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ABSTRACT

In this report we describe an algorithm for the static allocation of tasks in a
general Datafiow Multiprocessor and the SANDAC IV System in particular. Initially
a model of execution and the underlying assumptions about the architecture are
outlined. We then discuss a Graph Reduction algorithm for preprocessing the
computation graph. The Graph Reduction algorithm reduces a fine grain graph to an
optimal grain graph. The heuristic allocation algorithm is presented and is based on
giving precedence to critical paths and minimizing the communication time between
tasks. The performance of the algorithm is then analyzed and the effect of varying
parameters is studied. Subsequently we propose an alternative variation with better

characteristics.

In the appendix details of the software implementation and its use is

demonstrated.
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Introduction

In this report we discuss the allocation of tasks in the SANDAC IV system
((BORG 83]). Initially we outline the model of execution and the underlying
assumptions. We then discuss a graph reduction algorithm for preprocessing the
computation graph, which is particularly necessary if the graph is very fine grain, The
allocation algorithm is presented along with performance curves for different graphs.

In the appendix, details of the software implementation and its use is discussed.

Mode! of Computation

The program is represented by a data flow graph ([DENN 80)), with nodes
representing tasks and arcs representing precedence relationships between tasks. The
partial ordering of the tasks necessary for correct execution is captured by the
dependencies between these tasks. The nodes have a single point of entry and a single
point of exit, i.e., a task can begin execution only when all its inputs (arguments) have
arrived, and can deliver each of its results to destination tasks only after the execution

of the task is completed. Likewise, the graph has a single entry node and a single exit

* This work has been supported in part by the Contract No. 25-3074 from the Sandia
National Laboratories 'Multiprocessor System Evaluation and Programming
Environment"



node.

To represent control structures such as conditionals and loops in data flow
graphs we introduce two special nodes (Figure 1). The "OR" node has three input arcs
and one result arc. One of the arguments is boolean, and depending on its value, a
token from one of its arcs (true or false arc) is processed and placed on the result arc.
This special node is unlike other nodes which require all inputs to be present before

the node can be activated.

The "SW" node has two input arcs, one being boolean; and two result arcs
(True and False). Depending on the boolean value the result token is put on one of the
result arcs. The "SW" and "OR" are in the same flavor as the Switch and Merge
actors discussed by [DENN 80}. The "SW" operator on firing will output a token on
either of its output arcs and the "OR" will fire when a token is present on any one of

its input arcs.

Our present implementation of the allocation algorithm is for directed graphs
without loops. Loops implemented by "SW" and "OR" operators could be handled by

applying our algorithm in an hierarchical manner.

It is assumed that the execution time (tp) of each node (tasks) is known
apriori. There is a communication time (z,) associated with each arc in the graph,
whose value depends on the size of data communicated. Furthermore, the
communication time can take on a lower value - local communication time (z;), or a
higher value - bus communication time (7.5 ). Bus communication time is chosen if

results from one task have to be sent to another task in a different processoi'. Local



communication time is chosen when tasks reside in the same processor. One point to
note is that the processors are busy during communication and will not become
available until all the results are sent to their destinationg. Results are sent out
sequentially, due to limitations imposed by the communication mechanism, and hence
the total communication time (z.) is the sum of individual communication times of

each result.

A task once started is not interrupted and will run till completion. A task can

be activated only when all its arguments have arrived.

The objective is to allocate the tasks to a multiprocessor (given n processors),

in order to obtain minimum execution times.

Graph Reduction

'i"o reduce the complexity of the allocation process and to utilize the
parallelism efficiently, ‘wc can reduce ([GAUD 84] & [ERCE 84]) the original graph
into a larger grain task graph. By applying a set of rules, subgraphs in the data flow
graph are replaced by a single node. The criterion for lumping together instructions
into a single task is to minimize the response time for the subgraph under

consideration.

When the delay incurred due to interprocessor communication and activation
exceeds the gain in time due to concurrent execution, it is no longer justifiable to

distribute the nodes over several processors. When the response time of a subgraph



executed sequentially in a single processor is less than or equal to the response time
when executed concurrently, then the subgraph is reduced to a single node and is

executed sequentially.

The condition ((RAVI 86]) for combining a node with its arguments is:

na

,
gtparg S-m‘ax(tparg +learg )

where #,,,, is the processing time of the argument node
fcarg 18 the communication time of the argument node and

narg is the number of arguments.

If this condition is satisfied then the node and its argument nodes are lumped

together into a single node.

This step is illustrated in Figure 2. Figure 2a is a subgraph where the nodes are
separated in order to take advantage of the parallelism, while in Figure 2b the nodes
A, B and C have been lumped together into a single node. In the subgraph of Figure
2a, node D can execute only after the results from node A and B and C have arrived.
If nodes A, B and C are activated at the same time, then the result from nodes A and
B will arrive after 5 cycles and the result from node C will arrive after 8 cycles.
Hence node D is activated only after 8 cycles. In the sequential case the result from
nodes A, B and C are available after 6 cycles, as we do not have to communicate
between different processors. In this case the subgraph of Figure 2a can be reduced to

Figure 2b.



Procedure main (G:typegraph);
{This procedure increases the grain size of the data flow graph (G).
Starting at the root , nodes are combined with its arguments. }

begin
UPREDUCTION(Root(G));
end;{main}

Procedure UPREDUCTION (i:typenode);

{This recursive procedure lumps a node and its arguments
together, based on criterion depending on the the processing
time and communication time. Each node has the the fields
argument (arg), no. of arguments (narg), code (funct),
processing time (proctime) and communication time
(commtime).}

begin
with nodefi] do
if narg > O then begin
{test condition}
seqtime:=0; partime:=0;
for k:=1 to narg begin
seqtime:=seqtime + nodefarg{il].proctime;
if (nodefarg[k]].proctime + node[arg[k]l.commtime)
> partime then
partime = node[arg[k]).proctime + node{arg(i]].commtime;
end;
if ((partime -seqtime < 0) or (if any arg has > than one result)) then
{condition for reduction of parallelism is not true}
for k:=1 to narg do UPREDUCTION(k);
else begin
{condition is false}
copy the code in each of the arguments to node[i] funct
node{i].proctime := seqtime;
nodel[i].narg := sum of the narg of each of the arguments
of node(i]
arguments of new node := arguments of all nodes combined
with node[i]
remove the old argument nodes from graph
UPREDUCTION(#);
end;
end;{UPREDUCTION}

Figure 3 : Upreduction Algorithm
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The "upreduction” algorithm (Figure 3) spans the graph, testing criterion for
reduction, in O(n) time. It combines & node with its arguments whenever the reduction

criterion is met.

Note that sequential nodes which have single arguments and single results are
combined together into a single node (Figure 4). Execution of each of the sequential

nodes in a different processor leads to unnecessary overhead.

However, when a node has more-than one result which goes to different nodés,
then it can not be combined by the "upreduction” algorithm. In order to reduce these
subgraphs (Figure 5), a *downreduction” algorithm has to be applied with the entry
node as a parameter. It combines a node and its results based on the processing time
and communication time criterion into a single node. The algorithm is similar to the

"upreduction” algorithm.

The graphs of Figure 6a,6b & 6c illustrate the Graph Reduction algorithm,
with an example of an iteration consisting of 30 nodes (Figure 6a), which also has a
conditional statement in it. After a single pass of the reduction algorithm, ie.,
combination of a node and its arguments, we obtain a graph with 19 nodes (Figure
6b). After another pass of the reduction algorithm , i.e., combination of a node and its
results, we obtain the final reduced graph consisting of 13 nodes (Figure 6¢). We are

now ready to allocate this graph to the processors.



Figure 6a : Initial Data Flow Graph (30 nodes)
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Figure 6b : Intermediate Graph After Upward Reduction (19 nodes)



Figure 6¢ : Final Graph After Downward Reduction (13 nodes)



Task Allocation

The heuristic allocation algorithm minimizes response time based on two
principles :
1) Precedence to critical tasks

2) Minimizing communication time between tasks

An allocation algorithm based on the first principle of critical path scheduling,
when the tasks only have processing times associated with them is discussed in
(KOHL 75]. The second principle of minimizing communication time provides a
criterion for selecting a task for allocation when several candidates are available. It
enables us to allocate predecessor-successor tasks to the same processor, thus

incurring the lower local communication time.

The difficulty in applying the critical path algorithm to this problem is that
timing parameters associated with the graph cannot be fixed until the allocation is
itself complete. This is because the decision on whether to choose local or bus
communication time for an arc depends on where the successor task will be allocated.
This leads to two specific problems. First, critical paths which are the longest paths in
the graph cannot be precisely determined. Second, when a task is allocated to a
processor, we cannot determine exactly when the task will complete, because it is not
known at that stage in the algorithm as to where the successor tasks are going to be
allocated in order to choose the right communication time. In our algorithm we show

how these two problems can be handled.

11



The Algorithm

Consider a graph with tasks T, T2 ... Ty, to be executed on n processors Py,
Py ... P,. Two lists are constructed - Processor list (Lp) and Task list (L;). The
processor list, at any stage of the algorithm, contains the processors listed in
increasing order of busy times, i.e., the time up to which they are busy. The processor
on the top of the list is the one which will become free next. Initially, the processors
are in random order in the list, as they are free. The task list is generated based on
critical path lengths. The critical path length (CP(T;)) of a task T;, is defined to be the
length of the longest path from the exit node to T;. To calculate the critical paths, we
assume that the value of the communication time taken for each arc is the higher bus
time. The critical paths of nodes in a graph are calculated starting from the exit node.
The critical path of the exit node is equal to f,+t., where is the sum of the bus
communication times of all the results. The critical path of any other node in the
graph is equal to the maximum critical path of result nodes + #, + %, where again ;
is the sum of the bus communication times of all the results. The task list (L,) is
generated by sorting the tasks in decreasing order of their critical paths. At any stage

of the algorithm, the list contains tasks yet to be allocated.

At any time we choose the top processor from the processor list (L, ), which is
the first to become idle. The task list is then scanned till we can choose the first
candidate for execution in the processor. Any other task on the list which can be
executed, and is within a deviation of A from the critical path of the first candidate, is
also chosen as a candidate. A task can be a candidate only if at the time when the

processor becomes free all its arguments have arrived, ie., all its predecessors have

12



completed execution.

