RELAXATION PROBLEM SOLVING
(with input to Chinese input problem)

Kam Pui Chow February 1986
CSD-860058

Relaxation Problem Solving

{with application to Chinese Input Problem)

by

Kam Pui Chow

UNIVERSITY OF CALIFORNIA
Santa Barbara

Relaxation Problem Solving
(with application to Chinese input problem)

A dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosphy
in

Electrica_ll and Computer Engineering

by
Kam Pui Chow
O T

Committee in charge:
Professor Terrence R, Smith, Chairman
Dr. Paul R. Eggert
Professor Alan Konheim
Professor Man-Tak Shing (5% & &)

Professor D. Stott Parker

December 1985

The dissertation of Kam Pui Chow is approved.

/)

Dot N

Maﬂ. ZZ{ JA!L@

a9 ¢
VAL >

-
Committee ChHairman

December 1985

i

© Copyright by
Kam Pui Chow
i G

1985

il

Dedicated to

my family

iv

Acknowledgement

I wish to thank my committee members, Paul Eggert, Alan Konheim, Stott Parker, Man-Tak
Shing, and Terry Smith. In particular, I wish to thank Terry Smith, my committee chairman, Alan
Konheim, the chairman of Computer Science Department of UCSB, and Stott Parker, Professcr of
Computer Science Department of UCLA, who gave me the flexibility of starting my research in
UCSB and finishing in UCLA. Special thanks to Paul Eggert, who provided unlimited supplies of
good idea; and Man-Tak Shing, the only Chinese in my committee, which understands all examples in

this thesis.

I am also grateful to the other members of the relaxation research group in UCLA, namely
Ching-Tsun Chou, Koenraad Lecot, and Rei-Chi Lee, who listened to me and discussed with me at

various time,

Thanks to a special young lady on the other side of Pacific, B ¥ (Colinna), who not only sent
me the pictures of the Chinese typewriter, but also provided unlimited encourgement during the Jast

part, and the worst part, of the dissertation preparation.
This research is partially supported by the MICRO grant from IBM and Univerisity of

California.

My friends at Los Angeles and Santa Barbara made California a wonderful place to stay,

A

especially 12 B3 , F & ,% 2 1€, Cindy, and many others.

October 24, 1959--
1979--

1980--
1980-1981--

1981--
1982-1584--

1983-1985--

1984--
1984-1985--

Yita
Born--Hong Kong.
Higher Diploma, Hong Kong Polytechnic,
Computer Programmer, Cable and Wireless Limited, Hong Kong.

Teaching Assistant, Department of Mathematics, University of California,
Santa Barbara.

M.A,, University of California, Santa Barbara.

Teaching Assistant, Department of Computer Science, University of
California, Santa Barbara.

Research Assistant, Community Organization and Research Institute,
University of California, Santa Barbara.

Computer Scientist, Silogic Inc., Los Angeles.

Postgraduate Research Engineer, Department of Computer Science,
University of California, Los Angeles.

Publications

Chow, K. P. & Cotton, I. W. Deterministic Model of Concept Identification. Journal of Mathematical

Psychology, 1983,

Chow, K. P. & Eggert, P. R. Logic Programming Graphics and Infinite Terms. UCSB Department of
Computer Science Technical Report, March 1983.

vi

Abstract

Two fundamental problem solving techniques are introduced to help automate the use of
relaxation: multilevel framewaorks and constraint generation. They are closely related to iterative

relaxation and subproblem relaxation.

In multilevel problem solving, the set of constraints is partitioned vertically into different
levels. Lower level constraints generate possible solutions while higher level constraints prune the
solutions to reduce the combinaterial explosion. Subproblem relaxation at first relaxes the high level

constraints; the solution is then improved by strengthening the relaxed constraints.

The constraint generation technique uses iterative relaxation to generate a set of constraints
from a given model. This set of constraints with a constraint interpreter form an expert system. This
is an improvement over most existing expert systems which require experts to write down their

expertise in rules.

These principles are illustrated by applying them to the Chinese input problem, which is to
transform a phonetic spelling, without word breaks, of a Chinese sentence into the corresponding
Chinese characters. Three fundamental issues are studied: segmentation, homophone analysis, and
dictionary crganization. The problem is partitioned into the following levels: phonetic spelling, word,
and grammar. The comresponding constraints are legal spellings, legal words, and legal syntactic

structures. Constraints for syniactic structure are generated from a Chinese grammar.

vii

Table of Contents

Chapter 1. INEOAUCTIONovvvivrerireeenremesmsnesereemessmssssnnssseessonsesesssssemsasessasssssssssmsmssosmasesessossassssssmmenan 1
Chapter 2. Chinese INPUE PrOBLEIMc.vieiieriescriee ittt crereeeeessss e see e e sesssssssnmerssasssssneseimes 13
Chapter 3. THe DICHODATYovvoceemrermres e seresemesesssssmessssasmssessossesmessossossossssmassi sosste e ebsssns sssosans 37
Chapter 4. Constraint GENETALON ...ccuiicseicssverermenimmssssssssemssssssssmeersens e meesersssssssassessmasasesssessesases

Chapter 5. Multilevel MOGELuuviiiiiciiicrimesocrernemsis s sess s messasssssrassossessrssaesssesrs sesns ss s s meessns

Chapter 6. Control MECRAMISIN c..eciecsemesicnmssassessnnsmmermrrmrmrsremssrams sssesssmssssensssmasssssssssssastasasmssesmes 98
Chapter 7. CONCIUSION ..oviiirveesessis et seesins s sessctns et s s ssse et brenssores smesssensnsenessrenssesee st saeresssenss messere 126
APDENAIX T oriistier st svemtesireimercrers e sases s s st sen st ses s aesa st sman et s sr amsenasses e shesmsnnsaerasantseseatasss srsas s 136
ADDENAIX 2 iiirere v e reasssesesssnsssenssammressma e rme s s resmssssnsosens ot sesasersssstsnsis snstesssns sssmnsssesns mesenssnsnmsrones 139

ADDENULX 3 oo ce s sesecsrsresses st crasa easasrasnens e sea se s sesmssaresssese s eraassesassnesastnsnens e senss st st rebbeemcamtsenee 141

viii

List of Figures

Fig 2.1 Hierarchy structure Of ChATICIETS ..uiveiirsiceercmescne e ierescrasssss s srssnsessnerserasa e serassrsseseesnsnssnens 14
Fig 2.2 A ChiNeSe tYPEWTIET .uiveisiisiiciictcrren it ctonesssrnes ot sassns v sresmcost sis s st snasa st st anasaso st sas s st sessens 17
Fig 2,3 A Chinese typewriter Keyhoardiiirieicmcsme e vsssssstassssssesassanasesssassnsssserss et 18

Fig 3.1 Partof the ZI1t .ccvecvceeenecmnas eremtesir e e nara s sor s s St ae et stR e e e e en ems et sese e sasens 41

Fig 3.2 The 2-ideograph tABle ...uriiisissinmisiosimmmsmsssmrtrnmsrresssmssrsss thams e sesvsns sssarsssessesersssesess 43
Fig 3.3 The 3-ideograph table it s ssscssssssmss srsstmssemessssare sersssrases 43
FIZ 3.4 THE Z1 I8 .eoceeiicireneecemreeessarsin s sessrerasnanssessasnes sessmees sases o4 sha et ex sbes anmba sess babn nsebssbbsnbmtsismrins 45
FI 3.5 THE Ci tE cooeevereiee e cecmece s cee st serscsssessss s srss s s s et sr s sns s st hs bt b ot o sad s s ms rrmens 46
FU 3.8 THE ZIU «oereirrecirirscsiss s st sttt s st st s s b marrn e resdsens e sas e ens s b sne st are s ans sesesasansasstesesnmes 47
Fig 3.7 Node Structure Of the Zi tHE ..ceeceeemreerrcemeriresrsmins s seonssssirtsensss sssrssasemsss sessssesns e sessesss 49
Fig 3.8 Detail Of @ CLUHE w.ocvivevsiservmrmscrnerrrssresss s e s sssessasssssmasass smmessbarssssesssass s mona as s ses s seene 51
Fig 3.9 Node Structure of the Ci I .eiii i ecrrrerernsnssmess et s e sessssrasasessnesssasrssesessssmssssessserasan 53
Fig 5.1 Multilevel fTAMEWOTKccociemereceieaaeecieeneire s smessessasessesonssssess s srms smsmssesasenssssesssmessses s 93
Fig 6.1 A PINYIN IIE caveeceseeesvevecresesresrsseevmnseemsssmmnescm s s s e s e sressses s sesasons seme s sernsasenssers s mssssssssns 102
Fig 6.2 Search tree for “*XIaNEEang’” ... oot s v rrsnn e b r s s sr s e r e s 108
Fig 6.3 Multilevel filtEIINE oo eicsr et cccn s conesens e sress e ssseerasees st s srcesee e serse e sas st sesnsssamsbe e ves 113
Fig 6.4 Multilevel search for *Jiacdian’”oeorirerremenmermmsms s s et st et ens s see e sneen 119

