This
simulator is capable of simulating the multi-tasking and message passing inter-processor com-
munication environments in SANDAC. Inputs to sandy are the C source codes that a user actu-
ally would run on SANDAC. Sandy provides performance estimates which makes it a viable
tool in the development phase of projects to run on SANDAC. This document examines the

organization of sandy.

1. Introduction

This document describes the organization of sandy and examines briefly its
source code. It is written for those who intend to adapt sandy for a different architec-
ture other than SANDAC, or to extend and refine the current capabilities of the simula-
tor.

Simulation is one of the many ways to abstract, characterize and study a complex
system. The levels of abstraction can be microscopic, or macroscopic, or somewhere in
between. Choosing an appropriate level of abstraction requires a judicious choice
between the level of confidence that one would like to acquire from simulation and the
constraints of resources. Before a simulator is operational, it is difficult to predict or
quantify the level of confidence. For a given level of confidence, it is not easy either to
decide on the appropriate level of abstraction to satisfy the need. These problems remain

some of greatest challenges in the area of simulation methodology. Study and evaluation

of a complex system through simulation traditionally involves feeding a representative

set of inputs to the simulation model and evaluating the outcome.

The simulator sandy is different from stochastic simulators such as PAWS or
CACI NETWORK II.5 [3]. Those are stochastic simulators in the sense that their
simulation models are stochastic: a user has to present probabilistic parameters to the
simulator. Sandy uses a deterministic model of the system to be simulated.

Inputs to sandy are C source code files. To avoid confusion, we refer to the C
source codes input to the simulator as input source codes; whereas the source codes of

the simulator itself is referred to as source codes.

Some of the early suggestions was to build a simulation tool to simulate the
SANDAC multiprocessor at the machine instruction level; this means that a simulator
would interpret the assembly code generated by the compiler. This scheme would make
a simulator highly machine dependent, since most of the microscopic system attributes
would have to be mimicked quite rigidly. The other suggestion was to simulate SAN-
DAC at the C programming language level. At this level, the simulator could interpret
directly the input source code. System attributes subsequently would be ébstracted ata
macroscopic level. As far as the level of confidence is concemed, the first approach is
undisputely the better one. One weakness of the second approach is worth noting how-
ever, since the simulator is abstracting system attributes at a higher level, detailed
machine attributes and compiler optimization issues (such as register allocation, and
code optimization) are not taken into account. Consequently, this affects the accuracy of
the simulation. Nevertheless, we adopted the second scheme due to concemns of com-
plexity, flexibility, and availability of resources.

The simulator comprises three major components: 1. a parser, 2. an interpreter,
and 3. an event scheduler. It is our intent that this organization effectively divides the
simulator into machine independent and machine dependent parts. The parser and the
interpreter are essentially machine-independent, whereas the event scheduler is largely
machine dependent.

The parser is a modified version of the first pass of the Portable C Compiler
(PCC) [5] for RISC. The parser performs lexical and syntactic checking on an input C
source program. It also generates an intermediate file containing parse trees to be inter-
preted by the interpreter. A small part of the interpreter consists of the modified second
pass of the PCC [7]. This part reads intermediate files and converts the parse trees into
an internal form - expression trees. The rest of the interpreter is an evaluator which does
the interpretation (execution) of the expression trees. Each step in interpreting an
expression tree is considered by the event scheduler as an event. One of the functions of
the event scheduler is to evoke and schedule an event according to the number of
machine cycles which is required by the SANDAC multiprocessor to execute the srep.
Section 3.3 will elaborate on this point. Other functions of the event scheduler include
maintaining resources (e.g., global bus, global memory and local message queues), and
interlocks among tasks in an unambiguous fashion.

The faithfulness of the simulator in mimicking the real machine depends on two
facts. First, it relies on the accuracy of the timing parameters which are supplied by a
user to depict execution times of the expression trees. Secondly, since it is extremely
difficult to simulate interrupts in all VRTX (a registered trademark of Hunter & Ready
Inc.) and standard C library calls [1], the simulator simply requires that all system calls
be non-interruptible. In simple words, the simulation of interrupts is imprecise. Section
3.3 will elaborate on this issue.

The size and speed of the simulator have always been a concern, and several
changes have been made during development to improve these aspects. It is our belief
that the current implementation of the simulator does maintain a balance between these
conflicting issues.

The current version of the parser consists of more than 10000 lines of code, and
for the interpreter and event-scheduler together, occupy roughly 4000 lines of code.

1.1. How to use it

We illustrate with an example the steps to run a simulation. Suppose we have
five tasks. To run the parser, first we parse each task source code into parse trees

cc -E taskll.c
cc -E taskl2.c
cc -E taskl3.c
cc -E taskz2l.c¢
cc -E task22.c¢

pas ptree.ll

pas ptree.l2

pas ptree.2l

>
>

pas > ptree,13
>
>

pas ptree.22
The reason for saying ‘cc -E’ is to get rid of the comments and to expand macro
definitions in the task files. To run the simulator on the parse trees, use,

sandy -2 ptree.ll ptree.l2 ptree.2l ptree.22 ptree.,31
or, simply
sandy =2 ptree.*

in csh; which means that you have two processors in the system. The tasks are
assigned to the processors as,

processor 1 : taskll task2l task3l
processor 2 : taskl2 task22

with taskll having the highest priority w.r.t processor 1, task2l has the next
highest and so on. The rules for allocating tasks to processor are described in Section
4.2. The maximum number of processors is 16 in this installation. This is controlled
by a parameter MACHINE defined in the header file "../ran/h.sim". It doesn’t
matter if the number of tasks is less than the number of machines, some of the processors
would simply be idle.

Notice that we have restricted each task to be self-contained in a file. The main

function of each task has to be named main ().

2. The Parser

This parser is modified from the first pass of the Portable C compiler that was
originally designed by Steve C. Johnson. Therefore, the style of presentation in this sec-
tion is much influenced by Steve C. Johnson’s article [5).

This parser does lexical analysis, parsing, symbol table maintenance, and parse
tree building. The source code for the Parser exists as a set of files in directory
"../firstpass/", namely,

cgram.c cgram.y code.c comml.c common local.c
local2.c macdefs manifest mfilel newdope optim.c

pftn.c reader.c¢ rodata.c scan.c trees.c xdefs.c.

2.1. The Source Files

Two files, "manifest"” and "macdefs"”, are header files included with all other
files. "Manifest” has declarations for the node numbers, types, storage classes, and
other global data definitions. “Manifest" has size and alignment of various data
representations, and for the purpose of simulations all word sizes are set to be 16,
which is the word length of the SANDAC multiprocessor. Two other files, "mfilel”
and "mfile2", contain the data structure (e.g.,, NODE) and manifest definitions for the
first pass.

There is a file, "common”, containing routines used in pass one and two. These
include routines for allocating and freeing trees, walking over trees, printing debugging
information, and printing error messages (e.g., cerror ()}

The first pass is obtained by compiling and loading scan.c, cgram.c,
xdefs.c, pftn.c, trees.c, optim.c, local.g, code.c, and comml.c.
Scan.c is the lexical analyzer, which is used by cgram.c, the result of applying
vacc to the input grammar gram.y. Xdefs.c is a short file of external definitions.
Pftn.c maintains the symbol table, and does initialization. Trees.c builds the
expression trees, and computes the node types. Optim.c does some optimization on
the expression trees. Comml.c includes "common", which contains service routines
common to the two passes of the compiler. The files local.c and code.c contain
RISC dependent code for generating subroutine prologs, switch code, and the like.
Modifications have been made on the files pftn.c, local.c, and code.c for the
purpose of realizing interpretation.

2.2. Intermediate File Format and Nodes

Parse trees produced by the parser are written to the standard output. We recom-
mend the user to redirect the output to an intermediate file. The intermediate file is a text
file organized into lines. The parse trees are presented in Polish Prefix form: first there is
a line beginning with a period ‘.’, followed by the source line number and the source
name on which the expression appeared. The successive lines represent the nodes of the
parse tree, one node per line. Each node contains the node number, type, and any values
(e.g., values of constants) that may appear in the node. A node on a parse tree can either
be an operator or an operand. Lines representing nodes with descendants are immedi-
ately followed by the left subtress of descendants, then the right. Since the number of
descendants of any node is completely determined by the type of node, there is no need
to mark the end of the tree.

There are four other line types in the intermediate file. Lines beginning with a
left square bracket ‘[’ represent the beginning of blocks, lines beginning with a right
square bracket ‘]’ represent the end of blocks. The remainder of these lines tell how
much space, and how many register variables, are currently in use.

Lines beginning with a right bracket ‘)’ represent the beginning of a function.
The name of the function immediately follows the bracket.

Lines beginning with the letter ‘L’ represent a label, which can be used either for
carrying a constant or marking a location.

Lines beginning with a tab character *~T’ represent a assembly instruction gen-
erated by the parser, some of them are relevant to the interpreter and the rest being just
assembly pseudo codes.

Nodes which share a common characteristic are grouped. The file "newdope"
contains a complete list of nodes. The nodes on the expression trees are classified into
three types, 1) leaf node (LTYPE): nodes belong to this class have no descendant, 2}
unary node (UTYPE): these nodes are unary operators which carry a singie left descen-
dant; and 3) binary node (BITYPE): these nodes are binary operators which carry two
descendants.

A good understanding of the semantics of these nodes is vital to the accuracy of
simulation. Section 6 describes how one would assign time values to these nodes to
affect timing in the simulation. In Table 1. we provide a list of nodes for the purpose of
further discussion.

Of the five leaf nodes,
1. REG: denotes a variable which is found in a register.
2. NAME: denotes a variable whose name is given.

3. OREG: denotes a variable whose address can be computed as the sum of a con-

stant (offset or base address) plus the contents of a register. .

4, ICODES: denotes an immediate constant, which may be an explicit constant or an
address constant, or a combination of these, depending on the context.

5. CCODES: denotes a set a binary values which is encoded in the processor status

word.

Of the fourteen unary nodes, FORCE is used to ensure that a result must occur in
a particular register (e.g., the return register). STARG denotes a structure argument.
UNARY MUL is the indirection operator. SCONV, PCONV are operators denoting
"shape conversion" and "pointer conversion”, respectively.

The majority of the remaining nodes are binary. One should find a close
correspondence with the binary operators appearing in the C programming language (6]
and these nodes, except for a few. RISCOR is for indirection to a register variable.
CM is used in the concatenation of arguments in function calls. QUEST is the operator
for conditional expressions. CBRANCH is a branch conditioned on the evaluation of the
left subtree, ULE, ULT UGE, etc., are the unconditional branches.

There are some special nodes which are not found in the PCC [5]). They are
invented just for the purpose of facilitating interpretation. They are: RMSTACK relinqu-
ishes a stack before returning to the previous context, GESTACK acquires new stack
space due to change to a new context, TOSTK accesses data from the stack, RSUB sub-
tracts two registers from one another, RADD adds two registers together, SW is a switch
operation to jump to different locations, RET is return to the caller, and JMP sets the
program counter.

2.3 Operand Types

The file "manifest"” defines sixteen basic operand types for the intermediate
operators. The important basic types and type modifiers to notice for the interpreter are:

1. CHAR, SHCRT, INT, LONG, FLOAT, DOUBLE, STRTY, UNIONTY denote
character, short integer, integer, long integer, floating point, double precision,
structure, and union type, respectively.

2. PTR: pointer type modifier.
3. FTN: function type modifier.

4, ARY: array type modifier.

Different complex operand types can be derived by combining the basic types
and modifiers, For instance, when combining ARY and FLOAT we have a floating-point
array.

2.4. What is Done and What is Not ?

Most of the nodes declared in the file "newdope" are recognized by the inter-
preter. There are three special nodes STARG, STCALL and UNARY STCALL, which
are known respectively as, structure argument to a function call, calls of a function with
nonzero, and zero arguments. They are not defined in the standard C language and hence
are not yet impiemented in the current installation (STASG the structure assignment

operator is implemented). Extension to include those operations, however, is possible.

10

[TToken Operation Ty okan Operation
TNAE TNAME " LTYBE || REG "REG"
OREG "OREG" LTYPE ICON "ICON"
CCOLES "CCODES™ LTYPE UNARY MUL wgwe
UNARY MINUS Jan UTYPE UNARY CALL "UCALL"
UNARY FORTCALL “UFCALL™ UTYPE NOT nim
COMPL Ll UTYPE FORCE "FORCE"
RVAL “RVAL" UTYPE INIT “INIT™
SCONV "SCONV™ UTYPE PCONV "PCONV™
RISCOR "riascor® BITYPE 2LUS "yw
ASG PLUS Pim® BITYPE MINUS w_m
ASG MINUS Pam® BITYPE MUL nhw
ASG MUL Home BITYPE AND "e"
ASG AND mem=® BITYPE|| QUEST il
CQOLON L BITYPE[| ANDAND e T
CRCR bl I BITYPE| oM -
COMOP ", opm BITYPE|| ASSIGN Yu¥
DIiv nim BITYPE|| ASG DIV "/
MOD ng BITYPE ASG MOD ha T
LS5 neg® BITYPE ASG LS NECm™
RS 2 0 BITYPE ASG RS -1 1}
OR L BITYPE|| ASG OR " lan
ER men BITYPE ASG ER L
INCR e 2 1 BITYPE DECR Haanm
STREF Waw BITYPE CALL "CALL"™
FORTCALL "FCALL" BITYPE EQ Pmm
NE *lanw BITYPE{| LE Rem®
LT wgm BITYPE|| GE .
GT ym BITYPE UGT “JGT"
UGE "UGE" BITYPE ULT “ULT"
ULE "ULE"™ BITYPE ARS HA>H>N
LB ol BITYPE CBRANCH "CBRANCH"
FLD "FLD" UTYPE PMCONV "PMCONV™
PVCONV "PVCONV® BITYPE RETURN “RETURN"™
CAST “CAST" BITYPE GOTO "GOTO™
STASG "STASG™ BITYPE]| STARG "STARG™
STCALL "STCALL"™ BITYPE UNARY STCALL "USTCALL"
e “impe UTYPE || RET “ret®
RADD "radd®” LTYPE RSUB "rsub®
sW bt 1L UTYPE RSI Yrsubi®”
JEQ “ impag” uTYPE {| JGT " 4mpgt™
TCSTK "tostk" LTYPE GESTACK rgecstk”
RMSTACK "rmatk”™ LTYPE

T r—
Table 1. A List of Nodes
3. The Interpreter

The source codes for the interpreter exist as a set of files in the directory
"../sandia/". The heart of the interpreter is the function ewvaluate (). This
function traverses an expression tree non-recursively, and performs actual calculations
on the operands. The main challenge in designing the interpreter is the requirement that
the interpreter and the event scheduler cooperate as co-routines. Since the C program
language doesn’t support co-routines, in order to simulate concurrent tasks, the inter-

NS

1l

preter has to be written such that it interprets an input source program in a stop-and-go
(re-entrant) manner. For instance, the interpreter, while in the middle of traversing an
expression tree of a task, is able to transfer control to the event scheduler for it to initiate
the interpretation of the expression tree of another task.

