PARTITIONING AND ALLOCATION OF FUNCTIONAL
PROGRAMS FOR DATA FLOW PROCESSORS

Thirumalai Muppur Ravi April 1986
CSD-860063

UNIVERSITY OF CALIFORNIA

Los Angeles

Partitioning and Allocation of Functional Programs

for Data Flow Processors

A thesis submitted in partial satisfaction of the
requirement for the degree Master of Science

in Computer Science

by

Thirumalai Muppur Ravi

1986

'

To my parents

1il

TABLE OF CONTENTS

page

I INTOQUCHOMN coeecieceiecnosctrasrsnmssiesitiessen e arnsees sssrasre s ssaecsnasdes sasssanmssasensnsnnns 1
1.1 Architectural Issues for High Speed Computationcuevvieeeniininens 1

1.2 Language ISSUSS .ooiirieiiiiniecestiessns e mnsanscsncesesanesssn s en e s seensesnans 5

1.3 ThesiS OVEIVIEW .oiiiccieeirvvriercseeorsonescssrarsesssarses sesnssssasassaremsssssssssnsane 8

IT Introduction to the Model ...t ssereec st s e sns s 9
2.1 ASSUITIPUONS teeuvererceraacesssonssiseniseeesssansesnersnssmssssessoosarssonss ansssssasnssness 9

2.2 Architecture Modelveeoooiiiiiiitti s reer e e s saa s e s e 13

2.3 Programming Environmentceiemerneisecnviseccnssnaiinsin s e, 16

I Program Decomposition and Partitioningccccieeremmeenisesscineccecnesnnnen 21
3.1 OVEIVIEW ciiiiiiericeeecte e seenmsssssssaessnssssssassesons ssmnasnns sestessnes sressonsas 21

3.2 Graph Generation ..oc.cceeeecceerrceernmmsisssscsnsesnmessasesanrnesas s oasssnairasonees 22

3.3 Assignment of Time & Longest Path Calculationcccocveivivinicinennns 28

3.4 Symbolic INterpretation ccccccecierreeriiinvtienssssneesssssneeneessssnss o ses 29

3.5 Graph RedUCHON ...uuieerirccccence ettt et cese e e ve s e can s s e 33
3.5.1 Combination of Sequential Nodesccovereeirivemmiineirinennnninanns 34

3.5.2 Reduction of ParalleliSm coeieiirvieiviisiiiinenc e sensceenc e 36

3.6 Resolution of Functional FOMMScievmienvimeioinensriee e e 40

3.7 PAMTHOMING ceeveveenereereserasnrassrambesarssissssssnssssrescnesessesosssssassensssston sensas 50

IV AIIOCRHONM .ooiiiicccieeri e cremcststeestsssssescssssessasssbes sonnassssabarssaasnssane roensaenes S8
4.1 INIOAUCHOM. .iivrreeriiiieerrieernrismessmmaerasssssastanseeriorremsrmessisssissssmanmesneessesses 58

4.2 Problem FOrmMulation ..iccccoeiieeeionmeeinn s sisinesssentnnsasstnnesensenneanns 60

4.3 Allocation for Minimum Response TIMecvoiiecimmmeninniiinciiecneas 61
4.3.1 Formation of GroUpScceecvciceisnersnrermianresenne e sersatesens e 61

4.3.2 Assignment Of PATtitiONS .vveeceeiiiiicniiemeeesnerinisinnennressisesessanns 63

4.3.3 Allocation of Group 0 Partitionscceeiiiiiiniiniiiieecee e 66

4.3.4 Allocation of Remaining Groupsccceveeeeiineinviensnsnsineinanaens 68

4.4 Allocation For a Fixed Number of Processorsiiciriiecicennenae 78

V Performance Evaludtionceeuiviomeeiiimeimr s reescsnsevesesananes senasnes ssnnsane s g1
5.1 OVEIVIBW e rere e e e et et sss s as s b sn b bt b r e an ree e nne s g1l

5.2 AN EXAMPLE cooriiiiciiivniccsnesnnseie s s s s csianans e n e s s an e e R1

5.3 Apalysis of RESUIS ittt sre s e st s sas ae s g8

VT COnCIUSION ot e ee s st re et eeeser e s s nn e s ae s semaaaee snar sne s e vmmnessoas 97
RETCIBICES crturrreteeeeeiaeeeeieee e aeneneeearaaesersesesarnme e e ess eessearssasestrasasssorararearsaes 100

iv

ACKNOWLEDGEMENTS

I am deeply grateful to my advisor Professor Milos Ercegovac for his unwavering
patience, encouragement and support. His ideas on computer architecture have been very

stimulating and farsighted, and have given me a solid foundation in this area.

Pak Chan who worked with me on several projects has helped me in numerous
ways and I would like to thank him particularly for taking the time when I first joined the

project to show me the ropes.

Doris Sublette helped me in tracking references and publications and has been a

good friend throughout my stay here.

Partial support from NASA Lewis Research Center grant NAG 3-132 and Sandia

National Laboratories Contract No. 25-3074 is gratefully acknowledged.

ABSTRACT OF THE THESIS

Partitioning and Allocation of Functional Programs

for Data Flow Processors

by

Thirumalai Muppur Ravi
Master of Science in Computer Science
University of California, Los Angeles, 1986

Professor Milos D. Ercegovac, Chair

This thesis seeks to demonstrate the viability of High Level Data Flow
Architectures which utilize a number of high performance uniprocessors. Data flow
techniques are applied at an optimal level of granularity instead of the fine grain

granularity of conventional data flow machines.

Programs written in the Funtional Programming Language (FPL) are analyzed to
extract a program graph with fine grain parallelism. By symbolic interpretation and
resolution of functional forms we obtain a data flow graph. A criterion is established for
the reduction of the fine grain graph to obtain a task graph which exploits the appropriate

degree of parallelism. The reduced graphs are partitioned based on critical paths, which

vi

are the longest paths in the graph. Partitioning according to critical paths allows us to

give priority to tasks on the critical path.

An algorithm for the allocation of partitions to the given number of processors
has been developed. The allocation algorithm is a heuristic algorithm for static
allocation. Finally we study the performance of the allocation algorithm and observe the
speed-up obtained by increasing the number of processors. We also observed an
improvement in performance when only appropriate degrees of parallelism are extracted

instead of complete parallelism.

vii

CHAPTER I

Introduction

L.1 Architectural Issues for High Speed Computation

The drive towards high speed computation has lead to considerable
investigation into the exploitation of the von-Neumann model of computation for
high performance. While the advances in technology lead to a significant reduction of
cost and resulted in orders of magnitude of improvement in processor efficiency and
memory access time, it became clear that VLSI technology was not being effectively
utilized and the machine organization had become a bottleneck in achieving higher
speeds. Early high performance processors use instruction pipelining [KOGG 81]
where each instruction is subdivided into successive operations, and several
instructions at different stages of operation are overlapped. A significant speed up is
achieved by pipelined processors which closely adheres to the von-Neumann model
which is simple and whose implementation is well understood. The limit on the
number of operations the instruction can be Aivided into, besides the starvation of the
pipe due to branching and dependencies restricts the concurrency that can be

exploited.

Current vector processing architectures ([HWAN 81] & [ERCE 86]) exploit
the presence of vector operations in programs and set up operations for the entire
array just by a single instruction decode. Computers like Cray-1, based on this
approach have demonstrated very high performances for vector operations. The
efficiency of the vectorization by the compiler depends on the vector features present
in the language and the extent of variable scoping and assignments in the program.
The amount of vectorization possible will depend ultimately on the available
concurrency in the program. To achieve speeds greater than those delivered by vector
processors requires abandoning the single instruction stream and recognizing that
control has to be distributed. The exploitation of parallelism present in a program
which is not vectorizable or even parallel streams of vectorizable code, is necessary

to further speed up program ¢xecution.

Multiprocessor systems ([ENSL 77] & [STON 80]) can exploit the process
level parallelism that exists in programs. The principal problem to be solved in
multiprocessors is the problem of programmability - mapping the program onto the
processing elements. Partitioning, allocation and scheduling are the steps by which a
computation can be divided, assigned to and executed in a certain order in processing
resources. The size of partitions is determined by the tradeoff between the gain by
exploiting parallelism and the overhead due to interprocessor communication.
Extensions of the von-Neumann model have to deal with the problem of sharing
common memory which requires a protocol for correct memory access. In
multiprocessors, instruction level partitioning has proved to be unfeasible [GEHR

82] due to the large amount of overhead involved in the synchronization and message

passing required for each instruction, and as a result only a very small degree of

parallelism, which is at the procedure level is exploited.

The data flow approach [DENN 80], which is radically different from the
von-Neumann approach, discards the program counter and distributes control of the
program. A node in the program is enabled when all its operands are available.
Nodes or program segments communicate by passing data values and do not have a
concept of a globally shared updatable memory. The data flow concept in recent
years has attracted much attention, and several research efforts are underway to
develop high-speed data flow architectures. But, despite the attractiveness of the data
flow concept, initial results of data flow designs have not been very encouraging. The
exploitation of maximum parailelism, though conceptually simple, has several
problems associated with it. Data flow architectures, like multiprocessors, execute a
single instruction in a processor and rely on run-time methods for activating as many
instructions in parallel as possible. Unfortunately, this simplistic view of exploiting
maximum parallelism whenever possible suffers because no attention is paid to the
critical paths in the program (GAJS 82]. Having no scheduling strategy is
particularly detrimental when there are limited resources, with the degree of
parallelism exceeding the number of resources, as computations are carried out much
before they are actually needed and at the cost of critical paths in the program. While
instruction level paraliciism avoids the partitioning process altogether, saving
compile time analysis of programs, the reliance on a greedy approach for scheduling
can result in an overall nonoptimal utilization of resources due to the lack of global

view of the computation.

Another serious problem is the large overhead incurred for the activation of
each data flow node. Data flow computers tend to have long pipelines [GAJS 82],
with waiting matching units for activation, instruction fetch units, structure
management units, functional units and token labelling and routing units. By having a
sin‘gle instruction execute in the pipeline the fraction of time spent in actual
arithmetic operations is only a fraction of the time spent in the entire pipeline. An
additional overhead is the time spent in the communication network between the
processors. The net effect of this is that the critical paths in the program are executed
inefficiently and, whatever the parallelism present in the program, the response time
will be hurt. In the data flow machines proposed, the critical path cannot be pipelined
as each instruction on the critical path depends on the previous instruction. It is clear
that the response times achievable from conventional data flow are not the best, and
may not be even competitive with high performance vector machines when the

parallelism is regular.

We intend to investigate the applicability of the data flow approach at
different levels of granularities of subcomputations. In our model the program is
partitioned at compile time into tasks which may contain several instructions. Each
task after partitioning is considered to be a node in the data flow graph. At the task
level the model is strictly data flow, tasks being activated when all the arguments of
the task have arrived. The tasks communicate with each other by passing arguments
between different tasks. The size of the task is based on a tradeoff between exploiting
parallelism and the overhead due to communication and activation. Other work on

variable resolution graphs include [GAUD 32], {GAUD 84), [BABB 84] & [RAVI

[T

83].

Each task by itself is executed on a high performance von-Neumann
processor, because of the high efficiency of the von-Neumann processor in executing
sequential code. We exploit features like pipelining, fast accumulators and registers,
and instruction caches for the execution of a task. The execution of the task is
transparent to the top data flow level without any side effects. We thus seek to exploit
an appropriate level of parallelism for which data flow gives the best performance

and execute each of the concurrent processes efficiently by von-Neumann processors.

The difference between the high level data flow approach and the general
multiprocessor approach is in the activation of tasks and the communication between
processes. A data flow task is activated by the arrival of all its arguments and hence
can adjust to runtime-dependent delays in the system. Data flow tasks moreover have

- predecessor-successor relationships with communication solely by arguments and
results of tasks, thus avoiding the idle time and overhead due to synchronization

primitives.

1.2 Language Issues

We now concentrate on the recognition and extraction of parallelism in
programs written in high level languages. Imperative languages like fortran, PL/1
etc. were designed for execution on a von-Neumann uniprocessor mode! and contain
control dependencies for sequencing the program and explicitly use primary memory.

But the execution of an algorithm is constrained only by its data dependencies and

hence the removal of control dependencies would reveal the true parallelism (i.e.,
maximum parallelism) present and would enable us to obtain a fine grain data flow
graph. The detection of statement level parallelism has been studied ({(BERN 66],
[KUCK 81] & [ALLAN 81]) and emphasize transformations to remove control

dependencies.