Now we choose the task among the candidates to be assigned to the processor.
Of all the candidate tasks, we choose the task which when allocated to the processor
gives the maximum saving in communication time. A saving in communication time
is made if the predecessor tasks are assigned to the same processor. The saving is the
sum of the difference of the bus communication time and local communication time

for each direct predecessor assigned to the same processor.

The chosen task is assigned to a processor, but the question that arises is -
What will the duration of the execution of this task be ? This would be 1, +1, but we
don’t know whether to take the local or bus communication time for the results of the

task, as the successor tasks have not yet been allocated.

The solution to this problem is to associate communication times with
arguments instead of results. Thus, when a task is allocated, the location of its
predecessor is known. In our model the communication of the results is the
responsibility of the task, and to take care of this we reverse the graph. The direction
of the arcs in the graph is reversed before the calculation of critical paths and the
generation of lists. On starting with the reversed graph, the schedule obtained can be
reversed to obtain a regular allocation. By reversing the graph, the communication

time of the arcs is associated with arguments to tasks and not results.

After the task has been assigned to the processor, the busy time of the
processor is updated. The task is removed from the task list (L,) and the processor is

reinserted in the appropriate position in the processor list (L,), which is ordered

13



according to increasing busy time.

If no task can be assigned to the processor (P 1), then we have to move to the
time of the next event and try again. The processor list is scanned; and the first
processor (P3) with busy time greater than the busy time of this processor (Py) is
placed on the top of the list. Processor P, and any other processors with busy time
equal to that of P are updated with busy time equal to the busy time of P». In this

way idle times are caused in processors when no tasks are ready.

This process of allocating each task to a processor continues till the task list is

exhausted. The allocation algorithm is given in Figure 7.

14



Procedure ALLOCATE(G);

{ This procedure allocates the tasks T[1], T[2] .... T[k] of the computation
graph G to the n processors P[1],P[2].... P[nl}

var
Lp : List of processors;
L, : List of tasks yet to be allocated;
listsize : No. of tasks in L; ;
candidate: List of tasks that may be allocated to top processor inL,;

begin
Reverse graph G to G’ by reversing direction of all arcs in G;
EVALCP(Root(G ));

{initializing lists}

sort tasks by T[i].CP

L, [1%:=p; L [2]:=G; «..cene L;[3]:=s

where T[p].CP > T[q).CP.... > TIs].CP;

listsize :=k;

L,(11:=1; L, 21:=2; ..o Ly [n]:=n; {any random order}

while listsize > 0 do begin

SELCANDIDATES(candidate,nocandidates,A,listsize);

if nocandidates > O then begin
SELTASK(candidate,nocandidates,chosen-t_ask,saving);
remove chosen-task from L; ;
update list;
listsize:=listsize-1;
P(L, [111.busytime := P[L, [1]].busytime +

T{chosen-task].t, + X Tlchosen-task].t.p - saving;

T[chosen-task).completion-time := P[LP [11].busytime;

Sort processors in L, so that
P[L, {1]].busytime < P[L, [2]].busytime < P[L, {n]].busytime;
end else begin {if nocandidates = 0}
Go down list L, starting at L, [1] till an entry r with
P[Lp [r]].busytime > P[Lp [111.busytime is found;

Place processor found at Lp {r] at Lp [1]i.e., at the top of the list;
update list;
for j:=2 to r do Ly, [j].busytime := L, [1].busytime;
end;
end;
end; {ALLOCATE}

Figure 7a : Allocation Algorithm
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procedure EVALCP(r:typetask);
{ This procedure computes the critical paths TT[i].CP of each task T[i]}

begin
if T[r].narg = O then T[r].CP := T[r}.5, + Y Tir)Lep
(where Y T[r}.tzp is the sum of bus comm. times of all results)
else begin

maxrescp = e rggﬂ:%mT[r]T [/1.cP

T[r).CP := T[r].4, + > Tlrltep + maxrescp;
end;
for each argument task (p) of task (r) do EVALCP(p);
end; {EVALCP}

procedure SELTASK (candidate,nocandidates,var chosen-task,var saving);

{This procedure chooses a task among the candidates which will locally be most
beneficial}

begin
fori:=1 to nocandidates do begin
candidate[i].saving:=0;
for j:=1 to T[candidate[i]].narg do begin
if argument task (p) has been allocated to the same processor Ly {1] then
candidate[i].saving:=candidate[i}.saving +
(tch = telarc from arg. to candidate[i] task

end;
end;
saving = =yrf‘5xcl£dtfd’§: o (candidate[i].saving);

chosen-task :=r; {value of i which gives above maximum}
end; {SELTASK}

Figure 7b : Allocation Algorithm (Critical Path Calcwation and Task Selection)
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procedure SELCANDIDATES(var candidate, var nocandidates,A listsize);
{This procedure selects tasks which can be executed next on the processor Lp [11}

begin
i:=1; nocandidates:=0;
while ((i =< listsize) and (nocandidates=0)) do begin
if ((T[K].completion-time =< P{L,[1 1).busytime for all argument
tasks (k) of task L, [i])
or (T[L, [i]].narg = 0)) then begin
candidate{1] :=L; [i];
nocandidates:=1;
end else i:=i+1;
end;

if nocandidates > O then begin
i:=i+1;
limit;=T[candidate[1]].CP - A;
while i =< listsize do begin
if ((T[k].completion-time =< P(L, {1]].busytime for all
argument tasks (k) of task L; [i])
or (T[L; [i]).narg = 0)) then begin
candidate{1] =L, [i};
nocandidates:=1;
end;
i=i+1;
end;
end;
end; {SELCANDIDATES}

Figure 7¢ : Allocation Algorithm (Selection of Candidate Tasks)

Performance

To study the performance of the algorithm, several program graphs were
allocated and statistics collected. The effect of changing the parameter A, which is the
deviation in critical path for the choice of candidates, and the behavior of the
algorithm for different ratios of processing time and communication time, were

studied.
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Figure 8 : Response Time (T) Vs. No. of Processors (N)

We first examine the speedup achieved by using multiprocessors. Figure 8
shows the variation of response time (T) with the number of processors (N) for a
graph (Figure 9) containing 123 nodes. The processing time of each node is 20, the
local communication time 0.1, the bus communication time 1 and the deviation A1
unit of time. We observe that initially when the amount of concurrency exceeds the
number of processors available, the response time falls rapidly with the increase in the
number of processors. Figure 10 illustrates the speedup (T(1V/T[i]) of the

multiprocessor system over a single processor. With a multiprocessor system
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Figure 9 : Graph With 123 Nodes



No. of PE’s

Figure 10 : Speedup Vs. No. of Processors

consisting of 8 processors, the speedup over the uniprocessor is 6. Initially, when the
number of processors is increased the speedup is almost linear, but as the amount of
concurrency is exhausted the curve saturates. Figure 11 demonstrates the efficiency
(Speedup/N) of the processors in the multiprocessor system. The fall in efficiency is
attributed to the dependencies in the graph which force idle times in some processors

when very few tasks can be activated.

The algorithm has two driving principles - Precedence to critical tasks (critical

path scheduling) and the minimization of communication time between tasks. Figure

20
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Figure 11 : Efficiency Vs. No. of Processors

12 shows the performance when only critical path scheduling is enforced. The
example is of a sort-merge graph (Figure 13) with 94 nodes, where the processing
time of each node is 20 units, the local communication time is 0.1 units and the bus
communication time is 5 units. The curve (a) shows the response time for a strict list
schedule where no attempt is made to have predecessor-successor tasks cohabit in the
same processor. Curve (b) uses our algorithm with a deviatit;n (A) equal to 0.1, which
is the local communication time. The deviation (A) is usually chosen to be a factor of
the bus communication time. For two processors the difference in the response times

is 15%, due to the large saving from the reduced interprocessor communication.
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When the deviation is very large, i.e., several orders of magnitude larger than
the bus communication times, then the critical path list ordering is no longer
operative. In Figure 14 we have a program graph with one dominant critical path and
several non-critical tasks. When the deviation exceeds the length of the critical path,
then at each stage the candidates for allocation to a processor are all the enabled tasks
in the graph. In other words critical and non critical tasks are given equal chance for
execution at any point. For two processors for the graph of Figure 14, with £, =20,

tp =1 & ty = 0.1 we observe that the response time increases by 22% from zero
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deviation response time, when the deviation is greater than the critical path.

Figure 14 : Example with a Dominant Critical Path Schedule

A Variation to the Allocation Algorithm

One variation to the Allocation algorithm which we have considered is to
evaluate critical paths based on the processing time alone. The motivation behind this
variation (Acp) to the algorithm is that here the communication times (bus or local
communication times) will not influence the order of tasks in the critical path list. Qur

observation with the example (Figure 9) with 123 nodes shows that when the bus

24



communication times are low then the difference between the response times from the
two algorithms is insignificant. But as the bus communication time increases, the

modified algorithm (Acp) performs noticeably better.
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Figure 15 : Comparison of Performance with Modified Algorithm

In Figure 15, curve (a) indicates the response time of the modified algorithm (Acp),
while curve (b) is that of the original algorithm. In this example the bus time is equal
to the processing time of the task, implying low grain parallelism (1, =20, 1.5 =20, e
-0 & A = 1) A reduction in response time of upto 16% (for 3 processors) indicates

this variation is an improvement to the original algorithm.
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Appendix 1

The software tools for the allocation of tasks to the SANDAC IV architecture
consists of two programs - allocation.p and reduction.p, implemented in Berkeley
Pascal and given in Appendices 2 and 3 respectively. The input file to reduction.p is
'ingraph’. Appendix 1.1 shows the format of ingraph for the graph of Figure Sa. The
main program allocation.p has input file "outgraph2’ if the original graph is to be
allocated and ’outgraph4’ (Appendix 1.2) if the reduced graph is to be allocated. Files
‘outgraph2’ and ’outgraph4’ are output files from reduction.p. A session illustrating

the execution of the programs is given below.

< 1> reduction.out
Want to parameterize Communication and Processing times (y or n) Yy
Processing time:10
Local Communication time:0.3
Bus Communication time:5
Prtime = 1.00e+01
LocComm.time = 5.00e-01
BusComm.time = 5.00e+00
<2> allocation.out
Input is original graph {o} or reduced graph {r} r
Reading reduced graph
The critical path of the graphis 185.000
No. of processors =2
Deviation in critical path for selecting candidates =0
Deviation in critical pathis = 0.00
The response time for 2 processors is  206.500

The output files of allocation.p are 'outstat’ and ’'outschdr’. File ’outschdr’
(Appendix 1.3) lists the tasks assigned to each processor and ‘outstat’ gives statistics

on the allocation.



