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ABSTRACT

A Threaded FP Interpreter/Compiler
by
Surapol Pungsornruk
Master of Science in Computer Science
University of California, Los Angeles, 1986

Professor Milos Ercegovac, Chair

In this work, the technique of threaded interpretation is used to compile FP
programs. By organizing the lexicon, used in threaded interpreters to hold function
definitions, as a jump table, deficiencies encountered in conventional threaded inter-
preters are overcome. Combining this approach with a simple but efficient garbage

collection strategy results in a fast implementation of a FP interpreter/compiler.
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CHAPTER 1
INTRODUCTION

Functional programming is generally taken to mean a programming system in
which functions are defined to be the building blocks of programs. Such programs

differ from conventional programs in several respects.

1. Expressions exhibit applicative structure. Operaior part denoting function is

seen clearly to act on operand part denoting value.

2. Computaﬁon proceeds by stages, each stage transforms its input producing

value for the next stage. This is commonly known as locality of effect.

3. Objects are referentially transparent. This means that an expression occurring

twice in the same context denotes the same value at both occurrences.
4. There is no assignment statement.

These features allow some algorithms to be expressed clearly and concisely. In par-
ticular, since FP programs explicitly show data transformation as part of the process
of computation, parallelism in these programs can be identified more clearly and ex-

ploited with greater ease.
1.1 FP Systems

Backus{1], in his seminal paper on a functional style of programming, pro-

poses a hierarchy of alternative systems.



At the lowest level is the FP system in which the concepts of variabie, exﬁlicit
state representation and history sensitivity have been abandoned. Furthermore, all
control constructs are replaced by combining operators that manipulate functions
directly. These operators, called functional forms, are higher level functions; they
take functions as arguments and return functions as results. A FP program is then

one or more function definitions, using functional forms and primitives.

Next up in the hierarchy is the Formal FP system. This reintroduces the con-
cept of history sensitivity by means of named cells. Functions are viewed as objects
stored in cells; their meanings can be retrieved from cells by naming. Function
redefinition can be accomplished by writing over existing meanings in cells. The sys-

tem also allows expressions to be written in which objects denoting functions are ap-

plied to objects denoting value!. As a result of these capabilities, it is possible to

transform programs, i.e. create new primitives or functional formsZ.

The last system described by Backus is the Applicative State T}amirioﬁ Sys-
tem. This is the type of system that is seen by Backus as an alternative to von Neu-
mann system. Such a system employs an applicative subsystem (such as FFP) as
computation model. It changes state by transforming its set of defined functions and
known values. State transition takes place as a result and at the end of computation

by the applicative subsystem. By virtue of FP semantics, there is no side-effect.

IIn FP, application is a system operation and not part of the language.

21t is important to note the difference between user-definable functions, as commonly
found in a FP system, and creating new primitives or functional forms in a FFP
system. In FP, it is never possible to create new functions as a result of running a
program, while in FFP, it is possible to do so.



1.2 Project Goal

Various implementations of FP interpreters have been done over the years.
These are either Lisp-based[2, 3] or written in C [4]. Lisp-based systems incur speed
penalty because of the underlying Lisp implementation. The interpreter in C [4] is not
interactive and has different syntax from that of more widely-used Lisp-based ones.
There is but one known attempt to compile FP[5]. Lu[5] describes a translator to
compile FP programs into an intermediate form, which is then rendered into C, and
finally compiled into machine code. This approach has the advantage that the pro-
gram can be optimized easily while in intermediate form. The three-pass translation

process, however, is cumbersome and not suitable for use in interactive development

of FP programs.

The goal of this project is to explore an efficient way of executing FP pro-
grams on currently available computers, so that use of FP is not hampered by slow

response.

While compilation is commonly used to speed up the interpretive process, it is
limited by the lack of variables in FP programs. An imperative high level language
program contains data definitions, instances of defined data, and code sequence to
manipulate them. Data definitions are translated into layout in machine words; data
instances are mapped into memory locations so that references to them can be gen-
erated in compiled code. Without variables, FP programs cannot be compiled in the
same way. To be able to deal with data which can be of any type or structure, and not
known at function compile time, interpretation is necessary. To achieve speed, the
overhead of interpretation must be reduced. This is achieved by applying the tech-

nique of threaded interpretation to compile FP programs.



1.3 Threaded Interpretation

Most language interpreters work in two phases. The first phase analyzes the
source language to produce an intermediate form such as a parse tree; the second
phase then interprets the intermediate form at run time. A threaded interpreter pro-

duces a completely analyzed internal form, eliminating further analysis at run time[6].

Specifically, threaded interpretation is a technique of compiling an input ex-
pression into pointers to previously compiled components of that expression. By as-
suming the existence of a set of defined primitives, expression interpretation becomes
a process of chasing pointers, leading, in the end, to execution of primitives. It is ob-
vious that the speed of such an interpreter depends greatly on the speed of mechanism
used to chase pointers. The most common use of threaded interpretation now is found

in Forth interpreters{6].
1.4 Forth

Forth is a compact language originally used for real-time applications such as
instrument control, image processing, and graphical display on microcomputer sys-
tems. It uses a stack-based computation model, with a reverse polish notation heavily

emphasizing this.

A Forth program consists of words which are either primitives or user-
defined. A primitive specifies an atomic operation, such as ADD or POP-STACK. A
word is defined by a list of words (already defined), encapsulating a sequence of
operations. Words and their attributes are kept in a database, called a lexicon or dic-

tionary.



The meaning of a word is found in the lexicon. If it is a primitive, its meaning
is specified by a routine. If it is a defined word, its meaning is specified by a list of
lexicon pointers which point to words forming the definition for that entry. Computa-
tion proceeds by recursively retrieving meanings of words from the lexicon until rou-

tines are found and executed. A control stack is used to store return addresses.

Compiling a word is a very simple process, since a word can only be defined
by words already defined. As each word is defined, its entry is appended to the end of
the lexicon. Multiple definitions of a word are allowed to exist in the lexicon. During
compilation, the lexicon is searched from back to front. Hence it is possible to have

words defined which use different versions of the slame word.
1.5 Report OQutline

The rest of the report is organized as follows: chapter 2 introduces the design
of a threaded FP interpreter/compiler; chapter 3 discusses its implementation and as-
pects of memory management, and chapter 4 deals with performance evaluation of -

this interpreter.