3.1. Data types

The complete set (size of 16) of basic operand types recognizable by the parser
is defined in "manifest”. As far as the interpreter is concemned, the union structure
UVAL defines the legitimate basic data types recognizable by the interpreter. This union
structure is declared in the header file "../firstpass/defilel”. Currently, the
following basic data types are implemented in the interpreter: float, int, dou-
ble,, char, long, and short. Longand short data types are treated by the
interpreter as integer data type.

The precision in the computation of arithmetic operations depends on the
machine where sandy is installed.

3.2. The Source Files

The following three files comprises the principal source code of the interpreter,
namely, eval.c, sys.c,and misc.c.

1. The file eval.c, as the name suggests, performs evaluation of the expression
trees. The procedure evaluate () directs the control flow in the process of
expression tree traversals. Call () handles initialization of stack space and
register allocations. Eval_ltype(), eval btypel(), and
eval utype () perform evaluation on the leaf nodes, binary nodes, and unary
nodes respectively.

12

2. The file sys.c contains a) all mathematical functions as defined in the standard
C math-library, b) four VRTX [1] message queueing and dequeueing functions,
and ¢) some standard i/o functions (see also section 4.2). Before cne would
introduce new library functions into the interpreter, one should declare the new
function with the function initial () in the file "sys. ¢, then define the new
function in this file.

3. The file misc.c contains miscellancous functions for maintaining symbols
(e.g., variables, labels, integer constants, floating-point constants, string con-
stants, and function names) that appear in the intermediate file.

3.3. The Function evaluate ()

The backbone of this function is a non-recursive expression tree traversal algo-
rithm. All expression trees are traversed top-down from the root. For unary node, there
is only one way to go, down. For binary node, one may visit either the left or the right
descendent first, the order of traversal is determined by the operation of the node. For
instance, binary nodes ASSIGN and CALL required a left postorder traversal, whereas
the nodes PLUS and INCR have to be traversed in the reverse order.

An algorithm which requires two stacks and one visit count is invented to serve
the purpose. Stacks are used to make the function re-entrant. A data stack (d_stack)
is used for holding intermediate results that appear on the arcs of an expression tree.
This data stack is also used for transmitting arguments in function calls. Functions
which are used for manipulating the data stack are: pop_d() and push_d (). An
operator stack (p_stack) is used to keep track of the operators which are "partially"
interpreted. Functions which are related to the data stack are: pop_p () and
push_p (). The visit count is used to keep track of the number of descendants that
have been visited. For instance, when the visit count becomes 3 for a binary node, this
means that its two operands are available on the data stack, and hence the node can be
fired. Some nodes such as INCR and DECR require a visit count of 4 before the node
can be fired.

13

A statement which appears in the input source code may exhibit as a number of
expression trees in the intermediate file. Except for one instance, the interpreter will
attempt to finish traversing the whole expression tree before it relinquishes control back
to the event scheduler. The only exception to this is the non-system function call. Sys-
tem function calls are assumed to be non-interruptible. This simply means that the inter-
preter will not relinquish control until a system function call is done regardless of how
much time it might take the system function to execute. The process of traversing an
expression tree is regarded by the simulator as an event.

3.4. The Task Control Block

In this section, we discuss the information necessary to save the status of a task.
This information is kept in a data block named TCB (Task Control Block) defined in the
file "h.sim". One TCB is associated with each task in the system. The items in a
TCB which are related to the interpreter are:

1. Function Map: subrtab(], is a table of all the function names defined in the
input source code of a task.

2. Expression trees: pgm[] is a list of expression trees of a task.

3. Labels: labtab(] is alist of labels used in a task.

4, Data Memory: mem_map (] is the memory for variables and constants.

5. Register set: R is a pointer to register [0] of the register set.

6. Task and Processor: tid and rid are the task id and the processor id for the

task, respectively. A task with tid equal to zero is the highest priority task,
similarly, a processor with rid equal to zero is the master processor.

Creation and annihilation of tasks are described in the next section.

14

4. The Event Scheduler

The event scheduler is targeted largely for the SANDAC multiprocessor.
Nevertheless, the event scheduler should be adaptable for other multiple processor archi-
tectures. They exist as a set of files under the directory ". . /ran/". Itis assumed that
the SANDAC multiprocessor has a global bus, a global multiplier and a global memory.

Other than those which are used to parameterize the expression trees, a number of
parameters are used to parameterize the SANDAC multiprocessor at the system level.
For instance, the variable T_BUS represents the time a processor takes to access the glo-
bal bus if there is no conflict. Similarly, the variable T_MEM represents the time a pro-
cessor takes to access the global memory provided there is no conflict. These variables
are defined in the file "h.vrex".

Events are ordered in a heap according to time of commencement and priority.
Each processor can carry a maximum of 255 local tasks, where only one of them will
be activated at one time. Each processor can maintain a maximum of 255 message
queues created with the function sc_rgcreate () by any local tasks, Each queue can
hold a maximum of 25 message pointers. These parameters are set in the file "h. sim"
as MAX TASK, MAX_QID,and Q_SIZE, respectively.

We use a heap data structure to order the events. Events are listed in the heap
based on their execution times and priorities. The functions necessary for maintaining
the heap data structure are insert_heap(), delete_heap() and next ().
Insert_heap () inserts an eve into the heap, delete heap{() cancels an event
that is already scheduled, next () retrieves the next event available for running, and
heapify () restructure a non-heap structure into a heap.

The simulator is event-driven, which means that every action such as, interrupt,
timeout, waiting, grasping resources, releasing resources, and execution is an event.
Sometimes, a time-out event scheduled by the VRTX [1] call ‘s¢c_gpend ()’ has to be
cancelled due to the arrival of a message before the time-out expires.

15

4.1. The Header Files

Five header files are directly related to the event scheduler. They are,

1. "h.heap": defines data structure for the heap-organized event list.

2. "h.vrtx": defines states and execution time of SANDAC related attributes.
3. "h.err": defines error codes for the VRTX primitives.

4. "h.err -msg": defines simulator error messages.

S. "h.para": defines timing of the intermediate nodes.

4.2, The Machine Dependent Functions

The files which contain machine dependent functions of the event scheduler are:

1. sys.c: this file contains the equivalence of some of the C library /o and
mathematical function calls and four VRTX primitives.

2. queue. c: this file contains functions which maintain (read, write) VRTX mes-
sage queues and suspended task queues. For instance, enque () pushes a mes-
sage pointer into a queue, and deque () retrieves a message pointer from a
queue.

3. exec.c: this file contains a number of functions to mimic the interprocess coms-
munication protocols and multitasking on the SANDAC multiprocessor. The
interprocess communication protocols are described [4]. Among those functions
in this file, run() is responsible for directing the state transition of the tasks
(see section 4.3). As the name suggests, Resume (), is for resuming the execu-
tion of an interrupted task. Scan_task () brings a task which is in 2 READY
state back to the running state. Bootup() starts up a2 new task.
Whoiswait () is evoked every time a message is deposited into a queue, it

I

checks to see whether there are any tasks pending for messages. Resume_q()
resumes the execution of the highest priority task pending for the arrival of a

message.

4, main.c: this file contains all the heap management functions such as
insert_heap(), next(), etc. The routine stat () in this file gathers
statistics at each evocation of event.)

5. reader.c: this file contains a function reader () which is responsible for
reading the intermediate files (tasks). Each task has it own task control block
(TCB). The relationship among tasks and processors is maintained by a data
structure RID which is defined in the header file "h.sim". Reading an inter-
mediate file is the reversal of what the parser does. Eread () reconstructs the
parse trees, bookkeeping the functions and labels, rdfloat () assigns storage
locations for floating-point constants, rdin () deals with integer constants,

Reader () can read multiple tasks. The assignment of tasks to proces-
sors is according to the following simple rule. Let m21 denotes the number of
processors that a user acquires; let task (] {j=1,...n } be the list of tasks that a user
supplied from the command line. Task[i] is assigned to processor (i mod m)+1
with priority i/m.

4.2.1, The VRTX C Library

In SANDAC, tasks communicate with one another by sending and receiving
pointer-sized, nonzero messages via VRTX-control structures known as mailboxes and
queues. The current installation of the simulation includes only four VRTX primitives
which maintain message queues. They are,

1. sc_rqcreate(rid, qid, size, &err): creates a queue.

2. sc_rgpost (rid, gid, &émsg, &err): posts message to a queue.

17

3. sc_rqgaccept (rid, qid, serr): reads a message from a queue.

4. sc_qpend (qid, timeout, &err): pends for a message at a queue.
where rid is the remote processor id; gid is the queue id; size is the maximum

number of messages that a queue can hold; msgq is a pointer to a message; timeout is
a time-out count; and err is a variable for holding the completion return code.

4.2.2. The Standard C Library

Some of the functions in the standard C Library for i/o and string operations have
also been implemented. Namely,

L. getchar (stream): read a character from standard input.
2. printf (format, [,arg]): printoutto standard output.
3. strcpy(d_string, s_string):string copy.

4, times (buffer): get process times.

5. strcmp(string_1, string 2):string compare.

The detailed description of these functions can be found in the standard C library.

4.2.3. The Standard C Mathematical Library

All of the mathematical functions appearing in the standard C Math library are
included in the current installation. Among those functions are: sin{), cos(},
tan(), asin(), acos(), atan(), atan2(), exp{), log{(), logll0(),
pow (), and sqrt (). The description of these functions can be found in the standard
C Math library.

18

4.3. Task States and State Transitions

Sandy has provisions for simulating multitasking and parallel processing. More

than one task can be allocated to each processor, and there are multiple processors in
SANDAC. The state of a processor is defined to be the state of its active task. A task is
active if it is not in the READY or SLEEP state. A tasks would be in one of the follow-

ing states:

1.

10.

11.

RUN: the task has control of the processor and is executing its assigned instruc-
tion stream.

PEND: the task suspends in mid-execution and is waiting to be readied by a sys-
tem call or an event, such as waiting for a message to arrive.

SWI: the task is software interrupted by another processor which requires
immediate service. The execution of the task is temporarily suspended and
would be resume as soon as the request is serviced.

READY: the task is ready for execution but cannot gain control of the processor
until all higher priority tasks existing in the ready or execution state are either
completed or suspended.

PROBE.: the task is trying to interrupt another task which is not ready to be inter-
rupted.

MAIL: the task is resumed from pending due to the arrival of a message.
WAKEUP: the task is awakened from suspension due to time-out.

BAC: the task is trying to grasp the global bus.

BAJ: the task couldn’t get hold of the global bus due to a possible conflict.
SLEEP: the task is counting down the timeout.

TAS: the task is trying to get exclusive access of the global control block.

19

12. ATCB: the task is accessing the global communication block. le DEAD: the task
exhausted its instruction stream and ended.

A processor can only be interrupted if it is either in the RUN or SLEEP state.
For instance, when 2 sc_rqaccept () function is encountered in the instruction
stream of a task, the task may go through a number of states before the message can be
deposited into the remote queue. First, this task exits from its RUN state and enters into
the BUS state where the (local) processor will try to see whether there is any other pro-
cessor which is holding the bus. If the bus is free, then the processor will try to get
exclusive access to the remote processor’s global communication block by entering into
the TAS state. After that, the local processor, in the SWI state, issues a software inter-
rupt to the remote processor indicating that it has a request which it must process. The
local processor will then halt by putting itself into the PEND state. If condition is favor-
able, the remote processor (in the ATCB state) accepts this software interrupt by issuing
a local read queue function to deposit the message into the appropriate queue. The
remote processor would then issue an interrupt to the local processor to wake it back up.
The local and remote processors may now resume their execution in the RUN state.

The current, previous state, and next state of a task are defined respectively by the
variables c_state, p_state,and n_state, in the task control block (TCB). The
variable resource indicates what resource the task is currently holding.

4.4. The Global Processor Control Block

A processor identifier (rid) and a global processor control block (RID) are
assigned to each processor. These structures, which are used for inter-processor com-
munication and control, will be referenced by the remote processor identifier assigned to
each processor and contain the processor’s current status and its communication table. It
is assumed that the global processor control block is kept in the global memory. Each
global processor control block contains,

1. Pid[]: alist of task control block for all the (local) tasks allocated.

20

2. Tasks: the number of task allocated.

3. Active_pid: a pointer to the task control block of the active task.
4. Qid[]:alist of all the gid created by the local tasks.

5. Queue {}: a list of all the queues.

6. Req_rid, req qgid, req_code, and q_msgq: are used in remote queueing.

S. Statistics Collection

Statistics can be collected in the function stat (). A Gantt chart can also be
produced when evoking "sandy" with the "s" option. For instance,

sandy -2 ~s taskll taskl2
will cause the simulator to generate 2 Gantt chart into the file named "g.chart" in the
current directory. The current states of the processors are reported every INC_C¥YC

number of machine cycles. The parameter INC_CYC is defined in the file "main.c".

6. User Supplied Timing Parameters

The interpreter relies on the user to supply a set of timing parameters defining the
execution time of each intermediate node. There are 80 different type of nodes and 5
data types. So, all together they provide a maximum of 400 different contexts by which
one could assign timing to the simulator. This parameters are defined in the file
"h.para".

Calibrating these parameters is a compiler related issue. It requires one’s exper-
tise in correlating these intermediate nodes with the assembly code that would be gen-
erated by the compiler which actually produces the code for the machine. Preliminary
conversation with Mr. Carl Rosenberg of GREENHILL Compiler Company indicates

21

that such a correspondence exists.

7. Options for Debugging

We don’t expect the simulator to be perfect, despite the fact that efforts have been
made to test most of the source code. The interpreter in particular has been tested quite
extensiirely using 10 benchmarks. Debugging codes can be generated when compiling
the source code with the appropriate options such as DEBUGL DEBUGZ, and DEBUG3.
These options can be set or unset in the "Makefile's.

