A KNOWLEDGE-BASED SYSTEM FOR
DEBUGGING CONCURRENT SOFTWARE

Carol Helfgott LeDoux March 1986
CSD-860060

A Knowledge-Based System For
Debugging Concurrent Software

Carol Helfgott LeDoux

Computer Science Department
School of Engineering and Applied Science
University of California
Los Angeies, California 90024

Report No.

© Copyright by
Carol Helfgott LeDoux
1985

ABSTRACT

A Knowledge-Based System For Debugging Concurrent Software

by

Carol Helfgott LeDoux
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1985
Professer D. Stott Parker, Jr., Chair

The recent development of high-level concurrent programming languages has emphasized the problem of
limited debugging tools to support the development of applications using these languages. A new
approach is necessary to improve the efficacy of debugging tools and to adapt them to the framework of a
concurrent software environmant.

A knowledge-based debugging approach is presented that aids diagnosis of a variety of run-time errors
that can occur in concurrent programs written in the Ada” programming language. In this approach, an
event stream of program activity is captured in an historical database and accessed using Prolog queries
extended with temporal-logic predicates. Diagnosis is aided by applying rule-based descriptions of some
common classes of software errors and by matching program specifications against the trace database.

This approach was used in building a prototype debugger, called Your Own Debugger for Ada (YODA).
The design of YODA is described and analyses of several sample Ada programs are presented to
ilustrate diagnosis of errors associated with concurrency, including deadness errors and misuse of
shared data.

'Ada is a registered trademark of the U.S. Government — Ada Joint Program Office

FOREWORD

This report reproduces a dissertation submitted in partial satisfaction of the requirements for the degree of
Doctor of Philosophy in Computer Science at the University of California, Los Angeles, on 2 December
1985. The author thanks her doctoral committee, which consisted of Professors D. Stott Parker, Jr,
(Chair), Walter J. Karpius, David F. Martin, Bruce Rothschild, and R. Clay Sprowls. This research was
supported in part by an Aerospace Doctoral Fellowship. Preparation of this document was supported in
part by the Aerospace Sponsored Research Program.

CONTENTS
1. INTRODUCTION.......ccevueeee e NeIESNs NN s et aseesae oSSR R E ANt AR RRS LR Ut uananOR P Oaasusnannnn s 1
1.1. Debugging DefiNed. .. iciiiiiiniineinmsimniemnenenerisenneisimsreressmssansssnssssas e ssocsessares 2
1.2. Why Is Debugging DIffICUIL2.....cvviiicsccinmrcnnessnentccstennaeniessass s s ssnessnsssssncessonne 2
1.3. Problems of Debugging Concurrent SOfWAre..........cc.cccvvveiiemiisssnionsssssnseessensens 3
1.3.1. Complexity of Error DeteCtiono iceee et 3
1.3.2. Complexity of TESHNGc.coieiiriieriecrin et sess e e s ste e sresaeesrenesnne 3
1.3.3. Complexity of Error LoCalzZation......ccccceceeecvrieeiieireeieeineiieeec e 3
1.4. Notations for CONCUITENCYc.criermemmesinescsmsinmsssisssissnseneennessessnnssssssssssmsassssarass 4
1.5. Ada Concurrency: The Rendezvous MechaniSmceeceeunrecsseesinnessmsneesenses 4
1.6. Common Bugs in Ada Tasking Programs.........c.uveerrermneiensissisnessnessssscsseesseesarne 5
1.7. Automated Techniques for Debugging Concurrent Programs.......ccccceerrmnneen. 6
1.8. Approach and Scope of this Dissertationc...cccvueceesiivinmermesismsimeessennscssensens 6
1.8.1. The Trace Database APPrOACH........ccccievieerteecreeeri st srressreseessessnees 7
1.8.2. Trac ANAIYSIS ...covcerivieiiieinicriimiianriesrressrerstesiseesrtesatrservesstsssbressnessseesnsensesnssns 7
1.8.3. Error Hierarchies and Diagnostic REasoniNg......cccccuvevveveeeriisessessceressseseeane 8
1.9. A Prototype Debugger for Ada: YODAcccoecrmerrcerrscisseisesscnmmasesosssssssessmsannnsn 8
1.10. Contributions..........cceieaenn Castbimssreer s n st ana e ae s e n R AR SRR L RS erreasisarisartssnnasnans 12
1.11. Organization of this DisSertationcccrecrcneicneicesrsssmrsesrassssessosssssrensssess 12
2. DEBUGGING TOOLS........... GubttnTsoEse e S nan AR AR RN SRS NRES LA ne mnmn A rearuerannanan 14
2.1. Debugging TEChNIQUES......ccciciriinassassanisanssnsstmiamemranmrensaasesssssssassssrssassssessesnasase 14
2.1.1. Informal Debugging TEChNIQUES.....c.cccvveiiieiiniiiniee s e s 14
2.1.2. Automated Support for DODUGGINGceeveeereeiieeniieiimriinecreneeserereessessseseesssnns 14
2.1.2.1. StAtIC ANAIYZEIS .c.ccccieeeeceeececercrterrse e sesbtses e sserse s ssessessssesasssaesesnnes 15
2.1.2.2. Exception HandIBrs...........ccoiiiieeeieieiircr e neeste e st s sessr e 15
2.1.2.3. Dynamic Debuggingcccccoreiririiierieinicnicstnesienssessieeseesssesesssnsesoesecnnes 16
2.1.2.4. MONIOTS .ouiiiiiiiitiiiicreecirecrnre s ecereeeses s e sesssatssareasne e aaerasesasssesssensnssennass 17
2.2. Concurrent DEDUGGErScccccinsmemsenisnnsssnisasscsssesssisssisannrersnsssnsssonsarassransosmnosmans 17
2.2.3, BAIL ittt rea s e s s s st e s s ae s sae s sreanasaas 18
2.2.2. DEBNCE .cceviciiiciiiiti e b s s e 18
2.2.3. Checkpoint DebugQiNgccecvvereirrriiriccr et rreersese s sessresesseessne e 18
2.2.4, SPIDER ..ottt snrnresreseres s e st s e satsse s s s e s e e eresre s s re b s e sms s nae s 18
2.2.5. RoIM Ada DEbUgQer ...ttt rentssese s s s sae e s s anane s 19
2.2.6. Arcturus Debug FacCility.........cccceeceeieriieenieennciirctressee e ecevses s e vsres s esnssssnnnsne 20
2.2.7. An Ada RUN-tIMO MONILONc.coeriicieeiceces e rre e s ne s s esbeessaesr e saeesnnes 20
2.3. Database/Knowledge Base Approaches to Debugging.....ccccvcenecnicrercnrianerense 20
2.3.1. Debugger fOr OMEQAccoocerccerierrcerrenniererressrssansasensssssssesnersnssessessssseses 21
2.3.2. Prolog DebUGGEN....ccoviuiiiiicriretiicinneiriscinieseissnttiesseiansesesssesssssseersrsssasessssnnens 21
2.3.3. SNIOE o.veeeirecirvssecnn e e e b s e g b st et b e e e 21
2.3.4, FALOSY citiiniiinmnceneiimennisimenionmsiommmimiseimenionessienmoessmsisiossssmsasessonon 22
2.4. Summary of Previous Work and Conclusions..........cuevsiisiminenieoseossassisessasssonse 22
3. TEMPORAL MODELS OF PROGRAM BEHAVIORcccctieiiciiinencnncrisenncen 24
3.1, INtrOAUCHION .ccucriciccseinssensesacensscnmsersssanasenssenensasssnesansnnssnsssnsnasnsassasssnsannsannssansasssonnas 25
3.1.1. Temporal FOrMUIAS. ..ottt ccrir sttt ettt e e s 25
3.1.2. Interval FOrMUIAS ...t ccctee st s v ar e s eb s s s bt s s saansne s rat g 27
3.1.3. Path EXPrassions........cciiimminnsisisinssssisnnas e 27
314, Potri NetS ..ttt s e e e s 28
3.1.5. Organization of this Chapter..........cccinni . 28
3.2, Temporal LOQIC . .ccciiimccniisiinisismsssasssssssanassassssonsissanssassnssssarssassassssansssssansanananss 29

3.2.1. Defining Temporal LOGIC.......ccueiermireenmieeeeeirieeeeeee e sestsee e e sesns oo 29
3.2.2. The Basic Temporal Model: System R

... 32
3.2.3. Temporal PraCedenceccevriiieimimnnnnestniesiessasssesseeseeeeseeeeesssseres s 33
3.2.4. Linear Time versus Branching TiMeccc.vvueoeeeevrecniirennrenreseesseessesssssssssonns 34
.25, TONSE LOGIC ...cciveiireiiiince e ntr et see e ssre s e s sreee e s sensm e ees e s e ss e ses 34
3.2.6. Temporal MOGAILYcccccoreerrirricieeteeteee st erecr et eieeesessesseeneeeessrsstesesne s 34
3.2.7. Chronological Logic: SyStem M*c.ciceeeeeieeiicenececeseesseseserenssseseessesesesareres 36
3.2.8. Interval Logic and Temporal Patterms............ccocccevereerercreeeirernseeseesesseseesneenans 38
3.2.9. Temporal Logic and PrediCate LOGICovvurieevrrircereeeeeeeeseeesesresesseessesenns s 39

3.3. The Temporal Context of Events and Statesccoceveeeeeeereerenesseeresneensssonnnes 41
3.3.1. Defining EvVents and StAtes ..o e esee e s et s e s 41
3.3.2. State-Based versus Event-Based Temporal ModelSceevoeeeeeeeeeeeeeeisnnnns 42

3.4. State-Based TemMpPoral MOEIScovcvveremrerinenmessssssceserasssssssssessssssssessossessssnssns 43
3.4.1. Linear Time and State FOrMUIAScccovueruieiieii it eseereseneessneeeseeseeneneas 43

3.4.1.1, A Discrete Temporal Model: System D.......cccccccovriiieeersnrenreressesseesennns 44
3.4.1.2, Safety and Livenass Propertiesc...ceeeeevcecverteeceecereeesesesesesensnvene. 45
3.4.1.3. System D Extended: System DXcceceeveeriieiveitiieneeeseeeeseesrrerestesnennas 47
3.4.1.4. Propositional Temporal Logic: PTL.......ccccovveiinieieeeeeese e eeeesinrannns 48
3.4.1.5. Procedence Propertifscccceoreeriiiveiiraresssesesseeseessssesssssesssesseses 49
3.4.1.6. A Temporal-Logic Specification Language: SYSL......cccccveeveeererrennnns. 50
3.4.1.7. Decidability and EXpressivenessccueiviveineireesieessrsssesssesseesessnssnns 51
3.4.2. Branching Time and Path FOMMUIASccccceviiemviieicieire e cosesseeeerreesesees 52
3.4.3. History Variables........ccouevireriereeiencnreiveensecnesesnsneristessssecssscssesssseesessensssesens 53
3.4.4, Extended Propositional Temporal LogiC: EPTL....cccuovecerveveveireeneeneerrreerenns 54

3.5. Event-Based Temporal Models............. Ceseenrenrasaserasasaeana s s et st aean s na s an s a e sanannsne 54
3.5.1, The Event-Based Specification Language: EBSc.coceecevvervirereeeceeennnne. 55
3.5.2. Evant SPeCIfICAtIONSc.cci ettt ee st e s e e s v e s sae s sems e s nanean 55
3.5.3. Path EXPrasSsSiONS....cciiciiietimrricnmreicrsiesiiessieessorsenssssssesssmmsmeeesssasssssssenressssnnen on 56
3.5.4. PO NOLS....oo ittt e e esa e s s e b et e s st st e ee e e e eraerens 57

3.6. Relationship Between Path Expressions and Temporal LogiC.....c.ccerrvrvernnees 58
3.6.1. Definitions and ASSUMPHONSccccvveirieireiiieiieeece e ctessae et seee e e eeeseeeasnean 60
3.6.2. Transforming Path Expressions into Event Expressions............cccecvvenennans 81
3.6.3. Transforming Event Expressions into State Formulas.........ccccceeevveveveienneen. 62

3.7. Interval Temporal LOGICSccccccrumemnriencsmssmsaisnssssisecassscnmssnssosnsessssmsesmnsssanssesasess 62
3.7.1. Interval FOrMUIASccocecerrrrrerernreresssscsssssssssssbts s s sesesrasssssssesasesssanssneon 63
3.7.2. An Interval Temporal LOGIC: ITL...ccccuiciiciieecccrecnrseersnisressnsssmsssssssssnssessesssans 65
3.7.3. Quantified Temporal LogiC: QTL.......ccooiiiiiccerrnrrerereec i snisseeesserssessseessssnns 66

3.8. A New Interval Logic: System ¢............... eaYaniranee et et arRE et seantasa nL et an e aasatan ritn 66
3.8.1. The Semantics Of SYSIEM €ccivervirrriirrrseniesiesrsesensseessesesssessesssssnan 66
3.8.2. Comparison with Other Interval LogICS.........ceevicieereereeeerneeeeieeeseeeseescsesennns 69

3.9. Summary and ConCIUSIONS ...c..cccvcisemncsnncnssnssanssesnisnseessasenens sesssarssasssnstenrnnsnsannas 69

4. A TRACE ANALYSIS APPROACH TO DEBUGGING........ccccoerrmeersnmcrsenrecnessans . n

4.1. Trace Analysis versus Verification..........cccuuevicnrinncvnenssnnnnicnncssannesisimencn 72
4.1.1. Disadvantages of Varificationccccuiiiininiviiinviinnnicin e ccses e 73
4.1.2. Practical Advantages of Trace ANalYSiSccccverreericciimnmintensrrcrsecmeeersccnenees 73

4.2. Previous Approaches to Trace AnalySis.........c.cccccvcineccmrccsrassscnsisssnesssennsssasssonse 74
4.2.1. The Behavioral Abstraction APProachcrueirrcrinnernenmnseonean, 74
4.2.2. A Temporal Query Language: TQUe..........corvvercreriiesnneniieinnermiersarseesesierines 74
4.2.3. DISCUSSIONcceeniiiiiiiiiiiiiinee st s as e s s s ran s s s e s as s s bssssesssns 76

4.3. YODA's Approach to Trace AnalysiS.......ciciinnsiininmncininiiissinninsinessnione 76
4.3.1. Trace QUEIMBS cuuiccririiiiiieiieniieiineimeniionneiisssiesnssersnssasrasosssssssmassssasnassssssnssrans 77

vi

4.3.2. Requirements for Trace ANGIYSIS.......ccccoverueeeeeeirieieee e eee s eeee e e 77

4.4, SOQUENCES.....oviiiiermivairrissessnaressisiesssesrsastsassssmtnenronsssasasassesessassesssasssssamesasenssssaesens 78
4.5. Implementing € IN Prolog ... mseissnecsssssssessesssesssessnes 79
4.5.1. Prolog SemantiCs......ccooviiiiiiiiieciein e trcee s veressetessseseseeseeesseseessseeasnessssenns 79
4.5.2. Implementing € USING S@QUENCES ..cocueeieieeeeii et e et e e e e s e s ssaese e s 80
4.5.3. Temporal CoOmMPIetBNESS.cccccveer ettt sree e s se s st e sreeseeseeseessenne 82
4.6. Expressing Path Expressions in Prologciciisicimeriemsermsessenssermessnesse e 83
4.7. Events, States, and Execution HIStOrIescevvrrercciinnenmreeseessrssssrsessrssnsessseane 83
4.7.1, ASSUMPLIONS ..oeceeieeieiecniie i srarne s be e e e e seseseassas o ebesseessesseesssneaesnseneesnes 84
472, BVENIS ..ottt s e e st b st e s e e s s resaonaee e aennen 84
4.7.3. EVONLINSIANCES ..ottt srssstrr e sesssssn s e s sesssres sbesemensaesennes 85
474, TIACBS .ccceeeereerretieiees st aessesse e s te s b e sbbsrsass aresbessbesassasesantssrsatesaessaneneesneseresaensn 85
7.5, SlICOS c.overieiriiriiciieeercree et te e ate s ess e ren e e b e e e r s st et ee sae e eaeesmenaenenens 86
4.7.6. States and State INSIANCES.....uov ettt eesaeeseeeeeeeeseesens 86
4.7.7. Event and State Relationships.......ccuoveieieiieceiceistiecee e eseese e eeseenees 87
4.7.8. Temporal Views of Trace Databases........c.ccceevceevrvvveririissiieneessesresesssseesnns 87
4.8. Comparison with Previous Workc.coucnmnnmcenanians vansanessesnsesicanunerarnsnninseras s 88
4.8.1. Comparison With [TL. ..o e sssessaessss s e e serese s seassneas 88
4.8.2. Comparison with TQUE!cc.v it cs e ssrsssssasssestosesneses 89
4.9. Summarycccueceriinns e98eenssNeIRRE T ERT R SN ss R RNn NE e R ae PR aa s aa bRea Eaban enmasnsresereseisesrernransansas 89
. YODA: AN ADA PROTOTYPE DEBUGGER.......c.ccceovrerrressrcsnrenncans vesnruserensnnnnne 91
5.1. Ada Terminology SoebavmassusEEsaRss SaRePEsmRa Saan S e RS N AR AR LA b venmrsssessssnsessennenanen 91
5.1.1. MOGUIATITYeeveeeeceeeceececnensesssassvasbiae s sstebste e seesseessssssssasnsssasseaseessesssssease 91
5.1.2. Names and Program ODbJBCLSccciccircirniriccriciecitreee s cerrceernaersnrre s 91
5.1.3. Strong Typing and SCOPINGeveevierenieiinirieerniicreserssseesssesssesssesssssssssssses soseses 92
5.2. Impiementation of YODAcuirvsmssrenssrassscesussssnmsessmamsensssssssssssssssssssessan sonsorane 92
5.2.1. The Symbol Table.......ccccierceiieiiiiiinner e seerresreseessessneseessesssssensssessne s e 93
5.2.2. Operations on the Symbol Tablec..cccvvereeieiiinenietiniircirirsenereeeeeseeessseesen 96
5.2.3. Annotations and the Trace Databasecccceeerirerianicreninnerereireeneensennians 96
5.2.4. Program MOMItOr.........cciicerccmrreerirerrntesererenrsstesstessaeessarsae enenssssosssssstnesanssres 99
5.2.5. The Trace QUErY PrOCESSOTccciiernieineriieisierernrrrertesse s sssssssesiessessesssee s 99
5.3. ConclUuSIONS........cccerieacescsssersencmsanmsansssasmssnsassasans FaeNsTERNeNTssEEsessasssantaasnanssnanreannsras 99
. DEBUGGING WITH YODA: CASE EXAMPLES............cc.cccvueruee cassreurrasenernnsanas 101
6.1. Error Taxonomies: A Survey of EXiSting WOrkK......ccccciciererremsvsrrrerrsssssssersonsenne 102
6.1.1. SemanticC EMMOr MOTB!.......coccccverueerneerneereenecnneainnemeemeeressesssesasssssessssssssssenes 103
6.1.2. Error Modeling by Symplomsccccerriciimerccrcertincrrcssressss s sessssessssesenss 104
6.1.3. Structural TAXONOMY.........cccceriirrerieriroteenstesieessnsesresesnssseessresssssesreessarsssesseese 104
6.1.4. Behavioral TaXOnOomMYccccveerricceiieeiirtreesccreeesesesnee cesevasesressnessesssssrssessrasseses 104
6.1.5. A Taxonomy based on DIffiCUYccoveevrecirerierrrrercrrr e e 105
6.2. Enumeration of Ada Program Errors.......ccc.ccinirimnermsimsseimmresmsesens 105
6.3. YODA'S Error Modelccuccmcriemniicnimmnsmnssniscesmnsssnssensssssssnsisasssassssssae S 105
6.3.1. Knowledge Reprasentation of Errors.........cevvriccircnvevenereecrvenncseneseniee e 106
6.3.2. PerfOrmance ISSUBS.......cciiiivrimiinrreeriensisnmessimasisreisssmssis e assenonscanioas 106
6.3.3. EXAIMPIEScoooeeiirineriiieriesernereerenesonsensssessesaneessssssssnnresssessasnnsssssassssanssasesassane 106
6.4. Cyclic DeAIOCKccuvreceirrecnnrenmsisnssncescnssanesssassamssassnassanssnannanssssasessssnansassssnsrasssasans 108
6.4.1. IMPIBMENTAIONeeeeiieeiieeccirreieercserree s srerssenrrs s e s srasnres s essameecssnnasssnnesssansssnes 108
6.4.2. Trace Databasecccciviininiininniismenssis s os e 108
6.4.3. Trace ANAIYSISc.covriinriisiiinieeiisniesiicsismesimesmissmssinesissarssissssnsssssssnessssrsns 108
6.4.4. DISCUSSION .uvvverirnrerranerinerirsnsseesmmemerererassssanssssssasiessassssnantsensssasssoneanssssessonsss 108
6.5. Lost Update.........ccceerrnvannncas e dnAeeee4san4seseteesaNesenanteEsseRsaIRe RNt RS SRRIPesIsRaRsRaReRR SR TRSRRSS 108
6.5.1. IMplementation ... e 115

vil

B.5.3. TraCE ANAIYSIS 1iivuenirireriiseenrrie i ieieestenre e esesseeesesessseaseeressseseesessessesseseeeesa 115

6.6. The Stenning Protocol ... cinisicnremmesneasasmssssessmesasssssssememssesoseses 115
B.6.1. IMPIEMENLAtION (1veccie ittt et st s e e st e se e ae s neseens 115

£.6.2. Trace Databaseccccovviiiii st ee st e e s s e et ete e s 119

B.6.3. TraCO ANAIYSIS ...coooeerreiiircreetisttie et e et e st es e s s re st e eesseasesarvresessses 119

6.7. Taxi Service.....cccviircasiecanaes CSeTEEt NS s n RS e ae IS s en eSS RseesRt taRRTE PRI SRR ASRE SRR SRS RS R BRI ORS 119
6.7.1. IMPIEMEBNIAION ...ttt e eee e e see e en e srenseeereseeseens 125

6.7.2. Trace QUEIIES ..ot ctrre e esresseseaese e e bsssee e seesmassssssannesnseonsansens 125

7. SUMMARY AND EVALUATION.......corerrecrerrernncansaens tesesuaseonnsarnannsnnnaasas SR 126
7.1, ConcluslonSccccceeecrrcereanrennens HRESeEIeesEEeRNeS brATe R SRSt annaR RN SR UP R NN SO SSSRR SR ARS LTS PRRE S 126
7.2. Open Problemscceueuae. HeANteravvrRIeTIasRaRs IS aRE s e RS A s atn e R ES SR nn nee s et aea s nnarsarnasnos 127
REFERENCES.............cccu....... ereereeresesAEIEeaneNeetEeNENMeaNe e tet R A Raenaanarese st nentnsnnnnrrranren 128
APPENDICES......... teesceressnasannannanna S — SesMammsmerresanetennresseReeRtennneren et aenntntsnnnrene 138
A. INTRODUCTION TO PROLOG......ccovrerremrerersasasnsnersensanss anevnsenusssennannaserasrararanan . 139
A.1. Basic Character Set.......cccoccenees easarerrsesnEeraNeian e e e rRa et dnnn s s e e tRas bt nenmnen s ae e bnnen 139
A.2. Commentsc.ccccnvceerrcenrecsancenssnssanns aeerereresneesaas s annran s staa sttt ne s e R e s e as e shne s nesasaennn 139
A.3. Primitives....cccoreniccccenannicennas HeeshiuuT I eI TeRIasa R e e s e R s e iR Lt O ne R RE e SRR a RO S e nean sarernerannnan 139
A4, TErMS ciivivccemniranstssssnenssnessssansasssaanssanse FeeseumereIseReera e RaRr RS EEseassaantra s rreseran s aneaTnessennann 140
A.5. Operators........ccscecnnirnninisersoesancsnas SeeasaensssesEsestaStaa RS L SR e abnramea sne R e sbaR R R R ROSaenase 140
A.6. LiStS....cccesscrerssuncnnnisanrnsancsannannns CbeesueeseIsasesaaesates e RRe I asRL Lt hnere s aeetsansenntTa R RLY nnnne 141
A.7. Variables.........cccocsvecnnnicrnnns 4ssteuntnss s nae s nasensssnnna s RRarasaTanssen Carsmserseensansnennansrssasasanen 141
A.8. Backtrackingcccirnnrcnniisinninns CerreereTiIseIaSIIsEeRIsesERSRORe st t s R R a e R e s e e R eaesenanesene 141
A.9. Defining Predicates and Operators ... iiinininininnierrmessnsssossssssssassens 142
A.10. Syntaxc.ccenvensnsisnnncsscnassanns €40000ssenENaNREN E AR aRsANRS s os RS RSaS Feaa arraRRRATSS NSRS RRSLRRRE BOE 142

B. CONVERTING PATH EXPRESSIONS TO DCGS.....cccceevcnuansn. sanesrenensensasanasane 144
C. ADA PARSER................. *800unenunrsaeennanunan et a s Er e RS RLe AR A b e s 147
D. YODA USER'S GUIDE.........cccccevcereneriennerrasensas saesesunssssuenaeanennennannrassansrastesianrane 168
D.1. Getting Started.......cccrcmmicnrinsancassessessssncsassssnssasens AN 168
D.2. Compilation of Annotated Program 4sousmEnasSe s SRS S e ARSI ER RS RASm b nns s nmnee 168
D.3. Changing Things........c...... PMeLE0Eseeseseneun b s e s s R A SR SRS R S sesvessersesnassnnne 169
D.4. KNOWN BUQScoriccnmsecnssnnisinimismssmisssassiessssssssessnnssoassossasssssasssanssaserenssanasssnssasesnens 169

E. ADA TAXI SERVICE PROGRAMScccocveerierrenmeacessecnmmassonsessssensasnasnasmensonne 170
E.1. Main Programcc.ccccurscncnnncsmssnncsssssanes S SR 170
E.2. Swithboard Taskccccccrecnrcsasssnrssnmraneasansssnssnnsmsssnesssssas evesrrasssensasessantosassntonsans 172
E.3. Dispatcher Taskccocceeiuerscensnesmosnssnmsanmmessnsssnsssasisssssssnss eonassmravssennratssansnisantns 174
E.4. CUSLOMEr TASK civvccrernrsrrierismsarmsunsnesanasssanssessmesssenssarsassnessesasastassssssssssmns smnvsns sasnsaras 175
E.5. Ask Task (Customer Request for Service)c.ccimansninninciisisssinienannasnisessanses 176
E.6. TaXl TASK...cccocvsimrrcmssenisicansosnssnssesssmsanmssssnessnessnassnsssssssastsssnssssssssassnnneransssrasssessaranes 178

F. SYMBOL TABLES OF ADA TAXI SERVICE PROGRAM.............ccccrvrernerervennnee 180

vill

FIGURES
1-1: Design of YODA'S PreproCeSS0r.....cucnucmismsssnsatmessseserssmsnsssnsssssssssmeeossvassesessnns 8
1-2: Design of YODA’sS Monitorcceucenraeenn. PN essesteesnessnassassinsnseussanronsans 8
1-3: Design of YODA'S QUENY ProCESSOrcicecenncrersensseesorersscsmsrsssssssncorsosssssvarasssssseas 8
BT PO NBL..ceciiiirsicnnsinsci st eassaesrsasssesssssassaessassasns eessmesmonsommsorsasssesnens 58
3-2: EVENL INOIVAL....cccicricninsnimesesimeerniinc e nerisssise s ansssesasecsssssssseress secsmessssssse rens st soeen 64
6-1: Ada Program Exhibiting Cyclic Deadlock .. 108
6-2: Execution of Cyclic Deadlock Program.............. eassaesenensaessasnisasnnne evevsnessinanananinasse 108
6-3: Annotation of Cyclic DeadloCk PrOQrAMccccceerercrmrersessiransssssessonersonesersssessessessses 108
6-4: Trace Database of Cyclic DeadloCk PrOGramc...cuueveesseressiserssnssonsssssssssersossnssses 108
6-5: Prolog Rules for Detecting Cyclic Deadlockceuievrensssnesicarisenssnmsorsansssssssssaesanesens 108
6-6: Ada Program Exhibiting LOSt Updatecceccvvveersnereeinenmsscsesssiiesnesesssassosensssessens 115
6-7: Symbol Table of Lost Update Programccccceeecssersenirenrsssrsentsonssnsasssssssssssessasssssns 115
6-8: Trace Database of Lost Update Program.........c.ceuerseioeisensonssescsssasessseassesnsssssssronss 115
6-9: Stenning Protocol: Producer TASK.......ccueurmeermississsssermsnssessesessasssessssassesssssasranes 119
6-10: Stenning Protocol: CoONSUMEr TaSK . ..uiiimccmnismssmsessmmersrssssessassssssssssesssssenssnenes 119
6-11: Stenning Protocol: Buffer TASKS ...cucreemiemascmmemirormssrssrmessarsessesassasass ervesaasonn 119

ix

3-1;
3-2:
3-3:
3-4:
3-5:
3-6:
5-1:
5-2:
5-3:
6-1:
F-1:

TABLES

A Comparison of Expressiveness in Temporal Modelseveommnnrnoeeo 29
DaSIC TONSE OPEIAOFS cvevvsvssssrsmmmssossrssmssss 34
Derived TeNse OPEralorS wuv...mwmmmmmmosmsesmnne 36
Important Safety Properties................... e sttt se b e e e e e 45
Important Liveness e 45
Important Precedence PPOPOIUCS oo errsessosemneessstreeseseeeeesesse 49
Usage Categories of SYMBDO! TADIE covovessvrrsserssssrseenssssesooseeseerne 94
178CE DtADASE EVENtS..ovvsvvscersecmermsosessmsens 96
Translation from YODA Events to States ettt e s n e s et me e nss 99
Stenning Protocol: Slices of the Trace Database................ Seaestente et st en b sanaes 119
Symbol Table for Taxi Service L, 180

1. INTRODUCTION

Debugging, the process of finding and removing errors in programs, is a major factor in the cost of
software development and maintenance. It represents 25 to 50 per cent of the total effort of developing
large-scale software (Ref. 1). Programmers spend three times longer debugging their programs than
initially writing them. Errors that remain can be costly. Neuman publishes a monthly list of software-
related catastrophies and mishaps (e.g., (Ref. 2, 3)).

All software is prone to errors, but debugging techniques have advanced little in the past two decades.
Some automated techniques are available, but informal techniques prevail. As noted previously (Ref. 4),
debugging has rarely been the subject of theoretical investigation. Until recently, debugging has received
little attention in computer science (Ref. 5, 6).

Traditional debugging practices are often ill-suited to modem programming techniques, such as
concurrency. Unlike purely sequential programs, a concurrent program has several distinct threads of
control, called processes, each of which exacutes independently. A concurrent program is distributed if
the individual processes execute in parallel on multiple processors or on multiple computers with
communication between processes. Concurrency supports the development of processing systems for
real-time applications {e.g., database management systems and air-traffic control systems), transaction-
processing applications (e.g., airline reservation systems), and large-scale, parallel, scientific
computations.

Andrews and Schneider have reviewed concurrency techniques and cite the increasing economic
feasibility of distributed systems and multi-processors as a motivation for the recent trend toward
concurrent programming (Ref. 7). Distributed software offers advantages in survivability, reliability, and
functional modularity.

New programming notations have been defined to simplify the expression of concurrency in high-level
programming languages. Concurrent Pascal, Modula-2, Concurrent Prolog, Communicating Sequential
Processes (CSP), and Ada” are examples of modem, high-level languages that provide explicit notations
for concurrency.

This dissertation introduces new techniques for isolating the cause of software errors that are
associated with multitasking, the concurrency feature of the Ada programming language. Ada is a
general-purpose language designed for the U.S. Department of Defense (DoD) as the standard language
for mission-critical softwara, that is, all software required for the conduct of the military mission of the
DoD, including real-time systems.

An individual process in Ada is called a task. The conceptual framework of multitasking permits a

'Ada is a registered trademark of the U.S. Department of Defense — Ada Joint Program Office.

designer to isolate possibly simultaneocus or inherently asynchronous events (Ref. 8). Multitasking
permits mutual exclusion of processes, temporary unavailability of processes, and ordering of execution,

Our approach to debugging is to collect a trace history that captures the time-dependent relationships
of events that can occur in the execution of a concurrent program. We develop techniques for automating
frace analysis, i.e., for accessing a trace database to test program properties. Although our focus is on
multitasking, our approach is extensible to other notations for concurrency.

We identity common causes of errors in Ada tasking programs and investigate strategies for
diagnosing them. To show the feasibility of our approach, we have built a prototype debugger, called
Your Own Debugger for Ada (YODA).

1.1. Debugging Defined

The origin of the word "bug” for a program error has been attributed to an incident in which a moth flew
into an early computer and wrecked havoc. Instead, a bug has meant "an unexpected defect, fault, flaw,
or imperfection*” as early as 1889 (Ref. 3).

Model (Ref. 4) divides the process of debugging into five phases:
1. observing program behavior (either by monitoring the exacution or by hand simulation),
2. comparing observed behavior with expected behavior,

3. analyzing the differences that have been detected {(discovering the cause of a detected
error),

4. devising changes to make the program conform to intended behavior, and
5. changing the program to correct the error (e.g., with a text editor).

Of the five phases of debugging, monitoring is the main function of traditional automated debugging
tools. Model argued that monitoring has the most potential for improvement -- error localization and error
correction are creative activities that cannot be automated easily. Isolating the cause of an error remains
a trial-and-error process. On the contrary, we argue that error localization can benefit from automated
aids.

1.2. Why Is Debugging Difficult?

Debugging is a difficult process because programmers need to extract relevant data from the
information available about the program's execution history. Another difficulty is that programmers must
observe execution at a high level, such as the calling sequence of program units, as well as at a detailed
level, such as the history of values assigned to program variabies.

Debugging is labor intensive. The length of time required to find the cause of an error is related to the
coherency of the error message and to the expertise of the programmer in recognizing error symptoms.

Error messages, unexpected program behavior, and incorrect results often give tew clues to the cause of
the error. Debugging requires skills of ingenuity, intuition, patience, and teature recognition.

1.3. Problems of Debugging Concurrent Software

Debugging a concurrent program is more difficult than debugging a sequential program for several
reasons. Garcia-Molina (Ret. 9) partitions these reasons into four categories:

1. Having various loci of control makes a system more complex and, thus, harder to
understand and more prone to errors, especially intermittent errors.

2. If processes execute in parallel on multiple processors, then debugging requires discovering
on which processor a process has failed.

3. If the software is distributed onto processors that are geographically dispersed, then
communication delays between processors hinder access to information necessary for
debugging.

4. Applications that are distributed tend to be large, and exhaustive testing of them is costly
and time-consuming.

We have chosen to focus on the first of these issues -- debugging concurrent software, as separate
from the problems of debugging on multiple processors or on a distributed system. We divide the
complications that arise inta three categories: error detection, testing, and fault localization.

1.3.1. Complexity of Error Detection

The behavior of a concurrent program is less predictable than that of a sequential program because of
the introduction of non-determinism, e.g., in scheduling of processes. Program errors can be intermittent
and difficult to reproduce.

1.3.2. Compilexity of Testing

The execution of a concurrent program is more complex than that ol a sequential program. For
example, the number of possible execution paths is increased significantly. Errors can be more subtle
because of the increased complexity of the execution. For example, if a process terminates because of
an error, then other processes will fail if they try to communicate with the errant process.

1.3.3. Complexity of Error Localization

Concurrency increases the amount of data programmers need to examine in locating the cause of an
error and, thus, can increase the amount of time and expertise needed for debugging. For example,
programmers need to examine data at the level of interprocess communication, as well as at the
intraprocess level. Concurrency introduces new classes of errors, e.9., emors caused by communication
failures between processes and by race conditions.

1.4, Notations for Concurrency

To cooperate, concurrent processes must communicate and synchronize. Communication requires
several actions to occur in a specified order; however, processes can ditfer in their rate of execution.
Synchronization mechanisms delay the execution of processes to constrain the ordering of events in
interprocess communication. Processes communicate by either shared variables or message passing.
Variables are shared if they can be referenced by more than one process. A variable is referenced when
its value is used in the evaluation of an expression. A variable is defined when it obtains a new value as
the result of the execution of a statement. In message passing, processes communicate by sending and
receiving messages.

Shared variables provide concurrency in procedure-oriented languages, e.g., Concurrent Pascal and
Modula, in which monitors control synchranization. A monitor is a collection of shared resources with
procedures for implementing controlled operations on a shared resource.

Message passing can be synchronous, asynchronous, or buffered. If the process sending a message
is never delayed, then message passing is asynchronous. if the process sending a message is always
delayed until receiving a comresponding response, then message passing is synchronous. if messages
are held in a bounded buffer, then message passing is buffered. CSP (Ref. 10) is a programming
notation based on synchronous message passing.

1.5. Ada Concurrency: The Rendezvous Mechanism

This dissertation assumes some familiarity with the Ada language. In this section we give a brief
description of Ada concurrency. In later chapters we describe other features of Ada, e.g., exception
handling, modularity, nesting, and strong typing. For a detailed description of the language, see the Ada
Language Reference Manual (ALRM) (Ref. 11). For a tutorial treatment of the language, many good
references are available (e.g., (Ref. 12, 13)).

Ada multitasking is implemented primarily by remote procedure call between tasks, although Ada
permits access to shared data. (Ada is a procedure-oriented language.) In remote procedure call,
message passing is implemented by a procedure call from one process to another. Messages are
exchanged between processes by the arguments in the call statement. No explicit synchronization
primitives are provided by Ada for imposing concurrency restrictions on shared variables.

Ada’'s main innevation in concurrency is the rendezvous mechanism for handling synchronization of
tasks. Synchronization is achigved by an entry call from a task to an accept statement in another task. A
FIFQ queue is associated with each entry. Each entry can have one or more carresponding accept
statements.

Accept statements can be prafaced with guards to specify conditional execution. Rendezvous requires
that the entry be ready for execution and that a call be made from another task to this entry. The calling

task is suspended until rendezvous completes. Scheduling and synchronization of tasks are non-
deterministic.

Two variations of the simple entry call are the timed entry call and the conditional entry call. The timed
entry call specifies a minimum duration to wait for rendezvous before canceling the call. A conditional
entry call specifies that a call is to be canceled if there is no open alternative for the corresponding accept
statement. A timed entry call with a zero delay is equivalent to a conditional entry call.

Muititasking can be implemented on a distributed system or on a multiprocessor, as well as with
interleaved execution on a single hardware processing element. The implementation is intended to be
transparent to the Ada programmer.

1.6. Common Bugs in Ada Tasking Programs

The semantics of the Ada language was specified independently of the implementation of any
translator, thus reducing the risk of inconsistency between the semantics of the code in production and
the semantics of the program executed in a debugging environment. An evolving set of test suites, the
Ada Compiler Validation Capability (ACVC) (Ref. 14), is maintained by the DoD for checking consistency.

Expectations are high for improving software productivity and reliability by writing programs in Adz, as
opposed to writing them in older languages, such as Fortran, Jovial, or assembly language. Claims of the

advantages of using Ada are exemplified by the following advertisement for an Ada compiler:

This reusable, high-order language can put an end to the Software Crisis. Ada decreases skyrocketing
software costs, improves management and control, reduces life cycle costs, boosts productivity,
dramatically reduces errors and cuts training costs (Ref. 15).

The refutation or validation of these claims is outside the scope of our research. Ada eliminates some
classes of errors, e.g., strong typing detects exceeded array bounds and other type-conversion errors.
We address the difficulties of debugging Ada programs that use language features that are prone to
errors. Two kinds of errors associated with multitasking are deadness errors and misuse of shared data.

A deadness error occurs when tasks of a concurrent program reach a state from which execution
cannot continue (owing to a task-communication failure), although the tasks have not yet terminated.
Cyclic, or circular, deadlock is one class of deadness errors. These emors occur when a cyclic path of
entry calls is executed, .g., when a single task calls itself. In Chapter Six, the Ada program in Figure &-1
exhibits cyclic deadlock.

Other classes of deadness errors are possible, e.g., system lockup. These errors occur when a task
makes an untimed, unconditional call to an entry for which no corresponding accept alternative becomes
open. The calling task remains suspended indefinitely. Unlike cyclic deadiock, system lockup cannot be
diagnosed by testing for a cyclic path of entry calls and, thus, is substantially different from a debugging
viewpoint. Also, cyclic deadlock is likely to originate from a design error; whereas system lockup is more

likely the resuit of a coding error.

The ordering of read/writs access to shared data can affect its integrity. Examples of the misuse of
shared data have been described previously (Ref. 16): referencing an uninitialized shared variable,
assigning a new value to a shared variable before the previous vaiue is referenced, and assigning values
to a shared variable in two different tasks acting in parallel. In Chapter Six, Figure 6-6 shows an Ada
program that exhibits misuse of shared data.

1.7. Automated Techniques for Debugging Concurrent Programs

Automated debugging techniques can be divided by the strategies used in observing program
behavior:

1. Dynamic debugging tools allow programmers to observe and control program behavior
interactively.

2. A monitor is a debugging tool that extracts infoermation about the computation of a program
as it executes, without providing control over the execution.

Applying conventional dynamic debugging technigues in a concurrent programming environment raises
several research questions (Ref. 17). For example, automated debuggers traditionally support maonitoring
of an individual process, but provide little or no support for monitoring process interactions. Another
difficulty is that dynamic debugging assumes that the entire state of the program can be examined and
controlled (e.g., all Ada tasks can be halted at once). This assumption is often difficult to implement in a
concurrent environment and is inappropriate for distributed systems.

For real-time applications, one environment may be used for development (the hosf and another for
production (the targef). Debugging tools are often tied to the host environment and may be unavailable in
the target environment. An error that has occurred on the target machine may be difficult to reproduce on
the host machine. Errors can depend on hardware characteristics, the compiler, data input, as well as
non-deterministic execution.

For debugging concurrent software, the foilowing facilities are desirable:
* monitoring individual processes in a concurrent environment,
* monitoring and displaying interprocess communication,
» maintaining audit trails of execution, and
» abstracting from observations of the program’s behavior.

1.8. Approach and Scope of this Dissertation

This dissenation presents a retrospective approach to debugging. Unlike dynamic debugging,
retrospective debugging provides tools for post-mortern analysis of program execution (i.e., after the
program has terminated). We develop automated techniques for observing and analyzing a program's

execution history.

We view debugging as the problem of extracting relevant information about a program’s structure (e.g.,
the symbol table) and a history of the program’s past behavior. In our approach, this information is
maintained in an historical database that the programmer can access to test assertions about the
program's behavior.

Since this work is the first such effort, it was important to fimit its scope. The Ada language is large and
complex, and there are many classes of program errors. Future developers will want to extend this work
to deal with other varieties of errors and to aid in detecting or avoiding errors.

1.8.1. The Trace Database Approach

In our approach to debugging we capture trace data (information about the dynamic activity of a
program} as an evert stream and store it into an historical database. For Ada, we capture events
associated with task synchronization, task status, variable reference, and variable definition.

Collecting trace data from Ada software raises many interesting problems. The overhead of monitoring
real-time software will perturb its behavior, as noted previously {Ref. 17, 18). In producing traces for
debugging, there is a "Heisenberg uncertainty principle”: Whatever mechanisms are introduced to elicit
trace information will interfere with program performance and may eventually modify the behavior of the
program. [n a non-deterministic programming environment, tracing may be acceptable only when
debugging occurs in simulated time.

1.8.2. Trace Analysis

To access information in a dynamic environment, a temporal-logic approach is taken. Temporal logic
provides the mechanics for precise reasoning about references to time. Temporal logic has been applied
in specitying and verifying the behavior of concurrent programs, i.e., in proving that a program satisfies
specified properties.

We use temporal specifications in testing assertions against a trace database. To answer gueries
about information not explicitly stored in the symbol table or trace database, we propose a knowledge
base containing strategies for validating historically common program errors, e.g., cyclic deadiock and
misuse of shared data.