CHAPTER 2
SYSTEM DESIGN

Several objectives have to be met by a successful design. First of all, while
speed is of paramount concern, it is to be achieved without sacrificing the conveni-
ence of interpretation. Secondly, the system is to run a large portion of existing FP
programs without modification. This means that the syntax of an existing FP inter-
preter has to be adopted. Lastly, the resulting implementation should be easy to main-
tain, expand or modify. In what follows, the system is first described; design issues

are then raised and their solutions discussed.
2.1 System Organization

Figure 2.1 shows an overview of the system. By using a syntax-driven trans-
lation process, input is broken into. tokens and fed to a parser. If a function is being
defined, the parser builds a parse tree; otherwise the parser passes the tokens to a sys-
tem function dispatcher. In the case of function definition, the pa_rscr calls the com-
piler after the parse tree is built. The compiler allocates a lexicon entry for the func-
tion and passes the parse tree to a code generator which traverses the parse tree pro-

ducing machine codes, generating calls for primitives or functions, including itself.
2.2 The Lexicon

Defined functions are kept in a database called lexicon. Each entry in the lexi-

con needs to contain:
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1. a unique function name, allowing function reference, and

2. a code field, containing code or pointers to code.
The organization and management of the lexicon determine how function references

are resolved during compilation, as will be discussed below.

Since function names of arbitrary length are allowed, a pointer is kept in the
lexicon instead of the actual character string. Since the size of compiled code for each
function is subject to change, the code field is separated from the lexicon and replaced
by a code pointer. This necessitates the management of variable-sized code blocks,

requiring an extra field in each lexicon entry for code block size.
2.3 Compiling and Interpreting

To achieve speed and flexibility, a hybrid approach of compilation and in-
terpretation is used. The basic idea is to use threaded interpretation; but instead of
corripiling an expression into pointers, it is compiled into subroutine calls. This al-
lows pointer-chasing to be done at the speed of a call subroutine machine instruction,
reducing substantially the overhead incurred as compared to that of an address inter-

preter commonly used in a threaded interpreter.

As in other compiling systems, the input expression is discarded after compi-
lation. Thus, at the expense of not keeping input expressions, syntactic analysis is

done only once for each function defined.

To allow for interpretation, the parser is designed to allow legal FP expres-
sions to be applied to data objects. In this case, the FP expression is compiled for a
function with a reserved name. To avoid over-writing existing functions, the reserved

name is chosen so that it is not a legal name for a FP function. The result of interpre-



tation is obtained by applying this function to the given data object.
2.4 Resolving Function Reference

There are, however, problems with threaded interpretation. Conventional

Forth interpreters have the following restrictions.

i,  The order in which functions are defined is important. A function may call

only functions already defined.

ii. Redefinition of a function has no effect on functions already defined using that

function.

These two problems are related to how function reference is resolved during
compilation. Enforcing (i) avoids having to resolve function addresses at run time,
but does not solve the problem of redeﬁnition: Forth systems address this problem by
allowing users to issue a command and wipe the lexicon clean. This_, allows the lexi-
con to be purged of old versions of functions.. Since function redefinition commonly
occurs during program development and debugging, after purging, a working program
can be compiled into an empty lexicon, free of any stale definition. This is inadequate
because an interpreter should be able to relieve users of such responsibility. Besides,
for interactive use, it is not reasonable to force users to adopt a bottom-up approach in

program development, requiring callee functions to be defined before caller functions.

There are two ways of solving these two problems. Function references can
be resolved by users invoking a system facility prior to running. This is identical to
the conventional approach of a "link" command for compiled languages such as For-
tran or C. The user must bear the burden of remembering which functions to relink

after each redefinition.



To make relink transparent to users, it can be done at run time or compile time
by the system. Run-time relinking is not really practical. Depending on design, as
many as all functions called by the invoked function need to be relinked. To automat-
ically relink all caller functions when a callee function is redefined is more reason-
able. However, it is not clear how this can be done without messy housekeeping of
function names and addresses. Moreover, as more functions are defined, the linking

process will get more expensive.

To allow function reference to be resolved at compile time, and obviate the
need to relink, function addresses are made invariant. This is accomplished as fol-
lows. Each user-defined function is assigned an entry in the lexicon. | The location of
the entry in the lexicon for each function is permanent. By keeping a pointer in the
code field of the entry, function code can be accessed via the lexicon. Hence, function
references can be resolved at compile time. Redefinition is handled by setting the
code pointer to point to the current version of code. There is no need to relink, be-

cause lexicon entries for functions always point to the latest version of code.

During compilation, lexicon entries are constructed for functions which do not

have them. There are two ways in which this can happen.
1. A function is being defined for the first time.

2. An undefined (new) function is used in the definition of another function.
For cither case, a full entry is constructed. But for the second case, the code field of
the entry is set to a routine which warns the user of undefined function. As a result,

functions which are called but not defined, issue warnings when they are executed.

10



2.5 Execution Environment

All FP primitives and functions take one operand and produce one result.
This makes the use of a stack a convenient way to pass arguments and return results.
Both primitives and functions take their operand from and leave their result on top of
a data stack. There is no need to keep track of how many arguments are needed by

each function, reducing the size and complexity of the lexicon.
2.6 Memory System

There are two separate requirements for memory: to hold defined functions,
and run-time objects. Defined functions are stored as entries in a data structure called
lexicon, with an auxiliary area for compiled code. Run-time data objects are stored in

a data stack and a heap.

There are two ways to allocate memory for these data structures: statically by
declaring structure size when the system is built (compiled), or dynamically at run
time, requesting services from the operating system on host machine. While relying
* on operating system to dynamically allocate storage would relieve the system of de-

clared limits in data structure size, it is not done for reasons outlined below.

The available software library on UNIX to do dynamic allocation is not
efficient in a virtual memory system[7]. As stated in the BUGS section of the malloc
manual page[7], where a large number of small blocks are managed, each allocation
can cause all allocated and freed blocks to be referenced, creating a large number of
page faults. Since the target machine is a VAX, which is a virtual memory machine,
the system page fault handling mechanism can be used directly and efficiently in the

following scheme.