Tokea Timin Meanin
T_SWITC {double) * switch statament *
T_COTXT_SW (double} 2000 /* context awitch */
T_JMP {double) 2000 /* branch or jump */
T_RET {double) 2000 /* return from function */
T_RVAL {double) 2000 /* force to return register */
T_NAME {double) 2000 /* dirsct fetch a variable */
T_ICON {double) 2000 /* fetch an immediate constant */
T_REG_I {double) 2000 /* fetch reglster incteger */
T_REG_F (double} 2000 /* fetch reglster float ~/
T_REG_D {double} 2000 /* fatch register doubla */
T_RSUB {doubia) 2000 /* register subtract °*/
T _TOSTK (deuble) 2000 /* from register to stack */
T_GESTACK {double) 2000 /* acquiring stack space */
T_RMSTACK (double) 2000 /* relinquish stack space */
T_UMUL (double} 2000 /* indirect fetch for data */
T_FORCE (double} 2000 /* force value tO a register */
T_NCT (double} 2000 /* | operator */
T_UMINUS_I {double) 2000 /* indirect get integer */
T_UMINUS_F {double) 2000 /* indirect get float ./
T_UMINUS D {doublw) 2000 /* indirect get double */
T_SCONV_IF {double) 2000 /* shape conversion to integer */
T_SCONV_II {doubla) 2000 /* shape conversicn to integer */
T_SCONV_ID {double) 2000 /* shape convarsion to [nteger */
T_SCONV_FI (double) 2000 /* shape conversicn to float */
T_SCONV_FD {double} 2000 /* shape convarsion ta float */
T_SCONV_DI {double)} 2000 /* shape conversiaon to double */
T_SCONV _DF {double) 200¢ /* shaps conversion to double */
T_ANDAND (double) 2000 /* && oparater */
T_ORCR (doublae) 2000 /* [operator */
T_RISCOR (double) 2000 /* Xor operator */
T_PLUS_I (double) 2000 /* integer plus */
T_PLOS_. (double) 2000 /* float plus */
T_PLUS_D (double) 2000 /* double plus */
T_MINUS I (double)2000 /* integer minuas */
T_MINUS_F {double} 2000 /* float minus */
T_MINUS_D {double} 2000 /* double minus */
T_MUL_I {double) 2000 /% Integer multiply */
T_MUL_D {double) 2000 /* float amultiply */
T_MUL F {double) 2000 /* double multiply */
T DIV I {double) 2000 /* integer divide */
T_DIV_F (double) 2000 /* float divide */
T_DIV D (double) 2000 /* double diviae */
T_MOD_I {doublse) 2000 /* % operator */
T_AND_I (double) 2000 /* and operator */
T QR_I (double) 2000 /* or cperator */
T_ER_I {double) 2000 /* xer operator */
T_LS_I {doublae) 1000 /¢ integer lefx shift */
T_RS_I {doublae) 2000 /* integer right shift e/
T _GT_I {double} 2000 /* greater than integer */
T_GT_D {double) 2000 /* greater than double */
T _GT_F {double} 2000 /* qreater than float */
T GE_I (double} 2000 /* greatser than or egual integer */
T_GE_D (double) 2000 /* greater than or agual double */
T GE_F (doubla) 2000 /* greater than or agual float */
T LE_I {double) 2000 /* less thapn or equal integer */
T_LE_D (doublae) 2000 /* less than or equal to doubla */
T_LE_F (double) 2000 /* lass than or equal to float */
T LT_I (double} 2000 /* lass than intager */
T_LT_D [double} 2000 /* less than double */
T_LT_F (double} 2000 /* less than float */
T_EQ_I {double} 2000 /* equal to ilntsger */
T_EQ_F {double} 2000 /* equal ta float */
T_EQ D {double}200C /* equal to double */
T_NE_I {double} 200¢ /* not aqual to integer */
TNE_D {double) 2000 /* not squal %o double */
T _NE_F {double) 2000 /* not asqual to float */
T_ASSIGN_REG {double) 2000 /* assignment to reglstar */
T_ASSTGN_NAME (doutrle) 2000 /* assignment to memory */
T_UMUL_ASS {double) 2000 /* assignmant Lndirect =/
T_STASG {double) 2000 /* assignment structure */
T_SYS _CALL {double} 2000 /= system calls */
T_TA SWITCH (double} 2000 /* overhead in task switching +/

Table 2. Tentative Timing Parameters

22

8. Installation

The parser has been developed on UNIX 4.2. The simulator has been developed
on UTX/32 1.1/C. We tried to avoid writting installation dependent code as much as
possible. All of the system calls used in the source code should be available from "the
standard I/O library". |

9, Remarks

Appendix A presents the source code and its parse trees of one of the widely
respected C benchmarks - whetstone.c, which sandy has been tested on. Appen-
dix B presents the source codes of a set of tested programs that we used to demonstrate
the capability of sandy to simulate the multitasking and message passing environments
on SANDAC.

10. Acknowledgments

Many thanks to Miquel Huguet for his generous help with the Portable C Com-
piler. We are also thankful to George Davidson of Sandia National Laboratories for his
patience and support throughout this project.

(1]

(2]

(3]

(4]

(5]

[6]

[7]

24

REFERENCES

VRTX C Interface Library User's Guide: Hunter & Ready, Inc.,
November 1984,

C. R. Borgman and P. E. Pierce, ‘‘A Hardware/Software System for
Advanced Development Guidance and Control Experiments,”’ in
AJAA Computers in Aerospace Conference, Hartford CT: Oct. 1983,
pp. 377-384.

William J. Garrison, CACI NETWORK I1.5, Los Angeles, California:
CACI, Inc.-Federal, April 1984.

David L. Harris, /nter-Processor Communication Introduction: San-
dia National Laboratory Intemal Report, May 3, 1984.

Steve C. Johnson, A Towur Through the Portable C Compiler: Bell
Laboratories, 1975.

Brain W. Kernighan and Dennis M. Ritchie, The C Programming
Language: Prentice-Hall Series, 1978.

John Lions, The Second Pass of the Poriable C Compiler: Bell
Laboratories, June 1979.

Appendix A

whetstona.c

Wad Mar 26 11

:26:37 1986

/*
* Whetstone benchmark in C.
*
*
*
*
* in SINGLE processor case.
*
* Generate parse tree by
X run simulation by
*/
#define ITERATICNS 2 /* set
#include <math.h>
double x1, x2, x3, x4,
double el(4];
int i, 3, ks 1, nl,
main()
{
/* initialize constants
t = 0.499975;
tl = 0.50025;
t2 = 2.0;
/* set values of module
nl = 0 * ITERATIONS:
nz2 = 12 * ITERATIONS:
n3 = 14 * ITERATIONS:
n4 = 345 * ITERATIONS:
né = 210 * ITERATICNS:
n7 = 32 * ITERATIONS:
n8 = 89% * ITERATIONS:
n3 = 616 * ITERATIONS:;
nl) = 0 * ITERATIONS:
nll = 93 * ITERATIONS;
/* MCDULE 1: simple identifiers
x! = 1.0:

%2 = x3 = x4

for(i = 1;
x1
x2
%3
x4

i
-
-

}

#ifdef PQUT

#endif

/* MCDULE 2:

pout (nl, nl,

array

el[0] 1.0

= =-1.0;

1 4=
X2 +
2
x2
%2

<= nl;
{ x1 +
{ x1
{ x1

+
(-x1 +

+
+

nl, x1, =2,

elements */

’

ce =E
sandy -1 parse
number
X, Yr Z, t; tl’
n2, n3, n4, ns6,
*/
weights */
*/
1) |
X3 - x4) * ¢;
X3 -~ x4) * t;
X3 + x4) * t;
X3 + x4) * t;
x3, x4);

el(l] = el(2] = @1(3] = =1.0;

for (i = 1;

1 <= n2;

i +=1) {

-DPQUT whet.c |

This program is a translation of the
eriginal Algel version in "A Synthetic Benchmark™ by H.J. Curnow
and B.A. Wichman in Computer Journal, Vol

19 #1, February 19%76.

Used to test floating point and library functions performance

pas > parse

of Whetstone instructions */

t2;

n?, n8, n9, nld, nll;

whetstone.c Wad Mar 26 11:26:37 1986
el[0] = (ei[0] + elfl] + el[2]
el(l] = (1[0} + elfl] - el[2]
el(2] = (@l[0]) - elll]l + el([2]
el[3] = (-el[0] + eli{l] + el[2}

]
#ifdef POUT

2

- eal[3)) * t;
+ el[3]) * t;
+ al[3] } * t;
+ el{3]) * t;

pout {n2, n3, n2, el[0], elfl], €l[2], el[3]}:

#endif
/* MODULE 3: array as parameter */
for (L = 1; 1 <= p3; i += 1)

pa (al);
#ifdef POQUT

pout (n3, n2, n2, el[0], el(l], el[2], el[3]):

#endif

/* MODULE 4: conditional jumps */

j = 1;
for (i = 1; i <= nd; i += 1) (
if (3 == 1)
j o= 2;
else
3= 3;
if (3 > 2)
j = 0;
else
j o= 1;
if (3 < 1))
3 = 1;
else
3 = 0;

}
#ifdef POUT

pout(nd, j, J, =1, x2, %3, x4):
#endif
/* MODULE 5: omitted */

/* MODULE 6: integer arithmetic */

J
kK =
1

[PUR S S

i <= né; i += 1) |
3% (k= 3) * (1 =k)
1%k~ (L~-3) *k;
(L - k) * (k + 3):

for (i =1

3
k
1

el{l -~ 2] = 3 + k + 1;
el{k — 2] = 3 * k * 1;
}
#ifdef POUT

.
v

/* C arrays are zero based */

pout ({né, j, k, el[0], el[l], el(2], el{3]):

#endif
/* MODULE 7: trig. functions */

x:yso,s,'

whatatcne.c Wad Mar 26 11:26:37 1986 3

for(i = 1; i <= n7; i +=1) ({
x = £ * atan{t2*sin(Xx)*cos (x}/(cos{x+y)+cos{x-y)~1.0}};
v = £ * atan(t2*sin{y) *cos(y}/(cos(r+y)+cos(x-y)-1.0}};
'
#ifdef POUT
pout (n?7, j, k, %, %X, ¥y, ¥):
#endif

/* MOCDULE 8: procedure calls */
x =y =z =1.,0;
for (i = 1; i <= nB8; i +=1}
p3(x, y, &2);
#ifdef POUT
pout (n8, j, k, %, y, 2z, 2Z):
#endif

/* MODULES: array references */

I =1

k = 2;

1l =3;

ael{0] = 1.0;

ell[l]l = 2.0;

el(2] = 3.0;

for(i = 1; i <= n9; i += 1)

po{);
#ifdef PQUT
pout(n9%, j, k, el[0]), el[l), el[2], el[3]):
#endif

/* MODULElQ: integer arithmetic */

3 o= 2;
k= 3;
for(i = 1; i <= nlQ; i +=1) ({
7 =3+ k;
k = 3§ + k;
3=k -3
k=k -3~ 3;:

}
#ifdef POUT
pout {(nlQ®, j, k, x1, =2, x3, x4):
#endif .

/* MODULEll: standard functions */

X = 0.75;
for(i = 1; i <= nll; i +=1)
x = sgrt(exp(log(x) / tl})):

#ifdef POUT)

pout (nll, 3, k, %, %X, X, X):
#endif
}

pa (e}
double e[4];
{

register int 4:

whaetstone.c Wed Mar 26 11:26:37 1986

j o= 0;
_lab:
el0] = { e[0] + e[l] + ef{2] - e[3]) * t:
e[l] = { e[0] + e[l] - e{2] + e[3]) * t;
el2] = (a[0] - e[l] + e{2] + e[3]) * t;:
e[3] = (-al{0] + a([l] + e{2] + (3]) / t2;
j o+=1;
if (4 < 6)
goto lab:
}
p3(x, ¥, 2z)

double x, Yy, *z;

{
X =t * (X + y);
Yy =t * (x + y);
*z = (x + y) /t2;

po()

elj] = el(kl;

el(k] = el[1]:

el[l] = el[]]:
}

#ifdef POUT
pout({n, 3, k, =1, =2, x3, x4)
int n, Jj, k:
double x1, x2, x3, x4;
{
printf ("%6d%sedsed %5e¢ %5 %5e %Se\n",
n, j, k, =1, x2, %3, x4);

#endif

PARSE.TREE Wed Mar 26 11:25:42 1986

LLO:

)_main:
124
(74

L77:

.25
58

L78:

.26
58

L79:

.27
58

.31
58

.32
S8
2

.data

.comm _x1,1
. comm _x2,1
. comm _*3,1
.comm _x4,1
. comm _x1
.comm _¥y,1
. comm _Z,1
. comm _t.1
.comm _tl,1
.comm _t2,1
. comm _el,d
.comm _i,1
.comm _3j,1
.comm _k,1
.comm 1,1
. comm _nl,1
. comm _n2,1
. comm _n3,1
.comm _n4,1
.comm _né6,1
. ¢comm _n7,1
.comm _n3,l1
.comm _n%,1
.comm _nld,1
.comm nll,l1
.Lext

.globl _main

1 1 4 L76

0 30

.data

.double 4.95974966049194340000e-01
.text

"whet.c"

7

0 0 7 _t

0 0 7 L77

.data

.double 5.00245581880187990000e~-01
.text

"whet.c"

7

0 0 7 _tl
] 0 7 L78
.data

.double 2.0000000000000000000Ce+00
text

"whet.c"

4

0 0 7 _tz2
0 0 7 L79%
"whet.c"

4

0 0 4 _nl
0 0 4

"whet.c"

4

0] Q 4 _nzg

PARSE.TREE Wed Mar 26 11:25:42 1986

L80:

.44
58

Lgl:
.45

58
58

.47
58

114
LB3:
[74

.48
58

24 0 4

"whet.c"

4

0 0 4 n3
28 0 4

"whet .c"

4

0 0 4 n4
690 0 4

"whet .c"

4

0 0 4 né
420 0 4

"whet .c"

4

0 0 4 _n7
64 0 4

"whet.c"

4

0 0 4 nd
1798 Q 4

"whet .c"

4

0 0 4 _n9
1232 0 4

"whet.c"

4

0 0 4 _nlo
0 0 4

"whet.c"

4

0 0 4 _nll
188 0 4

.data

.double 1.00000000000000000000e+00
Lext

"whet.c"

..