APPENDIX 1.1

{Input Computation Graph - ingraph}
This is the input file to program
reduction.p. This graph is reduced
based on the reduction criterion to
obtain a large grain graph.
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APPENDIX 1.2

{Reduced graph - outgraphd}

This is the output of reduction.p
after the graph is parameterized
and then reduced. This graph is

the input to the allocation
program allocation.p.

NQ OF NODES 23
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funct

proctime 20
narg 0
nres 3
[results} 2 3
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narg 1
{arg node} 1
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5 6 9
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0.500
5.000

node
funct
proctime
narg
5
nres
10
0.500
5.000

node
funct
proctime
narg
2
nres
10
0.500
5.000

node
funct
proctime
narg

nres
11
0.500
5.000

node
funct
proctime
narg
10
nres
13
0.500
5.000

node
funct
proctime
narg
10
nres
16
0.500
5.000

10

10
12

12
0.500

11
13

14
0.500
5.000

12
14

17
0.500
5.000

.000

.000

.000

.000

.000

.000



node
funct
proctime
narg
11
nres
15
0.500
5.000

node
funct
proctime
narg
11
nres
15
0.500
5.000

node
funct
proctime
narg
13
nres
23
0.500
5.000

node
funct
proctime
narg
12
nres
18
0.500
5.000

node
funct
proctime
narg
i2
nres
18
0.500
5.000

node
funct
proctime
narg
16
nres
23
0.500
5.000

node
funct
proctime

13
15
10
1
1
14
16
10
1
1
15
17
10
2
14
1
16
18
10
1
1
17
19
10
1
1
18
20
10
2
17
1
19
21
10

.000

.000

.000

.000

.000

.000

.000

narg
3

nres
20
0.500
5.000

node
funct
proctime
narg
19
nres
22
0.500
5.000

node
funct
proctime
narg
19
nres
22
0.500
5.000

node
funct
proctime
narg
4
nres
23
0.500
5.000

node
funct
proctime
narg

15
nres

30.000

20.000

20.000

20.000

4
2
21
0.500
5.000
20
24,23,22
1
1
21
26,25
1
1
22
28,27
3
20
1
23
30,29
4
18
0



APPENDIX 1.3

{Allocation of tasks to processors =~ outschdr}
This output file from allocation.
which tasks are allocated to which processors.
It also gives the starting time and finishing

p indicates

time for the tasks when executed in the

reverse schedule.

PROCESSOR 1:
No of tasks - 10
PROCESSOR 2:

No of tasks 13

Task #

234
18¢
174
16¢
12¢
22(
20¢(

8¢

7

2

15¢
14¢
13¢
11¢
104
8(
214
6
5(
194
4
3¢
1(

Start

0.0,
20.0,
30.5,
41.0,
51.5,
62.5,
83.0,
113.5,
138.5,
149.0,

20.0,
35.0,
45.5,
56.0,
67.0,
82.5,
93.0,
118.0,
128.5,
139.0,
154.5,
170.0,
180.5,

Finish Time

20.0)
30.5)
41.0)
51.5)
62.5)
83.0)
113.5)
138.5)
149.0)
170.0)

35.0)
45.5)
56.0)
67.0)
82.5)
93.0)
118.0)
128.5)
139.0)
154.5)
170.0)
180.5)
206.3)



APPENDIX 2

{****************************************************************************

REDUCTION

8/18/1985 T.M.RAVI

{¢) by T. M. Ravi

1985

hkkkAh kA hhkkrhhAhkkkhhkhhhhkhAhhkkh kA Ak rh kA Ak khk ok kkkhkhkkkhhkhhkhxhkkhhhhhx ]

program reduction(input, output);
{

This program reads in a program graph and reduces it based on
communication and processing time criterion alone. We assume
that the input graph is a single input-single output graph.

INPUT:
files ingraph - Program graph given by user
OUTPUT:
files outgraphl - Original graph without reduction
outgraph2 - Original graph with parameterized timing
if parameterization option been excercised
outgraph3 - Graph after upward reduction
outgraph3 - Graph after downward reduction
Final reduced graph
PROCEDURE:
upreduc - Reduces the graph starting at the result node
dnreduc - Reduces the graph starting at the entry node
datain - Inputs the graph from file ingraph
dataout - Prints the current graph
remnodes - Removes nodes from tree structure which are
no longer present
parameterize ~ Allows parameterization of processing time,
local and bus communication time.
t
const
maxnodes = 130; {maximum number of nodes in program graph}
maxfunchar = 100; {maximum characters in definition ¢f function}
type

tmaxnodes= 0..maxnocdes;

tfunct= packed array([l..maxfunchar] of char;

targ=~linkl;
linkl= record
no:tmaxnodes;
dir:char;
next:targ;
end;
tres="1link2;
link2= record
no:tmaxnodes;
dir:char;
commtime:real;
bustime:real;
next:tres;
end;
tnode = record

funct: tfunct;

narg: integer;

arg: targ;

nres: integer;

res: tres;

proctime: real;
end;

typetree = array [l..maxnodes] of tnode; {tree = collection of nodes

{index of argument node }
{arg label, f-forward arc,b=-backward arc}
{pointer to next arg }
{identifier of the node }
{res label,f-forward arc,b-backward arc}
{communication time of result arc }
{bus communication time of result arc |}
{pointer to next res }

{structure for representation of
{each node belonging to the graph
{description of node

{number of arguments

{pointer to arguments

{number of results

{pointer to results

{processing time

et W et et Syt At

Nt



var

tree: typetree; {array to store program graph }
nonodes: tmaxnodes; {total number of nodes initially }
newnonodes: tmaxnodes: {total number of nodes |}
entrynode: tmaxnodes; {index of entry node}

cut:text; {var for text files }

{****************************************************************************

DATAIN
KA KA R R AARRRARRAA KRR AR AR AAR ARk kT kxhhkk Ak khk ke kkhkkhkhhhhkrkrxkkkkkkkhkrhrrnr |

procedure datain(var tree:typetree;var nonodes:tmaxnodes);

{

Procedure to input the program graph from file ingraph.
Ingraph has the nodes listed in order. An example ¢f a node:

#2 {delimiter between nodes)

20R (node index 2 with functien OR}

1.0 (Processing time)

1 30b {arg. 1 and 30 with backward arc from 30)
34 {Result nodes)

1.5 1.8 (Local communication timesa for results)
4.1 4.4 (Bus comm. times)

*3 (next node ....}

INPUT: file ingraph

QUTPUT:
tree — tree (graph) as an array of nodes.
nonodes - no. of nodes in initial graph.
}
var i,j,1: integer:;
p:real;
inp:text;

tmpchar:char;
firstptr,ptr,prevptr:tary;
firstgtr,qtr,prevgtr:tres;
begin
reset (inp,’ingraph’);
nonodes:=0;
while not eof (inp} do begin
read (inp, tmpchar) ;
if tmpchar<> ’'#’ then
writeln (‘ERROR 1 in DATAIN - New node description should start with #7)
else begin
nonodes :=noncdes+1;
readln(inp, j): {index of new node}
with tree{j] do begin
{funct[l1] & funct{2] are reserved. The functiocn
starts from funct (3]}
funct[1l]:='U7;i:=3; (funct[l] can be *X’, ‘D’ or 'U"}
{’¥X' indicates that the node no longer exists &
‘Df & 'U’ are for book-keeping purposes}
while not eocln{inp) do begin
read (inp, tmpchar) ;
funct [i] :=tmpchar; ({(read the function and place it starting funct [3]}
i:=i+1;
end;
funct [i]:=" *;
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{If 1lst char. of function is 'S5’ then the function is SWITCH, if it is
r0f then the function is 'CR’ else the fynction is neither ('N’).
funct {2] is used to indicate whether a function is a SW,0R or neither}

if funect([3)='0" then funct([2]:='0' else
if funct[3]="8" then funct([2]):='5' else
funct [2]) :="N’;
readln{inp,proctime); {processing time of node}

{read arguments of this node. The arguments are stored in a linked list}
1:=0;1:=1; {1 counts the no. of arumentsj}
while (({(not eclin(inp)) and (i<>0)) do begin
read (inp,i});
if 1 <> 0 then begin
l:=141;
new (ptr};
if 1=1 then firstptr:=ptr else prevptr*.next:=ptr;
ptr*.no:=i;
ptr*.next:=nil;
prevptr:=ptr;
-if not eoln{inp) then begin

read (inp, tmpchar) ;

{if the arg. is a backward arc, i.e., coming from below thls node
(possible only for an OR node) then the input should indicate it
example 30b indicates that the argument node is no. 30 and the
arc from 30 to this node is a backward arc}

if tmpchar='b’ then ptr*.dir:='b’ else
if tmpchar<>’ ¢ then writeln('ERROR 2 in DATAIN')}
else ptr~.dir:="£f"; ({direction is forward if not backward]
end;
end;
end;
readln (inp) ;
if 1<>0 then arg:=firstptr;
narg:=1;

{read in the result nodes}
1:=0;i:=1;
while ({nct eoln(inp)) and (i<>0)) do begin
read(inp,1i);
if 1 <> 0 then begin
1:=1+1;
new{qtr};
if 1=1 then firstgtr:=qtr else prevgtr*.next:=qgtr;
gtr*.no:=i;
gtr®.next:=nil;
prevgtr:=qtr;
if not eoln{inp) then begin
read (inp, tmpchar) ;
if tmpchar='b’ then gqtr”.dir:='b’ else
if tmpchar<>’ * then writeln(’ERROR 3 in DATAIN')
else gtr"~.dir:="£f’;
end;
end;
end;
readln (inp);
if 1<>0 then res:=firstqgtr;
nres:=1; (set nres=the counter 1l}

{local and bus communication time are read from input graph. They will
not be used if the parameterize option is chosen by the user |}

{read in the local ~ommunication time for each result. Note that for



each result the input should have a corresponding local

communication time. }

gtr:=res;

if nres > 0 then begin

for l:=1 to nres do begin
read (inp,p) ;
gtr*.commtime:=p;
gtr:=gqtr”.next;
end;
readlniinp);

end;

{read in the bus communication time for each result}

gtr:=res;

if nres » 0 then begin

for l:=1 to nres do begin
read (inp,p};
gtr*.bustime:=p;
gtr:=gtr*.next;
end;
readln(inp);
end;
readln (inp) ;
end;
end;
end;
end; {datain}

{************_****************************************************************

REMNCDES
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procedure remnodes( var tree:typetree;var nonodes:tmaxnodes);

{

Procedure to remove nodes which no longer exist (i.e., that have been
combined) . Basically to clean up the tree data structure.