Partitioning and vectorization compilers which transform programs statically
have been reported ((KUCK 81] & [EL-DESS 81]). The analysis is-very involved
because of the complex scope of variables utilized by programmers who try to
optimize memory and exploit the control sequencing for this purpose. Multiple
nesting of control structures and the use of undisciplined control structures (ex. go-
t0) can make the analysis all the more difficult. Despite the difficulty in writing
optimizing compilers, data flow graphs with some lingering influence of control
structures can be obtained. Taking into account the existing software environment,
compatibility and user familiarity with established programming Iénguages, the -
additional time for compilers to obtain data flow graphs (which may not be very fine
grain or flexible) may be justified. The effectiveness of the vectorization approach is

discussed in [ARNO 82].

An alternative is to provide extensions to imperative languages which would
reduce the complexity of analysis while making the nrogrammer more responsible
for expressing parallelism explicitly. Fork & join, test & set, semaphores, monitors
etc. are explicit high level constructs for the synchronization of concurrent processes.
Constructs like fork & join rely on the programmer for the detection of all

parallelism which 1s burdensome and results in the exploitation of block or procedure

level concurrency only.

Applicative languages (functional languages) ([BACKUS 78] & [ACKE 82})
are based on a programming style which is more naturally suited for concurrency
exploitation. These languages enforce the single assignment rule where the variabies
can be assigned only once. The partitioning and vectorization compiler approach
([KUCK 81] & [EL-DESS 81]) achieves the same property by renaming. Freedom
from side effects ensures that the data dependencies are the same as the sequencing
constraints. Another feature associated with functional languages is the locality of
_effect and definite scope of variables. These properties, which are features of
applicative languages, are the goal of the partitioning compilers for imperative
languages. Partitioning compilers achieve the same functional semantics after

complex and time consuming transformations.

Functional languages facilitate modular construction of programs allowing us
to form tasks consisting of a function of the appropriate size. The partitions formed
can be verified for correctness because of the mathematical properties applicable to
functions. For our purpose we have chosen a functional language (FPL) [LAHTI 81]
based on Backus FP [BACKUS 78], from which a direct translation to a dircctcci

dependence graph can be obtained.

The limitation in the use of functional languages 1s due to its being relatively
new. Simple constructs in imperative languages are sometimes cumbersome to
express in functional languages, and generally functional languages have been found

to be verbose. In addition problems of structure representation and the representation

of explicit parallelism is still open.

1.3 Thesis Qverview

This work secks to demonstrate that data flow principles can be applied at any
level and that it is desirable to exploit an appropriate level of parallelism and not the
lowest level of parallelism using data flow. An approach for the partitioning and

allocation of data flow graphs to execute on a general data flow machine is proposed.

Chapter 2 introduces the programming environment, the model for
partitioning and allocation and the proposed organization of a data flow computer
based on the principles discussed above. The implementation of the system
developed for automatic translation, partitioning and allocation is discussed. In
Chapter 3 the translation of functional programs to data flow graphs is described. The
criterion for reducing parallelism and exploiting the appropriate levelsl of parallelism
is established. We then present a methodology for partitioning data flow graphs.
Chapter 4 is concerned with the algorithm for allocating the partitions to processors
along with a scheme to force an executior order by giving priority to critical paths in
the program. Chapter 5 illustrates our scheme with an example along with the
evaluation of its performance. Finally, Chapter 6 concludes with a summary of our

work and proposes some problems to be investigated.

CHAPTER II

Introduction to the Model

2.1 Assumptions

Our objective in distributing a program over several resources, is to achieve
better performance, i.e., a shorter response time for program execution. The response
time is the time taken to complete execution of a program, and consists of the
processing time, communication time and the task activation overhead. We assume a
deterministic model, where the execution time of instructions, the time taken to
communicate data between two processors and the overhead in the activation of a
task, i.e., the time spent in the pipeline in noncomputational activities, is estimated
apriori. Our approach is in contrast to attempts in reducing response time indirectly
by identifying a dominating parameter influencing response time, such as
interprocessor communication, data structure access or load balancing, and

optimnizing this parameter ((CHOU 82], [IRANTI 82] & [HAES 80)).

The partitioning, and allocation of tasks is done at compile time. Assumptions
are made on the size of the input data structure, run-time dependent structure sizes
and the number of iterations for run time dependent loops. It is our intention to

demonstrate that static partitioning and allocation algorithms are feasible. A static

analysis would also reveal information on data access patterns, which will facilitate
storage of data structures and memory management. Compile time allocation would
make it possible to predict which task is likely to be executed next on a processor,

making code and instruction cache techniques very effective.

Initially a fine grain data flow graph is obtained by a direct translation of
functional programs. We assume the computation graph to have multiple entry nodes
and a single result node. Graphs with multiple result nodes can be converted to this
form by adding a dummy node with arguments from each of the result nodes. The
fine grain data flow graph is reduced by applying a set of rules, to obtain a task
graph. A task consists of a single node which replaces a subgraph in the initial data
flow graph. A task is a complete self contained portion of the computation, which is
started only when all its inputs have arrived. The task is not made to wait for
additional inputs once it has been initiated. Tasks are formed by combining
sequential instructions and by reducing parallelism which cannot ‘be efficiently
exploited. The reduction of parallelism converts the fine grain data flow graph into a
large grain data flow graph. Parallelism which exists within a task is not exploited.
The task graph is a large grain data flow graph with each node representing task

computation, and the arcs between nodes representing communication between tasks.

After obtaining a high level data flow graph, the next step is to map it onto the
data flow computer. The partitioning process groups together tasks, decreasing the
number of items to be allocated, thué reducing the complexity of the allocation.
Partitioning generaly involves a logical division of the program depending on the

structure of the computation. An important criterion for partitioning is the reduction

10

of communication between partitions to avoid congestion and loading of the
intercommunication network, Partitions are indivisible over processing elements and
are the basic unit of allocation. The;refore tasks which communicate can be in the
same partition, but tasks which can be executed concurrently should be in different
partitions. Finally, we do not permit overlapping partitions, i.e., a task can belong to

only one partition in order to avoid execution anomalies and code redundancy.

The allocation process involves the dedication of partitions to limited
resources under constraints imposed by the architecture, in order to minimize the
response time. We do not consider enumerative and optimal allocation algorithms
due to the computational complexity in terms of the space and time as the program
size and the number of processors increases [GAREY 79]). We have “developed
heuristic algorithms for obtaining minimum execution times for a given number of

Processors.

%

A task is not interruptable and once the pfocessor starts executing it, it has to
be completed; but intermediate results can be sent out as they are computed. A data
driven mode of activation is assumed, i.e., a task is executed when all its operands
have arrived. While the data flow mechanism is a control mechanism for sequencing,
it by itself may not lead to optimal execution. It is not always a good policy to
activate tasks as soon as possible, and it is sometunies better to keep a processor idle
even when there are tasks ready [RAMA 72]. This is because a task on a critical path
with much higher priority may become available and will not be able to execute if a
long low priority task is occupying the processor. Further when several tasks are

ready for execution on a processor; tasks on the critical path should be given priority

11

in execution. Hence for minimum response time allocation, a mechanism for the

control of task activation is introduced to favor critical paths in the program. Uniike

the multiprocessor machines, no central control exists for scheduling, and therefore

this control has to be incorporated within the data flow sequencing mechanism. A

poor partitioning and allocation for data flow, unlike von-Neumann multiprocessors,

does not compromise the correctness of the computation, but at most results in larger

response times.

To summarize the assumptions :

1.

We assume that the program is given as a set of tasks in a directed, acyclic
precedence graph with no backward arcs. Task durations and communication

times are known apriori and can be unequal.

A task can be activated only when all its inputs have arrived, but results can be
sent out as they are computed. Tasks are not interruptible, and once the execution

of a task begins, it proceeds till completion.

In a data flow model if more than one task has been activated in a processor then
any one of the activated tasks can be executed next. There is no mechanism like

the program counter which orders task execution.

The partitioning and allocation is dcre at compile time (static allocation) for a

system with »n identical processors. The partitioning step groups together tasks

into partitions. Partitions are indivisible over processors and are the basic unit of

allocation.

5. The performance criterion which is optimized is the minimization of response
time (completion time) while keeping the number of processors required

minimum.

2.2 Architecture Model

The targetted architecture consists of a number of identical processing
eléments, which communicate with every other processing element (PE) through an
asynchronous communication network. Each PE in the system communicates with
every other]::’E, and the time taken to communicate a token between one processing
element and the input buffer of another processing element is the same. A token is a
packet carrying data and the destination task address. Each processing element
contains a high performance von-Neumann processor and local storage where tasks
are preloaded at compile time. The von-Neumann processor in the system is capable
of executing a task independently, and uses its accumulator, registers and local
memory to store intermediate results. Our partitioning and allocation model utilizes
timing parameters from the architecture, and is applicable irrespective of the

organization of the processing elements. Figure 2.1 illustrates the data flow

multiprocessor architecture to the detail necessary for our model.

We now describe an architecture of a dataflow multiprocessor. The
partitioning and allocation algorithms are not limited to this architecture but can be
applied to any architecture which has processors capable of executing tasks and

which enforces the data flow activation mechanism.

13

PE,

PE,

PE; Network

PE,

Figure 2.1 : General Data Flow Multiprocessor

The architecture consists of a number of high performance processing
elements (PE’s), each connected to the others by a broadcast bus. A token from a
PE, which contains the result of the execution of a task is broadcast to all the other

PE's (Figure 2.2) and selectively accepted by the destination PE. The communication

14

mechanism between processing elements (PE's) is chosen so as to make the
architecture easily expandable, i.e., the addition of a PE does not involve any change
in the existing communication buses but just the addition of a new broadcast bus.
Data between PE’s is communicated through tokens. Each token additionally carries
a unique identifier of the destination task. A task is enabled when all its input tokens
have arrived. The task is executed and produces result tokens which are broadcast on
the output bus and are utilized by the appropriate PE. The PE which houses the task
specified by the destination task address in the token will pick up the token and

process it.

PE, PE, | ... PE; ... | PE,

Figure 2.2 : Processing Elements Connscted by Broadcast Buses

A functional description of a processing element consisting of a high
performance von-Neumann processor 1s shown in Figure 2.3. The filter section

services the input queues, and accepts or rejects a token by matching the task id. on

»

the token and the tasks present in that PE. The data value of the accepted token is
stored in a data memory. The data store is also responsible for accessing arrays and
structures from a structure memory when the address is passed in the token. The task
identifier from the accepted token also is sent to a waiting matching section which
keeps track of the number of arguments arrived, and compares it with the number of
arguments necessary for the activation of that particular task. If a task is ready for
activation then the task id is passed to the task fetch unit and the execution unit. The
execution unit fetches the data into local registers, and executes the task code using
local registers and memory. The output section tags each of the results with the
appropriate result task identifier number, and broadcasts them on the bus. Overlap
between the stages of the pipeline, and the use of multiple functional units for each

stage will speed up the PE.

A detailed description of a multiprocessor data flow architecture discussed

above is given in ({ERCE 84] & [CHAN 84]).

2.3 Programming Environment

Programs are written in Functional Programming Language (FPL), which is
suitable for the exploitation of low level concurrency. FPL is based on the functional
language (FP) proposed by Backus 'BACKUS 78]. The syntax used is slightly
different, and some commonly used functions have been implemented as primitive
functions. More details on the environment ¢an be found in [BADE 83)] and [LAHTI

81].

16

-
P

- -

Filter Section

]

Waiting-Matching Section

Btrucy

Store

Data/structure
Store Section

The Functional Programming Language (FPL) consists of objects, primitive
functions, functional forms, user defined functions and an operator which is
application {:). Objects can be a single atom such as a character, integer or null

object; a list of objects or an error symbol - bottom (?). Functions are applied to

L

l

Task-Fetch Section

- -

Daa
* j Processor /.
Memory /

Program

Output Section

Figure 2.3 : Individual Processing Element

17

Memory

objects to produce result objects. A simple description of primitive functions is given
in Table 2.1. A functional form is an expression with other functions and objects as
parameters. Functional forms combine functions to form new functions. The

following are the functional forms in FPL.