0 0 7 _x1
0 Q 7 L8o
.data

.deouble =-1.00000000000000000000e+00
.text

"whet .c"

7

Q 0 7 x2
7 —

Q 0 7 _x3
7

0 0 7 _x4
0 0 7 L4l
"whet.c"

4

0 0 4 _i
1 0 4

0 0 4 Laz
nop

Q 30

"whet.c"

7

PARSE.TREE
2 0 0
11 7

8 7

6 7

& 7

2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
.49 "whet .c"
58 7

2 0 0
11 7

8 7

8 7

6 7

2 0 0
2 0 0
2 0 0
2 0 0
2 Q 0
.50 "whet .c™
58 7
2 0 0
11 7

6 7
6 7
8 7
2 0 0
2 0 0
2 0 0
2 0 0
2 Q 0
.51 "whet.c"
58 7
2 0]
11 7

6 7
6 7
6 7
10 0 7
2 0 0
2 0 0
2 0 0
2 Q 0
2 0 0
L84:

.52 "whet.c"
7 4
2 0 0
4 1 0
L82:

52 "whet.c"
109 4

76 0 4
82 4
2 0]
2 0 0
4 83 0
L85:

.54 "whet.c"
70 4

4 0 0

Wed Mar 26 11:25:42 1986

7 xl

b BN IS L BN |
I
L

x1
_x2
x3
_x4

b B B B RPN |

_x1

x2
_x3
x4

L I R N |

_xl
_x2

x3
_x4

L EES BEN LS IR |

o b

nl

224 _pout

PARSE.TREE Wad Mar 26 11:25:42 1986

1) 4
56 4
586 4
Sé 4
56 4
56 4
2 0 0 4 _nl
2 Q 0 4 _nl
2 0 0 4 _nl
2 0 0 7 _x1
2 0 o] 7 _x2
2 0 0 7 _x3
2 0 0 7 _x4
.data
L87: :
.deuble 1.00000000000000000000e+00
.Lext
.60 "whet .c"
58 7
2 0 0 7 _el
2 0 0 7 La7
.data
L.88:
.double -1.00000000000000000000e+00
.text
.61 "whet .c"
58 7
2 1 0 7 el
S8 7
2 2 0 7 al
58 7
2 3 0 7 _el
2 V] 0 7 Las
.63 "whet .c"
38 4
2 0 0 4 i
4 1 0 4
.0
114 0 0 4 189
} nop
L90;:
[74 0 30
.64 "whet.c"
58 7
2 0 0 7 el
11 7
] 7 N
6 7
6 7
2 0 Q 7 _el
2 1 0 7 _el
2 2 0 7 _el
2 3 0 7 _el
2 8] 0 7 _t
.65 "whet.c"
58 7
2 1] 7 _el
11 7
6 7
8 7
& 7
2 0 0 7 _el
2 1 0 7 _el
2 2 0 7 _el

PARSE.TREE
2 3 0
2 0 0
.68 "whet.c"”
58 7
2 2 v
11 7
6 7
6 7
] 7
2 0 0
2 1 0
2 2 0
2 3 [t}
2 0 0
.67 "whet.c"
58 7
2 3 0
11 7
6 7
6 7
6 7
190 0 7
2 0 0
2 1 0
2 2 0
2 3 0
2 0 0
L3l
.68 "whet .c"
7 4
2 0 0
q 1 0
L89:

68 “whet .c"
109 4
76 0 4
82 4
2 0 1}
2 0 0
4 90 0
192

.70 "whet.c"
70 4
4 0 0
56 4
Se 4
56 4
56 4
56 4
56 4
2 0 0
2 0 0
2 0 1]
2 0 0
2 1 0
2 2 0
2 3 0
.75 "whet.c"
58 4
2 0 0
4 1l 4]
.0
114 Q 0

nop

b B BN R P

-]

oo

b

224

R e e B - A -

=3

_el

el
el

:el

_el

_el

el
el

:el

_n2

_pout

n2

“n3
_n2

el

_el

el

:el

L93

PARSE.TREE
L94:
.76 "whet.
70 4
4 0
4 0
L35:
.76 "whet
7 4
2 0
4 1
L93:
.76 "whet .
109 4
76 0
82 4
2 0
2 0
4 94
L36;
.78 "whet
70 4
4 0
56 4
56 q
56 4
56 4
56 4
586 4
2 0
2 0
2 0
2 0
2 1
2 2
2 3
.83 "whet.
58 4
2 0
4 1
.B4 *whet .
58 4
2 0
4 1
.0
114 0
) nop
L99:
{74 0
.85 "whet
109 4
80 4
2 0
4 1
4 102
.88 "whet
58 4
2 0
4 2
.0
114 0
nop
L102:
.88 "whet .

58

Wed Mar 26 11:25:42 1986

cr!
0 224 _pa
0 27 _el
cll
0 4 _i
0 4
cl'
4
0 4 _i
0 4 _n3
0 4
.c"
0 224 _pout
0 4 _n3
0 4 _n2
0 4 _n2
0 7 _el
0 7 _el
0 7 _el
0 7 el
c"
0 4 |
] 4
cll
0 4 _d
0 4
0 4 L93
30
cll
0 4 _3
0 4
0 4
cl'
0 4 3
0 4
0 4 L193
cll

PARSE.TREE

2 1]

4 3
L103

.90 "whet
109 4

85 4

2 0

4 2

4 104
.91 "whet
58 4

2 0

4 0

.0

114 0

) nop
L1l04

.93 "whet
58 4

2 0

4 1
L105

.95 "whet
109 4

83 4

2 0

4 1

4 106
-%6 "whet
58 4

2 0

4 1

.0

114 0

) nop
L106

.98 "whet
58 4

2 0

4 o]
L107

Li0¢

.99 "whet
7 4

2 0

4 1
L98:

.99 "whet .
109 4

76 0

82 4

2 0

2 0

4 99
LiQl:

.101 "whet
70 4

4 0

56 4

56 4

56 4

S6 4

56 4

56 4

.cll

o o0

oo 0

Wed Mar 26 11:25:42 1986

b b

W

L -

Lo -

.

b

224

!

n4

_pout

PARSE.TREE Wed Mar 26 11:25:42 1386

2 0 0 4 _nd
2 0 0 4 3
2 0 0 4 3
2 0 0 7 _xl
2 0 0 7 _x2
2 0 0 7 _x3
2 0 0 7 _x4
.108 "whet.c"”

58 4

2 0 0 4 _3
4 1 Q 4

.109 "whet.c"

58 4

2 Q 0 4 _k
4 2 "0 4

.110 "whet.c".

58 4

2 0 0 4 1
4 3 0 4

.112 "whet.c"

58 4

2 0 0 4 _i
4 1 0 4

.0

114 0 0 4 L108
) nop

L1109

(74 0 30

.113 "whet.c"

58 4

2 0 0 4 3
11 4

11 4

2 0 0 4 _3
8 4

2 0 0 4 K
2 0 0 4 73
8 4

2 0 0 4 1
2 0 0 4 k
.114 "whet .c"

58 4

2 0 0 4 _k
8 4

11 4

2 0 0 4 1
2 o 0 4 _k
11 4

8 4

2 0 0 4 1
2 0 0 4 3
2 0 0 4 _k
L1158 "whet.c"

58 4

2 0 0 4 _1
11 4

8 4

2 0 0 4 1
2 0 0 4 x
6 4

2 G 0 4 _k
2 0 0 4 3
117 "whet.c"

(8]
o
-1

PARSE.TREE Wed Mar 26 11:25:42 1986

13 0 7
6 27
2 0 0 4 1
4 -2 4] 27 _el
104 0 7
6 4
6 4
2 0 0 4 _J
2 0 0 4 _k
2 0 0 4 1
.118 "whet .c"
58 7
13 0 7
6 27
2) Q0 4 _k
4 -2 0 27 _el
104 o} 7
11 4
11 4
2 8] 0 4 3
2 0 0 4 _k
2] o] 4 1
L110:
.119 "whet .c"
7 4
2 0 0 4 i
4 1 0 4
L108:
.119 "whet .c"
109 4
16 0 4
82 4
2 0 0 4 i
2 0 0 4 _né
4 109 Q 4
L1ll:
.121 "whet .c"
70 4
4 0 0 224 _pout
56 4
56 4
56 4
56 4
56 4
56 4
2 0 0 4 _nb
2 0 G 4 _3
2 0 0 4 _k
2 0 0 7 _el
2 1 0 7 _el
2 2 0 7 _el
2 3 0 7 _el
.data
L112:
.double 5.0000C000000000000000e-01
.text
.126 "whet.c"
58 7
2 0 0 7 X
58 7
2 4] 0 7 Y
2 0 0 7 L1i2
.128 "whet.c"

PARSE.TREE Wed Mar 26 11:25:42 1586
2 0 0 4 i
4 1 0 4
.0
114 0 0 4 L113
} nop
L114:
(74 0 30
.data
L117:
.double 1.00000000000000000000e+00
Lext
129 "whet .c"
58 7
2 0 0 7 X
11 7
2 0 0 7 t
70 7 -
4 0 0 227 _atan
60 7
11 7
11 7
2 0 0 7 _r2
70 7
4] 0 2217 _sin
2 0 0 7 x
70 7 -
4 0 0 227 _cos
2 0 0 7 X
8 7
6 7
70 7
4 0 0 227 cos
6 7 -
2 0 0 7 _X
2 0 0 7 _y
70 7
4 0 0 227 _cos
8 7
2 0 0 7 X
2] 1] 7
2 0 0 7 1117
.data
Llls
.double 1.00000000000000000000e+00
Lext
.130 "whet.c"
58 7
2 0 ; 7 _Y
11 7
2 0 0 7 _t
70 7
4 0 0 227 _atan
60 7
11 7
11 7
2 0] 7 _t2
70 7
4 0 0 227 _sin
2 0 0 7 Y
70 7
4 0 0 227 _cos
2 0 0 7 _y
8 7
6 7

10

PARSE.TREE Wed Mar 26 11:25:42 19386 11

o

B B B OO e ~I M BN O -
(=]

NN

L119:
.138

58
58

<140
58

il4
Ll21:
.141

70
4

7

0 0 227 _cos
e

0 o 7 _x

0 Q 7 _y

b

0 Q 227 _cos
b

0 0 7 _X

0 v} 7

0 0 7 L11§
"whet.c"

4 .

o 0 4 _i

1 0 4

"whet.c"

4

0 4

4

0 ¢ 4 _i

0 ¢ 4 _n7
114 0 4

"whet.c”

4

0 0 224 _pout
4

4

4

4

4

4

0 0 4 _n7
0 4] 4 _J

0 0 4 k

0 0 7 :x

0 0 7 X

0 0 7 _Y

0 0 7 ¥
.data

.doukle 1.0000000Q000000000000e+00

.text

"whet.c"

7

0 0 7 X

7 -

0 0 7 Y

5

0 0 7 _z

Q 0 7 L11l%
"whet .c"

4

0 0 4 _i

1 0 4

0 0 4 L120
nop

"whet.c”

4

PARSE.TREE Wed Mar 26 11:25:42 1986
56 4
56 4
2 Q 0 7 _X
2 0 Q 7 Y
4 0 0 27 _Z
L122:
.141 "whet .c"
ki 4
2 0 0 4 i
4 1 0 4
L12¢:
.141 "whet .c"
109 4
76 0 4
82 4
2 0 0 4 i
2 0 0 4 _ns
4 121 0 4
Li23
.143 "whet .c"
70 4
4 0 0 224 _pout
56 4
56 4
S6 4
S6 4
56 4
56 4
2 0 0 4 _n8
2 0 0 4 3
2 0 0 4 _k
2 0 0 7 _x
2 0 0 7 Yy
2 0 0 7 _z
2 0 o] 7 _z
.1l48 "whet.c"
S8 4
2 0 0 4 _3
4 i 0 4
.149 "whet.c"
58 4
2 0 0 4 _k
4 2 0 4
L1350 "whet.c"
58 4
2 0 0 4 1
4 3 0 4
.data
L12S
.double 1.000000000C0000Q00C00e+00
.text
.152 "whet.c"
58 7
2 0 0 7 el
2 0 0 7 L125
.data
Ll2e:
.double 2.00000000000000000000e+00
Lext
.153 "whet.c"
58 7
2 1 0 7 _el
2 0 0 7 L126

.data

12

Wed Mar 26 11:25:42 1986

.double 3.00000000000000000000e+00

PARSE.TREE
L127:

tLext
.154 "whet.g”
58 7
2 2 0
2 0 0
.156 “whet.c"
58 4
2 0 Q
4 1 0
.0
114 0 0
) nop
L129:
.157 "whet .c"
72 0 4
4 0 0
L130:
.157 "whet .c"
7 4
2 0 0
4 1 0
Llz2g
.157 "whet.c”
109 4
76 0 4
82 4
2 0 0
2 0 0
4 129]
L131
.159 “whet.c"™
70 4
4 0 0
56 4
56 4
56 4
56 4
56 4
56 4
2 0]
2 Q 4]
2 0 0
2 0 0
2 1 0
2 2 0
2 3 0
.164 "whet.c"
58 4
2 0 o]
4 2 0
.165 "whet.c"
58 4
2 0 0
4 3 0
L1867 "whet.c"”
58 4
2 0 4]
4 1 0
.0
114 0 0
) nep

Ll34:

-~ -3

Lo

224

e b b

224

R RN S e W

o b

_el
L127

L128

_p0

_pout

L133

13

PARSE.TREE Wed Mar 26 11:25:42 1986
[74 0 30
.168 "whet .c"
58 4
2 0 o] 4 _3
6 4
2 0 0 4 3
2 0 0 4 _k
.169 "whet.c"
S8 4
2 0 v 4 _k
6 4
2 0 Q 4 3
2 0 0 4 _k
.170 "whet.g"
58 4
2 0 0 4 _3
8 4
2 0 t] 4 _k
2 0 Q 4 _3
171 "whet.c"
58 4
2 0 0 4 k
8 4 -
8 4
2 0 0 4 _k
2 0 0 4 _3
2 0 0 4 _3
L135:
-172 "whet.c"
7 4
2 o] 0 4 _i
4 1 0 4
L133:
172 "whet.c"
109 4
76 0 4
82 4
2 0 0 4 _i
2 0 0 4 _nlo
4 134 0 4
L136:
.174 "whet .c"
70 4
4 0 0 224 _pout
56 4
56 4
56 4
56 4
56 4
56 4
2 0 0 4 _nlo
2 0 0 4 3
2 0 0 4 k-
2 0 0 7 _xl
2 0 0 7 _x2
2 ¢ 0 7 _x3
2 Q 0 7 _x4
.data
L137:
.double 7.5000000C000000000000e=-01
-text
.179 "whet.c"
58 7
2 0 Q 7 4