INPUT:
nonodes - number of nodes including notes which are no
: longer valid
tree - tree data structure with wvalid and
invalid nodes
OUTPUT:
nonodes - actual numer of valid nodes
tree - tree structure with only wvalid nodes
}
var i,j,k: integer:
actnonodes:tmaxnodes; {actual number of nodes)
ptr:targ;
gtr:itres;
labmap: array{tmaxnodes] of tmaxnodes; {array to map old node index and
begin
3:=0;

for i:=1 to nonodes do
if tree[i].funct(1l} <> X' then begin
{nodes with funct[l] = "X’ are no longer valid nodes}
J:=3+1;
labmap[i] :=7;
end;
actnonodes:=j;
j:=0;
for i:=1 to nonodes do begin
with tree{i] do begin
if funet[l]<>'X’ then begin



jir=3+1;
tree(3].funct:=funct:;
treef{}] .proctime:=proctime;
tree([j] .narg:=narg;
tree([j] .arg:=arg;
ptri=arg;
if narg>0 then
for k:=1 to narg do begin
ptr*.no:=labmapptz”.nel;
ptr:=ptr”®.next;
end;
tree[j] .nres:=nres;
treel]j] .res:=zres;
gtri=res;
if nres>0 then
for k:=1 to nres do begin
gtr*.no:=labmap({gtr”.noj;
gtr:=gqtr”.next;
end;
end;
end;
end;
entrynode:=labmap{entrynode];
neonedes :=actnonedes;
end; {remnodes}

{**************************t*************************************************

DATAQOUT
khkhkkdhkhkhdhkhhhhhdhhhkdhhrhkrhhkhkhhhhhkhhhhkhhkhkA kAR hahhhdkhrhhhkdhhkhhhhkrnhhhx }

procedure dataout (tree:typetree;nonodes:tmaxnodes;newnonodes:tmaxnodes);

{

Procedure to output the program graph to a file set to text var out.

INPUT:
nonodes - total no. of nodes in the graph
tree - graph with nodes in an array
QUTPUT:
out : - output in file eq. to variable out
}
var i,3: integer;
ptr:targ;
gtr:tres;

begin
writeln(out,’'NO OF NODES’,newnonodes);
for i:=1 to nonodes do
if tree[il.funct[l] <> ’X’ then {if node is valid}
with tree[i] do begin
writeln(out, 'node *,1i);
funct[1]:=" *;funct([2]:=" *;

writeln{out,’ funct ' funct) ;
writeln(out, ‘proctime f,proctime:10:3);
writeln(out, ‘narg ! ,narg);

ptr:=arg;

if narg > 0 then begin
for j:=1 to narg do begin
write{out,ptr*.no) ;
if ptr*.dir='b’ then write{out,’b’);
ptr:=ptr”.next;
end;
writeln{out);
end;
writeln (out,’nres f,nres);



gtri=res;
if nres > 0 then begin
for j:=1 to nres do begin
write(out,gqtr*.no) ;
if gtr~.dir='b’ then write(out,’'b’);
gqtr:=gtr”®.next;
end;
writeln(out);
end;
gtr:i=res;
if nres > 0 then begin
for j:=1 to nres do begin
write(out,qgtr*.commtime:10:3) ;
gtr:=qtr”.next;
end;
writeln(out):;
end;
gqtr:=res;
if nres > 0 then begin
for j:=1 to nres do begin
write(ocut,qgtr*.bustime:10:3)
gtr:=qtr”.next;
end;
writeln(out):
end;
writeln (cut) ;
end;
end; {dataocut}

{****************************************************************************

FARMMETERIZE
kkhkhkhkhhhkhhkRrhkhhkhhhkhkAR kA Rk khkhkdkkhkkhhhhkkhdkkkhkkbkkhkhkkkkrhhkhkhrhhkhrddkhihkk }
procedure parameterize(var tree:typetree;nonodes:tmaxnodes):

{

Procedure to parameterize the processing time and communication times
in the program graph. Procedure asks if parameterization is required
and if so requests for the parameters. If parameterization option is
used then the times in the graph are overruled. If however we only
want to parameterize the communication times then if we assign a
negative parameter to the processing time then the processing times for
the nodes will be taken from the input graph data

var i,j: integer;
tmpchar:char;
pr,buscomm, loccomm: real;
gtr:tres:;

begin
write (‘Want to parameterize Communication and Processing times (y or n) 2y
readln (tmpchar) ;
if (({tmpchar = ‘y’) or {(tmpchar="Y’))} then begin
write (’Processing time:’); readln(pr):
write {’Local Communication time:'); readln(loccomm};
write (’Bus Communication time:’); readln(buscomm):
writeln{(’Pr.time = ’,pr);
writeln (' LocComm.time = ‘,loccomm); {All arcs are given this local
comm. time}
writeln(/BusComm.time = /,buscomm);{All arcs are given this bus comm. time }
for i:=1 to nonodes do begin



with tree([i] do begin
if pr >= ¢ then proctime:=pr; (All nodes are given this proc. time if it
is positive else retain original proc. times}
if nres>0 then begin
gtr:=res;
for j:=1 to nres do begin
gtr” .commt ime : =loccomm;
gtr”.bustime:=buscomm;
gtr:=gtr”®.next;
end;
end;
end;
end;

end;

end; {(parameterize}

{****************************************************************************

UPREDUC

2 de de Je o o e de g ve kg kK ok K gk A R 9 K dr ek de ok e gk e ok e e ok e ok ke e e o sk vtk e ok vl ek ok ke o ok v e ok ok vk e ak ok ok o ke ok ol ok ke ok o o ok ok o ke i }
procedure upreduc{var tree:typetree; index:tmaxnodes; var newnonodes:tmaxnodes);

{

Starting from node index this recursive procedure checks if the
condition for combining the argument nodes and this node is
satisfied. If it is then the functions of the argument nodes

are copied to the index node. The index node’s arguments will
now be the arguments of the arguments. The result field of the
arguments of the arguments has to be modified to reflect new
results. If due to reduction we encounter two arcs between a
pair of nodes we sum the comm times and replace them by a single
arc. Note no upward reduction of OR nodes.

INPUT:
index - present node which is being analyzed
tree - graph
QUTPUT:
tree - graph after upward reducticn
PROCEDURE :
upreduc - recursive
}
var n,i,k,m,1: integer;
cond: real;
singres: hoolean;
maxtime, sumproctime, largres: real;
tnarg: integer;
prevptr,ptr,rtr, firstptr,tptr:targ:;
prevgtr,qtr:tres;
begin

ptr:=tree[index].arg; -
with tree[index] do begin

if ({narg>0) and (funct[l]<>'D"}) then
if funct[l] = ‘X’ then
writeln (ERROR in UPREDUC - reference to invalid (nonexistent} node’) else
if funct{2] = Q' then {no upward reduction of OR nodes}
for i:=1 to narg do begin
if ptr~.dir <> 'b’ then upreduc(tree,ptr”.no,newnoncdes);{Only CR nodes
can have backward arcs as argument}
ptr:=ptr”.next;
end
else begin
maxtime:=0; sumproctime:=0; ptr:=arg; singres:=true;



i:=1;k:=narg;
while {({(ptr<>nil) and (singres=true})) do begin
if tree[ptr”.no}.nres >1 then begin
gtr:=tree[ptr”.nol.res;
n:=0; largres:=0;
m:=tLree[ptr*.nol].nres;
for l:=1 to m do begin
if gqtr*.no = index then begin
n:=n+l;
if gtr*.commtime>largres then largres:=qgtr”.commtime;
end else singres:=false;
gtr:=qtr*.next;
end;
if n=m then begin
tree([ptr”.no) .res*.commtime:=largres;
tree[ptr”.no].res”.next:=nil;
tree([ptr*.no] .nres:=1;
tptr:=ptr;tptr:=tptr*.next;prevptr:=ptr;
while tptr<> nil do begin
if tptr*.no = ptr”.no then begin
prevptr®.next:=tptr*.next;
narg:=narg-1;
end else prevptr:=tptr;
tptr:=tptr”.next;
end;
end;
end;
if singres=true then begin
sumproctime:=sumproctime+tree [ptr*.no) .proctime;
if ( tree[ptr*.no].proctime +tree[ptr”*.no)l.res”.commtime}> maxtime
then
maxtime:=tree[ptr”.no).proctime + treelptr*.no].res”.commtime;
end;

i:=1i+1;
ptr:=ptr”~.next;

end;

ptr:=arg;

cond:=maxtime-sumproctime; {compresion condition}
{combination of node and its arguments}

if {((cond<=0) or (singres=false)) then [no compresion}

for i:=1 to narg do begin
upreduc (tree,ptr”*.no, newnonodes) ;
ptr:=ptr”.next;
end
else begin {compresion}
tnarg:=0;tptr:=arg;firstptri=nil;
m:=0;
repeat m:=m+l until funct(m]=" '
for i:=1 to narg do begin
if tree{tptr*.no].narg > 0 then begin {new arg for index}
tnarg:=tnarg+tree[tptr*.ne] .narg;
if firstptr=nil then begin
rtr:=tree(tptr*.no].arg;
firstptr:=rtr;
end else begin
rtr*.next :=tree[tptr*.noj.arg;
rtr:=rtr*.next;
end;
for k:=1 to tree[tptr”.no].narg do begin {res of arg of args
modified}
gqtr:=tree[rtr*.no]l.res;
for 1:=1 to tree[rtr”*.no].nres do begin
if gtr®.no=tptr”.nc then gtr*.no:=index;
gtr:=gtr”.next;



end;

end;

end;
if rtr*.next <> nil then rtr:=rtr*.next;
end;

end;
ki=2; {copy functions of arg to index nodel
funct [m]:=",":
repeat m:=m+l; k:=k+1; funct[m]:=treeltptr”.ncl.funct[(k]
until tree(tptr”.nol.funct(k]l=" *;
if tree(tptr”®.nol.funct{2]="0’ then funct[2]:=0Q";
if tptr~.noc=entrynode then entrynode:=index:
tree[tptr*.nol.funct[1l):="X"; {Arg node no longer part of treel
newnonodes :=newnonodes-1;
tree([tptr”.no].arg:=nil;
tptr:=tptr*.next;

end; ‘
arg:=firstptr;

narg:=tnarg; [No. of arg is sum of narg cf args}

proctime:=proctime+sumproctime; (new proc. time is sum of proc.
times of all the nodes combined}

upreduc (tree, index, newnonodes); {Try reduction with new arguments }

end;
end;
if funct[l] <> "X’ then funct[l]:='D"; {Mark it as observed }
{'D’ indicates that upreduc has encountered this node}
{upreduc}

[*********************************#****i*************************************

DNREDUC

AhkkdkhkdhhkkdkhkkhhkhkhkhhhkRkhkhhdhhkhhkkhhhhohhrhkAhkhhdkddkhdkkhhhhhkkhkhhhAhhbhhkhkhkhkhhkhkk }
procedure dnreduc(var tree:typetree; index: tmaxnodes;var newnonodes:tmaxnodes);

{

var

begin

Starting from node index this recursive procedure checks if the
condition for combining the result nodes and this node is
satisfied. If it is then the functions of the result nodes

are copied to the index node. The index node’s results will

now be the results of the result. The result field of the

result of the result has to be modified to reflect new

results. If due to reduction we encounter two arcs between a

pair of nodes we sum the comm. times and replace them by a single
arc.