Fig 6.5 Trace for *'XIaNEQANG " . eerre e mess e covenson s st sverrasarmessrs st e 12 seesmseeemsnsae e e ssrns 123

ix

Fig 6.6 Trace for “JIa0IAN"" ..ovosvioeriemimisessse s sassscsees e ssses oo st s e s e sers s e sesee s 124

Table 2.1 Number of hOMOPhONES ..ot s s s et e s veerg e
Table 2.2 Number of homophones if tonal indication is used
Table 2.3 Number of hanzis for syl1ables in (2) ..ureemissisecmces s rsnseesssres s e msssisa e
Table 2.4 Number of homophone compounds corresponds 10 {6)cccomcmesnersmsnimmsemrmmmnens
Table 2.5 Storage requirement for the dICHIONATYccooeeniriimeninin s et s et b
Table 3.1 SOME NOLAIOMS ...cermrsemesrmissmesrmsssirsmersses s e esseesss s svsesem beies sieeesossbsbe bassa saseba arsse sue
Table 3.2 Storage requirement for the dictionary tablesevvecemeremrmrss e crs i e sens s
Table 3.3 Summary of StOrage reqUIreIMENtocc vttt s sr s sass s s v srasnsaes
Table 4.1 EXACT [{IV). oo erremcn e sses e s ecemcm s et s bbb bbb b e bar b sa s st st
Table 4.2 FIRST 1IN). coeoiceceeecrce ettt se e e s res s ese e senas son e o e ek bbb s s b1
Table 4.3 LAST [V). coecceeeenesrserenissssencessrassessrssans sersars e seassnsssneesms sesasses e sracasns st sos saast sosnsasossenasnnsenns
Table d.d CONST 3. ettt e b s s s s b s st s e b e b srs R R S0
Table 4.5 EXACT 3N). oo secessensesesmess s e s sens st bone i st shea bt s s s s s s sn st st s es
Table .6 FIRST 4N). ceecemntemssssier st ssss s et ssssnisa st asn s b s sams s as it semabessasms et snssessns sass ses
Table 4.7 LAST 3{IV). cceiriccrsernsintsesssseseesanss sommsssmsssssesssars s messsss s sos st s asesssessusns samnasssnasmssasansa s sone
Table 4.8 EXACT §{IVE). covreeisecrimere it sesssss sossons sssesetsssssmsressrs st son s s srss sossesessasessmmsassasss
Table 4.9 FIRST {(VE). wrvvreroimosssscsmesesistsisssssisasons st sosassos s s s ssass s s am sevsrassse e s ass s 540018 st omntsisasans

Table 4,10 LAST [(VE). crercemrrssimsssmissnisssinsstssssssinas et ssss s e mssra o ra s e a8 340121021028 12 srm et bar s sai s

List of Tables

xi

31

34

42

48

54

63

65

65

67

68

69

69

69

TABIE .11 CONSET 2. oerrrrersesieecreremiesemseresenseosesesrassoe s s eacrs e seesedba s s bssbe o srssm s s rasr s s s st s 70
Table 4.12 EXACT [(INE). wevvuvverssssrsssrsoesemssessmssemosesseseessssassseass s s sasscssssssssasmsssrssssssscamesacessses 70
Table 4.13 FIRST5(NE). weeueeeesseessecersseversseressssssesmimsemssessisessessssssisss s s s ssessssmesssssssons v 71
Table 4.14 LAST 3{NE). ceccisemrrmenrerensssincseassetnsassssormsomssamsessesssmsssesse somsasemis b bdbits sassbasasssasssssansses 71
Table 4.15 SOME NOALIONS ...cocecoernsremercarsismonssns suansas sssssss snsonsnssssssesssisnsssmsssnssssrssesms sessssmserss sebsss 76
Table 4.16 Statistical properties for SOME RANZIS .c.vevierecrrmsrs e s e ars s sressere s 79
Table 4.17 Frequency distribution Of Bi ..ccrccecnene s ser e et sse s se s amr e o 80

Table 2.1 S0me COMMON HANZIS .vivriiriinnirisessesee e st s sesae st smesassssessnsesssensrass seses s sases save vasmessmme bos 141

xii

CHHAPTER 1

Introduction

Relaxation is a class of heuristic approaches for satisfying constraints. Though it w-'as applied to
solving problems before the advent of computers, it still requires careful attention by experienced,
specialized programmers for effective use. In this thesis, two fundamental problem solving
techniques are introduced to help automate the use of relaxation: multilevel framework and constraint
generation, They are closely related to iterative relaxation and subproblem relaxation, Their practical

values are demonstrated with application to the Chinese input problem.

Relaxation is a general problem solving paradigm particularly suitable for problems involvin.g
constraints. These problems can be divided into two kinds: constraint satisfaction and constrained
optimization. Constraint satisfaction is the problem of finding values that satisfy a set of constraints.
Constrained optimization is the problem of optimizing an objective function subject to a set of
constraints. The problem solving techniques described here are applied to constraint satisfaction

problems. Constrained optimization problems will not be discussed.

The constraint generation algorithm is an iterative relaxation algorithm. The multilevel
framework can be viewed as a subproblem relaxation process, It partitions the set of constraints into
levels. Each level is a constraint satisfaction problem and has its own set of objects. An object at one
level is an abstraction of objects at the next lower level. Higher level subproblems are relaxed
initially. The lowest level subproblem is solved first. The solution is then improved by strengthening

the relaxed subproblems.

k2

The rest of the chapter defines the constraint satisfaction problem, and briefly summarizes
related problem solving strategies: iterative relaxation, subproblem relaxation, and multilevel

organization.

1. Constraint Satisfaction Problem

Constraint satisfaction problem is the problem of finding values that satisfy a set of constraints.
It can be a numerical problem or a symbolic problem, The problem consists of a set of variables and a
set of constraints. The goal is to find a solution or a set of solutions such that no constraint is violated.
Constraints can be equations, inequalities, or symbolic predicates. They are categorized by the set of
variables they describe. There are two kinds of variables: discrete and continuous. Discrete variables
assume values from a countable set, finite or infinite; while continuous variables have values from an

infinite uncountable set. For example, following are constraints defined on continuous variables
X, X9, X5, and discrete variables <x 4, x5 1
Xy +X2+X3S 10 N

XIZO,

X9 20 .
C{x.,x,} = (a rb) ? (a vd)
A consistent labeling problem is one kind of constraint satisfaction problem. It is characterized

by a finite set of variables, <x,x,, *-- ,x, r. Each variable, x;, has an associated finite domain, from

which it can take any of m; values of labels. Constraints exist on which values are mutually
compatible for various subsets of the » variables. The goal is to lind one or more sets of assignments

of all # variables to values in their corresponding domains, such that for each assignment set all

constraints are simultaneously satisfied.

Many practical problems can be formulated as consistent labeling problems, such as scene
analysis and image processing [27, 48], constrained search problems [36], graph theory [5%,20],
production systems [64], datatype inference for logic program [91, and pattern matching on relations

29].

2. Relaxation

Relaxation has been used as a computational technique in numerical analysis, operations
research, computer vision, and many other areas, but has not been generally recognized as a powerful
problem solving method for nonnumeric applications. The basic idea of relaxation is if the given
problem is kard, it is transformed to a simpler related problem. A problem is called **hard”’ if the
space needed and the time required to solve the problem is huge. Common measures of space and
time requirement are the space and time complexity of the problem solving algorithm [43]. They are
usually depended on the size of the problem and its inherent difficuities. The basic principle of

relaxation can be stated as:

Given a problem, if the space and time complexity of the problem solving algorithm is high,
relax it into a simpler related problem. A problem P is said to be simpler than a problem Q
if the time and space complexity of the algorithm solving P is less than . 0 is related to P
if (’s solution is close to P’s.