11






- All data structures are implemented as arrays of cells with declared limits in
the virtual address space. Each area is then managed by dynamic allocation and gar-
bage collection at function compile and run time. Memory pages for these are
brought into physical memory by the host memory management system, only when
those locations are addressed. Fortunately, the size of the executable file for the inter-
preter is not affected by the size of these declarations. Although the interpreter is now
subject to limits in array sizes, it gains in independence. Memory management of the
arrays can be implemented as a self-contained module, quite separate from any reli-

ance on operating system.
2.7 Expression Syntax

To allow a large portion of existing FP programs to run without modification,
it is decided to use Berkeley FP syntax. Besides being the most widely available in-
terpreter, it is probably also the most completely documented. Users are referred to
Berkeley FP User's Manual [2] for a complete account of expression notation, primi-
tives and functiorial foﬁns. dwin’g to the way this interpretér is implemented, it

should be straight forward to modify it to accept other syntax.

12



CHAPTER 3
IMPLEMENTATION

The system is implemented in C, with some assembly routines. This is rea-
sonable, since C is considered suitable for system programming and speed is one of
the primary goals of this project. C is also better supported on UNIX than other
procedure-based high level languages. Tools such as /ex and yacc are added bonuses.
The target machine is a VAX computer running UNIX. The system is not portable

since compiléd code for FP functions is generated to execute on the VAX.

Implementation of the system can be discussed under two broad headings:
function compilation and function application. In this chapter, representation and
storage of data objects are first described. Compilation is then treated in some detail,
followed by a description of the ‘run—time envifonment, including memory manage-

ment.
3.1 Data Objects

In FP, there are two types of objects: atom and sequence. There are two
places in the system where data objects are stored: data stack and heap. Both the data

stack and heap are implemented as arrays of cells.
3.1.1 Stack Objects

A stack cell consists of two fields, a tag field and a value field. The tag can

take different values to identify the type of object represented. To enumerate, the fol-

13



lowing types of objects are represented: integer, floating-point number, boolean, bot-

tom, null sequence, character string, and sequence pointer.

In the case of integer, floating-point number, boolean, or sequence pointer, the
value of the object is found in the value field. In the case of bottom or null sequence,
the value field is not used. For character string, the value field is a string pointer.
Atoms are stored on data stack, one per cell; sequences are always stored as pointers,

pointing to actual sequences in the heap.
3.1.2 Heap Objects

A cell in the heap consists of four fields: a tag field, a value field, a link field
and a structure field. The first two fields are identical to those of a stack cell. The
link field is used to hold a cell pointer, and is used to represent sequence, like a list is
represented in Lisp, by setting the link field to point to the next cell in the sequence.
The structure field identifies if the cell is part of a sequence, and allows atoms to be
stored in the heap. This is necessary since the tag field only identifies the data type of
the value field. Sequences can also be replicated in the heap by storing a sequence
pointer in a cell, with the structure type indicating the cell not to be part of a se-
quence. A tag value, not used in stack cells, identifies if a heap cell is in use or free.

This is used in heap management as will be described in section 3.4.2.

3.2 Function Compilation

Compilation is a two-stage process. Given a function definition, a parse tree is
first built, code is then generated for each node in the tree. The compiling routines
- deal with several data structures which are briefly described below. The process of

building a parse tree and generating code is also discussed.

14



3.2.1 Compiling Environment: lexicon and code area

The lexicon is the database holding all user-defined functions. It is imple-
mented as a jump table. Each entry in the jump table consist of four fields: the first
field is the machine code for an absolute jump, the second field is the address of com-
piled code for that entry, the third field is a character pointer, pointing to the function
name, and the fourth field is the length in bytes of compiled code.

The system maintains a contiguous block of memory, called code area, to hold
compiled code for functions in the lexicon. Each piece of compiled code for a func-
tion ends with a rciurn from subroutine instruction. Since the VAX architecture does
not enforce word alignment for instructions, code pieces for functions are concatenat-
ed byte-by-byte without holes. Since the position of a function in the jump table is
never changed, calls to functions are generated to their addresses in the jump table.
As a result, the compiled code of a function in the code area can be moved and still

remair_ls accessibie to all functions.
3.2.2 Primitives and Functional Forms

Routines for primitives and functional forms are written in 'C as part of the
system implementation of a FP machine. For primitives, a system table of pairs of
primitive name and routine pointer is maintained. Entries in this table are resolved at

system compile, link time, and are available to the code generator.
3.2.3 Parsing

The front end of the system, the lexer and parser are implemented using utili-
ties lex and yacc, respectively. The parser builds a parse tree for each function

defined.

15



3.2.3.1 Parse tree

Parse trees are built out of a data structure called node. A node consists of
three fields: a token field, a value field, and a link field. The token field identifies
what type of FP language construct is being represented. The value field takes on dif-
ferent meanings depending on token type. The link field is used to hold a node

pointer. The parse tree for each FP construct is shown in figure 3.1.

Parse trees are built using a left-most-child, right-sibling representation. Each

FP construct can be represented as a parse tree. The token field of the root node
identifies if the node is a primitive, one of several functional forms, or a function. For -
primitives and functions, the tree consists of a single node, with the value field either
identifying the primitive represented, or holding a pointer to the function name. For
functional forms, the tree usually consists of more than one node. The token field of
the root node identifies the type of functional form, the value field assumes the role of
left-child pointer, pointing to other nodes or objects. In either case, the link field of
_‘.‘the root node is used to combine the tree with other parse trees to form a bigger tree.

An example of a parse tree for a FP expression is given in figure 3.2.

3.24 Code Generation

To generate code for each parse tree, the code generator traverses the tree cal-
ling routines to write out machine code to a scratch pad area in memory. When com-
pilation is complete, the length of code generated is noted in the lexicon entry for that
function, a code block of the right length is allocated from the code area, and lastly,

the code is copied from scratch area to the code block.