1. Composition

CM(f,g): x =f: «g: x>

2. Construction
[f.g,h]: x = <f: x, g x, h: x>
3. Condition
IF (f,g,h):x =
g: x (if f: x is True)
h: x (if f: x is False)
4. Constant
Ky: x Ey
5. Insert
INfr<x x0x3..x,>=f <, INfi<xpx3 x>
6. Associative Insert

Alfix=

[

)

f: <AIf:<.x1,x2---x[T,Alf:cx(ﬂ LT Xy D>
+1

7. Apply-to-all

18

AP f: x = <fixy, £ x2, e f1 X0 >

A definition is used to name large functions formed by combining smaller
functions. Thus an entire program in FPL is just a single function built from

primitive, user defined functions and functional forms.

19

T Table 2.1: Primitives Functions of FPL
Function Description
SLk Selects the k'th element of a vector
PK Picks the k’th element of a vector
D Identity
TL Tail of a vector
FR Front of a vector
LA Last object of a vector
IX Integers from lton
AT True if object is an atom
NL True if null sequence
LN Length of vector
+ Integer add
- Integer subtract
* Integer multiply
/ Integer divide
#+ Floating Point add
#- Floating Point subtract
#* Floating Point multiply
#/ Floating Point divide
#SIN Sin(y)
#COS Cos(y)
#TAN Tan(y)
#EXP | Exponential
#POW Power
#LOG Logarithm
#SQRT | Square root
&,l,! Logical And, Or and Not
TR Transpose
EQ True if equal
GT Trueif x>y
LT Trueif x <y
DL Distribute left
DR Distribute right
AL Append left
AR Append right
CT Concatenate vectors to form one vector
SP Splits vectors into halves
PR Forms vector into vector of pairs
CL.CR Circular rotation to left and right
RV Reverses order of elements in a vector

CHAPTER III

Program Decomposition and Partitioning

3.1 Overview

In this chapter we discuss how data flow graphs are obtained from high level
language programs and then partitioned. Functional programs are initally
decomposed into a structured program graph containing primitives, user defined
functions and functional forms. The functional forms are resolved by replacing them
by an appropriate execution model. By symbolic interpretation the structured
program graph is transformed to a fine grain data flow graph, with user defined
functions and functional forms replaced by primitives. The fine grain data flow graph
is reduced to a task level data flow graph based on processing time and
communication time criterion for achieving better response times, assuming we have
a system with limited resources. The data flow graph is grouped together into
partitions based on the critical paths in the p.ogram. The timing and associated
parameters of the partitions capture the necessary information for a combinatorial

solution of the allocation probiem.

21

3.2 Graph Generation

The FPL program is a function formed by combining smaller functions using
functional forms. It is initially parsed into an intermediate level representation [FELL
81] - Complete Decomposition Form (CDF) [ERCE 83, LU 84]. This is done by
scanning the program for the Compose (CM) functional form which reflects the
sequential dependencies between functions. This information is used to decompose
thé program into an instruction (FPL primitive, functional form or user defined
function) level representation with dependency information. Some preliminary
transformations are performed on the CDF representation to make program execution

more efficient [LU 84].

The data driven CDF code is converted to a directed program graph where the
nodes represent high level (FPL) program constructs and the arcs represent the
dependencies. The target machine language is an inst.ructit_?n set ‘consisting of
primitive functions of FPL along with some additional insu:uctions necessary to
support the execution. Additional instructions like lisz and unlist to be discussed in
Sec. 3.6 are provided for structure handling. The high level operations are directly
supported by the architecture and are implemented as instructions or subroutine calls.
The high level constructs of the machine language differ from the FPL constructs in
that application (:} is not strict. A function does not have to be applied to a singic
object as in FPL but can have more-than one input. Non-arithmetic operations like
construct (CN), select (SL), pick (PK), tail (TL} etc. which manipulate data structures

are retained during the partitioning stage and can be resolved if necessary after the

partitions have been formed. Structure operations are necessary if the vector nature of

functional forms like apply-to-ail is to be exploited by a pipelined processor, or if we

seek to unfold the functional forms to a limited extent for execution efficiency.

An alternate approach [CHAN 84, ERCE 84a] is to resolve all (except pick,
and conditionals depending on the value of an object) the routing and control
constructs by symbolic interpretation. The effect of resolving all the non-arithmetic
functions like selecr, comstruct etc. is to decompose the vectors and treat each
element of the vector as a scalar. Resolving the functional forms causes a large
amount of replication of code, because the number of copies of code will be equal to
the number of elements in the object to which the functional form is applied. By
resolving all the functional forms and structure manipulation functions, much of the
information required to systematically group together code (when resources are

restricted and maximum parallelism cannot be exploited) is lost.

We choose not to unravel functional forms initially to prevent code
replication, facilitate the formation of partitions, and for data locality. The structured
program graph obtained is hierarchical and consists of primitive functions, functional
forms and user defined functions. Functional forms like associative insert (Al), insert
(IN) and apply-to-all (AP) are represented as macronodes with a pointer to the graph
of the function being applied or inserted. As functional forms can be used for
combining other functional forms, the entire program graph can conuun several
nested subgraphs which can be accessed by traversing the pointers. Figure 3.1
illustrates the graph of the function to calculate the sum of the square of the

deviances.

SumDevSq =3 (yi=y,)‘.’

The FPL function for the graph is:

CM(AI+, APCM(*, [ID, ID]), AP-, TR)

Main Graph Auxiliary Graphs

Figure 3.1 : Hierarchical Program Graph

Example
The translation of a functional program into a program graph is illustrated by

an example. The function f (x y=x3+4x2+x+2 can be written in FPL as:

*CONSTANT™
D=K20;

24

FUNCTION/

CubX = CM(*, [SqX, ID));
SqX = CM(#POW, {ID, K2]);

MAIN/
main = CM(#+, [CM(#+, [CubX, CM(#*, [B, SqX])]), CM(#+, [ID, DD);

]

The FPL program is parsed into the corresponding CDF form. The order of
the functions in the CDF code is strictly according to precedence, i.e., the inputs to a
function at any line are evaluated at previous lines. The corresponding CDF code in

data driven form is given below. The primitives are explained in Table 2.1.

f11:ID.

f12 : K2

f10 : CN f11 f12
f8 : #POW {10
f9:1ID.
f7:CNf819
f§:*¢7

f14 : K4.0

f13: CNf14 18
f6 : #* f13

f4 : CN f5 f6

f2: #+ f4

f17 : ID.

f18 : K2.0

f16 : CN f17 f18
f3: #+ f16
fl1:CNf213
fQ: #+ f1

The graph corresponding to this program is shown in Figure 3.2. The primitives used

in the nodes of the graph correspond to the FPL functions in the program.

As functional forms manipulate functions rather than values, an execution

model for each functional form has to be specified. In Section 3.6 the resolution of

2
tn

Figure 3.2 : Graph for Polynomial Function

functional forms [F, Al, IN, AP are discussed. In this study we assume that the data

flow graphs have no loops or branches.

After obtaining an intermediate level code (CDF) from the FPL program it is
translated into a graph with multiple levels of nesting corresponding to functionai

forms. Symbolic interpretation (Section 3.4) determines the size of data paths in the

26

begin

. revedf {obrain data driven cdf code}

. hierarchical-graph-generation(graph,nesting)
. symbolic-interpretation

. for i:=1 to nesting do assigntime(graph)

. fori:r=1 to nesting do graph-reduction

. Resolve-IN

. Resolve-Al

. Resolve-AP

. graph-reduction

_ﬁ-ﬂooouo\uiaumw

en

Figure 3.3 : Graph Generation

program. It also provides information for the resolution of functional forms. Now we
are ready to assign processing times and communication times to each of the nodes in
the main graph and the nested graphs. Before the resolution of functional forms, we
reduce each of the nested graphs. Graph reduction is discussed in Section 3.5. The
nested graphs are reduced in order to get an accurate estimate of the critical paths of
the nested functions, which will determine what degree of paralielism can be
extracted efficiently. The functional forms are now resolved (Section 3.6) and a
single directed graph is obtained. This graph is reduced to obtain the final data flow

graph.

The steps involved in the generation of a large grain data row graph are

shown in Figure 3.3.

3.3 Assignment of Time & Longest Path Calculation

Each node in the program graph contains information on the procussing time
(t5) of the node and the communication time (%) of its results. £, is the time to to
execute an instruction and is expressed in number of cycles. The instructions are
assigned different processing times based on an estimate of their execution times.
Instructions like front (FR), last (LA), pick (PA), construct (CN), select (SL), identiry
(ID) and tail (TL) are estimated to take only a small fraction of the time taken by

other instructions.

The communication time (r.) is the sum of the time taken to communicate a
token between two processing elements and the activation overhead of the processing
element. We assume that a token can be communicated to another PE in a fixed
number of cycles, and is independent of the position or distance from other
processors. The activation overhead is the time taken by.“ the non-computational
stages of the pipeline, like the filter section, waiting-matching section, task fetch
section and the output section. Tokens may carry a data value or a structure address.
The communication time depends on the the number of data values being sent. We
model the communication time as
Cre=0n+
where
o represents the overhead factor due to the size of the data structure
n is an indication of the no. of elements in the object

B is a constant factor depending on the architecture.

Associated with each node (i) is the longest path (/p;), which is the total ume
of the longest path to the top of the graph. The longest path of a node is the minimum
possible time at which the results from that node will be available. When a node has

several results then we associate a single communication time 7, with it.

The algorithm to calculate the longest path of a node is:

1. If the node (i) is on the top of the graph, i.e., it has no arguments then lp; =
rPi+[Ci
2. Else Ip; = Max (longest path of argument nodes) +t, +i.,.

3.4 Symbolic Interpretation

The number of elements of data sent from a node, is a factor in the calculation
of the communication time (z.). Symbolic interpretation of the input dz;ta structure is
used to obtain the structure and number of elements in the data object corresponding
to each arc in the graph. The number of elements in the data object may be run-time

dependent where worst case estimates of the size are made.

The input data structure is assumed to be symbolic, where the structure of the
input data is accurately captured, but the actual values are represented by data.
Corresponding to each FPL primitive, a definition relates the structure of the input to
the output structure. The graph is traversed node by node, with the nodes having no
arguments taking the program’s symbolic input as their input structure. (The

Constant (K) is an exception.) From the symbolic function definition of each node

the output structure and hence the number of elements in an object data (n) is

obtained.

The symb'olic interpretation of the program to evaluate the size of the
structures makes a conservative estimate when run time dependencies determine
structure sizes. Worst case estimates are made for the conditional (IF) forms. When
functional forms like insert (IN) and apply-to-all (AP) are encountered then each of
the elements of the input structure is examined. If they are uniform, i.e., each element
has the same structure, then the nested graph (the function being applied or inserted)
has to be applied to only one of the elements of the input to the functional form. The
output structure of the functional form can be constructed by replicating the output
from a single element of the input. If the input structure to the functional form is not
uniform i.e. the elements of the input do not have a similar structure, then the nested

graph has to be repeatedly applied to each element of the input structure.

Example

Consider the function: SumDevSq =3 (y;—y;)2 whose data flow graph is
illustrated in Figure 3.1.

The FPL function for the graph is:
CM(Al+, APCM(*, [ID, ID]), AP-, TR)

The symbolic input to the program is assumed to be:

((x, x, X, x), (x, X, X, XJ)

30

2

Datasize=2
{(x,,%,X),{X,X,X,X)

(x)

Main Graph Auxiliary Graphs

Fizure 3.4 : Symbolic Interpretation of Hierarchical Graph

The application of Transpose (TR) to the input gives:

((x, x), (x, x), (x, x), (X, X))

Applyv-to-cil - (AP-) gives: (X, X, X, X)
This is constructed by obtaining x as the output o (x, x) and replicating it four

times.

31

3. Apply-to-all CM(*, [[D, ID]) gives:
(x, X, X, X)
This is obtained by taking a single element x from the input 10 this function and
applying the nested graph to this input.
CM(*, (ID, ID]):x
=*:[x, x]
=% (x, x)

=X

4. Finally Al+ of the input (x, X, X, X) gives:

x as the result.

Figure 3.4 shows the graph of Figure 3.1 with the arcs marked by the no. of
elements in the object being communicated. The no. of elements in the object is

considered to be the number of elements in the first level of the structure.

The graph of Figure 3.2 is shown in Figure 3.5 with processing and
communication times of each node listed in the node and on the arcs respectively.
For the calculating the communication time, we take & = 0.2 and B = 1. The no. of
elements in the data object (n) for each arc is determined from the symbolic
iwerpretation of the input (in this case (x)). Each node is placed on a level, with the
nodes without arguments on level 0, and the root node on the highest level. The level -

of a node is one more than the maximum level of its arguments.