14

PARSE.TREE
2 0 0
.180 "whet.c”
58 4
2 0 0
4 1 0
.0
114 0 0
} nop
L13%:
.181 "whet.c"™
58 7
2 0 Q
70 7
4 0 0
70 7
4 0 0
60 7
70 7
4 0 0
2 0 0
2] 0
L140:
.181 "whet .c"
7 4
2 0 ¢
4] 0
L138:
.181 "whet.c"
109 4
76 0 4
82 4
2 0 0
2 0 Q
4 139 0
L141
.184 "whet.c"
70 4
4 0 0
56 4
56 4
56 4
56 4
56 4
56 4
2 0 0
2 ¢ Q
2 0 0
2 0 0
2 0 4]
2 Q 0
2 Q]
L75:
0
125 1 1
.0
115 0 0
) nep
176 0
.data
Lext
.globl _pa
) _pa:
.0
124 1 1

Wed Mar 26 11:25:42 19586

7 L137
4 _i

4

4 L138
7 _Xx
227 _sqrt
227 _exp
227 _leg
7 X

7 _t1
4 _i

4

4 i

4 _nll
4

224 _pout
4 _nll
4 -3

4 _k

7 X

7 X

1 X

7 %

4 L76
4

4 L1144

15

PARSE.TREE

[142 0 28
.183 "whet.c"
58 4

94 0 29
4 0 0
L145:

.185 "whet.c"
58 7

13 0 7
6 27

94 0 30
4 0 0
11 7

8 7

6 7

6 7

13 0 7
6 27

94 0 30
4 0 0
13 0 7
6 27

94 0 30
4 1 0
13 0 7
6 27

94 0 30
4 2 0
13 0 7
6 27

94 Q 30
4 3 0
2 0 0
.196 "whet.c"
58 7

13 0 7
3 27

94 0 30
4 1 0
11 7

6 7

8 7

6 7

13 0 7
6 27

94 0 30
4 0 0
13 0 7
6 27

94 0 30
4 1 0
13 ¢ 7
6 27

94 0 30
4 2 0
13 0 7
6 27

94 0 390
4 3 0
2] 0
. 187 "whet.c"
58 7

13 0 7
[27

Wad Mar 26 11:25:42 1986

PARSE.TREE

94 Q 30
4 2 0
11 7

6 7

6 7

8 7

13 0 7
a8 27

94 0 30
4 0 0
13 0 7
6 27

94 0 30
4 1 0
13 0 i
6 27

94 0 30
4 2 0
13 0 7
6 27

94 0 30
4 3 0
2 0 0
.198 "whet.c"
58 7

13 0 7
3 27

94 0 30
4 3 0
60 7

6 7

6 7

6 7

10 0 7
13 0 7
6 27

94 0 30
4 0 0
13 0 7
6 27

94 Q 30
4 1 Q
13 0 7
6 27

94 0 30
4 2 0
13 0 7
6 27

94 0 30
4 3 0
2 0 0
.189 "whet.c"

7 4

94 0 29
4 1 0
.200 "whet.c"
109 4

83 4

94 0 29
4 6 0
4 146 0
.0

114 0 0

Wed Mar 26 11:25:42 1986

L1453

17

PARSE.TREE
L146:
L143:
.0
125 1 1
.0
115 0 0
) nop
1144 0
.data
.text
Globl _p3
Y _p3:
.0
124 1 1
[147 0 25
.208 "whet.c"
58 7 .
94 0 29
11 7
2 0 Q
6 7
94 0 29
94 0 27
.209 "whet.c"
58 7
94 Q 27
11 7
2 0 0
6 7
54 0 29
94 0 27
.210 "whet.c"”
58 7
13 Q 7
94 0 26
60 7
6 7
94 0 29
94 0 27
2 0 0
L1438
.0
125 1 1
.0
118 0 0
) nep
1149 0
.data
.text
+globl _p0
) _p0:
.0
124 1 b
{1590 0 30
.216 "whet.c"
58 7
13 0 7
6 27
2 0 0
4 1] 0
13 0 7
6 27
2 0 0
4 0 0

27

e JE B |

Wed Mar 26 11:25:42 1986

L144

1149

_t2

L1149

L1532

18

PARSE.TREE Wed Mar 26 11:25:42 1986 19

217 "whet.c"
58 7
13 0 7
G 27
2 0 0 4 _k
4 0 0 27 _el
13 0 7
6 ' 27
2 Q 0 4 2l
4 0 0 27 _el
.218 "whet .c”
58 7
13 0 7
6 27
2 0 0 4 1
4 0 0 27 _el
13 Q 7
6 27
2 0 0 4 _3
4 0 0 27 _el
Lis1
.0
125 1 1 4 L152
.0
115 Q 0 4
) nop
1152 0
.data
.text
.glokl _pout
} _pout:
.0
124 1 1 4 L155
[153 0 19
.data 1
L157:
.ascii "%64%6di6d %5e %5e %Se %Se\n\Q"
.text
.227 "whet.c"
70 4
4 0 0 224 _printf
56 4
56 4
56 4
56 4
56 4
56 4
56 4
4 0 0 22 L157
54 Q 30 4
94 0 29 4
94 0 218 4
34 0 26 7
94 0 24 7
94 0 22 7
934 0 20 7
L154:
.0
125 1 1 4 L155
.0
115 0 0 4
) nop
1155 0

Appendix B

task2.c

Mon Mar 31 08:52:23 1986 1

/* task 2 talk to task 1 */
char * sc_rqgaccept{);

main{)

{
int err:;
char *msg,

*his_msg;

printf ("P2: task created\n");
sc_rqcreate(0,0x11,10,8err); /* create a local message queue */
error code for create %d\n",err);

printf ("P2:
printf ("
printf ("
printf ("
printf("
printf{"
printf£("
printf(”
printf(”
printf ("

>>
>>
>>
>>

>

>>
>>
>>
>>

P2:
p2:
P2:
P2:
P2:
P2:
P2:
P2:
P2:

delaying 1l.\n");
delaying 2.\n");
delaying 3.\n"):
delayving 4.\n");
delaying 5.\n"):;
delaying 6.\n"};
delaying 7.\n"):
delaying 8.\n"):
delaying 9.\n"):

his_msg=ac_rqaccept {0,0x1l,&err); /* accepting a message for queue 0xll*/

printf ("P2:
printf("p2:
printf{"pP2:
printf("P2:;
printf ("P2:
printf ("pP2:

errox
error
error
error
error
error

s$d\n",err);

¥d\n",err):

%d\n",err):

%d\n",err):;

%d\n",err);

%d\n", err};

if{err == 0) printf("P2: message received is %s\n",his_msag);
else printf("P2: error in message accept ..\n"):;

printf("P2: error code for accept $d\n",err):
printf ("P2: END of task 2\n");

taskl.c Mon Mar 31 08:57:35 1986 1

/* demo

* try

* cc ~E taskl.c | pas > treel

* cc -E task2.c | pas > tree2

* cc -E taskd4.c | pas > treed

*

* to generate the parse trees.

*

* then run simulation by saying

*

* sandy -1 tree* ; one processor 3 tasks
* or

* sandy -2 tree* ; two processors 3 tasks
* ar

* sandy -3 tree* ; three processors 3 tasks
* etc,

*/

#include <math.h>

char * sc_rqaccept();

char * sc_gpend(};

mair{) /* main task for processor 1 */

{

int err;
char *my msg;
double timeout;
double test;

printf{"Pl: task created\n”):;
test=sin(l.2);
printf("Pl: Sin value is %e\n",test):

timeout=0.0; /* wait for ever for message */
sc_rqcreate (0,0x10,10,&exr); /* create mesage queue */
printf("Pl: error code for create %d\n",err);
printf("Pl: pending for message \n");

my_msg= sc_gpend{0x10,timeout, serr); /* pending for message */
printf("Pl: message arrived error code %d\n",err);

printf ("P1l: message is $s\n",my_mag) ;
printf("Pl: END OF task 1\n"™):

task4.c Mon Mar 31 08:52:35 13586 1

char * rgaccept():
char * sc_gpend();
main ()
{

int err:

char *my_msg:

printf{("P4: task created\n");
my_msg=" ## Howdy #4#";
my_msg=" ## Howdy #4#";

my msg=" ## Howdy ##";
my_mag=" ## Howdy ##";
my_msg=" ## Howdy ##";
ny_mag=" ## Howdy ##";
my_msg=" ## Howdy ##";
my_mag=" ## Howdy ##";
my_msg=" ## Howdy ##";
my_msg=" ## Howdy ##";
my_msg=" ¥¥ Howdy ##";
my_msg=" ## Howdy #4#";

my msg=" ## Howdy ##"; /* delay */

sc_rgcreate (0,0x22,10,&err);

printf ("P4: message at task 4 is >>>> %s\n",my msqg);
‘printf ("P4: Posting Message to task 1\a"):

sc_rqgpost (1,0x10,my_msg, &err); /* talk to task 1 */

printf("P4: error code for post in task 4 %d\n",err):

printf("P4: END of task 4\n"):

FHRERBRFEEF R R REF A4 0044 sandy -1 treel tree2 treed KAFHNNNNEREERSS4044
Pl: task created

Pl: Sin value is 9.27436%e-01

Pl: error code for create 0

Pl: pending for message

pP2: task created

P2: error code for create 0

>> P2: -- delaying 1.
>> P2: -- delaying 2.
>»> P2: -- delaying 3.
>> P2: -- delaying 4.
>> P2: -- delaying 5.
>> P2: -— delaying 6.
>> P2: -- delaying 7.
>> P2: -- delaying 8.
>> P2: -- delaying 9.

P2: error 11

P2: error 11

P2: error 11

P2: erxor 11

P2: error 11

P2: error 11

P2: error in message accept ..

P2: error code for accept 11

P2: END of task 2

P4: task created

P4: message at task 4 is >>>> ## Howdy #4
P4: Posting Message to task 1

Pl: message arrived errcr code 0
Pl: message is ## Howdy #+4

Pl: END OF task 1

P4: error code for post in task 4 0
P4: END of task 4

Speed up 0.974.
Efficiency 0.974.

FRERRFHERERREFHAREERERE sandy -2 treel tree2 treed

Pl: task created
P2: task created
Pl: S$in value is 9.27436%e-01
P2: error code for create 0
>» P2: -- delaying 1.
>> P2: -- delaying 2.
>> P2: -- delaying 3.
>> p2: -- delaying 4.
>> P2: ~- delaying 5.
. Pl: error code for create 0
»> pP2: -- delaying 6.
>»> P2: ~-- delaying 7.
Pl: pending for message
>> P2: -- delaying 8.
>> P2: -- delaying 9.
P2: arror 11l '
P4: task created
P2: error 11
P2: error 11
P2: error 11
P2: error 11
P2: error 1l
P2: error in message accept
P2: error code for accept 1l
P2: END of task 2
P4: message at task 4 is >>>> ## Howdy ##
P4: Posting Message to task 1
Pl: message arrived error code ¢
Pl: message is ## Howdy ##
Pl: END OF task 1
P4: error code for post in task 4 0
P4: END of task 4
Speed up 1.751.

Efficiency 0.842.

FRERERERENEARERAEHHERER

FERENEARBERFRHR IR ER N4 0488 sandy ~3 treel tree2 treed FEFHHEFISAENESERASEN
Pl: task created
P2: task created
P4: task created
Pl: Sin value is 9$.27436%e-01
P2: error code for create 0
>> P2: == delaying 1.
>> P2: -- delaying 2.
>>» P2: =-- delaying 3.
>> P2: -- delaying 4.
>> P2: -- delaying 5.
Pl: error code for create 0
>> P2: == delaying 6.
>> P2: -- delaying 7.
Pl: pending for message
>> P2: -- delaying 8.
>> P2: == delaying 9.
P4: message at task 4 is >>>> ## Howdy ##
P4: Posting Message to task 1
P2: error 11
P2: error 1l1
P2: error 11
P2: error 11
Pl: message arrived error code 0
Pl: message is #4# Howdy ##
P2: error 11
Pl: END OF task 1
P4: error code for post in task 4 ¢
P2: error 11
P4: END of task 4
P2: error in message accept ..
P2: error code for accept 11
P2: END of task 2

Speed up 2.312.
Efficiency 0.771.

Part i

Allocation for the SANDAC Multiprocessor System

PR BT EeeE

ALLOCATION FOR THE SANDAC MULTIPROCESSOR SYSTEM

T. M. Ravi and M. D. Ercegovac

UCLA Computer Science Department

Introduction

In this report we discuss the allocation of tasks in the SANDAC IV system
([BORG 83]). Initially we outline the model of execution and the underlying
assumptions. We then discuss a graph reduction algorithm for preprocessing the
computation graph, which is particularly necessary if the graph is very fine grain. The
allocation algorithm is presented along with performance curves for different graphs.

In the appendix, details of the software implementation and its use is discussed.

Model of Computation

The program is represented by a data flow graph ([DENN 80]), with nodes
representing tasks and arcs representing precedence relationships between tasks. The
partial ordering of the tasks necessary for correct execution is captured by the
dependencies between these tasks. The nodes have a single point of entry and a single
point of exit, i.e., a task can begin execution only when all its inputs (arguments) have
arrived, and can deliver each of its results to destination tasks only after the execution

of the task is completed. Likewise, the graph has a single entry node and a single exit

* This work has been supported in part by the Contract No. 25-3074 from the Sandia
National Laboratories "Multiprocessor System Evaluation and Programming
Environment”

node.

To represent control structures such as conditionals and loops in data flow
graphs we introduce two special nodes (Figure 1). The "OR" node has three input arcs
and one result arc. One of the arguments is boolean, and depending on its value, 2
token from one of its arcs (true or false arc) is processed and placed on the result arc.
This spc‘cial node is unlike other nodes which require all inputs to be present before

the node can be activated.

The "SW" node has two input arcs, one being boolean; and two result arcs
(True and False). Depending on the boolean value the result token is put on one of the
result arcs. The "SW" and "OR" are in the same flavor as the Switch and Merge
actors discussed by [DENN 80]. The "SW™ operator on firing will output a token on
either of its output arcs and the "OR" will fire when a token is present on any one of

its input arcs.

Our present implementation of the allocation algorithm is for directed graphs
without loops. Loops implemented by "SW" and "OR" operators could be handled by

applying our algorithm in an hierarchical manner.