INPUT:
index -
tree -

QUTPUT:
tree -

PROCEDURE :
dnreduc

recursive

n,i,k,m,1: integer:;

cond: real; {compression condition - compress if >0 }
singarg: boolean;

maxtime, sumproctime, largarg: real;

tnres: integer;

ptr,prevptr:taxg:;

qtr,rtr,firstgtr,tqtr,prevatr:tres;

gtr:=tree(index] .res;
with tree{index] do begin
if ({nres>0) and (funct[l]<>'U’)) then



if funct{l] = "X’ then
writeln (‘ERROR in DNREDUC - invalid node encountered’) else
if ({funct[2) = ’S’) or (funct[3] = 7S7)) then{no down reduction for SWITCH}
for i:=1 to nres do begin
if qtr~.dir <> ‘b’ then dnreduc (tree,qgtr”.no,newnonodes};
gtri=gtr”.next; -
end
else begin
maxtime:=0; sumproctime:=0; gtr:=res; singarg:=true;
i:=1;k:=nres;

{singarg will be true if the result nodes of index node have
only one argument which is the index node or all its arguments
are the index node. Even though we don’t admit two arcs in the same
direction between the same pair of nodes initially, this can occur
after combinations}
while ((gtr<>nil) and (singarg=true)) de¢ begin
if tree[gtr”.ne).narg >1 then begin
{if the result has more than one argument}
ptri=tree{gtr”.nol].arg;
n:=0;largarg:=0;
m:=tree{qgtr™.nol .narg;
for 1l:=1 to m do begin
if ptr~.no= index then begin
n:=n+l;
end else singarg:=false;
ptri:=ptr*.next;
end;
if n=m then begin
{if all the arguments of the result node are the index node,
i.e., the node under consideration}
{if parallel arcs from index to result then replace by a single
arc}

trée[gtr*.no} .narg:=1;
tree[qtr”.nol.arg”.next:=nil;
tgtr:=qtr;tgtr:=tgtr”.next;prevgtr:=gtr;
largarg:=0;
while tgtr<>nil do begin
if tgtr”®.no=gtr”.no then begin
prevgtr”.next :=tgtr”.next;
nres:=nres-1;
if tqtr*.commtime>largarg then largarg:=tgtr”*.commtime;
end else prevgtr:=tqtr;
tgtr:=tgtr”.next;
end;
gtr”.commtime:=largarg;
end;
end;
if singarg=true then begin
sumproctime:=sumproctime+tree [gtr”.ne] .proctime;
if { tree[gtr”.no)l.proctime +gtr”.commtime)> maxtime then
maxtime:=tree{gtr®.nel.proctime + gtr*.commtime;

end;
ii=1i+1; )
gtr:=gtr”®.next;
end;
gtr:=res;
cond :=maxtime-sumproctime; {compresion condition}
if ((cond<=0) or {(singarg=false}) then {no compresion}

for i:=1 to nres do begin
dnreduc({tree,gtr”.no,newnonocdes);
gtr:=qtr”.next;

end



else begin {compresion}
{combination of node and its results}
tnreg:=0;tgtr:=res;firstqgtr:=nil;
m:=0;
repeat m:=m+l until functm]=" 7;
for i:=1 to nres do begin
if treel[tgtr”.nol.nres > 0 then begin
tnres:=tnres+tree[tgtr”.no] .nres; {no. of results of results}
if firstgtr=nil then begin
rtr:=tree{tgtr~.nol.res; {result of the result}
firstgtr:=rtr; {firstqtr will be the new result}
end else begin
rtr*.next:=treel[tgtr”.no}.res;
rtr:=rtr®.next;
end;
for k:=1 to tree[tgtr*.no].nres do begin
ptr:=treelrtr*.nol.arg;
for 1l:=1 to tree[rtr”.nec].narg do begin
if ptr*.no=tgtr*.no then ptr”.no:=index;
ptr:=ptr”.next;
end;
if rtr*.next <> nil then rtr:=rtr*.next;
end;
end;
ki=2;
funct (m] :=*,"';
{copy the functions)
repeat m:=m+1l; k:=k+l; funct[m]:=treel[tgtr”.nel.funct (k]
until tree[tgtr”.nol.functik]=" ’:
if (({tree(tgtr”.nol.funct{2]='S’') or
(tree[tgtr~.no].funct(3])=’5')) then funct[2]:='S8';
tree{tgtr*.no]).funct[1]:="X";
newnonodes :=newnonodes-1;
treeltgtr”.no] .res:=nil;
tgtr:=tqgtr”*.next;
end;
reg:=firstgtr:;
nres:=tnres;
proctime:=proctime+sumproctime;
dnreduc (tree, index, newnonodes) ;
end;
end;
if funct[l] <> "X’ then funct[l]:="U’;
[{Node with funct[l] = ‘U’ indicates that upreduc has seen this
node already}
end;
end; [dnreduc}

{******************************In********************************************

madin program
**************************************************************************** ,
begin
nonodes:=0;entrynode:=1; {entry node is the single entry node of the graph}
datain(tree,nonodes); {read the input graph from "ingraph"}

newnonodes:=nonodes;

rewrite (out, f outgraphl’};

dataout (tree,nonodes, newnonodes); (write graph to text var out}
parameterize (tree,nonodes); {option to give general time parameters}
rewrite (out, ’outgraph2’);

dataout (tree, nonedes,newnonodes) ;

upreduc ({tree,noncdes,newnonodes) ; {upward reduction of nodes starting from
rewrite (out, 'outgraph3’}:

dataout {tree, nonodes, newnonodes) ;



dnreduc(tree,entrynode,newnonodes);[downward reduction of nodes starting from
entry node}
remnodes (tree, noncdes) ; {remove nodes which are no longer in the graph}
rewrite (out,’outgraphd’)}
dataout (tree, nonodes,newnonodes) ;
end.



APPENDIX 3

{*******************

ALLOCATION

{

1

********************************************************k

9/4/1985 T.M.RAVI

{(c) Copyright by T. M. Ravi

1985

********************************************************************ﬁ******* }
program allocation{(input, output)

This program reads in a pregram graph and reduces it based on
communication and processing time eriterion alone. We assume
that the input graph is a single input~single output graph.

INPUT:
files
or

QUTRUT:
files

outgraph2
outgraphd

outgraphb
outgraphé
outgraph?
outgraph8

outlist

outschdr
outstat

PROCEDURE:

const
maxnodes = 100;
maxfunchar = 200; -

maxnoproc =

revgraph
graphin

revgraph

dataout
evalcp

setuplist
initproclist
putproclist
calcomtime
calsegextime
scheduler

listout
schdrout

stats

100;

- Original graph without reduction

~ Graph after reduction
Both files ocutgraph2 & outgraph4 are output
files from program reduction.p

- Graph selected to be allocated

- Graph which is reverse of outgraphb

- Graph of outgraphé with critical path of
nodes indicated

- Reverse Graph indicating which processor
each node has been allocated to

- List of tasks yet to be allocated ordered
in decreasing order of critical path

- Tasks assigned to each processor

- Statistics on this allocation

Reverse graph by changing direction of arcs
Read the graph to be allocated from outgraph2
or outgraphd

Reverse the graph, i.e., reverse the direction
of arcs -

Prints the current graph

Evaluate the critical paths for all the nodes
in the graph

Set up a list of nodes (tasks) ordered
according to decreasing critical path
Initialize a list of processors

Place a processor which has been allocated a
new task in the correct positien in the proc.
list

calculate the communication time (of
arguments) for the task to be allocated
calculates execution time when we have only
one processor

Main allocation algorithm

Print out the task list (list)

Print out the nodes {tasks) allocated to each
processor along with start and finish time
for the reverse schedule

Ccalculates and prints statistics fer

this particular allocaticn

{maximum number of nodes in program graph)
{maximum characters in definition of function)
{maximum number of processors}



type

var

tmaxnodes= 0..maxnodes;
tmaxnoproc= 0..maxnoprec;
tfunct= packed arrayl(l.
tres="1link2;
link2= record
no:tmaxnodes;
dir:chax;
commtime:real;
bustime:real:;
next:tres;
end;
tnode = record

funct: tfunct;
narg: integer;
arg: tres;

nres: integer;
res: tres;
proctime: real;
sumbustime: real;

criticalpath: real;
procid: integer;
tmax: real;
end;
textime= record
lower:real;
upper:real;
end;
task="1ink3;
1ink3= recoxd
no:tmaxnodes;
exectime:textime;
next:task:
prev:task;

end;
typelist= record
top:task;
size:integer;
end;

tprocsch= record
first:task;
last:task;
busytime:real;

notasks:integer;{no. of tasks

end;

.maxfunchar] of char;

{res label, f-forward arc,b-backward arc}

{local communication time of
{external communication
{pointer to next res

{structure for representation of
{each node belonging to the graph

{description of node
{number of arguments
{pointer to arguments
{number of results
{pointer to results
{processing time

result arc}

time of result arc)

}

{sum of the bus communication times
of results }

{processing time

{processor to which node has been

allocated
{time when this node comp

execution

task starts ex
task ebds exec

{time when
{time when

{task no.}

{details on the execution
{next task}

{previous taak}

{top of task list}
[size of task list}

{description of each processor)
{first task allocated to it}
{last task allocated to it}
{time to which it is busy}!

allocated to the p

typeschdr= array (tmaxnoproc] of tprocsch;

proclist =~link4;
link4= record
no:tmaxnoproc;
next:proclist;
prev:proclist;
end;
typeidleproc= record

front:proclist;

back:proclist;
end;
typetree = array (1.

idleproc: typeidleproc:

.maxnodes] of tnode;

{ ordered list

(index of processor}
{pointer to next proce
{pointer to previous p

{front of processor list}
[{back of processor list }

of processeors }

letes

ecution }

ution }

times of task)}

rocessor}

ssor)
rocessor}

{tree-collection of nodes}



aschdr: typeschdr; (description of each processor}

list: typelist; {list of tasks ordered by decreasing critical path }
tree: typetree; {array to store program graph }
nonodes: tmaxnodes; {total number of nodes }

entrynode: tmaxnodes; {index of entry node}

exitnede: tmaxnodes; {index of exit node}

noproct tmMaxnoproc; {total number of processcrs }

out :text:

{****************************************************************************
GRAPHIN

****************k*********************************************************** }

procedure graphin (var tree:typetree;var nonodes :tmaxnodes; var entrynode:tmaxncdes;var:

{

Procedure to read the program graph from file outgraph2 or outgraph4.
We have the option of allocating the original graph {outgraph2) or
the preprocessed {reduced) graph (outgraphd) .