In contrast to databases, knowledge bases contain not only facts, but also rufes from which new facts
can be generated. A rule can specify the essential conditions for establishing new facts, or it can specify
heuristics for deducing new facts. Knowledge-based systems access a knowledge base containing facts
and rules in a specialized problem domain.

1.8.3. Error Hierarchies and Diagnostic Reasoning

To aid in generating candidate diagnoses, we develop a classification scheme for organizing errors into
hierarchies. Codifying historically common errors and debugging strategies is a prerequisite to
automating diagnosis. Understanding more about the process of diagnosis can lead to improvements in
program design. We propose organizing errors by assertions that can confirm their presence.

1.9. A Prototype Debugger for Ada: YODA

YODA is a stand-alone system, although it can serve as the basis for a debugger that is integrated with
a specitic translator and run-time system. YODA parses an Ada program, generates a symbol table, and
embeds diagnostic output statements into a copy of the source program. When the annotated program is
compiled and executed, the diagnostic statements invoke a program monitor to capture trace data.
Figures 1-1, 1-2, and 1-3 show the system-level design of YODA.

YODA consists of the following components:
A lexical scanner.
= A top-down parser to produce an abstract syntax tree.
» A semantic analyzer to build a symbol table.
« An annotator to augment the source code with diagnostic cutput statements.
« A pretty-printer that outputs the annotated source.
« A program monitor to build the trace databass.
¢ A frace query processor that supports references to time.

All components were written in "standard” Prolog (Ref. 19), except the program monitor, which was
written in ANS! Ada (Ref. 11), YODA was implemented on a Digital Equipment Corporation (DEC} VAX
11/780 computer under the Berkeley UNIX 4.1 operating system. All Ada programs presented in this
dissertation were translated and executed using the vailidated New York University Ada translator and
interpreter (Ada/ED ANSI Varsion 1.1). All Prolog programs were executed using C-Prolog (Ref. 20).

Prolog is a logic programming language. It was developed around 1972 by Colmerauer and his
colleagues at the University of Marseille (Ref. 21, 22) and is based on work by Kowalski {Ref. 23).
Prolog’s suitability for database systems has been described previously (Ref. 24, 25).

We extend Prolog with temporal operators for testing time-dependent properties of programs. Prolog is
well-suited as a general guery language (Ref. 26, 27). Unlike a relational-calculus language, such as
Quel, Prolog supports queries on assertions as well as instantiations. The user can add new queries and
definitions,

' UNIX is a registered trademark of AT&T Beil Laboratories.

LIBRARY UNIT

SYMBOL

SYMBOL TABLES TABLE
Ada _| SCANNER PARSER SEMANTIC
SOURCE ANALYZER|

ABSTRACT ANNOTATED’

SYNTAX
TREE

Ada:

SOURCE

Figure 1-1: Design of YODA's Preprocessor

YODA

PROGRAM

MONITOR
N

ANNOTATED
Ada —/™
SOURCE

Ada
COMPILER

e

Ada
RUNTIME
PACKAGE

TRACE
— DATABASE

Figure 1-2: Design of YODA's Monitor

10

QUERY _,.

YODA
TRACE QUERY
PROCESSOR

__, ANSWER

TRACE DATABASE
SYMBOL TABLES
FAULT MODELS

Figure 1-3: Design of YODA's Query Processor

11

1.10. Contributions

for supporting time-related queries on a program's behavior. This approach supports a high-level
abstraction of program behavior based on an event stream.

The trace database approach improves on previous work in debugging because knowledge about time
is built into the system. Our approach organizes trace data into a logical structure and supports flexible,
controlled access to both static and dynamic program data. A database approach to debugging
mechanizes the task of analyzing the trace of a program's behavior.

This dissertation provides not only a formal and conceptual framework on which to model program
behavior, but also a practical approach to building a debugger that programmers will find useful. YODA

represents a comprehensive approach to debugging. It supports effective diagnostic techniques for
several classes of errors associated with concurrency.

A retrospective approach to debugging reduces the host-target problem to executing annotated Ada
programs on the target system, Once Captured, the trace database can be ported to the host for analysis.

Major accomplishments of this dissertation are as follows:

* Formalization of a knowledge-represantation scheme for describing the behavior of
concurrent programs.

« Simplification of the task of analyzing a program’s past behavior by automnating the selection
of "interesting” events, e.g., interprocess communication. {Note that changing the events
Selected means changing the class of errors that can be recognized.)

* Development of automated techniques for examining and analyzing the execution history of
concurrent programs.

» Development of automated techniques for localizing certain classes of errors, 6.g., by
identifying useful abstractions of a program’s behavior.

« Implementation of a knowledge-based prototype teol for debugging Ada tasking programs.

1.11. Organization of this Dissertation

This dissertation integrates rasearch in several areas, including debugging, temporal logic, historical
databases, programming languages, and knowledge-based systems. The differences in terminology for
each of these areas and their separate roles in support of this research motivated the organization of our
presentation.

Chapter Two presents an historical perspective of debugging techniques and tools. We review both
informal and automated debugging techniques. We elaborate on the deficiencies of traditional debugging
tools for supporting effective debugging. We describe recent trends and innovations in debugging.

12

These include debugging tocls intended for concurrent software, as well as tools that support either a
database or a knowledge-based approach to examining program behavior.

Chapter Three provides the theoretical foundation for the research presented in this dissertation. We
review the semantics of temporal logic and its application in specifying and veritying concurrent program
behavior. We evaluate various temporal modeis of program behavior by their expressive power and by
minimality of primitives, e.g., path expressions (regular expressions for specifying allowable sequences of
events). We develop an interval temporal logic (a temporal logic based on bounded intervals of time) for
analyzing program behavior.

Chapter Four introduces the major results of this dissertation: the development of a system for
maintaining and accessing a trace database. We discuss the practical advantages that trace analysis
offers over program verification for improving program reliability. We show how formal reasoning about
time can be applied in recognizing faulty behavior pafterns. The debugging approach that we present
incorporates both interval logic and path expressions in testing assertions against a trace database.

Chapter Five presents the details of the implementation of YODA. We give an overview of Ada
programming features and describe the major components of YODA. We identify relevant program
events and define abstractions on events for describing the behavior of Ada tasking programs. We
discuss the technical issues that we encountered in the Process of designing and impiementing a tool to
capture the event history of Ada programs. A summary of Chapter Five has been published previously
(Ref. 28).

In Chapter Six we introduce a functional model for classifying program emors: a hierarchy based on
the complexity of queries needed to validate the class of errors to which a particular error belongs. We
compare our model with previous error models, such as those based on language features and error
symptoms. We present several examples of Ada tasking programs that comtain errors and apply the
diagnostic features of YODA in locating these errors. We analyze programs with the following errors:
cyclic deadlock and non-serializabllity.

General conclusions and open problems are presented in Chapter Seven.

Appendix A gives an introduction to Prolog syntax and semantics. Appendix B presents a Prolog
program for converting path expressions into a grammar-rule notation that can be applied in matching
program specifications against a trace database. Appendix C presents our Prolog-based, top-down
parser for Ada. Appendix D provides a YODA User's Guide. Appendix E presents an example of a
complex Ada tasking program. Appendix F presents the symbol tables generated by YODA for the
sample program in Appendix E.

13

2. DEBUGGING TOOLS

Techniques and tools for debugging are diverse. In this chapter we describe debugging techniques
and strategies (Section 2.1). We review some tools for debugging concurrent programs, including
programs written in Ada (Section 2.2). We describe recent work in applying database and knowledge-
based techniques in debugging (Section 2.3). We conclude with a discussion on the infrequent use of

available debugging tools and the need for exploring new debugging techniques, such as trace analysis
(Section 2.4).

2.1, Debugging Techniques

Most strategies that programmers apply when debugging are informal, or ad hoc. These informal
technigues prevail, although they are inefficient, unreliable, and often ineffective.

2.1.1. Informali Debugging Techniques

As noted previously (Ref. 29), the most traditional debugging technique is desk checking, that is,
manually simulating program execution (while sitting at one's desk). This technique involvas inspecting
the source listing and performing hand calculations to compare with output listings.

Another informal debugging technique is to submit test runs, that is, to isolate the location of an error
by tterative testing. On each successive run, either the input data are varied (to identify the conditions
that may cause the error), or a modified version of the program is executed. Test runs are time-
consuming because they involve a trial-and-error process. Also, the disappearance of an error may be
fortuitous, without the programmer having located its cause.

A programmer can reduce the complexity of isolating an error Dy reducing the size of the program
under analysis. Often a programmer can isolate a fragment of code or a particular statement type that is
Suspect, without identifying the faulty statement. The programmer can then writs and test a separate,
smaller program containing the suspect code. Gauss provides a tongue-in-cheek description of the
process of partitioning a program into increasingly smaller pieces until the error is found (called the “wolf
fence” technique) (Ref. 30).

Another informal debugging strategy is to sprinkle the program with diagnostic output statements to
Capture information about program execution. The usefulness of this technique depends on the
programmer’s expertise at identitying probable sources of arrors.

2.1.2. Automated Support for Debugging

Automated tools that support debugging include compilers, static analyzers, exception handlers, and
debuggers. These tools provide the following kinds of support for debugging:

» Compilers autormate the detection of a restricted class of program errors, called compite-time

14

errors.

* Static analyzers automate techniques for detecting software errors that cannot be detected at
compile time, that is, run-time errors.

*» Exception handlers allow a program to continue executing after a run-time error has been
detected.

* Debuggers help a programmer to observe the execution of a program (i.e., to inspect the
program state), to detect erroneous program behavior and to locate its cause.

The purpose of an automated debugger is to help programmers to locate run-time errors, logical errors,
and portability errors. Logical errors are those that need not be detected at compilation or execution, but
can prevent the program from conforming with its specitications. A portability error results from relying on
programming features that are outside the language standard, including features that are left as
implementation dependent by the standard. Automated debugging tools include dynamic (interactive)
debuggers and monitors.

2.1.2.1. Static Analyzers

The purpose of a static analyzer is to find potential sources of errors that cannot be detected by the
compiler, but can be detected without executing the program. For example, static analysis can enforce
coding standards, monitor the quality of the code, and test for adherence to programming standards.

The two basic techniques for static analysis are control flow analysis and data flow analysis. In control
flow analysis, a graph is built to show the allowed flow of control between statements or sections of code.
In data flow analysis, a graph is also built, but each node denotes a single statement, the execution of
which can cause a variable to be updated. Data flow analysis can detect program anomalies, such as
undefined or unreferenced variables.

For example, Taylor used static program analysis for reporting deadness errors, such as cyclic
deadlock, in Ada tasking programs (Ref. 31). He was constrained to debugging simple programs
because every possible state must be examined.

2.1.2.2. Exception Handlers

Exception handling permits a program to continue from an abnormal state. An exception is raised
when a program reaches a specified state. Exception handlers specify a block of code to be executed
when an exception is raised. Following execution of the handler code, a variety of responses are
possible. Yemini and Berry provide a review of the various handler responses: termination, resuming
execution, retry, propagating the exception, and transfer of control (Ref. 32). Exception handlers can
provide additional features, e.g., parameterization. We consider two languages that support exception-
handling: PL/1 and Ada. Neither of these languages supports parameterized exceptions.

PUI supports resumption of execution after exception handling (Ref. 33). PL/I provides system-defined
exception handlers only, e.g.,

15

End Error Attempt to read past end-ot-file.
Data Error input value does not match required type (READ) or required syntax (GET).

Ada supports termination of execution following exception handling. If the exception is handled in a
task, for example, the task terminates, and execution resumes at the calling task. If an exception has no
handler in the program unit in which it is raised, the exception is propagated dynamically. The system
and the user can define Ada exceptions. Examples of exceptions that are defined by the system include
run-time checks for subscript out of range and for arithmetic underflow/overflow.

2.1.2.3. Dynamic Debugging

Dynamic-debugging techniques include setting breakpoints, viewing intermediate data values or calling
sequences by tracing, and examining control flow by single-stepping. Johnson provides an in-depth
glossary (Ref. 34) of debugging terminoiogy:

breakpoint "A location in a program's execution at which either some debugging command is to
be performed or the user wishes to gain control."

data breakpoint "A breakpoint that can be associated with the access of data values.” (Also called a

demon.)
code breakpoint “A breakpoint that can be associated with the execution of program code segments.”
conditional breakpoint
"A breakpoint that is initiated only if some location-dependent predicate evaluates to
true.”
trace “A display of the dynamic activity of some aspect of a program.”

retrospective trace "An historic display of the execution path of a program.”

single-stepping “The ability to dynamically step through program execution, stopping periodically, so
the user can interrogate the program’s state.”

Medina-Mora and Feiler have identified a hierarchy of desirable features for dynamic debugging in an
integrated environment (Ref. 35). These features were incorporated into their design of an interactive
debugger for the Incremental Programming Environment. These facilities include the following kinds of
suppont:

* continuing the execution of a program at the point where execution was suspanded by a
breakpoint,

+ unwinding a stack of procedure activations to modify a procedure in the stack and then
resuming, and

* restoring the execution state to a previous point.

Assertion monitoring compares expected and observed behavior to trigger conditional breakpoints. For
example, in Preliminary Ada (Ref. 36), conditional breakpoints could be set by the assert statement. This
feature has since been removed from the Ada language. A major criticism of the Ada assert statement
was that, 10 some exient, it duplicated exception handling, but provided less information. Unlike
exception handlers, the assert statement provided no mechanism for showing the assertions that had
failed, e.g., parameterization was not allowed.

16

2.1.2.4. Monitors

Recall that a monitoris a debugging tool that extracts information about the computation of a program
as it executes, without providing contro! over the execution. Message monitoring allows programmers to
examine the "extemal" behavior of programs, i.e., the execution of process interactions. Message
passing can be monitored by tracing states of individual processes (because a message resides in a
process just before it is sent or just after it is received). Yet, the state of an individua! process contains
information about the values of all variables to which the process has access. Harter {Ret. 37) argues
that internal states provide more information than necessary for monitoring message passing. (Often the
programmer is interested in only those variables containing the message being passed.)

Trace analysis is the process of analyzing an execution history that is collected by monitoring a
program. Trace analysis can be applied either at a breakpoint as a dynamic debugging aid or,
retrospectively, after the program has terminated.

Retrospective debugging techniques obviate many of the difficulties associated with dynamic
debugging of concurrent programs. For example, single-stepping can be simulated by “replaying” the
program’s execution history, without altering the ordering of the computation.

Audit trails are important for debugging, in general, and are crucial for debugging concuirent programs.
Having a record of the past helps in understanding the conditions leading to an error. In a non-
deterministic programming environment, the timing and sequencing of events that caused an error may
be difficult to reproduce. Errors depend on data input, scheduling algorithms, and timing dependencies,
e.g., the implication of race conditions.

In comparison with other debugging aids, trace analysis provides many advantages:
* Unlike the results of static analysis, traces represent event sequences that can occur.

* Unlike assertion monitoring, in which expected and observed behavior are compared to
trigger conditional breakpoints, trace analysis supports post-mortem debugging. A trace
database provides a record of what happened before things started going wrong. The
programmer can "replay” the results without reproducing them.

* When interactive debugging is impractical on a target machine, a trace can be collected on
the target machine and ported to the host machine for post-mortem analysis.

2.2. Concurrent Debuggers

The following is a discussion of some systems for debugging high-level, concurrent software. These
tools extend interactive debugging techniques for concurrency. This is not a complete survey of existing
systems, but a description of current work in the development of experimental, prototype debuggers for
concurrent languages. Satterthwaite (Ref. 38) describes earlier debugging systems, and Smith (Ref. 39)
provides an abbreviated history of multiprocess, message-based systems.

BAIL and Defence support debugging for individual processes in a multiprocess environment, but no

17

interprocess features, such as monitoring message traffic, starting and stopping processes, or sending
and receiving messages. The "checkpoint debugging” approach and the SPIDER debugger support
interprocess debugging in a multiprocess environment. The Rolm Ada debugger and the Arcturus
debugger support monitoring and controlling individual Ada tasks and monitoring task communication in a
single-processor environment, Stanford's Ada debugger monitors task-state information.

2.2.1. BAIL

BAIL is an interactive debugger for accessing the multi-process environment of a SAIL program
(Ref. 40). SAIL is an extended dialect of ALGOLS0 that runs on the DEC PDP-10 computer. BAIL allows
the user to insert breakpoints and access variables within a single process. BAIL was developed in the
early 1970s at Stanford University. It runs under the- TENEX and TOPS-10 operating systems.

2.2.2. Defence

Defence is a prototype debugger for Concurrent Euclid (Ref. 41). Users can monitor the execution of
concurrent processes to determine if a process is running, in what queues the remaining processes are
waiting, and the next statement to be executed in each process. Within a process, users can examine
and modify variables, set trace areas, set conditional breakpoints, and invoke single-stepping. Defence
allows monitoring of concurrent programs in a single-processor environment, but provides no control over
messags traffic or interprocess events.,

2.2.3. Checkpoint Debugging

Checkpoint debugging has been investigated for debugging distributed software with real-time
constraints (Ref. 42). This method requires taking regular checkpoints of a program. A checkpoint
consists of a snapshot of a relevant program state and a sequential recording of all program input since
the time of the previous program snapshot. A program failure can be repeated (deterministically) by
returning to a previous checkpaint.

A disadvantage of this approach is the cost of exscution and storage overhead required for taking
checkpoints. Also, because checkpoints are synchronized with a clock instead of with events, there is no
guarantee that important events would be detacted.

2.2.4. SPIDER

SPIDER is an ineractive debugger that aids in locating errors in communicating, loosely-coupled
processes (a multiprocess, non-distributed system) (Ref. 39). SPIDER deals with interprocess events
and treats processes as separate, communicating black boxes. Debugging tools include a debugger and
demons (which automatically filter events).

Debugging techniques include monitoring, controlling, and testing processes. The programmer can

18

alter the contents of Mmassages; create, access, and modify interprocess objects; preview, single-step,
and replace individual interprocess events; and enable and disable debugging demons. SPIDER helps
detect faulty interprocess communication, but not timing-related interprocess bugs.

2.2.5. Rolm Ada Debugger

The Rolm Ada debugger was developed as part of the Rolm Ada Work Center, which includes a
DoD-validated ANS! Ada compiler running on the Rolm MSE/800 and the Data General Eclipse-800
computers (Ref. 43}, The Rolm Ada compiler runs on a single processor with interleaved execution. The
Rolm debugger allows programmers to determine the status of cumrently active tasks (e.g., waiting for
rendezvous to begin) and to single-step through task interactions. Within a task, programmers can
examine and modify variables, set traces, insert breakpoints, invoke single-stepping, and display program
history. Only scalar variables and Parameters can be modified. Traces can be set on statements,
subprogram calls, or exceptions raised. Access is provided for active tasks only.

The Rolm Ada debugger allows breakpoints to be embedded in the program or entered through a
keyboard interrupt. Breakpoints and single-stepping can be applied to the selected task only; other tasks
continue executing. If the selected task is set to default to the currently executing task, then the
interleaved history of ali tasks can be displayed (if the history buffer is large enough), and task
interactions can be monitored by single-stepping through rendezvous. Tracing of shared variables could,
presumably, be done by setting traces in each task.

Raised exceptions and program deadlock can automatically invoke the debugger. When execution is
continued from a breakpoint, exceptions are propagated normally. The history can be displayed for
statements executed, variable declarations, and the stack of subprogram activations for an individual
task. The history display can include the following tasking events:

* elaboration of task declaration,

* elaboration of task body declaration,
* execution of delay statement,

* execution of entry call,

s rendezvous started,

* rendezvous finished,

* execution of select statement,

* execution of timed entry call,

* execution of conditional entry cail,

» task initiated,

* task aborted,

» task completed (ready to terminate), and
+ task terminated.

19

2.2.6. Arcturus Debug Facility

Arcturus is 3 Programming environment for developing Ada software. It was built as a research togl
and does not yet support full Ada (Ref. 44). Arcturus includes a breakpoint ang trace facility, whieh was
intended for sequential programs, originally. Tha breakpoint package has since been extended for
interacﬁvely debugging Ada tasking programg (Ref. 45),

(e.g., a design review) a programmer *., finds many errors just by the simple review act of reading aloud.”
Adrion drew the tollowing conclusion:

database of static program information. Sniffer supports queries on a database of a history of program
states. FALOSY and the Prolog debugger use a database of expected output behavior for isolating
discrepancies between intended and observed program behavior. In Chapter Four we describe the
TQuel debugger (Ref. 55), which provides database support for debugging concurrent programs,

2.3.1. Debugger for Omega

The OMEGA database-system interface is a prototype debugging tool for Pascal-like programs
(Ref. 56, 57). This system uses the conventional relational database management system Ingres, with its
query ianguage, Quel, to store and query static program information {the symbol table and parse tree),
e.g., "Find all source statements that call procedure P." (All OMEGA queries are expressed in Quel.) This
debugger was designed as a component of the OMEGA programming environment, in development at
the University of California, Berkeley. Initial experience with this prototype showed it to be t00 slow to be
useful.

The original design for this system allowed for dynamic access to current program-state information
during program execution. For example, to access the value of a variable, the user would interrogate the
database, thus invoking a request to the debugger to return the current value in real time. Quel would
need to be altered both semantically and syntactically for expressing queries that trigger conditional
breakpoints, e.g., "Suspend execution when P1 calls P2 and display the parameters passed.”

2.3.2. Prolog Debugger

At Yale University, Shapiro developed a set of interactive diagnosis algorithms and bug-correction
algorithms for identifying and fixing bugs in Prolog programs (Ref. 58). The diagnosis algorithms, written
in Prolog, take as input the program to be debugged and a list of input data samples with expected output
behavior. While single-stepping through procedure calls, these algorithms query the user for the
correctness of intermediate results, to namow the search for abug. The system maintains a database of
the result of queries for each debugged program, to minimize the number of queries needed for
debugging a moditication to an existing program.

A disadvantage of this approach is that #t is not extensibie to procedure-oriented languages, such as
Ada, in which computation can take place in assignment statements as well as in procedurs calls.

2.3.3. Sniffer

Sniffer is a knowledge-based interactive debugging aid that applies program analysis "by inspection® to
diagnose a narrow class of program errors (Ref. 59). This too! was developed at the M.I.T. Anrtificial
Intelligence Laboratory as part of the Abstraction, Inspection and Debugging programming environment
(Ref. 52). Sniffer was implemented in Lisp on the MIT Lisp Machine for debugging Lisp Programs.

The debugging knowledge in Sniffer is organized into individual units containing expert information

21

about specific errors. Each expert, or "sniffer,” independentiy examines the user-supplied description of
the bug and applies a feature-recognition process to the Program under analysis and to the events that
took place during Program execution. The fecognition process is Supported by two Systems: the cliche
finder, which identifies fragments of algorithms in the code by Mmatching them against typical Programming
plans {cliches), and the time rover, which supports queries about the history of Program states that
occurred during the Program’s execution.

it does to write the program. Also the feature-reoognition Process is time~consuming, even for small
programs,

2.3.4. FALOSY

class of fauits that are domain-specific. FALOSY assumes that the fault is in only one program
Statement,

1. Extending conventional dynamic debugging techniques for modern Programming
techniques, ©.9., debugging distributed softwar 3

2. Developing iNnovative approaches for debugging, 6.9., database ang knowledge-based
Support.

A study by Hanson and Rosinski hag shown that, of the kinds of Programming tools available (e.q.,
screen editors, data dictionaries, Pretty-printers, ang configuration Managers), debugging tools are
preferred aver aj| others (Ref. 61). Thatis, Programmers perceive debugging tools as the most important
tool for improving their productivity,

error, because he observed that few errors were found after the first 30 minutes of searching for them,
He concluded that using a debugger often involves devoting more time to debugging and seerns
unwarranted if the programmer believes the bug can be found in 10 minutes. In a more recent study on
debugging, programmers relied on test runs and desk checking 90 per cent of the time, although
debugging facilities were available (Ref. 63).

To effectively use conventiona! dynamic debugging techniques, the programmer must gain some
intuition about which lines of source code are suspect and, thus, which data values need to be examined.
That is, there is an implicit assumption that the programmer knows where to place the breakpoints and
which variables to trace. Garcia and Berman call this assumption the sorcery property of debugging
because it makes debugging more of an art than a science (Ref. 64).

23

3. TEMPORAL MODELS OF PROGRAM BEHAVIOR

“Contrariwise,” continued Tweedledse, "if it was S0, it might be;
and if it were so, it would be; but as it isn't, it aint.
That's logic.”

-- Lewis Carroll (Through the Looking-Glass)

Specifying the behavior of a software system is complicated because it entails an abstract and precise
description of the requirements, separate from the implementation. Each specification model must maka
some assumptions about the class of programs to be investigated, @.g.. sequential or concurrent,
terminating or cyclic, and whethar the program is a finite-state system. Another difficulty is that each
model must make assumptions about the environment in which the program will execute, e.g., on a
distributed system, on a multi-processor, oron a singie processor.

A general model for specifying requirements for concurrent programs is difficult to develop because
each programming language uses a different semantics for concurrency, ©.g9., communication by shared
variables versus Mmessage passing. Specification languages can be evaluated by the number and scope
of program properties that can be defined and proved. For example, Sajkowski has applied these criteria
in evaluating formal techniques for specifying and verifying communication protocols (Ref. 85). For
concurrent programs, properties that have been investigated in the literature include mutual exclusion of
processes, freedom from deadlock, absence of individual starvation, and synchronization of accesses to a
shared resource.

Program verification consists of proving the correctness of a program'’s specification, that is, proving
that all possible executions of the program eventually achieve a specific goal or satisfy a specific property.
Properties are expressed in assertions, which are statements about the program's variables and
sequence of execution.

Concurrency complicates verification. For example, concurrent programs can be non-deterministic
and, thus, can exhibit more than one correct behavior for the same input data. Also, proving lotal
correctness of a sequential program requires proof of program termination; however, some concurrent
programs are intended to be cyclic and non-terminating, e.g., operating systems.

Temporal reasoning has been applied in proving properties of concurrent systems because other proof
techniques (e.g., axiomatic, denotational, and operational) are inadequate for reasoning about concurrent
behavior and delayed processing (Ref. 66). A temporal modsl is a formal system for representing
knowledge about the relationships of events or activities that can take place within time. For program
verification, a temporal model is a system that uses temporal operators in proving properties of programs.

Temporal operators specify the ordering of events and relationships among them. An event may
follow, precede, or be contemporaneous with another evert. A given event may cause another event to
occur. A sequence of events or activities may recur in a specific pattem.

24

As temporal operators are added to a specification language, increasingly more complicated properties
can be expressed in a "natural” and convenient form. We examine some completeness results, which
suggest fimitations on the expressiveness that can be achieved.

It has been argued that as the number of temporal operators increases in a specification, the meaning
of the specification becomes more difficult to understand (Ref. 67, 68), In defining a specification
language, a central goal is to maximize expressive power while minimizing the number of primitive
operators,

3.1. Introduction

In this chapter we review four temporal models that have been used widely for specifying and verifying
the behavior of concurrent programs:

1. A temporal formula for a program is an assertion that specifies all possible sequences of
events or states that can take place in the program's execution (Ref. 69).

2. An interval formula for a program is an assertion that specifies all possible sequences of
events or states that can take place within a specified interval of time during a program’s
execution (Ref. 70, 71, 72, 73).

3. A path expression is a regular expression speciying allowable sequences of events
(Ref. 74, 75).

4. A Petri net is a directed graph specifying the set of all possible sequences of concurrent
state transitions of a program (Ref. 76).

In the remainder of this section we discuss advantages and disadvantages of each of these models
and highlight their differences. At the end of this section, we present the organization for the remainder of
this chapter.

3.1.1. Temporal Formulas

An advantage of temporal formulas is that their semantics is precisely defined by temporal logic, which
is a formal model for reasoning about time. Various systems of temporal logic have been developed,
including interval logic, which extends temporal logic for reasoning about intervals of time. In recent
years, temporal logic has been adapted to reasoning about timing dependencies of concurrent programs,
e.g., "If X occurs, then eventually the program will satisfy property P."

Burstall was the first to introduce temporal logic in defining the semantics of computer programs
(Ref. 77). Pnueli was the first to formalize a methodology for temporal reasoning about programs
(Ref. 69). Temporal logic provides the mechanics for reasoning about both the past and the future;
however, in specifying program behavior Pnueli used only the future fragment of temporal logic.
Throughout this chapter we restrict our discussion of temporal formulas to assertions on the current state
and future states of a program, although assertions on the past are also possible.

Temporal logic has been applied in proving program properties of various concurrent systems, such as

25

* communication protocols (Ref. 78);

» distributed systems, including communication systems, process control systems, and a
prime-number generator (Ref. 68);

* multi-process programs written in Communicating Sequential Processes (CSP) (Ref. 79, 80);
* operating systems, e.g., UNIX, Modula, and MESA (Ref. 81);
* access protocols of a local area network (Ref. 82).

Temporal formulas are useful for reasoning about eventualities (requirements that specific properties
eventually become true) and invariances (requirements that specific properties are always true). A
disadvantage of temporal formulas is that they are complex and difficult to understand. Furthermore, the
literature is complicated: notation differs; terminology varies: and controversy continues over the choice
of a temporal-logic system.

The lack of conformity in notation can be attributed partly to variations in typesetting facifities, but also
involves redefinitions of basic temporal operators. In addition, the terminology of program properties
differs, e.g., "absence of individual starvation” is called "response to insistence” and "weak eventyai
fairness.” It is often unciear whether terms such as these have identical semantics, or if, instead, they
differ in their underlying assumptions.

Although it is widely agreed that temporal logic is useful in concurrent program verification, researchers
disagree on the choice of a temporal-logic system. The key controversies are
1. state-based specifications with history variables versus event-based specifications,
2. linear-time logic versus branching-time logic,
3. temporal logic versus interval logic.
Briefly, these systems are defined as follows,

State-based temporal specifications model program behavior as successions of state of some abstract
machine. A history variable is a state encoding of the sequence of values that will be obtained by a
program variable before reaching the current state. Event-based temporal specifications model program
behavior as sequences of events.

in linear-time logic we consider all possible future paths of an execution, but consider each possible
path independently, so that each state has exactly one successor. (Linear-time operators describe
events along a single future.) In branching-time logic we consider alil possible paths at once, so that each
state may have many successors. {Branching-time operators allow quantification of events over possibie
futures.)

Temporal-logic operators éxpress properties that extend into an infinite future. Interval-logic operators
express properties that hold over a bounded future.

These controversies over temporal logics have been motivated by the following arguments:

26

* A temporal formula is an assertion about the future progress of the program, although not
necessarily from the first state of a4 computation. Some mechanism iS required for
establishing prior history, e.g., history variables, event specifications, or interval logic.

* Lamport, Emerson, and others argued that a branching-time logic is needed to capture the
semantics of distributed programs. Several branching-time logics have been proposed for
program verification (Ref. 67, 83, 84).

* Wolper (Ref. 79) argued that event operators are needed to express arbitrary regular
properties, such as: "p must be true in every even state of a sequence.” Wolper's claim has
been refuted (Ref. 85); however, other arguments have been put forth in favor of event
operators, e.g., their suitability for reasoning about concurrent programs that communicate
via message passing.

* Lamport argued that short-term fairness is expressible neither in linear-time nor in branching-
time logic (Ref. 67). Short-term fairness expresses the requirement: "For some fixed integer
N, a process cannot hold a request for more than N consecutive states without receiving a
response.” The property of short-term faimess ¢an be expressed in interval logic.

Controversy over the best temporal-logic system reflects the difficulty of representing knowledge about
time-related events. By restricting our application of temporal logic to the behavior of programs, we can
focus on practical issues and avoid many of the philosophical difficulties that complicate a more general

A detailed discussion of issues in a general model of time can be found in work on cognitive theories of
time (Ref.86, 87, 88), on the design of historical databases (Ref. 89), and on natural-language
processing (Ref. 90). Turner reviews various temporal logics and discusses their importance in artificial
intelligence (Ref. g1).

3.1.2. Interval Formulas

Like temporal formulas, interval formulas have a formal semantics. An important advantage of interval
formulas is that they allow specifying behavior that must occur in the "near” future and not before the end
of time. Several systems of interval logic have been developed.

In this chapter we develop an interval-logic system, called €, that is based on linear time and supports
both state-based and event-based specification techniques. The differences between our approach and
those reviewed in this chapter stem from our interest in Ada's concurrency paradigm and from our
emphasis on debugging.

3.1.3. Path Expresslons

While temporal-logic specifications are based on an axiomatization of time, path expressions rely on an
operational definition of time. An advantage of path expressions is that they are easy to understand.
Although regular expressions are well understood, the semantics of path expressions is less well-efined.

27

Furthermore, unlike temporal formulas and interval formulas, path expressions provide no mechanism for

requiring that a sequence of events ever occur; instead, they specify sequences of events that are
allowed to occur.

Path expressions are usefui for specifying a sequence of alternating events (e.g., message receipt
follows message transmission). We show that a restricted class of path expressions can be transformed
into temparal formulas.

3.1.4. Petri Nets

Advantages of Petri nets are their graphical form and their amenability to mechanization. Also, unlike
path expressions, Petri nets can express eventualities, i.e., requirements that specific events occur. The
disadvantage of Petri nets is state explosion, a problem of any state-transition model.

Lauer and Campbell have shown that any arbitrary path expression can be translated into a
corresponding Petri net (Ref. 92). The transitions of a Petri net correspond to the actions of a path
expression. A Petri net is said to simuiate a path expression if and only if the set of strings it generates is
exactly the set of strings accepted by a path exprassion.

3.1.5. Organization of this Chapter

The remainder of this chapter is organized as follows. Section 3.2 presents an overview of temporal
logic. In Section 3.3 we discuss the temporal semantics of states and events and distinguish between
state-based and event-based specification techniques. Section 3.4 reviews state-based temporal-logic
specification techniques for modeling the semantics of concurrent programs. Section 3.5 describes
event-based specification techniques (including path expressions) and state-transition specification
techniques (including Petri nets). In Section 3.6 we investigate the relationships between path
expressions, event expressions, and temporal formulas. We present a formal method for transforming a
restricted class of path expressions into temporal formulas. Section 3.7 reviews various interval-logic
systems for reasoning about temporal relationships among program states. Section 3.8 introduces our
interval-logic system, €. We summarize our conclusions in Section 3.9.

In Section 3.4 we consider the following state-based specification systems:

1. Systems D, DX, and Propositional Temporal Logic (PTL) use linear-time logic for reasoning
about concurrent programs that communicate via shared memory (Ref. 69, 66, 93).

2. Computation Tree Logic (CTL and CTL") uses a branching-time logic for reasoning about
distributed programs that communicate via shared memory (Ref. 83, 84).

3. Extended PTL (EPTL) uses a iinear-time logic for reasoning about concurrent programs that
communicate via message passing (Ref. 79).

In Section 3.5 we consider the following event-based specification techniques:
1. The Event-Based Specification Language (EBS) uses a linear-time logic for reasoning

28

about distributed programs that communicate via message passing (Ref. 68).

2. Vogt's event specifications use a linear-time logic for reasoning about concurrent programs
that communicate via message passing (Ref. 94).

3. Path expressions use regular expressions for reasoning about concurrent programs that
communicate via shared variables.

4. Petri net graphs use state transitions for reasoning about distributed programs that
communicate via shared memory.

EPTL and Vogt's event specifications are closely related, forming a bridge from state models to event
models,

Table 3-1 summarizes our presentation. This table shows the program properties that can be specified
in the various temporal-specification languages that we review. For each property that can be specified in
a language, we show the temporal operator that the language provides to express that property. These
properties, languages, and operators are defined in the body of this chapter. Tabies 3-2 and 3-3
summarize the definitions of temporal-logic operators. Tables 3-4, 3-5, and 3-8 summarize important
properties for concurrent programs.

3.2. Temporal Logic

Temporal logic is a branch of philosophical logic that deals with sentences that can become true or
false with the passage of time. The goal of temporal logic is 1o formalize reasoning about sentences that
have a temporal context, '

The history of temporal logic dates back to the ancient Greeks, but interest in it was revived in the late
1940's, when the R-calculus was introduced as a basic formal model for temporai reasoning. Rescher
and Urqubart (Ref. 95) provide an historical perspactive of temporal logic from the time of antiquity and
present a formal development of various temporal-logic systems. The formalism presented here is drawn
largely from this source. (We use their notation as well, with minor variations.)

3.2.1. Defining Temporal Logic
The essence of temporal logic is

* statements will vary in truth-status over time, and
= operations can be defined on time-dependent statements.

A statement is temporally definite # its truth or talsity is independent of when it is assertad, ag., "It
sometimes rains in Los Angeles.” That is, if this statement is true today, it must have been true always in
the past and it always will continue to be true in the future. Otherwise a statement is temporally indefinite,
e.g., "It is raining in Los Angeles today." That is, the truth-status of a temporally indefinite statement
depends on when it is asserted.

29

Table 3-1: A Comparison of Expressiveness in Temporal Models

Specification Languages

Program System D System DX State Path Extended

Property Formulas Formulas Formulas
(PTL) (CTL) (EPTL)

Safety a a a EQ a

Properties

Liveness 0 0 ¢ EO 0

Properties

Immediate none o] o] EQ o

Responsiveness {partia!

{no intervening ordering)

events)

Precedence none none U ("until®) EU U ("untif)

Properties

(FIFO ordering)

Sequencing none O o] EO "

Exclusive Or ~(aAB) ~(aAB) ~(oAB) ~(aAB) "+

lteration none none none none Kleene star

Short-Term noneg nong none nons none

Faimess

Distributed none none none A0, AO none

Properties AU, AQ

(simultaneous

events)

Table 3-1, concluded

Specification Langquages

Program Vogt's Event Path Petri Nets EBS Schwartz’s

Property Spec's Expressions Interval
Formulas

Safety O path o end "holds™ ~> ()3

Properties

Liveness 0 none "enables” => [z])0

Properties

Immediate 0] none none none yes

Responsiveness

(no intervening

events)

Precedence u . "enables” => <=, =>

Properies

(FIFO ordering)

Sequencing none . "enables” -> <=, =>

Exclusive Or ~{aAB) "+" yes ~{anf) ~{aAB)

Iteration none Kleene star yes none none

Short-Term none none none none yes

Fairness

Distributed norie yes yes ->, => yes

Properties

(simultaneous

events)

31

3.2.2. The Basic Temporaj Modei: System R

Rescher and Urquhart have shown that the basic temporal-!ogic System, M, is complete and decidable,
A system ig complets if eévery valid assertion in that system is a theoram, In system m the temporal
context of g Statement s Provided by the operation of temporal realization. The Operator R asserts that
Statement A hoigs {is realized) at the Particular instant {, written R(A). By Convention, if A is 5 temporaily
definite Statement, then A = Vet)R t (A). Iftisa Pseudo-date, and A is some temporally indefinite
Statement, then R/A}is temporally indefinite,

1. Propositional variables, such as A and B, ranging over both temporaily definite ang
indefinite Statements.

2. Variabies, such ast, s, and y, for time instants, l.e., as either definite or Pseudo-dates.
3. The variable n, for the Pseudo-date, *now "

4. The connectives of propositional logic, including ~ for negation, A for conjunction, = for
implication, and = for equivalence.

§. The Quantifiers, v (thg universal quantifier) ang 3 (the existential Quantifier), ranging over
time. (in Section3.2.9 we will extend v and3to range over other entities as well.)

6. The identity predicate, =, for Comparing variabies or n
7. The temporal oparator R.

32

The usual principles of logic are assumed for sentences in M that do not involve n or R, Thus, the

following rules specify sentences that are well-formed formuias (wtfs) in R:

1. A propositional variable is a wif.

2. It o is a wif, then ~a is a wif.

3. If e and B are wifs, then o A B is a wif.
4. it aand B are wifs, then a = [is a wif.
5. !t o and B are wifs, then o. = is a wif.

System R is based on the following axioms:
R{(~A) = ~R(A)
R(AB) = [R (A) A R (B)]
Rp(A) = A
Rs[(VOA] = (V) [R ,(A)]
Rg[R(A)] = R (A)
R (=) = (t=8)
R (s=u) = (s=u)

(VOA = AP
and the following rules of inference:
It A is a tautology (i.e., a vaiid wif) then —A

if A then—(v# R (A)
If —(A=B) then (—A) = B

(10)
(1)

In Axiom 4, t and s must be distinct. In Axiom 8, A" means that n can be substituted for every free

occurrence of tin A. It assumes that ¢ does not occur within the scope of an R-operator in A.

3.2.3. Temporal Precedence

A genuine temporal logic requires not only the introduction of presentness ("now"), but also the
relationship of temporal precedence: t < s for "time t is before time s Temporal precedence is
introduced into system R by including the precedence relation as a primitive and adding the following

axioms:

Rin<s)=tcs
R{s<m=s<t

Ris<u)=s<uwhenevers=n u=n

3.2.4. Linear Time versus Branching Time

Temporal logic is commonly based on a finear series, that is, a single course of time, but can be based
also on branching time, that is, possible future courses of events. If we assume branching time, then
temporal precedence determines only a partial ordering on events, i.e., t < s means that a set of avents
may occur at time s, which is later than time ¢ Branching time is represented by a tree structure.

A linear series is the standard picture of time. If wa think of time as linear, then instants are
comparable on their relative ordering of earlier, contemporary, or later. A temporal logic is complete with
respect to linear time, if (in addition to the axioms of system IR) it requires transitivity and connectedness
of the precedence relation:

(t<sia(sct)=tcu

(teg)v(t=9)v (s<

3.2.5. Tense Logic

Temporal precedence establishes an ordering of instants in terms of earlier or later. In combination
with presentness ("now"), temporal precedence establishes a temporal ordering with respect to “now,”
i.e., past, present, and future times. The basic set of tense operators includes F ("future”), P ("past”), G
("henceforth™, and H ("heretofore”). Table 3-2 defines these basic tenses as functions on propositional
variables pand q. A tenss is a function on a set of propositions, such that the truth-status of the function
is given by an equivalence to a wif in R.

Not ail relationships within R can be expressed in tense logics, e.g., some properties of temporal
ordering cannot be expressed, although continuity can be. Continuity means that, for continuous time, no
gaps exist between instants, i.e., there is a continuum of instants betwsen any two instants.

Not every tense operator can be defined by the basic set of tense operators. For example, Kamp
(Ref. 96) proved that S ("since") and U ("until), defined in Table 3-2, are two binary tenses that cannot be
expressed with only F, P, G, H, and propositionaf connectives. Both F and P, however, can be defined by
Sand U:

Fp=(pv~pUp

Pp=(pv-~p)Sp
Kamp also showed that if time is linear, dense, and infinite in both directions (past and future), then every
tense can be expressed in terms of S and U.

3.2.6. Temporal Modality

Modal logic provides another basis for tense logic. Hughes and Cresswell present an introduction to
the theory of modal logic, of which temporal modality can be considered a pan (Ref. 97). Modality is the
logic of necessity ("It must be the case.”} and possibility ("It may be the case.”).

Table 3-2: Basic Tense Operators

Operator Tense

The basic tense operators are

Fpo "It will be that p"
{future)

Pp "It has been that p*
(past)

Gp "Henceforth always p"
{p will always be
true in the future)

Hp "Heretofore always p"
(p has always been
true in the past)

Two binary tense operators are

PSq "psince 4"
(p has been true since q)

pUqg "puntil ¢"
(o will be true
at least until q.
{Eventually g holds.)
The tense operators of modal logic are

Op "Eventually p"

Op "Always p’

Definition

(30 [n<t AR ((p)]
(31 [t<n AR (p)]

(V) [n<t=3R (p)]

(V0 [t<n =R (p)]

(30 {tenn A R (@) A (V5) [(tes<n) = R (o)}

(30 {n<tA R (q) A (V) [(n<s<h = R (p)]}

pvFp
@0 [n< AR (p)]

p~Gp
(Vo [n<st=R (o]

Necessity it is true now and ahlvays will be true.
Possibility It is true now or will be realized some time in the future, {it may become false again
after becoming true.)