16
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Since code pieces are moved about, care must be taken to ensure that relocat-
able code is generated. This is easy to do, since each piece of code is completely
self-contained. The compiled code for a function typically contains calls to primitives
or other functions. If the function is defined using functional forms, there are also
some instructions for control flow. Instructions for calls are generated using absolute
addressing mode. This works since primitives are not moved, and references to other
functions are made via lexicon entries which are never moved. Position dependence
in compiled code is only found inrbranching instructions used to transfer control to lo-
cations within a code piece. By using relative branch instructions, position indepen-

dent code is generated.

The code generated for primitives and functions is simple, being just a call to
the appropriate routine. For functional forms, more work is needed. The following

section briefly describes how code is generated for each functional form.

3.2.4.1 Generating Code for Functional Forms

The COMPOSE functional form expresses sequential control flow and is dealt

with by the order in which the parse tree is traversed and code produced.

The CONSTRUCTION or BUILD functional form is treated by traversing the
expression list forming the argument of the functional form. Code is first produced to
start building a data sequence. For each FP expression in the expression list, code is
generated to duplicate the data object on top of the stack (TOS), code is produced for
that FP expression, and code is also produced to append the TOS to the new se-
quence. After the expression list has been traversed, code is produced to terminate

the new sequence and replace TOS by it.

20



The INSERT functional forms are handled by generating a relative jump over
the code produced for the argument of the INSERT which is a FP expression, to a call
procedure instruction, which transfers control to a run-time routine to do the work
done by INSERT. There is one complication. The run-time routine needs the address
of the compiled code for the argument of the INSERT. By changing the relative jump
instruction to a jump subroutine instruction, the return address pushed on the machine

stack is the address of the compiled code.

The APPLY-TO-ALL functional form is done by producing code to form a
loop. The body of the loop consists of code to move successive elements of the data
sequence being worked on to TOS, and the compiled code for the argument of the
functional form. The loop is bracketed by code to form a sequence using objects from

TOS.

A more detailed example is given below for the /F construct. For clarity,

pseudo-code is used as output of the compiler in place of VAX machine code.

The IF functional form when applied to object x, is expressed in FP as

(ifExpr -> thenExpr; elseExpr) : x

and has the following semantics:

if ifExpr : x) is true then evaluate (thenExpr : x)
if AfExpr : x) is false then evaluate (elseExpr : x)

otherwise return (bottom)

The code generated is shown below. It provides for all possible values generated by

evaluating

21



ifExpr : x.

These are boolean values T, and F, and the atom denoting the value of an undefined

operation, bottom.

DUPLICATE TOS (TOS = top of stack)
code for ifExpr

TEST TOS

IF TRUE BRANCH TO thenExpr

IF NOT BOTTOM BRANCH TO elseExpr
RETURN

code for thenExpr

BRANCH OVER elseExpr

code for elseExpr

From above, the following observations can be made.

1. Mutual recursion exists between the code generator and each routine it calls to
produce code for a functional form. This greatly simplifies the code generation.

process.

2. By knowing what functional form it is dealing with, the code generator is able

to generate code to manage the data stack.
3. Run-time routines are necessary to support the execution of FP primitives.

Run-time routines are needed to manipulate stack objects, and to build and
dissect heap objects. The collection of these routines and associated data structures

form a FP machine.
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Most run-time routines perform simple tasks, and are written in assembly code
in an effort to achieve good performance. They could just as well be written in C, but
procedure and function calls in C are translated to the more expensive call procedure
instruction which builds a frame on machine stack. For routines which are short and
called frequently, this is an important factor in execution speed. By writing in assem-

bly, a jump subroutine instruction can be used instead.

To support execution of complex functional forms such as TREE-INSERT, or
RIGHT-INSERT, the run-time routine that does the bulk of the work is written in C.
The rationale here is that for a lengthy routine, procedure call overhead is not as im-
portant as in short routines which are called far more frequently. A slower but work-

ing C routine is far better than a fast but possibly buggy assembly routine.
3.3 Function Application

Evaluation is invoked by applying a primitive or function to an object. The
parser calls a routine to build the object, and passes control to a system routine to han-
dle invocation. The routine pushes the object onto data stack, checks to see if a user- |

defined function or a primitive is invoked, and calls the appropriate FP routine to

transform the object on top of stack. A printing routine is then called to print out the

object left on top of the stack.

There is need to distinguish between defined functions and primitives because
the transfer address of the former is in the lexicon, while that of the latter is in a sys-
tem table. The calling protocol of the two types of routines are also different. User
defined functions need to be called with a jump subroutine instruction; primitives are
called with a call procedure instruction. The difference arises because primitive rou-

tines are written in C, which uses a call procedure instruction. For user-defined func-
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tion, code is generated in the simplest fashion possible. There being no need to pass

arguments, a jump subroutine instruction suffices and is faster.
3.3.1 Environment: Stack and Heap
FP functions are evaluated in an environment with a stack and a heap.

3.3.1.1 Data Stack

The data stack is the central stage on which primitives and functions do their

things, one after the other. When all is done, what is left is the result.

The stack holds atoms and sequence pointers. At the time of invocation, there
is only one object on the stack; at the end of invocation there is also only one object

left on the stack. In between, the stack may grow or shrink, but never becomes emp-

ty.

The depth of the stack can be estimated using the following argument. By the
nature of FP, each function or primitive consumes one object when it starts, and pro-
duces one when it finishes. Objects on the stack are saved only when a functional
fdnn is involved. For all functional forms, there is no need to save anything beyond
the object on top of the stack when that functional form is entered. Hence the stack
will grow linearly with the nesting of functional forms. For recursive functions,
defined with functional forms, the stack will grow linearly with the length of input

data sequence.
3.3.1.2 Data Heap

The heap is used to hold objects during computation. Its management is dis- i

cussed in the next section. Computation is started by user requesting a function to be
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applied to a data object. The input data object is built and put on top of the data stack.
The specified function is then invoked. The result is left on the data stack and is
printed. In between such top level applications, the heap is theoretically free. In

practice, this is true except for one implementation intrusion.

FP provides a CONSTANT construct to replace the object applied with the ob-
ject specified. The specified object is constructed and kept in the heap. This object
must be preserved across top level function applications. Fortunately, since the heap
is free during function definition, the compiled object can be built and kept at the be-
ginning of the heap. A heap pointer can be maintained by the compiler and used by
the heap manager to keep track of this moving boundary as permanent objects are
stored in one end of the heap. Permanent objects are not interfered with during func-

tion application as a result of the policy not to destroy run-time objects.