INPUT: .
Graph outgraph2 or outgraphd
QUTPUT:
tree - array to store the program graph
nonodes - no. of nodes in the graph
entrynode- the top node in the graph. Node with no arguments
exitnode - bottom node in the graph. Node with no results
}
var i, j,%,1: integer:
inp:text;
tmpchar:char;
p:real;

firstptr,ptr,prevptr:tres:
firstgtr,qtr,prevgtr:tres;
begin
write (‘Input is original graph {o} or reduced graph (r} 1) :readln (tmpchar) ;
if tmpchar=o’ then begin
writeln (‘' Reading original graph'):
reset(inp,'outgraphZ');
end else begin
writeln {’Reading reduced graph’);
reset (inp,’outgraphd’);
end;
for k:=1 to 11 do read {inp, tmpchar);
readln (inp,nonodes) :
exitnode:=nonodes;
for i:=1 to nonodes do begin
for k:=1 to 4 do read {inp, tmpchar);
readln (inp, j) ¢
if i=]1 then entrynode:=i;
with treeli] do begin
for k:=1 to 5 do read(inp,tmpchar); .
k:=1; :
while not eoln(inp) do begin
read (inp, tmpchar) ;
funect (k] :=tmpchar;
k:=k+1;
end;
readln (inp)}
eriticalpath:=-1; tmax:=0; (these two will be calculated later}
for k:=1 to 8 do read {(inp, tmpchar);
readln(inp,proctime);
for k:=1 to & do read{inp,tmpchar);



readln{inp,naxrg);
if narg > 0 then begin
for l:=1 to narg do begin
new(ptr);:
if 1=1 then firstptr:=ptr else prevptr”.next:=ptr;
read(inp,ptr*.no}:
ptr*.next:=nil;
prevptr:=ptr;
{ read({inp,tmpchar);
if tmpchar='b’ then ptr*.dir:i="b’' else
if tmpchar='f’ then ptr~.dir:='f’ else
if tmpchar<>’ ’ then writeln(’ERROR 37) else ptr~.dir:="f";
}
end;
readln(inp);
arg:=firstptr;
end;
for k:=1 to 4 do read(inp,tmpchar);
readln(inp,nres);
if nres > 0 then begin
for 1l:=1 to nres do begin
new{gtr):
if 1=1 then firstgtr:=gtr else prevgtr”.next:=qtr;
read(inp,gqtr”.no);
gtr®.next:=nil;
prevgtr:=gtr:
{ read({inp,tmpchar):
if tmpchar=’'b’ then gqtr~.dir:='b’ else
if tmpchar='f’ then gtr~.dir:="£" else
if tmpchar<>’ ‘ then writeln ("ERROR 3') else gtr”.dir:="f’;
1
end;
readln {inp)
reg:=firstgtr;
end;
if nres > 0 then begin
gtr:=res;
for j:=1 to nres do begin
read{inp,qtr”.commtime} ;
gtr:=gtr*.next;
end;
readln{inp);
end;
p:=0; sumbustime:=0;
if nres > 0 then begin
gtr:=res;
for j:=1 to nres do begin
read (inp,gqtr”.bustime);
p:=pt+gtr”.bustime;
gtri=qtr”®.next;
end;
readln (inp);
sumbustime:=p; .
end;
readln {(inp) ;
end;
end;
end; {graphin}

{*****************************'k**********************************************

REVGRAFH
**************************************************************************** }

procedure revgraph{var tree:typetree;noncdes:tmaxnodes;var entrynode:tmaxncdes;



var exitnode:tmaxncdes):

Procedure to reverse the program graph. The direction of the arcs
is reversed. The arguments and results are interchanged. The entry

node and exit node

have to be interchanged. Communication time

is now associated with arguments and not results.

INPUT:
tree -
nonodes -
entrynode-
exitnode -
QUTPUT:
tree -
entrynocde-
exitnode -
}
var i,3j: integer;
ptr:tres;
begin

for i:=1 to nonodes do
with tree[i] do begin
j:=nres; ptr:=res;
nres:=narg;res:=arg;
narg:=3j; arg:=ptr;
end;
entrynode:=nonodes;
exitnode:=1;
end; {revgraph}

{************************************************************

********************************************

original graph to be allocated
no. of nodes in original graph
top node in graph

bottom node in graph

graph with reversed arcs
old exitnode
old entrynode

{switch arguments and results}

{switch entry and exit node}

& e J g sk J gk e de ko ek kK
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procedure dataout(tree:typetree;nonodes:tmaxnodes):

{

Procedure to output the program graph to file set to text var out.

INPUT:
nonodes
tree
QUTPUT:
out
}
var i,j: integer;
ptr:tres;
gtr:tres;
begin

writeln (out,
£or i:=1 to nonodes do

-~ no of nodes i the graph
- program graph

- output in file eq. to variable out

*No Of Nodes’,nonodes);

if tree[i].funct[l] <> X' then

with tree[i] deo begin
writeln{out,’node
funct(1l]:="
writeln (out, ' funct
writeln (out, 'proctime
writeln{out,’critical
writeln (out,’tmax

writeln{out,’processor #

writeln{out,’narg

':i),‘
f . funct{2]:=" *:

r, funct);
r , proctime:10:3);
v ,criticalpath:10:3);
f,tmax:10:3);
* ,procid);
! ,narg):

path



ptr:=arg;
if narg > 0 then begin
for j:=1 to narg do begin
write {out,ptr*.no) :
{ if ptr~.dir='b’ then write{out,’b’) else if ptr~.dir="£’ then
write (out,’f’) else writeln(’ERROR in dataout’);

ptr:=ptr*.next;
end;
writeln{out);
end;
ptr:=arg;
if narg > 0 then begin
for j:=1 to narg do begin
write(out,ptr*.commtime:10:3} ;
ptri:=ptr”*.next;
end;
writeln(out):
end;
ptr:=arg:;
if narg > 0 tHen begin
for j:=1 to narg do begin
write{out,ptr”.bustime:10:3) ;
ptr:=ptr”.next;
end;
writeln (out);
end;
writeln{out, 'nres ' ,nres);
gtr:=res;
if nres > 0 then begin
for j:=1 to nres do begin
write(out,qtr*.no) ;
{ if ptr*.dir='b’ then write(out,’b’) else if ptr~.dir="£f" then
write(out,’f’) else writeln(’ERROR in dataout’);

gtri:=qgtr”.next;
end;
writeln(ocut); -
end;
gqtr:=res;
if nres > 0 then begin
for j:=1 to nres do begin
write (out,gtr"~.commtime:10:3) ;
qtr:=qtr”.next;
end;
writeln (out):;
end;
gtr:=res;
if nres > 0 then begin
for j:=1 to nres do begin
write{out,qgtr”.bustime:10:3) :
gtr:=gtr”.next;
end;
writeln{out};
end;
writeln{out):;
end;
end; {dataout}

{***********************************************'k****************************

EVALCP
e e S S F TS T3 E EE SRR S A R AL E R LR E bbbk h R

procedure evalcp{var tree:typetree; index: tmaxnodes) ;
{



This program evaluates the critical path of each node in the graph. The
critical path of a node is equal to the maximum critical path of the
result nodes + processing time of that nocde + the total communication
time of all the results

INPUT:
index - present node for which critical path evaluated
tree -~ graph (in this case actually the reversed
graph)
QUTPUT:
tree - graph with critical paths
PROCEDURE:
evalcp - recursive
}
var i: integer:

cond: boclean:
maxpath: real;
ptr:tres;
gtr:tres;

begin
with treelindex] do begin
if nres=0 then begin
criticalpath:=proctime+sumbustime; {bottom node has lowest critical path}
ptri=aryg;
for i:=1 to nary do begin
evalcp(tree,ptr”.noj;
ptr:=ptr*.next;
end;
end else if nres=1 then begin
criticalpath:=proctime+sumbustime+tree[res“.no].criticalpath;
ptr:i=arg;
for i:=1 to narg do begin
evalcp (tree,ptr™.no);
ptri=ptr®.next;
end;
end else begin
gtr:=res; maxpath:=0; cond:=true;
for i:=1 to nres do begin
if tree[qtr“.no].criticalpath<>—1 then begin
if maxpath<tree[qtr“.no].criticalpath then
maxpath:=tree{qtr‘.no].criticalpath:
end else cond:=false;
gtr:=gtr”.next;
end;
if cond=true then begin
criticalpath:=proctime+sumbustime+maxpath;
ptr:=arg;
for i:=1 to narg do begin
evalcp (tree,ptr”.no};
ptri=ptr”.next;
end;
end;
end;
end;
end; {evalcpl