The temporal modal operators are OJ for necessity ("always") and ¢ for possibility ("eventually"), ag
defined in Table 3-2. Modal Operators can be combined, e.g., ¢ [J ("eventually hencefonh") and J ¢
("infinitely often”). In linear time, the operators ¢ and O are duals:*

Op=~0O~p
Temporai modality is also called "classical temporal logic” in the literature, because it extends classical
(propositional) logic.

Other tense Operators can be defined with O, 0, and U, (See Tabie 3-3.} For éxample, Lamport
introduced g binary version of the O operator, meaning "as long as.” {Note that the unary operation (p is
expressibie as “true [J P."} The binary operator N ("unless”) was introduced by Nguyen (Ref. 98).
Schwartz (Ref. 70} introduced the Operator latches until, a variation on the U-operator. Ramamritham
and Keller (Ref. 99) derived the binary operators onlyafter and after, The binary operator ->
("precedes”) is usefy) for reasoning about a FIFO ordering.

3.2.7. Chronological Logic: System |+

temporal variabies, @g.ts andu. ThesetT is a metric space if there is a distance function d defined
over all pairs of T-elements, such that
ALs)=0ifft=s

dLs) + ds,u) > du,p
where we require that d(u,9 = Adty). IfTis a metric space, then a system based on the R-calculus
defined over the set T is said to embody metric tima.

To move 10 3 chronological System, the standard R-calculus is modified by replacing n by the identity
element / ag a point of reference, SystemR+ is derived from the R-calculus as follows:

constitutes a group that is commutative and additive. The date ; ® t= t means "t units after
i"and the date /@ -t = -fmeans "t units beforg ;"

2. Replace all occurrences of nby in Axioms 3, 6, 7, and 8 of system R,
3. Replace Axiom 5 of system R by the following axiom:
Rs[Rt(A)] = Rse t(A)

'Lamport has shown that this duality does not hold for branching time, but more about this later (Ref. 67). (See Section 342)

36

Table 3-3: Derived Tense Operators

Operator

Tense

The operators of modal logic can be combined:

00p
O¢p

"eventually henceforth p*

"infinitely often p”

Definition

New tense operators can be derived from existing tense operators:

pOq

pNg
pP—>q
p latches until g

P onlyafter q

pafter q

"qis true
as long as
p remains true”

""punless ¢"

"p precades §"

"p can become true
only after g does”
(does not assume
eventuality of ¢)

"p will become true
after g does”

(at same time or later,
does not assume
eventuality of g)

qu-p

OpvipUaq
p=(~qUp)
p=>(pUg)Ugqg
~pUq

(~pU Q) A0p

37

Various metric times are possible. For example, a metric time that is linear and non-circular ig obtained

if Tis the set of integers, dts) = |t-5), and jis 0. Section3.7.3 reviews a specification language based on
Mmetric time (Ref. 73).

the other relations can be defined with the "meets” relation, the existential quantifier, and propositional

connectives (Ref. 88). For exampie, the relationship "before” hoids between two intervals if there exists
an interval between them.

in other interval logics, time points are primitives. For example, McDermott developed an interval logic
based on points in continuous time (Ref. 86). In this System, intervals can be unbounded. Also, Clifford
and Warren developed an interval logic in which time points are primitives, ang intervals are required to
be closed and dense (Ref. 89).

A "process,” or activity, occurs over a Certain interval of time. Rescher and Urguhart characterize an
activity by its temporal pattern:

homogeneous Can go on for ail times throughout the interval, e.g., flying an aimplane, rinning around
k.

atrac
majoritative Can go on at most times throughout the interval, e.g., writing a letter, whistling.
occasional Can go on at some times throughout the interval, e.g., Sneezing, a rooster crowing.
wholistic Can go on for the whole interval, but not for only a part of the interval, o.g., flying an

Majoritative. An example of an occasional activity is reading input data. Executing a rendezvous
between any given pair of tasks is an wholistic activity,

In reasoning about Program behavior, however, we need consider only homogeneous activities, i.e.,

38

program states (in the sense of a "snapshot” of a program's behavior), and wholistic activities, i.e.,
sequences of events (or of state transitions) that trigger the beginning and ending of an activity. Hence,

we can provide a simpler semantics for interval logic. Section 3.7 reviews interval logics for specifying
program behavior.

3.2.9. Temporal Logic and Predicate Logic

The temporal logic that we have presented so far is an extension of propositional logic: It deals with
sentences to which a truth value (true or false) can be assigned. Sentences in propositional logic are
composed of propositions and connectives. Every proposition in a sentence is either true or false, but not
both. Predicate temporali logic deals with temporally indefinite sentences that contain occurrences of free
variables that may range over domains other than time, e.g., "For some X, X is a task that eventually calls
itself."

Predicate temporal logic is an extension of predicate logic (also called quantified logic), which is
concerned with propositions about objects. Propositions in temporal logic are either atomic or compound.
An atomic proposition is an expression of the form:

Xy X)
where p is a predicate symbol, which expresses the relationship between objects, and the arguments
XXy are a set of terms, which represent objects. A term can be a constant, a variable, or a
compound term. A compound term consists of a function symbol and an ordered set of terms as
arguments. The operators 3 and v specify quantification over variables. Compound propositions are
formed by combining propositions with logical connectives: ~ (negation), A (conjunction), v (disjunction),
= (implication), and = {equivalence).

Predicate temporal logic requires the foliowing extensions to the primitives of system R:

1. Variables, e.9., X, Y, Z, ..., are introduced for objects that range over domains other than
time.

2. A and B are predicate variables ranging not only over time, but over the domains of
variables X, Y, Z, ..., as well.

3. The quantifiers, ¥ and 3, are allowed to range not only over time, but also over other
domains.,

The usual rules of predicate logic are assumed:

1. An expression consisting of a predicate symbol and a finite number of arguments is a wif,
We will write ay for a predicate consisting of a predicate symbo! a with argument X.

2. It ais a wif, s0 is ~qx.
3. If e and B are both wifs, so is o v B.
4. If a is a wif and X is a variable then (VX)ouy is a wif.
5. (@X)ay & ~(VX)~a
The foliowing rules can be derived:
(VX)ay = (3X)ay

~(VX)0:X 3 (HX) 0y

Rescher and Urquhart point out one important difficulty in extending predicate logic with temporal
Operators: If quantification is allowed to range over domains other than time, then it is necessary to
specify the “temporal domain* over which variables will range. If we assume the temporal domain to be
either of the following cases:

1. All individuals that exist now.
2. All individuals existing at time ¢,
then the rule:
(VX)R,[ax] = R ¢ [(VX)ay]
is invalid.

For example, let X range over Ada tasks and iet o x be the predicate: “X hag not yet been created.”
From the first case above, we can derive the following invalid Proposition: “If all tasks that exist now were
not yet created at time t, then at time ¢ ali existing tasks were not yet created.” On the other hand, if we
take the temporal domain 1o be any of the following cases:

3. All individuals that have existed up to and including now.
4. All individuals that have existed up to and including ¢

5. Al individuals, including those that have existed some time in the past, that exist now, or
that will exist at some time in the future.

Re[(VX)Ax] = (VX)R, (Ay) (12)
R, [3X)A] = (3X0R, (A,) (13)

Similarly, in modal logic the "Barcan formula™:
(VX) Doy = (v X)ory
is controversial, although its converse is easily proved (Ref. 97). If we assume the validity of the Barcan
formula, then the following rules can be derived for tense logic:

DXV X)aty = (VX) Dt
¥3X)aty = (3X) Oax,

Program vaerification takes the temporal domain to be the third case. In verification we always reason
from the current state into the future. Hence, the Barcan tormula is implicitly assumed,

In debugging we reason about the past and must often choose between cases one and three, or
between cases two and four. Hence, the Barcan-formula controversy cannot be avoided in debugging (or
in any historical database). In Chapter Four we address the implications of this controversy for
debugging.

A second difficulty of predicate temporal logic is that it is undecidable. That is, it is not always possible
to decide the validity of an arbitrary sentence in predicate temporal logic. Hughes and Cresswell have
shown that the equivalent modal-logic system, known as LPC (for lower predicate calculus), is
undecidable.

3.3. The Temporal Context of Events and States

The words "event" and “"state” have a wide range of interpretations; however, any description of an
event or state carries with it a temporal specitication. We can say that an event occurs at time ¢, or that a
state holds at time t. This view of time is called absolutist. Times are not differentiated by events; events
may be differentiated by times. In absolute time (as opposed to refative time) a global clock is assumed,
and the same events or states can recur.

In relative time, a cluster of events constitutes an instant of time, i.e., events differentiate times. |f no
events occur, then there is no time. Relative time is a common assumption in cognitive theories of time
(Ref. 86, 88). Relative time is assumed also in the debugging techniques of “checkpointing” (Ref. 42) and
“sampling” (Ref. 55). In this dissertation we restrict our attention to absolute time, which is appropriate in
tracing a program’s execution.

The remainder of this section is organized as follows. First, we discuss the definitions of events and

states in a general theory of temporal logic. Second, we distinguish between event-based and
state-based approaches to modeling program behavior.

3.3.1. Defining Events and States

The definition of events and states varies according to which is taken as primitive and how each is
described temporally. In general, events and states are duals. An event is an operation whose
occurrence causes a state transition. A state is a memory of the events that have previously occurred,
i.e., an encoding of previous events.

For Rescher and Urquhant, an event is a primitive element that occurs at a single time instant, An
event can be described either by its relationship to other events (e.g., retrospective, prospective,
contemporary, simultaneous) or without reference to other events (i.e., a "pure” description).

Events are primitives in Petri-net theory, also (Ref. 101). A state is a predicate on a sequence of
events. An event is an action that takes place in the system. A state is a set of conditions that control the
occurrence of an event.

On the other hand, Allen (Ref. 100, 87, 88) defines events as primitives that take time. An evert
occurs over an interval, Events that cause no change in state occur over point intervals. An event is a
predicate on an ordered pair of states. In this model, time is assumed to be relative and can be either
continuous or discrete.

41

In developing a model of time for planning actions (e.g., for robots), McDermott also defined events as
primitives (Ref. 86). In this model, time is continuous, infinite, and branching into the futyre (many
futures; one past). A state is “an instantaneous snapshot of the universe.” The universe consists of facts,
Or propositions, whose validity is determined in each state. Events are actions that cause changes in
facts. State changes occur in a single instant; events occur over an interval (but may oceur over an
instant).

In McDermott's made! of time, each occurrence of an event is called a token. Many different event
tokens can take place over a given interval; thus, a cluster of event tokens constitutes an interval, Hence,
as in Allen’s model, relative time is assumed. McDermott argued that Allen’s approach, in which event
tokens are defined on ordered pairs of states, is inadequate for a model in which relative time is assumed.
Instead, event tokens are defined as predicates on ordered pairs of events and intervals.

Snodgrass takes both events and states as primitive. An event is a change that occurs in the system
state at an instant. A state is a relationship that is valid for the duration of an interval. Events delimit
states; states generate events by change. The dualty of events and states accommodates two
approaches to modeling program behavior: an event stream and successions of state.

3.3.2. State-Based versus Event-Based Temporal Models

In this dissertation we restrict our attention to events and states of a program'’s execution. A state of a
program consists of a data component and one control Component for each process. The data
component consists of the current values assigned to program variables. Each control component gives
the cument location of the next instruction to be executed within that process. An event of a program is
an action that causes a state change.

We characterize program-specification methods by the way in which execution is modeled and by the
expressive power the language provides for specifying constraints on behavior. Execution models are
either state-based or avent-based. State-based specifications mode! program behavior as successive
states of some abstract machine. Event-based specifications model program behavior as an event
stream. State-transition systems, such as Petri nets, modae! program behavior as changes in state, which
are atomic events.

Event models are useful for verifying assertions about the behavior of concurrent programs that
communicate via message passing. On the other hand, state-based specifications are more appropriate
for describing concurrency via shared memory. We are forced to explore both models because Ada
provides communication via both shared Mmemory and message passing.

42

3.4. State-Based Temporal Models
A state model is a triple, (I,0,0), where

* I is a mapping that assigns elements, functions, and predicates to individual constants,
functions, and predicate symbols,

* 0 is @ mapping that assigns constant values to program variables, and
* 0 =<5, §¢,...> is an infinite sequence of states.

Recall that a state consists of a data component and one control component for each process. Let S
denote the instruction at program location m,. To specify the control component of a state, predicates an
program labels are introduced:

at m ~ Control is at the beginning of the execution of instruction S.
after m, Control is just after instruction S is executed.
inm, Control is within instruction S.

These predicates specify controt points, i.e., conditions leading into or out of a specified state. For
example, "at m," is true in state s if, when in state s, the program is about to execute the instruction at
location m;.

Control predicates provide a temporal context for State, such that assertions can be made about the
current state, instead of from the "first” state. Thus, a state-based temporal formula assumes that future

behavior depends only on the current state, and not on prior states (i.e., not on how the current state was
reached).

A proposition is a statement about the current state of the program. Propositions are composed from
the following primitives:

1. Program labels: m,,....m,,.

2. Program variables: Y qreen¥y-

3. Constants: ¢.....c;.

4. Predicates and function symbols: ¢, v, &, ... , ranging over program variables.
5. The predicates at, in, and after, ranging over program labels.

A proposition can be
1. A pradicate on a program label.
2. A truth-valued function on a set of atomic predicates over program variables.

3.4.1. Linear Time and State Formulas

A linear-time, state-based temporal formula (state formula) is an assertion about a sequence of states,
which can inciude the current state and future states. Temporal models using state formulas have
evoived from the minimal system D to the progressively more expressive systems: DX, DUX (PTL), and

EPTL. These models assume a global state, so that no two processes execute at the same time. That s,
state formulas require a "single event condition™ Each state is obtained from the previous state by the
execution of exactly one instruction; each state transition corresponds to one atomic instruction.

3.4.1.1. A Discrete Temporal Model: System D

Using only the operators ¢ ("eventually”) and 0 (“always”), Pnueli proved properties about a
concurrency modei that achieves communication via shared memory. He interpreted temporal operations
as constraints on the computation of the program:

Upis true in state s, If pis true in all states 5; forjzi
Op is true in state s, ifforjzi
there exists a state 5 in which pis true

Here, pis an arbitrary proposition.

A well-formed state formula (wisf) consists of
1. Propositions: PPy

2. The connectives of proposttional logic, including ~ for negation, A for conjunction, and = for
implication,

3. Temporal operators: 0 and 9.
Each state contains truth assignments to all propositions p,,....p,.

For example, the following are wisfs:
Ofat m; =)
{at my A ¢} = Dat my, = ¢)
{at m; = 0 at mj}
O(~(at m, A at ms))
A temporal-logic system based on the operators 1 and ¢ has been studied under the name D (for time

taken as discrete) (Ref.97). System D is equivalent to the general modal-logic system S4.3.1,
Continuous time requires a weaker system, known as 54.3, which is contained in D.

System D consists of the following axioms:
OA= A

DXA=8) = (OA=0B)
and inference rules:
if A is a tautology then —A
if —A and —A=8 then B

if —A then —~0A
where A and B are arbitrary wisfs. (Rules for ¢ can be derived from its duality with [0.)

3.4.1.2, Safety and Liveness Properties

The temporat operators 0 and ¢ partition program properties into two classes: safety and liveness.
Most properties fall into either of these classes. Safety properties describe conditions that are always
true. Liveness properties describe conditions that must eventually become true (but may become false
again after becoming true).

Safety properties specify that the program cannot reach an undesirable state, i.e., that "nothing bad will
happen." These properties can be expressed by invariant assertions, which are assertions that are
always true (temporally definite Statements}. An example of a safety property for sequential programs is
partial correctness, which asserts that the program is correct if it reaches its desired final state. For
concurrent programs, the class of safety properties includes deadlock freedom, clean (error-free)
behavior, and mutual exclusion of processes. To exhibit clean behavior, a program must be free of the
errors commonly found in sequential programs: type incompatibilities, exceeded array bounds, and ill-
formed arithmetic expressions {e.g., zero division and numerical overflow). Table 3-4 summarizes the
definitions of these important safety properties.

Table 3-4: important Safety Properties

partial correctness The program is correct if it reaches its desired final state.
clean behavior The program is free of errors commonly found in sequential programs.

deadlock freedom Future progress is always possible, unless the program terminates. (No process is
ever permanently blocked.)

mutual exclusion of processes
Specified actions cannot be executed simultaneously, e.g., a process can respand to
only one request at a time.

Liveness properties assert that the program will progress, i.e., that "something good will happen.”
These properties are requirements that certain events occur. They can be expressed in commitments,
which are temporally indefinite statements about the future. Total correctness is an example of a liveness
property for sequential programs. A program is fotally correct if it is partially correct and eventually
terminates. For concurrent programs, the class of liveness properties includes termination, accessibility,
responsiveness, and response to insistence (absence of individual starvation). Table 3-5 summarizes the
definitions of these important liveness properties.

Fairness is a condition to proving liveness properties. A program is fair if every process has many
chances 1o proceed. Varying degrees of fairness {e.g., "justice”) have been studied in the literature.

45

Table 3-5: Important Liveness Propertias

termination All processes will eventually terminate.
fotal correctness The program is Partially comect and éventually terminates.
accessibility Every path wili eventually lead to some specified goal,

fesponsiveness Every request from a process will eventually receive g response,
response to insistence

A permanent holding of a request will eventually receive a response.
résponse to persistence

If a process has Mmany chances to proceed, it eventually will.
résponse to an impulse

A single request guarantees a response.

Combinations of tense operators, 0 ¢ (“infinitely often™) and 0 3 ("eventualiy hencefonh"). are useful for
describing recurring properties, such as properties of non-terminating programs, response to persistence,
and trends among program events (e.., "the buffer ig infinitely often not full"). Also, the Presence of
deadlock is expressed as a combination of tenge Operators: “eventuaily henceforth aj] processes are

languages that yse a concurrency Paradigm that achieves communication viag shared variableg (e.g.,
monitors and Semaphores). These Properties express requirements on access to shared resources.
Ramamritham and Keller present a resource-control model, in which the execution of an operation on 3
shared resource consists of four distinct phases (Ref. 99).

1. Request The user program requests a resource and the availability of the
resource is determined,

2. Service i the resource becomes available (is "anabled"), the requester raceives
aresponse, granting the resource.

3. Active Access occurs.

4. Termination Access is completed; the resource js released.

We digress for a moment to consider the usefulness of these safety and liveness properties in an Ada
environment. Recall that an individual Ada process is called a task, and that synchronization between

1. Request An entry call is executed, the calling task is suspended, and its name is
placed in the entry queue.

2. Service At least one select alternative for an accept statement of the
corresponding entry becomes open, an alternative is selected, and the
caller is removed from the entry queue (rendezvous begins).

3. Active The accept statement is executed (rendezvous occurs).

4. Termination The calling task resumes execution (rendezvous completes).

“Responsiveness” defines varying degrees of liveness. From weakest to strongest, the levels of
responsiveness are as follows: response to insistence, response to persistence, and response to an
impulse. All these levels of responsiveness can be expressed using the temporal operators: ¢, O, and
their combinations {Ref. 93). In the following discussion let propositions p and g be defined as follows:

+ pis true iif the process is active and waiting to be chosen {in request phase).
» ¢ is true iff the process has been selacted (in service phase).

Response to insistence (also called "weak responsiveness,” "weak eventual fairness," or "absence of
individual starvation”) is a requirement that a permanent holding of a request will eventually receive a
response. This property can be expressed as ~O(pa~q) ("p cannot remain true forever without g ever
becoming true.”). It can be expressed also as Op = 0q ("If p remains true then it will eventually cause
q."). These are reguirements on the current state only. Response to insistence can be specified over the
current state and over all future states: O(Cp = 0q).

Response to persistence (also called, "eventual fairness,” "strong eventual faimess,” or "failure
freedom”) raquires that if a process has many chances to proceed, it eventually will. This property can be
expressed as O 0p = ¢q ("If p is true infinitely often, q will eventually become true.”). This is logically
equivalent to ~C%pa~q) ("p cannot become true forever without ¢ becoming true.”). Response to
persistence can be required over the current state and over all future states, e.g., O ¢p = g},

Response to an impulise is a requirement that a single occurrence of p guarantee ¢ p = ¢q. This
property can be expressed over all future states as O{p = ¢4).

3.4.1.3. System D Extended: System DX

Pnueli (Ref. 66) augmented the definition of a state formula to include the unary temporal operator X
("next time"). The operation Xp ("next o) is true at time ¢, iff pis true at &4+1: R (Xp) = R, {(p) (assuming
linear metric time). Tha point-based operator X has since been replaced by the state-based operator O,
to specify sequences of states:

Opis true in state s, iff pistrue instate s, ,

System DX is an axiomatization over O, 0, and ¢. It contains the axioms and inference rules of system
D, as well as the following axioms:

O(~A) = ~OA

47

O(A=B) = (OA = OB)
OA= CA

0OA = O0A

O(A=0A) = (A=2[0A)

Given the single event condition, the state formula LXp = Oq) specifies an immediate response: "If a
process has a chance to proceed, it will do so immediately; it wiil never be kept waiting.”

3.4.1.4. Propositional Temporal Logic: PTL

Gabbay (Ref. 93) showed that some temporal properties of programs cannot be specified using only
the operators ¢, (J, and ©. The temporal operator U (“until’) is needed for expressing temporal ordering,
8.g.. p U (q U r) specifies that p, g, and r are in sequence. By considering only the future fragment of
tense logic, Gabbay provided a simpler proof than Kamp (Ref. 96) of the need for the U-operator.
Lamport (Ref. 67) gave a similar argument for including the binary operation p O g ("as long as").

The only temporal operator required (in linear time) is U, because O p = p U false, 0p = true U p,
Og=false U g, and p0 q= qU ~p. For example, the U-operator can express the property of immediate
responsiveness: [~q v (~q U p)) (“Either g is never true or g is not true until p."). Immediate
responsiveness can be expressed also with the N-operator: g = ~qgN p).

Propositional Temporal Logic (PTL) is a state-based specification language that extends propositional
logic with four temporal operators:

Op p s true in the next state in the sequence.

Bp pis true in the current state and in all future states in the sequence.

op Either p is true in the current state or there exists some future state in which p s true.

pUg pis trug in every state at least until the first state in which g is true. {(Eventuality of q
is required.)

System DUX is an axiomatization of PTL. It consists of all the rules and axioms of DX, plus the
following axioms:

OA=AUB
AUB=Bv (AAO(A UB))

.!n some representations of state formulas, eventuality is not required.

48

3.4.1.5. Precedence Properties

"Until" defines a class of precedence properties, which extends the class of liveness properties.
Precedence properties include strict (FIFQ) fairness and bounded overtaking {also called boundedness').
These properties are defined in Table 3-6.

Table 3-6: Important Precedence Properties

absence of unsolicited response
No response will occur unless preceded by a request. {Any process that makes a
request eventually gets a chance to proceed.)

strict fairmess Each process has an equal chance to proceed, e.g., a FIFO discipline or interleaving.
boundedness The number of messages in each butfer can never exceed the capacity of the buffer.

Gabbay showed that the U-operator is required to express properties of responsiveness augmented
with fairness, the requirement that each process have many chances to proceed (L3 0p). Absence of
unsolicited response requires that a resource never be gramted unless it is preceded by a request:
0= ~q U p ("Any Process that makes a request will eventually get a chance to proceed."). Given the
duality of O and ¢ (in linear time), this property is logically equivalent to ~@ N p {"A resource will not be
granted unless a request is made.”). Recall that p N q=0pv(pU q).

Strict fairness (aiso called, "strict responsiveness”) requires that each process have an equal chance to
proceed, e.g., a strong FIFO discipline. Consider the following set of propositions for each process P;,
where i=1,2;

* p; is true iff process P, is watting for a resource.
* g; is true iff process P, is served.
A strong FIFO discipline requires

(05 = (~p, U P)) = (0, = (~q; U gq,))
which is logically equivalent to each of the following formulas:

{(~PaNp,) =(~q,Ng,)
oy ~> Py)=(q, -> q,)

1 A~P2 v ay)) = (p; O~q,)
Recall the following definitions (See Table 3-3 in Section 3-3.):

(p~>q) = (0p=>~q U p)
(PO =(qU~p

49

Interigaving requires that strict fairness hold throughout a computation, not only for the first access. It
requires at least one p between consecutive ¢'s:

P->q@ AlXg= (p-> q))

3.4.1.6. A Temporal-Logic Specification Language: SYSL

The SYnchronizer Specification Language (SYSL) is a program-specification language based on
predicate temporal logic (Ref. 99). This language uses the temporal-logic primitives of PTL. SYSL has
been applied in specifying the semantics of distributed programs that communicate via a shared resource.

In addition, SYSL has been applied in synthesizing the code of a synchronizer, a sequential process
that guarantees disciplined access to a shared resource. The synthesis algorithms transform
specifications into changes to auxiliary variables that are local to processes. The synthesized code
specifies necessary conditions for servicing requests and appropriate actions for satisfying fairness. A
preprocessor attempts to detect inconsistencies, incompleteness, and deadlock-prone conditions in a
given set of specifications,

Statements in SYSL are composed of the following primitives:

1. English equivalents of PTL primitives (0, O, U, and =),

2. PTL propositions.

3. The universal quantifier of predicate logic.

4. Derived temporal operators, including onlyafter and after.
5. Macros for expressing liveness and safety propenrties.

Recall the following definitions (where eventuality of q is not assumed):
{(ponlyafterg)=~pU g

(pafter g) = (~p U q) A (0p)
For example, the SYSL specification:
(at m,) onlyafter (after ml)
specifies a temporal ordering on states.

The SYSL macro "EXCLUDE" specifies mutual exclusion:
Viy.t, etick, ty # t,, Ci~{active(t,) active(t,)}
For example, a program that simulates advancing a clock is specified by the following SYSL statement:
Tick Operations EXCLUDE EACH OTHER
where “tick" is an operation that increments time. This statement expresses the requirement that tick
operations occur one at a time.

3.4.1.7. Decidability and Expressiveness

A state is a truth-valued function on a set of propositions. The operator = defines a mapping from
each state s to the set of propositions that are true in 5. A state formula is a truth-valued function on
states. We write sF= v to denote that state formula y is true at state s (read, "s satisfies y").

Recall that 0=<s,s,,...> denotes an infinite sequence of states. A subsequence of states is denoted
01 =<5},5},1..> for any i 2 0. We write o ==y to denote that state formula v is true on the sequence o.
This is defined inductively as follows:

For a proposition p, o= pif s, = p.

That is, pis true on the sequenca o, if p is true in state Sg,
written sy [pl=true or p e I(s,,).

oy, vy, ifaly, orgk=y,
o=~y iff ~(c =)
oF= DOyiff (vk20)0, =y
°i=°\viff(3k20)suchthatcki= "
Gl Oyiff o, b=y
o=y, Uy, iff
(3kz0) suchthat o) = v, and (Vi, 0Si < k) o, b=y,

Derived operators can be defined also, e.q.,
oy, Ny, iffcl= Oy, orcl=y, Uy,

If every computation o of a program P satisfies a state formula v (i.e., o= y for all g), then v is said to
be vafidover P. Pl= .

Under the assumption of eventual faimess ("M a process is given many chances to proceed, it
eventually will."), Pnueli proved that the validity of an arbitrary eventuality, e.g., O(p = 0q), is decidable
for finite-state systems. Gabbay proved that both DX and DUX are decidable.

When considering predicate logic, additional definitions are required:
o= 3y iff (3X)[o k= yy]
Gabbay showed that PTL is expressively complete, i.e., no additional operators are needed for
reasoning about the future, provided finear time is assumed. His proof follows that of Kamp, who showed

that if time is linear, dense, and infinite {into both the past and the future), then every tense operator can
be expressed with only the operators “since” and "until.”

51

Gabbay concluded that all important properties of Programs can be expressed in PTL; ie., no
additional operators are needed for making assertions about Program behavior. This result has been
disputed over several key issues, which motivated the development of branching-time specification
languages, the introduction of history variables, the development of event-based specification languages,
and, most recently, the introduction of interval-logic Specification languages.

In the following sections we examine the validity of the arguments against PTL's "completeness” and
review the solutions that have been proposed for extending the expressiveness of PTL.

3.4.2. Br_anching Time and Path Formulas

Lampont was the first to investigate a branching-time logic for program verification (Ref. 67). In
Lamport’s model, a branching-time formula is an assertion over all possible computations of g program,
starting from the current state. Recall that in linear time we consider each possible computation
independentiy, so that each state has exactly one successor,

Lamport argued that linear time and branching time have different expressive powers, but neither is
more expressive than the other. They differ in their interpretation of "0." In branching time 0p means that
P will become true eventually in avery computation. In linear time 0p means that there exists a
computation in which p will become true.

Lamport argued that the duality of (3 and ¢ does not hold in branching time. (Recall that 0p = ~O~pin
inear time.} He omitted the details of the proof, but we include them here.

Let Og and 0g denote the branching-time interpretations of the linear-time operators O and ¢, i.e.,
Og p = (Vpaths)[Co]

Cpp= (Vpaths)[0p]
Theorem 1: The equivalence Og p= ~Og ~pis invalid.

Proof: The proof is by contradiction. Assume that the equivaience holds. Then by our
definitions of branching-time operators

(Vpaths)[0p] = ~{(Vpaths)(~p])
= (3path)[~(0~p)] (by logical equivalence)
= (3path)[~0~p}
= (3path)0p (given the duality of O and ¢)
This implies
(Vpaths)[0p] = (Ipath)[op]

which is clearly faise.

"Not never" means eventually happening in some possible future; whereas, "eventually" means

52

eventually happening in every possible future.

Lamport argued for linear time in reasoning about concurrent programs, but for branching time in
reasoning about "nondeterministic” programs (i.e., distributed programs). He showed that response to
persistence cannot be expressed in branching-time logic. On the other hand, properties of programs that
execute in paralle! (multiple events oceurring at any instant) can be expressed only in branching time.

Both interpretations of eventuality have been incorporated into Computation Tree Logic (CTL)
(Ref. 83). In CTL, the basic tense operators are either A ("for all futures”) or E (“for some future™,
followed by the usual linear-time operators: O, ¢, O, and U.

CTL was further extended to the language CTL", in which assertions are expressed in path formulas
(Ref. 84). A path formuia is a state formula that can be preceded by a path quantifier. Emerson and Lei
have shown that CTL" is decidable in triple exponential time.

In CTL", validity is defined over a branching structure, M. The expression "M, s F= y (M, g k=)"
means that path formula y is true in the structure M at state s of path o. If every state s of every structure
M satisfies a path formula v(i.e., M, sk= y), then v is said to be valid over M.

Recall that a state formula is an assertion about the current state and future states. A branching-time
formula is an assertion about the current state only (not about future states). Hence, in determining
whether 6 = vy (for a path formula, y), we consider only the truth values of the atomic propositions in
the current state.

3.4.3. History Variables

-Recall that temporal formulas specify properties that hold from the Current state through the remainder
of the computation, No specific initia! state is assumed. Temporal-specification languages use only the
future fragment of temporal logic. Hence, either initial conditions must be specified expiicitly, or some
mechanism is need for reasoning from the beginning of the program, e.g., using embedded "untils."

Hailpern and Owicki introduced history variables to establish a Sequence of prior states (Ref. 78). A
history variable (of unbounded length) is a state encoding of the sequence of values that will be obtained
by a program variable before reaching the current state. Without introducing the specific operations
{events) that cause the changes, history variables describe what changes can occur during execution.

History variables are useful for expressing regular properties of a message-passing system, e.g.,
"successive messages must have alternating sequence numbers.” History variables provide the memory
of all previous process interactions, i.e., the Sequences of messages that are transmitted and received,
The operator "(" ("initial subsequence”) specifies a relationship between sequences of history variables:

A(B A and B are history variables, and A is an initial subsequence of B.

Nguyen introduced the concept of "traces” for describing the sequence of /0 Operations for ports in a
network (Ref. 98). In addition to the initia subsequence Operator, Nguyen included regular expressions
on traces, e.g.,

Ae0’y
{"The trace A can be génerated by the regylar expression 0°1.”)

3.4.4. Extended Propositional Temporal Logic: EPTL

As discussed Previously (Section 3.1), Wolper (Ref. 79) argued that event Operators are needed to
express arbitrary regular Properties, such ag P must be trye in every gven state of g Sequence."
Wolper's claim has bean refuted by Mclean (Ref. 85): The Property of “sven states” can be expressed
by the formula PAOp = QOp).

A stronger argument for event operators is that they are more Suitable than state formulas for
reasoning about concurrent behavior in programs that Communicate by message passing, e.g., Ada and
CSP programs. Wolper introduced an extension of PTL, called EPTL, for Specifying and synthesizing the
synchronization Part of CSP programs.

EPTL extends PTL with a set of operators Corresponding to regular expressions for Specifying state
Séquences. A regular éxpression in EPTL corresponds to a right-linear grammar that generates allowable
Sequences of states. The semantics of temporal operators in EPTL is the Same as for PTL, except that
EPTL does not require the eventuality of g in the U-operation eV g).

3.5. Event-Based Temporal Models

3.5.1. The Event-Based Specification Language: EBS

Chen and Yeh introduced an event model, called the Event-Based Specification Language (EBS), for
specifying the behavior of distributed systems (Ref. 68). In this model, program behavior is specified by
interprocess events (e.g., sending, receiving, and processing messages) and their relationships. An EBS
event is an instantaneous, atomic state transition in the execution of 3 program.

EBS defines two primitive relations over events:
ey ->e, "@y precedes e,"
e, => e, "e, enables 8,"

where e, and e, are ambitrary events.

The “precedes” relation defines temporal precedence of events: "@, occurs before &,, and there may
be intervening events.” Safaty properties are specified by the precedes relation.

The “enables” relation defines causality of events: "If 8, occurs, then eventually e, will occur.”
Liveness properties are specified by the enables relation.

EBS is an extension of predicate logic. It consists of the following primitives:
1. A finite set of events.
2. The names of interface ports (a finite set).
3. The quantifiers and connectives of predicate logic (v, 3, ~, v, A, =, and =),
4. Relational operators: e, a, =.
5. Event relations: ~> and =>.

The "precedes” and "enables" reiations allow partial orderings on events, in the absence of a global
clock. Simuitaneous events are allowed:

~(ey -> 85) A --(e2 ->ay)

Unlike in Nguyen’s modei, event sequences ("traces") are not specified in EBS (owing to the absence of
total ordering on events).

3.5.2, Event Specifications

Vogt (Ref. 94) introduced event specifications for exprassing predicates on event history. He defined
only one event class: an interaction avent, which is an event that causes synchronization between
processes.

Vogt's event model is a triple, (E,0.X), where
» E is a finite set of interaction events: {e,,....8,} (Events can be parameterized.),
* 0=<8q,8,,...> is an infinite sequence of interaction events {past), and

55

* Zis an infinite set of sequences of events (future).

An event specification is composed from the following primitives:
1. Events from the set E.
2. Propositional connectives: ~, A, =, v.
3. The linear-time operators: J, 9, O, U.

As in EPTL, a single event condition is assumed: Each state is obtained from its predecessor by the
occurrence of exactly one interaction event (i.e., an interprocess event).

3.5.3. Path Expressions

Path expressions model program behavior as possibly non-terminating sequences of events {Ref. 74,
75). Unlike EPTL and event specifications, which are both intended for verifying CSP programs, path
notation is an event model for reasoning about concurrent programs that communicate via shared
variables. Path expressions were developed originally for the control of the synchronization of concurrent
processes, e.g., to restrict the execution of operations on shared objects. Andler extended the use of
path expressions 1o specify and verify concurrent systems (Ref. 102).

Each path expression is deiimited by the keywords path and end, which represent an implicit Kleena
star. The primitive terms of a path expression are process events, which are actions comresponding to the
names of procedures that can be executed by processes. For example, the path expression:

pathe, ; e, end
specifies an aternating sequence of process events ¢, and ¢,.

Path expressions specify the temporal ordering of events that are allowed to occur in the execution of a
program. The events named in a path expression must occur in the specified order; however, other
events may intervene. For example, the event stream that is represented by the string "acbc” is allowed
by the following path expressions:

path (a+b) ; c end

patha;bend

patha;c;b;cend
Path expressions use the following operators (in precedence order, from highest to Iowest):'

{) change precedence parentheses

* "zero or more times” Kleene star

; "next” sequencing

+ “or” _ exclusive selection

'Sequencdng <an be denoted by a blank. Exclusive selection can be denoted by a comma,

56

The syntax of path expressions is as follows:
path = path seq end

seq = seq ; alternate | alternate
alternate ::= altemate + cycle | cycle
cycle = element* | element

element ::= process_event | (seq)

Path expressions have been extended to include the Kleene plus operator and an operator for specifying
that two events occur in parallel.

A path expression can be identified with the set of strings of events it accepts. A path expression
specifies all allowable event sequences of a program. A program is considered correct if all possible
execution paths can be accepted by the path expression.

Because regular expressions comespond to finite-state machines, a path expression can be
transformed info a state-transition graph, by labeling arcs with the names of process events. A simple (or
elementary) path expression has a graph in which no two arcs carry the same name; that is, each name
appears only once in a simple path expression.

Although path expressions were intended for reasoning about access to shared variables, they are
suitable for reasoning about process interactions. For example, in Ada, process events can carrespond
to the names of task entries:

path BUFFER.READ ; BUFFER.WRITE end

While temporal logic is useful for specifying eventualities, path expressions excel at specifying
recurring behavior patterns, such as a FIFO ordering of events. Path expressions model the behavior of
a program as a pattern of events that can recur as the program progresses.

3.5.4. Petrl nets

A Petri net is a finite-state machine (Ref. 76). A Petri net structureis a four-tuple, (P,T,1,0), where
+ P is a finite set of places,
* T is afinite set of transitions,
+ t maps transitions to input places, and
= O maps transitions 1o output places.

(Each transition may be mapped to more than one input/output place.) No notion of system state is
assumed in Petri nets.

A Petri net graph is a directed graph such that each node is either a circle {place) or a bar {transition),
denoting, respectively, conditions and events. An event is enabled it conditions necessary for its

57

place denoting a post-condition of the event (an output place). If g condition holds in the current state of
the system, then a token (represented by a dot) is placed in the Corresponding place in the net. More
than one token can be assigned to a placs.

The number and distribution of tokens control execution of the net. A transition is enabled to "fire" if alI
its input places are marked with tokens. The firing of a transition corresponds to the occurrence of an

exprassions.

A path expression can be translated into a finite-state machine. The validity of a state formula is
decidable for a finite-state system (assuming Propositional logic), Thus, it is decidable whether a given
state formula is valig for a given path expression.

to state formulas, but provided neither 3 generalized transformation algorithm, nor a formal proof of this
result (Ref. 70). Plaisted introduced a low-levs| language that is a generalization of regular expressions,
and into which temporal formulas can be translated: however, he left open the relationship between this
language and path expressions (Ref. 103).

In this section we Present a formal translation from a restricted class of simple Path expressions into
PTL formulas. Our results show that most regular properties can be eéxpressed in PTL formulas. The
single exception is “unrestricted” fteration, e.g.,

Path ¢, ; a8," end

Figure 3-1: Petri net
For path expression: path (a+b) ; ¢ end

59

proposition p, p U g specifies that q will become true eventually, regardless whether p is ever true
{assuming the eventuality condition of the U-operator). Hence, we restrict iterations to those that are
followed by another event, e.g., |

path e, " ; ¢, end

3.6.1. Definitions and Assumptions

We introduce the notion of a binary Kleene star operation:
ox ;
meaning that a. occurs zero or more times, followed by a single occurrence of B. We restrict the use of
the Kleene star in simple path expressions to the binary Kleene star,

Qur transformation from path expressions to state formulas requires two steps:

1. Transform a restricted, simple path expression to an event expression (an event-based
temporal formula).

2. Transform an event expression to a state formula (a state-based temporal formula in PTL).

Before presenting an algorithm for transforming path expressions into state formulas, we define events
explicitly and formalize their relationship to states. In the event-specification languages that we have
reviewed, the definition of an event depends on the underlying concurrency model (shared memory
versus message passing). For example, recall that in path expressions (Section 3.5.3) each operation on
a shared object is an event. On the other hand, in Vogt's event specifications (Section 3.5.2) each
interprocess i/Q operation is an event.

In our transformation algorithm we assume that path expressions and event expressions can involve
events of either class: operations on a shared object or interprocess 170 operations. In transforming a
path expression into an event expression, the class of each event remains unchanged.

In transforming an event expression into a state formula, we nead to consider the relationship between
states and events of both event classes. Recall that EPTL required the following single event condition:
Each state transition corresponds to one interprocess 1/Q operation. Similarly, we require the following
single event condition: Each state transition corresponds to a single event, which is either a single
interprocess /O operation or an operation on a shared object.

For Ada, this single event condition requires that each state transition correspond to either of the
following operations:

* Definition of a shared variable (i.e., assigning a value to a shared variable, for example, by
execution of an assignment statement or by execution of an input statement).

« Rendezvous, where at least one parameter is passed between the tasks.

A second difficulty in the transformation process is that sequencing of events in path expressions, e.g.,
path e, ; e, end

differs from sequencing of states in PTL formulas:
p = Qq
These specifications differ because path expressions allow intervening events, but PTL formulas specify

Successive states. (The property of immediate responsiveness cannot be expressed in path
expressions.)

Thus, we are forced to choose between the following restrictions:
1. No intervening events are aliowed in path expressions.
2. The "next" operator in state formulas allows intervening states.

We have chosen to assume the first restriction (which allows for the property of immediate
responsiveness). This approach is more practical because we can always filter out the intervening events
before matching a path expression against an event sequence.

3.6.2. Transforming Path Expressions into Event Expressions
Theorem 2: Let ¢ be a restricted, simple path expression involving a finite set of events,
E={e, 8k} There is a mapping, p, from ¢ to a finite, well-formed event expression, y, such

that Z, the set of event Sequences allowed by ¢, is equivalent to the set of event sequences
specified by .

Proof: We use induction on the number of operators in ¢.
Basis: if ¢ has no operators, then ¢ € E and p(¢)=y.

Induction: In the following let o and B be either events or restricted, simple path
expressions.

We consider the form of ¢ by cases:

1. path ... end (implicit Kleene star)
p(path o end) = (Cp(a))

2. Next
pla ; B} = (p(cr) = Op(P))

3. Exclusive Or (mutual exclusion)
plo+ B) = (p(a) v p(B))

4. Binary Kleene star
pla” ; B} = (p() U p(B))

If & occurs zero times then pla) = false.

5. Parentheses
pl(a)) = (pla))

61

For example:

path(a+b) ; < end
11
O((a+b) ; <)
12
O((a+b) = Oc)
713
O((avb) = Qc)

3.6.3. Transforming Event Expressions into State Formulas

In EPTL, computations are restricted to those in which only one atomic proposition is true in any state:
the proposition that corresponds to the event immediately preceding that state. (See Section 3.4.4.) We
place a similar restriction on the conirol predicate after in each state, although we allow any other
propositions to be true in a state.

We make the following assumptions:

1. Each state is obtained from its predecessor in the sequence by the execution of a single
operation (an atomic event) in exactly one process.

2. Only finite-state programs are considered (to ensure that all predicates on program
variables can be expressed as Boolean variables).

3. Only one control predicate of the form after e, is true in any state.

Wae wiil say that an event, e,, corresponds to a state, s;, if the control predicate after o, is true in s,.
Let y be a well-formed event expression involving a finite set of events, E={e,,...e,}. A transformation
from y to a wist, £, maps each event, @, in the expression y to its corresponding state, s,.