After relaxation, the relaxed version is solved by known techniques and a solution is obtained.
This solution can be accepted or rejected. Rejection is usually caused by the solution not satisfying
some constraints of the problem. Under rejection, an improvement method is invoked and a better
solution is sought. The improvement method usually strengthens the refaxed constraints. During the
improvement process, some previously satisfied constraints may be violated. The improvement

process is called again. The iterative process continues until a satisfactory solution is obtained. This

technique applies to any kind of problem solving. In general, relaxation can be viewed as the process
of removing, or temporarily ignoring, some constraints. Improvement, which is an iterative process,

refers to strengthening the relaxed constraints on the solution from the relaxed problem.
A general relaxation algorithm is as follows:

procedure relaxation(P)
begin
C := the set of constraints of the problem P
while solution of P not found easily do
relax(C);
while result R of P not satisfactory do
improve(R);
return R
end.

There are two basic kinds of relaxation: iterative relaxation and subproblem relaxation. These
two methods of relaxation differ in strategy. Iterative relaxation seeks to maintain a set of constraints
by modifying data. Subproblem relaxation instead alters conseraints. They are briefly discussed in

next two sections,

2.1. Iterative Relaxation

Iterative relaxation is a general computational paradigm for finding values that satisfy a set of
constraints. It iteratively assigns values to mutunally constrained objects to ensure a consistent set of
values. The procedure repeatedly selects an unsatisfied constraint involving a variable x and updates x
in such a way as to enforce the constraint. The {irst application of relaxation method was made in
1935 by Sir Richard Southwell [55] for stress calculation in frameworks. In the relaxation process the
forces taken by the constraints are the residual forces of the system not yet carried by the framework.
The name relaxation originally referred to the reduction of residual forces by the systematic

relaxation of constraints. Southwell’s iterative refaxation scheme is a powerful tool for solving any

set of simultaneous equations. Assume the following set of constraints (equations) is given:

Ax=b, (A)
where A is an nxa matrix, b is an n-vector, and x is an n-vector which is to be solved.

Simultaneous equations can be solved by several methods, which fall into two basic categories:
direct and iterative approaches. Iterative relaxation is an iterative process. It starts with an iniial
estimate, z, and iteratively satisfies the given set of equations by the fixed point equation

x=A"x+b"°,
where A* is an #xn matrix and b* is an n-vector, both derived from (A). The iterative relaxation

procedure can be written as follow:

Xg=2,
= AT b
The process continues until a tolerable answer is obtained, i.e., the highest deviation is within
the tolerance limit, or the results of two successive approximations are close to each other. If the
matrix A * satisfies some conditions, the iterative process always terminates and the convergence rate
is satisfactory [41,42]. It can also be applied to solve ordinary and partial differential equations, and

systems of differential equations [3].

Relaxation has been a powerful computational tool in the solution of practical engineering and
physical problems. In the early 1970s, the relaxation method was extended to handle nonnumeric
problems; one example is relaxation labeling, the iterative application of constraints to label any node
of a graph. It was first used by Waltz (60] for labeling junctions in line drawings. The method has
been extended to image processing, scene analysis, and computer vision [27,48]. In general, it can be
used 1o solve the consistent labeling problem. A formal analysis of relaxation lubeling has been done

by Rosenfield ef af [48]. Both error and rate of convergence have also been analyzed

analytically [5, 47, 63].

In genefal, relaxation labeling labels a graph consistently with respect to the given constraints.
Constraints state possible labels that can exist in adjacent nodes simultaneously. Starting with an
initial Iabeling set that contains all possible labels, of which some may be inconsistent, relaxation is
the process of iterative refinement of the labeling set, achieved by successive removal of inconsistent

labels from each node.

With iterative relaxation, goals are reached by successive satisfaction or elimination of
constraints. As in the labeling algorithm, all constraints are relaxed first, then the solution is improved
successively to satisfy each of the constraints. This approach has a wide spectrum of application.
Besides the application in scene analysis and image processing, other examples include constrained
search problems [36], graph theory [59,20], production systems [64], data type inference for logic

program [9], path problems [57], and pattern matching on relations {29, 30].
Recent research tries to characterize this wide class of situation in which iterative relaxation
succeeds [44]. Specifically, whenever a problem can be casts into a set of constraints

% € filxy, o0 x,)

over a semilattice, where f,’s are continuous and “‘monotone’’, then the relaxation iteration

X = flXq, 0 X))

converges to a solution. Interested readers should refer to the original paper for details.

Iterative relaxation is intrinsically a parallel method, so it is well suited for machines with
parallel architecture. Since many problems can be viewed as tree searching problems, combinatorial
explosion is always a major difficulty. With relaxation, this can be avoided by local elimination of
inconsistency. Most of the redundant paths of a complicated search tree, which may be generated by

a backtracking method, will not be examined.

With all these advantages from the relaxation algorithm, why is iterative relaxation not yet well
recognized? Tts major disadvantage is that it is a local method; a result does not guarantee global
properties. But sometimes local optimization is a good enough approximation for the global

optimum. Another disadvantage is that the result may not be unique.

2.2. Subproblem Relaxation

By *“‘relaxation’’, workers in optimization and operations research typically mean reducing
difficulty of a problem by transforming it to another one. “*Transformation’’ here means changing the
objective function or modifying the set of constraints. One formal definition from Geoffrion [19] is as

follows:

Assume F{A) is the set of feasible solutions of the problem A. A minimizing problem Q is said
1o be a relaxation of a minimizing problem P if F(Q) contains F(P) and the objective functicn of
Q is less than or equal to that of P in F(P).

Subproblem relaxation has established itself as a key approach in attacking hard problems.
Many combinatorially explosive problems, like the Traveling Salesman Problem (TSP) and integer
programming, are solved heuristically by relaxing them to easier and computationally feasible
problems. The solution from the relaxed problem is then examined and improvement is made if the
solution is not satisfactory, Linear programming is usually the target of relaxation since it can be
solved efficiently. One fine example is the application of relaxation to TSP [10]. TSP is first
formulated as an integer programming problem, then relaxed to a linear programming problem. In
fact it is very common to relax an integer programming problem to its linear relaxed version. The
result can be improved by branch and bound or cutting plane based on the solution of the relaxed

problem, though this kind of relaxation will not be useful if the integer variables are restricted to 0-1.

Another commoen subpreblem relaxation method is Lagrangean relaxation. The term was first
introduced by Geoff'rion, who applied the Lagrangean technique to integer programming problems.
Constraints are relaxed by multiplying them with Lagrange multipliers and added to the objective
function. Lagrangean relaxation has been applied to many practical problems. Some representative
examples are the generalized assignment problem relaxed to the knapsack problem [49), general
integer programming with unbound variables relaxed to the group problem [16], and symmetric TSP
relaxed to spanning tree [22, 23]. Other applications and references can be found in the survey by

Fisher {17].

Besides Lagrangean relaxation and integer relaxation, relaxation can also be achieved by
relaxing constraints, removing constraints, relaxing the objective function, decomposing the problem,

and any techniques that can transform a hard problem to an easier one.

A difficulty in subproblem relaxation is to determine which constraint to relax next. Until now,
no awtomated technique has been devised to solve this problem mechanically. All previous examples

are results from serious researches and intensive studies.

Subproblem relaxation is also important in other application areas, and applies in a different
sense. Sometimes constraints are not “‘firm’’, and may be relaxed without penalty. Furthermore,
databases may contain inexact and unreliable information that may violate its constraints. This
simation happens often in designing expert systems. This is handled in MYCIN [53] by introducing a
model of approximate implication, using numbers called certainty factors to indicate the strength of a
heuristic rule. The DENDRAL system [6] dealt with rough spectral data, and used confidence ratings

to determine which constraints to relax.

3. Multilevel Organization for Problem Solving

In computer science, hierarchical structures, such as trees, are used extensively for data
representation. In image processing, hierarchical structures, such as quad trees, organize images with
multiple levels of resolution. In artificial intellipence, multilevel structures often represent different

levels of abstraction of concepts.

Abstraction summarizes information, achieves a compact representation, and generalizes ideas.
Cognitive models based on multilevel structures have been developed. The idea of abstraction is also
defined formally in terms of lambda calculus [56]. Itis like a procedure in a programming language.

Polya [45, 46] emphasized the importance of abstraction for human problem solving.