{****************************-k***********************************************

SETUPLIST
***********************************************************t**************** ]



procedure setuplist({var list:typelist:tree:typetree;nonodes: tmaxnodes) ;
{

Build an ordered list of nedes in decreasing order of critical paths
of nodes. In our case the nodes in the top of the reversed graph, i.e.,
the nodes in the bottom of the original graph will be in the top of the

list.
INPUT:
index - present node for which critical path evaluated
tree - graph
QUTPUT:
list - list in decreasing order of critical paths of
nodes
}
var i,j: integer:

found: boolean;
endptr,tptr,temptr: task:;

begin
with list do begin
tptr:=nil; size:=0;
for i:= nonodes downto 1 do begin
new(tptr);
tptr~.no:=i;
if i= nonodes then begin
tptr”.next:=nil;
top:=tptr;
endptr:=tptr;
tptr”.prev:=nil;
end else begin
j:=size; temptr:=endptr: found:=false;
while ({j<>0) and (found<>true)) do begin
if tree(i}.criticalpath > tree [temptr”.no}.criticalpath then begin
temptr:=temptr”.prev;
J1=3-1;
end else found:=true;
end;
if temptr<>endptr then begin
tptr”.next:=temptr”.next;
tptr*.prev:=temptr;
tptr”.next”.prev:i=tplr;
temptr”®.next:=tptr:
end else begin
tptr”.prev:=temptr;
temptr”.next:=tptr;
endptr:=tptr;
tptr”.next:=nil;
end;
end;
size:=size+l; {total size of the list - i.e., no. of nodes in the list}
end;
end;
end; {setuplist}

{****************************************************************************
INITPROCLIST
**************************************************************************** }

procedure initproclist(var idleproc:typeidleproc;var noproc: tmaxnoproc;
var schdr:typeschdr);

{ This procedure initializes the processor list. The processor list
is a doubly linked list ordered according te which processor will



next become free. scdr{i].busytime indicates till what time the
processor i is busy. Front indicates the top of the list and back
the bottom of the list. Initially as all processors are idle they
can be in any randem order.

INPUT:
index -
tree -
QUTPUT:
idleproc - List of processors ordered in increasin order
of their busy times
}
var i: integer:

prevptr,tptr: proclist;

begin
write(’No. of processors ="); {(How many processors do we want to allocate
the graph to ?}
readln (noproc}:
if noproc>l then
for i:= noproc downto 1 do begin
new (tptr);
tptr”.no:=i;
if i=noproc then begin

idleproc.back:=tptr; {idleproc.back is the bottom of the list and
idleproc.back”.no is the processor with largest
busytimel}

end else begin
prevptr”.next:=tptr;
tptr”*.prev:=prevptr;
end;
prevptr:=tptr;
if i=1 then idleproc.front:=tptr; {top of the processsr list}
schdr[i] .busytime:=0; {(initially processor i is idle}
schdr[i] .notasks:=0; (initially processor i has no task assigned to it}
schdr{i] .first:=nil;
schdr{il.last:=nil;
end;
end; {initproclist}

{****************************************************************************

PUTPROCLIST
**********************************#***t************************************* }
procedure putproclist {var idleproc:typeidleproc;var procptr: proclist:
noproc: tmaxnoproc) ;
{
Places the processor (to which a task has just been allocated)
in the right place in the processor list. The processor 'ist is a list
of processors ordered according te decreasing busytime

INPUT:
index -
tree -
QUTPUT:
list -

var i: integer;
tptr: proclist;

begin



tptr:=idleproc.back; {start from bottom of the list}
i:=noproc-1;
while {(i > 0) and (schdr(tptr®.no].busytime >= schdr[procptr”.nol .busytime))

i:=i-1;
tptr:=tptr”.next;
end;

if i=0 then begin {if the proper place is the front of the list}
idleproc.front”.next:=procptr;
procptr”.prev:=idleproc.front;
idleproc.front:=procptr;
end else begin
if tptr~.prev <> nil then tptr*.prev”.next:=procptr;
procptr”.prev:=tptr”.prev;
procptr”®.next:=tptr;
tptr®.previ=procptr;
if idleproc.back=tptr then idleproc.back:=procptr; {if the new position is
bottom of the list)
end;
end; {putproclist}

{******************************************************************t*********

CALCOMTIME
**************************************************************************** )
procedure calcomtime (tree:typetree;i:tmaxnodes;procno:tmaxnoproc;var newcomtime:real) ;
{ .
This procedure calculates the communication time of a task depending
on whether the arguments (for our reverse graph) have been allocated
to the same processor (local) or to a different processor (bus) .

INPUT:
index -
tree -
QUTPUT:
list -

var j: integer:;
ptr:tres;

begin
newcomtime:=tree[i] .sumbustime;
{assuming all are allocated to different processors]
ptr:=treef{i] .arg;
for j:=1 to tree[i].narg do begin
if treelptr~.no].procid = procno then {check if allocated to same processor}
newcomtime :=newccmtime - ptr”.bustime + ptr”.commtime;
ptr:=ptr*.next;
end;
end; {calcomtime}

{***********************************************************t****************
CALSEQEXTIME

**************************************************************k************* }
procedure calseqgextime (tree:typetree;nonodes:tmaxnodes);

{

Procedure to calculate the time for execution when we have only one
processor. The execution time will be the sum of processing time and
local communication time of each node.

INPUT:



QUTPUT:

. tree - - array to store the program graph
nonodes =~ no. of nodes in the graph
}
var i,j: integer:;

segextime:real; {Execution time for a single processor}
ptr:tres;
begin
seqgextime:=0;
for i:=1 to noncdes do begin
with tree[i] do begin
seqextime:=seqextime+proctime:
if narg » 0 then begin
ptri=arg;
for j:=1 to narg do begin
seqextime:-seqextime+ptr“.commtime:
ptr:=ptr”.next;
end;
end;
end;
end;
writeln (' The response time for ‘,noproc,’ processor is 7,
segextime:10:3);
end; {calsegextime]

{****************************************************************************

SCHEDULER
*************************************i*******************t****************** }
procedure scheduler(var idleproc:typeidleproc;var schdr: typeschdr;var tree:
typetree;nonodes:tmaxnodes;noproc:tmaxnoproc);
{
This is the algorithm for allocation of tasks to processors. We select
the first processor on the processor list and pick candidates based on
critical path criterion from the task list which can be allocated to
the processor. A task is selected (based on the criterion of saving
communication time by allecating predecessors and successors to the
same processor. This is repeated till all the tasks in the task list
have been allocated.

INPUT:
index -
tree -
QUTFUT:
list -
PROCEDURE:
selcandidates - Select the candidate tasks which can
be allocated a. the time specified
choosetask - Choose the task from the candidates which
will result in maximum saving on allocation
to the processor under consideration
}
const
maxnocandidates = 40; {Maximum no. of candidates allowed}
type

tmaxnocandidates = 0..maxnocandidates;
tcandidate = array[tmaxnocandidates] of record
saving:real;
loc:task:
end;
var



procptr,temptr: proclist:

taskptr:task;

newcomtime:real;

candidate:tcandidate: {candidates for allocaticn to a processor)
nocandidates:tmaxnocandidates; {no. of candidates}

cpdeviation:real; (deviation in critical path of processora}
chosencandidate:tmaxnocandidates: {th candidate c¢hosen for allocatiocnt

{*****************************************#**********************************
CHOOSETASK
***********************************************t****i*********************** }
procedure choosetask(candidate:tcandidate;nocandidates:tmaxnocandidates;
PIocno:tmaxnoproc;var taskno:tmaxnocandidates);

{
Choose the task from the candidates which on allocation to the

processor under consideration will result in maximum savings in
communication time.

INPUT:
index -
tree -
QUTPUT:
taskno -

var i,d: integer:;
ptr:tres;
max:real; {maximum saving}

begin
for i:=1 to nocandidates do begin {for each candidate calculate saving}
ptr:=tree[candidate[i].loc*.no].arg;
candidate[i].saving:=0;
for j:=1 to tree [candidate[i] .loc”.no] .narg do begin
if tree{ptr”.no].procid = procno then
{if argument is allocated to the same processor then communicatien
will be local} :
candidate [i].saving:=candidate(i].saving + ptr*.bustime - ptr®.commtime;
ptr:=ptr”.next;
end;
end;
max:=0;
{find which candidate task results in maximum saving}
for i:=1 to nocandidates do
if candidate[i].saving > max then begin
max:=candidate[i] .saving:
taskno:=i;
end;
if max<0.00001 then taskno:=l;
end; {choosetask}

{****************************************************************************

SELCANDIDATES
*******************i**************************************************t***** }
procedure selcandidates (var candidate:tcandidate;
var nocandidates:tmaxnocandidates;list:typelist;
tree:typetree;procbusytime:real:cpdeviation:real):

This procedure selects candidates which can be allocated at time
procbusytime from the list of tasks (list). The first criterion to be
satisfied is that the task should be available for execution at



procbusytime. For this we have to check if all the argument tasks have
finished by procbusytime. The first task which satisfies this criteriocn
in the task list is the first candidate. Any other tasks which satisfy
the criterion and are within cpdeviation of the first candidates
critical path is also chosen as a candidate.

INPUT:
index -
tree -
QUTPUT:
list -

var i,3: integer;
taskptr:task:
ptr:tres;
cond, firstfound:boolean;
limit:real;

begin
nocandidates:=0;
j:= list.size; taskptr:=list.top; {start at top of list}
firstfound:=false;
{attempting to find first candidate}
while ((i > 0) and (firstfound <> true)) do begin
if tree[taskptr”.no].narg > 0 then begin
ptr:=tree[taskptr*.no].arg; cond:=true;
for j:=1 to tree[taskptr”.no}.narg do begin
if ((treel[ptr”.no].tmax > procbusytime) or
{arg. not completed by procbusytime}
(tree{ptr”.no] .tmax < 0.0001)) then

{arg. not yet allocated}
cond:=false;
ptr:=ptr”.next;
end;
if cond = true then firstfound:=true;
end else firstfound:=true;
if firstfound = false then begin
i:=i-1; taskptr:=taskptr”.next; {try next task on list}
end else begin {first candidate has been found}
nocandidates:=1;
candidate{nocandidates].loc:=taskptr;
end;
end;
if firstfound=true then begin
limit:=tree{taskptr‘.no].criticalpath -
cpdeviation; {limit is the range of critical path
where candidates are chosen}
i1:=i-1;
taskptr:=taskptr”.next:; {now look at rest of tasks}
while i > 0 do begin
if tree[taskptr”.noj.criticalpath >= limit then begin {within range 7}
if treeltaskptr".nol.narg > 0 then begin
ptri:=tree[taskptr”.no].arg; cond:=true;
for j:=1 to tree [taskptr”.no].narg do begin
if ({treelptr”.nol.tmax > procbusytime) or {criterion satisfied 7}
{tree[ptr”.nol.tmax < 0.0001)) then
cond:=false:
ptr:=ptr”*.next;
end;
if cond = true then begin
nocandidates:=nocandidates+1l;
candidate [nocandidates] .loc:=taskptr;
end;



var i: integer;
taskptr:task;

begin
i:=]list.size; taskptr:=list.top;
while i > 0 do begin
write (out,taskptr®.no);
taskptr:=taskptr”.next;
i:=1i-1;
end;
end; {listout}