Figure 3.5 : Polynomial Function Graph with Timing Parameters

3.5 Graph Reduction

In s section the algorithm for graph reduction is presented, and its

application to the program graph is described in the next section.

The fine grain data flow graph is reduced to a task graph, in order to

efficiendy utilize the parallelism present. By applying a set of rules, subgraphs in the

33

data flow graph are replaced by a single node. The principal criterion for lumping
together instructions into a single task is the minimization of the response time for

the corresponding subgraph.

The graph reduction algorithm consists of two steps - in the first step
sequential nodes are combined together, and in the second step parallelism which

cannot be efficiently exploited is reduced.

3.5.1 Combination of Sequential Nodes

When each sequential instruction is activated and executed separately in 2
processor, each of them will have to bear the activation overhead of going through
the data flow mechanisms like filter section, waiting-matching section, task
(instruction) fetch section etc. which account for a large fraction of the
communication time. This will be the case even if the instructions are allocated to the
same processor. This overhead present in fine grain data flow execution is
unnecessary, as no time can be gained by the activation and execution of these

sequential instructions one at a time.

Sequentially ordered nodes which have a single argument arc (which may be
a -‘ngle value or a structure), and a single result arc, can be combined together into a

single node, saving the communication time between them.

Fieure 3.6a shows a subgraph which can be reduced to the graph of Figure

3.6b by the combination of sequential nodes. In Figure 3.7 when nodes 1 and 2 are

34

'

(a) (b)

Figure 3.6: Sequential Reduction

combined to 1, the resulting processing time of 1 is the sum of the processing times

of nodes 1 and 2, i.e.,

tp; =lp,Tip,

The communication time of node 1 (t.;) is the same as the communication
time of node 2 (r.,). The result of instruction 1 is used immediately as the input for
instruction 2 in node 1’, saving the communication time between 1 and 2. By

reducing the sequential nodes in the graph (Figure 3.7) the response time reduces

from 12 to 10 cycles.

Figure 3.7 ;: Combination of Nodes 1 & 2

When sequential nodes are lumped together, a single activation results in the
execution of all the nodes contained in the new node, avoiding the overhead of

individual activation for each of the nodes.

3.5.2 Reduction of Paralletism

When the delay incurred due to interprocessor communication and activation
overhead exceeds the gain in time due to concurrent execution, it is no longer
justifiable to distribute the nodes over several processors. That is, when the response
time of a subgraph executed sequentially in a single processor is less than or equal to
the response time when executed concurrently, then the nodes are reduced and

executed sequentially.

36

The condition for combining a node with its predecessor nodes is:

Z!parg,-smiax(rparg;"'[carg,-)
t

where ¢

parg 18 the processing time of a predecessor node

lecarg 18 the communication time of a predecessor node and

iranges from 1 to the number of predecessors (narg) of the node under consideration.

When this condition is satisfied then the node and its predecessor nodes are

lumped together into a single node.

This step is illustrated in Figure 3.8. Figure 3.8a is a subgraph where the
nodes are separated in order to take advantage of the parallelism, while in Figure
3.8b the nodes 1, 2 and 3 have been lumped together into 1. The processing time of
the node 1 is equal to the sum of the processing time of the node under consideration
and its predecessor nodes. In Figure 3.8b program code of nodes 1, 2 and 3 are
executed sequentially. Therefore,

Ipi =lp Flpatlp,
The predecessors of the new node consists of all the predecessors of the predecessor

nodes of the node being considered.

In the subgraph of Figure 3.8a, node 1 can execute only after the results from
node 2 and 3 have arrived. If nodes 2 and 3 are activated at the same time then the
result from node 2 will arrive after 12 cycles and the result from node 3 will arrive
after 14 cycles. Node | fires at 14 units of time and the result from node ! is ready
for transmission after 24 cycles. In the sequential case the result is available after 21

cycles although the parailelism of the graph is reduced.

37

L

(b)

Figure 3.8 : Reduction of Parallelism

An algorithm to obtain variable resolution data flow graphs depending on the

processing time and communication times of nodes is shown in Figure 3.9.

The systematic reduction of parallelism in order to efficiently utilize the

parallelism, is based on tocal decisions at each node. The parallelism reduction

criterion lumps together a node and its arguments without consideration of actually
when the arguments are activated. By doing so the critical path of the program may

after graph reduction contain some lumped nodes thus extending the longest path.

Hence the parallelism reduction criterion is only a heuristic.

Under limited resource constraints, much of the overhead caused in managing

an unexploitzble degree of fine grain parallelism, is avoided by graph reduction.

Further, allocation which is a polynomial time process takes far less time as smaller

procedure compress (i:typenode);

{This recursive procedure lumps a node and its argument node
together, depending on the processing time and communication
time. Each node has the fields; argument (arg), no. of

arguments (narg), funct (function code, processing time (proctime)
and communication time (commtime). }

begin
with node[i] do
if narg > 0 then
begin
- {test condition}
seqtime:=0; partime:=0;
fork:=1 to narg
begin
seqtime:=seqtime + node[arg{i]]. proctime;
if (node{arg[k]].proctime + nodefarg{k]].commtime)
> partime then
partime := node{arg(k]].proctime + nodef{arg(i]).commtime;
end;
if partime -seqtime < 0 then
{condition for reduction of parallelism is not true}
for k:=1 to narg do compress(k);
else begin
{condition is true}
copy the code in each of the arguments to node[i].funct
node{i).proctime := seqtime;
node[i].narg := sum of the narg of each of the arguments
of node(i]
arsuments of new node := arguments of all nodes combined
with nodefi}
remove the old argument nodes from graph
compress(i);
end;
end; {compress}

procedure reduction (G:typegraph); :

{This procedure increases the grain size of the data flow graph (G) so
that it can be etficientiy executed. Starting at the root node, nodes
are combined with. its arguments.}

begin
compress(Root{(G));
end; {reduction}

Figure 3.9 : Variable Resolution Graph Reduction

-

number of nodes need to be allocated.

3.6 Resolution of Functional Forms

We now explore the application of the algorithm discussed in the previous
section to the structured program graph obtained in Section 3.2. The nested program
graph obtained from translating the FPL program consists of a main graph and
auxiliary graphs representing functions combined by functional forms. The nodes
representing forms like A/, IN and AP are similar to subroutines in imperative
languages. Initially the graph reduction algorithm is applied to the main graph and
each of the auxiliary graphs linked to it. The nodes representing functional forms are
prevented from being lumped with other nodes because we intend to substitute
graphs for the nodes at a later stage. The auxiliary graphs which are nested in the
main graph are also reduced before substitution in order to get actual estimates of the

time taken by the nested subgraph.

We unfold the functional form and specify a model for the efficient execution
of the functional forms. A vector object consists of several elements to which the
same function is applied. Our analysis assumes that scalar processors are used in the
architecture, and hence elements of the vector have to be separated into individual

scalar objects or else the vector has to be executed sequentiaily element by element.

The conditional (IF) functional form in FPL consists of the application of one
of two functions on the data object depending on the boolean result of the condition

tested. That 1s,

40

IF (pfg8):x

rewrns frxif pixisT;
returns g:x if pox is F;

else returns ?

We can implement this functional form with a data flow graph in two possible ways.
In the first model (Figure 3.10a) the /F is merely a selector. Both branches of the
conditional are evaluated as soon as possible and the /F acts like the merge actor. In
this model the condition function, as well as the true and false branch functions are

evaluated concurrently.

The model performs poorly when the true and false paths differ very much in
length, and the shorter path is selected by the condition function. The /F node will
have to wait, till the longer path is evaluated. A solution is to alter the firing rule for
the /F node. The /F node can be made to fire if the boolean token and the result token

! Y
from the branch corresponding to the condition have arrived; without havir;g to wait
for the token which is not going to be selected. The other disadvantage of this model
is that a large amount of unnecessary computation will be performed, and may also
result in the propagation of "botroms” (undefined tokens). Propagation of "botroms”
occurs when one of the functions (f or g) when applied to the data object, causes a
bottom to be generated because it is not the function selected. An important
difference in the semantics of the high level machine instructions and the the FPL
functions is that the high level constructs are not bottom preserving [BACKUS 78],

i.e., sequences are permitted to have bottoms (?) as elements. Hence the semantics of

our model permits bortoms as ¢lements in order to permit the two branches as well as

41

(a) (®)

Figure 3.10 : Models for Conditionals (IF)
the boolean condition to be evaluated concurrently.

The alternate choice for implementing the conditional functional form 1s a
demand driven model (Figure 3.10b) which executes the chosen branch after the
condition testing function has been evaluated. While restricting the parallelism that
can be exploited this model avoids unnecessary computation and the propagation of
"bortoms" (undefined tokens). In our impl>mentation we chos~ the first approach

(Figure 3.10a) because the data driven model is consistent with our overall approach. |

<<<0,0,0>,<0,0,l;;>,<<0.1 ,0>,<0,1,13>,<<1,0,0>,<1,0,1>>>

<<0,0,0>,<0,0,1>> <<0,1,0>,<0,1,1>> <<1,0,0>,<1,0,1>>

Figure 3.11 : The Uniist Function

Two new instructions are introduced for building and decomposing
structures. The wnlist instruction (Figure 3.11) separates the elements of a vector.
The lisz function which is similar to the implementation of concatenate, builds a

single vector from the argument elements (Figure 3.12).

Initially the insers (IN} and associative insert (Al) nodes are replaced by the
corresponding subgraphs in the main graph and the auxiliary graphs. The associative
insert (Af) is implemented as a binary tree (Figure 3.13). The number of data
elements (n} in the struc-ture to which the A7 is applied tc;, is known beforehand from
the analysis of the data sizes. The graph pointed to by the node Al is replicated n-1
times, assuming two input nodes. and is then connected to a binary structure. The
inputs to the n-1 copies come from the unlist function, which separates the structures
so that they can be concurrently operated upon. The macronode A/ is substituted by
the subgraph formed from the unlisz function and the (n-1) copies of the graph

pointed to by the A/ node.

43

<a> <C> <d>
<a,b,c,d>

Figure 3.12 : The List Function

The insert (IN) functional form recursively applies the function to the input
sequence. Figure 3.14 shows how the functional form is executed. The node /N in the
graph is replaced by a function /N+ which applies + to the input structure
sequentially. The processing time of the new node is (n-1) times the processing time

of the function applied, where n is the number of elements in the input structure.

Finally we resolve the apply-to-all form which applies the function to every
element of the input structure. This functional form is frequently used to express
parallelism in functional programs and similar to the unfoldable loops of imperative
programs. Our first step 15 to apply high level transformations on the program graph.
Optim'ization based on the algebra of programs [ISLAM 81, WADL 81, KIEB 81]
can provide gains in execution time at the cost of the clarity of the program. We

apply the transtormation [LU 84]:

<X X2,X3,04,85>

Figure 3.13 : Resolution of Associative Insert (Al)

AP [f1.f 2, - fa] = CM(TR,[APf | .APf 3, ... APfA])
This has the effect of replacing a single graph for the function being applied with

several simpler graphs (Figure 3.15).

The resolution of the apply-to-all involves a tradeoff between data locality
and concurrent execution. Figure 3.16 presents two models for the execution of the
apply-to-a.!. Ir Figure 3.16a the function f, is applied to the structure <x,x3, ... X, >
sequentially. If there are n elements in the structure, and each function evaluation
takes a single cycle then the response time will be n cycles. There will be no

replication of code in this case and the structure does not have to be decomposed.

45

<X 1X2-83,84,X5>

-0

Figure 3.14 : Resolution of Insert (IN)

In Figure 3.16b the functional form is completely unfolded, with as many
copies of the function as there are elements in the structure. For example, assuming
t.=5 and 1, =1 cycle for the functions in the graph, the best case response time for the

functional form is 13 cycles.

When the functional form is completely unfolded it is clear that if the number
of processors available is smaller than the number of data elements in the structure
then the nodes will not be executed concurrently and the optimal response time (13
cycles in our example) will not be achieved. Therefore, when the number of ciements

in the structure exceeds the number of processing elements available, it is no longer

46

Figure 3.15 : Functional Transformation

(b)

(a)
Figure 3.16 : Models for the Execution of Apply-to-All (AP)

47

worthwhile to expand the AP completely. Instead we unfold the functional form to
the extent to which it can be efficiently executed. An additional parameter which we
utilize is the degree of concurrency (k) exploited from apply-to-ﬁll’s. The structure is
decomposed into k parts and each part is executed sequentially (Figure 3.17). For

example, if a=0.1 and B=5 (where t.=ctn+P) then ¢, in Figure 3.17 will be

(5+7:—*0.1) and the execution time for the functional form will be

2(S+~3~ *0.1)+-;i+2 cycles.