It is assumed that the execution time (f,) of each node (tasks) is known
apriori. There is a communication time (r;) associated with each arc in the graph,
whose value depends on the size of data communicated. Furthermore, the
communication time can take on a lower value - local communication time (¢;), or a
higher value - bus communication time (¢.). Bus communication time is chosen if

results from one task have to be sent to another task in a different processor. Local

communication time is chosen when tasks reside in the same processor. One point to
note is that the processors are busy during communication and will not become
available until all the results are sent to their destinations. Results are sent out
sequentially, due to limitations imposed by the communication mechanism, and hence
the total communication time (t.) is the sum of individual communication times of

each result.

A task once started is not interrupted and will run till completion. A task can

be activated only when all its arguments have arrived.

The objective is to allocate the tasks to a multiprocessor (given n processors),

in order to obtain minimum execution times.

Graph Reduction

To reduce the complexity of the allocation process and to utilize the
parailelism efficiently, ‘wc can reduce ({GAUD 84] & [ERCE 84]) the original graph
into a larger grain task graph. By applying a set of rules, subgraphs in the data flow
graph are replaced by a single node. The criterion for lumping together instructions
into a single task is to minimize the response time for the subgraph under

consideration.

When the delay incurred due to interprocessor communication and activation
exceeds the gain in time due to concurrent execution, it is no longer justifiable to

distribute the nodes over several processors. When the response time of a subgraph

executed sequentially in a single processor is less than or equal to the response time
when executed concurrently, then the subgraph is reduced to a single node and is

executed sequentiaily.

The condition ((RAVI 86]) for combining a node with its arguments is:

'2:,,4,, Sm‘ax(rp,,, Hearg)

where t,,,, is the processing time of the argument node
tearg 18 the communication time of the argument node and

narg is the number of arguments.

If this condition is satisfied then the node and its argument nodes are lumped

together into a single node.

This step is illustrated in Figure 2. Figure 2a is a subgraph where the nodes are
separated in order to take advantage of the parallelism, while in Figure 2b the nodes
A, B and C have been lumped together into a single node. In the subgraph of Figure
2a, node D can execute only after the results from node A and B and C have arrived.
If nodes A, B and C are activated at the same time, then the result from nodes A and
B will arrive after 5 cycles and the result from node C will arrive after 8 cycles.
Hence node D is activated only after 8 cycles. In the sequential case the resuit from
nodes A, B and C are available after 6 cycles, as we do not have to communicate
between different processors. In this case the subgraph of Figure 2a can be reduced to

Figure 2b.

Procedure main (G:typegraph);
{This procedure increases the grain size of the data flow graph (G).
Starting at the root , nodes are combined with its arguments. }

begin
UPREDUCTION(Root(G));
end;{main}

Procedure UPREDUCTION (i:typenode);

{This recursive procedure lumps a node and its arguments
together, based on criterion depending on the the processing
time and communication time, Each node has the the fields
argument (arg), no. of arguments (narg), code (funct),
procsssing time (proctime) and communication time
(commtme). }

begin
with node[i] do
if narg > 0 then begin
{test condition}
seqtime:=0; partime:=0;
for k:=1 to narg begin
seqtime:=seqtime + nodefarg[i]]. proctime;
if (node[arg[k]].proctime + node[arg{k]}.commtime)
> partime then -
partime := node(arg[k]].proctime + node(arg[i}l.commtme;
end;
if ({partime -seqtime S Q) or (if any arg has > than one result)) then
{condition for reduction of parallelism is not true}
for k:=1 to narg do UPREDUCTION(k);
else begin
{condition is false}
copy the code in each of the arguments to nodefi] funct
nodefi].proctime ;= seqtime;
node[i].narg := swm of the narg of each of the arguments
of node[i]
arguments of new node := arguments of all nodes combined
with node(i]
remove the old argument nodes from graph
UPREDUCTION();
end;
end; {UPREDUCTION}

Figure 3 : Upreduction Algorithm

Cor_ D —eoocenn #-«m
1 F

Figure 1 : OR and SW operators

Figure 2a : Fine Grain Graph Figure 2b : Lumped Graph

O—

(4

Figure 4 : Reduction of Sequential Nodes Figure § : Node with many results

The "upreduction" algorithm (Figure 3) spans the graph, testing criterion for
reduction, in O(n) time. It combines a node with its arguments whenever the reduction

criterion is met.

Note that sequential nodes which have single arguments and single results are
combined together into a single node (Figure 4). Execution of each of the sequential

nodes in a different processor leads to unnecessary overhead.

However, when a node has more than one result which goes to different nodes,
then it can not be combined by the "upreduction” algorithm. In order to reduce these
subgraphs (Figure 5), a "downreduction” algorithm has to be applied with the entry
node as a parameter. It combines a node and its results based on the processing time
and communication time criterion into a single node. The algorithm is similar to the

"upreduction” algorithm.

The graphs of Figure 6a,6b & 6¢ illustrate the Graph Reduction algorithm,
with an example of an iteration consisting of 30 nodes (Figure 6a), which also has a
conditional statement in it. After a single pass of the reduction algorithm, i.e.,
combination of a node and its arguments, we obtain a graph with 19 nodes (Figure
6b). After another pass of the reduction algorithm , i.e., combination of a node and its
results, we obtain the final reduced graph consisting of 13 nodes (Figure 6¢). We are

now ready to allocate this graph to the processors.

CSE) 1 Prmemseiy €

3 C‘n-—-;ug‘t.“ Time

Figure 6a : Initial Data Flow Graph (30 nodes)

Figure 6b : Intermediate Graph After Upward Reduction (19 nodes)

Figure 6¢ : Final Graph After Downward Reduction (13 nodes)

[B

Task Allocation

The heuristic allocation algorithm minimizes response time based on two
principles :
1) Precedence to critical tasks

2) Minimizing communication time between tasks

An allocation algorithm based on the first principle of critical path scheduling,
when ﬁe tasks only have processing times associated with them is discussed in
[KOHL 75]. The second principle of minimizing communication time provides a
criterion for selecting a task for allocation when several candidates are available. It
enables us to allocate predecessor-successor tasks to the same processor, thus

incurring the lower local communication time.

The difficulty in applying the critical path algorithm to this problem is that
timing parameters associated with the graph cannot be fixed until the allocation is
itself con';plcte. This is because the decision on whether to choose local or bus
communication time for an arc depends on where the successor task will be allocated.
This leads to two specific problems. First, critical paths which are the longest paths in
the graph cannot be precisely determined. Second, when a task is allocated to a
processor, we cannot determine exactly when the task will complete, because it is not

known at that stage in the algorithm as to where the successor tasks are going to be

allocated in order to choose the right communication time. In our algorithm we show

how these two problems can be handled.

11

The Algorithm

Consider a graph with tasks Ty, T2 ... T, t0 be executed on n processors P,
Py ... P,. Two lists are constructed - Processor list (L,) and Task list (L;). The
processor list, at any stage of the algorithm, contains the processors listed in
increasing order of busy times, i.c., the time up to which they are busy. The processor
on the top of the list is the one which will become free next. Initially, the processors
are in random order in the list, as they are free. The task list is generated based on
critical path lengths. The criticai path length (CP(T;)) of a task T, is defined to be the
length of the longest path from the exit node to T;. To calculate the critical paths, we
assume that the value of the communication time taken for each arc is the higher bus
time. The critical paths of nodes in a graph are calculated starting from the exit node.
The critical path of the exit node is equal to &+, where ¢, is the sum of the bus
communication times of all the results. The critical path of any other node in the
graph is equal to the maximum critical path of result nodes + ¢, + ., where again ¢,
is the sum of the bus communication times of all the results. The task list (L;) is
generated by sorting the tasks in decreasing order of their critical paths. At any stage

of the algorithm, the list contains tasks yet to be allocated.

At any time we choose the top processor from the processor list (L,), which is
the first to become idle. The task list is then scanned tll we can choose the first
candidate for execution in the processor. Any other task on tl;e list which can be
executed, and is within a deviation of A from the critical path of the first candidate, is
also chosen as a candidate. A task can be a candidate only if at the time when the

processor becomes free all its arguments have arrived, i.e., all its predecessors have

12

completed execution.

Now we choose the task among the candidates to be assigned to the processor.
Of all the candidate tasks, we choose the task which when allocated to the processor
gives the maximum saving in communication time. A saving in communication time
is made if the predecessor tasks are assigned to the same processor. The saving is the
sum of the difference of the bus communication time and local communication time

for each direct predecessor assigned to the same processor.

The chosen task is assigned to a processor, but the question that arises is -
What will the duration of the execution of this task be ? This would be 7, +z., but we
don’t know whether to take the local or bus communication time for the results of the

task, as the successor tasks have not yet been allocated.

The solution to this problem is to associate communication times with
arguments instead of results. Thus, when a task is allocated, the location of its
predecessor is known. In our mode! the communication of the results is the
responsibility of the task, and to take care of this we reverse the graph. The direction
of the arcs in the graph is reversed before the calculation of critical paths and the
generation of lists. On starting with the reversed graph, the schedule obtained can be
reversed to obtain a regular allocation. By reversing the graph, the communication

time of the arcs is associated with arguments to tasks and not results.

After the task has been assigned to the processor, the busy time of the
processor is updated. The task is removed from the task list (L,) and the processor is

reinserted in the appropriate position in the processor list (L,), which is ordered

13

according to increasing busy time.

If no task can be assigned to the processor (P)), then we have to move to the
time of the next event and try again. The processor list is scanned; and the first
processor (P2) with busy time greater than the busy time of this processor (P1) is
~ placed on the top of the list. Processor P and any other processors with busy time
equal to that of P are updated with busy time equal to the busy time of Pj. In this

way idle times are caused in processors when no tasks are ready.

This process of allocating each task to a processor continues till the task list is

exhausted. The allocation algorithm is given in Figure 7.

14

procedure SELCANDIDATES(var candidate, var nocandidates,A listsize);
{This procedure selects tasks which can be executed next on the processor Ly (1]}

begin
iz=1; nocandidates:=0;
while ((i =< listsize) and (nocandidates=0)) do begin
if ((T{k}.completion-time =< P{L,, [1]).busytime'for all argument
tasks (k) of task L, {i])
or (T[L, [i]].narg = 0)) then begin
candidate[1] :=L, [i];
nocandidates:=1;
end else itm i+l;
end;

if nocandidates > 0 then begin
i=i+l;
limit:=T[candidate[1]].CP - A;
while i =< listsize do begin
if ((T{k].completion-time =< P[L, [1]).busytime for all
argument tasks (k) of task L, [i])
or (T[L, [i]].narg = 0)) then begin
candidawe{1] :=L, [i];
nocandidates:=~1;
end;
ii=i+l;
end;
end;
end; {SELCANDIDATES}

Figure 7¢ : Allocation Algorithm (Selection of Candidate Tasks)

Performance

To study the performance of the algorithm, several program graphs were
allocated and statistics collected. The effect of changing the parameter A, which is the
deviation in critical path for the choice of candidates, and the behavior of the
algorithm for different ratios of processing time and comumunication time, were

studied.

17

1400

1200

10ce

Tine

209

Figure 8 : Response Time (T) Vs. No. of Processors (N)

We first examine the speedup achieved by using multiprocessors. Figure 8
shows the varation of response time (T) with the number of processors (N) for a
graph (Figure 9) containing 123 nodes. The processing time of each node is 20, the
local communication time 0.1, the bus communication time 1 and the deviation (A) 1
unit of time. We observe that initially when the amount of concurrency exceeds the
number of processors available, the response time falls rapidly with the increase in the
number of processors. Figure 10 illustrates the speedup (T[1)/T[i]) of the

muitiprocessor system over a single processor. With a multiprocessor system

i

18

17

Na. af PE*s

Figure 10 : Speedup Vs. No. of Processors

consisting of 8 processors, the speedup over the uniprocessor is 6. Initally, when the
number of processors is increased the speedup is almost linear, but as the amount of
concurrency is exhausted the curve saturates. Figure 11 demonstrates the efficiency
(Speedup/N) of the processors in the multiprocessor system. The fall in efficiency is
attributed to the dependencies in the graph which force idle times in some processors

when very few tasks can be activated.

The algorithm has two driving principles - Precedence to critical tasks (critical

path scheduling) and the minimization of communication time between tasks. Figure

20

No. of "
Figure 11 ; Efficiency Vs. No. of Processors

12 shows the performance when only critical path scheduling is enforced. The
example is of a sort-merge graph (Figure 13) with 94 nodes, where the processing
time of each node is 20 units, the local communication time is 0.1 units and the bus
comumrrnication time is $ units. The curve (a) shows the response time for a strict list
schedule where no attempt is made to have predecessor-successor tasks cohabit in the
same processor. Curve (b) uses our algorithm with a deviation (A) equal to 0.1, which
is the local communication time. The deviation (A) is usually chosen to be a factor of
the bus communication time. For two processors the difference in the response times

is 15%, due to the large saving from the reduced interprocessor communication.

21

1800

L |
! .:
_'\ |

|
|
{

1900

Time

Ne. af pE*s

Figure 12 : Comparison of Performance with Critical Path List Schedule

When the deviation is very large, i.e., several orders of magnitude larger than
the bus communication times, then the critical path list ordering is no longer
operative. In Figure 14 we have a program graph with one dominant critical path and
several non-critical tasks. When the deviation exceeds the length of the critical path,
then at each stage the candidates for allocation to a processor are all the enabled tasks
in the graph. In other words critical and non critical tasks are given equai chance for
execution at any point. For two processors for the graph of Figure 14, with £, =20,

tp =1 & 14 = 0.1 we observe that the response time increases by 22% from zero

22

Figure 13 : Sort-Merge Graph

deviation response time, when the deviation is greater than the critical path.

Figure 14 : Example with a Dominant Critical Path Schedule

A Variation to the Allocation Algorithm

One variation to the Allocation algorithm which we have considered is to
evaluate critical paths based on the processing time alone. The motivation behind this
variation (Acp) to the algorithm is that here the communication times (bus or local
communication times) will not influence the order of tasks in the critical path list. Qur

observation with the example (Figure 9) with 123 nodes shows that when the bus

24

[BORG 83]

{DENN 80]

[ERCE 84]

[GAUD 84]

[KOHL 75]

[RAVI 86]

Reference

Borgman, C. R. and P. E. Pierce, "A Hardware/Software System
for Advanced Development Guidance and Control Experiments,”
AIAA Computers in Aerospace Conference, AIAA-83-2416, Oct.
1983, Hartford, CT, pp. 377-384.