{***********************************************************i****************

SCHDROUT
**************************************************************************** }
procedure schdrout(schdr:typeschdr;noproc:tmaxnoproc);
{
Print the tasks assigned to each processor along with the starting
time and finishing time of each task for the reverse schedule.

var i,j: integer;
taskptr:task:;

begin
if nopreoc >1 then
for i:=1 to noproc do begin
taskptr:=schdr(i].first;
write (out,’PROCESSCR’,i,’:");
for j:=1 to schdr(i).notasks do begin
write (out,taskptr®.no);
write(out,'(',taskptr“.exectime.lower:lo:l,
',’,taskptr‘.exectime.upper:lo:l,’) r};
taskptr:=taskptr”.next;
end;
writeln{out);
writeln{out,’No of tasks r,schdr[i] .notasks);
end;
end; {schdrout}

{*****************************************************t**********************

STATS
**************************************************************************** }

procedure stats(tree:typetree;nonodes:tmaxnodes;schdr:typeschdr;
noproc:tmaxnoproc;exitnode:tmaxnodes):

{

Procedure to collect statistics on the allocation

}
var i,J: integer;
ptr:tres;
taskptr:task;
totnarg,nbusarcs,nlocarcs:integer;
totbustime,totproctime,totcommtime,totidletime:real:
begin

writeln (out, ‘No Of Nodes’,nonodes);
totproctime:=0:totnarg:=0;nbusarcs:=O:
nlocarcs:=0;totbustime:=0;totcommtime:=0;
for i:=1 to nonodes do

if treelil.funct{l] <> "X’ then



end else begin (node in question has no arguments- hence no criterien
to be satisfied}
nocandidates:=nocandidates+l;
candidate [nocandidates].loc:=taskptz;
end;
end;
i:=i-1; taskptr:=taskptr”.next;
end;
end;
end; {selcandidates}

begin {scheduler}
if noproc =1 then calsegextime (tree,nonodes) else begin
{if only 1 processor then no need to schedule!
(cpdeviation is the deviation in the critical path of the first candidate.
All tasks within cpdeviation of the first candidate is also a candidate}

write ( Deviation in critical path for selecting candidates =');
readln (cpdeviation);
writeln(f Deviation in critical path is =f,cpdeviation:10:2);
while list.size>0 do begin {while there are some unallocated tasks left}
procptr:=idleproc.front; {at first we attempt to allocate a tasks to the
processor which becomes available first}
nocandidates:=0; {select candidates which can be allocated to that processori
selcandidates(candidate,nocandidates,list,tree,schdr[procptr*.no].busytime,
cpdeviation):
if nocandidates>0 then begin {if we found some candidate tasks which can
begin execution at the time when the first
processor in the processor list beccmes idle}

{choose the task from the candidates which will result in the maximum
saving of communication time on placing it in this processor}
choosetask(candidate,nocandidates,procptr‘.no,chosencandidate);
taskptr:=candidate[chosencandidate].loc: {points to the chosen task}
{exectime.lower indicates when that task starts execution
in this reverse schedule}

taskptr“.exectime.lower:-schdr[procptr“.no].busytime:

{calculate the communication time that will be associated with the
incoming arcs to the task being allocated}
calcomtime(tree,taskptr“.no,procptr*.no,newcomtime);

{updating the busy time of the processorl}
schdr [procptr”.no) .busytime:= schdr [procptr”.no] .busytime+
tree[taskptr®.no) .proctime+ newcomtime;
{exectime.upper indicates when it will comlete execution}
taskptr“.exectime.upper:=schdr{procptrA.no].busytime:

{now remove the task which has been chosen for allocation from the list}
list.size-=list.size-1;
if taskptr <> list.top then begin
{if the chosen candidate is not on top of the list}
taskptr”.prev”.next:= taskptr”®.next;
if taskptr”.next <> nil then taskptr”.next”.prev:=taskptr”.prev:
taskptr®.next:=nil;
taskptr”.prev:=nil;
end else begin {if chosen candidate is on top of the list}
list.top:= taskptr”.next;
if taskptr®.next <> nil then taskptr”.next”.prev:=nil;
taskptr”.next:=nil;
taskptr”.prev:=nil;
end;

{in the graph we mark which processor that node has been allocated to and



at what time it will complete execution}
tree[taskptr*.no].tmax;-schdr[procptr‘.no].busytime:
tree[taskptr”.no] .procid:=procptr”.no;

{update the schedule of the processor. we remove the task from the task
list and add it to the schedule of that processor}

if schdr[precptr”.no].notasks=0 then begin
schdr [procptr”.no].first:=taskptr;
schdr [procptr”.no].last:=taskptr;

end else begin
schdriprocptr”.no] .last”.next:=taskptr;
taskptr”.prev:=schdr[procptr”.no].last”.prev;
schdr{procptr”.no].last:=taskptr;

end;

{increase the no. of tasks in that processor}

schdr [procptr”.nec] .notasks := schdr [procptr*.no] .notasks +1;

{after having chosen a task to be allocated to the first processor in the
processor list we remove it from the front of the list}
idleproc.front:=idleproc.front”.prev;
procptr”.next:=nil;
procptr”.prev:=nil;
{place processor at correct position according to busytime in proc. list}
putproclist {(idleproc,procptr,noproc);
end else begin
{no candidates exist for allocation to the first processor on the list
as soon as it becomes free. Hence scme idling of the proc. will result}

procptr:= idleproc.front”*.prev; { start from the 2nd processor}
{Go down the list till you can find a processor with a busytime greater
than the busytime of the first processor}
while schdr{procptr”.no].busytime <= schdr [idleproc.front®.nol.busytime do
begin
procptri=procptr”.prev;
end;
{procptr is that processor}
temptr:=procptr”.next;
if procptr = idleproc.back then idleproc.back := procptr®.next;
if procptr”.prev <> nil then procptr®.prev”.next:= procptr”.next;
procptr”.next”.prev := procptr”®.prev;
procptr*.prev := idleproc.front:
idleproc.front”®.next :=procptr;
idleproc.front:=procptr; {place it in front}
{modify the busytime of the processors whose busytime was equal to the
busytime of the old processor. They all will have to idle upto the
busytime of the new first processor on the list )
while temptr <> procptr do begin
procptr:=procptr”®.prev;
schdr[procptr”.no] .busytime := schdr([idleproc.front”.nol .busytime;
end;
end;
end;
end;
end; {scheduler}

{****************************************'k***********************************
LISTQUT
******************************************************t***********'k********* }
procedure listout (list:typelist);
Print ocut the task list



with tree(i]} do begin
totproctime:=totproctime+proctime:
totnarg:=totnarg+narg;
ptr:i=arg;
if narg > 0 then begin
for j:=1 to narg do begin
if procid=tree[ptr‘.no].procid then begin
nleocarcs:=nlocarcs+l;
totcommt ime : =tot commt ime+ptr” . commt ime;
end else begin
nbusarcs:=nbusarcs+l;
totbust ime:=totbustime+ptr”.bustime;

end;
ptr:=ptr”.next;
end;
end;
end;

totidletime:=0;
if noproc >1 then
for i:=1 to noproc do begin
taskptr:=schdr[i].first;
for j:=1 to schdr[i] .notasks .do begin
if taskptr=schdr(i).first then
totidletime:=totidletime - 0 + taskptr*.exectime.lower
else begin if taskptr<>schdr(i].last then
totidletime:=totidletime - taskptr”.exectime.upper
+ taskptr”.next”.exectime.lower
else
totidletime:=totidletime - schdr[i].last”.exectime.upper
+ treelexitnodel.tmax;
end;
taskptri:=taskptr”.next;
end;
end;
writeln (out,’Total No. of Nodes = f ,nonodes) ;
writeln (out,’Total No. of Arcs = r,totnargqg);
writeln (out,’Total Bus Commtime = * ,totbustime:10:3);
writeln(out,’'No. of Arcs going to other processors = f ,nbusarcs);
writeln (out,f Total Local Commtime = ’,totcommtime:10:3);
writeln{out, 'No. of Arcs going to same processor = * ,nlocarcs);
Wwriteln{out, Total Communication Time = ',(totbustime+totcommtime):10:3):
writeln (out,’Total Processing Time = * , totproctime:10:3);
writeln(out, Total Idle Time = ', totidletime:10:3);
writeln{out,’Net Time taken by processcrs = r,
. (totbustime+totcommtime+totproctime+totidletime):10:3);
end; {(stats}

[**'k*************************************************************************
main progranm
*********************‘k**********************'k******************************* }
begin
nonodes :=0;entrynode:=1;exitnode:=0;
graphin(tree,nonodes,entrynode,exitnode); {read in the graph to be allocated]
rewrite (out, 'outgraphd’);
datacut (tree,nonodes) ;
revgraph(tree,nonodes,entrynode,exitnode); {reverse the graph}
rewrite (out, ' outgraphé’):
dataocut (tree,nonodes);
evalcp (tree,exitnode); (evaluate critical paths of nodes in reversed graph}
writeln (' The critical path of the graph is 1,
tree[entrynode].criticalpath:lO:B);
rewrite (out, ' outgraph?’}:
dataout {tree,nonodes);
setuplist(list,tree,nonodes); {create the ordered task list}



rewrite (out, outlist’);
listout (list}: {print the initial task list})
initproclist(idleproc,noproc,schdr): {initialize the processor list}
scheduler(idleproc,schdr,tree,nonodes,noproc);
{run the algoritm for allocation}
rewrite {(out, ‘outgraph8’);
dataout (tree,nonodes)
rewrite (out, ‘outschdr’};
schdrout {schdr,noproc); {print the final allocation}
if noproc >1 then writeln{’ The response time for ‘! ,noproc,’ processors is *,
tree{exitnode].tmax:10:3):
rewrite (out,’outstat’};
stats(tree,nonodes,schdr,noproc,exitnode): {print statistics on allocation}

end.