Multilevel organization research can be classified into two categories. One uses the
hierarchical architecture to store homogenous structures, such as quadtree, so that efiicient search can
be performed. The other uses the hierarchical structure to model human problem solving. Here
representation work has been quite successful. Less work has been done on using multilevel structure
to control the execution of a system. One possible reason is that it is easy to describe but hard to state
formally. There are some exceptions, such as the A* search [40], and multilevel A* search [54],

whose evaluation function f (n) is the global control on the metalevels.

In this thesis, an attempt is made to formalize multilevel organization not only in problem
representation, but also in problem solving. The concept of abstraction, levels, filtering, and control
are defined. Measures on the multilevel system’s performance are discussed. These measures provide
means to visualize the efficiency of the system. Hawever, the formal theory is by no means complete.

It is just a first attempt to study multilevel problem solving strategy formally.

The rest of the section discusses some existing multilevel problem solving techniques, They

have been applied to hierarchical planning and speech understanding.

10

3.1. Hierarchical Planning

Hierarchical planning and problem abstraction have been studied before by E. D. Sacerdoti.[S.l]
and others. In hierarchical planning, a goal is decomposed into subgoals. The plan to achieve the
goal is composed from the plans to achieve the subgoals. Each subgoal is also decomposed into
further subgoals, and so on. The hierarchical planner generates a hierarchy of representation of a plan
in which the highes-t is an abstraction, or simplification of the plan and the lowest is a plan detailed
enough to solve the problem. This concept is implemented by Sacerdoti in the problem soiver
ABSTRIPS [51]. The problem solver contains a set of operators. It explores the states that arise from
applications of the operators, searching for one that qualifies as a solution to the problem. Each
operator has a list of preconditions that must be satisfied before the operator can be applied. Making a
precondition true is a subproblem of the current goal. The abstraction space is a simplifying
representation of the problem space in which unimportant details are ignored. In ABSTRIPS, the
abstraction space contains all the operators given in the initial specification of the problem, but some

preconditions of some operators are judged to be more important than others.

Two major characteristics restrict its usage. First, the subproblems generated from the main
problem are independent. The assumption is that each goal is decomposable to unrelated subgoals.
Second, the abstraction is defined by ignoring some unimportant details. It takes away some
constraints on the problem level and calls it the abstraction space. Real abstraction should abstract

characteristics completely and comctly.

This is the same as defining all problems that have some common characteristics at a high level
and studying the manipulation of the abstraction space. Human problem solving usually manipulates

high level concepts while working on the lower, finer details of the problem.

11

3.2. Speech Understanding

Another application of multilevel organization is in the speech understanding system
HEARSAY [15,14]. Itis based on a yniform and integrated muliilevel structure, the blackboard,
which holds the current state of the system. Key functions are performed by diverse and independent
programs called knowledge sources. Knowledge sources cooperate by creating, reading, and
changing elements on the blackboard. Each level in the blackboard specifies a different
representation of the problem space. Example of levels are database interface, phrase, word sequence,
word, syllable, segment, and parameters. This sequence of levels form a loose hierarchy. The
elements at each level can be approximately described as an abstraction of elements at the next lower

level.

The state of execution is represented by the multilevel structure blackboard. The control of the
system is provided by the set of knowledge sources. These knowledge sources cooperate and
communicate through the blackboard. The knowledge sources are not restricted to work on one level
of the blackboard. For the blackboard, a partial solution at one level constrains search at another
level. This architecture of control is excellent and the result is a system that works in experiments.
The performance measure is done empirically: for a 1000-word vocabulary, there is a 90% possibility
of correct interpretation. However, the loose definition of the levels and the unrestricted relationship

between controls make the HEARSAY system hard to formalize,

3.3. Multilevel Framework

The multilevel system proposed here is much more restricted than the HEARSAY architecture.
It has a much more rigid definition on level structures. Of course, one can always apply the
HEARSAY structure to tha Chinese input application discussed here. On the other hand, the Chinese

input problem can be formulated by the proposed multilevel system. The formalism to be discussed

later justifies the validity of the multilevel approach.

The multilevel system proposed here partitions the constraints vertically into different levels.
Each level contains different sets of objects. An object on one level is an abstraction of objects at the
next lower level. The whole idea assumes that constraints can be categorized into different levels of
abstraction. The lower level constraints describe relations among the primitive data while the higher

level constraints describe relations among the high level abstract concepts.

The processing cycle initially submits all possible solutions of some problem instance to the
lowest level, This level removes some impossible solutions, i.e., the solutions that contradict
constraints of the level, and generates a smaller set of solutions. This set of solutions is then passed to
the next higher level and the filtering process starts again. The process stops when a solution is
achieved, an inconsistency is detected, or all levels are explored. This filtering process can be viewed
as first relaxing all high level constraints and trying to find a solution satisfying the lowest level
constraints. If ambiguities arise at the end of the processing, constraints at the next higher level are

enforced to try to achieve a better solution.

Besides filtering, another kind of processing, known as control, also exists. Control is
information generated and passed from a higher level to the next lower level. This information helps
to reduce the size of the solution set flowing from the lower level to the higher level. One way to
reduce the size of the solution is by decreasing the set of constraints; this is called increasing the
filtering power of a level. This and other forms of control will be described formally later. The
control information is generated Lfsing the partial input obtained so far. So there is a cycle of
iteration: partial solutions are passed up the levels; the higher levels, using these partial solutions,

generate control that is propagated down the levels,

—
£

CHAPTER 2

Chinese Input Problem

In this chapter, the Chinese input problem is discussed in details. Different input methods are
presented: methods based on the whole Chinese character, methods based on coding scheme, and
methods based on phonetic spelling. Input system based on phonetic spelling is argued to be the most
appropriate approach. It can be viewed as transforming a phonetic spelling, without word breaks, of a
Chinese sentence into the corresponding Chinese characters, Three fundamental issues are studied:
segmentation, homophone analysis, and dictionary organization. Segmentation corresponds to
inserting spaces to the connected sequence of phonetic symbols so that each subsequence is a Chiness
character. The main disadvantage of phonetic input is that homophones cannot be distinguished.
They are analyzed here and multilevel framework is applied to reduce some of these ambiguities. The

problem is partitioned into following levels: phonetic spelling, word, and grammar.

The data organization for the Chinese input problem is also defined, It corresponds to store,
access, and use the constraints. Constraints include the phonetic spelling dictionary, word dictionary,

and the syntactic structure.

1. Introduction

During the past decade, computer input and output of oriental languages, such as Chinese and
Japanese, have been the subject of intensive research and development in the Orient. Recently,
western societies have also shown interest in these areas; for example, a current issue of [EEE

COMPUTER [12] is dedicated to work on Chinese/Kanji text and data processing. The problem is

14

important: there are more than one billion native Chinese speakers. The biggest problem in Chinese
text processing is the huge size of the alphabet. Fig 2.1 is a pictorial description of the hierarchy of

differant kinds of characters.

characters

letters ideographs

TN

Roman Cyrillic Kana Hanzi Kanji

Fig 2.1 Hierarchy structure of characters.

How can 50,000 Chinese and Japanese characters be organized for computer input, output and
processing? This thesis concentrates on the processing of Chinese language. The major difference in

processing other oriental languages, like Japanese and Korean, will briefly be discussed in chapter 7.

Today, there are more than 50,000 ideographs in the Chinese script. They are called hanzi
(#). In order to achieve basic literacy, at least 2,000 most frequently used ideographs must be
mastered.

The output problem has received satisfactory result. Nowadays, there exists quite a lot of

Chinese output system in the commercial market, but none of the input method is satisfactory.

Qutputting ideographs is easy. The images of the ideographs are stored in the form of dot matrices.

15

The output devices are able to reproduce the same image, aided by necessary software and hardware.
Some researches are done on using metafont [31] to represent Chinese ideographs [24)] in order to
achieve high quality output. Metafont is able to generate different fonts for Chinese ideographs, such

as bold.

The problem addressed here is inputting Chinese to the computer. The rest of the chapter talks
about the existing techniques for input, and some characteristics of Chinese languages, such as the

word compounding process and basic grammatical pattemns.

2. Methods of Chinese Input

Criteria for comparing different input methods are presented before the discussion of them. Cui
[13] recently studied methods of evaluating Chinese character keyboards. His evaluation criteria
include input speed, learning curves, and error rates. The most important criterion for a good input
method is ease of use. As computer gains popularity, even intra-office communication is done
through the machines. A good input methed should appeal to both naive users and professional
typists. Most existing methods require professional typists. Another criterion is avoidance of
expensive hardware; the ASCII keyboard satisfies this criterion. The method should also be
independent of which version of the Chinese alphabet one is using, such as the normal alphabet,

the variant alphabet, or the simplified alphabet.