Dennis, J. B., "Data Flow Supercomputer Languages,” Compuser,
Nov. 1980, pp. 48-56.

Ercegovac, M. D., P. K. Chan and T. M. Ravi, "A Dataflow
Multiprocessor Architecture for High Speed Simulation of
Continous Systems,” Proc. International Workshop on High-
Level Architecture, 1984.

Gaudiot, J. L., and M. D. Ercegovac, "Performance Analysis of a
Data-Flow Computer with Variable Resolution Actors,” Proc. 4th
International Canf. on Distributed Computing Systems, 1984, pp.
2.9-2.17.

Kohler, Walter H., "A Preliminary Evaluation of Critical Path
Method for Scheduling Tasks on Multiprocessor Systems," JEEE
Trans. on Computers, Vol. C-24, Dec. 1975, pp. 1235-1238.

Ravi, T. M., "Partitioning and Allocation of Functional Programs

for Data Flow Processors," M.S. Thesis, UCLA Computer Science
Department, Feb. 1986.

27

Appendix 1

The software tools for the allocation of tasks to the SANDAC IV architecture
consists of two programs - allocation.p and reduction.p, implemented in Berkeley
Pascal and given in Appendices 2 and 3 respectively. The input file to reduction.p is
’ingraph’. Appendix 1.1 shows the format of ingraph for the graph of Figure 5a. The
main prdgram allocation.p has input file *outgraph2’ if the original graph is to be
allocated and ’outgraph4’ (Appendix 1.2) if the reduced graph is to be allocated. Files
'outgraph2’ and ’outgraph4’ are output files from reduction.p. A session illustrating

the execution of the programs is given below.

<1> reduction.out
Want to parameterize Communication and Processing times (y or n) N

Processing time:10

Local Communication time:Q.3

Bus Communication time:5

Prtime = 1.00e+01

LocComm.time = 5.00e-01

BusComm.time = 5.00e+00

<2> a]]ocation.out

Input is original graph {0} or reduced graph {r} ¢

Reading reduced graph

The critical path of the graphis 185.000

No. of processors =2
Deviation in critical path for selecting candidates =0
Deviation in critical pathis = 0.00

The response time for 2 processors is 206.500

The output files of allocation.p are ’outstat’ and 'outschdr’. File outschdr’
(Appendix 1.3) lists the tasks assigned to each processor and ‘outstat’ gives statistics

on the allocation.

APPENDIX 1.1

{Input Computation Graph - ingraph])
This is the input file to program
reducticon.p. This graph is reduced
based on the reduction criterion teo
obtain a large grain graph.

#1

1 {Node id. or code}

1.¢ {Processing time}
{Argument Nodes}

2 {Result Nodas)
3.0 {Local Communication Tima}
6.0 {Bus Communication Time}
#2

2

5.0

1

345

2.0 1.5 2.0

6.0 4.0 3.9

#3

3

$.0

2

6789

2.0 2.0 2.0 3.0
4.0 4.0 3.0 3.7
#4

4

8.0

2

21

3.0

3.8

#5

5

1.0

2

21 27

1.0 1.0

3.0 2.0

#6

[

2.0

3

10

1.2

2.2

¥7

2

2.0

3

10

1.7

3.7

NOFHWN DX
PO . o
Q

o o

#l6

2.0
13
17
1.0
2.0

#17
17
4.0

15 16

29
3.0
6.0

#18

2.0
14
20
1.0

#19
19
2.0

2.0

oo

2.0
3.0

$29

29

10.0

17 20 9 28
30

2.0

5.0

#30
30
1.0
29

BT) AR

APPENDIX 1.2

{Reduced graph - cutgraphd}

This is the output of reduction.p
after the graph is parameterized
and then reduced. This graph is
the input to the allccation
program allocation.p.

NO QOF NOQDES 23
node 1
funct 2,1
proctime 20.000
narg 0
nras 3
{rasults} 2 3 4
{loc comm} 0.500 0.500 0.500
{bus comm} 5.000 5.000 $.000
node 2
funct 3
proctime 10.000
narg 1
{arg node} 1
nres 4
S 6 9 7
0.500 0.500 0.500 0.500
5.0Q0 £.000 5.000 5.000
node 3
funct 4
proctime 10.000
narg 1
1
nres 1
19
0.500
5.000
node 4
funct 5
proctime 10.000
narg 1
1
nres 2
13 22
0.500 0.500
5.000 5.000
node 5
funct 6
proctime 10.000
narg i
2
nres 1
8
0.500
5.000
nede 3
funct 7
proctime 10.000
narcg 1

nres
8

0.500
5.000

node
funct
proctime
narg
2
nres
23
0.500
$.000

nede
funct
proctime
narg
5
nres
10
0.500
5.000

node
funct
proctime
narcg
2
nres
10
0.500
5.000

node
funct
proctime
narg

nres

0.500
5.000

node
funct
proctime
narg
10
nres
13
0.500
5.000

node
funct
proctime
narg
10
nres
16
0.500
5.000

10

wmo

11

12

o

10

11,8

12

12

.500
.000

13

14

.500
.000

14

7

.500
.000

10.000

10.000

20.000

10.000

10.790

10.000

node
funct
proctime
narg

11
nres

0.500
5.000

node
funct
proctime
narg

11
nres

0.500
5.000

node
funct
proctime
narg

13
nres

0.500
5.000

node
funct
proctime
narg
12
nres
18
0.500
5.000

node
funct
proctime
narg
12
nres
18
0.500
5.000

node
funct
proctime
narg
16
nres
23
0.500
5.000

nede
funct
proctime

13

15
14
16
15
17
14
16
18
17
19
18
20
17
19
21

10.000
1

1

10.000

10.000

10.000

10.000

10.000

10.000

narg
nres

0.500
5.000

node
funct
proctinme
narg
19
nres
22
0.500
5.000

node
funct
proctime
narg
19
nres
22
0.500
5.000

node
funct
proctime
narg
4
nres
23
0.500
$.000

node
funct
proctime
narg

15
nres

4

21
0.500
5.000

20

24,23,22

21
26,25

22
28,27

20

23
30,29

18

APPENDIX 1.3

{Allocation of tasks to processors - outaschdr)
This output file from allocatien.p indicates
which tasks are allocated to which processors.
It also gives the starting time and finishing
time for the tasks when executed in the
reverse schedule.

Task # Start
PROCESSOR 1: 23¢(0.0,
18¢ 20.0,
17¢ - 30.5,
16¢ 41.0,
12¢ 51.5,
221 62.5,
20¢(83.0,
9 (113.5,
T 138.5,
24 149.0,
No of tasks 10
PROCESSCR 2: 15¢ 20.0,
14¢ 35.0,
13¢ 45.5,
11¢ 56.0,
10 ¢ 67.0,
8(82.5,
214 93.0,
61 118.0,
5(128.5,
19¢ 139.0,
4(154.5,
3¢ 170.0,
1¢ 180.5,

No of tasks 13

Finish Tine

20.0}
30.5)
41.0)
51.5)
62.5)
83.0)
113.5)
138.3)
149.0)
170.0)

35.0)
45.5)
56.9)
67.0)
82.5)
93.0)
118.0)
128.5)
13%.0)
154.5)
170.0)
180.5)
206.3)

APPENDIX 2

{*t*t**ttit!*ttt**t!*t**********i***t**#**ti**t***t**t*ii******t****tt**t*t*t

REDUCTION 8/18/1985) T.M.RAVI
(c) by T. M. Ravi
1985

#t***t**********t#*****t*******t**t***t**tt**t***t*tit*t**it*ttttt*tt****t*t]
program reduction (input, output);
{
This program reads in a program graph and reduces it based on
communication and processing time criterion alone. We assume
that the input graph is a single input-single output graph.

INPUT:
files ingraph - Program graph given by user
QUTPUT:
files outgraphl - Original graph without reduction
outgraph2 - Original graph with parameterized timing
if parameterization option been excesrcised
outgraphl - Graph after upward reduction
outgraph3 - Graph after downward reduction
Final reduced graph

PROCEDURE :
upreduc -~ Reduces the graph starting at the rasult node
dnraduc - Reduces the graph starting at the entry node
datain = Inputs the graph from file ingraph
dataout - Prints the current graph
remnodes - Removes ncdes from tree structure which are
no longer present
parameterize - Allows parameterization of processing time,
local and bus communication time.
}
const ,
maxnodes = 130; (maximum number of nodes in program graph}
maxfunchar = 100; {maximum characters in definition of function}
type

tmaxnodesw= 0..maxnodes;
tfunct= packed array(l..maxfunchar] of char;

targ=*~linkl;
linkl= record
no:tmaxnodes; {index of argument node }
dir:char; {arg label,f-forward arc,b-backward arc}
next:targ; {pointer to next arg }
end.
tres=*1link2;
link2= record
no:tmaxncdes; {identifier of the node }
dir:char: {res label,f-forward arc,b-backward arc)
commtime:real; {communication time of result are }
bustime:real; {bus communication time of result arc }
next:tLres; {pointer to next res }
end; .
tnode = record {structure for representation of }
{each node belonging to the graph }
funct: tfunct: {description of node }
narg: integer:; (number of arguments }
arg: targ; {pointer to arguments }
nres: integer; {number of results }
res: tres; {pointer to results }
proctime: real; {processing time }
end;

typetree = array [l..maxnodes] of tnode: {tree = collection of nodes }

var

tree: typatree; {array to store program graph }
nonodes: tmaxnodes; fcotal number of nodes initially }
newnonodes: tmaxnodes; {total number of nodes |}
entrynode: tmaxnodes: {index of entry node}

out:text; {var for text filas }

{*****i**********t****i****t****t*it**i*.t*it**ﬂ*t**********i**************ﬁ*

DATAIN

bbb AR AR Sl LSRR LR TRy R R g R A g U U (g g NP UR R NP e }
procedure datain(var tree:typetree;var noncdes:tmaxnodes);

{

var

begin

Procedure to input the program graph from file ingraph.
Ingraph has the nodes listed in order. An example of a node:

#2 {(dalimiter between nodes)

20R (node index 2 with function QOR)

1.0 (Processing time)

1 30b {arg. 1 and 30 with backward arc from 30)
34 (Result nodes)

1.5 1.8 (Local communication times for results)
4.1 4.4 (Bus comm. times)

#3 (next node)

INPUT: file ingraph

QUTPUT:
tree - tree (graph) as an array of nodes.
nonodes - no. of nodes in initial graph.

i,j,1l: integer:

pireal;

inp:text:;

tmpchar:char;
firstptr,ptr,prevptr:targ;
firstqtz,gtr,prevatr:tres;

reset {(inp,‘’ingraph’):
nonodes:=0;
while not eof(inp) do begin
read (inp, tmpchaz):
if tmpchar<> "#' then

writeln(’ERROR 1 in DATAIN - New node description should start with #’)

else begin

nonodes:=nonodes+l;
readln{inp, j); {index of new node}
with tree{j] do begin

{funct{1l] & funct(2] are reserved. The function

starts from funct (3]}
funct[1]:='U’;i:=3; (funct(l] can be 'X’, ’D’ or 'U’}

{"X’ indicates that the node ne longer exists &

‘D' & 'U’ are for book-keeping purposesi}
while not ecln{inp) do begin
read(inp, tmpchar) ;

funct{i] :=tmpchar; ({read the function and place it starting funct (3]}

i:=i+l;
end;
funct {i]:=* *;

{If 1st char. of function is S’ then the function is SWITCH, if it is
0’ then the function is 'OR’ else the function is neither (’N).
funct [2] is used to indicate whether a function is a SW,OR or nreither}

if funct[3]=70' then funct(2]:='0' else
if funct([3]='5S’ then funct(2]:='5’ alse
funct (2] :='N";
readln (inp,proctime}; {procesaing time of node}

{read arguments of this node. The arguments are stored in a linked list}
1l:=0;i:=1; {1 counts the no. of aruments})
while ((not eoln(inp)) and (i<>0)) do begin
read (inp,i):
if i <> 0 then begin
limlel:
new(ptr);
if l=1 then firstptr:=ptr else prevptr*.next:=ptr;
ptr*.no:=i;
ptr*.next:=nil;
prevptri=ptr;
if not eoln{inp) then begin

read{inp, tmpchar);

{if the arg. is a backward arc, i.e., coming from below this node
{possible only for an OR node) then the input should indicate it
example 30b indicates that the argument node is no. 30 and the
arc from 30 to this node is a backward arc)

if tmpchar='k’ then ptr~.dir:='b’ else
if tmpchar<>’ ’ then writeln('ERROR 2 in DATAIN’)
else ptro.dir:=/f’; (direction is forward if not backward}
end;
end;
end;
readlin({inp):
if 1l<>0 then arg:=firstptr;
narg:=1;

{read in the result nodes}
l:mQ;i:=];
while ((not eoln(inp}) and (i<>0)) do begin
read(inp,i):
if i <> 0 then begin
l:=1l+1;
new{qgtr);
if l=1 then firstgtr:=qtr else prevgtr®.next:=qtr:;
qtr®.no:=i;
qtr*.next:=nil;
prevgtri=qtr;
if not eoln(inp) then begin
read(inp, tmpchar);
if tmpchar=’b’ then gqtr”*.dir:='b’ else
if tmpchar<>’ ' then writeln(’ERROR 3 in DATAIN’)
else gtr~.dir:='£’;
end;
end;
end;:
readln(inp);
if 1<>0 then res:=firstqtr;
nres:=1; (set nres=the counter l}

(local and bus communication time are read from input graph. They will
not be used if the parameterize option is chosen by the user)

{read in the local communication time for each result. Note cthat for

each result the input should have a corresponding leocal
communication time. }
gtr:=res;
if nres > 0 then begin
for l:=1 to nres do begin
read(inp,p): '
qtr*.commtima:=p;
gqtr:=qtr*.next;
end;
readln{inp};
end;
{read in the bus communication time for each result}
qLr:=res;
if nres > 0 then begin
for l:=1 to nres do begin
read{inp,p):
gtr”.bustime:=p;
gqtr:=qtr*.next;
end;
readln(inp):
end;
readln (inp) ;
end;
end;
end;
end; {datain}

{****ﬁ***********t*tt**iﬁ****ti*i***t***t**ttttt*i*ii*t***ﬂt*****ti*******t*#

REMNCDES

kR dhAk kR Rdh ke hd ket ddddwdddrdrdrdrded e dy oo o dede e de o de o ob e o de v o e o e o]

preocedure remnodes(var tree:typetree;var nonodes:tmaxnodes);
{

Procedure to remove nodes which no longer exist (i.e., that have been
combined) . Basically to clean up the tree data structure.