'

Figure 3.17 : Limited Expansion of Apply-to-All (AP)

In our implementation we compare the execution time of the sequential model

with the restricted unfolding model and replace the functional form in the graph with

48

the more efficient subgraph. As an example, when there are thirty elements in the

structure (n=30) and the maximum degree of concurrency is four (k=4) then the
execution time achieved from each of the two models (Figure 3.16a and 3.17) will be
30 and 21 cycles respectively. In this case the model exploiting limited concurrency
is used. But with ten elements in the structure and the same maximum degree of
concurrency, the execution times are 10 and 15 cycles respectively. Hence the
subgraph to replace the macronode will depend on the maximum degree of
concurrency to be exploited, the processing time of functions, and the

communication time between instructions.

The functional forms are resolved hierarchically - the nested forms first and
then the functional forms in the main graph. After each macronode is substituted by a
subgraph the link to the auxiliary function graph is removed. The longest path (fp;)
of the nodes (i) in a graph are recomputed after any modification to that g;'aph. The
longest path of the root node is the processing time of the function represented by

that graph.

When all the functional forms are resolved we obtain a single, directed data
flow graph. Each node is a task containing a high level FPL function which is to be
sequentially executed; and is self contained and complete. The arguments and results

of the nodes specify the linking information between the tasks.

49

3.7 Partitioning

The partitioning problem we consider here is to group together tasks in order
to reduce the complexity of allocation [MAR 79]. By introducing the partitioning
step the number of groups {which will now be partitions instead of tasks) that have to
be allocated, will decrease. An important criterion for the partitioning algorithm is
that grouping together tasks should not adversely affect the performance or the

allocation.

The partitioning algorithm is based on the critical paths in the data flow
graphs. The critical path of a node (i) is the longest path (/p;) from the node to the
entry nodes on the top of the grapli. The tasks on the longest paths are kept in one
partition so that critical paths can be given priority during allocation. The longest
path (Ip;) of each node (i) is the earliest possible time at which the result from that
node will be available. The longest path of the root node is hence the best response
time of the program. Associated with each node (i) in the graph is a field longest parh
(Ip;), and the critical path from a node is traversed by comparing the longest paths of

the predecessor nodes, and going to the node which has the maximum longest parh.

Starting at the root node the critical path of the directed acyclic graph IS
traversed and each node that is visited is placed in the first partition. If there is more
than one critical path, then one of them is chosen arbitrarily. The nodes placed in the
partition are marked as assigned. Now we consider the latest node assigned to a
partition and examine its other paths along different edges. We traverse the next

longest path along a different edge from the assigned node under consideration and

procedure traverse (i:typenode, p:inieger);

{This recursive procedure traverses the longest path ({p;) to
the top of the graph from node(i] and places all the
nodes traversed but not yet assigned, 1o a new partition}

begin
partition(p) - i;
if node{i] has predecessors then
begin
find the predecessor node (k) with the maximum longest path
traverse(k,p);
for every other predecessor (j) of node[i]
begin
if j # k then
begin
pi=p+1;
traverse(j,p);
end;
end;
end;
remove nodefi] from graph
end; {traverse}

procedure partition;

{This procedure partitions an acyclic directed graph G}

begin
{initialize partition no. for first partition}
p:=1; .
{traverse the critical paths beginning with the root node}
traverse(root(G),p);

end; {partition}

Figure 3.18 : Graph Partitioning

place all nodes on this path which have not yet been assigned to a new partition. This
step is repeated for each edge of the assigned node under consideration, in decreasing
order of path length. Each assigned node is examined in the reverse order in which
they were assigned, until all the nodes in the graph have been assigned to a partition.
This algorithm will ensure that every connected node is assigned to a partition, and

that no node will be assigned to more than one partition.

The algorithm for partitioning a graph is described in Figure 3.18. The
partitioning of the graph of Figure 3.19 is demonstrated in Figure 3.20. In Figure
3.19 node numbers are listed beside the node, processing time inside the node and
communication times on the arcs. In Figure 3.20 the time for the longest path
(Section 3.3) of each node is shown beside the node. Note that the longest path (Ip;)
of a node includes the time to communicate to its successors. The partitions are

labeiled in the order they are formed.

Associated with a partition are several timing parameters [LANG 77]
obtained from the longest path time information in the graph. We associate various
timing parameters with the partitions in order to capture the timing characteristics of
the program graph. In the next chapter we will use this abstract mode! of the progrﬁm

graph, for allocation based on deadline constraints.

The completion time (T.q,,), of each partition is the time by which the result
from the last task in that partition should be available in order to achieve minimum
response time execution of the graph. The deadline (T,) is the completion time of the

partition containing the longest path in the graph. The deadline (Tz) 15 the minimum

tn
]

Figure 3.19* Labelled Graph with Processing and Communication time

response time for the program graph. During the executon, if the completion ume
for any partition is not met, then the deadline will not be met. The T, for a
partition is calculated by going to the result of the highest level node of the partition,
i.e., the result of the last task in the partition. That is,

(Tmax)paﬂi:ion = (Ip, =y, ~lc,)

where r is the result node of the highest level (Section 3.4) node in the partition.

If the highest level node of the partition has several result nodes, then

T = AMinimum Ip. —t. —r.).
MAX ™ a1l res nodesir) (P’ O ::,)

n
(98]

For example the T may for partition 4 in Figure 3.20 is (/p 19=1p.s~1c) for nOCE
19 (refer Figure 3.19), which 1s equal to 35 - 3 - 2 = 30 time uniis. Another
interpretation of T g 1S that it is the maximum longest path of all the predecessors of
the result node of the highest level node of the partition. Hence, the T max of partition

4 is the maximum of the longest paths of nodes 13, 17 and 18 which is 30 time units.

The earliest initiation time (Tgy) is the time at which the execution of the
partition can begin. The earliest initiation time (Tgr) is specified by its bounds, Tgy

and ’E;

If the partition extends to the top of the graph i.e. it has a node at level O, then
it can begin execution at t=0, as the input to the program is available initially. In this
case Lgi=ﬁ;=0. But if the initiation of a partition depends on the result of a previous
partition, then the earliest initiation time will reflect the flexibility of execution of the
previous partition. Hence Tg; is the earliest time when all the inputs to the first node
in the partition can arrive; and FE is the latest time when the inputs to the first node
arrive.

We can compute T_ﬂ :
I_{;l = (lpk“fp;—tci)
where k is the lowest level node of the partition This is equivalent to defining (_TE_I)

as:

1. If the lowest level node in the partition is at level O, then Tgy = 0

[R

Else Tr; = Max (longest path of predecessor nodes) of the lowest level node

-

Levels

| AR
longest path { Ip)\=3.K 4
=2 ‘

Figure 3.20 : Partitioning of Data Flow Graph
in the partition.
The upper bound (?;) is:

1. If the lowest level node in the partition is at level O, then E =0

2. Else it is the latest time when the predecessor partition can delivers its results.

L
tn

Delra (8) of a partition is a parameter such that &= (T . —Tg), where Tg is
the execution time of the partition. If each partition is completed by its completion
time, then the nodes of the partition will never have to wait for predecessors once the
execution of that partition has begun. Hence (8-7?) is the flexibility in starting the

execution of a partition, without violating the deadline.

! 1 9 5 T max=35
[e R

3\ Te=00 3 o |18

4|Tg=(0,0) 5= 4 11 13 T3 ! max=30
5|Tgr=(12,21) 6=21 T ! max=24

6|Tg=(12,21) 8=21) fmax=24

7\ Ter=(0,0) o=12 3 T max=30

8| Tr=(0,0) 8213 —) fmax=20

9| Ter=(0,0) 8=14 = fmax=16

10{Tg;=(0,0) 5=15E ¢ max=16

Figure 3.21 : Gantt Chart

The timing constraints of the partitions can be represented by a2 modified

Gantt chart. The partitions of Figure 3.20 are illustrated in Figure 3.21 with the

timing parameters. T p,y iS the time by which the execution of the partition should be
completed. In Figure 3.21, any shift of a partition to the right of T max will resuit in
non-minimal response times. The partition can be shifted between Tz and 9, i.e., the
partition can be scheduled to start at any time between these two times. The modified
Gantt chart represents the timing parameters associated with partitions in order to

execute the program in minimum time, i.e., by the deadline (T4).

Thus we have obtained an abstract timing model of the FPL program graph
after translation to a dependence graph, graph reduction and partitioning. In the next
chapter we use this abstract timing representation of the program and allocate the

partitions based on deadline constraints.

o

CHAPTER IV

Allocation

4.1 Introduction

Allocation is an attempt to effectively utilize the available processors to
satisfy the processing requirements of a computation. Partitions which were formed
by grouping tasks are assigned to the available processors. The performance
objective is to minimize of the response time. It is assumed that token traffic will be
within acceptable limits so that no additional overhead is incurred due to the
congestion of the intercommunication network. It is also assumed' that storage
capacity of a processor is large enough and will not be a constraint in allocating
partitions to processors. All the processors in the architecture under consideration are

identical in processing capabilities.

In our model we attempt to satisfy the deadline requirement to achieve the
minimum response time and in order to do so, each task has to meet its scheduie. In a
data flow model, tasks can only be allocated to a processor and cannot be
deterministically scheduled. This is because the sequencing is done by the data flow
activation mechanism which activates tasks based on data dependencies alone. In

such circumstances several tasks in a processor may be activated at the same time

and the order of execution chosen is random. This is because unlike the program
counter concept in von-Neumann machines, the order of task execution in cach
processor is not fixed. All tasks which have been activated compete for execution in
the processor, and the outcome is non-deterministic as no priority scheme is
enforced. In order to meet the deadline requirement with the given number of
processors, it may be necessary to give priority to some tasks during execution.
Moreover due to the unequal processing time of tasks, it is sometimes desirable not
to obey the data flow activation mechanism, and execute tasks in an order different
from the order they were activated. This is so that tasks on the critical path can be
given priority in execution. Hence we need an additional scheduling mechanism to

influence program execution.

Task preemption is not permitted due to the assumption that task switching
involves a large amount of overhead. Introduction of priorities for tasks will suit the
purpose of selecting a particular task for execution when several are activated; but
will not allow keeping the processor idle even though tasks are ready. Any separate
mechanism for scheduling will introduce an additional level of control which has to
be implemented in the architecture and is undesirable. Later in this chapter (Section
4.3.4) we present a method of forcing execution in favor of critical paths based on

the introduction of additional dependencies.

The two problems we deal with in this chapter are:

L. Obtain the minimum number of processors, and the corresponding allocation

required to compiete the computation within the deadline, which is the critical

path in the graph.

(R0]

Given the number of processors available, find the minimum response time

and the corresponding allocation for the computation.

We first formulate the allocation problem and then discuss the details of the

allocation algorithm.

4.2 Problem Formulation

Let the program graph be represented by n partitions Sp, Sz ... Sp. Each
partition, as discussed in the previous chapter, is represented by the parameters
(Figure 4.1) earliest initiation time (Tg;), completion time (T qax) and execution time

(Tg=T max—0)-

All the precedence information of the partitions is captured by the timinhg constraints
of the model. The objective is to obtain an allocation {P;}, 1<i<k, given k

processors such that P; = {Setof all j [§; is allocated to processor i}. When the

‘.E!'*H-nﬂ‘:;*!f-li;. T

partitions are allocated to the processors, each processor has similar timing

parameters associated with it.

Initially each parttion is assigned to a processor és in Figure 4.2. The
allocation algorithm reduces the number of processors required by allocating to one
processor partitions assigned to two different processors. This can be achieved if the
partitions when combined together still satisfy the timing constraints. A heuristic

algorithm is developed to solve the problem which is essentially a bin packing

60

..........

— time

Figure 4.1 : Timing Parameters of A Partition

problem with timing constraints.

4.3 Allocation for Minimum Response Time

In this section we discuss an algorithm for allocation of partitions to indefinite
number of processors for execution in minimum time. The algorithm heuristically

reduces the number of processors required for execution in minimum time.