Current work on inputting systems for hanzi can be divided into three categories: based on the

whole character, based on coding scheme, and based on phonetic values.

2.1. Input systems based on the whole character

One implementation is the two-dimensional selection array. In this scheme, the thousands of

available characters are aid out in a huge two-dimensional array of keys. Fig 2.2 is a Chinese

16

typewriter and fig 2.3 is part of the keyboard. The typist visually searches for the desired hanzi, one at
atime. Forexample, in fig 2.3, ri (A) is at column $ and row 6. Another implementation is each
character is input by pressing a single key, or by simultaneously pressing a ‘*character group’” key
and a corresponding key.

The main disadvantage of this kind of design is the huge keyboard, which is hard to search, and
discourages non-professional users. The size of the keyboard also limits the possible number of

hanzis. Once the keyboard is set, it is very difficult to expand.

Fig 2.2 A Chinese typewriter.

Fig 2.3 A Chinese typewriter keyboard.

1.1. Inputsystems based on coding schemes

In order t0 avoid the usage of a huge size keyboard, people devised coding schemes. The goal
of coding schemes is to represent ench hanzi by a sequence of keys such that all keys can be fitted on a
small keyboard. One coding scheme is designed to minimize the number of keystrokes required to
input each character. On a standard ASCII keyboard, there are about 40 keys. The shift key will
double the number of possibilities to 80. Two key strokes is able to produce 6,400 (80 x 80) different
combinations to represent 6,400 different ideographs. In this scheme, the typist has to memorize the

keystroke pairing for each individual hanzi.

Many other encoding methods have been proposed, but none is universally accepted. These
include the Three Corner Coding Method [26] and the Pinxxiee Method [58]. In a coding scheme, the
typist analyzes each character in turn and figures out an input code derived according to some system

of coding rules. For example, the three corner coding method returns following codes:

tian H 010000
i H 0104 41

hwe X 99 99 99

The coding rules usually depend on the character’s shape, sound or both. Special rules are applied
when ambiguity appears, such as when the general rules produce the same coding for two different
hanzis. Some existing coding systems depend on the arrangement of radicals within a character,
Research is being done on automatically generating the character from the radicals input by the user.

No success has yet been reported [62].

)

The basic idea of coding schemes is decomposing a character into its components. The main
disadvantage is that there is no reliable definition of what constitutes an element within a hanzi, Ttis
also not clearly understood how hanzis are divided into elements and how many elements are needed
- to form one hanzi. This can be overcome by anificially introducing some kind of standards and rules,

such as the Three Corner Coding Method.

Some work has been done on designing special keyboards to help the typist and to achieve

maximum productivity.

Coding methods in general have the following disadvantages:

* They are hard to learn.

» They require memorizing numerous complex rules, exceptions and special cases to handle
the ambiguous cases.

» It is extremely difficult to compose text directly at the keyboard.

» They are not easy to use and unsuitable for non-professional typists and occasional users.

2.3. Input systems based on phonetic values

In phonetic systems, the typist spells out the sound of the desired hanzi and the computer
locates it in the dictionary database. If several hanzis correspond to the same sound, the system

displays all possibilities and the typist indicates the one intended by a pointing device,

One disadvéntage of phonetic input is that people who can speak a certain dialect may not be
able to input ideographs unless they know how to pronounce them correctly. There are numerous
different dialects in Chinese. Twenty five years ago, the Chinese Phonetic Scheme was officially
published, Since then, it has been used in the teaching of Chinese children in primary schools where

voungsters are obliged to master a phonetic alphabet. In the near future, most Chinese will be able to

use the standard Chinese Phonetic Scheme,

The Chinese Phonetic Scheme is in standard romanization, which is called hanyu-pinyin (&
it {if &) (“Chinese language pronunciation’”). Another common phonetic alphabet used in
Taiwan is called zhuyin-fuhao (E B AT 3K) (“phonetic symbol”?), it is familiarly known by its

first four letters bopemofo. Either of these standards solves the problem of dialects. It would be nice

if there were just one standard, but that is a political problem, not a technical one.

Recently special keyboards were designed for pinyin input [52). They were based on some
inherent properties of the pinyin construction; for example, the phonetic symbols can be divided into
initial consonants and ending consonants. For example, { b,¢,d, f, g, h } are initial consonants,

and { a, an, ang, ac } are the ending consonants. A pinyin is constructed from following two rules:

1. initial consonants ~ final consonants,
2. final consonants.

{a,ba,da,an, ban } are [egal pinyins and { b, ¢, anan } are illegal pinyins. Much work has been
done on designing a new keyboard to make input efficient or possible. Now there are two to three
hundred different designs for a Chinese character keyboard, but no single method has gained
unanimous acceptance. There is a growing tendency to favor standard ASCII keyboards. The Qwerty

arrangement has been criticized by people for years, but has not been replaced yet.

The main disadvantage of phonetic input is that homophones cannot be distinguished. The

pronunciation of following three hanzis are identical,
{i% W& B}

There are approximately 400 different phonetic spellings which represent 20,000 hanzis. Following

list of hanzis are with the same phonetic spelling, an .

(&K 3% 0 B % T8 %% ()

Numerous pronunciations can be generated as the result of tonal variations [52]. Only 1,284
romanized transcription of hanzi are fully distinctive in the sense of correspending to only one
ideograph. The Mandarin dialects has four possible tones, namely, ping (%), shang (£), qu (F),

ru (A), plus a distinct ging (#2) for unstressed syllables. They are usually denoted as follow:

- ping
shang
qi

ru

qing

For example, the five tones of the phonetic spelling bo contain following different hanzis:

bo #
bd b5
bd i
b6 %
bo b

A variation of phonetic conversion is the word-unit phonetic conversion method proposed by

Becker {4]. Becker pointed out that the fundamental design mistake in some methods is that they

rJ
b3

require the typist to enter Chinese text hanzi by hanzi rather than word by word. He argued that most
Chinese words are compounds consisting of two or more morphemes. For example, a typical Chinese
dictionary lists 15 different hanzi pronounced dian and 5 different hanzi pronounced nao — but only

one compound word pronounced diannao which is & I {**‘computer’").

Becker stated that this phonetic redundancy built into Chinese vocabulary can radically reduce
the ambiguity of successive hanzis. In word-unit phonetic conversion, the system designer develops a
Chinese word dictionary that is stored in the computer. Once the computer has been given this
dictionary, the process of communicating Chinese text phoneticaily is analogous to speaking Chinese
to a person who knows the language. A study by Becker showed that word-unit phonetic conversion

is equal or superior to other typing systems [4].

Next section discusses Chinese words in details and analyzes Becker’s approach.

3. Chinese Words

In Becker's approach, word units must be well defined and universally accepted. In this
section, the notion of *‘words’’ is studied with reference to Chinese lingustic literature. We shall see
that the concept of word unit is not well defined but it does exist. A new approach for input is

proposed which makes use of the underlying structure of words and grammar.

3.1. What is a word?

Chinese language is sometimes referred to as monesyllabic, meaning that the vast majority of
words are one syllable in length. Morpheme is the smallest meaningful element in language. In
classical Chinese, most morpheme units are individual monosyllabic words [7, 33, 34]. For example,
the following sentence from the poem i T 3] (ging ping diao) by ZE= B (Li Bai) does not contain

any polysyilabic words.

HAEMERBPR.

ming hua ging guo liang xiang huan.

In modern Chinese, words are frequently combinations of two or more syllables. A morpheme is free
if it can occur as a word, otherwise, it is called a bound morpheme. As many morphemes can occur
only in bound form, words are largely disyllabic or polysyilabic morphemes. For example, in the
word fouze (7 Al), the second component, ze (8l), is no longer functioned as a free morpheme in

modern Chinese.

So, what is a word? A word should be a unit in the language characterized by syntactic and
semantic independence and integrity. It should be able to express one idea. There are several reasons
why this definition of word should be adopted {33]. First, this definition is more in line with the way
“*word” is viewed in other languages and not so narrowly tied to the Chinese writing system. Second,
this position tends to agree with the perception of most people attempting to learn the Chirese
language. Third, due to the phonologicai changes that have taken place, many formerly distinct
syliables have become homophones in Mandarin. For example, in Mandarin, = and I are
pronounced as yao, where as in Cantonese, 2 is pronounced as yix and s pronounced as yeuhk.
The threat of too many homophonous syllables has forced the language to increase dramatically the

proportion of polysyllabic words to help reduce the possible ambiguities.