3.7. Interval Temporal Logics

Temporal-logic operators (J, ¢, U, O) are always interpreted as extending from the current state
through the remainder of the computation. (This has been called the "tail-sequence” property of temporal
logic (Ref. 70).) Yet, one often wants to assert that a condition become true before some point in the
execution and not just before the end of the computation. For example, an Ada entry call requires a
response before the called task terminates, which can happen long before the program terminates.
Safety assertions on bounded intervals are more appropriate than eventualities for reasoning about
processes that are expected to terminate.

As discussed previously (Section 3.1.1), another consequence of the tail-sequence property of
temporal operators is that short-term fairness can be expressed In neither linear-time nor branching-time
logic. That is, there is no finite, well-formed, state-based temporal formula for expressing the

62

requirement;
pPAOPACOPA..AONp=s0g

for some fixed integer N, where ONp is defined inductively as follows:
ONp = pfor k=0

ONp=O(ON1p) fork > 0

Unlike temporal-logic operators, history variables allow specifying properties that hold for a bounded
sequence of future states. History variables have been used for stating that a property remains true
continuously over a bounded interval, but not forever,

Yet, as noted by Schwartz and Melliar-Smith, the introduction of history variables simplifies temporal
formulas at the expense of increasing the mechanization in the specification. Lamport argued that
introducing history variables defeated the whole purpose of using temporal logic, because it returns to
reasoning directly about the computation model (Ref. 67). Lamport advocated that a new temporal model
be developed to incorporate the semantics of history variables. Interval logic addresses these issues.
Lamport introduced a "Timeset language” for defining properties over intervals.

Intervai logic has been introduced for specifying program properties that hold over a bounded interval,
which may extend over a sequence of states. it has been observed that the technique of using interval
logic approximates history variables, but is more convenient (Ref. 73). Interval logic offers several
advantages over (a point-based) temporal logic:

» Eliminates need for history variables.

« Allows reasaning about delayed pracessing.

» Allows reasoning about programs that are expected to terminate.
 Allows reasoning about short-term faimess.

In the remainder of this section we review several interval-logic systems.

3.7.1. Interval Formulas

In the interval legic developed by Schwartz and Melliar-Smith, an interval is a sequence of states
starting with the current state {Ref. 70, 71). An interval formula is an assertion that a given property hold
for an interval. If the specified interval cannot be found, then the interval formula is vacuously satisfied. A
star operator (*) is introduced for specifying that the interval must be found for the interval formula to be
true. (The star operator differentiates between the two versions of the U-operator; that is, it specifies that
the eventuality condition hold.)

Each state in an interval is a unit interval. The operations begin I and end I denote unit intervals that
contain, respectively, the first and last states of interval I.

63

A property, p, can hold in the first state of an interval, T (the current state):
(Ilp
throughout an interval:
(x10p

or sometime during an interval:
[I10p

In this model, an "event" is a predicate on a pair of states. An event cccurs at the instant when the
truth status of an interval formula changes value. Intervals are derived from primitive intervals, called
event intervals, which hold over an interval of length two (the interval of change). (See Figure 3-2)

—— e s .
— —— —
Bl I ——

avent I
Figure 3-2: Event Interval

Interval terms are either event intervals (primitives) or compound terms composed of the following
primitives:

1. Events.

2. Interval operators, including begin, end, =>, <=, and A {conjunction),

Interval formulas are composed of the following primitives:
1. State predicates, i.e., the propositions described for state formulas.
2. Temporal operators: [J and ¢.
3. The propositional connectives.
4. Interval terms.

5. The star operator (*) for modifying interval formulas.

The interval formula:
[(I=>J]y
means that y holds from the end of interval 1 (the instant when event I occurs) to the beginning of
interval J (the instant when event J occurs). For example, the formula:
[x=y => y=16] O(x > z)

specifies that the predicate x > z hold from the time when x is assigned the value of y, until y is assigned
the value 16.

The interval formula:
(I <= J) y

means that y holds from the end of interval T to the end of interval J.

3.7.2. An Interval Temporal Logic: ITL

Moszkowski and Manna introduced a program-specification language, called Interva Temporal Logic
(ITL), that extends linear-time, predicate temporal logic with bounded intervals (Ref. 72). ITL was
intended originally for specifying and reasoning about timing-dependent hardware. it has been applied
also in specifying state transitions of programs, including those achieved by assignment, iteration,
scoping, and concurrency (via shared variables). A global state is assumed. (Because iTL is an
extension of predicate temporal logic, it is undecidable, as noted previously (Ref. 103).)

An ITL interval consists of a sequence of states. That is, successive “subintervals” of an ITL interval
correspond to successive states of a computation. An ITL formula specifies allowable sequences of
states over an interval. An ITL "variable” represents names of signals (in reasoning about hardware) or
names of program variables (in reasoning about programs). A state transition is a relation on the initial
and final values of variables over an ITL interval,

Unlike the more formal models previously discussed in this section, ITL defines temporal operators that

are application-specific. For example, variable assignment is defined as
Y <—- X

read: "Variable Y is assigned the initial value of variable X."

An ITL formula for specifying program behavior is constructed from the following primitives:
1. Predicates on program variables.
2. Data structures for program variables, e.g., lists, vectors.

3. Control predicates, including beg (the initial state of the interval) and fin (the final state of
the interval).

4. The connectives and quantifiers of predicate logic.
5. The temporal operators [J and O, expressed over intervals.

8. Operators for forming regular expressions over interval formulas, including *; (sequencing),
" (Kleene star), and «" (iteration, where n is an arithmetic expression).

7. The assignment operator: <--.

New operators are defined as predicates on already existing oOperators, e.g., an assignment that is

repeated throughout an interval is expressed by the “gets” operator:
Y gets X

("The current value of X is aiways equal to the next value of Y.")

An ITL while-loop is a derived operator:
while o, do o, iff (beg(a,) A a,)* A fin(~a,))
An example of an ITL formula for a while-loop is

beg (1<0) A while (I<n) do ([I<--I+1])

3.7.3. Quantified Temporal Logic: QTL

Quantified temporal logic (QTL) (Ref. 73) is an interval iogic on linear Metric time (as describeg earlier,
in Section 3.27). QTLis based on a subset of the AR System (Ref. 104), which extends predicate logic
with chronological operators faor reasoning about the execution of sequential programs, e.g., branching
and looping. QTL has been applied in verifying algorithms for communication protocols in Carrier-sense,
local area networks.

[S.UA = (v Disst<uy = Oft)A}
<SSWwA=(It)(sst< U) A O(1)A)

QTL includes axioms for dealing with Mmetric time, for example:
Ot)[s,u]A = [t+s,1+U)A.

QTL assumes the validity of the Barcan formula, for example, the following is a QTL axiom:
(VXN[L,5lp)} = [Ls)(vX)o,)

3.8. A New Interval Logic: System C

In this section we introduce our interval-logic System, €, which is an extension of the basic temporal-
logic system. . Anintervalin € is the time between which a pair of events occur.

than the second, t+. We assume discrete, linear time so that the ordering of temporal instants is
isomorphic to that of the Non-negative integers. The fength (or duration) of an interval, denoted ITl, is the
integral difference between ¢+ and . We permit an interval of duration zero, so that we can speak of
Statements that hoig for an instant, without resorting to system fR. (This concept is similar to point

intervals in Allen’s model.) Interval Tis a Subinterval of interval S iff all instants in T are contained in S.

Ada syntax provides the compound symbol ".." to denote a range of values, and the pseudo-operator in
to test for membership within a specified range (including the end values):

Tet..t*, provided t < t* (14)
tinTsF <ttt (15)

Ada also provides the attribute succ to specify the next element in a range, and the attribute pred for the
previous element in a range.

We define the operation of temporal realization over intervals, C+1{p), read: "p holds while T," to mean
that predicate p holds at all discrete times in the interval T:

Crp) = (Vt)[tin T = R (p)] (16)
The operator C expresses the “truth value" of a predicate, p, as the conjunction of the truth values of p at
each discrete instant within a specified interval. For example, if time is measured in units of length one,
then

Cio.12 (P
asserts that predicate p holds at time points 10, 11, and 12.

We also define an operation for "some time,” E+(p), read: "p holds at some time in T."" This operation
asserts that predicate p holds at some instant ¢ in the interval T:

E1(0)= (3t [tin T A R (p)] (17)

System € includes sentences composed from the following set of primitives:

1. Predicate variables, e.g., A and B, ranging over both temporally definite and indefinite
statements.

2. Variables, e.g., T and S, for temporal intervals.

3. Variables, e.g., t,t*,s",s5*, for endpoints of imervals, i.e., as either definite or pseudo-
dates.

4. Variables, such as ¢, as arbitrary instants,
5. The variable n for the pseudo-date "now.”

6. The relational operators «, =, and > {earlier/contemporary/later), for comparing variables for
temporal instants or the variable n.

7. The variables X, Y, Z, ..., ranging over domains other than time.

8. The connectives of propositional logic, including ~ for negation, A for conjunction, = for
implication, and = for equivalence.

9. The quantifiers of predicate logic, V and 3, ranging over any variables.
10. The operators: .., in, suce, pred, R, E, and C.

* Unlike in Schwartz’s interval logic, we require that the interval T axist for the interval formula to hold.

67

We assume the usual principles of predicate logic for sentences in € not invalving C, R, E, or n. In
addition, the following axioms are among those that hold over system ¢

Cr(AAB)=[Cr (A) A Cy (B)] (18)
[Cr(A} A (ninT)] =R (A) (19)
Cr{A) A (s 2 1) A (s* S t*) = C4(A) (20)
Cr(A) A Cg(A) A (pred(s') St <5*) A (t S5 = C . (A) (21)
Cr(~A) = ~C (A) (22)
C{(vX)Ax] = (VX)C r[Ax] (23)
C1l@EX)A] = (Vtin T) @X)[R (A,] (24)

In Axioms 23 and 24 the validity of the Barcan formulas is assumed.

With the inclusion of the operator E, the following axioms also hold in ¢:

E1(ArB) = [E1(A) A E1(B)] (25)
Es(A)A(s"2 1) A (s* S 1*) = Eq(A) (26)
~E(A) = C(~A) (27)
ET[(VX)AX] = (VX)E T(Ax) (28)
E T[(\7’)()A>(] = (3tinT) {R (VXA x} {29)
E+{(3X)A x] = (3IX)E T(Ayx) {30)

Interval relations can also be defined, e.g.:
Sduring Tiff (s-2¢t) A (s* < t*) ("S is a subinterval of interval T.n
T meets S iff t* = s ("T ends where S begins.")
S next T iff succ(t*) = s° (*S is the next interval adjacent to T.")

Our next operator is similar to one that Lamport (Ref. 67} introduced for specifying adjacent states:
(Vi) s;,s next s,.

Axiom 20 states that if an arbftrary predicate, p, holds in T, then p holds in any subintervalof T. T is a
subinterval of interval S if all instants in T are contained in S. Axiom 20 can be restated with the operator

*
We assume that a program state repressnts a homogeneous activily; i.e., we assume that propositions that are true at the
beginning of a state are true throughout the state. For example, the implication Ci{A)A(ninT) =R 2(A) (from Axiom 19) fails

otherwise. Also the implication C1{A} = ~C~A holds for homogeneous and majoritative activiies, but not for occasional ones.

68

during:

CrA=(VS)[Sduring T = CglA)] (31)
Axiom 21 implies that whenever an arbitrary predicate, p, holds over two intervals that meet, then p holds
over their combined duration:

C1(A) A Cg(A) A (T meets S) = C ¢ g+ (A) (32)
Also, if predicate p holds over adjacent intervals T and S, then p holds over the combined duration of T
and S:

Cr(A)ACg(A)A(SnextT) = C g+(A) (33)
Axiom 26 implies that if an arbitrary predicate, p, is true at some time in some subinterval S of T, thenpis
true at some time in T:

Eg(A)ASduring T= E+(A)

System € provides the mechanics for defining states as predicates on events. If e; and e, represent
events that, respectively, trigger the transition into and out of state s, and t- < ¢+, then

(Re(@) ARp(e) A ~E0IR (65 A (" < t< 1))} = Cr-.prodits)(S7) (34)

3.8.2. Comparison with Other Intervai Logics

Because the C-calculus is an extension of the basic temporal-logic system, it is easily compared with
other interval logics. For example, in Schwartz's system an interval formula has the form:
(110w or [I]0y
This is equivalent to stating
Cy(y) or E; (y)
in our system. In Chapter Four we show that ITL-constructs can be expressed in €, as well.

In QTL an interval formula has the form:
[s.UJA or <s,u>A
This is equivalent to stating
Cs.ulAVOrE, (A)
in our system.

Given the relationship that we have shown between path expressions and temporal formulas, we can
express regular properties in €. Thus, € is not only a basis for ail other interval logics, but also
encompasses simple path expressions.

3.9. Summary and Conclusions

A temporal model is a formal system for representing knowledge about the timing relationships of
events or states that can take place in timae. Temporal reasoning has been applied in proving properties
of concurrent programs because other proof techniques are inadequate for reasoning about concurrent

69

behavior and delayed processing.

We have reviewed temporal models for specifying and verifying both concurrent and distributed
program behavior. These models formalize constraints on the execution paths of programs:

* Temporal formulas are useful for reasoning about eventualities, such as absence of
individual starvation.

» Path expressions are useful for reasoning about the ordering of execution, e.g., concurrency
restrictions on access to shared data.

* Petri nets are useful for graphically displaying all possible exacution paths.

« Interval formulas are useful for reasoning about properties that hold over a bounded interval,
8.9., short-term fairness.

Each model relies on assumptions about the underlying concurrency paradigm, and, in particular, each
assumes a language in which either shared variables or message passing is allowed, but not both.

Although the merits of any of these approaches can be argued from expressibility and elegance, the
choice is often one of convenience. In particular, an arbitrary path expression can be translated into a

Petri net. We have shown that a restricted class of path expressions can be translated into temporal
formulas,

This chapter provides a foundation for applying temporal models in debugging. In the following chapter
we discuss drawbacks of program verification and introduce temporal models for debugging. We present
a debugging tool that uses both the interval-logic system € and path expressions. Path expressions have
recently been applied in debugging, e.g., for assertion monitoring, that is, for triggering breakpoints on the
occurrence of a specified sequence of events (Ref. 105, 106, 107). Harter has proposed a distributed
debugger, called IDD, that would support interval formulas for assertion monitoring (Ref. 37). Also, Petr
net graphs are being investigated for displaying a graphical analysis of a program’s execution (Ref. 64).

70

4. A TRACE ANALYSIS APPROACH TO DEBUGGING

There are two ways to write error-free programs;
only the third one works.

-- Perlis (Epigrams on Programming, 1982)

In the preceding chapter we discussed the importance of time in specifying and verifying a concurrent
program’'s behavior. We described and compared four temporal models (temporal formulas, path
expressions, Petri nets, and interval formulas) that are widely used for proving propertias of concurrent
programs. We examined the expressiveness of these models and investigated their relationship to one
another. We introduced €, an interval-logic system that extends R, the basic temporal-logic system.

Time is an important concept in debugging. Understanding a program’s past behavior requires
reasoning about causality, change, and invariance. An event causes a program’s state to change. One
event necessarily follows another, e.g., message receipt follows message transmission. A program
variable retains its current value until it is redefined. The ordering of events is crucial to debugging.

Tracing captures the time-dependent relationships of events and states that occur in the execution of a
program. A trace is the basic tool of debugging. It specifies a program solely by its behavior. A trace
represents one possible execution path.

Although several tools are available for tracing concurrent programs, few of these maintain a trace
history throughout the program’s execution. Some monitors simply display information as it is captured,
while others retain a partial history of the execution (e.g.. to "replay” preceding events). Limited memory
is the primary reason for discarding trace data; however, as the cost of memory decreases, saving traces
becomes more practical.

Collecting trace data has some drawbacks. For example, monitoring may interfere with the analysis of
timing problems, as discussed in Chapter One. Monitoring distributed software adds to the difficulties of
capturing simultaneous events and of synchronizing distributed clocks. n a distributed system we cannot
assume a global (universal) clock. Each processor has a different clock; the clocks that lag behind must
be advanced periodically. Several approaches have been proposed for synchronizing distributed clocks,
e.g., the use of logical clocks (Ref. 108, 109, 110, 111). Algorithms to synchronize clocks can
approximate a global clock, but a complete ordering of events is not always possible.

A trace can generate voluminous data, but the programmer needs 10 extract data pertinent to the error
that has occurred. Tools are needed for retrieving important events from a trace history and for
“abstracting” from events that are retrieved. The process of abstraction involves recognizing similarities
and relationships among collections of objects. Abstractions are fundamental to debugging. Trace
analysis consists of examining a trace of a program’s execution and extracting information from the trace.

We can limit the amount of trace data to be analyzed by restricting the selection of events when

71

collecting data. Analysis of a trace history can be aided with several automated techniques: graphical
display, database access, and knowledge-based feature analysis of trace data.

In this chapter we develop new techniques for automating trace analysis. Qur approach is to apply
temporal-specification techniques in comparing a program’'s expected behavior with its observed
behavior. These techniques allow programmers to examine a trace history and to test assertions against

the trace history, e.g., "if a cycle of entry calls occurred, then the program failed to satisty freedom from
deadlock.”

In adapting temporai-specification techniques to trace analysis, we investigated the following issues:
» How does diagnosing a program error relate 1o verifying a program’s behavior?
* How is assertion testing different from assertion writing?

* In what way can specifying the intended behavior of a program help to diagnose an observed
error?

» What are the essential requirements of trace analysis?

* What tools are needed for automating trace analysis?

 How can path expressions be applied in trace analysis?

» How can temporal logic be applied in testing program properties?

This chapter is organized as foliows. In Section 4.1 we show that trace analysis has practical
advantages over program verification for improving program reliability. In Section 4.2 we investigate
previous approaches for specifying abstractions on a trace history. Section 4.3 introduces our approach
to trace analysis. Section 4.4 formalizes sequences and operations on sequences. Section 4.5
implements interval logic for expressing queries on sequences. Section 4.8 presents our approach to
applying path expressions in trace analysis. Section 4.7 formalizes avents, states, and traces. Section
4.8 compares our debugging approach with those described in Section 4.2. We summarize our resuits in
Section 4.9.

4.1. Trace Analysis versus Verification

Trace analysis departs from program verification in several respects. The purpose of trace analysis is
to detect where the program failed to contorm to a specification or expectation, e.g., a concurrency
restriction. On the other hand, the purpose of program verification is to prove that a program is correct.

The benefit of verification is that program properties are specified formally. Yet, verification is often
aither undecidable or computationally intractable (Ref. 112). Whiie not an alternative to verification, trace
analysis is a practicaltool for isolating errors that are known to exist,

72

4.1.1. Disadvantages of Verification

Recall from Chapter Three that predicate temporal logic is undecidable; thus, temporal formulas are
restricted to propositional temporal logic (e.g., PTL and EPTL).

Often verification fails to meet its goal of proving correctness. In analyzing case examples of "verified"
programs, Gerhart and Yelowitz (Ref. 113) observed that modern programming methods, including formai
Specifications, verification, and Structured programming, are still fallible in spite of the application of
mathematical reasoning to programming.

Verification has some serious drawbacks:

*» Writing a specification is at least as difficult as writing the program and, thus, is prone to
errors.

» Correctness proofs rely on assumptions about the program’s implementation and
environment.

* Verification is difficult to automate, even for simple communication protocols.
* Verification is impractical for large and complex programs.

= As the number of possibie states (or events) increases, specifying all interactions becomes
impractical.

¢ Invariants are difficult to specify and to understand because all possible computations must
be considered.

4.1.2. Practical Advantages of Trace Analysis

Trace analysis is concerned with isolating errors as opposed to proving their absence. Not all possible
errors are reported by a trace. In trace analysis, decidability is not an issue.

Trace analysis allows programmers to test arbitrary program properties. In analyzing a trace, we
examine the program's (recorded) past. We c¢an always place ourselves at the beginning or end of a
trace, or at any point within a trace. Thus, we can regard a trace as both a program's past and its
(predetermined) future.

Although we cannot require that any given event eventually occur, we can ask whether it has occurred
before “now" or whether a Sequence of past events will prevent its future occurrence. In analyzing the
execution of an Ada program, for example, if we observe that a cycle of entry calls has been executed,
then we can conciude that the program is in a deadlock state. Consequently, we can infer that the last
entry call in the cycie will never ba accepted for rendezvous.

73

4.2. Previous Approaches to Trace Analysis

In this section we discuss two previous debugging approaches that define abstractions on a trace
history. Some work has been done also on defining abstractions on event sequences in a general model
of temporal semantics (Ref. 100, 87).

4.2.1. The Behavioral Abstraction Approach

Bates proposed the Behavioral Abstraction approach (Ref. 114, 115, 116) to debugging distributed
systems. In this approach, program activity is represented as a stream of occurrences of "primitive”
events (e.g., process creation, page faults, message transmission and reception). To express
abstractions on an event stream, two techniques are provided: clustering and filtering. Clustering
combines an ordered sequence of primitive events into a single "higher-level® event. Filtering removes
selected event instances from consideration in forming a higher-level event.

The Event Definition Language (EDL) is a too! for implementing the Behavioral Abstraction approach.
Clustering is achieved by the "catenation” operator for expressing sequencing between two events in an
event expression. Events are filtered from an event stream by specifying their class and by specifying
relationships (equality/inequality) between attributes of events. A monitor collects an event stream and
attempts to recognize EDL-defined (high-level) events as the program executes.

The major disadvantage of EDL is that it provides a limited set of temporal operators. Only the
sequencing operator is defined. EDL allows neither interval-logic operators nor iteration operators (e.g.,
the Kleene star).

4.2.2. A Temporal Query Language: TQuel

The Temporal Query Language (TQuel) is a query language for retrieving information about program
behavior (Ref. 55, 117). TQuel is an extension of the query language Quel, which is used in the Ingres
relational database management system. Quel was augmented syntactically and semantically to include
temporal relations.

Unlike in EDL, intervals are introduced in TQuel. A TQuel database contains event relations and
period (state} relations. An event relation includes a time domain that ranges over instants. A period
relation includes a time domain that ranges over intervals. In TQuel, as in other conventional relational
database management systems, a tuple is a collection of facts about a single object, an entity, or a
relationship. A tuple in an event relation describes a state transition that occurs at an instant. A tuple in a
period relation specifies a relationship that holds over an interval.

TQuel extends the retrieve statement of Quel by adding separate clauses for specifying temporal
constraints. These include the when clause and the at clause. For example, these clauses are used in
the following TQuel query:

74

Example 1:

range of R is RunningOn
retrieve StartRunning(R.Process)
where R.processor = Processor1
when "3:00pm" ; R

at R.start

In this example, the period relation RunningOn(Process,Processor) contains data about the successive
states of processes that are continually started, stopped, and restarted. Tuples are selected from the
RunningOn relation and stored into the event relation StartRunning(Process). The temporal expression
<"3:00pm"” ; R> is a path expression that evaluates 1o a Boolean expression. The tuples selected in this
Query are those of starting a process after "3:00pm.” For each tuple selected, the event expression <at
R.start> is evaluated to the time at which the process started running. (That Is, this event expression
determines the time domain of the relation StartRunning.)

When « and B are temporal expressions, TQuel's temporal operators are defined as follows:

c.start specifies the earlier endpoint of an interval.

a.stop specifies the later endpoint of an interval.

a.time specifies both endpoints of an interval.

a;p specifies that o precedes B (sequencing operator).
alB specifies the value of either o or B (selection operator).
a,fB specifies that o and B overtap (paralle! operator),

When o and B are event expressions, the temporal operators ars defined as follows:

o.start selects the time when o starts.

a.stop selects the time when stops.

a:p selects the interval between the time when o starts and B stops.

o, B selects the interval during which o and B overlap (or if o« and B both evaluate to

instants, then this operation selects the interval between the first occurrence of o and
the next occurrence of).

TQuel does not allow the selection operator ("|") in event expressions because it could be ambiguous.
For example, the following event expression is invalid:
(a ; (ble)) .stop
If the sequence "abc” occurred, then either the event associated with "b” or the event associated with "c"
could be returned.

Another example of a TQuel query is as follows:

75

Example 2:

range of A is iteration

range of B is lteration

retrieve Catch

where A.Process=P1 and B.Process=P2
and A.Internum=B.internum

when A.start ; B.start

at B.start

In this example, the event relation Catch is derived from the period relation Iteration{Process,Internum).
The events selected are those of starting an iteration of process P2 during an iteration of process P1.

Snodgrass had difficulty in extending Quel aggregates to handle time. His problem was in whether to
quantify over time or over states that overlap (and over simultaneous events). This problem can be partly
attributed to Quel, but also to the controversial Barcan formula, as discussed previously in Chapter Three.
(See Section 3.2.9.) For period relations, TQuel supports two versions of the operator count:

1. Alf tuples existing at time ¢,
2. All tuples existing up to or including time ¢ (cumulative over time).

Aggregates on event relations in TQuel are cumulative, assuming simultaneous events are either unlikely
or of little interest in aggregate operations.

4.2.3. Discussion

A major problem with both EDL and TQuel is that many useful temporal operators ara missing, but no
new temporal operators can be defined, without changing the syntax and semantics of these languages.
Even it these languages were changed, some temporal operators could never be defined, e.g., iteration of
event sequences cannot be specified in TQuel because of the limitations of conventional relational query
languages. (We cannot express universal quantification in TQuel or in Quel.} Another problem in TQuel
is confusion over expressing quantification over time {resulting in two representations, only one of which
assumes the Barcan formula).

4.3. YODA's Approach to Trace Analysis

The temporal operators provided by EDL and TQuel are a subset of those used in restricted, simple
path expressions. Recall that, in Chapter Three, we showed that path expressions of this class can be
expressed as temporal formulas. There are many formalisms for expressing program specifications;
however, we showed that interval formutas offer advantages over (point-based) temporal formulas. We
also showed that all intarval formulas can be expressed in the interval-logic system €.

In our approach, we express assertions about program behavior as interval-logic formulas in system €.
We use queries to test assertions about program behavior. That is, if the specification of a program
implies a property, v, then analysis of the program asks the question:

"Does y hold over the interval 17"

76

Although we can express all assertions with interval formulas, we also implement path expressions,
mainly for convenience. We analyze a trace by asking if the observed computation satisfies a given
C-formula, y, orif a given path expression, , accepts the observed sequence of events.

4.3.1. Trace Queries

"during,” "before," and "after.”

Queries can take many different forms, €.g., one may want to ask
* Did all the expected events occur?
* Is the sequence of events that occurred allowed by the specification?
* During which intervals did a Specified program variable have a centain valyg?
* What aspect of the Program’s behavior led to a certain error?

4.3.2. Requirements for Trace Analysis

Desirable features for trace analysis include the following kinds of support:
* collecting a trace of a program’s execution,
* selecting the events that are collected,
* maintaining trace data in an historical database,
* processing temporal queries on a trace database, and
* providing a convenient user interface for expressing trace querigs.

As in the temporal modeis surveyed in Chapter Three, we needed to simplify our representation of
trace analysis by choosing only essential features and making certain assumptions. We chose an
approach that is amenable not only to formalizing trace analysis, but also to automating it. The essential

set of operators and show that new operators can be defined with this basic set.

We ignore various features. These include the selection of events and a syntax for a trace query
language. Features that can be included are a user interface for simplifying the expression of queries
and extensions for debugging distributed programs.

in this chapter we illustrate our debugging approach with only a few classes of program events to give
the flavor of trace analysis, without specifying the events to be selected. The programming language and
errors under consideration motivate the level of abstraction. In later chapters we elaborate on the details
of trace-analysis technigues for Ada, including monitoring techniques, the selection of events, and
relationships among them.

This chapter presents the major concepts of trace analysis. Implementation issues (for example, time
and space requirements for monitoring programs, trade-offs in efficiency of queries, and the user
interface) are issues that we are continuing to investigate.

Instead of developing the syntax of a query language, we simply define predicates using Pralog, which
allows a logical basis for reasoning about time and provides flexibility in defining temporal operators. We
implement system € and path expressions in Prolog. That is, we define interval-logic formulas and path
expressions as Prolog predicates. We capitalize on Prolog’s extensibility for defining new operators.

We emphasize that this presentation may differ from the query language seen by the user. Features
that are not supported directly by Prolog can be defined in the user interface. For example, Hornsby and
Leung (Ret. 118) are building a relational query language that interfaces with Prolog. This language is to
provide the numeric aggregate operators that are supported by Quel, such as maximum, minimum,
average, sum, and count. Temporal operators can be defined in a natural-language query language
that interfaces with Prolog.

We present our approach to trace analysis in three layers:
1. defining sequences and abstractions on sequencas,
2. expressing € using sequences and
3. program traces using C.

4.4. Sequences

In this section we define sequences and operations on sequences.
Definition 1: A sequance is an ordered collaction of objects.

Each object X in a sequence S is called a member of S, denoted X € S. Each member of a sequence
has an index giving #ts position or order in the sequence.

Definition 2: If A and B are sequences, then A is a subsequence of B, denoted A < B, iff
every member of A is a member of B, and A preserves the ordering of B.

78

Let A be an arbitrary sequence of objects of class X ordered by index |. Let N be a fixed, positive
integer, and let P be an arbitrary predicate on objects of class X. Let J be a secondary index for ordering
objects of class X. We define the following operations on sequences:

slice(P, A, B) B is a subsequence of A, and all members of B satisfy predicate P.

first(N, P, A, B) B is a subsequence of A, and for each member X of B, X has index | such that | < N
and X satisfies P.

last(N, P, A, B) B is a subsequence of A, and for each member X of B, X has index | such that | = N
and X satisfies P.

order(P, J, A, B) Sequence B is ordered by index J, and X is a member of B itf X is 2 member of A and
X satisties P.

4.5. Implementing C in Prolog

Moszkowski and Manna (Ref. 72) have argued that interval formulas, such as those of ITL {defined in
Chapter Three), cannot be expressed directly in Prolog. In particular, they give the following arguments:
Prolog has no sense of time, there is no analog in Prolog to ITL assignments, and there is no analog in
Prolog to ITL while-loops.

On the contrary, we show that C-formulas can be expressed in Prolog. In Section 4.8.1 we show that
ITL assignments can be expressed in Prolog, and we outline an approach to expressing ITL while-loops
in Prolog.

4.5.1. Prolog Semantics

Prolog is based on Horn clausal logic, which is a subset of predicate logic. Briefly, Prolog programs
contain databases of rules and facts, called clauses. Appendix A gives a detailed introduction to Prolog,
including a description of its syntax. All predicate-logic formulas can be normalized to the clausal form of
logic. (The details of this normalization process have been described previously, e.g., by Kowalski
(Ret. 118).} Translation into clausal form removes all equivalences and explicit quantifiers.

A proposition in clausal form consists of a collection of clauses. A clause is an expression of the form:
Aj...A,<—-B,,..B,
where "<--" is a logical connective meaning "if," or "implies,” A,,...A, are called conclusions, and
B,.....Bn are called conditions. Conciusions are unnegated atomic propositions separated by disjunction
(";"). Conditions are atomic propositions separated by conjunction (","). Collectively, conclusions and
conditions are called /itarals.

In Prolog, "not™ {meaning, not provable) is expressed as \+ P. This operation means that if the goal P

has a solution, fail; otherwise, succeed:

\+(P) :- P, !, fail.
\H) .

A clause can have several altermate conclusions, at least one of which must hold, and several

79

conditions, each of which must hold. A Horn clause is a clause with at most one conclusion. Prolog
clauses correspond directly to Horn clauses.

The execution of a Prolog program can be viewed as processing via goal reductions, where unifiable
clauses for subgoals are searched with a top-down, depth-first strategy. The search involves resolution,
i.e., matching a condition of one clause with a conclusion of another clause. Goal reduction through
resolution allows Prolog programs to behave as both recognizers and generators. For example, a Prolog-
based parser can generate as well as recognize legal strings in the language it parses.

In implementing €, we use the following Prolog predicates:

member(X,L) For object X and list L, succeeds if X is a member of L.

findall(X,P,L) Collects all objects X that satisfy goal P into the list L. (If no objects satisfy P then L is
the empty list.)

forall{X,P) For each success of goal X, goal P is executed. (The forall predicate always
succeeds.)

We introduce the testall’2 predicate: “For each success of goal X, goal P is executed, but testall fails
if any individual test fails.” A simple implementation of testall/2 is as follows:

testall(G,P) :- \+(G,\+ test(P}), testpassed.
test (P} :- P, !.

test (_) :- assert(testfailure).

testpassed :- \+ testfailure, !.

testpassed :- retractall (testfailure), fail.

4.5.2. Implementing € using Sequences

We use sequences in applying C-operators to Prolog databases. Recall that € includes primitives for
specifying intervals, endpoints of intervals, and the pseudo-date "now." We can define the endpoints of €
as single timestamps and the intervals of € as pairs of timestamps.

Let the variables t,,...t, be consecutive timestamps and let the variables T,...T, be (closed,
discrete) intervals between any pair of timestamps. As in Clifford’s historical databases (Ref. 89), we
always interpret the variable "now" as the latest state of the database, i.e., "now" is evaluated to t,, the
timestamp of the most recent fact in the database.

We implement sequences as fists in Prolog. To create a sequence, we need to select clauses from a
Prolog database and append them to a list in chronological order. Let P be an arbitrary predicate and let
A be a variable. For creating a sequence, A, we could define the following Prolog predicate:

'The forall predicata is defined in Prolog as forall (X,P) :- \+ (X, \+ P}.
" In this implementation of slicedb/2, the entire predicate P becomes a member of the sequence. Other implementations can be

defined to collect only specified arguments of P or different event types matching P. If P is a disjunctive clause, then the resulting
sequence wiil be out of order and will need to be re-ordered by imestamps.

80

slicedb(P,A) :~ findall(P,P,A).
Thatis, P is a member of sequence A iff X is a clause {in a Prolog database) that satisfies P.

Slices improve the efficiency of processing universal queries; however, database lookup is preterable
for existential queries. We can always examinae slices, but we need database lookup to obtain the slices
(e.g., by applying the predicate slicedb/2).

The primitives of system € are easily mapped to Prolog:
1. Predicate variables: P and Q.
2. Variables for (closed) temporal intervals: T and S.
3. Variables for timestamps: Tminus, Tplus, Sminus, and Splus.
4. The variables Ti and Tj for arbitrary instants.

5. The predicate now for n (the pseudo-date "now"). This predicate has a single argument,
which ranges over instants.

6. System-defined relational operators: «, =, and >, for comparing instants or "now.”
7. The variables XY Z, ..., ranging over domains other than time.

8. The connectives of propositional logic, including the system predicates: not for negation
and’,’ for canjunction.

The system predicate for implication is "-'; howaver, this predicate cannot be expressed in a
query. We define a new operator for implication: ‘

1~ op(240,xfx,=>).
P=>Q i= (not P ; Q), !.
Wa define an operator for equivalence:
:- op(240,xfx, <=>) .
P<=>Q :- P=>Q, Q=>P.

9. Converting to Hom clauses eliminates the need for explicit quantifiers.

10. The primitives ".." and in are declared as Prolog operators:

- op(220,xfx,"..*).
1= op(230,x£fx,in) .
Ti in T := T=Tminus..Tplus,
Tminus=<Ti, Ti=<Tplus.

The operator successor is defined by the granularity of timestamps, and predecessor is
defined as follows:

predecessor(T),Ti) :~ successor(Ti,T]).

The temporal operators R,E, and C are defined with arguments having a temporal domain.

For system €, we defined the interval relations: during, meets, and next. These temporal relations
are easily expressed in Prolog. Recall (from Chapter Three) that although Allen defined a basic set of 13
temporal relations between intervals (such as "during,” "contains,” "before,” "overlap,” "meets,” and

*Becausa suce and pred are system-defined Prolog predicates, we need o define new predicates: successor/2 and
predecessor/2.

a1

"equal™), he showed that the only interval relation required is “meets,” because the other relations can be
defined with the "meets” relation, the existential quantifier, and propositional connectives (Ref. 88).
System C provides the mechanics for declaring any relation between temporal intervals, as required by
the user, e.g.:

op(240,xfx,during) .
op (240, xfx, meets).

op {240, xfx, next) .

op (240, xfx,before) .
op(240,xfx,overlaps).
op(240,xfx,contains) .
op(240,xfx,after) .

during (T, S) :— T=Tminus..Tplus, S=Sminus..Splus,

Tminus >= Sminus, Tplus =< Splus.

meets (T, S) i= T=_..Tplus, S=Sminus.._,

Tplus = Sminus.

next (T, S) 1= T=Tminus.._, S=_..Splus,

successor (Splus, Tminus) .

before (T, $S) ;= T=_,,Tplus, S=Sminus.._,

Tplus < Sminus.

overlaps(T,S) := T=Tminus..Tplus, S5=Sminus..Splus,

Tminus < Sminus, Sminus < Tplus,
Tplus < Splus.

contains (T, S) := during(s,T).
after (T, S8) := before(s,T).

4.5.3. Temporal Completeness

We will say that a query language is temporally complete with respect to € if any assertion that can be
specified via a formula in the C-calculus can be tested via a statement in the query language.

Theorem 3: Any assertion in system € can be expressed as a query in Prolog.
Proof: We use induction on the number of operators in an expression.

Basis: Zero Operators

Let p be an arbitrary predicate with a list of attributes, X.

R
C
E

r(Py) is expressed as ?- p(X,Tminus).
T{Px) is expressed as 2- p(XT).

1({Py) is expressed as ?2- p(X,S), S during T.

Induction: Let o and B be formulas in €, involving no more than k-1 operators. These
interval formulas can be expressed in Prolog as V{a) and V(B), respectively, by the induction
hypothesis.

Case(1) Negation: ~a is expressed as 7~ \+V(o).

Casea(2) Conjunction: o A B is expressed as 2- V(a), V(B).

82

Case(3) Quantification over Attributes:

(VX)auy is expressed as - testali{typeX(X), V(a(X))).
(EX)ax is expressed as 7~ Via(X)).
Case(5) Implication: o = B is expressed ag 2- Via) =» V().

Case(6) Equivalence: a = f is expressed as 2- Via) <=> V(B).

4.6. Expressing Path Expressions in Prolog

We have shown that we can implement system € in Prolog and that we can implement path
expressions in € (in Chapter Three). Yat, path expressions are widely used in specifying program
behavior; hence, we show that we can implement them directly in Prolog. Recall that a path expression
can be identified with the set of strings it accepts. We match path éxprassions against an historical
database to confirm that a particular Sequence has occurred. We verify path expressions against slices.

The slice is "parsed” 1o determine if it can be generated by the DCGs répresenting the given path
expression, |If parsing of the slice fails, then the Program has failed to conform to the specification
expressed by the path éxpression. Appendix B gives the Prolog program for transforming a path
expression into a set of DCGs.

For example, the following path expression:
path a;b;c end

generates the following DCGs:

nodel --> [1.

nodel --» [a], node2.
node2 --> [b], node3.
node3 --» icl, nodel.

4.7. Events, States, and Execution Histories

We have shown that we can express temporal operations on an historical database. We now apply
temporal operators on a trace database. Trace analysis deals with events, states, and execution
histories. In Chapter Three we discussed the definitions of events and states for a general theory of

83

temporal logic and, in particular, for program verification. In this section we give formal definitions for
events, traces, slices, and states.

4.7.1. Assumptions

In developing trace-analysis techniques, we make the following assumptions:
« Time is linear, discrete, and absolute.

« A global clock exists (and is accessible to all processes generating events). Timestamps are
positive integers. The clock is incremented by one each time an event occurs. That is,
timestamps have no relationship with real time.

» A finite number of events occurs at any instant.
» Concurrency is achieved via both shared memory and message passing.
¢ All traces are of finite length.

By assuming a global clock, we can always order distinct events by their relative temporal position. To
ensure that the length of a trace be finite, we assume that either the execution of the program eventually
terminates, or it is {temporarily) hatted, for example, by an interactive breakpoint (i.e., all tasks are hatted).

4.7.2. Events

Definition 3: An event is a program action that occurs at an instant.

An event is denoted by its class and can be parameterized by one or more attributes. Examples of
event classes are variable assignment, entry call, and the stant of a rendezvous. The event class
distinguishes events by their characteristics. Event attributes distinguish occurrences of events within the
same class. We will use "event” to mean either an action or its description.

The number of attributes and their domains can differ for each event class; however, each event has a
temporal attribute, which consists of a single timestamp. For example, in addition to a timestamp, the
event of "variable assignment” can take the following attributes:

» the name of the variable whose value has changed,
s the new value of the variable, and
« the program location where the assignment has occurred.
The event of “accepting an entry call” can include the following attributes:
« the name of the calling task,
« the name of the called task, and
» the name of the called task entry.

The same timestamp is assigned to occurrences of event aliases, i.e., primitive actions of an atomic
event. For example, the event of beginning a rendezvous requires several primitive actions, such as
starting the execution of an Ada accept statement and removing a task name from an entry queue. The

anevent s 5 single occurrence of an event, having the form
e(o O)
where ¢ is an arhi

ﬁmestamp.

able assignment":
S,main, 10)

riable to which a value is assigned,
iately at the assignment,

5" becomes the valug of
"main® is the Name of the procedurg
0"isa tirnestamp.

in which the assignment
occurs, and "1

4.7.4, Traces

Each event instance

represents a fact about g Program's execution history. we will write €; 1o denote

the event occurring at time f.le.,

(Here, we use the R-operator of the basic temporal-logic System, describeq in Chapter Three.)
Definition . A trace of a4 program is 5 finite Sequence of event instances,
= <61.85,....8,>, where k is the Jength of the frace (the number of €vent instances that it

contains}, e first event in the trace is program activation, ang the last event is program
lermination (or the current breakpoint).
For éxample, consider the following fragment of Ada code:
TEST:
for MY INDEX in 8..10 loop
null;

end loop TEST;

4.7.5. Slices

A slice is a subsequence of program activity. More formally,
Definition 6: A sfice is a subsequence of a trace, i.e., X is a slice of trace E iff X < E.

Membership in a slice is determined by a predicate on event attributes and event classes. The
following are exampies of slices:

« all assignments to a spacified program variable,
« all definitions and uses of a specified variable, and
» ail calls from a specified task to a specified task entry.

4.7.6. States and State Instances

Recall from Chapter Three that events and states are duals. Given that a state is an encoding of the
sequence of prior events, we can view a state as a predicate on events. States can be characterized
declaratively as sets of constraints on events. For example, an Ada task is "callable” after task activation
and before task completion or termination. This representation of states is convenient for expressing the
absence of events (invariance), time outs (cancellation events), and delays (intervals between events).

Each instance of a state is associated with two timestamps, one for each endpoint of the interval it
spans. For a final state, the second endpoint is the timestamp of the final event in the trace (i.e., program
termination or a breakpoint). We use the notation of system € (defined in Chapter Three) for specifying
the endpoints of intervals, i.e., T =¢".. *. We will write s to denote the state holding over interval T, i.e.,

CT. (8) =8
(Here, we use the C-operator of system C.)

Definition 7: A state instance is a predicate succeeding over a specified trace or slice,
written in the form:

S(a«' ,....O‘.m,T,)

where s is an arbitrary state class, a,,...a, are values of attributes, and T, is an arbitrary
closed interval.

For example, in Ada, a deadlock state can arise from a single event (a task calling itself) or from a
sequence of events (a cycle of entry calls). A state can be a predicate on an ordered pair of events (e.g.,
a start and stop event):

§y such that l=i. predecessor(j) iff &; and e,

States attain their attributes from the events over which they are defined. We assume a "persistence of
facts,” e.g., a variable retains its current value until it is redefined, and the length of an entry queue is
unchanged until the next entry call, rendezvous, or cancellation occurs. A state can be defined over
events that are triggered by different processes, e.g., by processes that access a shared variable.