Run-time objects are created by a mix of replication and sharing to serve the
primary goal of not destroying objects in the heap, while being speedy in creating new
ones. For example, to duplicate the object at the top of the data stack, the stack cell is

copied to the next cell and the stack pointer updated.

During function application, the original object in the heap is not tampered
with, since there may still be pointers on the stack pointing to it. Instead, new se-
quences are created by copying atoms and sequence pointers. Hence, sub-sequences
are always shared. This sharing is guaranteed safe, since no sequence is ever des-

troyed or modified.
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3.4 Memory Management

There are up to three memory structures that need to be managed. These are
the lexicon, the code area and the heap. The lexicon needs little or no management,
since entries in it are not removed, and a function, identified by its name, once allocat-
ed an entry in the lexicon, always uses the same entry. Management of the code area

and the heap are discussed below.
3.4.1 Code Area Management

The code area is a contiguous block of memory, used to hold compiled code
for user-defined functions. As functions are defined, compiled code pieces are con-
catenated one after the other. The need for management arises from two sources:
function redefinition and interpretation of FP expressions. Both cause the code area

to be fragmented.

‘ It is easy to see how redefinition fragments the code area, since a new block
has to be allocated to hold the new code, while the old block becomes free. Interpre-
tation has the same effect, since it is implemented by compiling a reserved function.

Successive interpretations is akin to redefinition of this reserved function.

Management of code area is done by keeping a list of free blocks. This list is
implemented as an array of pointers. As a block is released, its pointer is stored in the
list. When a block needs to be allocated, the list is searched from back to front; allo-
cation is done on a first-fit basis. The code area is compacted when the free-block ar-

ray is full.

Compaction takes advantage of the fact that each code block is pointed by only

one pointer from an entry in the lexicon, and is done as follows. Functions in the lex-
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icon are sorted by their compiled code addresses. The lowest addréss is compared to
a target address which is initially set to the beginning address of the code area. The
code bearing that address is moved to the target address, if it is not already there.
(Moving is easy, since code lengths are known.) The target address of the absolute

Jump instruction in the lexicon entry is then updated.

This procc.ss is repeated for the next lowest code address, with the target ad-
dress set to the end of the previous piece of code. By stepping through the sorted list
of code addresses this way, the code area is compacted. The free list is then initial-

ized to point to the one contiguous free block.

Compaction is only done at function compile time, and has no impact on exe-

cution speed of function application.
3.4.2 Heap Management

The heap is implemented as an array of cells. As stated above, the heap is free
at the beginning of each top level function application. 'Thus, cells in thicpheap are al-
located sequentially. There is no need to manage the heap until cells are exhausted

during computation. When this happens, garbage collection is initiated.

Garbage collection is done by a simple marking algorithm. All cells in the
heap are first marked free. Then by following sequence pointers on the data stack,
cells in each sequence still needed for later computation are followed and marked as

in use.

Marking is done in a depth first fashion. Since sequences are shared, a se-
quence that is found to be already marked as in use is not marked again. This avoids

marking shared sequences more than once. The collection algorithm is O(n), since
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each sequence marked in use is visited only once.

Once the heap has been garbage collected, cell allocation is then done on the
basis of examining tags to locate free cells. The cost of examining tag is paid only

when free cells are scattered in the heap.
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CHAPTER 4
PERFORMANCE EVALUATION and DISCUSSION

In this chapter, the effects of architectural constraints on performance are
briefly discussed. The influence of heap size on program execution and memory
management are then examined in some detail. Following this, the threaded inter-
preter is benchmarked using four programs and compared against Berkeley FP, which
can execute programs in both interpretive and coinpiled modes. Lastly, possible

enhancements of the threaded interpreter are outlined.
4.1 Constraints on Performance

While a compiled FP program generally runs faster than an interpreted one, it
cannot escape from constraints imposed by the underlying system architecture, which
does not provide efficient support for facilities needed for the execution of functional

programs. In this section, some of these limitations are briefly discussed.
4.1.1 Object Typing

Like Lisp, FP needs a run-time typing system. This means that at run time, it
must be able to determine the type of an object and take various actions depending on
that type. The determination of object type is a substantial part of routines in the
threaded interpreter, implementing FP primitives. For example, to perform the primi-
tive ADD, the operand must be checked to be a sequence of length two. The elements
in the sequence then is tested to see if they afe integers, floating-point numbers, or

other types not valid for ADD. If the elements are of valid but different types, type

29



coercion must be performed. Thus, a simple ADD, needs ten lines of C code to im-

plement.

Type information not only has to be checked at run time, it must be encoded in
the data structures. In the threaded interpreter, tag fields are provided in cells in both
the data stack and the heap. The C compiler on the UNIX host, compiles a short in-
teger used to encode a tag into 16 bits. Hence, the tag field is thirty-three percent in
area of a stack cell, and twenty percent of a heap cell. These are the prices in time

and space for run-time typing.
4.1.2 Function Call and Return

The performance of function call and return is important. For the VAX archi-
tecture, there are basically two wéys to call a subroutine, a jump subrourine and a call
procedure instruction. The C compiler running on UNIX, compiles function calls us-
ing the call procedure instruction, which builds a frame on the machine stack to hold
_ saved registers, return address, and other control information. . The frame is at least
five 32-bit long words; it could be as big as fifteen long words[8]. For systems with .a
write-through cache and a memory access time in the order of micro-seconds such as
the VAX-11/750, such a call is an order of magnitude slower than a jump subroutine

instruction, which merely pushes the return address on the stack.
4.1.3 Parameter and Variable Storage

A related issue is how parameters are passed to functions and how variables
are stored. The C compiler used passes parameters from a caller to a callee by push-
ing them on the machine stack. The callee may then assign parameters to registers or
keep them on stack. The trade-off here is between the cost of accessing stack and that

of saving registers used to hold parameters. This is exactly the same consideration re-
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quired in allocating storage for local variables. Local variables can be assigned to re-
gisters or stored on stack. The former method causes a bigger frame to be built on en-
try to the function, since more registers need to be saved. The latter method causes
more memory traffic, especially when variables are written. To obtain optimal perfor-
mance, detailed analysis of parameter and variable usage in the function would have
to be done, before allocating storage. This optimization is not performed by the com-

piler used in this project.