In classical Chinese, no spaces between words are necessary because each ideograph represents
one word. This tradition has been kept in modern Chinese. Because strings of ideographs are never
broken into strings of words by means of blanks, there is no standard for exactly what constitutes a

word as in English.

Despite the lack of a standard, research on linguistic has attempted to find reasonable definition
for “‘word’’, This work is based on the study of morphology, the internal structure of words, Words

consist of one or more morphemes, compounded together.

Compounds are polysyllabic units that can be analyzed into two or more meaningful elements,
or morphemes, even if these morphemes cannot occur independently. A compound can be created in

the compounding process in different ways. Some compounding processes are:

« reduplication, e.g., ge-ge (brother, 5F 5).

« affixation, e.g., di-yi (first,).

« nominal compounds construction, e.g., chuan-dan (bed-sheet, R).
« verbal compounds construction, e.g., da-po (hit-broken, iTHE).

- verb object compounds construction, e.g., ge-ming (revolution, J i).

There is much disagreement over the definition of compound. No matter what criteria one
picks, there is no clear demarcation between compounds and noncompounds. There is also no
agreement on whether a given form should be regarded as one word or two [33], such as kan-jian (i
R, “see’”), there is no agreement on whether it should be regarded as one word or two. This
illustrates Becker’s assumption of a ‘‘universally accepted definition of word-unit™ is impractical.
On the other hand, words do exist in Chinese even if they are not standardized. Thus, while the input
method should not have any assumption about the user’s knowledge of word units, the system

processing the input can use its own opinion of word units to aid processing.

3.2, Categories of Words

A word dictionary contains not only words and phrases, but alse bound morphemes and

morpheme complexes. They include:

o]
wn

» Determinatives: zhe 338 (this), na 30 (that), san = (three), ji 3% (several);
+ Measures: ge 1] (individualization classifier), jian £F (item, article), cun ~F (inch);
« Affixes: di 55 (-th);

- Particles: a [(ah');

Root words are morphemes which underlie primary derived words. They combine with other

morphemes to generate compounds,

Though most of these entries are listable, their unrestricted combinations will add up to an

enormous number. It is impossible to include in the dictionary such words as:

yitian — X (one day),
santian = X (three days),

shitian + X (ten days),

though these are single words in a syntactic sense. There is an unlimited number of these transient

words.

Some of these transient words can be generated by regular expressions. One example is the

compounds generated by the regular expression

Didigit)= —{_ | = | | I |75 &£ (N u | F
N (number) =D*

This regular expression generates Chinese numerals similar to the regular expression that generates
Roman numerals, A more complete description is giver in chapter 3. The total number of possible
words in this form is unlimited. The regular expression formalism provides a compact representation

for the unlimited transient words.

Note that this regular expression can generate some meaningless words. Since the only
function of word analysis is to reduce ambiguities, the extra meaningless words will rarely cause

problem. One of my assumptions is the user inputs a syntactically correct sentence.,

Thus there are two kinds of words: static and transient. The static words can be listed in a word

dictionary while the transient words are generated by regular expressions.

Following section defines an input method based on phonetic conversion and shows how

homophones ambiguities will be tackled.

3.3. A Phonetic Input Method

From the arguments in the previous section, words are not as well defined in Chinese as in
English. So an input method for Chinese should not depend on any user-supplied word boundaries.
But the system can use the knowledge of words to resolve the ambiguities that arise from

homophones.

The proposed system, called the Chinese Input System, does not require the user to insert spaces
between consecutive syllables or words. The user may have his own definition of words. The input to

the system is just a sequence of phonetic symbols.

Becker said that most compounds have no homophones even when typed without tone. Table
2.1 below displays the homophones appeared in a Chinese word dictionary of approximately 20,000
entries. There are about 10% of compound words with homophone if there is no tonal indicatior<

This implies tonal indications are necessary in most cases.

Total number Total number of Total number of
of words homophones without | homophones with
tonal indication tonal indication
20,000 2,299 471
100% 11.5% 24%

Table 2.1 Number of homophones.

The tonal indication is only applied to the vowels, a, e, i, 0, u. Table 2.2 indicates the number
of homophones if tonal indication is used in vowel a, ¢, {, 0, u individually. If tonal indication is used

on vowel a, about 50% of the homophones can be distinguished. Similar situation applies to vowel i.

Total number of
homophones without

Total number of homophones with tonal
indication on vowel

tonal indication a e i o u
1,328 1,080 1,536 1,057 1,612 1,512
100% 47% 67% 46% 70% 66%

Table 2.2 Number of homophones if tonal indication is used.

If both vowel @ and i are used with the tones specified, an estimate of 70% of the homophones can be

distinguished. The total number of homophones with tonal indications on vowel a and { is about 3% (

10% x 30%). In this case, the user has to type in the tone indications for @ and .

4. -The Chinese Input System

The Chinese Input System takes a sequence of phonetic symbaols, and displays the

corresponding Chinese ideographs. For example, the user can input:

I am a student of the Computer Science Department of the
University of California, Santa Barbara.

The comresponding Chinese pinyin sentence is:

waoshi jiazhoudaxueshengbabalaxiaoyuandiannaoxidexuesheng. (1
As the user types in the above sequence of phonetic symbols, with spaces arbitrarily inserted,

the Chinese Input System should display the following list of hanzi ideographs:

XN ALZECELRET I Rav24 |

The system transforms a sequence of phonetic symbols typed in by the user to a sequence of
hanzi ideographs corresponding to the input sequence. Ideally, the output sequence of hanzi shouid
be unique and also what the user wants. This problem consists of the following two components: the

control mechanism and the data organization.

4.1. The control mechanism

The control mechanism of a prablem solving system decides what the system do next. For the
Chinese input problem, the contro! mechanism is divided into the follow ng three subproblems: the

Chinese character break problem, the word break problem, and the hanzi labeling problem.

4,1.1, The Chinese Character Break Problem

Since the input is just a sequence of phonetic symbols, the first processing is to break the

sequence into subsequences such that each subsequernce corresponds to a legal syllable, i.e., each

29

subsequence corresponds to some hanzi ideographs. Breaks between syllables are denoted by bianks.

The sequence (1) above corresponds to the following list of syllables:

wo shi fia zhou da xue sheng ba ba la xiao yuan dian nao xi de xue sheng. 2)

Since each syllable corresponds to a hanzi, or a Chinese character, the spaces inserted are called

character breaks. This problem is called character break problem.

Ambiguities may appear. For example, the sequence

xianggong. (3)
has two possible parses, one with three syllables and the other with two syllables:
xi ang gong 4)
xiang gong (5)
After identifying the character breaks, the system can assign hanzi to each syllable. Even if one
has a unique parse, the total number of different possible sentences generated from assigning different
homophonous hanzis to the substrings is enormous. Table 2.3 displays the number of different hanzis

corresponding to each substring in (2) above.

If there are more than one parse, further processing has to be performed on all possible parses.
The *‘best’” solution is selected as the final answer. The ‘‘best’’ here means the solution with the least
amount of ambiguities. Some other optimality criteria can be used. Another possibility is to display
the best couple of solutions such that their amount of ambiguities are close, then the user selects the

right one.

syllable | number of homophones number of homophones
without tonal indication with tonal indication
wO 10 1
shi 32 26
jia 21 10
zhou 17 7
da 6 1
xue 6 3
sheng 14 5
ba 14 4
ba 14 4
la 7 2
xiao 22 6
yuan 20 11
dian 15 10
nao 5 3
xi 45 5
de 3 3
Aue 6 3
sheng 14 5

Table 2.3 Number of hanzis for syllables in (2).

30

The total number of possible sentences is about 102!, Even if tonal indication is considered, the

number is still about 10'1. A selection method * zsed on enumerating all sentences is impractical.

Selection may also be done based on enumerating all possible hanzis for each syllable. For

each syllable, afl hanzis with that phonetic spelling are displayed and the typist selects the desired one

by 2 pointing device. If we does selection on each character [28], we must still do 18 selections, one

for each character, which is impractical for an online input method.

31

The proposed Chinese Input System uses the word knowledge to filter out some of the
impossibilities. Further filtering is done by constraints generated from the grammatical properties of

Chinese.