4.3.1 Formation of Groups

[niually partitions P P, --- P, are divided into distinct groups depending
on their position on the time scale in the Gantt chart (Figure 4.3). Partitions which

exhibit temporal locality face similar deadlines and timing constraints, and hence can

61

Deadline

e = - m e e e === = === =
P, 2 | 6 | 8 HE
& L5 |
Ps L3 [7 |

Figure 4.2 : Initial Assignment of a Single Partition to a Processor

be clustered together into a group. This also facilitates the allocation, as groups with
immediate deadlines can be considered first and assigned to processors.

-

Partitions are sorted according to T max, and starting from the smallest Ty,

partitions are placed in group O.

A new group is started if the T p, Of the last partition assigned to the old group is
greater than the § of all the partitions not yet assigned. The critical partition (Sp) 1s

considered separately and is assigned to group 0.

The allocation is done group by group starting with the partitions of Group 0.
The partitions in a group with a larger index are those not required to execute until

later in time.

62

Group 0 |

| Gr. 1 |
Gr. 1

Figure 4.3 : Division of Partitions into Groups

4.3.2 Assignment of Partitions

We can reduce the number of processors by allocating partitions to the same
processor, if the individual partitions in the new processor continue to satisfy their
individual timing constraints. Two partitions can be assigned to a processor if their

results will be available by their respective completion times (T qax)-

Consider the partitions in Figure 4.4, where we attempt to combine partitions

S, and S5 in the processor Pa. As both partitions can be activated at t=0 (i.e., Tg;
N

=(0,0)), their order of execution is random and cannot be predicted. In processor Pa

either task 2 or tasks 3-4 can execute first. If task 2 executes first then partition S5

63

23
.53

Figure 4.4 : Improper Combination of Partitions In a Processor

will complete execution by 1 unit, and S, will finish by 11 units. As 1 is less than
T max,=3» and 11 is less than T pax,=15, hence each of them satisfies its deadline. But
if tasks 3-4 execute first, then partition S, will complete at 10 units, and S4 will be
completed by 11 units. As S3 completes execution at 11 units which is greater than
T max,=23 units, the completion schedule will not be met. We cannot permit S; and 53

to be allocated to the same processor as the deadline constraints are violated.

On the other hand in the Gantt chart of Figure 4.5, partitions 57 and §;3 can be
allocated to the same processor, because whatever order they execute in, they will be

completed by their individual T q,y.

The criterion for allocating a partition S; (§3) with the given partition 5; (S2)

in processor P; (P2) is:

64

20 20

5 15 4 15
S2 3 4 P, 2,3-4

18 419
53

Figure 4.5 : Combination of Partitions into a Processor

L. Tmax,-<Tmax,- (T max;<T max,)
2. - 51'2 7_.'E'_Ij"'(j'.rmx,- -Sj) (622 TEI,+(Tmax3'53))

If both conditions are satisfied then the number of processors can be reduced

as in Figure 4.5. The first condition ensures that the deadline (T;) will be met. If Ty,
= (0,0) then the second condition reduces t0 3:2(T y,y,~33), which is to clieck if the

partition can be packed in the available time slot.

For the new processor the completion time is Ty = T o (T ux,) 1., the
smaller of the two completion times. The new & of the processor is & =

82=(T max,~03). The new earliest initiation time (Tgr) of the processor P, is made

equal to the larger of the initarion times of S+ and §4.

4.3.3 Allocation of Group 0 Partitions

We begin with the partitions of group 0. The parutions are ordered by

increasing T max, and further separated by those with Tg#(0,0), and those with

Tgr=(0,0).
50
S\ |
28 44
32 L |
S u 40
;
16 8
Sa 1’
Ss 25|7cxxxxxx}“’
) 12
S
S 20 30
;
S5 “[eses]
o — Partition under consideration
x — Candidate Partitions

Figure 4.6 : Identification of Candidates for Allocation with Partition Sg

We first choose for allocation a partition with Tg;#(0,0), and of thes partitions one
with minimum T g The partitions which cannot be initiated at the beginning of the
computation are favored, because they have more stringent constraints, which makes
it difficult to allocate them later. This heuristic ensures that partitions whose timing

constraint is more stringent is allocated first.

66

Having chosen a partition we identify all possible candidates which can be
allocated to the same processor. The criterion for candidacy of a partition to be
allocated along with existing partitions in a processor are the same two conditions as
discussed in Section 4.3.2. The identification of candidates is illustrated in Figure

4.6.

Amongst the candidates, some of the partitions are selected for allocation
with the partition under consideration in the processor. The candidates are ordered
according to decreasing execution times of the partitions. The larger partitions are
allocated first, and then as many smaller ones in the order of decreasing partition size
as possible (Figure 4.7). This is because if the smaller partitions are allocated first
then the available time will be split up and fragmented, thus leaving no time slot

large enough for larger partitions.

After considering the partition with Tg;#(0,0) and the minimum T ,,, and
combining other partitions with this partition in a processor, we repeat this process
for the remaining partitions in group 0. Each partition in group O which has not yet
been allocated is considered, in increasing order of their T ;. When the number of
processors required for group O partitions cannot be further reduced then we wiil

have completed allocation of group 0 partitions to processors.

67

50
Sy
28 44
S2
34 40
S5
16 18
Sa
20 30
37
1
28
Ss,56, 53

Figure 4.7 : Combination of Partitions with Sg

4.3.4 Allocation of Remaining Groups

We now examine the partitions of the next yroup. We allocate the partitions

of this group to the existing processors.

68

Tmax,

52 Tmax 2

Figure 4.8 : Allocation of Graph (Figure 4.9a) to 3 processors

The partitions of this group are sorted according to their size (i.e. execution
times). The processors are ordered in decreasing order of their &. The lérgest tasks of
this group are allocated to the processors with the smailest & to get heuristically a
good fit. The criterion for combining partitions with the existing partitions in the
processor are the same two conditions of Section 4.3.2. After we try to fit all the
partitions of the group into slots available in the processors, there may still be some

partitions left in the group which have not yet been allocated.

The attempt to allocate the remaining partitions to the processors illustrates
the problem of forcing schedules in a data flow environment. Consider the situation

shown in Figure 4.8. A strict data flow approach will require three processors to

69

execute the above tasks within the deadline (7). Intuitively, one would expect it to
be possible to allocate task 3 to the processor containing the task 4, as here is a time
slot after task 4 which task 5 can occupy. But we have a probfem here due to the lack
of a specific order of execution in data flow. Both tasks 4 and 5 are activated at the

same time (t=0) and hence can be executed in random order. If task 5 is executed

first, task 4 will be unable to satisfy its completion time.

(a) (b)

----> Pseudo-Dependencies

Figure 4.9 : Introduction of Pseudo-Dependencies in Graph

We note that task 5 is activated much before its results are needed. To force
an order of execution in data flow we introduce pseudo-dependencies between tasks.
Pseudo-dependencies are additional dependencies which are introduced in the graph.

Just as data dependencies in the graph are implemented by the use of data tokens,

70

similarly the pseudo-dependencies are enforced by control tokens. Control tokens are

similar to data tokens except they do not contain any data values.

Tmax

3 Tmaxy + (Tmaxs = 83)

Figure 4.10 : Allocation of Graph (Figure 4.9b) to 2 processors

The graph of Figure 4.9a can be transformed by adding a pseudo-dependency
between nodes 4 and 5 (Figure 4.9b). This graph can now be allocated to two
processors (Figure 4.10), compared to three processors required for the graph of

Figure 4.9a.

This solution is quite satisfactory except for the increased token tratfic due to
additional dependencies in the graph. This overhead becomes more serious 1if the
processor has already been allocated several partitions, as we have to introduce a

dependency between each of the partitions in the processor and the new partition

71

being allocated to the processor. Each dependency results in additional traffic due to

control tokens.

© Py| [3356,7

© P3

Figure 4.11 : Graph and Gantt chart to illustrate Proliferation of Tokens

For example, in Figure 4.11, processor P has been allocated three partitions
4, 5-6 and 7. To allocate partition Sy containing task 8 to the same processor, we
have to ensure that the existing partitions in the processor execute before task 8. In
order to do so, we will have to introduce dependencies between every partition in P,
and the partition S3. The graph of Figure 4.11 is transformed to Figure 4.12,

spawning a large number of control tokens.

In such cases we take advantage of the critical path which 1anges over the
entire time scale from t=0 to the deadline (T;). The critical partition contains a single
path which 1s the critical path, and each node on this path can be treated as a

reference point on the time scale. Insiead of making the newly allocated partition

dependent on all the previously allocated partitions in the processor, it can be made

72

----> Pseudo-Dependencies

Figure 4.12 : Previous Graph with Large Number of Pseudo-Dependencies

dependent on a single node on the critical path. We look for a reference point on the
critical path closest to and greater than or equal to the completion time (T) of the
processor. Figure 4.13 illustrates the solution adopted to avoid introdﬁcing a large
number of control dependencies. The new execution time of the processor (T ux—9)
contains an idle period caused by the availability of only discrete reference points on

the critical path to synchronize nodes.

----- > Pseudo-Dependency

Figure 4.13 : Graph and Gantt chart with Single Pseudo-Dependency

The tasks left in the group which have not yet been allocated, are now
allocated to the existing processors with additional dependencies. This is done as
follows. Initially we identify a time (T,)} for each processor which is greater than or
equal to its T max. The dependency point (T4,) is the closest time on thc critical path
after the T ., of the processor under consideration. The processors are now ordered
according to their Ty, . The partitions in the group yet to be allocated are sorted
according to their T p,,,. We select the partition of the group with the largest 7 5y for
allocation to the processors having the largest Ty,, . But before the actual allocation
of the chosen partition of the group to the processor, we examine if any other
partitions can be allocated in the time slot between the (Tyep Jprocessor and the
Ochosen partision- Lhe order of execution of parutions '1.s gnforced by adding control

dependencies and hence the condition 1 of Section 4.3.2 for the combination of

processors i.e. the condition on T mg, can be relaxed. Therefore we select partitions

74

from the group that will fit the time slot (Scosen partition - (Tdep dprocessor)» and

allocate them along with the chosen partition to the processor.

Pl 1 2 3 4
S4
! 84— aep, 13
:-=- ---------- =
Ss
14
Se
15
S7
16

%
< T,

]
3

in
b
O

Figure 4.14 : Choosing Partitions to combine with S; in Processor P,

In Figure 4.14 the partition S, containing task 13 is chosen for allocation with
processor P;. But before allocating the partition 54 to P2, we look for other
partitions which can be fit into the time slot (83=Tyg,,). Partitions S¢ and S7 can be

combined with S; and allocated to P» after introducing control dependencies

75

between task 2 and 16, task 16 and 15, and task 13 and 13. The resulting allocation is

shown in Figure 4.15.

This process is repeated for all the existing processors, and if there is still a

partition left which cannot be allocated then a new processor is created for that

partition.
P, 1 2 3 4
Fan Fam.
P, 579 16 15 13
14

— , — Pseudo-Dependencies

Figure 4.15 : Combination of Partitions of other Groups with partitions of Processor P»

This procedure for allocation is repeated for each group, till all the groups
have been allocated. Finuily, we obtain an allocation requiring & processors, and

which assures program execuuion in the minimum response time. The number of

76

processors (k) is not optimal but rather the minimum required by the heuristic

algorithm,

To summarize the algorithm for allocation for minimum response time :

.tJ

Initially partitions are divided into groups. Partitions are allocated group by

group.

We start with group O partitions. Partitions are seperated into those with
Tgr#(0,0), and those with Tg;=(0,0) respectively. These two subdivisions are

ordered according to increasing T max.

We choose the first partition on the above list and identify all possible candidate
partitions which can be allocated with that partition in the processor. The
candidates are ordered according to decreasing execution times of the partitions
and are chosen for allocation with the partition if the time constraints are not

violated.

Step 3 is repeated for all partitions belonging to group 0 till all of them have been

allocated.

Now the remaining groups are allocated. We start with the next group. The
partitions of this group are sorted according to decreasing execution time. The
partitions with largest execution time are allocated to the processors with the

smallest 8.

The remaining partitions of the group (from step 3) are allocated after imposing

additional dependencies. Partitions of the group with the largest T, are

77

allocated to processors with the largest T,,. However before allocating the
partition with largest T na¢, We examine if any other partitions can allocated in the
time slot between the (Tap Jprocessor and the Senosen parriion . Step 6 is repeated till

there are no unallocated partitions left in the group.