The picture is different for global variables, since they cannot be assigned to
registers and kept there across routines. This proves to be a stumbling block in imple-
menting FP machine operations. Ideally, frequently used global variables such as
data stack pointer, heap pointer should be assigned to machine registers to obviate the
need to load them into registers and save them in memory on entry and exit to every

routine. Unfortunately, this is not possible in the programming system used.
4.1.4 Data Object Manipulation

There are three kinds of data object manipulation: accessing object, writing
into object, and creating new object. For FP, heap operations outnumber stack opera-
tions, Accessing and creating operations are more important than writing into object,

since heap objects are rarely modified.

FP objects are structured like trees, and when created, have to be flattened and
fitted into the linear address space of the host machine. This makes necessary the use
of a link field in a heap cell, creating additional demand for memory. While the use
of a link field provides flexibility in allocating storage for sequences, locality of object
storage is diminished. This is because adjacent elements of a sequence are not neces-

sarily stored contiguously in memory. Loss of storage locality in a virtual memory
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machine incurs sﬁecd penalty in the form of page faults. For a machine with a

memory cache, additional delay is caused by more cache misses.
4.2 Effect of Heap Size

The heap is a block of memory used to hold run-time objects. It is implement-
ed as an array of cells. The size of the array is not dynamically variable. If the h;ap
size is too small, then the system will not be able to run programs with a large data
set. This is because the heap cannot hold all the objects needed simultaneously for
computation to proceed. This can be so, even when the heap is garbage collectéd.
There is simply not enough space to hold the object being created before existing ob-

jects can be discarded and garbage collected.

Given a set of programs and input data, there is a minimum heap size so that
all programs can be run. Hence the size of the heap, beyond this minimum value, is a

design parameter which has bearing on system performance.

Heap size can affect performance in two ways. Garbage collection, the way it _' '

is implemented using a marking algorithm, is directly influenced by heap size. Its
cost, therefore, needs to be estimated. However, because of its invoked-on-demand
nature, it is difficult to extrapolate and predict the cost of garbage collection from
measured results. As is common for most measurements, measured results merely

provide a glimpse of this cost in known instances of program execution.

Heap size also influences program execution by having an effect on run-time
object manipulation. Object manipulation here takes the form of object creation and
access. The cost of object creation depends on the cost of cell allocation which in
turn, depends on the number of free cells in the heap. The cost of accessing objects,

in a virtual memory system with a memory cache, depends on storage locality of ob-
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jects accessed. Both costs are affected by the number of cells reclaimed each time
garbage collection is done, since the ease of finding a free cell determines object crea-
tion cost and the abundance of free cells improves storage locality by storing related

objects close together.

In this section, the effect of heap size is analyzed using a set of benchmark

programs and input data set. The programs are given in appendix A, and consists of

the following:

i.  matrix multiplication, with an input of two twenty-by-twenty matrices,
ii. quick sort, sorting 500 random numbers,

iii. merge sort, also sorﬁng 500 random numbers, and

iv, tower of hanoi, moving a stack of thirteen disks.

Using UNIX system call, fimes(), a simple timing facility is provided in the
threaded interpreter to time top level func.:tiori applications. Figures are reported for
CPU time and garbage collection time. Three threaded interpreters are created, with a
heap size of 4,000 cells, 8,000 cells, and 80,000 cells respectively. By using scripts,
benchmarking processes are run on one UNIX host concurrently as background
processes. This is done to ensure measurements for the three interpreters are done in
the same environment, in the hope that the effect of heap size can be isolated from en-

vironmental ones.

Results of measurements are shown in Table 1 and 2. Each figure is an aver-
age of forty execution times. Table 1 shows the sum of CPU and garbage collection
(GC) times for each function executed by each interpreter. Table 2 shows the CPU

and GC components separately. It can be seen that GC is not as expensive as one
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might suspect, taking at most five percent of total execution time, in the cases shown.

From Table 1, the 8K interpreter performs consistently better than the 4K in-
terpreter, but shows little difference, in terms of performance, from the 80K inter-

preter.

Looking at Table 2, where the CPU times are separated from the GC time, one
would expect to find comparable CPU times for the three interpreters, and different
GC times, with the smallest interpreter showing the most garbage collecting activity.
This is partially true. GC times indeed decreases as heap size increases, but there are

interesting variations in CPU times among the interpreters.

The 4K interpreter is slower because of the side effects caused by its small
heap size, which requires more garbage collection during the course of computation.
This not only raises GC time as measured but also CPU time. It can be speculated
that the number of free cells reclaimed for a small heap is lower than that for a large

_heap. So fr_ee cells are harder to find and is reflected as higher CPU time. Another
reason is thzﬁ since garbagé gollecﬁon is more frequent, the system call, rimes(}, used

to collect execution statistics consumes resources which become significant.

Comparison of the 8K and 80K interpreters shows two conflicting results. The
8K interpreter is slower for programs, matrix multiplication and quick sort, but slight-
ly faster for merge sort and tower of hanoi. Closer examination reveals that for the
80K interpreter, matrix multiplication and quick sort do not need garbage collection at
all while merge sort and rower of hanoi both require GC. Thus, one might be tempted
to argue that a large heap may cause performance degradation when GC is required.

A possible reason why this may be so is offered in the next paragraph.
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Heap sizes

4K 8K 80K

matrix mult | 17.80 | 15.78 | 14.28

quick sort | 17.03 | 15.41 1467

merge sort | 75.00 | 7045 | 71 46

tower | 6659 | 6466 | 6474

total | 176 42} 166 35] 165.15

Table 1 Showing execution times (in seconds)
of 4 programs for 3 heap sizes (in cells).

He

cp

R sizes

aK 8K 50K

matrix mult | 16.21 + 1.59| 1505+ 0.73 | 1428+ 0.0

quick sort | 1584+ 119} 1495+ 0.46( 1467+ 0.0

merge sort | 71.37 + 3.63| 67.93 + 2.52] 69.99 + 1. 47

tower | 6574+ 085{ 6388+ 0.78] 6428+ 0 46

total | 1692+ 726| 1618+ 449] 1632+ 193

Table 2 Showing cpu + gc components (in seconds)
of execution times in Table 1.