4.1.2. Word Break Problem

Now a list of syllables exists; each syllable corresponds to more than one hanzi. Next the
system checks whether adjacent syllables form a word or compound according to the dictionary. As
words or compounds may consist of more than two syllables, it is necessary to make sure that these
compounds are included in the checking procedure. In the above example (2}, the list of syllables

consists of the following compounds:

Jiazhou , daxue , shengbabala , xicoyuan , xuesheng. {6

Table 2.4 illustrates the number of homophone compounds correspond to these polysyllables.

polysyllables no. of homophaones no. of homophones
without tonal indication | with tonal indication

jiazhou 1 1

daxue 2 1

shengbabala 1 1

xiagyuan 1 1

xuesheng 1 1

Table 2.4 Number of homophone compounds corresponds to (6).

The total number of sentences that can be generated after identifying these compounds is 4,680
without tonal indication and 78 with tonal indication. The number of monosyllabic words left now is

3. wo, shi and de. Further processing is necessary on these words.

Since this current process tries to identify the words, it is called the word break problem.

4.1.3. Hanzi Labeling Problem

The result from the word break problem is a list of strings, each string represents either a single
character or a word. Each of these strings contains a list of possible ideographs which may be a
possible components of the input sentence. If one is lucky, the number of possible labels in each
string is one, the problem is solved. This rarely happens. Single character words always exist in
Chinese sentences. The most common kinds of single characier words are prepositions, called coverb.
At this stage, the system will try to eliminate the impossible labels, or ideographs, based on some
constraints. For example, some hanzis cannot exist by themselves; they always appear as part of a

compound. This elimination process is similar to the labeling problem subject to a set of constraints.

Where do the constraints come from? There are always rules governing the construction of
sentences in a language. Work has been done on Chinese grammar {7, 34, 61). The grammar rules

will be used to generate constraints to help resolving ambiguities.

In the output from the Word Break Problem, ambiguities have been greatly reduced. One could
attempt to use the whole set of grammar rules to parse the input sentence and help to resolve the
ambiguities. Since parsing of Chinese sentence is difficult and I am not interested in parsing, 1 believe
that some constraints generated from the grammar will help to resolve ambiguities and will be
inexpensive to apply. One such example is that a final particle,if it exists, always appears at the end of

a sentence.

4.2. Data Organization

Data organization for Chinese text processing itself is an interesting subject. There are basically

three problems:

[99%
ot

1. Store and index the Chinese ideographs.
2. Store and index the Chinese dictionary.
3. Store, access and use the constraints.

Problem (1) has been studied for years by researchers and practitioners in the Orient. Existing
techniques include storing the bitmaps that represent the images of the ideographs. The database of
Chinese ideographs at UCLA contains 6,000 Chinese and Japanese characters [28]. The bitmap of
each ideograph is stored in 72 bytes. Each bitmap is of size 24 x 24 pixels. Since phonetic
conversion is used, each ideograph is indexed by its phonetic spelling. The size of the ideograph

database is 432 Kbytes (72bytes x 6K ideographs).

Since much work has been done on compacting this kind of database, I am not going to pursue

any further in this direction. Instead, concentration is put on solving problem (2) and (3).

4.3. The Dictionary Organization

The dictionary organization refers o the probiem (2) above. The dictionary consists of two

components:

» Hanzi dictionary — an index to the ideograph database.

« Word dictionary — store the words and compounds.

The hanzi dictionary constitutes only a small pnrtion of the dictionary as there are less than 500
different spellings of ideographs. The word dictionary is much bigger. The number of common static
words is about 20,000 and there are unlimited number of transient or temporary words. A careful
design is required so that each word can be retrieved efficiently and the storage utilization is

reasonable.

An implementation of the static word dictionary in the form of a trie based on each individual
compounds’ phonetic spelling was built. The dictionary used is £ 8 Ut B FIEE [11). Itcontains
12,913 leaves and 22,568 internal nodes. Each of the leaves and internal nodes require 1 index and 1
pointer. There are approximately 35K pointers and indices. As there are about 20,000 words in the
trie and each word contains at least 2 ideographs, there are at least 40,000 pointers to the ideograph

database. Table 2.5 summarize the storage requirement for the above discussion.

Approximate Number of
number pointers

2-ideograph compounds 12,000 24,000
3-ideograph compounds 3,000 9,000
Pointers to ideograph database 33,000
Compounds 20,000
Internal nodes 22,000
Leaves 13,000
Internal pointers for the trie 35,000
Internal indices for the trie 35,000
Size of ideograph database 432,000 bytes
Total number of pointers 68,000
If pointer is 4 bytes,
storage required 272,000 bytes
Total number of indices 35,000
If index is 1 byte,
storage required 35,000 bytes
Total storage 739,000 bytes

Table 2.5 Storage requirement for the dictionary.

A better implementation of the dictionary will be presented in the next chapter. The design

goal 1s not only efficient storage utilization, but also fast input recognition.

35

4.4, Constraints Organization

Constraints are the set of rules that cannot be stored in the dictionary. The number of rules is
not very large, so efficient storage implementation is not necessary. The construction of rules is more
important. Two methods for constraint construction are discussed, automatic generation of

constraints, and heuristic rules.

Constraint generation technique applies to a context free grammar for a language. An iterative
algorithm is presented to generate constraints from the given context free grammar. A complete
formal grammar for Chinese would have made the work reported here far more rigorous and, perhaps,
more interesting. Unfortunately most of the linguistic studies of Chinese grammar have not
formalized their results; the major exceptions are the work of Wang (61] and Hashimoto [21). With a
formal set of grammatical rules, one could attempt language parsing, language understanding and
others. My goal is just to use the grammatical rules to hélp deciding what characters the user wants.
The grammatical rules are used to generate constraints to discard implausible sentences. For
exampie, the constraints state the possible adjacent parts of speech. If one has a context free grammar
that is a super set of the Chinese grammar, one can apply the constraint generation algorithm to
generate the set of constraints. This set of constraints is able to remove some impossible solutions.

Details of constraint generation will be discussed in chapter 4.

Since there is no universally accepted Chinese grammar, heuristic rules are needed to further
reduce the ambiguities, Most ambiguities appear in single hanzi that do not form words. Heuristic
rules construction concentrates on rules that resolving these ambiguities. Following grammatical

structures generate most of the single hanzi in Chinese writing:

* preposition,

» particles,

« conjunctions.

The set of heuristic rules will be be studied in detail in chapter 4.

37

CHAPTER 3

The Dictionary

Dictionary organization is a fundamental problem in computer science. In practical use, e.g. 3
spelling checker, an efficient implementation will save many resources. This chapter describes the
organization of a Chinese dictionary. Since there is no published work on efficient Chinese dictionary
organization, and since a Chinese dictionary is quite different from an English dictionary, it is

worthwhile to spend some time on its design.

As discussed in the last chapter, phonetic spelling is the most reasonable way to type Chinese.
In order to handle input by phonetic spelling, the Chinese dictionary is indexed by pinyin. A design

of a Chinese dictionary is presented here. It can store more than 6,000 ideographs and 20,000 words.

There are two kinds of words: static and transient. The static words are listable, though there is
a large number of them. On the contrary, there are unlimited number of transient words. An efficient
implementation for the static word dictionary are presented first. The transient words can be
generated from regular expressions, presented last. One important point is the regular expression not
only generates the legal transient words, but also generates some illegal words. In the current system,
the user input is assumed to be valid and the main goal of the dictionary is to verify the existence of a

word.

In order to facilitate the search algorithm presented later, the dictionaries: phonetic spelling and
word, are stored as tries. This chapter starts with some terminology, then informally specifies the

Chinese dictionary, and analyzes the current system. The informal specification consists of the

definition of the dictionary and the functions available to access it. Storage analysis is based on an

existing Chinese word dictionary, ¥ &8 {f & ZE [11].

1. Terminology

As discussed in the last chapter, pinyin input is the most reasonable way for typing Chinese. In
order to handle input by pinyin spelling, the Chinese dictionary is indexed by pinyin. A Chinese
dictionary should contain at least 6,000 common ideographs (Chinese characters). These 6,000
ideographs are indexed by approximately 400 different phonetic spellings. Each pinyin spelling thus
corresponds to an average of about ten different ideographs. As pointed out in the previous chapter,
words are often the basic units of communication. A word dictionary is necessary in addition to an
ideograph dictionary. A common Chinese dictionary should contain 20,000 to 30,000 static words for

daily usage. There is also an infinite number of transient words.