INPUT:
noncdes - number of nodes including notes which are no
: longer valid
tree = trea data structure with valid and
invalid nodes
QUTPUT:
nonodes = actual numer of valid nodes
tree = tree structure with only valid nodes
)
var i,j,k: integer;
actnonodes :tmaxnodes; {actual number of nodes}
ptr:targ:;
gqtr:tres;
labmap: array(tmaxnodes] of tmaxnodes; {(array tec map old node index and
begin
j:mQ;

for i:=1 to nonodes do
if tree(i].funct(l] <> "X’ then begin
{nodes with funct{l] = ‘X’ are no longer valid ncdes}
jimi+l;
labmap{i] :=%;
end;
actnonodes:=j;
J:=0;
for i:=1 to noncdes do begin
with tree(i] do begin
if funct([l]<>*X’ then begin

jrmi+ly
tree{j].funct:=funct;
tree[j] .proctime:=proctime;
trea(j) .narg:=narg;
tree[j].arg:=arcg;
ptr:=arg;
if narg>0 then
for k:=l1 to narg do bagin
ptr*.no:=labmap(ptr*.nol;
ptr:=ptr®.next;
end; _
tree(j] .nres:=nres;
tree(i].res:=res;
qtr:wras;
if nres>0 then
for k:=1 to nres do begin
gqtr*.noi=labmap(qtr*.noj;
gtr:=gqtr”.next;
aend;
end;
end;
end;
entrynode:=labmap{entryncdel;
nonodes:sactnoncedes;
end; {remnodes})

{*t*t**ﬁ****tit*t**t*t***tt***t****tit*i*titttt**#**ttt*****i*i*t******tt***t

DATAQUT

*tt*t****tt*ttﬂtt*t**tﬁt******ttttt**tﬁﬁttit***tt*tttt**ﬂ**t*titti***#*****t }
procedure dataout(trae:typetree;nonodes:tmaxnodes:newnonodea:tmaxnodes);
{

Procedure to output the program graph to a file set to text var out.

INPUT:
nonodas - total no. of nodes in the graph
tree - graph with nocdes in an array
QUTPUT: .
out : - output in file eg. to variable out
}
var i,3j: integer:;
ptr:targ;
gtr:tres;

begin
writeln(out, *NO OF NODES’, newnonodes);
for i:=1 to nonodes do
if tree[i].funct(l] <> ‘X’ then (if node is valid}
with tree(i] do begin
writeln(ocut, ‘node 7 ,41i);
funct[l]:=" ’;funct{2]:=’ *;

writeln(out,’ funct *, funct) ;
writeln{cut, 'proctime ' ,proctime:10:3);
writeln (out,’'narzg ! ,narg);

ptr:=arg;

if narg >-0 then begin
for j:=1 to narg do begin
write(out,ptzr*.ne) ;
if ptr*.dir='b’ then write(out,’b’);
pPtr:=ptr*.next;
end;
writeln(out);
end;
writeln (out,’nres f,nres);

qtr:i=res;
if nres > 0 then begin
for j:=1 to nres do begin
write{out,qtz".no) ;
if qtr*.dir='b’ then write(out,’b’}:
gqtr:=qtr”®.next;
end;
writeln(out):;
end;
qtr:=res;
if nres > 0 then begin
for j:=1 to nres do bagin
write(out,qtr*.commtime:10:3) ;
qtri=qtr*.next;
end;
writaln{out);
end;
qtr:=res;
if nres > 0 then begin
for j:=1 to nres do begin
write{out,qtr~.bustime:10:3) :
gqtr:=qtr*.next;
end;
writeln(out);
end;
writeln(out);
end;
end; {datacut}

i*******tt******ttt********t*i********tt****i***it**i************ttt!!tt**t**

PARAMETERIZE
****t*i*t*it**t***!***ﬁt**tti*i***ﬁt#****t*ttti*t*ttt**t**ﬁ*****ttt**t*t**** I
procedure parameterize(var tree:typetree;nonodes:tmaxnodes);
(;

Procedure to parameterize the processing time and communication times
in the program graph. Procedure asks if parameterization is required
and if s0 requests for the parameters. If parametarization option is
used then the times in the graph are overruled. If however we only
want to parameterize the communication times then if we assign a
negative parameter to the processing time then the processing times for
the nodes will be taken from the input graph data

var i,j: integer;
tmpchar:char:
pr,buscomm, loccomm: real;
gtr:tres;

begin
write (’Want to parameterize Communication and Processing times {y cx n) 72');
readln{tmpchar):
if ({tmpchar = “y’} or (tmpchar='Y’)) then begin
write (’'Processing time:’); readlnipr):
write (’lLocal Communication time:’); readln(loccomm):
write (’Bus Communication time:’); readln(buscomm):
writeln(’'Pr.time = ’ ,pr):
writeln(’'LocComm.time = ’, loccomm); (All arcs are given this local
comm. time}
writeln(’BusComm.time = ’ buscomm):{All arcs are given this bus comm. time }
for i:=1 to nenodes do begin

with tree(i] do begin
if pr >= 0 then proctime:=pr; (All nodes are given this proc. time if it
is positive else retain original proc. times) .
if nres>0 then begin
gtr:=res;
for j:=l to nres do begin
gtr*.commt ime:=loccomm;
gqtr*.bustime:=buscomm;
gtr:=qtr”.next;
end;
end;
end;
end;

end;

end; (parameterize}

{**i*************t**t**tit*t***********i*************t*****t*tiiiiii*t******t

UPREDUC

AR SRR RA S Ee AR YR LY Ry R N R R R R L L N L R T yraraaraey }
procedure upreduc(var tree:typetree; index:tmaxnodes; var newnonodes:tmaxnodes);

(

Starting from node index this recursive procedure chaeacks if the
condition for combining the argument nodes and this node is
satisfied. If it is then the functions of the argument nodes

are copied to the index node. The index node’s arguments will
now be the arguments of the arguments. The result field of the
arguments of the arguments has to be modified to raflect naw
results. If due to reduction we encounter two arcs between a
pair of nodes we sum the comm times and replace them by a single
arc. Note no upward reduction of OR nodes.

INPUT:
index = present node which is being analyzed
tree - graph
QUTPUT:
tree - graph after upward reduction
PROCEDURE :
upreduc - recursive
}
var n,i,k,m,1: integer:
cond: real;
singres: boolean;
maxtime, sumproctime, largres: real;
tnarg: integer;
prevptr,ptr,rtr, firstptr, tptr:targ;
prevgtr,qtr:tres;
begin

ptr:=tree{index].arq:;
with treel[index] do begin

if {({narg>0) and (funct{l]<>‘D’)} then
if funct[l] = ‘X’ then
writeln ('ERROR in UPREDUC - reference to invalid (nonexistent) node’) else
if funct(2] = 0’ then [no upward reduction of OR nodes}
for i:=1 to narg do begin
if ptr*.dir <> ‘b’ then upreduc(tree,ptr”*.no,newnonodes); (Only OR nodes
. can have backward arcs as argument)
ptr:i:sptr”.next; '
end
else begin
maxtime:=0; sumproctime:=(0; ptr:=arg; singres:=true;

i:=l;k:=narg;
while ((ptr<>nil) and (singres=true)} do begin
if tree(ptr~.nc].nres >1 then begin
gtr:=tree{ptr*.no).res;
n:=0; largras:=q4;
m:=trea{ptr*.noc] .nres;
for l:=1 to m do begin
if qtr~.no = index then begin
n:=n+i;
if qtr*.commtime>largres then largres:=qtr”.commtime;
end else singres:=false:;
gtr:=qtr*.next;
and;
if n=m then begin
treea[ptzr*.noc).res*.commtime:wlargres;
tree(ptr*.no).ras”.next:=nil;
tree{ptr*.no] .nras:=1;
tptri=ptz;tptr:=tper*.next:pravptr:=ptr;
while tptr<> nil do begin
if tptr*.no = ptr~.no then begin
Prevptr”®.next :=tpte*.next;
narg:=narg-1;
end else prevptr:=tptr;
tptr:=tptr*.next;
end:;
end:
end;
if singres=true then begin
sumproctime:=sumproctime+tree(ptr*.no] .proctima;
if { tree(ptr*.no].proctime +tree[ptr*.noj.res”.commtime)> maxtime
then
maxtime:=tree[ptr*.no].proctime + tree(ptr*.no].res”.commatime;

end;
i:=isl;
ptr:=ptr”.next;
end;
ptr:=arg; :
cond :=maxt ime—-sumproctime; (compresicn condition}
{combination ¢f node and its arguments}
if ((cond<=03) cor (singres=false)) then {no compresion}

for i:=1 to narg do begin
upreduc (tree, ptr*.no, newnonodes) ;
ptr:=ptr”.next;
end
else begin {compresion}
tnarg:=Q;tptr:=arg;firstptr:=nil;
m:=0;
repeat m:=m+1l until funct[m]j=" ’;
for i:=1 to narg do begin
if tree{tptr*.no].narg > C then begin {new arg for index}
tnarg:=tnarg+tree(tptr*.no] .narg;
if firstptr=nil then begin
rtr:=tree([tptr*.no] .arg:
firstptr:=rtr;
end else begin
rtr*.next:=tree(tptr*.noj .arg:;
Ltr:=rtr”.next;
end:
for k:=1 to treeltptr”.nc].narg do begin (res of arg of args
. modified}
gtr:=tree(rtr*.no) .res;
for 1l:=1 to tree(rtr*.nc].nres do begin
if qtr~.no=tptr~.no then gqtr*.no:=index;
gtr:=gqtr~.next:

end;:
if rer*.next <> nil then rtr:=rtr*.next:
end;

end;

K:=2; (copy functions of arg to index node}

funct{m] :=*,*;

repeat m:=m+l; k:=k+l; funct[m]:-tree[tptr‘.no].funct[k]

until treeltptr”.no].funct(k]l=’ *;

if tree(tptr*.nej.funct(2]='0’ then funct(2]:=’'0Q’;

if tptr”.no=entrynode then entryncde:=index;

tree{tptr*.no].funct (1] :=' %’ ; {Azg node no longer part of tree}

newnoncdes:=newnonodes-1;

tree(tptr*.no].arg:=nil;

tptr:=tptr*.naxt;
end;
arg:=firatptr;
narg:=tnarsg; {No. of arg is sum of narg of args}
proctime:=proctime+sumproctime; (new proc. time is sum of proc.

times of all the nodes combired}

upreduc (tree, index, newnonodas) ; {Try reduction with new arguments |

end;
end;
if funct(l] <> ‘X’ then funct(l]:=’D’; {Mark it as cbserved |}
{’D* indicates that upreduc has encountered this node)
end:
end; {upreduc)

{**tﬁ*****t*t**t*ttt*t*ttttit*i*#tti!**tﬁ**t*!*ﬁ**tt*tt*it*ﬂ*ﬁ***it'*t**!**ﬁn

DNREDUC
tt*****t*t*ti*utt*ttttt***ttttttﬁ*tt!*tt**t*t**ﬁt*tt*ttﬂttt*ttit*t*ti*ttttti }
procedure dnreduc(var tree:typetrea; index: tmaxnodes;var newnonodes:tmaxnodes) ;

{

Starting from node index this recursive procedure checks if the
condition for combining the result nodes and this node is
satisfied. If it is then the functions of the result nodes

are copied to the index node. The index node’s results will

now be the results of the result. The result field of the

result of the result has to be modified to reflect new

results. If due to reduction we encounter two arcs between a
pair of ncdes we sum the comm. times and replace them by a singlae
arg.

INPUT:

index -

tree -
QUTPUT:

trea -
PROCEDURE:

dnreduc - recursive

var n,i,k,m,1: integer:;
cond: real; (cocmpression condition - compress if >0)
aingarg: boolean:
maxtime, sumproctime, largarg: real:;
tnres: integer:;
pPtr,prevptr:targ;
qtr,ztr,firstqtr,tgtr, prevgtr:tzes;

begin .
gtr:=tree{index] .res:
with tree{index] do begin
if ({nres>Q) and (funct([l]<>'U")) then

if funct(l] = X’ then
writeln ('ERRCR in DNREDUC - invalid node encountered’) alse
if ((funct[2] = ’S") or (funct(3] = ’S’)) then{no down reduction for SWITCH}
for i:=1 to nres do begin
if gur*.dir <> ’'b’ then dnreduc(tree,gqtr®.no,newncnodes);
qrr:=qtr”.next; -
end
else begin
maxtime:=0; sumproctime:=0; qtr:mres; singarg:=true;
i:=l;k:=nres;

{singarg will be true if the result nodes of index node have
only one argument which is the index node or all its arguments
ares the index node. EZven though we don’t admit two afcs in the same
direction between the same pair of nodes initially, this can occur
after combinations}
while ((qtr<>nil) and (singarg=true)) do begin
if tree(qtr*.no].narg >1 then begin
{if the result has more than one argument}
ptr:=tree(qtr*.no) .arg;
n:=0;largarg:=0;
m:=treea(qtr”.no) .narg;
for l:=1 to m do begin
if ptr~.no= index then begin
n:=n+l;
end else singarg:=false:
ptr:=ptr”.next;
end;
if n=m then begin
{if all the arguments of the result node are the index node,
i.s,, the node under consideration}
{if parallel arcs from index to result then replace by a single
arc}

tres(qtr~.noj.nazgg:=1;
trea{qtr*.ne].arg”.next:=nil;
tqQtr:=qtr;tqtr:=tgts”.next;pravqir:=qtr;
largarg:=0;
while tqtr<>nil do begin
if tgtr*.no=qtr*.no then begin
prevqtr”.next:=tqts” .next;
nres:=nras-1;
if tqtr*.commtime>largarg then largarg:=tqtr~.commtime;
end else prevgtr:=tgtr:;
Cqtr:=tqgtr”®.next;
end;
qur*.commtime:=largarg;
end;
end;
if singarg=true then begin
sumproctime:-sump:octime+tree{qtr‘.no].p;octime;
if (tree[gtr~.nol.proctime +gqtr*.commtime)> maxtime then
maxtime:=tree(qtr”.no).proctime + gtr".commtime;

end;
L:wi+l;
gqtr:=qtr”*.next;
end;
gtr:=res;
cond:=maxtime-sumproctime; {compresion condition}
if ((cend<=0Q) or (singarg=false)) then {no compresicn}

for i:=1 to nres do begin
drreduc(tree,qtr”.no, newnonodes) ;
gqtr:=qgtr”.next;

end