Note:

matrx mult takes two 20x20 matrices;

quick sort and merge sort work on 300 random numbers,
tower moves a stack of 13 gisks




A big heap may lead to slower execution time if the effect of page faults is
considered. Prior to GC, a heap provides free cell at the lowest cost, since free heap
cells are allocated in the fastest way possible, consecutively without examining tag.
A large heap has a greater capacity to do this than a smaller heap. After GC, free
cells are scattered in the heap. Traversing the heap to find them causes frequent and
regular page faults which slow down execution. This effect is more visible in a large
heap than a small heap, since a big part of a small heap can be held in memory and

not on paging device.
4.3 Comparison with Berkeley Interpreter

To provide some idea of the speed achieved by the threaded interpreter, the
four benchmark programs are run and compared against Berkeley FP interpreter. It is
known that such comparison is not fair, since Berkeley FP has the handicap of being
based on Franz, the Lisp system. Comparison is useful, however, if the result is not
- used to extol the virtues of threaded interpretation, but merely to provide some idea of

system responsiveness for a FP user who does not care about implementation detail.

The results of benchmark are shown in Table 3 and 4. Berkeley FP is able to
generate Lisp code, which can be compiled, loaded, and run. Compiled code achieves

a speed up of as much as fifteen times when compared to interpretive execution.

The threaded interpreter used has a heap of 1,000 cells and still costs less in
garbage collection than either modes of Berkeley FP. Overall, the threaded interpreter

is at least twice as fast as Berkeley FP compiled execution.
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matrix mult 10.9 69 | 2.43

gquick sort 55.6 58 | 2.18

merge sort | 1984 | 152 | 575

tower | 3799 | 233 | 774

total | 6448 | 51.2 | 181

Table 3 Showing executio- nes for Berkeley FP
and fpc. (see lege: below for details)
8 b C

matrix mult 74+ 35 42+ 27 219+ 024

quick sort | 350+ 206 41+17 | 208+013 -

merge sort { 1213+ 2721 | 121 + 31 555+ 020

tower | 2454+ 1345] 205+ 28 | 762+ 012

total | 409.1 + 235.7| 409 +103 | 1744+ 066

Table 4 Showing components of cpu + gc times
for execution times in Table 3.

Note:

column a, Berkeley FP interpreting FP programs;

column b, Berkeley FP running compiled FP programs;
column c, threaded FP interpreter, heap size = 1000 cells

matri mult waorks on 2 10x10 matrices,
guick sort and merge sort takes 8 sequece af 100 numbers,
tower works on 8 stack Of 10 disks




4.4 Possible Improvements

While the threaded interpreter is faster, Berkeley FP offers more facilities for
debugging and gathering statistics. These are easy to add on to the threaded inter-

preter.

A function tracing facility has been implemented by changing the code pointer
in the lexicon entry of a traced function to point to a routine, which prints the object
on top of the data stack at both function entry and exit times. By using the same tech-

nique, a facility to gather function execution statistics can also be implemented.
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APPENDIX A
BENCHMARK PROGRAMS
# matrix multiplication, a matrix is represented by

# a sequence with elements as rows.
# input: <<al,a2,,,aM>,<b1,b2,,,bN>>

# where a’s are of length N.
{matrixMult
& MaplnnerProd
# < <<al,b’l>,<al,b’2>,,,<al,b’'P>>
# ee<aM, b’ 1>,<aM,b’2>,,,<aM,b’P>> >
@ & distl
# <<al,B’>,<a2,B’>,,,<aM,B’>>
@disr @[l,trans @2] }
{MapinnerProd
& InnerProd }
{InnerProd
| +
@&*
@ trans }
#
# quick sort

# -
{qSort (isShort -> id ;

concat @ & qSort @ partition) }
{isShort <= @ [length, %1] }

{partition (isShort -> id ;
[listSmall, tir @ 1, listLarge] @ distl @ [1, t1]) }

{listSmall concat @ & pickSmall}
{pickSmall (>=->[2] ; []) }
{listLarge concat @ & pickLarge}
{pickLarge (<->[2]; []) }

#
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# merge sort
?mergeSort ! merge}
{merge atEnd @ mergeHelp @ [ [], fixLists ]}
{fixLists &( atom -> [id] ; id } }
{mergeHelp ( while and @ &( not @ null ) @ 2
( firstIsSmaller -> takeFirst ;
takeSecond )) }
{firstIsSmaller < @ [ 1@1@2, 1@2@2 ]}
{takeFirst [apndr @[ 1, 1@1@2 ], [ t@1@2, 2@2 ]} }
{takeSecond [apndr@[ 1, 1@2@2 ], [1@2, t1@2@2]] }

{atEnd ( firstIsNull -> concat @ [1,2@2] ;
concat @ {1,1@2])}

{firstIsNull null@1@2}

#

# tower of hanoi

#

{tower moveDisks @ [iota, {], [1]}

{moveDisks
(while

# done when 2 pegs are empty
= @ [%2, countNull]

# move smallest disk, followed by the only legal move
moveSmallest @ onlyLegalMove
)

@ moveSmallest }
{countNull ! + @ & testNull}
{testNull (null -> %1 ; %0)}
{moveSmallest
# smallest disk is on first peg

(onFirst ->

# move it to second peg
[ti@1, apnd]l @ [%1,2], 3] ;

# smallest disk 1s on 2nd peg
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{onSecond ->

# move it to third peg
[1, 1@2, apnd]l @ [%1,3]] ;

# must be on third peg, move it to first peg
[apnd]l @ [%1,1], 2, 1 @ 3]
N}

{onFirst (null -> %F ;
=@ [%]1,id)) @ fist @ 1}

{onSecond (null -> %F ;
= @ [%1, id]) @ first @ 2}

{onlyLegalMove (onFirst ->
# smallest disk on first peg, do legal move on pegs 2 and 3
apndl @ [1, legalMove @ [2,3]] ;