7. Steps 5 and 6 are repeated for all groups.

4.4 Allocation For a Fixed Number of Processors

In this section we allocate the partitions to a given number of processors. If
the number of processors given is greater than or equal to the number of processors
obtained in the unlimited case then the response time will be minimum, and we can
use the same allocation as obtained in the previous case. If the number of Processors
is smaller, then the response time will no longer be equal to the timé taken by the

critical path in the program.

The algorithm for a fixed number of processors is similar to the previous
algorithm. While 'pam'tions are being allocated we keep track of the number of
processors being utilized. Whenever we require another processor for a partition, in
order that its completion time (T p,,) be satisfied, we check to see if a procassor is

available.

If another processor is required to satisfy the completion time (T 4 ,) of a

partition, and it is not available then the deadline (T;) can no longer be met. This

78

situation arising out of the limited resource restriction is dealt with in two different

ways.

If the earliest initiation time (Tgy) of the partition under consideration is non
zero, then the partition is placed in the same processor as the partition on which it is
dependent (i.e. the argument partition). This is done in order to avoid creating a large

number of additional dependencies.

If the earliest initiation time (Tgy) of the partition is zero, then we look for
the largest gap (3) of all the processors, and even though the execution time of the

partition is greater than the & of the processor, we still insert it.

In both cases the Ty, of the processor has to be shifted to the right in the
Gantt chart, to accommodate the partition. By inserting the partition, all the

processors and partitions shift on the time scale by an amount p.

When the earliest initiation time (Tg;) is non zero, the shift in the time scale
(p), is equal to the difference between (Tm,(—8)!,{,,“-“-0,.t and the space available in the
processor. In the second case the shift is equal to the difference of

(T max—delta Jpartition And 6,:’!‘06855‘0? .

In Figure 4.16, when the initiation times are zero, only tvo processors are
available, and hence we assign partitions S, and S5 to the same processor even

though the completion time for S5 is violated. In the resulting Gantt chart:

anl = (Tmax;_53)"8’l

79

s Tmax, ! Trmax,,
1 P 1 5
3 T n
S , o ”Iaxz 2 Tmax,,z
P
d Tmaxs
S3 ’

Figure 4.16 : Shift of Deadline under Limited Resources

Tmax.l = Tmaxl"'(T maxg_BS)_8‘.’.

Tmax.. = Tmax;"'(T max;_53)_82

The deadline (T;) and all the completion times (T), shift by the difference

of the partition and the size of the largest gap.

This gives us the allocation for a fixed number of processors and the

corresponding response timne of the program.

80

CHAPTER V

Performance Evaluation

5.1 Overview

In this chapter we illustrate the partitioning of a program in FPL and its
allocation to varying number of processors. Statistics are obtained by executing
different programs and studyirg the effect of changing parameter values on the
response time. To demonstrate the performance of the algorithm, programs with upto
1730 nodes were run on a simulated timing model of a high level data flow machine.

Finally the results obtained are interpreted and its charactaristics accounted for.

5.2 An Example

To demonstrate the partitioning and allocation system, we take the example of
the multiplication of a (2X3) matrix by a (3X2) matrix.

An FPL program for matrix multiply 1s:

[P = CM(Al+, AP*, TR);

Main = CM(APAPIP, APDL, DR, [SL1, CM(TR, SL2)]);

81

Figure 5.1 : Initial Program Graph for (2X3) by (3X2) Matrix Multiply

The FPL program is parsed inio the corresponding CDF form, and an initial
program graph (Figure 5.1) is obtained. This graph contains primitives such as +, *,
Transpose (TR) etc. and functional forms such as associarive insert (Al) and apply-

to-all (AP).

The processing time (1,) of the nodes is estimated by the number of cycles
required to execute the instructions in each node. The functions used in this example

and their estimated execution times are listed in Table 3.1.

Table 5.1: Functions Required for Matrix Multiply and Estimated Execution Times
Function . Execution Time

SLk (Select) 0.1

CN (Construct) 0.1
DR (Distribute Right) 1
DL (Distribute Lef1) 1
+ 1
* 3
TR (Transpose) 5

The communication time parameters given are a=0.2 and f=1. The
communication time therefore is :

t.=0.2n+1 where

-
»

n is an indication of the amount of data in the result and is equal to the number of

structures passed in the result token,

To obtain the number of structures passed in the result token from each node,
the input data structure is symbolically interpreted. The symbolic tnput to this
program is:

(((x,%,%),(%,%,%)),((x,X),(x,%},(x,x)))

The functional forms associative inserr (Al) and apply-to-all (AP) are
resolved based on the size of the input structure to the functional form and the

processing times and communication times of the nested function.

83

() CMDR.ISLLCM(TR.SL2))

Figure 5.2 : Program Graph after Resolution of Functional Forms

84

Figure 5.3 : Data Flow Graph with Processing and Communication Times
Another parameter for resolving the apply-ro-all (AP), is the degree of concurrency
sought to be exploited. In tﬁis example we exploit maximum parallelism and obtain a
single directed data flow graph with 44 nodes (Figure 5.2), containing only primitive

FPL functions.

We apply the graph reduction algorithm in order to effectively utilize the
parallelism in the graph. After the combination of sequential nodes and reduction of
parallelism, we obtain the final high level data flow (task) graph (Figure 5.3). The

graph now consists of 24 nodes, with many nodes having been lumped together.

&5

Figure 5.4 : Partitioned Data Flow Graph

Based on the longest path of the root node and the critical paths in the
program, the data flow graph of Figure 5.3 is partitioned as shown in Figure 5.4, The
modified Gantt chart showing partitions and representing the timing parameters

associated with them is shown in Figure 5.5.

The allocation of the partitions of the matrix multiply program o two and four
processors is shown in Figure 5.6. The response times are 67.9 and 42.7 time units
respectively. They turn out t0 be the optimal response times because of the regular

structure of the graph.

86

Another example whose performance we study in the next Section is the FFT.

A FPL program for the 16-point FFT algorithm [LAHTI 81] is given below.

st1=CM(transform,align,(ID,table]);
st2=CM(transform,align_halves,[ID,table]);
st3=CM(transform,align_quarters,[ID,table]);
st4=CM(transform,align_eighths,[ID,table]};
align_all=CM(CT,APalign, TR},
align_halves=CM(align_all,APSP);
align_quanters=CM(align_all, APbreak, APSP);

ali gﬁ_eighths-CM(aiign_all,APbreak,APbreak.APSP);
break=CM(CT,APSP);
align=CM(DR,[CM(shuffle,data),CM(top,w_vecton)]);
data=SL1;

top=SL1;

w_vector=SL2;

shuffle=CM(TR,SP);
table=K((1.0,0.0),(.71,-.71),(0.0,-1.0),(-71,-.7 N,(-1.0,0.0),(-.71,.71),(0.0,1.0),(.71,.71});
transform=CM(unshuf APburterfly);
unshuf=CM(CT,TR);
butterfly=CM([c+,c-],[x,CM(c*,[y,. WD)

W=SL2;

x=CM(SL1,SL1);

y=CM(SL2,SL1);

c*=[CM(#-,AP#* TR),CM(#+,AP#* TR [SLI,CM(RV,SL2)]}};
c+=CM(AP#+,TR});

c-=CM({AP#-TR);

ffr=CM(st4,5t3,512,5t1);

main =fft;

g7

»

O 00~ O b BN

—_ =
N - O

Figure 5.5 : Gantt Chart for Program Partitions

5.3 Analysis of Results

T 2T 4 [10 [20 [%]
=131 tma=299
Ter=(13.1,13.1) l 5 [37 21 '™ 205
5=10.7 fmar=29.
Ty=a0710m SO 3T 6 [16 [2™
31 fuax=29.9
Tey=(13.1,13.1) > | i 7 23 |'™
=103 N
Ter=(20.5.20.5)
§=20.5 =247
Ter=(20.5.20.5) 7T '™
8<20.5 =24.7
Ter=(20.5,20.5) , fmac=
§=20.5 toa=24.7
Te;=(20.5.20.5)
20. =24.7
Ter=(20.5,20.5) 8205 =g fmax
8=20.5 max=24.7
Ter=(20.5.20.5)
: =247
Ter=(20.5.20.5) e i
§=20.5) trar=24.7
Ter=(20.520.5) '

{max=34.3

To study the performance of our system, two benchmark programs were

size, by increasing the dimension of the matrices to be multiplied.

chosen - Matrix Multiply and a 16 point Fast Fourier Transform (FFT). The matrix

multiply program is canonical and permits us to obtain graphs of arbitrarily large

We first examine the speedup of the data flow system by plotting time (T)

38

section. As this example has a maximum of twelve

against the number of processors (N). Figure 5.7 illustrates the speed-up graph of the
example of the multiplication of a (2X3) matrix by a (3X2) matrix from the previous

"*“ operations that can be

T (2] 5 J12]11]13[21] 4 [8]9[10]20]24]

=07 e RTTB[B 6 [BIRe 2] ™"

T T2 & 890%™

5=13.1 I tmax=38.3

5 [12]11]13] 21

&=10.7 fmax=38.3

(3] 6 [15[14]16] 22

Figure 5.6 : Allocation for N=2 and N=4 Processors

! ! | |
2 1 4 5 § T L 3 e 1 12 i3

Ka. of 2E°3

Figure 5.7 : Speedup Curve for 2X3 by 3X2 Matrix Multiply

89

executed in parallel, the smallest response time is achieved for twelve processors.
Increasing the number of processors further, will not give any reduction in the

response time.

Figure 5.8a to 5.8e demonstrate the speedup of the multiplication of square
matrices. In these examples, the degree of concurrency exploited in the partitioning
step is maximum; i.e., when the apply-fo-all (AP) is resolved, the graph produced
béfore reduction has the maximum degree of parallelism possible, irrespective of the

number of processors present in the system.

From Figure 5.8 we observe that the response time falls rapidly for the first
few processors. This is the region where the amount of parallelism exceeds the
number of processors. The speedup is aimost linear and the processors are highly
utilized. In this region the actual throughput is lower than the ideal throughput
because of the constraints due to dependencies in the program. Subsequent flat
regions in the speedup curve are due to constraints imposed by the program, and due
to the degree and nature of concurrency in the algorithm. Matrix multiply provides a
highly synchronous load and a cliff effect is observed when the number of processors
is a factor of the total parallelism present In the (5X5) matrix multiply of Figure
5.8d, the maximum degree of concumency is 125 "*' operations. We observe flat

regions beginning at N=5 and N=25 processors.

Ultimately, when the number of processors exceeds the degree of parailelism
present, then the curve saturates. The (10X10) matrix multiply of Figure 5.8e

stabilizes to the minimum response time at N=100.

90

()2 X2 MM

(2) 10 X 10 MM

91

LE LS.

R L R I
.

(h) 33 MM

(dY 5 X3 MM

Fizure 3.5 : Response Time Vs, No. of Processors for MM taewy

Shenoint FIT of)

A 16 point FFT algorithm requiring no bit reversal is described in [LAHTI
81]. In this example, the concurrency in the apply-to-all (AP) was exploited only to a

limited extent, i.e. to the degree four against a maximum possible degree of eight.

Figure 5.9 : Speedup (Sy) Vs. No. of Processors (N) for 16-point FFT

The speedup curve for the 16 point FFT is illustrated in Figure 5.8f. The
speedup achieved for four processors is 3.35, with an efficiency of 0.83. The
variation of speedup (Sy[FFT]) over a single processor with the number of
Processors (1.‘1) for the FFT program is shown in Figure 5.9; ‘The efficiency of the
utilization of the processors (Ey [FFT]=Sy [FFT]/N) is plotted against the number of

processors (N) in Figure 5.10. The efficiency is limited by the dependencies in the

92

FFT algorithm and the amount of parallelism present

Figure 5.10 : Efficiency (Ey) Vs. No. of Processors (N) for 16-point FFT

Next, the execution time of the matrix multiply program was studied. For
different dimensions of the (r X r) matrices, problems of the same structure but of
different sizes are obtained. Figure 5.11 demonstrates the variation of execution time
with the matrix dimension (r). The bottom curve represents the critical path
(deadline) of the graph i.e., the minimum execution time. The critical path is almost
constant, because by increasing the dimension of the matrices only the parallelism
present increases. The other curves show the execution time compiexity for 2, 4 and

16 processors.