The representation that we have chosen for states fits Prolog well. For example, we can define the

86

state variable state as a predicate on two successive occurrences of the event variable assignment:

variable_ state(¥,Value,T):-
now (Now) ,
variable_assignment (X,Value,Location, Tminus),
nextvalue (X, Tminus,Now, Tplus),
predecessor (Tplus, Ti),
T=Tminus..Ti.

nextvalue (X, Tminus,Now, Tplus) :—
variable_assignment (X, _,_,Tplus),
Tplus in Tminus. .Now.

nextvalue {X, Tminus, Now, Now) : -
not ((variable assignment (X,_,_,Tplus),
Tplus in Tminusg..Now)).

4.7.7. Event and State Relationships

Having formally defined events and states, we now define relationships among them.

Let s; and s, be state instances. We say that s| "holds before™ s iff T, is before T ;:
§| holds before s it T before T,
Temporal relations can be defined over states for any interval relation, for example, holds_after and
holds during.

Let e; be an event instance and let s, be a state instance. We say that e, "occurs during” s iff 1, is
containedin T ;:
e occursduring s, iff ¢, inT,
Other temporal relations can be defined between events and states by considering the instant at which an
event occurs as a point interval, e.g.,
8 occurs before s, iff ,..1;, before T ;

4.7.8. Temporal Views of Trace Databases

The trace database contains events captured from the time program activation occurs until the program
terminates (or is halted). A query with no temporal constraimts selects events occurring up to and
including "now"; thus, the Barcan formulas of Section 3.2.9 hold for trace queries. {See discussion in
Section 4.2.2 on aggregate operators.)

Our approach supports temporal views of trace databases, such that a query retrieves only those
events that have occurred during a specified bounded intervai. The programmer can obtain a temporal
view of the trace database by appending temporal constraints to queries. Let eventP/2 and stateP/2
represent, respectively, an arbitrary event instance and an arbitrary state instance in the following
queries:

87

?- stateP(Attribute, Stime), Stime during 30..40.
?- eventP (Attribute, Stime), Stime > 10.

?- stateP (Attribute, Sminus.._)},Sminus>50.

4.8. Comparison with Previous Work

In this section we compare trace queries with specifications in ITL and with queries in TQuel.

4.8.1. Comparison with ITL

Recall that ITL variable assignment has the following form:
A<—-~B+2
This is equivalent to asking in Prolog:
?-assignment (a,b+2).
where the predicate assignment/2 is defined as follows:

assignment (X,Y) :~
variable_assignment (X,XValue,_,Sminus),
exp_eval (Y, XValue,Sminus) .

exp_eval (XValue,XValue,_) :- /* constant */
number {XValue) .
exp_eval(Y,YValue,Sminus) :- /* variable */

variable(Y),
variable state(Y,YValue,Tminus..Tplus),
successor {Tplus,Ti), Ti >= Sminus.

exp_eval (A+B,XValue, Sminus) :- /* addition */
exp_eval (A, AValue, Sminua),
exp_eval (B,BValue, Sminus),
XValue is AValue + BValue.

The predicate exp_eval/3 can be further defined, e.g., for subtraction and multiplication.

Recall that the ITL formula for a while-loop has the following form:
beg (I1=0) A while(I<n) do ([I<--I+1])

This can be expressed in Prolog by taking a slice of assignments 1o variable I and comparing every two
elements of the slice successively:
while (I, N) 1=
findall{Value,
variable_assignment(I,Value,_,_),
A},
increasing_sequence (A, 0,N).

increasing_sequence{[N],_,N) :- !.

increasing sequence ({M|L],M/N) :-
successor(M,Ml),
increasing_sequence{L,M1,N).

4.8.2. Comparison with TQuel

Prolog queries are more general and more flexible than those of Quel or of TQuel. Conventional query
languages, such as Quel, cannot deal with universal quantifiers. For example, recall the ambiguity
problem that Snodgrass had with the selection operator. Prolog can get both answers, hecause of
unification.

Example 1 from TQuel can be expressed in Prolog as follows:

start_running(Process, Start) e
running_on(Process, processorl, Start.._),
tick("3:00pm", CTime), Start > CTime,

Example 2 from TQuel ¢an be expressed in Prolog as follows:

catch(Start2) HE
iteration(pl,Internum,Timel),
iteration(p2,Internum,Start2.._),
Start2 in Timel.

4.9. Summary

We have used tormal mechanisms in analyzing the behavior of concurrent programs. Temporal
models motivate a trace approach to debugging. We have adapted temporal-specification techniques to
the task of providing database access to a trace history.

interval relations.

We have extended Proiog with temporal-logic primitives for expressing time-dependent relationships
among events and abstractions on events. One consequence of using Prolog is that knowledge about

verification.
From their investigation of debugging techniques for Ada tasking programs, Helmbold and Luckham

89

concluded (Ref. 48):

Because history is often important in determining the cause of a deadness error, the programmer should
be able to query the past tasking states of relevant history.

In the next chapter we explore implementation issues dealing with the selection and representation of
trace events in Ada.

90

5. YODA: AN ADA PROTOTYPE DEBUGGER

Is thy face like thy Mother's, my fair childi

Ada! sole daughter of my house and heart?
When last | saw thy young blue eyes they smiled,
And then we parted, not as now we part,

But with hope.

--Lord Byron (Childe Harold'’s Pilgrimage)

Chapter Four introduced a debugging approach in which a program’s execution is captured as an
event stream into an historical database. The semantics of the underiying programming language
determine the events to be traced. This chapter addresses event selection for Ada programs and
presents the details of our implementation for collecting a trace database.

5.1. Ada Terminology

Development of the Ada language began in the mid-70’s and an ANSI standard was approved in 1983,
Ada was designed for the U.S, DoD by Cii Honeywell Bull, with Jean Ichbiah as the principai designer.
The language was named for Lady Augusta Ada Byron (1815-1852), the Countess Lovelace (daughter of
the poet Lord Byron), in recognition for her contributions as the world’s first programmer (Ref. 121). The
ALRM is known also as Military Standard 1815A (MIL-STD 1815A), for the year in which Ada Lovelace
was born.

Since January 1984, Ada has been mandated by the U.S. DoD as the standard language for mission-
critical software (Ref. 122, 123). Interest in Ada has Spread to other continents, for example, the United
Kingdom has announced Plans to mandate Ada as the Ministry of Defense's standard language on real-
time operational systems as of 1987,

5.1.1. Modularity

The major components of Ada programs are subprograms, packages, and tasks. A main program can
be any subprogram. The specification of a main program is arbitrary; thus, linkage may requira that the
main program be designated, if ambiguous. Generally, it is treated as a procedure that is called by an
implicitly declared main task.

5.1.2. Names and Program Objects

The Ada language defines many different entities, including idemtifiers, numeric literals, exceptions,
single entries, entry families, formai parameters, and compilation units. Each identifier is used as either a
flame or an object. A name may be the name of a pragma, a number, a type, a subtype, a label, a loop,
an enumeration literal, or a block. An object is an entity that contains a value of a specified type. Ada
permits overloading of identifiers and of operators. {Unlike Prolog, no new operators can be defined.)

91

A type has a class, a range of values, and a set of operations. The main classes of types are scalar
(including enumeration, integer, and real types), composite types (including records and arrays), access
types, and private types. The package STANDARD encloses all system-defined library units (such as
TEXT_IO for handling input and output). Types that are predefined in the package STANDARD include
Boolean {an enumeration type) and duration (a real type).

5.1.3. Strong Typing and Scoping

All identifiers in an Ada program must be declared explicitly, except loop names, block names, and
statement labels. A section of code that can contain declarations is called a declarative region. Entities
that can contain declarative regions are

» the specification and body of a subprogram,

» the specification (both the visible and private sections) of a package and a package body,
« the specification and body of a task,

» the specification and body of a generic package or of a generic subprogram,

= an entry declaration and its corresponding accept statement,

* 3 generic parameter declaration,

» a record type declaration,

+ a renaming declaration, and

+ a block statement or loop.

The first declarative region around an entity is its “immediate” scope. Some names are visible outside
their immediate scope, for example, entry names and formal parameter names.

The usage and scope of an Ada identifier is determined statically by its declaration. In the visible part
of a package specification, private types can be declared as incomplete types, but their declaration must
be completed in the private section of the package.

5.2. Implementation of YODA

YCODA is a stand-alone system that captures events by inserting probes into the program to be
debugged. YODA parses an Ada program, generates a symbol table, and embeds diagnostic output
statements into a copy of the source program. When the annotated program is compiled and executed,
the diagnostic statements invoke a program monitor to capture trace data.

YODA's parser generates an abstract syntax tree. This parser is based on the LALR(1) grammar for
Ada '82 {Ref. 124). (We eliminated left recursion and factored out common prefixes of alternate rules.)
The parser fails if the input program has syntactic errors; thus, YODA requires that the program to be
debugged have compiled successfully. Appendix C shows the implementation of YODA's top-down
parser.

92

Semantic analysis of an Ada program generates two new programs: a Prolog database containing the
symbol table of the Ada Program and an annotated version of the original Ada program. We will refer to

the original Ada program as the "program unit under analysis” and the annotated version as the
“annotated program unit.”

5.2.1. The Symbol Table

The immediate Symbol table, that is, the Symbol table of the program unit under analysis, is passed ag
an argument during traversai of the syntax tree. It is organized as a binary tree to provide efficient table
lookup and to allow for maintaining information that may be incomplets.

Separate compilation is supported by saving symbol tables of parent program units. When the
Semantic analysis of a program unit is completed, the immediate symbol table is written to a file, after
conversion from binary-tree formatto a Proiog database {one fact for each Symbol declared).

To process a program subunit, the user provides an ordered list of the filenames containing the symbol
tables of parent program units.” Although symbot tables of parent unitg are stored as external Prolog

The symbol table contains the name, base type {(e.g., enumerated type), usage (e.g., Boolean), and
"declarative context” (e.9., system-defined) of objects that are declared explicitly in the program.

*Thls can be a nuisance, but the alternative is to map filenames 1o program unit names, and then get the parent unit names frqm
the Ada with dayses. This would ensure that the ordering of library units conform to Ada specifications, but would require
implementing a library-management facility, which is usually provided by the Ada environment.

93

Since the focus of our research was on showing feasibility of our debugging approach, we kept our
naming conventions minimal. For example, overloading was not supported. Also, we do not create new
names for objects that are created dynamically, e.g., each time a procedure is invoked, any task defined
in the procedure is always given the same name.

The type name and main class of the type of each object are saved so that they can be used in
queries, e.g., "list all objects of type COLOR.” The class of an identifier declared as an incomplete type is
left uninstantiated until the declaration is completed. Incomplete information can be maintained in the
symbol table, because Prolog allows uninstantiated variables.

Table 5-1 shows the structure of the symbol table. Appendix F shows symbol tables for the program
example presented in Appendix E.

Declarative context is represented as a Prolog list, such that the most deeply nested declarative region
is at the head of the list. While traversing the syntax tree, YODA maintains the names of successive
declarative regions in the Declarative Context List (DCL).

When the semantic analyzer reaches a node that defines a declarative region {e.g., a subprogram
body or loop), it appends the name of the region 1o the head of the DCL. The head of the DCL is
removed (implicitly) on popping the stack of Prolog goals. Thus, only the descendants of the current node
will use the new DCL. On encountering a subunit, the semantic analyzer appends the expanded name of
the parent unit to the DCL. For example, the declarative context of x is * [t,c,b,a]’ in the following
subunit:

separate (A.B.C)

taskbody 7T is
X: INTEGER;
begin
null;
end T;

YODA ignores some declarative regions to simplify symbol-table lookup. These omissions are in the
definition of package specifications and bodies. Names are appended to the DCL when the semantic
analyzer reaches any of the following nodes in the syntax tree:

ALRM Node
Seclion Number

55 locp_statement
56 block_statement
6.1 subprogram_body
6.3 task_declaration and body
g.1 ontry declaration and
its corresponding accept statement
10.2 subunit
12.1 generic_declaration of a subprogram

All separately compiled, user-defined packages are viewed as program units enclosing the main

94

Tabie 5-1; Usage Categories of Symbol Tablg
ALRM Usage Category
Section #

2.8 Pragma_name
Pragma_argument
3.2 object_name(Class,TypeName,TypeRegion)

constant‘object_name(Class,TypeName,TypeRegion)

number‘constant(sca!ar)

3.3.1 type_name(Class)
33.2 subtype_name(Class)
351 enumeration_literal(scalar)
3.7 named_component(Class,TypeName,TypeRegion)
3.7.1 discriminant_name(Class,TypeName.TypeRegion)
414 attribute :
5.1 label name
55 loop name
loop _parameter_name(scalar}
56 block_name
58 subprogramﬁname
6.1 formai _parameter(Class.TypeName,TypeRegion)
7.1 Package name
7.4 type_name(private)
9.1 task type
object_name(task_type,anonyrnous,TypeRegion)
8.5 antry name
11.1 exception_ name
12.1 generic Package_name

generic_subprogram.name
generic_type_deﬁnition

generic Parameter object
generic _package_instanﬁaﬁon
generic_function_instamiation
generic_subprogram_instanﬁation

Package p |g
Procedure syx. INTEGER) ;

end p.

with p; use P;

Procedure Ma1y Ig

begin
5(X=>1) ;

end MATN;

The declarative Context of x js » (s, not - (=,p]’, and the declarative context of s jg - [17, not
r [p] I 4 .

85

5.2.2. Operations on the Symbol Table

The following symbol-table operations are provided:

1. Storing and updating information on identifiers (names that are not yet in the symbol table
or that are specified incompletely).

2. Accessing information on simple_names (names that already must have been declared
when encountered).

Originally, symboi-table lookup was performed on all identifiers and simple names in the program unit
under analysis. The overhead was costly, in light of our assumption that the program was semantically
correct. [n the current version of YODA, symbol-table lookup is performed for identifiers only. If an
identifier is encountered that is not yet in the symbol table, it is added to the table. If an identifier is
encountered that is already in the symbol table, but with incomplete information (i.e., an incomplete type),
the new information is added to the symbol table.

Symbol-table search occurs only when information is needed to complete an annotation. For example,
to capture the trace of a variable update, the symbol table must be searched to determine the DCL and
usage of this variable. Because we assume that the program has been compiled successfully, we can
expect also that each simple name encountered has been declared previously and, thus, must appear in
the symbol table.

When accessing a simple name, YODA searches first in the immediate symbol table. If the simple
name has not been declared in the current DCL, then the search continues through successive outer
layers of declarative regions. For example, it YODA is searching for the variable x and the DCL of the
current node is / (t1,main]’, then YODA searches first for the variable x declared in * [t1,main]”,
and next for the variable x declared in * [main]’. If the simple name is not found in the immediate
symbol table, then the predefined symbol tables are searched in the order in which they have been listed
by the user. Finally, the predefined symbo! 1able of the library package STANDARD is searched.

It a simple name is not found in any symbol table, then it is added to the immediate symbol table as an
identifier with a usage class of "undeclared.” The undeclared option will be encountered only if a
predefined symbol table has been omitted from the list.

5.2.3. Annotations and the Trace Database

YODA monitors the following events: variable definition and use, task synchronization, and changes in
task status. Each of these events is parameterized with attributes, as described in Chapter Four. Each
attribute specifying a program object is qualified by its declarative context. Table 5-2 shows the
structures representing these events in Prolog notation,

YODA embeds calls to the program monitor to generate trace-database entries wherever they are
syntactically and semantically appropriate. For example, entry calls are detected before their execution.

96

Table 5-2: Trace Database Events

entry_called(CaHer,Caliee. Entry, Time).
cafl_canceled(Caller,Callee,Entry,Tnme).
entry_queue_Iengthened(Caller.Callee,Entry.Tlme).
entry_queue_shonened(Caller,Callee, Entry, Time).
rendezvous_started(Caller,CaHee.Entry,Time).
rendezvous_completed(caller.Callee.Entry.’ﬁme).
var_read(Variable,ProgramLocation,Value.Time).
var‘write(Variab!e,ProgramLocation.Value,Time).
entry_parm set(Caller,Callee,Entry,IO_Mode,Parm,Value,'l'ime).
task_activatad(Task,Time).
task_oompleted(Task.'l"ume).
ready‘to_terminate(Task,Tuma).
abnormal_termination(Task.Time).

program_ended(Program,ﬂme).

for variable use precades its occurrence, whereas an annotation for variable definition follows its
Occurrence. Initializations in object declarations cannot be annotated with a monitor call, owing to the
separation of body and declarative region in Ada. In Chapter Six, Figure 6-3 shows the annotated
program for the Ada program in Figure 6-1.

"List all updates to variable x that occurred while executing task t1.”

97

than to ask:
"List all updates to variable x that occurred between statement numbers 20 and 25."

The formal part of each entry declaration and accept statement is annotated to capture the name and
DCL of the calling task. Thus, the name of the calling task can be recorded in task synchronization
events, e.g., in entry call, in rendezvous start, and in rendezvous completion. On encountering an entry
call, the annotator examines the current DCL to determine the most deeply-nested task body enclosing
the entry call. If no tasks are on the DCL, it is assumed that the caller is the implicitly defined main task.

The body of each accept statement is annotated to capture the events of rendezvous start and
completion. If the body of the accept statement is empty, a do-end pair is added. Since each entry can
be associated with more than one accept statement, it would be useful to identify the accept statement
that is executing. That is, on encountering an accept statement, the DCL could be updated to reflect not
only the name of the entry, but also the ordering of the accept statement. Changes in the length of entry
queues are recorded on detecting an entry call, starting a rendezvous, or timing out.

Monitoring of variables is restricted to scalars, in keeping with our emphasis on showing feasibility.
Monitoring can be further restricted, e.g., according 1o variable usage or declarative region, by adding a
few simple rules to the annotator. Extending monitoring to composite types would require modifying the
program monitor.

Tracing of formal parameters is treated separately from tracing of other variables. Formal parameters
of mode In are constants; thus, their values need to be captured only once - immediately after entering a
program unit. The value of an in out parameter is captured before exiting a program unit. Formal
parameters of mode out cannot be traced, owing to Ada’s restriction against reading these parameters.

Although a formal part can contain many parameters, the association of each parameter with a value is
treated as a separate event. Because each formal parameter is traced separately, the programmer can
specify the parameters to be traced. Furthermore, a set of parameters can aiways be specified in a
query, 8.9., "List the values of all parameters in entry E of task T at time ¢, ."

We considered tracing all parameter associations of a call as a single event, but concluded that it
would be both costly and inconvenient. For example, we considered maintaining all entry parameters of a

call as a Prolog list, e.g.,

entry_called(caller(taxi, [main]),
callee (customer, [main}),entry(call),
[parml (car_code,"54"), parm2(pay,10)]1,25).

Lists are a natural data structure in Prolog, and list-processing facilities can be written in Ada.
Nonetheless, annotating an Ada program to capture these lists would be difficult. Ada lists must be
aliocated dynamically and Ada's requirement for strong typing places a considerable overhead on
maintaining lists of heterogeneous objects (e.g., the difficulty of storage reclamation). The expense of

grouping parameter associations into a single event fails to justity the convenience, which is questionable.

Monitoring the status of each task object requires tracing task activation, completion, and termination.
It is difficult to annotate an Ada program in such a way that a task termination event is recorded. Tracing
of normal task termination can be replaced by recording the time when a task is "ready to terminate,” eqg.,
on each execution of a select statement with a terminate altemative. Abnormal task termination can be
detected by annotating each task body with an exception handler for the exception choice others (where
there is no explicit others exception).

5.2.4. Program Monitor

The Ada program monitor converts trace data into Prolog clauses and updates the trace database.
Also, the monitor controis the global clock, which guarantees that time Is represented as a linear series.
The clock is implemented as an Ada task with one entry, such that each recorded event triggers one
“tick". This approach guarantees a FIFO ordering of the event trace. Thus, the timestamps reflect the
order in which events occur in the system.

Recall that in Chapter Four we described event allases. In YODA, updating the length of an entry
queue does not advance the clock, but is synchronized with an entry call, rendezvous start, or
cancellation of an entry call. Chapter Six shows several examples of events recorded in sample traces,
e.g., in Figure 6-8.

5.2.5. The Trace Query Processor

All queries are expressed in Prolog. To give the flavor of trace queries, we present some examples in
Chapter Six. To understand how queries are answered, the programmer can invoke Prolog’s debugging
facility to show the logical inferences drawn in the solution process. This facility can help to explain how
YODA works.

Table 5-3 shows the Prolog rutes for converting the program events shown in Table 5-2 to states.

5.3. Conclusions

We have described the implementation of YODA, focusing on the ditficulties that we encountered in
representing the behavior of Ada programs and on our solutions to these problems. In Chapter Six we
use examples to illustrate trace-analysis techniques.

99

Table 5-3: Transiation from YODA Events to States

variable(Name,Location,Value,T):-
var_write(Name,Location,Value,Tminus),
nextvalue(Name,Tminus,Tplua),
predecessor(Tplus,Ti),
T = Tminus..Ti.

nextvalue(Name,Tminus,Tplus):—
var_write(Name,_,_,Tplus),
Tplus>Tminus.

nextvalue(Name,Tminus,Now):-
now (Now) ,
not((var_write(Name,_,_,Tplus),
Tplus>Tminus}) . '

task_callable(TaskName,T) 1=
task_activated(TaskName,Tminus),
task_completed(TaskName,Tplus),
Tplus>Tminus,
predecessor(Tplus,Ti),
T = Tminus..Ti.

task_callable(TaskName,Tminus..Now) HEN
now (Now) ,
task_activated(TaskName,Tminus),
not((task*completed(TaskName,Tplua))).

entrycall(Caller,Callee,Entry,T):-
entry_called(Caller,Callee,Entry,Tminus),
successor (Tminus, Ti),
T = Tminua..Ti.

rendezvous(Caller,Callee,Entry,T):—
rendezvous_started(Caller,Callee,Entry,Tminus),
rendezvous_completed(Caller,Callee,Entry,Tplus),
Tplus>Tminus,
T = Tminus..Tplus.

rendezvous(Caller,Callee,Entry,Tminus..Now) i= now(Now),
rendezvous_started(Caller,Callee,Entry,Tminus),
not(rendezvous_completed(Caller,Callee,EntrY:_)).

100

6. DEBUGGING WITH YODA: CASE EXAMPLES

Of all my programming bugs, 80 percent are syntax errors.

Of the remaining 20 percent, 80 percent are trivial logical errors.
Of the remaining 4 Percent, 80 percent are pointer arrors.
And the remaining 0.8 percent are hard,

-- Marc Donner (Programming Pearls, CACM. 1985)

We can divide diagnosis of a program ermor into two phases: diagnostic reasoning (generating
candidate diagnoses) and database reasoning {evaluating candidate diagnoses).

To evaluate diagnoses, YODA uses the following kinds of information:
1. A trace database and symbol tables.

2. Temporal predicates for specifying relationships between events and abstractions on
events.

3. Knowledge of Ada semantics, such as visibility of variables.

4. Knowledge about debugging Strategies for some common classes of errors, e.g., cyclic
deadiock and misuse of shared data.

Diagnostic reasoning is a classification problem. Clancey (Ref. 125) divides the general classification
problem into three phases:

1. data abstraction (data about the entity to ba Classified),

2. heuristic mapping onto a hierarchy of Pre-enumerated solutions, and
3. refinemant within the hierarchy.

outcome of testing assertions on the program's behavior. Controlled diagnostic reasoning requires
imperative knowledge about what tests can either eliminate or promote a candidate diagnosis. These are
rules of "good judgment” to govem the debugging strategy.

Tests can be characterized by their roie in evaluating hypotheses: exclusionary, confirming, or
restrictive. Exclusionary, or negative, tests rule out the possibility of an error or a class of errors.
Restrictive tests determine that a class of errors has occurred. Confirming, or positive, tests refine the
diagnosis.

This chapter addresses the following topics:
* What is an appropriate model for categorizing program errors?

101

» What categories of errors can be diagnosed using trace queries?
» Which program events are associated with which errors?

» What expert-system techniques can provide user control over diagnostic reasoning (i.e., how
can YODA be incomporated into an expert system)?

» What techniques can improve the efficiency of diagnostic reasoning?

Wa present several case examples to illustrate trace-analysis techniques for diagnosing run-time errors
associated with Ada concurrency. All example Ada programs were written in ANSI Ada and translated
and executed using the validated New York University Ada translator and interpreter (Ada/ED ANS!
Version 1.1), running under the UNIX 4.1 operating system on a DEC VAX 11/780 computer.

The first three sections of this chapter focus on bug categories. Section 6.1 examines various
approaches 1o categorizing errors. In Section 6.2 we enumerate errors associated with Ada tasking.

(This is not intended to be an exhaustive list.) Section 6.3 defines a functional hierarchy for organizing
errors.

The remaining sections of this chapter present Ada program examples:

1. The "Deadlock™ program exhibits cyclic deadlock. Confirmation of this error relies on
YODA's knowledge base for a description of events leading to a cyclic deadlock.

2. The "Lost Update” program exhibits inappropriate use of shared data. This error is
diagnosed by testing for non-serializability.

3. The "Simplified Stenning Protocol" program is included to show the benefit of slices as
event abstractions. This program simulates a communications protocol in which the sender
continues to duplicate a message until an acknowledgment is received.

4. The "Taxi Service" program is included to show the benefits of a database approach to
organizing information about the structure of a large program. This program was designed

using the resource-control paradigm (agent-consumer-producer) discussed in Chapter
Three,

6.1. Error Taxonomies: A Survey of Existing Work

We define an error model to be a classification scheme for program errors, so that some general
principles, or similarity measures, can be applied in panitioning errors into classes. Most of these
principles are descriptive, i.e., errors are characterized by their features. An error model determines the
features that are shared by errors within a class.

Most error models choose from the following principles in characterizing errors:

1. Semantics Group errors by the development phase during which the error can be
detected, e.g., during design, compilation, or execution.

2. Symptoms Group errors by their manifestation, e.g., the error message or system
response.

3. Structure Group errors by the language construct in which the error occurs, e.g.,

the statemant type or the language feature.

102

4. Behavior Group errors by the proof technique that can show their absence, e.g.,
invariance or eventualities.

5. Difficutty Group errors by the lsvel of difficulty in detecting or diagnosing the
error, such as the error's reproducibility, its subtlety, and the length of
time and expertise required to isolate the 8rror.

6. Frequency Group errors by their reported frequencies in empirical studies of
program errors.

7. Diagnosis Group errors by their "cure,” e.g., whether code is missing, misplaced,
or incorrect.

In the remainder of this section, we review some ermror hierarchies for several of these principles.

6.1.1. Semantic Error Model

Physical errors are divided into two categories:

* Pontability errors -- Need not be detected in compilation or in execution, but the effect of the
construct is unpredictable because it relies on information outside the language standard.

* Language errors -- Violate a rule contained in the language standard and should be detected
during compilation or execution, e.g., exceeding array bounds. These are partitioned into:

* Compile-time errors -- Can be detected before execution.
* Run-time errors -- Cannot be detected before execution.

The ALRM divides program errors into four categories:
» Compile-time errors -- Must be detected by Ada compiler beforg axecution,
* Run-time errors -- Must be detected during execution of Ada programs.

* Erronsous constructs -- Need not be detected in compilation or execution, but the effect of
the construct is unpredictable.

e Incorrect order dependsncies -- Need not be detected in compilation or execution, but the
effect of the construct is different, i execution is in a different order. One example of an
incorrect order dependency is reliance on a particular algorithm for scheduling evaluation of
Open accept statements in a selective wait.

An important difference between these error models is the treatment of portability errors. Ada defines
two types of errors that can arise when porting software: erroneous constructs and incorrect order
dependencies. Examples of erroneous constructs are relying on a particular mechanism for parameter

103

passing and relying on a particular scheme for storing arrays. Incorrect order dependencies can occur
only in programs that use tasking.

6.1.2. Error Modeling by Symptoms

Language manuals and user guides often provide a dictionary or index of error messages and codes.
These dictionaries map an error symptom (e.g., illegal operation, fatal error, data-typing constraint) to
either the type of statement in which the error may have occurred or the programming feature that may
have been used inappropriately. Because the manifestation of an error is determined by both the
programming language and the translator for that language, each implementation provides its own error
model for symptoms. Binder (Ref. 127) presents a symptom taxonomy as a tutorial aid to debugging
programs executing in the MVS operating system environment.

A difficulty in classifying errors by symptoms is that more than one error may yield the same symptoms.
For example, the ALRM requires that a "subscript out of range® error raise the language-predefined
exception Constraint_Error. Many other errors in Ada will raise this same exception. Thus, the
manifestation of a "subscript out of range” error in Ada is inconclusive for diagnosing the error. Some
translators may provide more specific error messages, and more information can be obtained by
exception handling.

6.1.3. Structural Taxonomy

In a structural taxonomy, program errors are grouped by language constructs, e.g., I/0 handling, file
management, loops, and data-typing constraints. A taxenomy based on structural features helps to
localize an error by associating it with a particular type of statement in the program being debugged. It
relies on a categorization that is well-defined by the syntax and semantics of the programming language.

For example, Eggert gives a feature-based categorization of program errors in Pascal, demonstrating
the effect of the semantics of a programming language on determining the program errors that can be
detected during execution (Ref. 126).

6.1.4. Behavioral Taxonomy

Another approach is to categorize program errors by proof techniques, such as those defined by
temporal logic in Chapter Three. Recall that temporal formulas map program errors onto a well-defined
categorization of program properties: liveness, safety, and precedence. Similarly, program errors can be
categorized by the program properties that guarantee their absence.

104

6.1.5. A Taxonomy based on Difficuity

The length of time it takes to find an error depends not only on the difficulty of finding the error, e.g., an
intermittent bug, but also on the experience of the programmer and their level of famifiarity with the
application. The later the phase of development in which the bug is discovered, the more difficult it is to
locate the bug (Ref. 128).

6.2. Enumeration of Ada Program Errors

The programming language determines the errors that can occur. For example, Ada prevents
activating the same task object more than once. On the other hand, Ada does not guarantee freedom
from deadness errors. The following errors are associated with multitasking:

1. dependence on a particular scheduling algorithm (unfairness)
2. deadness errors, e.g., cyclic deadlock
3. non-serializability
4. individual starvation
5. faulty error recovery
6. incorrect guard on accept statement (e.g., always "alse”)
7. missing terminate alernative in select statement
8. incorrect end-of-file handling ("eof” not passed on to other tasks)
8. calling a task in a package before the package is elaborated
10. blocking

6.3. YODA'’s Error Model

Wa propose organizing errors into a hierarchy by the queries that confirm their presence. Each query
may confirm the presence of a wide class of bugs or of a single bug. Some queries can be regarded as
subgoals in evaluating a candidate bug.

Formulating debugging strategies appropriate to all errors is not practical, because it is difficult to
define assertions to characterize all possible errors. This difficulty arises both from the complexity of
programs and from the complexity of writing assertions. One difficulty is that the type of error influences
the usefulness of a particular abstraction of the data. Queries can be characterized by their level of
complexity:

« Simpie queries.
» Queries invoiving the abstraction of slices.

105

6.3.1. Knowledge Representation of Errors

As programmers develop expertise in debugging, they develop effective techniques for troubleshooting
as well as a database of knowledge about the manifestation of specific errors. In addition, programmers
incorporate into the debugging process their knowledge about the programming language, the
application, the compiler or interpreter, and the reliability of the various components of the software
system they are debugging.

Short of having expert programmers available as consultants at debugging sessions, knowledge-based
systems offer a promising mechanism for incorporating into an automated debugging tool some of those
factors that guide an expert programmer while debugging. Knowledge-based systems have been
effectively applied in diagnosis for several specific problem domains, such as medical consuiting
{Ref. 129) and hardware fault diagnosis (Ref. 130, 131).

We propose a functional error model that aids in selecting the order in which candidate diagnoses
shouid be investigated. This model should provide a description of program erors that are historically
common. For each error defined, there should be a body of knowledge about the symptoms that manifest
that error and appropriate debugging strategies for confirming the error.

6.3.2. Performance Issues

Diagnostic reasening involves some tradeoffs in performance. Performance can be improved by
suggesting easy tests to perform early to eliminate some bugs from consideration or to promote promising
candidates. For example, to confirm an absence of cyclic deadlock, it may be easier to determine (1) that
all entry queues were empty at program termination than to confirm {2) that no task in the program has a
cycle of entry calls. If the first test fails, then a deadness error has occurred; the second test refines the
diagnosis.

A functional error hierarchy could guide the application of diagnostic tests to ensure that the simplest
and most general tests are applied first. For example, before testing for cyclic deadlock, a test should be
made to confirm that a deadness error has occurred. Within each level of a hierarchy, errors should be
ordered by the complexity of the test and the likelihood of the error.

6.3.3. Examples

Examples of rules used in YODA for generating and testing diagnoses are paraphrased in English as
follows:

106

Inheritance Properties:

Program unit p1 is contained in program unit P2 j

2 is a member of the declarative context of P1.

X is a candidate diagnosis for Program unit P1 jf
P1 is contained in P2 and
X is a candidate diagnosis for program unit P2,

Semantic Propertiss:

A program ig concurrent if
at least one task is declared.

The main program is an (undeclared) task.

Program object X is visible in P if
Pisinthe deciarative context of X,

Program object X is visible in P if
Xis an entry name,
X is declared in task T,
and T is visible in p.

Xis a shared variable if
X is accessed by more than one task.

Diagnostic Tests:

Tasking error is a candidate diagnosis if
the program is concurrent,

A deadness error iS a candidate diagnosis if
a tasking error is 3 candidate diagnosis,
the program has abnormally terminated,
the error message is "system inactive,”
at least one task has not terminated, and
at least ong entry queue is non-empty.

Cyclic deadiock is a candidate diagnosis i
a deadness error is a candidate diagnosis, and
there is at least one entry
that has a cyclic path of entry calls.

Non-serializability is a candidate diagnosis if
& tasking error is 3 candidate diagnosis,
the program terminated normally
with incorrect results, and
there is at least one shared variable.

107

6.4. Cyclic Deadlock

Recall that a deadness error occurs when tasks of a concurrent program reach a state from which
exacution cannot continue, although the tasks have not yet terminated. A cyclic deadlock occurs when a
cydlic path of entry calls is executed. {See Chapter One.)

6.4.1. Implementation

Figure 6-1 shows a simple Ada program that exhibits cyclic deadlock. OQutput generated by this
program is shown in Figure 6-2.

6.4.2, Trace Database

Figure 6-3 shows the annotated version of this program. Figure 6-4 shows a trace database generated
by this annotated program.

6.4.3. Trace Analysis

To determine that a cyclic deadlock has occurred, we examine the history of task entry calls and
incomplete rendezvous. A rendezvous is considered incomplete if it began executing, but did not
complete before program termination. Figure 6-5 shows a Prolog program for diagnosing cyclic deadlock.

6.4.4. Discussion

Deadlock wilt occur also with the following version of task body CINDY:
task body cINDY is

begin
AL.MEETING;
accept MEETING:
end CINDY;

Although reciprocal entry calls are executed in the following version of task body CINDY, cyclic
deadlock is avoided:
task body CINDY is

begin
accept MEETING;
AL.MEETING;
end CINDY;

6.5. Lost Update

A serializability error occurs when there is no sequential execution of the tasks in a program that could
produce the same effect as the interleaved execution. This error is an example of misusing shared data.

108

with TEXT_IO; use TEXT_I0;
procedure DEADLOCK ls
task AL is
entry MEETING;
end AL;
task BOB is
entry MEETING;
end BOB:;
task CINDY is
entry MEETING;
end CINDY;

task body AL is
begin
put_line("AL is calling BOB.™);
BOB.MEETING:;
put_line ("AL has had a rendezvous with BOB."™);
accept MEETING do
put_line (AL is at a meeting.™);
end MEETING;
end AL:
task body BOB is
begin
accept MEETING do
put_line("BOB is calling CINDY."™):;
CINDY . .MEETING;
put_line ("BOB has had a rendezvous with CINDY.");
end MEETING;
end BOB;
task body CINDY is
begin
accept MEETING do
put_line ("CINDY is calling AL.");
AL .MEETING;
put_line ("CINDY has had a rendezvous with AL.™);
end MEETING;
end CINDY;
begin
null;
end DEADLOCK;

Figure 68-1: Ada Program Exhibiting Cyclic Deadlock

109

Begin Ada execution

AL is calling BOB.

BOB is calling CINDY.

CINDY is calling AL,
Syastem inactive

THE FOLLCOWING TASKS ARE WAITING FOR ACCESS TO ENTRIES

TASK DEADLCCK.CINDY IS QUEUED ON ENTRY MEETING #1 OF TASK
DEADLOCK.AL

THE FOLLOWING TASKS ARE WAITING FOR CALL ON ENTRIES

.
.

{ NONE)

Execution complete
Execution time: 13 seconds
I-code statements executad: 50

Figure 6-2: Execution of Cyclic Deadlock Program

110

with text_io:
Use text_io;
with trace;
procedure voda Is
package my_debugger Is
New trace({filename=>"deadlock.trace");
use my_debuggex;
procedure deadlock |s separate
bagin
debug_option:=true;
open_db;
deadlock;
close_db("deadlock”);
end yoda;

separate (yoda)
procedure deadlock Is
task a1 Is
eniry meeting(who_called id:string;
who_called_region:string);
end al;
task bLob s
antry meeting(who_called_id:string;
who_called_region:string);
ond bob;
task cindy Is
entry meeting (who_called_id:string;
who_called_region:string):
end cindy;

task body al is
begin
task_activated("al", " [deadlock]");
put_line("al is calling bob.");
ecalled(”al", " [deadlock]" , "bob", " [deadlock]", "meeting");
bob.meeting ("al", " [deadlock]™);
put_line("al has had a rendezvous with bob.");
accept meeting(who_called_id:string;
who_called_region:string) do
rendezvous_startcd(who_called_id ’
who_called_region , "al", " [deadlock]”, "meeting”) ;
put_line("al is at a meeting.");
rendezvous_ completed(who_called id ,
who_called region , "al","[deadlock]", "meeting")};
end meeting;
task_ completed("al"," [deadlock]"™):;
exception
when others => abnormal termination{“al"," [deadlock]");
end al;

Figure 6-3: Annotation of Cyclic Deadlock Program

111

task body bob s
begin
task_activated("bob","{deadlock]");
accept meeting(who_called_id:string:
who_called_region:string} do
rendezvous_started {who_called_id ,
who_called_region , "bob","[deadlock]"”, "meeting");
put_line("bob is calling cindy."):
ecalled ("bob", " [deadlcock]" , "cindy","[deadlock]","meeting");
cindy.meeting ("bob”, " [deadlock] "} ;
put_line("bob has had a rendezvous with cindy.");
rendezvous_completed (who_called_id ,
who_called_region , "bob","[deadlock]", "meeting"};
end meeting;
task_completed("bob", " [deadlock]");
exception
when others => abnormal_termination {"bob"," [deadlock] ") ;
ehd bob;

task body cindy Is
begin
task activated("cindy", " [deadlock]");
accspt meeting(who_called_id:string,
who_called_region:string) do
rendezvous_started(who_called_id ,
who_called region , "cindy"”, " {deadlock]"”, "meeting");
put_line("cindy is calling al."}:
ecalled ("cindy", " [deadlock]™ , "al", " [deadlock]", "meeting");
al.meeting("cindy", " [deadlock]");
put_line ("cindy has had a rendezvous with al.");
rendezvous_completed (who_called_id ,
who_called_region , "cindy","[deadlock]", “meeting");
end meeting:;
task_completed("cindy", " [deadlock]");
exception
when others => abnormal_termination ("eindy", " {deadlock]");
ond cindy;
begin
nult ;
end deadlock;

Figure 6-3: Annotation of Cyclic Deadlock Program, concluded

112

then(0).

task_activated(task(cindy, [deadlock]), 1).
task_activated (task (bob, [deadlock]), 2).
task_activated(task(al, [deadlock]}, 3}.

entry_called(caller(al, [deadlock]),
callee(bob,{deadlock]),meeting, 4y,

rendezvous_started(caller(al,[deadlock]),
callee (bob, [deadlock]), meeting, 5).

entry_called(caller(bob, [deadlockl),
callee (cindy, [deadlock]),meeting, 6}.

rendezvous_started(caller (bob, [deadlock]},
callee (cindy, [deadlock]),meeting, 7).

entry_called(caller(cindy, [deadlock]),
callee(al, [deadlock]) ,meeting, 8).

program_ended{(deadlock,9).

now(9%) .

Figure 6-4: Trace Database of Cyclic Deadlock Program

113

/**/

/* Usage: cyclic(T). */
/* where T is a functor: task (Name,ContextList) */
/* T need not be instantiated. */
/* 1. A task that calls itself deadlocks. x/
/* 2. A cyclic path of calls deadlocks. */
Y B et e e et e Lo/
/* Note: If a rendezvous never reached completion, */
/* then it "ended" at program termination. */

/**/
cyclic (X} 1=

then {Then},

now (Now) ,

transcalls (X,X,Then. .Now,Now) .

/**[

/* X made an entry call to 2Z during time interval Ti. *x/
/* If X=Z then no rendezvous can have occurred, i.e., */
/* Z was still "busy." Thus, there is no need to check for an */
/* "absence™ of rendezvous. */

/**/

transcalls(task(X,RX),task(Z,R2Z),T1,_) -
entrycall(caller(X,RX),callee(2,R2),_,_,Etime),
Etime during TI1,!.

/**************t***/

/* X made an entry call to Y during Tl, and a rendezvous */
/* between X and Y started during time interval T2, */
/* but was never completed. */
/* There is a path of entry calls from Y to 2. */

/**/

transcalls(task(X,RX),task(Z,RZ),T1l,Now) i-
entrycall (caller(X,RX),callee(Y,RY),E1l,_,Etime)},
rendezvous (caller (X,RX),callee(Y,RY),ELl,_,T2),
T2=_..Now, T2 after Etime,

Etime during T1,
transcalls(task(Y,RY),task(Z,RZ),T2,Now).

Figure 6-5: Prolog Rules for Detecting Cyclic Deadlock

114

6.5.1. Implementation

The sample Program in Figure 6-6 shows a simple exampie of a serializability error. |n thig example, a
shared variable, X, is assigned an incorrect final value because task T1 reads X at the start of a

6.5.2. Trace Database

Figure 6-8 shows a trace database that wag generated by the Lost Update program.

6.5.3. Trace Analysis

We have chosen to diagnose non-serializability by applying concurrency control concepts from the
database fisld {Ret. 132, 133, 134). If we make the assumption that whenever a task updates a shared
variable, X, it has Previously read X i» then the following query detects a serializability error-

Is there a cycle of tasks, To.Tp.1, Such that
for each i

T accesses (sither reads or writes) some shared variable, X I
- before T 1(mod n) Writés on X"

6.6. The Stenning Protocol

In this section we present a problem in communication protocols. This problem is drawn from
Stenning's simplified data-transfer protocol. Hailpern and Owicki verified the liveness properties of this
protocol by using temporal formulas and history variables (Ref. 78).

reordered, duplicated, or lost. Although the interprocess communication is unreliable, the protocol
ensures that messages are delivered in the Correct order. Two buffer processes synchronize
communication: a message buffer and an acknowledgment buffer. A Sequence number is attached to
each message to maintain its ordering. The message is repeated until an acknowledgment is received.

6.6.1. Implementation

Wae implemented the simplified Stenning’s protocol using one task for each of the four processes.
Figure 6-9 shows the Ada code for the body of the producer task. Figure 6-10 shows the Ada code for
the consumer tagk body. Figure 6-11 shows the specification of the buffer tasks. Each buffer queues
messages received. The Queuing operations are in g package that is hidden from the consumer and
producer tasks.