# smallest disk on second peg, do legal move on pegs 1 and 3
(onSecond ->
(1@2, 1,2@2] @ [2, legalMove @ [1,3]] ;

# smallest disk on third peg, do legal move on pegs 1 and 2
[1@2, 2@2, 1] @ [3, legalMove @ [1,2]]
N}

{legaiMove (moveLeftP ->
fapndl @ [first @ 2, 1], 1 @ 2] ;

(moveRightP -> '
_[él @ 1, apndl @ [first @ 1, 2]] ;
I
N}
e _{moveleftP > @ [getFirst @ 1, getFirst @ 2] }
{moveRightP < @ [getFirst @ 1, getFirst @ 2] }
{getFirst (null -> ‘
% 10000 ;
id
) @ first }
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APPENDIX B
Jpc User’s Guide

fpc is an interactive threaded interpreter/compiler for the functional program-
ming language, FP. It is smaller in size than Lisp-based interpreters and has been
benchmarked to run at twice the speed of Berkeley FP interpreter executing compiled

Lisp code.

This user’s guide is divided into four sections. The first section deals with the
syntax of acceptable FP programs. The second describes system commands imple-
mented for file access, measurement, and debugging. The third section outlines im-
plementation limitations and suggests a way of overcoming them if they become a
problem. The last section mentions known bugs and discusses implementation issues

which have not been resolved satisfactorily.
Syntax

This interpreter accepts the full set of FP constructs as described in Berkeley
FP User's Manual. Users are referred to it for a full account. Differences from the

Berkeley interpreter are described below.

1. Jpc distinguishes between upper and lower case characters in its treatment of
identifiers. Identifiers may consist of alphanumeric, ’_’, or ’." characters, but
must begin with an alpha or ’_’ character. Identifiers containing other charac-

ters must be enclosed in double quotes.
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2. FP primitives are accepted in lower case characters only.

3. Sequences can be represented using parentheses, '(’ and ’)’, as well as angle
brackets, <’ and '>’. Elements in a sequence may be separated by a white

space or a comma,

4 Null sequence, "()" or "<>", must not have any white space character between

Fl

enclosing parentheses or brackets.
System Commands

A subset of system commands supported by Berkeley FP is implemented.

These are

1. Jfns, to list function names for all user defined functions and their compiled

code lengths in bytes, in the order they are found in the lexicon.

2. Moad <file>, to cause the interpreter to accept input from the named file. Only
one file may be spéciﬁed, and fnay contain system commands as well as func-
tion definitions.” The command, Jload, itself can be nested up to four levels.
File names containing path specification must be enclosed in double quotes.

Wild card characters are not aliowed.

3. Jtimer on/off, to enable/disable a simple timing facility. If enabled, the system
will report CPU and garbage collection times at the end of top level function
application. Format of times reported is in user and system components as ob-
tained by the UNIX system call, zimes(). User time is the time spent executing
user program in user address space; system time is time spent in kernel ad-

dress space.



4. Jtrace onloff <function>, to enable/disable function tracing. If enabled, the
system will, on entry to and exit from a traced function, display the name of
the function, the dynamic nesting level of this call, and the data object on top

of the data stack. Primitives are not traceable.

No command to save defined functions in a file is implemented. This is main-
ly because fpc does not keep source text of functions in the system. Saving compiled
code is useless where defined functions need to be modified. Users therefore, should
not develop functions by typing definitions directly at the interpreter. A text editor
should be used to create a text file to hold function definitions. By using the job con-

trol mechanism of C shell, control can be transferred easily between the editor and

Jpe.

Implementation Notes

Various data structures in the interpreter are implemented as fixed-sized ar-
rays. fpc does not handle array overflow gracefully. If an overflow occurs, an error
message identifying the array is printed, the user is then returned to the shell. (Anoth—
er reason why function definitions should always be kept in a file.) To o?ercome this
problem, the offending array can be made larger and the system recompiie;. Array
overflow is usually caused by legitimate exhaustion of memory resource. However,

bugs in function definition have been known to cause the data stack to overflow.
The data structures likely to overflow are listed below.

I. The data heap is implemented by a cell array. The size of the array is declared

by the constant MAXCELL in the source file "heap.c”.

2. The data stack is implemented with an array size as defined by the constant
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MAXDS, which may be found in the file "eval.c”.

3. The lexicon is an array known as udf, with MAXUDF slots, which is defined

in the file "compile.c”.

4. The byte array used to hold compiled code is declared in the file "codeBlk.c";
its size is MAXBYTES bytes.

Other data structures less likely to overflow are:

1. A stack holding head and tail pointers for a sequence being built. (The depth
of the stack depends on how deep the sequence is nested.) The relevant de-

claration is in the file "heap.c"; the constant defining array size is MAXNEST.

2. A node array of MAXNODE nodes to hold a parse tree. This is defined in the
file "heap.c".

3. A character array of MAXCHARS bytes to hold identifiers. The relevant file

s "string.c". : —
Known Bugs and Rough Edges
These are briefly described below.

1. The functional form CONSTANT is not true bottom preserving For example,
%(1 ? 3):10 returns the sequence (1 ? 3) instead of ?. Other primitives do

preserve bottom.

2. The handling of bortom in the run-time routine, appTOS, called to build se-
quence is awkward. Typically, the routine is called to append the object on
top of the data stack to a sequence being built. If all goes well, the calling rou-

tine returns the sequence as the result. However, if appTOS discovers it is ap-
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pending bottom to a sequence, it will attempt to abort its caller and return bot-
tom on the caller’s behalf. It does this by writing bottom to the top of the data
stack. It will then abort its caller by returning to the calling routine of its call-
er by popping a return address from the host’s machine stack, and then execut-
ing a return from subroutine instruction. This scheme is designed to work in
code compiled from FP functions. Returning to grandparent will not be suc-
cessful, if a frame is on the machine stack instead of a return address, when

the return from subroutine instruction is executed.

As each function is compiled, code is written to a scratch pad area before be-
ing moved to an ailocated code block. There is no check to ensure that scratch
pad does not overflow. Checking is not done since different routines are
called to write code to the scratch pad for different FP constructs. There is no
convenient place where checking can be centralized. Hence the size of the

scratich pad has been made large, so that overflow is not likely.
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