93

1404

120

100

&c

6Q

40

20

Figure 5.11 : Response Time (T) Vs. Matrix Dimension (r) for MM

Sequential execution of the multiplication of two (r X r) matrices takes r3
multiplications. Sequential addition of r products takes O(r) time. Moreover the data
has to be distributed to the right processor and communicated between the
processors. From Figure 5.11, we observe that the curves are initially linear. This is
the region where the number of processors is equal to or exceeds the amount of
parallelism present The execution time is O(r) in rhis region. Finally, when the
amount of parallelism far exceeds the number of processors (N), then the curve is
almost O(r3/N). Figure 5.12 demonstrates the variation of execution time with the

number of nodes in the graph i.e. problem size.

94

Problem Size (Na. of Nodes)

Figure 5.12 : Response Time {T) Vs. Problem Size (No. of Nodes) for MM

Finally we study the effect of partiticning on the response time. In particular
we examine the effect of exploiting limited concurrency in the 16 point FFT
program, when the number of processors available was limited. Iﬁ Figure 5.13, we
compare the response times obtained when functional forms are completely expanded
and when they are expanded so that the degree of concurrency exploited from the
functional forms is equal to the number of processors available. The upper curve
(solid) shows the variation of execution tirnz against the number < processors, when
maximum concurrency is exploited. The dashed curve reflects the response time
variation when only limited parallelism is exploited. The parallelism is limited by
choosing the degree of concurrency (k) which can be exploited from a functional

form to be less than its maximum value. By doing so functional forms are not

95

expanded to the number of elements present in the vector to which the functional

form is applied to, but to a smaller number equal to the number of processors

available. From the curves of Figure 5.13 we conclude that when the number of

processors is limited, exploiting much larger degrees of parallelism from the graph

than the number of processors that exist, can

result in overhead due to

communication.
180
1600 o
1400
. 0
' . elism
120 <- Complete Parall
1904 ¢
T x
80d__
X Q
§0d_
-7 X X
- x
» X
19 G'— . . x
Limited Parallelism °
20 | | L { ! ! | t
1 2 3 4 5 § 7 3 9 12

No., of Processors (N}

Figure 5.13 : Speedup Curves by Exploiting Complete and Limited Parallelism

96

CHAPTER VI

Conclusion

The design of multiprocessor systems has been beset with problems due to
the extension of uniprocessor design principles to multiprocessors. Data Flow
techniques provide an alternate strategy for the design of high performance

muliiprocessor systems.

We have shown that High Level Data Flow Architectures utilize the positive
features of both conventional Data Flow Architectures and high performance
uniprocessors. We demonstrate the use of Data Flow techniques at the optimum level
of granularity instead of the fine grain, single operator level. A Graph Reduction
algorithm to reduce a fine grain data flow graph to a task level graph, based on
processing time and communication time criterion has been developed and applied

(Section 3.5).

In Chapter III we demonstrate the ease with which parallelism inherent in an
algorithm can be exploited by using Functional Programming Languages (FPL). The
choice of FPL as a specification language for algorithms avoids the complexity,
common to imperative languages like Fortran, of compiler techniques to detect

parallelism. However the approach taken in this work is not restricted to FPL, but is

97

applicable whenever a directed graph can be obtained from a program.

We show how the directed graph is extracted from the program and then
reduced to a task graph of appropriate gré.nulariry. The task graphs are then placed in
different partitions, which become the smallest unit for allocation. The partitions are
used only for allocation and each task in the partition has to be activated separately

during execution.

In Chapter IV ;we describe two algorithms for allocation; one to obtain
minimum response time and to the other using fixed number of processors. An order
of execution of tasks in a data flow processor is forced by introducing pseudo-
dependencies between tasks. Pseudo-dependencies ensure that some tasks are
executed before the others can begin, even though their data dependencies place no

such restriction.

Finally we have shown the efficacy of allocation and scheduling for Data
Flow Architectures. In Chapter V we observe the speed-up obtained by incredsing the
number of processors. We also note the constraints in the speed-up due to limited
parallelism in the algorithm and data dependencies. An interesting result observed
was the improvement in performance observed when only appropriate degrees of

parallelism are extracted instead of complete parallelism.

To conclude we discuss some of the open problems and alternate strategies

that can be adopted.

98

A different approach to the execution of Functional Languages is to use
vector processors which can efficiently execute functional forms like Apply-to-ail
(AP), Inserr(IN) and Associarive Insert (Al). If vector processors are available in the
architecture, functiopal forms can be executed without having to unfold the
functional form and distribute the data. In order to do so the user-written FPL
program has to be algebraically transformed to make the vector evaluation of the
apply-to-all more efficient. Transformations which convert the apply-to-all of
functional forms to the apply-to-all of primitive functions will have the effect of
distributing the apply-to-all’s and hence not restrain parallelism. Such a scheme will
benefit due to the systematic execution of vector opcration; and the reduction in

overhead due to locality.

A problem to be solved is the incorporation of recursion and loops in our
model. A suggested approach is to handle loops hierarchically and resolve the inner

loops first.

Another approach to allocation and scheduling is to use List Schedules based
on critical paths in the program. To force an order of execution in processors, each

processor can maintain an ordered list of tasks resident in it.

Static allocations will not be very suitable for multiple-application time-
shared systems. In such cases dynamic allocations and load balancing schemes have

to be investigated.

99

[ACKE 82])
[ALLAN 80]
[ARNO 82]

[BABB 84]

(BACKUS 78]
[BADE 83]

[BERN 66]

[CHAN 84)
{CHOU 82}

[DENN 80]

References

Ackerman, W. B,, "Data Flow Languages," Comp.urer, Val. 15,
No. 2, Feb 1982, pp. 15-25.

Allan S. J. and A. E. Oldehoeft, “"A Flow Analysis Procedure for
the Translation of High-Level Languages to a Data Flow
Language," /[EEE Trans. on Computers, Vol. C-29, No. 9, Sep.
1980, pp. 826-831.

Amold, C. N., "Performance Evaluation of Three Automatic
Vectorizer Packages,” Proc. of Inil. Conference on Parallel
Processing, 1982, pp. 235-242.

Babb II, Robert. G., "Parallel Processing with Large Grain Data
Flow Techniques,” Computer, July 1984, pp. 55-61.

Backus, J. , "Can Programming be liberated from the von
Neumann Style ? A Functional Style and its Algebra of
Programs,” CACM, Vol. 21, No. 8, Aug. 1978, pp. 613-641.

Baden, S. and D. R. Patel, "Berkeley FP - Experiences with a
Functional Programming Language,” Proceedings COMPCON,
Spring 1983, pp. 274-277.

Bernstein, A. J., "Analysis of Programs for Parallel Processing,”
IEEE Trans. on EC, Oct. 1966, pp. 757-763.

Chan, P. K., "A Dataflow Multimicroprocessor Architecture,”
M.S. Thesis, UCLA Computer Science Department, Report No.
CSD-840044, Nov. 1934.

Chou, T. C. K,, and J. A. Abraham, "Load Balancing in
Distributed Systems," [EEE Trans. on Software Engineering,
July 1982, pp. 401-412.)

Dennis, J. B.,, "Data Flow Supercomputer Languages,”
Computer, Nov. 1980, pp. 48-56.

[EL-DESS 81])

(ENCL 77]

[ERCE 83]

(ERCE 84]

[ERCE 84 a]

[ERCE 86]

[FELL 81]

[GAJS 82]

[GAREY 79]

[GAUD 82]

[GAUD R84]

rZEHR 82]

El-Dessouki, O., W. Huen and M. Evans, "Towards a
Partitioning Compiler for a Distributed Computing System,”
Computer Science Press, 1981.

Enslow, P. H., "Multiprocessor Organization - A Survey,”
Computing Surveys, Vol.9, No. 1, March 1977, pp. 103-129.

Ercegovac M. D. and S. L. Lu, "A Functional Language
Approach In High Speed Simulation,”" Summer Computer
Simulation Conference, 1983, pp. 383-387.

Ercegovac M. D. , P. K. Chan and T. M. Ravi, "A Dataflow
Multiprocessor Architecture for High-Speed Simulaton of
Continuous Systems," Proc. Internarional Workshop on High-
Level Architecture, 1984,

Ercegovac M. D. et al, "Task Partitioning, Allocation and
Simulation for a Dataffow Multiprocessor System,” Proc.
Summer Compuzer Simulation Conference, 1984.

Ercegovac M. D. and Tomas Lang, "General Approaches for
Achieving High Speed Computations,” o appear in
Supercomputers, Ed. S. Fermbach, North Holland, 1986.

Feller, M., CS259 Seminar Report, UCLA Computer Science
Department, 1981.

Gajski, D. D., D. A. Padua and D. J. Kuck, "A Second Opinion
on Data Flow Machine and Languages,” Computer, Vol. 15, No.
2, Feb 1982, pp. 58-69.

Garey ML.R. and D. S. Johnson, Computers and Intractability - A
Guide to the theory of NP-Complereness, W. H. Freeman and
Company, San Francisco, 1979.

Gaudiot, J. L., "On Program Decomposition and Partitioning in
Data-Flow Systems,"” Ph.D. Thesis, UCLA Computer Science
Department, Report No. CSD-821212, Dec. 1982.

Gaudiot, J. L., and M. D. Ercegovac, "Performance Analysis of
a Data-Flow Computer with Variable Resolution Actors,” Proc.
4th Intl. Conf. Distributed Compuring Systems, 1984, pp. 2.9-
2.17.

Gehrig, E. et al.,, "The CM* Testbed,” [EEE Compuser, Oct.
1682, pp. 40 -33.

101

(HAES 80]
[HWAN 81]
[IRANT 82]

{ISLAM 81]

[KIEB 81]

(KOGG 381]

(KUCK 81
(LAHTL 81)
[LANG 77]
[LU 84]

[MAR 79]

[RAMA 72]

Haessig, K., and C. J. Jenny, "An Algorithm for Allocating
Objects in Distributed Computing Systems," [BM Research
Report, RZ 1016 (#36244), June 1982.

Hwang, K., S P. Lu and L. M. Ni, "Vector Computer
Architecture and Processing Techniques,” Advances in
Computers, Vol. 20, Academic Press, 1981, pp. 115-197.

Irani K. B. and K. W. Chen, "Minimization of Interprocessor
Communication for Parallel Computation,” [EEE Trans. on
Computers, Nov. 1982, pp. 1067-1075.

Islam, N. , T. J. Myers and P. Broome, "A Simple Optimizer for
FP-like Languages,” Proc. of the 1981 Conf. on Functional
Programming Languages and Computer Architecture, Oct. 1981,
Portsmart, New Hampshire.

Kieburtz, R. B., "Transformations of FP program Schemes,”
Proc. of the 1981 Conf. on Functional Programming Languages
and Computer Architecture, Oct. 1931, Portsmart, New
Hampshire.

Kogge, P. M., The Architecrure of Pipelined Compurers,
McGraw-Hill, New York 1981.

Kuck, D. J. et al, "Dependence Graphs and Compiler
Organizations,” 8th Annual ACM Symposium on the Principles of
Programming Languages, Williamsburg, VA, Jan. 1981.

Lahti, D. O., "Applications of a Functional Programming
Language,” M.S. Thesis, UCLA Computer Science Department,
Report No. CSD-810403, Apr. 1981.

Lang, T. and E. B. Fernandez, "Improving the Computation of
Lower Bounds for Optimal Schedules,” IBM Journal of Research
and Development, Vol. 21, No. 3, May. 1977, pp. 273-280.

Lu, S. L., "A Compiler for a Functional Programming System,”
M.S. Thesis, UCLA Computer Science Department, Report No.
CSD-340045, Nov. 1984,

Mariani M. P. and D. F. Palmer, "Tutorial : Distributed System
Design,” IEEE Computer Sociery, 1979, pp. 221-223.

Ramamoorthy C. V. , K. M. Chandy and M. J. Gonzalez,

"Optimal Scheduling Strategies in a Multiprocessor System,”
IEEE Trans. on Computers, Feb. 1972, pp. 137-146.

102

[RAVI 83]
[STON 80]

[WADL 81]

Ravi T. M., "Graph Reduction,” NASA Data Flow
Mulriprocessor Project, Status Report #3, Apr. 1983.

Stone H. S. “Parallel Computers,” Introduction to Computer
Architecture, SRA, Chicago, Ill., 1975.

Wadler, P., “Applicative Style Programming, Program
Transformation, and List Operators,” Proc. of the 1981 Conf. on
Functional Programming Languages and Computer
Architecture, Oct. 1981, Portsmart, New Hampshire.

103