115

with TEXT_I0; use TEXT IO;
procedure MAIN is
X : INTEGER:= 0;
task T1 Is
entry E{(A_WHILE: DURATION);
end T1;
task T2 Is
entry E;
end T2;
task c1; task c2;
task body T1 Is
begin
loop
select
accept E (A_WHILE: DURATION) do
It X < 1 then
delay A_WHILE;
X :=m X + 1;
put_line ("X = " & INTEGER'IMAGE(X});
end If;
end E;
or
terminate;
end select;
end loop;
end T1;
task body T2 Is
bagin
accept E do
if X < 1 then
X :=X + 1;
put_line ("X = " § INTEGER'IMAGE(X)};
end if;
end E;
end T2;
task body C1 Is
begin
T1.E(50.0);
end C1;
task body c2 Is
begin
T2.E;
and c2;
begin
null;
end MAIN;

L A i T Y i A b ok o e o o e o e . o T T T T 2 2] e o e o o o

Begin Ada exacution

X= 1
X = 2
Execution complete

Figure 6-6: Ada Program Exhibiting Lost Update

116

symbol(Nama, Declarative Context, Usage).

symbol(main,[],subprogram_name).
symbol(e,[tl,main],entry_name).
symbol(cl,[main],object_name(task_type,anonymous,[main]).

symbol(a_while,[e,loop_namel,tl,main],
object_name(real_type_definition,duration,[])).

symbol(c2,[main],object_name(task_type,anonymous,[main])).
symbol(e,[t2,main],entry_name).
symbol(loop_namel,[tl,main],loop_pame).
symbol(tl,[main],object_name(task_type,anonymous,[main])).
symbol(t2,[main],object_name(task_type,anonymous,[main])).

symbol (x, [main],
object_name(integer_type_definition,integer,[])).

Figure 6-7: Symbol Table of Lost Update Program

117

then (0).
task_activated(task(c2,[main]),l).
task_activated(task(tE,[main]),2).
task_activated(task(tl,[main]),3).
task_activated(task(cl,[main]),4).
entry_called(caller(cz,[main])'callee(t2,[main]),e,S).
ready_to_terminate(task(tl,[main]),S).
entry_queue_lengthened(caller(c2,[main]),callee(t2,[main]),e,5).
entry_called(caller(cl,[main]),callee(tl,[main]),e,7).
entry_queue_lengthened(caller(cl,[main]),callee(tl,[main]),e,?).
rendezvous_started(caller(c2,[main]),callee(t2,[main]),e,a).
entry_queue_shortened(caller(c2,[main]),callee(tz,[main]),e,e).
rendezvous_started(caller(cl,[main]),callee(tl,{main]),e,Q).
entry_queue_shortened(caller(cl,[main]),callee(tl,[main]),e,9).
var_read(variable(x,[main])r[e,t2,main],0,10).
var_read(variable(x,[main]),[e,loop_namel,tl,main],0,11).
var_read(variable(x,[main]),[e,t2,main],0,12J.
var_updated(variable(x,[main]),[e,t2,main],1,13).
rendezvous_completed(caller(02,[main]),callee(t2,[main]),e,14).
var_read(variable(x,[main]),[e,loop_namel,tl,main],l,15).
task_completed(task(cz,[main]),lS).
task_completed(task(t2,[main]),l?).
var_updated(variable(x,[main]),[e,loop_namel,tl,main],2,18).
rendezvous_completed(caller(cl,[main]),callee(tl,[main]),e,lQ).
task_completed(task(cl,[main]),20).
ready_to_terminate(task(tl,[main]),21).
program_ended{main,22),

now{22).

Figure 6-8: Trace Database of Lost Update Program

118

Loss of messages is simulateq using a timed entry calil, Although Ada permits Specifying a section of
code to be exacuted following a canceled entry call, oyr implementation assumes that the Producer is net
notified of "logt Messages. Instead, the producer repeats g message until itg acknowledgment is
receivad,

6.6.3. Trace Analysis
Table 6-1 shows the Prolog rules that we use for extracting slices from the trace database generated
by this program. In these rules we use the predicate pairlist/3:

pairiist(L‘l,LZ,La) The list [X, Y] is the ith member of list L3 # X is the ith member of list L1 and v is the
ith member of figt L2,

Forexample:
pairlist([a,b.CJ, (d,e, £], ((a,d], [(b,e], [c,£]]).

The input/output history of the acknowledgment buffer consists of Séquence numbers and the
acknowledgment message "ack.”

6.7. Taxi Service

119

task body PRODUCER is
ACK,
MSG : ITEM;
MSG_AVAILABLE,
TIMED_QUT : BOOLEAN;
ACKNO,
WAITING_FOR_ACK,
HIGHEST_SENT : INTEGER;
begin
TIMED_QOUT := FALSE;
WAITING_FQR_ACK := 1;
HIGHEST_SENT := 0;

L1: loop
it HIGHEST_SENT < WAITING_FOR_ACK then
HIGHEST_SENT := HIGHEST_SENT + 1;
12: loop
begin
put_line ("Enter 3-character message.");
get (MSG) ;
put_line ("The message entered was " & MSG);
exit L2; == valid input received
exception
when END_ERRCR => exit Ll; -- eof
when DATA_ERROR =>
put_line("Invalid input. Try Again.");
end;
end loop LZ;
select
MSG_BUFFER.SEND {HIGHEST_SENT, MSG):
or
delay 15.5;
end select:
TIMED_QUT := TRUE;
end Iif;

Figure 6-9: Stenning Protocol: Producer Task

120

ACK_BUFFER.EXISTS (MSG_AVAILABLE) ;
it MSG_AVAILABLE then
ACK_BUFFER.RECEIVE (ACKNO, ACK):
if ACKNO = WAITING_FOR_ACK then
TIMED_OUT := FALSE;
WAITING_FCR_ACK := ACKNO +1;
end if;
end if;
if TIMED_OUT then
select
MSG_BUFFER.SEND (HIGHEST_SENT, MSG);
or
delay 20.5;
end select:
end if;
end loop L1;
exception
when BUFFER_EMPTY =>
put_line ("Acknowledgement buffer empty."):
when BUFFER_OVERFLOW =>

put_line ("Message buffer overflowed."):
end PRODUCER;

Figure 6-9: Producer Task, concluded

121

task body CONSUMER is
MSG : ITEM;
MESSNO,
NEXT_REQUIRED,
LAST REQUIRED : INTEGER;
begin
NEXT_REQUIRED := 1;
loop
MSG_BUFFER.RECEIVE (MESSNO, MSG) ;
if MESSNO = NEXT_REQUIRED then

put_line ("The last message received was: ™);
put (MSG) ;

NEXT_REQUIRED := NEXT_REQUIRED + 1;
end if;

LAST_REQUIRED := NEXT REQUIRED -1;
ACK_BUFFER.SEND (LAST _REQUIRED, "ack"):

if M5G="eof" then -- assumes last msg sent is “eof"
exit;

end if;
end loop:

exception

when BUFFER_EMPTY => put_line("Message buffer empty.");
when BUFFER_OQOVERFLOW =>

put_line ("Acknowledgement buffer overflowed.");

end CONSUMER;

Figure 6-10: Stenning Protocol: Consumer Task

122

generic

type DATA is private;
package BUFFER_PACKAGE is

task MSG_BUFFER is
entry SEND (I : In NATURAL; bD. In DATA) ;

entry RECEIVE (I : out NATURAL; D: out DATA) ;
end MSG_BUFFER;

task ACK_BUFFER is
entry SEND (I : In NATURAL; D: in DATA) ;
entry RECEIVE (I . out NATURAL; D: out DATA) ;

entry EXISTS (AVAIL: out BOOLEAN) ;
end ACK_BUFFER;

BUFFER_OVERFLOW,
BUFFER_EMPTY : exception;

end BUFFER_PACKAGE;

Figure 6-11; Stenning Protocol: Buffer Tasks

123

English
Description

Input history
of the producer

Qutput history
of the consumer

Input history
of the
message buffer

Qutput history
of the
message buffer

Input history

of the
acknowledgment
butfer

Qutput history

of the
acknowledgment
buffer

Table 6-1: Stenning Protocol: Slices of the Trace Database

Prolog
Description

bagof (V,

var _write(variable (msg, [producer, stenning]),

)X

bagof (V,

var _read(variable (msg, [consumar, stenningl),

-).Y).

bagof (v, antry_parm_ seat (s
callee (msg buffaer, []), send, i,

bagof {V, entry parm_ sat (—r
callea (msg buffar, {}),send, q,

bagof (V, entry_parm sat (s

-

Fvl

callee (msg_buffer, []), recaeive, i,

bagof (v, entry parm set (_,

callea (msg buffaer, [1),receive,q, _,

Pairlist(I,D,Beta).

bagof (V,entry parm saet(_r
callee(ack buffer, []), send, i,
bagof (V,entxy parm _sat (_,

—V,

callea(ack_buffer, [1),send,a,_,v,

pairlist(I,A,Dalta).

bagof (V,entry parm L_set (_,

callea(ack_buffaer, [1),receive,i, o

bagof (V,entry_parm _set {_,

callea (ack_buffer, (1), receive, A, —r

pairlist (I, A, Gamma) .

124

v, .1,

D).

v,).,

v,_),D},

2.0,

)IA)I

v,). 1),

v._),R),

—

6.7.1. Implementation

Appendix E shows the source listings for the taxi servi

Ce program. Table F-1 in Appendix F shows the
symbol tables generated by YODA for this program.

6.7.2. Trace Queries

The following queries are based on the Ada taxi service program:
1. Simple query. Get the first task that executed calls to entry CONNECT in task
SWITCH BOARD of MAIN.

- entry_called(Caller,

callee(switch_board,[main]),
connect,_,).

2, Query on ordering of events. Did a ren

dezvous complete between a CUSTOMER and the
SWITCH BOARD before any DISPATCH

ER executed an entry call to a TAX!?

7~ rendezvous_completed(caller(customer,_),
callee(switch_board,_),_,Rtime),
entry_called(caller(dispatcher,_),
callee(taxi,_),_,Etime),
Rtime > Etime.

125

7. SUMMARY AND EVALUATION

7.1. Conclusions

This dissertation hag presented the design and implementation of a knowledge-based debugging
system for use with concurrent programs written in the Ada Programming language. Trace queries have
been introduced to provide a high-level abstraction of program behavior based on an event stream.

We have extended Prolog to form queries about the dynamic behavior of Ada tasking programs. It has
been argued that Prolog provides a more appropriate formalism for trace information than the relational
database model. An interval-logic system, €, was introduced to express temporal relations over intervals.

Both system € and path expressions wers implemented as Prolog predicates. We proposed DCGs as an
approach to implementing path expressions.

The flexibility and effectiveness of trace analysis has been demonstrated with a stand-alone, prototype
debugger for Ada, called YODA, that captures trace data by embedding the source with diagnostic output
statements to aid in debugging. Accumuiation of trace data into an historical database can provide a
resource for both monitoring and replaying program execution.

Evaluating candidate diagnoses was described as the process of testing assertions about integrity
constraints and consistency constraints on a database. YODA has been used successfully for
retrospective analysis of Ada programs to expose run-time ermrors associated with concurrency.

A taxonomy of program errors has been presented and suggested as a starting point for applying
expert-system technology to debugging. Generating candidate diagnoses was presented as the process
of interrogating a knowledge base of error descriptions and debugging strategies.

and execution history.

126

7.2. Open Problems

YODA can be integrated with a specific Ada programming support environment. Falis {Ref. 136)
describes some of the reguirements for an integrated Ada debugger, such as providing access to the
run-time task supervisor to query task priority and task status. One possibility in an integrated
environment would be to rely on the trace database for triggering conditional breakpoints, e.g., to set a
breakpoint when a cyclic deadlock has occurred.

This work opens many other avenues for research:

1. The need to capture trace information without perturbing program behavior opens areas for
future research in considering the options available in various computer architectures and
options for implementing Ada tasking on various operating systems. An interesting
research area is how to design mechanisms that minimize interference with timing-
dependent behavior.

2. The approach we have described rests on the use of Prolog for expressing queries;
however, natural language question-answering systems have been designed in Prolog
{(Ref. 24).

3. A trace database can be a resource for animation of program execution. The multi-level
views provided by a trace database could support a hierarchical view of program
visualization, allowing the user to view program behavior at an abstract level and 1o "zoom
in" on details of program execution and program structure. By filtering information captured
during execution, the trace database could support the visual display of abstractions of the
program behavior, such as the queuing of entry calls to Ada tasks.

4. Trace queries can be extended to incorporate fuzziness into queries. For example, in the
question: "Was task T1 terminated when task T2 called an entry in E1?", "when" can mean
an approximate time (within a certain interval.) On the other hand, ambiguity in queries
requires an understanding of the user. For example, "when" can mean immediately before,
immediately after, sometime before, or sometime after (Ref. 30).

127

(]

[2]

(3]

(4]

(5]

(6]

[7]

8]

(9]

[10]

[11]

[12]

(13]

REFERENCES

Brown, A.R. and Sampson, W.A.
Program Debugging: The Prevention and Cure of Program Errors.
Macdonald, London, 1973.

Neuman, P.G.
Letter from the Editor.
Software Engineering Notes 8(3):2-6, July, 1983.

Neuman, P.G.
Letter from the Editor: Risks to the Public.
Software Engineering Notes 10(2):4-11, April, 1985,

Model, M.L.

Monitoring System Behavior In a Complex Computational Environment.
PhD thesis, Stanford University, January, 1979.

(Published as Technical Report CSL-79-1, Xerox PARC).

Johnson, Mark Scott (editor).

Proceedings of the Software Engineering Symposium on High-Level Debugging.
ACM SIGSOFT/SIGPLAN, Pacific Grove, California, 1983,

(Pubiished as SIGPLAN Notices 18(8), August, 1983).

Zellwegger, P.T.

Interactive Source-Level Debugging of Optimized Programs.
PhD thesis, UC Berkeley, 1984,

{Published as Technical Report No. CSL-84-5, Xerox PARC).

Andrews, G.R. and Schneider, F.B.
Concepts and Notations for Goncurrent Programming.
Cornputing Surveys 15(1):3-44, March, 1983,

MacLaren, L.

Evolving Toward Ada in Real Time Systems.

in Proceedings of the Symposium on the Ada Programming Language, pages 146-155. ACM-
SIGPLAN , Boston, MA, December 8-11, 1980.

(Published as SIGPLAN Notices, 15(11), November, 1980).

Garcia-Molina, H., Germano, F. Jr., and Kohler, W.H.
Debugging a Distributed Computing System.
IEEE Trans. on Software Engineering SE-10(2):210-219, 1984.

Hoare, C.A.R.
Communicating Sequentia! Processes.
Communications of the ACM 21 (8):666-677, August, 1978.

ANSIMIL-STD 1815A.
Relerence Manual for the Ada Programming Language
U.S. Department of Defense, 1983.

Barnes, J.G.P.
Programming in Ada.
Addison-Wesley Publishers Limited, London, 1982.

Booch, G.
Software Engineering with Ada.
Benjamin-Cummings Publishing Company, 1983.

128

[14]

[15]

[18]

{17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

Goodenough, J.B.

The Ada Compiler Validation Capability.

In Proceedings of the Symposium on the Ada Programming Language, pages 1-8. ACM-
SIGPLAN , Boston, MA, December 9-11, 1980.

(Published as SIGPLAN Notices, 15(11), November, 1980).

Verdix Corporation.
Advertisement.
IEEE Software 2(4):81, July, 1985.

Taylor, R.N. & Osterweil, L.J.
Anomaly Detection in Concurrent Software by Static Data Flow Analysis.
IEEE Trans. on Software Engineering SE-6(3):265-277, May, 1980.

Fairley, R.E.
Debugging and Testing Support Environments.
SIGPLAN Notices 8:16-25, November, 1980.

Gatt, J.
A Debugger for Concurrent Programs.
Software -- Practice and Experience 15{6):539-554, June, 1985.

Clocksin, W.F. & Mellish, C.S.
Programming in Prolog.
Springer-Verlag, 1981.

Pereira, F. (Ed.).

C-Prolog User's Manual

Version 1.5 edition, Edinburgh Computer Aided Architectural Design, Department of Architecture
University of Edinburgh, 1984.

Colmerauer, A.

Metamorphosis Grammars,

In Bloc, L. (editor), Lecture Notes in Computer Science. Volume 63: Natural Language
Communication with Computers, pages 133-189. Springer-Verlag, 1978.

Gallaire, H.

Impacts of Logic on Databases.

In Proceedings of the 7th VLDB Conference, pages 248-259. VLDB , Cannes, France,
September, 1981.

Kowaisgki, R.
Logic for Problem Solving.
North Holland, New York, 1979,

Warren, D.H.D.

Efficient Processing of Interactive Relational Database Queries Expressed in Logic.

In Proceedings of the 7th VLDB Conference, pages 272-282. VLDB , Cannes, France,
September, 1981.

Kowalski, R.

Logic for Data Description.

In Gallaire, H. and Minker, J. (editor), Logic and Databases, pages 77-107. Plenum Press, New
York, 1978.

{Symposium on Logic and Data Bases, Centre d'Etudes et de Recherches de Toulouse, 1977).

Futo, L., Darvas, F., and Szeredi, P.

The Application of PROLOG to the Development of QA and DBM Systems.

In Gallaire, H. and Minker, J. (editor), Logic and Databases, pages 346-376. Plenum Press, New
York, 1978.

(Symposium on Logic and Data Bases, Centre d'Etudes et de Recherches de Toulouse, 1977).

129

(27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

(37]

[38]

(39]

[40]

Dahl, V.
On Database Systems Development Through Logic.
ACM Trans. Database Syst. 7(1}:102-123, March, 1982

LeDoux, C.H. and Parker, D.S. Jr.

Saving Traces for Ada Debugging.

In Barnes, J.G.P. and Fisher, G.A. Jr. {editor), Proc. Ada Int'ni. Conference 1985: Ada in Use,
pages §7-108. Cambridge University Press, Paris, France, May 14-186, 1985.

(Published as Ada Letters, Volume V, Number 2, September, October 1985).

Adrion, WR., Branstad, M.A., and Chermiavsky, J.C.
Validation, Verification, and Testing of Computer Software.
Computing Surveys 14(2):159-192, June, 1982,

Gauss, E.J.
The "Wolf Fence” Algorithm for Debugging.
Communications of the ACM 25(11):780, November, 1982,

Taylor, R.N.
A General Purpose Algorithm for Analyzing Concurrent Programs.
Communications of the ACM 26(5):362-376, May, 1983.

Yemini, 8. and Berry, D.M.
A Modular Verifiablg Exception-Handling Mechanism.
ACM Trans. on Prog. Lang. and Systems 7(2):21 4-243, April, 1985,

OS PL/ Optimizing Compiler: Programmer’s Guide
IBM, 1974,

Johnson, M.S.
A Software Debugging Glossary.
SIGPLAN Notices 17(2):53-70, February, 1982,

Medina-Mora, R. and Feiler, P.H.
An Incremental Programming Environment.
IEEE Trans. on Software Engineering SE-7(5):472-482, September, 1981.

Reference Manual for the Ada Programming Language
U.S. Department of Defense, 1980.
Proposed Standard Document.

Harter, P.K. Jr., Heimbigner, D.M., and King, R.

IDD: An Interactive Distributed Debugger.

In Proc. Fitth int'nl. Conf. on Distributed Computing Systens, pages 498-506. IEEE Computer
Society, Denver, CO, May 13-17, 1985.

Satterthwaite, E.H. Jr.
Source Language Debugging Tools.
PhD thesis, Computer Science Department, Stanford University, May, 1975.

Smith, E.T. .

Debugging Techniques for Communicating, Loosely-Coupled Processes.

PhD thesis, University of Rochester, December, 1981,

{Published as Technicai Report Number 100, University of Rochester, Department of Computer
Science).

Reiser, J.F.

BAIL: A Debugger for SAIL.

Technical Report STAN-CS-75-523, Stanford University Computer Science Department, October,
1975,

130

[41]

[42]

(43]

(44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

Weber, J.C.

Interactive Debugging of Concurrent Programs.

In Proceedings of the Software Engineering Symposium on High-Level Debugging, pages
112-113. ACM SIGSOFT/SIGPLAN, Pacific Grove, California, March, 1983,

(Published as SIGPLAN Notices 18(8), August, 1983),

Gramlich, w.C.

Checkpoint Debugging.

In Proceedings of the Software Engineering Symposium on High-Level Debugging. ACM
SIGSOFT/SIGPLAN, March, 1983.

Appeared as a position Paper in Preliminary Proceedings (not in press).

Ada Source Code Debugger Reference Manual
Rolm Corporation, 1983,

Standigh, T.A. and Taylor, R.N.

Arcturus: a Prototype Advanced Ada Programming Language.

In Proceedings of the Software Engineering Symposium on Practical Software Development
Environments, pages 57-64. ACM SIGSOFT/SIGPLAN, Pittsburgh, PA, April 23-25, 1984,

{Published as SIGPLAN Notices 19(5), May, 1984).

Brindle, A.F., Taylor, R.N., and Martin, D.F.

A Debugger for Ada Tasking.

Aerospace Report ATR-85(8033)-1, The Aerospace Corporation, El Segundo, CA, September,
1985.

Luckham, D.C., Larsen, H.J., Stevenson, D.R., and von Henke, F.W.

ADAM - An Ada based Language for Multi-Processing.

Technical Report STAN-CS.81 -867, Stanford University Department of Computer Science, July,
1981,

German, S.M., Heimbold, D.P., and Luckham, D.C.

Monitoring for Deadlocks in Ada Tasking.

In Proceedings of the AdaTEC Conference on Ada, Pages 10-25. ACM SIGPLAN October,
1982,

Helmbold, D. and Luckham, D.

Debugging Ada Tasking Programs.

In Proc. of the 1984 Conf. on Ada Applications and Environments, pages 96-105. IEEE Computer
Society , October, 1984.

German, S.M.
Monitoring for Deadlock and Blocking in Ada Tasking.
IEEE Trans. on Software Engineering SE-1 0(6):764-777, 1984.

Sheil, B.A.
The Psychological Study of Programming.
Computing Surveys 13(1):101-120, March, 1981,

Shneiderman, B.
Exploratory Experiments in Programmer Behavior.
Int. J. Computer int. Sci. 5:123-143, 1976.

Rich, C. and Waters, R.C.
Abstraction, Inspection and Debugging in Programming.
Technical Report 634, M.I.T. Al Laboratory, June, 1981.

Soloway, E., Ehrlich, K., Bonar, J., and Greenspan, J.
What Do Novices Know About Programming?.
Research Report 218, Yale University Department of Computer Science, January, 1982.

131

[54]

[55]

[S6]

(37]

(58]

(59]

[60]

(67]

(62]

[63]

[64]

[65]

Ehrlich, K. and Soloway, E.
An Empirical Investigation of the Tacit Plan Knowledge in Programming
Research Report 236, Yale University Department of Computer Science, April, 1882.

Snodgrass, R.

Monitoring Distributed Systems: A Refational Approach.

PhD thesis, Carnegie-Mellon University, December, 1982.

(Published as Technical Report CMU-CS-82-154, Department of Computer Science, Carnegie-
Mellon University).

Powell, M.L. and Linton, M.A.

A Database Model of Debugging.

In Proceedings of the Software Engineering Symposium on High-Level Debugging, pages 67-70.
ACM SIGSOFT/SIGPLAN , Pacific Grove, California, March, 1983.

(Published as SIGPLAN Notices 18(8), August, 1983).

Linton, M.A.

Implementing Relational Views of Programs.

In Proceedings of the Software Engineering Symposium on Practical Software Devsiopment
Environments, pages 132-140. ACM SIGSOFT/SIGPLAN , Pittsburgh, PA, April 23-25, 1984,

(Published as SIGPLAN Notices 19(5), May, 1984).

Shapiro, E.Y.

Algorithmic Program Debugging.

PhD thesis, Yale University, May, 1982.

(Published as Technical Report Number 237, Yale University Department of Computer Science.

Shapiro, D.G.

Sniffer: a System that Understands Bugs.

Master's thesis, M.I.T., June, 1981.

(Published as Technical Report Number 638, M.LT. Al Lab).

Sedimeyer, R.L., Thompson, W.B., and Johnson, P.E.

Knowledge-Based Fault Localization in Debugging.

In Proceedings of the Software Engineering Symposium on High-Level Debugging, pages 25-31,
ACM SIGSOFT/SIGPLAN, Pacific Grova, California, March, 1983,

(Published as SIGPLAN Notices 18(8), August, 1983).

Hanson, S.J. and Rosinski, R.R.
Programmer Perceptions of Productivity and Programming Tools.
Communications of the ACM 28(2):180-189, February, 1985.

Gould, J.D.
Some Psychological Evidence on How Peopie Debug Computer Programs.
Int. J. Man-Machine Studies 7:151 -182, 1975.

Ostrand, T.J. and Weyuker, E.
Collecting and Categorizing Software Error Data in an Industrial Environment.
Technical Report 47, New York University Courant Institute, 1982.

Garcia, M.E. and Berman, W.J.

An Approach to Concurrent Systems Debugging.

In Proc. Fifth Int'ni. Conf. on Distributed Computing Systems, pages 507-514. |EEE Computer
Society, Denver, CO, May 13-17, 1985.

Sajkowski, M.

Protocol Verification Techniques: Status Quo and Perspectives.

In Yemini, Y., Strom, R., and Yemini, S. (editor), Proc. Fourth Int'ni Workshop on Protocol,
Specification, Testing, and Verification, pages 697-720. IFIP, Elsevier Science Publishers
B.V. (North-Holland Publishing Company), Skytop Lodge, Pennsyivania, 1985.

132

(6]

[67]

(e8]

[69]

[70]

[71]

[72]

[73]

{74]

(78]

(76}

[77]

Pnueli, A.

The Temporal Semantics of Concurrent Programs.

In Goos, G. and Hartmanis, J. {editor), Proc. International Symposium on Semantics of
Concurrent Computation, pages 1-20. Springer-Verlag, Evian, France, July 2-4, 1979.

(Published as Lecture Notes in Computer Science, New York).

Lamport, L.

"Sometime"” is Sometimes "Not Never": On the Temporal Logic of Programs.

In Conf. Record of the 7th Annual ACM Symp. on Principles of Programming Languages, pages
174-185. ACM, Las Vegas, Nevada, January, 1980.

Chen, B. and Yeh, R.T.
Formal Specification and Verification of Distributed Systems.
IEEE Trans. on Software Engineering SE-9(6):710-721, November, 1983.

Pnueli, A.

The Temporal Logic of Programs.

In Proc. of the 18th Annual Symposium on Foundations of Computer Science, pages 46-57. |EEE
Computer Society, Providence, Rhode Island, October 31 - November 2, 1977.

Schwartz, R.L. and Melliar-Smith, P.M.

From State Machines to Temporal Logic: Specification Methods for Protocol Standards.

tn Sunshine, C. (editor), Proc. Second int’ni Workshop on Protocol, Specification, Testing, and
Verification, pages 3-19. IFIP, North-Holland Publishing Company, Idytiwild, Cafifornia, May
17-20, 1982.

Schwartz, R.L., Melfiar-Smith, P.M., and Vogt, F.H.

An Interval-Based Temporal Logic.

In Clarke, E. and Kozen, D. (editor), Proc. Logics of Programs, pages 443-457. Springer-Verag,
1983.

(Published as Lecture Notes in Computer Science, New York).

Moszkowski, B. and Manna, Z.

Reasoning in Interval Temporal Logic.

Research Report STAN-CS-83-969, Stanford University, Department of Computer Science, July,
1983.

Shasha, D.E., Pnueli, A., and Ewald, W.

Temporal Verification of Carrier-Sense Local Area Network Protocols.

In Conf. Record of the 11th Annual ACM Symposium on Principles of Programming Languagss,
pages 54-65. ACM, Salt Lake City, Utah, Jan. 15-18, 1984,

Campbell, R.H. and Habermann, AN.

The Specification of Process Synchronization by Path Expressions.

In Goos, G. and Hartmanis, J. (editor), Lecture Notes in Computer Science, pages 83-102,
Springer Verlag, New York, 1974,

Habermann, A.N.
Path Expressions.
Technical Report, Carnegie-Mellon University, June, 1975.

Peterson, J.L..
Petri Net Theory and the Modeling of Systems.
Prentice-Hall, Inc., Englewood Clitfs, N.J., 1981,

Burstall, R.M.
Formal Description of Program Structure and Semantics of First Order Logic.
In Meltzer, B. and Michie, D. (editor), Machine Intelligence, pages 79-98. Edinburgh, 1970.

133

(78]

[79]

[80]

(81]

[82]

{83]

[84]

[85]

(86]

[87]

(88]

[89]

Hailpern, B.T. and Owicki, S.
Modular Verification of Computer Communication Protocols.
Research Report RC 8726 (#38174), IBM Thomas J. Watson Research Center, March, 1981,

Wolper, P,

Specification and Synthesis of Communicating Processes Using an Extended Temporal Logic
(Preliminary Version).

In Conf. Record of the Sth Annual ACM Symposium on Principles of Programming Languages,
pages 20-33. ACM, Albuquerque, New Mexico, January 25-27, 1982.

Manna, Z. and Wolper, P.
Synthesis of Communicating Processes from Temporal Logic Specifications.
ACM Trans. on Programming Languages and Systems 6(1):68-93, January, 1984,

Karp, R.A.
Proving Failure-Free Properties of Concurrent Systems Using Temporal Logic.
ACM Trans. on Programming Languages and Systems 6(2):239-253, 1984.

Schwabe, D. and Cavalli, A.R.

Temporal Logic Specification of a Virtual Ring LAN Access Protocol.

In Yemini, Y., Strom, R., and Yemini, S. (editor), Proc. Fourth Int'nl Workshop on Protocol,
Spacification, Testing, and Verification, pages 73-91. IFIP, Elsevier Science Publishers B.V.
(North-Holland Publishing Company), Skytop Lodge, Pennsylvania, 1985.

Emerson, E.A. and Sistla, A.P. .

Deciding Branching Time Logic: A Triple Exponential Decision Procedure for CTL".

In Clarke, E. and Kozen, D. (editor), Proc. Logics of Programs, pages 176-191, Springer-Verlag,
1983.

(Published as Lecture Notes in Computer Science, New York).

Emerson, E.A. and Lei, C.

Modalities for Model Checking: Branching Time Strikes Back.

In Cont. Record of the 12th Annual ACM Symp. on Principles of Programming Languagses, pages
84-96. ACM, January, 1985.

MclLean, J.

A Complete System of Temporal Logic for Specification Schemata.

In Clarke, E. and Kozen, D. (editor), Proc. Logics of Programs, pages 360-370. Springer-Verag,
1983.

(Published as Lecture Notes in Computer Science, New York).

McDermott, D.
A Temporal Logic for Reasoning About Processes and Plans.
Cognitive Science 6:101-155, 1982,

Allen, J.F.
Maintaining Knowledge About Temporal Intervals.
Communications of the ACM 26(11):832-843, November, 1983.

Allen, J.F. and Hayes, P.J.

A Common-Sense Theory of Time,

In Proc. Ninth int'nl Joint Conf. on A.L, pages 528-531. IJCAI, Los Angeles, California, 18-23
August, 1985.

Clifford, J. and Warren, D.S.
Formal Semantics for Time in Databases.
ACM Trans. on Database Systems 8(2):214-254, June, 1983.

134

[90]

[91]

[92]

[93]

[94]

(93]

[96]

197

(98]

[99]

(100]

[101]

[102]

Yip, K.M.

Tense, Aspect and the Cognitive Representation of Time.

In Proc. Ninth Int'nf Joint Conf. on A.l., pages 806-814. IJCAI, Los Angeles, California, 18-23
August, 1985.

Tumer, R.

Temporal Logic in Artificial Intelligence.

Logics for Artificial Intelligence.

Ellis Horwood Limited, University of Essex, 1985, Chapter 6.

Lauer, P.E., and Campbell, R.H.
Formal Semantics of a Class of High-Level Primitives for Coordinating Concurrent Processes.
Acta Informatica 5:297-332, 1975.

Gabbay, D., Pnuell, A., Shelah, S,, and Stavi, J.

On the Temporal Analysis of Fairness.

In Conf. Record of the 7th Annual ACM Symposium on Principles of Programming Languages,
pages 163-173. ACM, Las Vegas, Nevada, January 28-30, 1980.

Vogt, F.H.

Event-Based Temporal Logic Specifications of Services and Protocols.

In Sunshine, C. (editor), Proc. Second Int'nl Workshop on Protocol, Specification, Testing, and
Veerification, pages 63-73. IFIP, North-Holland Publishing Company, Idyllwild, California, May
17-20, 1982.

Rescher, N. and Urquhart, A.
Temporal Logic.
Springer-Verlag, New York, 1971.

Kamp, H.
On Tense Logic and the Theory of Order.
PhD thesis, University of California, Los Angeles, 1968.

Hughes, G.E. and Cresswell, M.J.
An Introduction to Modal Logic.
Methuen and Co. LTD, London, 19€8.

Nguyen, V., Gries, D, and Owicki, S.

A Model and Temporal Proof System for Networks of Processes.

in Conf. Record of the 12th Annual ACM Symposium on Principles of Programming Languages,
pages 121-130. ACM, Las Vegas, Nevada, January, 1985.

Ramamritham, K. and Keller, R.M.
Specification of Synchronizing Processes.
IEEE Trans. on Software Engineering SE-9{6):722-733, November, 1983.

Allen, J.F.

A General Model of Action and Time.

Technical Repert TR 87, Department of Computer Science, University of Rochester, November,
1881,

Holt, A.W. and Cormmoner.

Events and Conditions.

In Record of the Project MAC Conference on Concurrent Systems and Parallel Computation,
pages 1-52. ACM, Woods Hole, Massachusetts, June 2-5, 1970.

Andler, S.

Predicate Path Expressions.

In Conference Record of the Sixth Annual Symposium on Principles of Programming Languages,
pages 226-236. ACM, January, 1979.

135

[103]

[104]

[105]

[1086]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Plaisted, D. A,

A Low Level Language for Obtaining Decision Procedures for Classes of Temporai Logics.

In Clarke, E. and Kozen, D. (editor), Proc. Logics of Programs, pages 403-420. Springer-Verag,
1983.

(Published as Lecture Notes in Computer Science, New York).

Kroeger, F.
LAR: A Logic of Algorithm Reasoning.
Acta Informatica 8:243-266, 1977.

Lantz, KA., Gradischnig, K.D., Feldman, J.A., and Rashid, R.F.
Rochester's Intelligent Gateway.
Computer 15(10) '54-68, October, 1982,

Bruegge, B. and Hibbard, P.

Generalized Path Expressions: A High Level Debugging Mechanism.

In Proceedings of the Software Engineering Symposium on High-Leve! Debugging. ACM
SIGSOFT/SIGPLAN, March, 1983.

Appeared as a position paper in Preliminary Proceedings (not in press).

Bruegge, B.

Debugging Ada.

Technical Report CMU-CS-85-1 27, Department of Computer Science, Camegie-Mellon
University, May, 1985.

Lamport, L.
Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM 21 (7):558-565, July, 1978.

Curtis, R, and Wittie, L.

BugNet: A Distributed Applications Debugging System.

In Proceedings of the Software Engineering Symposium on High-Level Debugging. ACM
SIGSOFT/SIGPLAN, March, 1983.

Appeared as a position paper in Preliminary Proceedings (not in press).

Shankar, A.U. and Lam, S S.

Specitication and Verification of Time-Dependent Communication Protocols.

In Yemini, Y., Strom, R., and Yemini, S. {editor), Proc. Fourth int'ni Workshop on Protocol,
Specification, Testing, and Veerification, pages 215-226, IFIP, Elsevier Science Publishers
B.V. (North-Hoiland Publishing Company), Skytop Lodge, Pennsylvania, 1985,

Wittie, L. and Cuntis, R.

Time Management for Debugging Distributed Systems.

In Proc. Fifth Int'nl. Conf. on Distributed Computing System:s, pages 549-550, IEEE Computer
Society, Denver, CO, May 13-17, 198s5.

DeMillo, R.A., Lipton, R.J., and Periis, A.J.
Social Processes and Proofs of Theorems and Programs.
Communications of the ACM 22(5):271-280, May, 1979.

Gerhart, S.L. and Yelowitz, L.
Observations of Fallibility In Applications of Modern Programming Methodologies.
IEEE Trans. on Software Engineering SE-2(3):1 95-207, September, 1978,

Bates, P.C., Wileden, J.C., and Lesser, V.R.

A Debugging Tool for Distributed Systems.

Technical Report 82-34, Computer & Information Science Department, University of
Massachusetts at Amherst, December, 1982.

136

[115]

[116]

[117]

[118]

[119]

[120)

[121]

[122]

[123]

[124]

[125]

[126]

(127]

Bates, P.C. and Wileden, J.C.

An Approach to High-Level Debugging of Distributed Systems.

Technical Report 82-35, Computer & Information Science Department, University of
Massachusetts at Amherst, December, 1982,

Bates, P.C. and Wileden, J.C.

An Approach to High-Level Debugging of Distributed Systems.

In Proceedings of the Software Engineering Symposium on High-Level Debugging, pages 34-44,
ACM SIGSOFT/SIGPLAN, Pacific Grove, California, March, 1383,

(Published as SIGPLAN Notices 18(8), August, 1983).

Snodgrass, R.
Monitoring in a Software Development Environment: A Relational Approach.
In Proceedings of the Software Engi i i

Environments, pages 124-131. ACM SIGSOFT/SIGPLAN , Pittsburgh, PA, April 23-25, 1984,
{(Published as SIGPLAN Notices 19(5), May, 1984),

Hornsby, C. and Leung, CH.C.
The Design and Implementation of a Flexible Retrieval Language for a Prolog Database System.
ACM SIGPLAN Notices 20(9):43-51, September, 1985.

Kowalski, R,
Logic and Semantic Networks.
Communications of the ACM 22(3):184-192, March, 1979.

Pereira, C.N. and Warren, D.H.D.

Definite Clause Grammars for Language Analysis -- A Survey of the Formalism and a Comparison
with Augmented Transition Networks.

Artificial Intelligence 13:231-278, 1980.

Kean, D.
The Computer and the Countess.
Datamation :60-63, May, 1973.

Delauer, R.
Interim DoD Policy on Computer Programming Languages.
Memorandum. Washington, D.C., 1983,

Higher Order Languages
Department of Defense, Washington, D.C., 1983.
Draft DoD Directive 3405.1.

Charles, P. and Fisher, G.
A LALR(1) Grammar for '82 Ada.
Ada Letters 11(2):34-45, September, October, 1982.

Clancey, W.J. .

Classification Problem Solving.

Research Report STAN-CS-84-1018, Stanford University, Department of Computer Science, July,
1984.

Eggert, P.H.

Detecting Sofiware Errors Before Execution.

PhD thesis, Univ. of California, Los Angeles, April, 1981.

{(Published as Technical Report CSD-810402, Univ. of California, Los Angeles, Computer Science
Department).

Binder, R.

Application Debugging: An MVS Abend Handbook for COBOL, Assembly, PL/1, and FORTRAN
Programmers.

Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

137

[128]

[129]

[130]

[131]

[132)

[133]

[134]

[135]

[138]

Trachtenberg, M.
Order and Difficulty of Debugging.
IEEE Trans. on Software Engineering SE-9{6):746-747, November, 1983.

Shortliffe, E.H.
Computer-based medical consuftations: MYCIN.
American Elsevier, New York, 1976.

Sussman, G.J. and Staliman, R.
Heuristic Techniques in Computer Aided Circuit Analysis.
Technical Report 328, MIT Al Lab, 1975.

Bennett, J.S. and Hollander, R.
DART: An Expert System for Computer Fault Diagnosis.
IJCAI :B43-845, 1981.

Ullman, J.D.
Principles of Database Systems.
Computer Science Press, Potomac, Maryland, 1980.

Bernstein, P.A. & Goodman, N.
Concurrency Control in Distributed Database Systems.
ACM Computing Surveys 13(2):185-222, June, 1981.

Date, C.J.
The Systems Programming Series. Volume Il: An Introduction to Database Systems.
Addison-Wesley Publishing Company, Reading, Massachusetts and Menlo Park, California, 1983.

Booch, G.
Dear Ada.
Ada Letters 2(3):10..13, November, December, 1982,

Falis, E.
Design and Implementation in Ada of a Runtime Task Supervisor.
In Proceedings of the AdaTEC Conference on Ada, pages 1-§. ACM-SIGPLAN, October, 1982,

138

APPENDIX A

INTRODUCTION TO PROLOG
Prolog consists of two syntactical forms, called clauses:
facts Declarations about objects and their relationships, eq., "Thevalueofais 5"
rufes Definitions about objects and their relationships, e.g., "For any X, X is positive if Xis a

number and the vaiue of X is greater than zero."

Facts and rules constitute a Prolog database. A Prolog program is a database. Rules and facts may

also be interpreted as queries, i.e., questions about objects and their relationships, e.g., "Does there exist
an X such that X is positive?”

1. Basic Character Set

The basic character set of Prolog is divided into six categories:
1. uppercase letters
2. lowercase letters
3. digits
4. symbols, consisting of the following special characters:
+t - F SN =L - 7@ %5 &
5. other spacial characters:
U U I T Y B S
6. separators, including the Space character, tabulations, and the end of the line.

2. Comments

A comment can appear anywhere in a Prolog clause. A comment starts with a < /++ and ends with an
r */ L

3. Primitives

The primitive objects of Prolog are

1. variables Names denoted by words beginning with an uppercase letter or an
undertine. In particular, the variabie "' is termed an anonymous
variable.

2. atoms Names denoted by a sequence of characters. The name must be

enclosed in single quotes if the first character in the sequence is a digit,
an uppercase letter, or a special character in the category "other."
3. numbers Either integers or floating point numbers.

Atoms and numbers are, collectively, called constants.

139

4. Terms

The basic components of Prolog clauses are terms. A tem can be either a primitive object or a
compound term. In Prolog, the basic data structure is a compound term, which is also called a Structure.

The name of the functor is written either as a predicate, 8.9., * value {a,5) oras an operator, e.g.,
‘a is 57,

5. Operators

An operator is either unary or binary. It is defined by its name, position, precedence class, and
associativity. The position is infix, prefix, or postfix. The precedence class is @ number. The associativity
can be "left" or “right.”

Precedence and associativity determine the order in which adjacent operators are to be grouped in a
compound term. The precedence class of an operator is a number ranging from one to some large
number, e.g., 1200, (The range is implementation-dependent.) The lower the precedence class of an
operator, the higher is its precedence. Terms enclosed in parentheses are given a precedence class of
zero (the highest possible precedence).

It a term contains two or more adjacent operators having the same precedence, then the grouping is
determined by the associativity of the operators. For example, if * +* is left-associative (defined as yfx or
yh) then the expression:

a+b+c
is evaluated as though it were the following expression:
{a+b) +c
It s +r is right-associative (defined as xfy or fy), then the expression atb+c is evaluated as though it
were
a+ (b+c)
Associativity of operaters can be specified as invalid. For example, if the associativity of the operator not

is invalid (defined as xfx or xf), then the expression:
not not X

is illegal, although
not (not X)

is valid,

140

6. Lists

A listis an important data structure in Prolog. A list is either the atom [] 7, denoting the empty list, or
a compound term such that its first argument is the head of the list and its second argument is the tail of
the list. Lists can be written in several ways:

1. dotted notation, e.g., * . (a, . (b, (1)) ',
2. list notation, e.g., * [a,b]1”, Or
3. a list notation that separates the head and tail of a list with a vertical bar, e.g., * [a|b]"’.

Strings are lists of ASCH character codes enclosed in double quotes, for example:
"hello"™

7. Variables

Variables are names that can be instantiated to parlicular objects. The instantiation occurs when

Prolog matches a tact to a question. For example, suppose the database contains the following fact:
value(a,5).

read, "The value ot ais 5."

On answering the question:
?~ value(X,5).

read, "Does there exist an X such that its value is 57", the variable X will become instantiated to a.

Facts and rules can also contain variables, e.g.,
pesitive(X) :- value(X,N}, integer(N), N>0,.
This rule can be read as "For any X and N, if the value of X is N, N is an integer, and N is greater than
zero, then X is positive.” The scope of a variable is limited to a single clause. If a variable becomes
instantiated, all occurrences of the variabls in the clause become instantiated to the same object.

8. Backtracking

When a question is asked, Proleg will search through its database to match facts to the goals in the
question. The database is searched top-down (i.e., in the order in which clauses were entered). f a
match is found to the first goal, then Prolog sets a marker to that goal's place in the database and
attempts to satisfy each successive goal. A goal fails {is not satisfied) if the information in the database is
insufficient to show the fact is true. If all the goals can be satistied, Prolog will respond “yes”; otherwise, it
will respond "no.”

For each goal, Prolog starts its search at the beginning of the database and sets a place marker if the
goal becomes satisfied. If a goal fails, then Prolog attempts to re-satisfy the previous goal, by resuming
its search from the previous goal's place marker. This behavior of re-satisfying goals is termed
backtracking.

141

9. Defining Predicates and Operators

In Prolog, programmers can define new functors -- both predicates and operators. Any legal atom is a
valid name for a functor. The system defines a standard set of commonly-used functors. A few examples
are:

read, write, is, not, +, =, = '/, and ";’
The 7,7 is an infix operator separating conjunction of goals; the * ; is an infix operator separating
disjunction of goals.

Redefining system predicates is prohibited, but redefining system operators is permitted. The op
functor is a special predicate used in defining operators, e.g.,
:—op {240, xfx, newop) .

Here, 240’ specifies the precedence class of newop, and xfx specifies its associativity.

10. Syntax

We describe Prolog syntax using the Prolog grammar-rule notation, called the Definite Clause
Grammar (DCG) form (Ref. [120]). This notation is reminiscent of the Backus-Naur form; i.e., grammar
rules consist of a syntactic category (also called a nonterminal), foliowed by an arrow, followed by
sequences of synfactic categories and terminals. DCGs generalize normal context-free grammars;
however, since they allow nonterminals to carry variables, they operate essentially as attribute grammars.

In DCGs, the foliowing conventions apply:
1. Lowercase words denote syntactic categories,

2. Square brackets enclose terminals. In particular, the empty list (* []’) denotes the nuil
string.

3. Terminals are denoted by Prolog atoms. {They may be enclosed in single quotes.)
4. A comma separates adjacent items in a sequence.

5. A semicolon separates alternative items and has lower precedence than a comma. We
have defined the selection operator ¥ | * to replace the semicolon.

6. Each rule ends with a full stop (- .’)

The Prolog syntax presented here is drawn from descriptions in the literature (Ref. [19, 20)).

program —=> sequence_cof_clauses.
sequence_of_clauses -=> clause |

clause, sequence_of_clauses.
clause ==> query | positive_clause.
positive_clause -— fact | rule.
query ==> ['?-'1, beody, ['.’].
fact ==> head.
rule -=> head, [’':-'], body, ['.7].
head --> literal.
body ——> sequence_of_goals |

sequence_of_goals, [’;’],
sequence_of_goals |

142

[" ("1, sequence_of_goals, {’;']
sequence_of_goals, ["}'].

sequence_of_goals --> goal |
goal, [’ ,’],sequence_of_goals |

{*("l,go0al,[',"],
sequence_of_goals, [")’].

goal --> literal |
{7("), literal, ["}'].

literal --> atom | variable | compound term |
[*(*]1,1literal, [")}"].

term -=-> variable |
constant |

compound_term |
[“{'],term, [")"].

constant -=-> atom | number.
compound_term --> predicate, [’ ('],
sequence_of_arguments, [‘)’] |

argument, infix_operator,argument |
prefix_operator, argument |

argument, postfix_operator.

infix operator -=-> operator.
prefix operator --> operator.
postfix_operator -=-> operator.
predicate —-->» functor_name.
operator -—> functor_name.
functor_name --> atom.
sequence_of_arguments --> argument |

argument, [',’],
sequence_of_arguments.

argument -=> term.

143

APPENDIX B
CONVERTING PATH EXPRESSIONS TO DCGS

/**/

/* usage: path_expression(FileE,S,D,DCGFile). */

/* FileE is the name of a file containing a */
/* path expression and x/
/* DCGFile is the name of a file to which the */
/* DCGs will be written. */
/* */
/* Parses the expression and builds the */
/* DCGs for matching against event sequences. */

/**/

path_expression(InFile,Source,DCG,DCGEile) H
cat (InFile),
see({InFile), !,

pscan(Source}, /* 3cans a path expression */
seen,
gensym(node,NT), !, /* get first node for DCGa */

expression(NT,[],OldDCG,Source,[]),
/* add rule to head: nodel --> [],#/
append([rule(",NT,”)],OldDCG,DCG),
tell(DCGFile),
inlist (DCG), /* Saves DCGs for queries */
told.

cat (File) :- see (File),
’ nl,
repeat,
get0 (X),
(endfile(X):putO(X),fail),
seen.

putf{X) : - name (&, [X]|{]]), /*get0 converts to ascii code */
write(a),

expression(NT,OldDCG,DCG) -=> path(NT,NT,OldDCG,DCG),[’$’].

path(Left,Right,OldDCG,NewDCG) -
[path],
element(E,Left,Right,S,OldDCG,DCGl),
cycle,
alternate(A,Left,Right,S,DCGl,DCGZ),
sequence(S,Right,DCGZ,DCG3),
[end] ’
{append(DCGB,[rule(E,A,S)],NewDCG)};!.

sequence(NewNT,Right,OldDCG,NewDCG) -—>
E'-"]l
{genaym(node,NewNT)},
element(E,NewNT,Right,S,OldDCG,DCGl),
cycle,
alternate(A,NeHNT,Right,S,DCGl,DCGZ),
sequence(S,Right,DCGz,DCGB),
{append([rule(E,A,S)];DCG3,NewDCG)},!.

Sequence (NT,NT, DCG,DCG) --> [].

144

alternate(_,Left,Right,S,OldDCG,NewDCG) _—
(’r"1,
element(E,Left,Right,S,OldDCG,DCGl),
cycle,
alternate(A,Left,Right,S,DCGl,DCG2),
{append(DCGZ,[rule(E,A,S)],NewDCG)},!.

alternate(NT,NT,_,_,DCG,DCG) —-=> [].

element(E,Left,Right,S,OldDCG,NewDCG) —_—>
741,
element(E,Left,Right,S,OldDCG,DCGl),
cycle,
alternate(_,Left,Right,S,DCGl,DCG2),
sequence(_,Right,DCGZ,NewDCG),
('rr1.

element(E,_,_,_,DCG,DCG) --> [E], {recorded(is_element,E,“)},!.
cycle - [r*],

{remove“sym(node,N}},!.
cycle - [1.
/*********************t**********************************/
/* gensym generates unique */
/* names for non-terminals */
/***t********/
gensym(X, Y) e

getnum (X, N},
name (X, NameX) ,
integer_name(N,NameN),
append (NameX, NameN, NameY) ,
name (Y, NameY) .

getnum (X, N} e /*this name encountered before */
retract (current_num{X,Numl)}), !,
N is Numl + 1,
asserta{current_num(X,N)).

getnum(X, 1) i- /* first time */
: asserta (current_num(X,1)).

remove_sym(X,N) i~ /*remove a symbol */
retract(currentwnum(x,Numl}),!,
N is Numl - 1,
asserta(current_num(X,N)).

remove_ sym(X,1). /* no symbols to remove */
/* convert from integer to list of characters */
integer_name(I,L) :- integer_name (I, [],L).
integer_name(I,Sofar,[ClSofar]) :-

I<10,!, C is I+48.
integer_name (I, Sofar,1) r-

Tophalf is I/10,

Bothalf is I mod 10,

C is Bothalf+48,
integer_name(Tophalf,[CISofar],L).

append([],L,L).
append ([X|L1],L2, [X|L3]):~
append(Ll1l,L2,L3).

145

/**/

/* inlist (X)

/* where X is a list of DCGs

/* Writes each rule in either of the
/* following forms:

/* nodel --> [].

/% nodel --> [a], node2.

*/
*/
*/
*/
*/
*/

/**/

inlist([]). /* end of list */

inlist{[rule(E,A,S)|T]) :-
write(a),
write{(’ --> ["),
write(E),
write ('}’
testNT(S)
write(’ .’
nl,
inlist{T).

testNT({"").
testNT(8) :— write(’, 7), write(S).

e
4
r

146

APPENDIX C

ADA PARSER
/**/
/* Top-Down Parser for ANSI Ada ‘83 */
/* */
/* &n Ada program is arbitrarily */
/* defined to be a sequence of */
/* compilation units, followed by an */
/* eof marker (designated as a *$'). */
/* */
/* Changed some things to aveid */
/* conflict with Prolog, e.g.,: */
/* */
/* Uppercase letters are converted to */
/* lowercase. */
/* */
/* Bdded a rule for an apostrophe */
/* character. */
/* */
/* Changed name of syntactic category: */
/* name => a_name */

/******************t*********************/

parse(File, Source,ParseTree) :-
cat {(File),
see(File),!,
scan(Source),
seen, !,
program(ParseTree, Source, []) .

program{program{C)) ——> compilation{(C),["$'].

/* apostrophe */
an_apostrophe (N) -=-> [N], {name(N, [39])}.
f* 2.3 */

identifier (identifier(I)) --> [I1,
{recorded(is_identifier,I,)},!.

/* 2.4 */
numeric_literal (numeri¢_literal (N}) -->

(N], (recorded{is_numeric_literal,N,_}},!.
/* 2.5 */

character_literal (character_literal(N)) -->
[N], (recorded{is_character_literal,N,)},!.

/* 2.6 */
string_literal (string_literal({(S)) -->
[N],
{recorded(is_string_literal,N,_),name(S,N)},!.

/* 2.8 */
pragma (pragma (pragma,I,R)}) -->
[pragmal, identifier(I), rest_pragma (R} .

rest_pragma (rest_pragma(’ ;")) > [";'].

rest_pragma(rest_pragma(’ (‘',B,L,"):")) -——>
[7{’],argument_association(n),
argument_association_list (L), [")",":"].

argument_association_list (argument_association_list("")) --> [].
argument_association_list (argument_association_list(’,’,A,L)) -->
[,”],argument_association(A),argument_association_list (L).

147

argument_association({argument_association(I,’=>",E)) =«>
identifier(I), [’'=',"'>'],expression(E).

argument_association(argument_assoclaticen(E)) -—>
expression(E).

/* 3.1 */

basic_declaration(basic_declaration(D)) —_—
chject_declaration(D); number_declaration (D) :
type_declaration(D); subtype_declaration(D);
subprogram_declaration (D) ; package_declaration(D);
task_declaration(D); generic_declaration(D);
exception_declaration(D); generic_instantiation(D);
renaming_declaration (D).

/* 3.2 */

object_declaration{object_declaration(L,’:’,C,R)) -—>

identifier list(L),{":"]1,constant_option(C),
rest_object_declaration(R).

rest_object_declaration(rest_object_declaration(T,I,";’)) -=>
{(constrained_array definition(T),
initialize_option(I),[":"]1):
{subtype_indication(T),
initialize_cption{I},[’:"1).

constant_option(constant_option{constant)) -=> [constant].
constant_option(constant_ocption(’’)) =-=> [].
initialize_option(initialize option(’ :=",E})) —=>
[f:7,"='],expression(E).
initialize_opticon(initialize_opticen(*’}) -=> [].

number_ declaration (number_declaration(L,’: constant :=/,E,’;"}) ==>
identifier_list (L),
[":",constant,’:’,’'="],
expression(E),[":"].

identifier list (identifier_list(I,R)) -->
identifier(I),rest_identifier_list(R).

rest_identifier_ list{rest_identifier_ list(’,’,L)) -—>
[’,"],identifier_1list(L}.

rest_identifier_list (rest_identifier_list(’")) -=> {1.

/* 3.3.1 * /

type_declaration{type_declaration(D)) =-=->
full_type_declaration(D};
incomplete_type_declaration(D);
private_type_declaration (D).

full_type_declaration(full_type_declaration(type,I,D,is,T," ;"))
-
[type],identifier(I),discriminant_part_opticn(D},
(is),type_definition(T), [":'].

discriminant_part_option{discriminant_part_option(D)) -->
discriminant_part (D).
discriminant_part_cption{discriminant_part_option{(’")) --> [].

type_definition(type_definition (D)) -2
enumeration_type_definition(D);
integer_type_definition(D):
real_type_definition(D);
array_type_definition(D}:;
record_type_definition(D);
access_type_definition(D);
derived_type _definition(D).

148

/* 3.3.2 */
subtype_declaration(subtype declaration{subtype,I,is,5,7:’)}) -->
[subtypel,identifier(I), [is],subtype_indication(s),[':"].

subtype_indication({subtype_indication(T,R)) -
type_mark (T),rest_subtype_indication(R).
rest_subtype_indication(rest_subtype_indication(C)) -->
constraint (C).
rest_subtype_indication(rest_subtype_indication(’’})) -=> [].
type_mark (type_mark (N)} -——>
type_name (N); subtype_name (N).
type_name (type_name (N}) --> @expanded_name (N) .
subtype_name (subtype_name {N)] --> expanded_name (N) .
constraint (constraint (C)) -

range_constraint (C);
floating_point_constraint (C};
fixed_point_constraint (C);
general aggregate(C).

/* 3.4 */
derived_type_definition(derived_type_definition(new,S)) —-—>
[new],subtype_indication(s)}.
/* 3.5 x/
range_constraint (range_constraint (range,R)) -2
[range], range (R) .
range (range (S,R)) -—>
simple_expression(S),rest_range(R}.

rest_range{rest_range(’'..’,3)) —-—>
{r.7,"."],3imple_expression($§).

rest_range (rest_range(’’}) -=> [].

/* 3.5.1 */
enumeration_type_definition(
enumeration_type_definition(’' (‘,E,L,")")) —-—>

{’ ("],enumeration_literal_specification(E),
enumeration_literal_ list{L),[")’].

enumeration_literal_ specification(
enumeration_literal_ specification(I}) -->

identifier(I);
character literal(I).

enumeration_literal_list(
enumeration_literal list(‘,’,E,L}) -

{’,’],enumeration_literal_ specification(E),
enumeration_literal list (L}.

enumeration_literal_ list (enumeration_literal_list{(’’)) -=> [1.

/* 3.5.4 */

integer_type_definition(integer_type_definition(R)) -->
range_constraint (R).

/* 3.5.6 */

real_type_definition(real_type_definition(F)) —=>

floating_point_constraint (F);
fixed peoint_constraint(F).

149

/* 3.5.7 */
floating_point_constraint(floating_point_ccnstraint(F,R)) -—>
floating_accuracy_definition(F),range_constraint_option(R).

floating_accuracy_definition(
floating_accuracy_definition(digits,s)) -

[digits], simple_expression(s).

range_constraint_option(range_constraint_option(R)) -—>
range_constraint (R) .
range_constraint_option(rangeuconstraint_option(")) --> [].

/* 3.5.9 *
fixed_point_constraint(fixed_point_constraint(F,R)) -2
fixed_accuracy_definition(F),range“constraint_option(R).

fixed_accuracy_definition(fixed_accuracy_definition(delta,E)) -—>
[delta],simple_expression(E).

/* 3.6 */

array_type_definition(array_type_definition(D)) -—>
unconstrained_array_definition(D);
constrained array definition (D).

unconstrained_array_definition(
unconstrained_array_definition(’array(',I,L,') of’,8)) -—
[array,’('],index_subtype_definition(I),
index_subtype_definition_list(L),[')’,of],
subtype_ indication(s).

index_subtype_definition_list(
index_subtype_definition_list(',',I,L)) ~=>
[’,'},index_subtype_definition(I),
index_subtype_definition_list(L).

index_subtype_definition_list(
index_subtype_definition_list(")) --> [].

constrained_array_definition(
constrained_array_definition(array,I,of,s)) -2

[array],index_constraint(I),{of],subtype_indication(S).

index_subtype_definition(index_subtype_definition(N,'range<>'))
—=> a_name (N}, [range,’<’,">"].

index_constraint(index_constraint('(’,D,L,')')) ——>
[’('],discrete_range(D),discrete_range_list(L),[')'].

discrete_range_list(discrete_range_list(’,’,D,L)) -—>
[’,’],discrete_range(D),discrete_range_list(L).
discrete_range_list(discrete_range_list(")) --> [].

discrete_range(discrete_range(R)) =-> range(R).
discreteﬁrange(discrete_range(N,R)) -2
a_name (N) , range_constraint (R) .

/* 3.7 */
record_type_definition(record_type_definition(record,L,end,record))
——> [record],component_list(L),{end,record].

component_list(component_list(null,';’,P)) -—>
[null,’;'],pragma_list(P).

150

component_list (component_list (P1,X,Y,P2)) -2

{pragma_list (P1),
component_declaration(X),
component_declaration_list(Y),
pragma_list (P2));

(pragma_list (P1),
component_declaration_list (X},
variant_part(Y),
pragma_list (P2)).

pragma_list (pragma_list(P,L))}) —-->
pragma (P),pragma_list (L).
pragma_list {pragma_list(‘*)) --> [].

component_declaration_list (component_declaration_list(’*)) --> [].
component_declaration_list (component_declaration_list (C,P,L)} =-->
component_declaration(C),pragma_list (P),
component _declaration_list (L) .

component_declaration(component_declaration(L,":*,S8,I,’:"'}) -—>
identifier list (L), [’ :’],subtype_indication(s),
initialize_option{(I),[";"].

/* 3.7.1 */
discriminant_part (discriminant_part((*,D,L,") ")) ~—>
[f("],discriminant_specification (D},
discriminant_specification_list (L}, [")"].

discriminant_specification_list(
discriminant_specification_list{’;",D,L))} —-->
(*;’)],discriminant_specification (D},
discriminant_specification_list (L).

discriminant specification_list (discriminant_specification_list(’’))
—-=> [1.

discriminant_specification{discriminant_specification{(L,’:’,T,I))
-—>
identifier_list(L),[":"],type_mark(T),initialize_option(I).

/* 3.7.2 --See general aggregate */
/* 3.7.3 */
variant_part (variant_part (case,S,is,P,V,L,end,case,’;’}) -

[case]l,simple_name(S), [is],pragma_list (P},
variant (V),variant_list (L),
[end,case,’:'].

variant_list{variant_list(")) -=> (i.

variant_list (variant_list(V,L)) -—>
variant (V) ,variant_list (L),

variant {(variant (when,C,’=>',L)) —-->
[when],choice_list(C},['=’,*>"],component_list (L).

choice list (choice_list (C,R)) -2
choice(C),rest_choice_list (R).

rest_choice_list (rest_choice_list(’|’,L)) -
["17],choice_list{(L).

rest_choice_list (rest_choice_list(’")) -> [].

choice(choice (cthers})) --> [others].

choice (choice(R)) - discrete_range (R).

/* 3.8 */

access_type_definition(access_type_definition{access,S)) -

[access], subtype_indication(S}.

151

/* 3.8.1 */
incomplete_type_declaration (
incomplete_type_declaration(type,I,D,’;’)} =->

(typel, identifier(I),discriminant_part_option(D), [*;’].

/* 3.9. */
declarative_part (declarative_part (D,R)) -
basic_declarative_item_list(D),rest_declarative_part(R).
rest_declarative_part (rest_declarative_part (8B, L)) -
body (B) , later_declarative_item_list (L).
rest_declarative_part (rest_declarative_part{’’)}) --> [].
basic_declarative_item_list(basic_declarative_item_list(P)) —-—>

pragma_list (P).

basic_declarative_item_list(basic_declarativenitem_list(D,L,P)) -—~>
basic_declarative_item(D},
basic_declarative_item_list (L),pragma_list (P} .

later_declarative_item_list(later_declarative_item_list(D,L,P)) -—>
later_declarative_item(D),
later_declarative_item_list(L),pragma_list(P).

later“declarative_item_list(later_declarative_item&list(P)) -—>
pragma_list (P).

basic_declarative_item(basic_declarative_item(D)) -—>
basic_declaration(D);
representation_clause (D) ;
use_clause (D).

later_declarative_item(later_declarative_item(D)) -->

body (D) ;:

subprogram declaration(D); package_declaration(D):;

task_declaration(D); generic_declaration(D);

use_clause (D) ; generic_instantiation(D).
body (body (B)) - proper_body (B) ; body_stub(B).
proper_body (proper_body (B)) —-—

subprogram_beody (B) ;
package_body (B) ;
task_body(B) .

/* 4.1 */
expanded_name {expanded_name(I,’.",E)) -->
identifier(I), [’ .’],expanded name(E}.
expanded_name (expanded _name (I)) —-—> identifier(I).
a_name (a_name (N,R)) -2
(character_literal (N}, rest_a_name (R));
{operator_symbol (N), rest_a_name (R});
{simple_name (N), rest_a_name(R)).
simple_name (simple_name(I}) -—> identifier(I).
/* The syntax rules use the term identifier for the first */
/* occurrence of an identifier in some formal declaration; */
/* otherwise, simple_name */
rest_a_name (rest_a_name(’’)) -=> {].
rest_a_name (rest_a_name(N,R)) -2
(general aggregate_list (N),rest_indexed_component (R)) ;
{selector_list (N), rest_selected_component (R)) :
{attribute_designator_list(N), rest_attribute{(R)).
/* 4.1.,1 */
rest_indexed_component (rest_indexed_component(’’)) --> {].

152

rest_indexed_component(rest_indexed_component(N,I,R)) -—
(selector_list (N),
selector_aggregate_list (I},
rest_selected_component (R));

(attribute_designator_list(N),
attribute_aggregate_list(I),
rest_attribute(R)).

general_aggregate_list(general_aggregate_list(N,L)) -—>
general_aggregate(N),rest_generalﬁaggregate_list(L).

rest_general_aggregate_list(rest_general_aggregate_list(")) --> [].

rest_general_aggregate_list(rest_general_aggregate_list(I)) -—>
general_aggregate_list (I).

/* 4.1.2 == see index_component */

/* 4.1.3 */

rest_selected_component(rest_selected_component(")) -—-=> [7].

rest_selected_component(rest_selected_component(N,C)) -

general_aggregate_list (N),
attribute part (C).

rest_selected_component(rest_selected_component(A,S,R)) ——
attribute_designator_list (a),
rest_attribute_list (S),
rest_attribute (R).

selector_part(selector_part(")) -=> [].

selector_part(selector_part(S,A,R)) -
selector_list(S),
selector_aggregate_list (a),
rest_general_aggregate_list (R).

selector“list(selector_list('.’,N,L)) -—>
['.’},selector(N),rest_selector_list(L).

rest_selector_list(rest_selector_list(")) -=> [].
rest_selector_list(rest_selector_list(S)) --> selector_list (S).
selector_aggregate_list(selector_aggregate-list(")) -=> [].
selectorﬁaggregate_liSt(selector_aggregate_list(I,S,L)) —-=>

general_aggregate_list (I},
selector_list (8s),
selector_aggregate list (L).

selector(selector(all)) --» [all].
selector(selector(s)) -—
simple_name (S) ; character_literal(s):
operator_symbol($).
/* 4.1.4 * /
attribute_part(attribute_part(")) “-=> [7].
attribute_part(attribute_part(D,A,E,R)) —=>

attribute_designator_list(D),
attribute_aggregate_list(A),
rest_attribute_list (E),
rest_attribute(R).

rest_attribute(rest_attribute(’’}) -—> [].

rest_attribute(rest_attribute(a,C)) -—>
(general_aggregate_list(A),selector_part(C));
(selector_list(A),general_aggregate_list(C)).

153

attribute_designator_list(attribute_designator_list(Q,N,L)) —-——
an_apostrophe (Q),
attribute designator(N),
rest_attribute_designator_list(L).

attribute_designator(attribute_designator(digits)) --> [digits].
attribute_designator(attribute_designator(delta)) -=> [delta].
attribute_designator(attribute_designator(range)) ==> {range].

attributehdesignator{attributeﬂdesignator(A)) -=> simple_name(a) .

rest_attribute_designator_list(restﬁattribute_designator_list("))
——> .

rest_attribute_designator_list(rest_attribute_designator_list(A))

-—>
attribute_designator_list(A).
attribute_aggregate_list(attribute_aggregate_list(")) -—=> [].
attribute_aggregate_list(attribute_aggregate_list(I,A,L)) -—>

general_aggregate_list(I),
attribute_designator_list(A),
attribute_aggregate_list(L).

rest_attribute_list(rest_attribute_list(")) -—> [].

rest_attribute_list(rest_attribute_list(A,S,L,X}) -=>
general aggregate list (A), selector_list(s),
selector_aggregate_list(L),attribute_list_one(X).

rest_attribute_list(rest_attribute_list(S,A,X)) -
selector_list(s), general_aggregate_list(S),
attribute_list_two (X).

attribute_list_pne(attribute_list_one(A,L)) -—>
attribute_designator_list(A),rest_attribute_list(L).
attribute_list&one(attributeqlist_one(G,A,R,L)) -—>

general_aggregate_list(G),
attribute_designator_list(A),
attribute_aggregate_list(R),
rest_attribute_list (L).

attribute_list_two(attribute_list_two(L)) —>
rest_attribute_list (L}).

attribute_list_two(attribute_list“two(A,R,L)) ~——>
attribute_designator_list(A),
attribute_aggregateﬂlist(R),
rest_attribute_list (L).

/* 4.3 */

aggregate (aggregate(’ (*,C,L,’) ")) -—>
[’(’],component_association(C),
component_associationﬂlist(L),[')’]-

component_association_list(component_association_list(’,',C,L)) -—>

[','],component_association(c),
component _association_list (L) .

component_;ssociation_list(component_association_list(”)) -—> [].

component_association(component_association(E)) ——>
expression(E}.

component_association(component_association(L,'->',E)) —-——>
choice_list(L),['=’,'>'],expression(E).

general_aggregate(general_aggregate('(',G,L,’)')) -—>
['('],general_component_association(G),
general_component_association_list(L),[')’].

154

general_component_association_list(
general_ component_association_list(’,’,G,L}) -—
[*,7]1,general_component_association(G),
general_component_association_list (L}.

general_component_asscciation_list(
general_component_asscciation_list('*)) --> [].

general_component_assoclation(general_component_association(C)) -->
component_association(C).

general _component_association{general_component_association (N,R))
——> a_name(N),range_constraint (R).

general _component_association/(

general component_association(sl,’..’,32)) -->
simple_expression(sl),[".’,’."],simple_expression(s2).
/* 4.4 */
expression(expression(R,E}) —-->
relation(R), rest_expression(E).
rest_expression(rest_expression(R)} -->
and_relation{R}; and_then_relation(R};
or_relation{(R); or_else_relation(R);

xor_relation(R).

rest_expression(rest_expression(’’)} --> [].

and_relation{and_relation{and,R,A)) -~>
fand], relation(R),rest_and_relation(A).
rest_and_relation(rest_and_relation(R)) -
and_relation(R}.
rest_and relation(rest_and _relation(’’}) --> [].
and_then_relation(and_then_relation(and, then,R,A)) =-->

(and,then],relation(R),rest_and then_relation(a).

rest_and_then_relation(rest_and_then_relation(R)) -->
and_then_relatien(R).

rest_and_then_relation(rest_and_then_relation(’’)) -—> (1.
or_relation (or_relaticn(or,R,A}) —-—>
[or], relation{R),rest_or_relation(d).
rest_or_relation(rest_or_relation(R)) -—>
or_relation(R).
rest_or_relation(rest_or_relation(’’)) --> [].
or_else_relation(or_else_relation(or,else,R,R)) -——>
[or,else], relation(R),rest_or_else_ relation(A).
rest_or_else_relation(rest_or_else_relation(R)) -—>
or_else_relation(R).
rest_or_else_relation(rest_or_else_relation{(’’)) =-=> [].
xor_relation(xor_relation(xor,R,X)) -
[xor], relation(R),rest_xor_relation(X).
rest_xor_relation(rest_xor_relation(R)) —
xor_relation(R}.
rest_xor_relation{rest_xor _relation(’'")) --> {].

relation(relation(E,R)) -->
simple_expression(E), rest_relation(R).

155

rest_relation(rest_relation(R,E)) -—=>
relational operator(R),simple_expression (E) .

rest_relation(relation(N, in,R)) -=>
not_option(N), [in], range (R} .

rest_relation(rest_relation(’’)) --> [].

not_option{nct_option(not}) --> [not].
net_option{not_option(’*)} --> [].

simple_expression(simple_expression(U,T,L)) -
unary_adding_operator (U),term(T},
binary_adding_operator_list (L}.

simple_expression(simple_expression(T, L)) -2
term(T),binary_adding_operator_list (L).

binary_adding_operator_list(binaryﬂadding_operator_list(B,T,L))

——> binary_adding operator(B),
term(T),binary_adding_operator_list(L).

binary_adding_operator_list(binary_adding_operator_liat(")) -—> [].

term{term(F,L)) --> factor(F}, multiplying_operator_list (L) .

multiplying_operator_list(multiplying_operator_list(M,F,L)) -

multiplying_operator(M),factor(F),
multiplying_operator list(L}).

multiplying_operator_list(multiplying_operator_list(”)) --> [].
facteor (factor(abs,P)) ==> [abs],primary(P).
factor(factor(not,P)) ==~> [not],primary(P).
factor(factor(P,R)) —-=> primary(P),rest_factor(R}.
rest_factor(rest_factor(’**’,p)) —-> {r*", 7%],primary(P).
rest_factor(rest_factor(’’)) --=> [].
primary(primary(null)) --> [null].
primary(primary(p)) -——>

numeric_literal (P); allocator(P):

aggregate(P) .
primary(primary(P,R)) —-—>

a_name (P), rest_primary(R).
rest_primary(rest_primary(’’)) --> [].

rest_primary(rest_primary(P)) -->
rest_gqualified expression(P).

/* 4.5 */
relational_operator(relational_operator(’/-’)) —-—> [/, '="].
relationalﬁoperator(relational_pperator('-')) —-—> [f=r],
relational_operator(relational_operator{’<=')) —-> [f<?,"="].
relational_operator(relational_operator(’<’)) =--> [T<"].
relational_operator(relational_operator(’>=’})) --> [F>7,7=7].
relational_operator(relational_operator(’>’)) --> [’>7].
binary_adding_operator(binary_adding_operator('+')) -——> [7+r].
binary_adding_cperator(binary adding operator(’-f})) —--> [r-+1.
binary_adding_operator(binaryﬂadding_operator('&')) -—> [f&'].
unary_adding_ operator(unary_adding_operator(’+’)) -—=> ["+]).
unary_adding_operator(unary_adding_operator(‘-')) -=> [7='].
multiplying_operator(multiplying operator(f*7)) —-=>
multiplying_operator (multiplying_operator{’/’}) -—>
multiplying_operator (multiplying _operatoer (mod)) —-——
multiplying_operator (multiplying_operator (rem)) -
/* 4.6 type conversion -- see a_name */

156

[r*r].
(/1.
{mod] .
{rem].

/* 4.7 */

rest_qualified expression{qualified_expression(Q,Aa)) -
an_apostrophe {Q) ,aggregate (A) .

/* 4.8 */

allocator(allocator{new,T,R}) -—>
[new],type_mark{T),rest_allocator(R}.

rest_allocator(rest_allocatcr(’’)) -=> [].

rest_allocator{rest_allocator(Q,G)) -—>
an_apostrophe (Q) ,aggregate (G) .

rest_allocator({rest_allocator(G)) ——>
general_aggregate (G).

/* 5.1 */

sequence_of_statements (sequence_of_statements(P,S,L}) -—
pragma_list (P),statement (S),statement_list (L).

statement_list (statement_list (P)) -—>
pragma_list (P).

statement_list {statement_list(S§,L,P)) -->

statement (S),statement_list (L),pragma_list (P).

statement (statement (L,S)} -3
label_list (L}, rest_statement(S).

rest_statement (rest_statement (S)) -—>
simple_statement (8);
compound_statement (S) .

label_list(label_list{LA,LL)) -->
label (LA), label list (LL).

label_list (label_list(’')) -=> [].

simple_statement {simple_statement (S)) -->
null_statement (S); exit_statement (S);
return_statement (S); goto_statement (S);
delay_statement (S):; abort_statement (S);
raise_statement (S); call_statement (S);
assignment_statement (S); code_statement (S) .

compound_statement (compound_statement (3)) —>
1f_statement (S): cagse_statement (S);
loop_statement (S); block_statement (S);
accept_statement (8) ; select_statement (§).

label{label (' <<’ ,5,'>>")) -=>
["<’,"<’],simple_name(S),['>',">’].

null_statement (null_statement (null,’;’}) - [null,”;’1.

/* 5.2 */

assignment_statement (assignment_statement (N,’:=',E,’;’)) ==>
a_name (N),[*:,’='],expression(E),[":"].

/* 5.3 */

if_statement (if_statement (if,C,then,S,I,E,end,if,’;’}) —_—>

[if],condition{C), [then],
sequence_of_statements(S),

elsif_option(I),

else_cption(E),

[end,if,7:7].

elsif option(elsif_option(elsif,C,then,S5,I)) -->
[elsif],condition(C), [then],
sequence_of_statements(S),
elsif option(I).
elsif option{elsif_option{'’)) -=> [].

157

else_option(else_option(else,$s)) -—>
[else],
sequence_of_statements (3).
else_option(else_option(’’)) =-—> [1.

cendition(condition(B)) --> expression(E) .

/* 5.4 */
case_statement(case_statement(case,E,is,P,C,L,end,case,’;')) -——>
[case],expression(E),[is],
pragma_list(P),case_statement_alternative(C),
case_statement_alternative_list (L},
[end,case,’;"].

case_statement_alternative_list(case_statement_alternative_list("))
-—-> [].

case_statement_alternative_list (
case_statement_alternative_list(C,L)) -

case_statement_alternative(C),
case_statement_alternative_list(L).

case_statement_alternative(
case_statement_alternative(when,C, =>’,5)) -=>

[when],choice_list(c),['-',’>'],
sequence_of_statements (8).

/* 5.5 */
loop_statement(loop_statement(Ll,I,B,LZ,’;’)) ——
loop_simple_name_begin(L1),
iteration_rule_option(I),
basic_loop(B), loop_simple_name_end(L2),[’;’].

loop_simple_name_begin(loop_simple_name_begin(s,’:')) —-—>
simple_name(S), [:7].
loop_simple_name_begin(loop_simple_pame_begin(")) -—-> [].

loop_simple_name_gnd(loop_simple_pame_end(S)} —=>
simple name_option(S).

simple_name_option(simple_name_option(S)) -=> simple_name(S).
simple_name_option(simple_name_pption(")) -—> [].

iteration_rule_option(iteration_rule_option(I)) —>
iteration_rule(I).

iteration_rule_option(iteration_rule_option(")) —-—> [].

basic_loop(basic_loop(loop,s,end,loop)) —=>
[loop},
sequence_of_statements(S),
[end, loop].

iteration_rule(iterationﬁrule(while,C)) -
{while], condition(C).

iteration_rule{iteration_rule (for,L)) -->
{for],loop_parameter_specification(L).

loop_parameter_specification(loop_parameter_specification(I,in,R,D))
-=> identifier(I), [in], reverse option(R), discrete_range (D).

reverse_option(reverse_option(reverse)) =-=> [reverse].
reverse_option(reverse_option(’'’)) > [].

158

/* 5.6 */
block_statement(block_statement(Bl,D,begin,S,E,end,BZ,’;’)) -2
block_simple_nameﬁbegin(Bl),
block_declarative_part_option(D),
(begin],
3equence_of statements(s),
exception_option(E),
[end], block_simple_name_end(BZ),[';’].

block_simple_name_begin(block_simple_name_begin(”)) -—> {].

block_simple_name_begin(block_simple_name_begin(s,':')) -—>
simple_name{(S), [’ :7].

block_simple_name_end(block_simple_name_end(S)) -2
simple_name_option(SJ.
block_declarative_part_option(
block_declarative_part_option(declare,D)) -—>
[declare], declarative_part (D).

block_declarative_part_option(block_declarative_part_option("))
-=> [].

exception_option(exception_option(exception,P,E,L)) -—
(exception], pragma_list (P}, exception_handler(E),
exception_handler_list (L).

exception_option(exception_option(")) --> [].
exception_handler_list(exception_handler_list(E,L)) -—>
exception_handler(E), exception_handler_list (L} .
exception_handler_list(exception_handler_list(")} -—>[].
/* 5.7 */
exit_statement(exit_statement(exit,L,W,’;')) e

[exit], loop_name_option(L),
when_condition_option(W), {r;71.

loop_name_option(loop_name_option(E)) ——> expanded_name (E) .
loop_name_option(loop-name_option(")) > [].
when_condition_option(when_condition_option(when,c)) —-=>
[when], condition(C).
when_condition_option(when_condition_pption(")) -—> [].
/* 5.8 */
return_statement(return_statement(return,';’)) -—>
[return,*;],
return_statement(return_statement(return,E,';’)} -3
[return], expression(E), (r:"1.
/* 5.9 */
goto_statement(goto_statement(goto,L,':')) -2
[goto], label name(L), {r;7].
label_name(label_pame(E)) —=> expanded_name (E) .
/* 6.1 */
subprogram*declaration(subprogram_declaration(S,';’)) -=>

aubprogram_specification(S), ir:71.
subprogram_specification(aubprogram~specification(procedure,I,F))

(procedure], identifier (1), formal part_option(F).
subprogram_specification(
5ubprogram_specification(function,D,F,return,T)) ——>

[function],designator(D),formal_part_option(?),
[return], type _mark(T).

159

formal_part_option(formal_part_option(F)) -=> formal part (F).
formal_part_option(formal_part_option{")) ~-=> [].

designator(designator(l)) -—> identifier(I): operator_symbol({(I).
operator symbol (operator_symbol (S)) —=> string_literal(s).
formal“part(formal_part(’(’,P,L,’)')) —=>

[(r¢'1, Parameter specification(p),
parameter_specification_list(L), [(r)yr1.

parameter_specification_list(parameter_specification_list(';’,P,L))
-

[*:713, parameter specification(P),
parameter_specification_list (L).

parameterﬁspecification_list(parameter_specification_list("))
-~> [].

parameter_specification(parameter_specification(L,':’,M,T,I)) -2
identifier_list(L),{':’], mode (M) ,
type_mark(T),initialize_option(I).

mode {mode (out)) -=> f{out].
mode (mode (in, out)) ==> [in, out].
mode (mode (I)) ==~> in_option(I).

/* *in’ is the default value */
in_option(in_option(in)}) --> [in].

in_option(in_option(")) =~> [].
/* 6.3 */
subprogram_body(subprogram_body(?,is,D,begin,S,E,end,O,’;’)) -—2

subprogram“specification(P), [is],
declarative_part(D),
/* declarative_part may be [] */
[begin],
sequence of_ statements(s),
exception_option(E),
fend], designator_option(O), [f:7].

designator_option(designato:_option(")) -—-> {].
designator_option(designator_option(D)) -=> designator (D).
/* 6.4 */
call_statement(call_statement(N,':')) -=> a_name(N),(’;’].

/* 7.1 */
package_declaration(package_declaration(?,’;')) ~—~>

package_specification(P), [r:’].

package_specification(package_specification(package,V,P,end,S)) -—>
[package], visible_part (v),
private part_option(P),
{end], package_simple_name_end(S) .

visible_part(visibleﬂpart(I,is,D)) -
identifier(I), (is],
basic_declarative_item_list(D).

private_part_option(private_part_option(private,B)) -—
[private], basic_declarative_item_list(B).
private_part_option(private“part_pption(")) -> {].

package_simple_name_end(package_simple_name_end(N)) —-—>
simple_name_option (N) .

160

package_body(package_body(package,body,N,is,D,R)) -—>
[package,body], simple_name (N), [is],
declarative‘part(D),
/* declarative part optional */
rest_package_body (R) .

rest_package_body(rest_package_body(end,N,';’)) -
[end], pPackage_simple_name_end (N}, [(f;7].

rest_package_body(rest_package_body(begin,S,E,end,N,’:’)) ——>
[begin],

sequence_of_statements(S),
exception_option(E),
[end], package_simple_name_end (N}, ;1.

/* 7.4 */
private_type_declaration(
private_type_declaration(type,I,D,is,L,private,';'))
-—>
[type],identifier(l),discriminant_part_pption(D),
[is],limited_option(L),[private,':'].

limited option(limited) —=> [limited].
limited_option(limited_option(")) —-—> [].

/* 8.4 */
use_clause (use_clause (use,?,L,’ ;")) -—>
[use], package_name(P),package_name_list(L), [(*:731.

package_name_list(package_name_list(")) -=>[].
package_name_list(package_name_list(’,’,P,L)) -—
[’,’],package_name(?),package_name_list(L).

package_name (package_name (N)) --> expanded name (N) ,

/* 8.5 */
renaming_declaration(
renaming_declaration(l,':',T,renames,N,':’)) ——
identifier(I),[':'],type_mark(T),
[renames],a_name(N),[';'].

renaming_declaration (
renaming_declaration(I,':’,exception,renames,E,’;’)) -
identifier(I), [’ :’ [exception, renames],
exception_name (E), [*;’].

renaming_declaration(
renaming_declaration(package,I,renames,N,’;')} -—>
[package], identifier(I), [renames],package_name(N),[’;'].

renaming_declaration (
renaming_declaration(S,renames,N,';')) -—
subprogram_specification(S), [renames),a_name(N), (*;’].

exception_name (exception_name (E)) —=> expanded_name (E) .

/* 5.1 */
task_declaration(task_declaration(T,’:’)) -—>
task_specification(T),[’;’].

task_specification(task_specification(task,T,I,R)) -
[task],type_pption(T),identifier(I),
rest_task_specification(R).

rest_task_specification(rest_task_specification(is,E,R,end,s)) -—
{is],
entry_declaration_list (E},
representation_clause_list (R},
(end], task_simple_name_end(S) .

161

task_simple_name_end(task_simple_name_end(S)) -
simple_name_option(S).

type_option(type) ==> [type].
type_option(type_option(")) -=> {].

entry_declaration_list(entry_declarationhlist(P)) —>
bragma_list (p) .

entry_declaration_list(entry_declaration_list(E,L,P)) —-—>
entry_declaration(E), entry_declaration_list(L),
pPragma_list (p) .

representation_clause_list(L),pragma_list(P).

task_body(task_body(task,body,Nl,is,D,begin,S,E,end,S2,’;’)) -3
[task,body], simple_name(Nl),Eis],
declarative_part(D), /* may be [] */
(begin],
sequence_of_statements(S),
exception_option(E),
[end],task_simple_name_end(s2),[';']-

/* 9.5 */

entry_declaraticn(entry;declaration(entry,I,D,F,’;'}) ——
[entry],identifier(I),discrete_range_option(D),
formal_part_option(F),[':'].

discrete“range*option(discrete_range_option('(',D,')’)) -—>
['('J,discrete_range(D),[')’].
discrete_range_option{discrete_range_option(")) > [].
accept_statement(accept_statement(accept,N,I,F,R)) -

[accept],simple_name(N),entry_index_option(l),
formal_part_option(F),rest_accept_statement(R}.

rest_accept_statement(rest_accept_statement(';')) —=>
I.

rest_accept_statement(rest_accept_statement(do,S,end,N,’:')) ——>

sequence_oi_statements(S),
[end],simple*name_option(N), rr

entry_index_option(entry_index_option('(',E,')’)) ——>
.],expression(E),[')’]-
entry_index option(entry_index_option(")) ~-~> [].

/* 9.6 */
delay_statement(delay_statement(delay,s,’;’)} -2
[delay]:aimple*expression(S),[’:'].

/* 8.7 */
select_statement(select_statement(select,Pl,s)) -—>
[select],
Pragma_list (p1),
rest_select_statement(S).

rest_select_statement(rest_select_statement(S)) -
selective_wait(S).

162

rest_select_statement(rest_select_statement(C,X,S)) >

call_atatement(C),

sequence_of_statements_option(x),
rest_conditional_or_timed_entry_call(S).

/* 9.7.1 */
selective_wait(selective_wait(A,L,E,end,select,’;')) —-—>
select_alternative(A),
select~alternativehlist(L),
elseﬁoption(E),
[end,select,’-' .

select_alternative_list(seIéct_alternative_list(")) -=>{].
select_alternative(select alternative(G,S)) -—>

—

guard_option(G),selective_wait_alternative(S).

guard_option(guard_option(when,c,’->’,P)) -—>
[when],condition(C),['=’,’>’],pragma_list(P).
guard_option(guard_option(")) -=> [].

selective_wait_alternative(selective_wait_alternative(A)) -=>
accept_alternative(A):
delayhalternative(AJ: terminate_alternative(A).

accept_alternative(accept_alternative(A,S)) -—>
accept_statement(A),

delay_alternative(delay_alternative(D,S)) -=>
' delay_statement D),
sequence_of_statements&option(S).

sequence_of_statements_option(sequence_of_statements_option(S))
-
Pragma_list(s); sequence_of_statements(S).

terminate*alternative(terminate_alternative(terminate,':’,P)) -
[terminate,';’],pragma“list(P).
/* 9.7.2 cond’l entry call */

rest_conditional or timed_entryﬁcall(

rest_condit1onal_o:_timed_entry_call(else,s,end,aelect,’;’)) —-—>

sequence_of_statements{S),
[end,select,’;’].

/* 9,7.3 timed entry call */
rest_ponditional_or~timedﬁentry~call(
rest_conditional_or_timeq_entry_call(or,PZ,D,end,select,';’)) ~-=>
[or],

Pragma_list (p2),
delay_alternative(D),
[end,select,':’]-

*
abort_statement(abort_statement(abort,N,L,';’}) —=>
[abort],a_name(N),a_name_list(L),{';’]-

a_name_list(a_name_list(")) -=> [].
a*name_list(a_name_list(’,’,N,L)J -
[’,’},a_name(N),a_name_list(L).

163

/* 10.1 */
compilation(compilation(P)) -—>
pragma_list (P).
compilation(compilation(U,C,P)) >
compilation_unit(U),compilation(C),pragma_list(?).

compilation_unit(compilaticn_unit(C,L)) -—>
context_clause(c),library*pr_secondary_unit(L).

library_or_secondary_unit(libraryﬁor_secondary_unit(L)) -
subprogram_declaration(L): package_declaration(L) ;
generic_declaration (L) ; generic_instantiation (L) ;
subprogram_body(L); package_body (L) ;
subunit (L) .

/* 10.1.1 */

context_clause(context_clause(W,U,C)) -2
with_clause(W),use_clause_liat(U),context_clause(C).
context_clause{context clause (7))} -—> [].

with_clause(with_clause(with,N,L,’;',P)) ——>
[with],simple_name(N),simple_name_list(L),[';’],
pragma_list (P).

use_clause_list(use_plause“list(U,L,P)) -—>
use_plause(U),use_clause_list(L),pragma_list(P).

use_clauseﬁlist(use_clause_list(")) --> [].

simple_name_list(simple_name_list(',',N,L)) -—2

{’,’],simple_name(N),simple_name_list(L).
simple_name_list(simple_name_list(")) -—-> [].

/* 10.2 */

body_stub(body_stub(S,is,separate,';’)) -2
subprogranLﬁpecification(S),[is,separate,':'].

body_stub(body“stub(package,body,N,is,separate,';')) -—>
{package,body],simple_name(N),[is,separate,’;'].

body_stub(body_stub(task,body,N,is,separate,’;')) -—>
[task,body],simple_name(N), [is,separate,’;’].
subunit(subunit(separate,'(',N,')',B)) -

{separate,'('],parent_unit_name(N),[’)'],
proper_body (B) .

parent_unit_name(parent_unit_name(E)) —-—>
expanded_name (E) .

/* 11.1 */

exception_declaration(exception_declaration(I,’:',exception,';'))
-—>
identifier_list(I),[':',exception,':’].

/* 11,2 x/

exception_handler(exception_handler(when,C,L,’=>’,S)) ——
[when],exception_choice(C),
exceptionﬂchoice_list(L),['-',’>'],
sequence of_statements(S).

exception_choiceﬁlist(exception_choice_list(’l',C,L)) —>
['l'],exception_choice(C),exception_choice_liat(L).

exception_choice_list(exception_choice_list(")) --> {].

exception_choice(exception_choice(others)) -=> [others].
exception&choice(exception_choice(N)) —=> exception_name (N) .

164

/* 11.3 */

raiseﬁstatement(raise_statement(raise,’:')) -—>
([raise,’;’].

raise_statement(raise_statement(raise,N,';')) -
[raise],exception_name(N),[’:'].

/* 12,1 *
generic_declaration(generic_declaration(G,';')) -=>
genericﬁspecification(G),[’;’].

generic_specification(generic_specification(G,R)) —>
generic_formal_part(G),
rest_generic_specification(R).

rest_genericﬁspecification(rest_generic_specification(S)) -—>
subprogram_specification(S):
package_specification(s).

generic_formal_part(generic_formal_part(generic,G)) -—2>
[generic],generic_parameter_declaration_list(G).

generic_parameter_declaration_list(
generic_parameter_declaration_list(G,L)) -——>
generic_parameter_declaration(G),
generic_parameter_declaration_list(L).

genericqparameter_declaration_list(
generic_parameter_declaration_list(")) -—> [].

generic_parameter_declaration(
generic_parameter_declaration(L,':',M,T,I,':’)) -
identifier_list(L),[':'],mode_option(M),
type_mark(T),initialize_option(I),[’;’].

generic_parameter_declaration(
generic_parameter_declaration(type,I,is,G,';’)) -
[type],identifier(I),[is],generic_type_definition(I),{';’}.
generic_parameter_declaration(generic_parameter_declaration(P)) -
private_type_declaration(P).
generic_parameter_declaration(
generic_parameter_declaration(with,s,I,';')) -2
[with],subprogramﬁspecification(S),
is_name_pption(l),[';'].

mode_option(mode_option(in,out}) ==> (in,out].
mode_option(mode_option(M)) -=> in_option(M).
is_name_option(is_name_option(is,'<>')) ==> [is,"<",">7].
is_name_option(is_name_option(is,N)) ~=> [is),a_name(N).
is_name_option(is_name_option(")) > [].

generic_type_definition(generic_;ype_definition(’(<>)'}) —=>

[I(l'l<l"f>f'l)’]'

generic_type_definition(generic_;ype_definition(range,’<>')) —=>
[range:’<'r'>'] .

generic_type_definition(generic_type_definition(digita,'<>')) —-=>
[digits, <’,7>*]"

generic_type_ﬁefinition(generic_type_definition(delta,'<>')) -—>
[delta,’<’, 7577,

generic_type_definition(generic_type_definition{A)) -
array_type_definition (a);
access_type_definition(a).

165

/* 12.3 */
generic_instantiation(
generic_instantiation(package,I,is,new,N,G,’;’)) -
{package],identifier(I),[is],
{new],generic_package_name(N),
generic_actual_part_option(G),{’;’].

generic_instantiation (
generic“instantiation(function,D,is,new,N,G,';’)) ——>
[function],designator(D),[is],
[new],generic_functionqname(N),
generic_actual_part_option(G),[';’].

generic_instantiation(generic_instantiation(S,is,new,N,G,’;')) -

subprogram_specification(S),[is],
[new],generic_procedure_name(N),
generic_actual_part_option(G),[’:'].

generic_actual_part_option(generic_actual_part_option(G)) -
generic_actual_part (G) .
generic_actual_part_option(generic_actual_part_option(")) -=> [].

generic_package_pame(generic_package_name(x)) -
expanded_name (X) .

generic_function_name(generic_function_pame(x)) —-—>
exXpanded_name (X) .

generic_procedure_name(generic_procedure_name(X)) -2

expanded_name (X) .

generic_actual_part(generic_actual_part(’(’,G,L,')')) -

{'('],generic_association(G),
generic_association_list(L),[')'].

generic_association_list(generic_associationﬁlist(G,',’,L)) —-—>
[','],generic_association(G),generic_association_list(L).

generic_association_list(generic_association_list(")) -—=> [].

genericﬁassociation(generic_association(G)) -—2

generic_actual_parameter(G).

generic_association(generic_association(?,'=>',A)) -—
generic_formal_parameter(F),['-','>’],
generic_actual_parameter(A).

generic_formal_parameter(genericﬂformal_parameter(X)) -—>
simple_name (X) ;
operator_symbol (X).

generic_actual_parameter(generic_actual_parameter(X)) —>

expression (X} .

/* 13.1 *

representation_clause(repreaentationﬂclause(X)) -—>
length_clause (X) ; enumeration_representation_clause(X);
address_clause (X); record_representation_clause(X).

/* 13,2 */

length_clause(length_clause(for,A,use,E,';’)) —-—>
[for],attribute(A),[use],simple_gxpression(E),[’:’].

/* 13.3 */

enumeration_representation_clause(

enumeration_representationqclause(for,N,use,A,’;')) —-—>

[for],simple_pame(N),[use],aggregate(A),[';’].

166

/* 13.4 */
record_representation_clause(
record_representation_clause (for,N,use, record,A,C,end, record, ' ;")
-—>
[for],simple_name (N), [usel,
[record],alignment_clause_option{A),
component_clause_list (C},
[end, record, " ;"].

alignment_clause_cption{alignment_clause_option(P)} -->
pragma_list (P}.

alignment_clause_option(alignment_clause_option{i,P)) -->
alignment_clause (A),pragma_list(P).

component_clause_list (component_clause_list (C,L,P)) -=->
component_clause (C) ,component_clause_list (L),
pragma_list (P) .

component_clause_list (component_clause_list (')} -=> [1.

component_clause (component_clause (N,at,E,range,R,";")} ——>
a_name{N), [at],simple_expression(E), [range],range(R), [";"].

alignment_clause{alignment_clause{at,mod,E,’ ;")) -
[at,mod],simple_expression(E),{";"].

/* 13.5 */

address_clause (address_clause(for,N,use,at,E," ;")) -—>
(for],simple_name (N}, [use,at]),simple_expression(E},[";"].

/* 13.8 */

code_statement (code_statement (Q,RA,’:')) -2

a_name (N) ,an_apostrophe (Q),aggregate(ad), (’';*].

167

APPENDIX D
YODA USER'’S GUIDE

The following instructions explain how to use the prototype debugger YODA.

1. Getting Started

YODA's lexical scanner, parser, semantic analyzer, annotator, and pretly printer are saved as the

Prolog program yodafile. We will refer to the program unit to be annotated as the “program under
analysis.”

To generate the symbol table and the YODA-annotated program, call the Prolog predicate yoda:

?-yoda (SourceFile, PredefFile, Tokens,
ParseTree,SymbolTable, SymbolFile).

Here, the parameters SourceFile, PredefFile, and SymbolFile must be instantiated on the call.

These parameters are used as follows:

SourceFile The name of the Ada source file containing the program under analysis.

PredefFile A (possibly empty) list of predefined symbol tables, e.g., symbol tables for with’ed
packages and parent program units. The symbol table of the fibrary package
STANDARD is implicitly included and, thus, should be omitted from this list.

Tokens The list of tokens generated by lexical analysis.

ParseTree The parse tree generated by the parser.

SymbolTable The binary-tree format of the symbol table generated by the parser for the program
under analysis.

SymboiFile The name of the file that will contain the symbol table generated for the program

under analysis.

2. Compilation of Annotated Program

't the program unit under analysis is a main program, then in the annotated version this program unit
will be declared as a subprogram called by the main program YODA. Since the specification of an Ada
main program is arbitrary, linkage requires that the main program be designated, if ambiguous. Thus, to
link the compilation of the annotated program, designate the main program as "YODA" instead of the
name of the program under analysis.

When the annotated program is executed, the trace is saved in the file "<programs.trace"™ where
<program> is the name of the main program of the unit under analysis. If a subunit is to be traced, its
parent unit must aiso be traced.

168

3. Changing Things

If any changes are made to either the prototype debugger or the symboli table for the library package
STANDARD, then yoda must be initialized befors being saved again as a Prolog program. To initialize
yoda, use the predicate init, which has zero arguments. This predicate records the symbol table for the
library package STANDARD.

4. Known Bugs

When YODA annotates an Ada program, it converts fixed-point numbers with zero fractions to integers.

For example, the Ada assignment statement:
duration := 19,0;

becomes
duration := 19;

The resulting annotated program will raise a constraint error during compilation becausa of unmatched
types. This error occurs during lexical analysis because the source program is read as ASCI characters
and converted to strings by the name predicate. The name predicate in C-Prolog converts whole
floating-point numbers to integers.

169

APPENDIX E
ADA TAXI SERVICE PROGRAMS

1. Main Program

-= Main Task of Taxi Service Program -
--The time distances between taxi stops are arbitrary. --
-~-This procedure activates all tasks --
--and sets initial values for taxis and customers. -
with TEXT_IO; use TEXT_IO;

procedura MAIN Is

type DRIVER_NAME I8 (Beth, Byron, Carcl):
type PLACE_NAME I8 {LAX, BONAVENTURE, UCLA, USC,
DISNEYLAND, COLISEUM, PASADENA, HOME);
typ® CAR_CODE s (CAR_1, CAR_23, CAR_54):
type DISPATCHER_NAME is (Stott, Ada); -
type CUSTOMER _NAME is (Anne, Tom, Shiang, Deborah, Jim, Dave);

package DRIVER_IO is new ENUMERATION_IO (ENUM=>DRIVER_NAME) ;
use DRIVER_IO;
package PLACE_IO Is new ENUMERATION_IO (ENUM=>PLACE_NAME) ;
use PLACE_IO;
package CAR _CODE_IO I8 new ENUMERATION_IC (ENUM=>CAR_CODE):
use CAR_CODE_IO;
package DISPATCHER_IO I8 new ENUMERATION_IO (ENUM=>DISPATCHER_NAME) ;
use DISPATCHER_IO;
package CUSTOMER_IO I8 new ENUMERATION_IO (ENUM => CUSTOMER_NAME) ;
usa@ CUSTOMER_IO;
POSITION : INTEGER; -— used as an index
subtype MONEY is DURATION delta 0.01; --same range as DURATION
PAY : array(DRIVER_NAME) of MONEY :=
(DRIVER_NAME‘FIRST .. DRIVER_NAME'LAST=>0.00}; --shared variable

DISTANCE: constant array (PLACE_NAME, PLACE NAME) of DURATION:=
{LAX => (LAX | HOME => 0.0,
DISNEYLAND => 20.0,
BONAVENTURE | PASADENA |

USC | COLISEUM | UCLA => 10.0),
BONAVENTURE => (BONAVENTURE | HOME = 0.0,

DISNEYLAND => 20.0,

UCLA | LAX => 10.0,

UsSC | COLISEUM |

PASADENA => 5.0),
UCLa, => {UCLA | HOME => 0.0,

DISNEYLAND => 20.0,

LAX | BONAVENTURE | USC |
COLISEUM | PASADENA => 10.0),

USC => (USC | HOME => 0.0,
UCLA | LAX => 10.0,
DISNEYLRND => 20.0,
BONAVENTURE | COLISEUM |
PASADENA => 5.0),

DISNEYLAND => (DISNEYLAND | HOME = 0.0,

LAX | BONAVENTURE |
UCLA | PASADENA |

COLISEUM | USC => 20.0),
COLISEUM => (COLISEUM | HOME=> 0.0,

UCLA | LAX => 10.0,

DISNEYLAND -> 20.0,

BONAVENTURE | USC |

PASADENA => 5.0),

170

PASADENA => (PASADENA | HOME => 0.0,

GCLA | LAX => 10.0,

DISNEYLAND => 20.0,

BONAVENTURE | USC |

COLISEUM => 5.0},
HOME => (BONAVENTURE | HCME | UCLA |

COLISEUM | PASADENA |
DISKEYLAND | USC | LAX => 0.0}
}y;

task type TaxI Is

entry DRIVER_IS (NAME : out DRIVER_NAME) ;
entry LOCATION_IS (PLACE : out PLACE NAME) ;
entry SET_DRIVER (NAME : In DRIVER_NAME;
AUTHORITY : In DISPATCHER_NAME);
eniry SET SERIAL_NUMBER {IDENTITY : In CAR_CODE) ;
entry SET_LOCATICN (PLACE : In PLACE_KAME) ;
entry TAKE_RIDER FROM (CUSTOMER_LOCATION : In PLACE_NAME;
NAME : in CUSTOMER_NAME;
PLACE : In PLACE_NAME) ;
entry FARE_PAID (AMOUNT : In MONEY) ;
end TAXI;

type FLEET Is array (CAR_CODE) of TAXI;
YELLOW_CAB: FLEET;

task type DISPATCHER Is
entry SET_BOSS_ID (NAME : In DISPATCHER_NAME) ;
end DISPATCHER;
type FLEET_DISPATCHER I8 array (DISPATCHER_NAME) of DISPATCHER;
YELLOW_CAB_DISPATCHER : FPLEET_ DISPATCHER;

task SWITCH BOARD ls
entry RECEIVE_CALL (NAME: In CUSTOMER_NAME; PLACE: In PLACE_NAME) ;
entry CONNECT (NAME: out CUSTOMER_NAME; PLACE: out PLACE_NAME) ;
sntry STOP_RECEIVING;

end SWITCH_BOARD;

task type CUSTOMER s

entry SET_IDENTITY (NAME : In CUSTOMER_NAME) ;
entry SET_LOCATION {PLACE : in PLACE_NAME) ;
entry TAKE_CAB {CODE : In CAR_CODE);

end CUSTOMER;
type CAB_RIDERS I3 array (CUSTCMER_NAME)} of CUSTOMER;
YELLOW_CAB_CUSTOMER : CAB_RIDERS;

task ask Is
entry NEXT_DESTINATION (IDENTITY : n CUSTCMER_NAME;
LOCATION : In PLACE_NAME;
DESTINATION :+ out PLACE NAME) ;
end ASK;
task body TAXI Is separate: --compile task bodies separately

task body DISPATCHER Is separate;
task body SWITCH_BOARD is separate;
task bady CUSTOMER Is saparate;
task body ASK Is separate:

begin --start execution, activate tasks!
for INDEX In CAR_CODE loop
YELLOW_CAB (INDEX) . SET_SERIAL_NUMBER (INDEX) ;
YELLOW_CAB (INDEX) .SET_LOCATION (LAX) ;
end loop;
for INDEX In CUSTOMER NAME loop
YELLOW_CAB_CUSTOMER (INDEX) . SET_IDENTITY (INDEX) ;
POSITION := CUSTOMER_NAME'POS (INDEX) mod PLACE NAME'POS (HOME) ;
YELLOW_CAB_CUSTOMER (INDEX) . SET_LOCATION
(PLACE_NAME’ VAL (POSITICN)}) ;
end loop;
end MAIN;

171

2. Swithboard Task

- body of task SWITCH_BOARD -
—--The switchboard acts as an "agent" task to connect a "customer" -
--with a "dispatcher." The customer (user) need know nothing -
—-—about the dispatcher (server). The switchboard is "available" to -—
--accept the next entry call from a customer as soon as a dispatcher -=
--has been assigned to the previocus customer. ——
--The switchboard also handles waking up dispatchers, sending them home,--
--and publishing the cab drivers’ intake. --
separate (MAIN)
task body SWITCH_BCARD is
package MONEY_ IO is new FIXED_IO (NUM => MONEY);
use MONEY_IO;

CUSTOMER_WAITING : BOOLEAN :=FALSE;
PASSENGER : CUSTOMER_NAME:
LOCATION : PLACE_NAME;

NO_MORE_CUSTOMERS : BOOLEAN := FALSE;
begln

put_line("Yellow Cab Taxi at your service.");

new_line;

for INDEX In DISPATCHER_NAME loop --assign dispatchers
YELLOW_ CARB DISPATCHER (INDEX) .SET_BOSS_ID (INDEX) ;

end loop:

loop
select

when not CUSTOMER WAITING =>
accept RECEIVE_CALL (NAME : In CUSTOMER_NAME:
PLACE : In PLACE_NAME) do
PASSENGER := NAME;
LOCATION := PLACE;
CUSTOMER_WAITING := TRUE;
put_line ("The switchboard has received a call from " &
CUSTOMER_NAME ' IMAGE (PASSENGER) &
" at " & PLACE_NAME’'IMAGE (LOCATION) & "."};
end RECEIVE_CALL;

or

when CUSTOMER_WAITING =>
accept CONNECT (NAME : out CUSTOMER_NAME;
PLACE : out PLACE_NAME)} do
NAME := PASSENGER;
PLACE := LOCATION;
CUSTOMER_WAITING := FALSE;
end CONNECT;

or
accept STOP_RECEIVING ¢do --publish payroll
NO_MORE_CUSTOMERS := TRUE;
new_line;
for T in DRIVER_NAME loop
put_line (DRIVER_NAME’IMAGE(I) & " has earned $"):
put (PAY (1)) ;
end loop;
end STOP_RECEIVING;:
or

172

when NO_MORE_CUSTOMERS => --send dispatchers home

accept CONNECT (NAME : out CUSTOMER_NAME;
PLACE : out PLACE_NAME) do
NAME := PASSENGER;
PLACE 1= HOME;
end CONNECT;
or
terminate;
end select;
end loop:

end SWITCH_BCARD;

173

3. Dispatcher Task

body of dispatcher task -

——The dispatcher tells the customer the code of the taxi that has been -—-
-~dispatched, and then services the next customer. -—
—-Initially, one dispatcher assigns all the cab drivers to cars, -
--while the other dispatchers are kept waiting. -
—=The algorithm for mapping cabs to customers is as follows: -
- Take the first cab within "5 seconds" from -
-— the customer’s location. -—
- If none that close, take Cab #1. -
-—0n returning from the entry call CONKNECT, -—
-—if all customers are home, then terminate dispatcher -—

separate (MATIN)

task bedy DISPATCHER is

ID : CUSTOMER_NAME;

CUSTOMER_LOCATION : PLACE_NAME;

CAB_LOCATION : PLACE_NAME;

CAR_CALLED : CAR_CODE;

BOS5_ID DISPATCHER_NAME;
begin

accept SET_BOSS_ID (NAME : In DISPATCHER_NAME) do
BOSS_ID:=NAME;
end SET_BOSS_ID;

if BOSS_ID = DISPATCHER NAME'FIRST then

for INDEX

In CAR_CODE “loop

YELLOW_CAB(IﬁBEX).SET_DRIVER

end joop;
alse

(NAME => DRIVER NAME'VAL(CAR_CODE’POS(INDEX)),

AUTHORITY => BOSS_1ID};

delay 50.0; --kxeep other dispatchers waiting

end If;
loop

SWITCH_BOARD.CONNECT (ID, CUSTCMER_LOCATICN) ;

exit when

CUSTOMER_LOCATION = HOME:

CAR_CALLED:-CAR_CODE’FIRST;

for INDEX

In CAR_CODE ioop

YELLOW CAB(INDEX).LOCATION_IS(CAE_LOCATION):

i DISTANCE (CAB_LOCATION, CUSTOMER_LOCATION} <= 5.00 then
CAR_CALLED := INDEX;

exit

'3
’

end if;

end loop;

YELLOW_CAB_CUSTOMER (ID) . TAKE_CAB (CODE => CAR_CALLED) ;
put_line (DISPATCHER_NAME' IMAGE (BOSS_ID) &

end loop;

" is dispatching " & CAR_CODE’IMAGE(CAR_CALLED)&
" for " & CUSTOMER_NAME‘ IMAGE (ID} & " at " &
PLACE_NAME'IMAGE(CUSTOMER_LOCATION) & ".");

end DISPATCHER;

174

4. Customer Task

- customer task body -
—-The customer calls for a cab, waits for cab, rides to the destination —-
--and pays the cab. -
~—The cost of the trip is cemputed from the time distance. -
saparate (MAIN)
task body CUSTCMER I8

IDERTITY : CUSTOMER_NAME;

LOCATION : PLACE_NAME;

DESTINATION : PLACE_NAME ;= HOME;

CAR : CAR_CODE;

CAB_DRIVER : DRIVER_NAME;

CASH : MONEY; --Rate for this trip
begin

-=Initialize name of customer and his/her starting location
accept SET_IDENTITY (NAME: In CUSTOMER_NAME) do
IDENTITY :=NAME;
end SET_IDENTITY;
accept SET_LOCATION (PLACE : in PLACE_NAME) do
LOCATION := PLACE:
end SET_LOCATION;

loop
ASK.NEXT_DESTINATION(IDENTITY, LOCATION, DESTINATION):
exit when DESTINATION=HOME;
put_line (CUSTOMER NAME' IMAGE (IDENTITY)&

" is calling a taxi to go to " &
PLACE_NAME' IMAGE (DESTINATION) & ". ");
SWITCH_BOARD.RECEIVE CALL (NAME => IDENTITY, PLACE => LOCATION);

accept TAKE_CAB (CODE: In CAR_CCDE} do
CAR := CODE;
end TAKE_CAB;

YELLOW_CAB (CAR)} .TAKE_RIDER_FROM
(CUSTOMER_LOCATION => LOCATION,
NAME => IDENTITY,
PLACE => DESTINATION) ;
put_line (CUSTOMER NAME’IMAGE (IDENTITY} & " has arrived at "
& PLACE NAME’ IMAGE (DESTINATION} & "."};
YELLOW_CAB (CAR} .DRIVER_IS (NAME => CAB_DRIVER}) ;
CASH;=DISTANCE (LOCATION, DESTINATION) * 2;
YELLOW_CAB (CAR) .FARE_PAID (AMOUNT => CASH);
put_line (CUSTOMER_NAME'IMAGE (IDENTITY) & " has paid " &
DRIVER_NAME' IMAGE {CAB_DRIVER) & " for the cab ride."};
LOCATION := DESTINATION;
end loop;
and CUSTOMER;

175

5. Ask Task (Customer Request for Service)

- the task bedy for ASK
—= Receives calls from CUSTCMER tasks for customer’s next destination
—-A single task is used for I/0 of all CUSTOMER tasks to ensure
——that the prompt for input immediately precedes a read.
~~An exception is raised for invalid DESTINATION or
—=if DESTINATION = LOCATION
-=If invalid data is entered on three successive attempts,
~~the DESTINATION is set to HOME.
—~When all customer tasks will be terminated (i.e. all have a
——destination=HOME) ASK notifies the switchboard and terminates.
Separate (MAIN)
task body asx Is

NUM_ERRORS ¢ INTEGER := 0; --# errors
NUMBER_HOME ¢ INTEGER := 0; -—§ CUSTOMER tasks terminated
NOT_MOVING : exception;
PLACE_REQUESTED : PLACE_NAME:
begin
loop
select
accept NEXT_DESTINATION (IDENTITY: In CUSTOMER_NaME;
LOCATION: N PLACE NAME;
DESTINATION: out PLACE_NAME) do
NEW_LINE;
put_line(CUSTOMER_NAME’IMAGE(IDENTITY) &
" is at " & PLACE_NAME' IMAGE (LOCATION) & oy
ENTER: loop
begin

pPut_line ("Enter HOME (to stop) or next destination for "

& CUSTOMER_NAME’ IMAGE (IDENTITY) & - ")
GET (PLACE_REQUESTED) ;
put (PLACE_NAME' IMAGE {PLACE_REQUESTED) } ;
f PLACE_REQUESTED = LOCATION then
raise NOT_MOVING;
end |f;
DESTINATION := PLACE_REQUESTED:
exit ENTER;
exceptlon
when NOT MOVING =>

Put_line (CUSTOMER_NAME'IMAGE(IDENTITY)&" is already at "

& PLACE_NAME'IMAGE(LOCATION) & ". Try again."};

when DATA_ERROR =>
NUM_ERRCRS := NOUM ERRORS+1;
if NUM_ERRORS > 3 then
DESTINATION := HOME ;
exit ENTER;
alse
put_line ("Garbage! Try another destination for "
& CUSTOMER_NAME'IMAGE(IDENTITY) & "oy,
end If;

end;
end loop ENTER;

if DESTINATION=HOME then
NUMBER_HOME := NUMBER_HOME + 1:
put_line(CUSTOMER_NAME’IMAGE(IDENTITY) & " is home. ");
If NUMBER_HOME = YELLOW_CAB_CUSTOMER‘LENGTH then

SWITCH_BOARD.STOP_RECEIVING;——all customers home

end if;

end Hi;

end NEXT_DESTINATION:

or

176

terminate;

end select;
and loop;
end ASK:;

177

6. Taxi Task

- body of taxi task —_—
--Taxi receives calls from customer and from dispatcher -
-—-Assumption: taxi can give dispatcher its location while --
-—it is waiting for customer to pay fare, but cannot proceed —
-—to pick up next customer until fare is paid. -
separate (MAIN)
task body TAXI is

CURRENT_DRIVER : DRIVER_NAME;

PERMANENT_SERIAL_NUMBER : CAR_CODE;

CURRENT_LOCRTION : PLACE_NAME;

WAITING FOR_FARE : BOOLEAN := FALSE;
begin

accept SET_SERIAL_NUMBER {(IDENTITY : In CAR_CODE) do
PERMANENT_SERIAL NUMBER := IDENTITY:
end SET_SERIAL_NUMBER;

accept SET_LOCATION (PLACE : In PLACE_NAME) do
CURRENT_LOCATION := PLACE;:
end SET_ LOCATION;

accept SET_DRIVER (NAME : In DRIVER_NAME;
AUTHORITY : In DISPATCHER _NaME)} do
CURRENT_DRIVER := NAME;
end SET_DRIVER;

put_line (CAR_CODE’IMAGE (PERMANENT_SERIAL NUMBER} &
" driven by " & DRIVER_NAME’ IMAGE (CURRENT_DRIVER) &
" is waiting at " & PLACE_NAME IMAGE(CURRENT_LOCATION)&".");

loop
select
when not WAITING FOR_FARE =>
accept TAKE_RIDER_FROM (CUSTOMER_LOCATION : In PLACE NAME;
HAME : In CUSTOMER_NAME;
PLACE : In PLACE_NAME) do

CUSTOMER_LOCATION /= CURRENT_LOCATION then
put_line (CAR_CODE’IMAGE (PERMANENT_SERIAL NUMBER) &
" is en route to pick up " §CUSTOMER_] _NAME' IMAGE (NAME) &"."
delay DISTANCE (CURRENT_LOCATION, CUSTOMER LOCATION) ;

dCURRENT_LOCATION := CUSTOMER_LOCATION:

ond If;

delay DISTANCE (CUSTOMER_LOCATION, PLACE);

CURRENT_LOCATION := PLACE;

WAITING_FOR_FARE := TRUE;

end TAKE_RIDER_FROM;

or

accept DRIVER IS{NAME : out DRIVER_NAME) do
NAME := CURRENT_DRIVER;
end DRIVER_IS;

or

accept LOCATION_IS (PLACE : out PLACE NAME) do
PLACE := CURRENT LOCATION;
end LOCATION_IS;

or

when WAITING_FCR_FARE =>

accept FARE PAID (AMOUNT: In MONEY) do
PAY (CURRENT_DRIVER) := PAY (CURRENT_DRIVER) + AMOUNT;
WAITING _FOR_FARE := FALSE;

end FARE_PAID;

178

or

tarminate;
end select;
end loop;
end TAXI;

179

APPENDIX F
SYMBOL TABLES OF ADA TAXI SERVICE PROGRAM

Table F-1: Symbol Table for Taxi Service Program

Main Subprogram

symbol (ada, [main],enumeration_literal (scalar)).
symbol (amount, [fare_paid, taxi,main],
formal parameter (real_ type definition,money, [main])).
symbol (anne, [main], enumeration_literal (scalar)).
symbol (ask, [main],object_name (task_type, anonymous, [main]}}.
symbol (authority, [set_driver,taxi,main],
formal parameter (enumeration_type_definition,dispatcher_name, [main}}).
symbol (beth, [main], enumeration_literal (scalar)).
symbol (bonaventure, [main],enumeration_literal {scalar)}.
symbol (byron, [main},enumeration_literal (scalar)}.
symbol (cab_riders, [main], type_name (array_type_definition)).
symbol (car 1, [main},enumeration_literal (scalar}).
symbol (car_23, [main],enumeration_literal (scalar)).
symbol (car_ 54, [main], enumeration_literal (scalar)).
symbol {car_code, [main], type_name {(enumeraticn_type_definition)).
symbol (car_code io, [main],generic_package_instantiatiocn}.
symbol (¢carol, [main),enumeration_literal (scalar}).
symbol (code, [take_cab,customer,main],
formal_parameter (enumeration_type definition, car_code, [main]}).
symbol (coliseum, [main], enumeration_literal (scalar)).
symbol (connect, [switch_board, main],entry_name) .
symbol (customer, [main], object_name (task_type, anonymous, [main])).
symbol (customer_io, [main],generic_package_instantiatioen).
aymbol (customer location, [take_rider_ from,taxi,main],
formal_parameter (enumeration_type_definition,place_name, [main]}).
symbol (customer_name, [main],type_name (enumeration_type_definition)).
symbol (dave, [main}, enumeration_literal (scalar)).
symbol (deborah, [main] ,enumeration_literal {(scalar)}.
symbol (destination, [next_destination,ask,main],
formal_ parameter {(enumeration_type_definition,place_name, [main])}.
symbol (disneyland, [main], enumeration_literal (scalar)).
symbol (dispatcher, (main},object_name (task_type, anonymous, [main])) .
symbol (dispatcher_io, [main],generic_package_instantiation).
symbol (dispatcher_name, [main], type_name (enumeration_type_definition)}.
symbel (distance, [main],
constant_object_name{array_type_ definition,duration,[]}).

180

Table F-1: Symbol Table for Taxi Service Program, continued

Main Subprogram, continued

symbel (driver_io, [main],generic_package_inatantiatioen).
symbol (driver_is, [taxi,main], entry_name) .
symbol {driver name, [main],type_name (enumeration_type_definition)}.
symbol (fare_paid, [taxi,main], entry_name).
symbol (fleet, [main],type_name (array_type_definition)}.
symbol (fleet_dispatcher, [main],type_name (array_type_definitiorn)}.
symbol (home, [main),enumeration_literal (scalar)).
symbol {identity, [set_serial_number,taxi,main],
formal_parameter {(enumeration_type_definition,car_code, [main])).
symbol {identity, [next_destination,ask,main],
formal_parameter (enumeration_type_definition, customer_name, [main]}).
symbol (index, [main], loop_parameter_name} .
symbel (jim, [main),enumeration_literal (scalar)}).
symbol (lax, [main], enumeration_literal (scalar)).
symbol (location, [next_destination,ask,main],
formal_parameter (enumeration_type_definition,place_name, [main])).
symbol (location_is, [taxi,main],entry_name).
symbol (main, [], subprogram_name) .
symbol (money, [main], subtype_name (real_type_definition)).
symbol (name, fdriver_is,taxi,main],
formal_ parameter{enumaration_type_definition,driver_name, [main])}.
symbol {name, [set_driver,taxi,main],
formal_parameter (enumeration_type_definition,driver_name, {main]}}.
symbol (name, {take_rider from,taxi,main],
formal_parameter (enumeration_type_ definition, customer_name, [main]}) .
symbol {(name, [set_boss_id, dispatcher,main],
formal_parameter (enumeration_type_definition, dispatcher_name, [main])}.
symbel (name, [receive_call, switch_board,main],
formal_parameter (enumeration_type_definition, customer_name, [main])).
symbol (name, [connect, switch_board,main],
formal_parameter (enumeration_type_definition, customer_name, [main]}).
symbol (name, [set_identity, customer,main],
formal_parameter (enumeration_type_definition, customer_name, [main])).
symbol (next_destination, [ask,main], entry_ name}.
symbol (pasadena, [main],enumeration_literal (scalar}).
symbol (pay, [main],object_name (array_type_definition,money, []}).
symbol (place, [location_is,taxi,main],
formal parameter (enumeration_type_definition, place_name, [main])}.
symbol (place, [set_location,taxi,main],
formal parameter (enumeration_type_definition, place_name, [main])).
aymbol (place, [take_rider_from, taxi,main],
formal_ parameter (enumeration_type_ definiticn,place name, {main]}).
symbol (place, [receive_call, switch_board,main},
formal_parameter(enumeration_type_definition,place_name,[main])).
symbol (place, [connect, switch_board,main],
formal_parameter (enumeration_type_definition, place_name, [main]}).
symbol {place, [set_location,customer,main],
formal parameter (enumeration_type_definition,place name, [main]}).

181

Table F-1: Symbol Table for Taxi Service Program, continued

Main Subprogram, continued

symbol (place_ic, [main), generic_package_instantiation).
symbol(place_name,{main],type_name(enumeration_type_definition)).
symbol(position,[main],object_pame(integer_type_definition,integer,{]}).
symbol (receive_call, [switch_board,main],entry name).
symbol (set_boss_id, [dispatcher,main),entry_name).
symbol (set_driver, [taxi,main], entry_name).
symbol (set_lidentity, [customer,main],entry name) .
symbol {set_location, [taxi,main],entry_name).
symbol(set_location,[custcmer,main],entry_name).
symbol (set_serial number, [taxi,main],entry_name).
symbol (shiang, [main}], enumeration_literal {(scalar)).
symbol (stop_receiving, [switch_board,main], entry name) .
symbol (stott, [main],enumeration_literal (scalar)).
symbol (switch_board, [main),object_name (task_type, ancnymous, {main]}} .
symbol (take_cab, [customer,main], entry_name) .
symbol(take_rider_from,[taxi,mainl,entry_name).
symbol (taxi, [main], object_name (task_type, anonymous, [main]}).
symbol (tom, [main] ,enumeration_literal (scalar)}.
symbol (ucla, [main], enumeration_literal (scalar}}.
symbol (usc, [main] ,enumeration_literal (scalar)).
symbol (yellow_cab, [main],object_name (array type_definition, fleet, [main])}.
symbol (yellow_cab_customer, [main],

object_name (array_ type_definition,cab_riders, [main])).
symbol (yellow_cab dispatcher, [main],

object_name (array_type_definition, fleet_dispatcher, [main])).

Body of Switchboard Task

symbol (customer_waiting, [switch_board,main],
object name (enumeration_type definition,boolean, [[}}.
symbol(i,[stop_receiving,switch_board,main],loop_parameter_name).
symbol (index, {switch_board,main], loop_parameter_name} .
symbol (location, [switch_board,main],
object_name(enumeration_type_definition,place_pame,[main])).
symbol (money_io, [switch_board,main],generic_package_instantiation).
symbol {name, [receive call, switch_board, main],
formal parameter (enumeration_type_definition, customer_name, [mainl}).
symbol {(name, [connect, switch_board,main],
formal_parameter (enumeration_type_definition, customer_name, [main])}.
symbol (no_more_customers, [switch_board,main],
object_name (enumeration_type_ definition,booclean,[]}}.
symbol (pasaenger, [switch_beard, main],
object_name(enumeration_type_definition,customer_name,[main])}.
symbol (place, [receive_call, switch_board,main],
formal_ parameter(enumeration_type_definition,place_name, [main])).
symbol (place, [connect, switch_board,main],
formal_parameter (enumeration type_definition,place_name, [main])}.

182

Table F-1: Symbol Table for Taxi Service Program, continued

Body of Dispatcher Task

symbol (boss_id, {dispatcher, main],
object_name {enumeration_type definition,dispatcher_ name, [main])).
symbol {cab_location, [dispatcher,main],
object_name (enumeration_type_definition,place_name, [main]}).
symbol (car_called, [dispatcher,main}.,
object_name {(enumeration_type_definition,car_code, [main]}).
synmbol (customer_location, [dispatcher,main],
object_name (enumeration_type_definition,place_nama, [main])}.
symbol (id, [dispatcher,main],
object_name(enumeration_type_definition,customer_pame,[main])).
symbol {index, [dispatcher,main], loop_parameter_name) .
symbol {name, [set_boss_id, dispatcher,main],
formal_parameter (enumeration_type_definition,dispatcher_name, [mainl)}.

Body of Ask Task

symbol (block_namel, [next_destination,ask,main],block_name} .
symbol (destination, [next_destination, ask, main],

formal_parameter (enumeration_type_definition,place name, [main]}}.
symbol (identity, [next_destination,ask,main],

formal_parameter {enumeration_type_definition, customer_name, [main]}}.
symbol (location, [next_destination,ask,main],

formal_parameter (enumeration_type_definition,place_name, [main]}}.
symbol(not_moving,[ask,main],exception_name}.
symbol (num_errors, {ask,main],

object_name (integer_type_definition,integer,[])).
symbol (number_home, [ask,main],

object_name (integer_type_definition, integer, []}).
aymbol (place_requested, [ask,main],

object_name (enumeration_type_definition,place_name, {main]}}.

183

Table F-1: Symbol Table for Taxi Service Program, concluded

Body of Customer Task

symbol (cab_driver, [customer,main],

object_name (enumeration _type _definition,driver_name, [mainl])).
symbol (car, [customer, main},

object_name (enumeration _type_definition,car_code, [main]}).
symbel (cash, [customer, main],

object_name (real_type definition,money, [main]}).
symbol (code, [take_cab, customer,main],

formal_parameter(enumeratlon _type_definition, car_code, [main])}).
symbol (destination, [customer, main],

ocbject_name (enumeration_type_definition,place_name, {main]}}.
symbel (identity, [customer,main],

object_name {enumeration_type definition, customer _name, [main])).
symbeol (location, [customer,main],

object_name (enumeration_type _definition,place_name, [mainj}}.
symbol {name, [set_identity,customer,main],

formal parameter (enumeration _type_definition, customer_name, [main])).
symbol (place, [set_location, customer,main},

fcrmal_parameter(enumeratlon_type_definition,place_name,[main])).

Body of Taxi Task

symbol (amount, [fare_paid, taxi,main],
formal_parameter(real_type_definition,money, [main])}.
symbol (autheority, [set_driver, taxi,main],
formal_parameter(enumeratlon _type_definition, dispatcher_name, [main]}).
symbol {current_driver, [taxi,main],
object _name {enumeration_type_definition,driver _name, [main]}).
aymbol (current location, [taxi,main],
object_name (enumeration _type_definition, place_name, [main}))}.
symbol (customer_location, [take rider_ from,taxi,main],
formal_parameter(enumeratlon type definition,place_name, [main))}.
symbol (identity, [set_serial _number, taxi,main],
formal_parameter(enumeratlon _type_definition, car_code, [main]})).
symbol (name, [set_driver, taxi,main],
formal_parameter (enumeration_type definition,driver_name, [main])}.
symbol (name, [take_rider_from,taxi,main],
formal_parameter(enumeratlon _type_definition, customer_name, [main]}).
symbol (name, [driver_is,taxi,mainl],
formal_parameter (enumeration_type definition,driver_name, [main]}).
symbol (permanent_serial_ number, [taxi,main],
object_name {enumeration _type definition,car_code, [main])).
symbol (place, [set_location,taxi,main},
formal_parameter(enumeration~type_definition,place_pame,[main])).
symbol (place, [take_rider_from, taxi,main],
formal_parameter(enumeratlon _type_definition,place_name, [main])).
symbol (place, [location is,taxi,main],
formal“parameter(enumeration _type_definition,place_name, {main])).
symbol (waiting_ for fare, [taxi,main],
object_pame(enumeration_type_definition,boolean,[])).

184