" Let the 6,000 ideographs be the set of Chinese characters available in the dictionary. Each of
the ideograph is called zi (5). These 6,000 zi form the zi universe (ZIu). Each zi is indexed by its
phonetic spelling, called pinyin ({if &). Each pinyin may correspond to more than one zi. Itisa
one to many relation. The collection of these pinyin relations is the pinyin character dictionary, or zf
dictionary (ZID). Another level of the dictionary is the word dictionary, which stores the common
words. Each element in the word dictionary is a sequence of pinyins, called ci (=), and the
corresponding sequence of ideographs. The word dictionary is also called ci dictionary (CID). To
speed up the processing which will be discussed later, both the pinyin character dictionary and the

word dictionary are stored as tries.

2. Specification of the Chinese Dictionary

The following definitions will be used throughout the chapter.
ZIu : Set of ideographs.
Pu: Set of phonetic symbols, { a.b, ...z }.
PINYINu < Pu*: The set of pinyins.

ZID - PINYINu>2Z a relation from phonetic spelling to set of ideographs. Each element
is an ordered pair of a pinyin and all ideographs with this pinyin.

E.g.{(garlg.[T"i-a?,'_=J',,%ﬂ{',‘fh\,:[:]),(zheng,[Iff{,:i’f'xzv JIE B .9 LEE D).

CID -+ Set of relations from sequence of phonetic spellings to ideographs. Each element is an
ordered pair of pinyin for a word and all coresponding words of ideographs.

E.g.{ ([gong.zheng] , [XIE , 223K 1}.
2i € Zlu : Aideograph.
ZIs S Zfu : Asetof ideographs.
pinyin € PINYINu : A legal phonetic spelling.
pinyin*: A nonempty sequence of pinyins.
¢i € ZID : A nonempty sequence of pinyins that form a Chinese word.
ps € Pu: A phonetic symbol.

ps*: A nonempty sequence of phonetic symbols, not necessary a pinyin or a word.

Notation Representation Size Approximate
total number
abe phonetic symbols | 1 byte 26
[ang] [ci] | pinyins 2 bytes 500
(g ideographs 2 bytes 6,000
[EE) Chinese words 2 bytes 20,000

Table 3.1 Some notations.

4. The Static Dictionary

The static dictionary has two parts: the dictionary table and the index. The dictionary table is a

collection of tables and the index is a trie with pointers to the dictionary table.

4.1, Dictionary Table

The dictionary table consists of a table of words of two ideographs (2-ideograph table), a table
of words of three ideographs (3-ideograph table), ..., a table consists of words of n ideographs (n-
ideograph table). The number of these tables depends on the length of the word with the maximum
number of ideographs. Usually, the maximum length is five. Words rarely contain more than (ive
ideographs.

The 2-ideograph table is a list of ordered pairs of indices to the Zfu, Each pair represents a legal
word of two ideographs. Words with the same phonetic spelling are grouped adjacent to each other.
Only one index is necessary to address a group of ideographs with the same phonetic spelling. The

arangement can be pictured as follows {fig3.2)%

EEICIET (%05 (a5]
aiban aidai anhao

Fig 3.2 The 2-ideograph table.

The 3-ideograph table is a list of ordered triples of indices to the Zfu. Each of these triples
represents a word of three ideographs. Similar to the 2-ideograph table, the words with the same

phonetic spelling are stored adjacent to each other. Following is an example (fig 3.3):

O 1] K| (%K)

[ai,pe.er] [an,mian,yao)

Fig 3.3 The 3-ideograph table.

In general, n-ideograph table is a list of ordered n-tuples of indices to the Z/u. Each of these n-
tuples represents a word of n ideographs. The words with the same phonetic spelling are stored

adjacent to each other.

44

4.1.1. Indexing

The Zfu is indexed by the ZID. Since the key values of the dictionary, the phonetic spellings,
are of varying sizes, an appropriate implementation for ZID is by a trie. This is called the zi trie. A
trie is a tree in which the branch at any level is determined not by the entire key value but by only a
portion of it [2]. In the current implementation, the branching at the ith level is determined by the ith

character of the phonetic spelling. The following list is the beginning of the pinyin dictionary:

{ a, ai, an, ang, ao, ba, bai, ban, bang, ... }

Fig 3.4 is a picture description for this part of the trie. The structure of the nodes will be discussed in

details in the implementation section.

45

HEIREN

[i | 1] | n | ran] 0 [[ao]] [a [[ba] l/

g (lang] i |[bai] [n |[ban]| ,

g [bang]

Fig 3.4 The zi trie.

The word dictionary is a list of legal Chinese words. It is indexed by the seguence of pinyins of
the words. The word dictionary is implemented as a trie with the nodes at the ith level being the ith
pinyin of a word. This trie is called the i trie. Fig 3.5 is an abstract picture for the ci trie with the

words “‘aiban’’ [% 1], and ““aidai” [Fh 1

40

Followings are the functions available to the ideograph data base, Zfu.

add _ zi(pinyin,zi ZIuZID) : (ZIu.ZID)
pronounce _ zi(zi,.Zlu,ZID) : pinyin

The function add _ zi inserts a new ideograph to the Zfu. The corresponding pinyin, which is
used as its index, is inserted to the Z7D. They are linked together by a pointer from ZID to Zlu. The
function pronounce _ zi return the phonetic spelling of a zi {ideograph). The major usage of the
dictionary is to retrieve stored information. Implementing the dictionary with tries makes information
retrieval and processing very efficient. On the other hand, the proposed data organization makes
modification very inefficient because the tries are stored sequentially. The add _ zi function here and
the add _ ci function below allows user to modify the dictionary if necessary. It is very rare to modify

the dictionary once it is set up.
Following is the set of functions used to access the pinyin character dictionary, ZID.

is_ zi(pinyin,ZID) : boolean
retrieve _ zi(pinyin ZID Zlu) . ZI
is_ zi_ prefix(ps*,ZID) : boolean

is_ zi checks whether the pinyin is a legal phonetic spelling or not, i.e., whether it corresponds
to a set of ideographs or not. retrieve_ zi retrieves the sct of ideographs corresponding to the spelling
pinyin. is_ zi_ prefix checks whether the sequence of phonetic symbols, ps*, corresponds to a prefix

of a legal phonetic spelling.
Following is the set of functions to access the ¢i dictionary, CID.
add _ ci(pinyin*,2i*,CID) : CID

is_ ci(pinyin*,CID) : boolean
is_ci_ prefix(ps*,CID): boolean

41

3. The Zi Universe (Z/u)

The ZIu consists of 6,000 ideographs. Though each ideograph is a bitmap, it is treated as a
single unit. The universe can be viewed as a set of ordered pairs of indices and bitmaps, (N ,bitmap),

such as

(M), X H),3%).@.8),5%8), ..}

Each ideograph is uniquely identified by fts index. All zis with the same pinyin are stored
adjacent to each other. Fig. 3.1 is part of the Z/u. Table 3.1 are some notations for figures throughout

the chapter.

Fig 3.1 Part of the Zfu.

46

Fig 3.5 The ci trie.

5. Implementation and Storage Analysis

In the following analysis, I assume that one byte consists of eight bits, and 1 K is 1024.

5.1. The Zi Universe (Zlu)

In ZIu, each zi is a bitmap. Research has been done on how to compress the storage utilization
for these ideographs. Some work has been done on implementing this data base in hardware for fast
retrieval and low storage requirements. This problem will not be discussed any further. The current
implementation at UCLA [28] stores each ideograph by a 24 x 24 bitmap. Each bitmap can be
represented by 72 bytes. The total storage utilization is 432K bytes (72 x 6,000). Since there are less
than 64K zi under normal circumstances, 2 bytes are enough (o index this set of bitmaps. These
bitmaps are stored in an ascending order of their pinyin spellings. All ideographs with the same

pinyin are stored adjacent to each other. Fig. 3.6 is parts of the Zu,

47

[F [%] >]]
1 2 3 13 60 511
Fig 3.6 The Zlu.

5.2. The Dictionary Table

The dictionary table is imptemented sequentially. The 2-ideograph table is an array of pairs of
numbers. The 3-ideograph table is an array of triples of numbers. The n-ideograph table is an array of
n-tuples of numbers. Each of these numbers is 2 bytes long. With reference to the dictionary
discussed in chapter 2, the storage requirement for the dictionary tables is approximately 70K bytes.

The detail calculation is as follow:

48

Storage
Requirement

(bytes)

Number of 2-ideograph compound 11,993 47,972
(4 bytes each)

Number of 3-ideograph compound 3,376 20,256
(6 bytes each)

Number of 4-ideograph compound 62 496
(8 bytes each)

Number of 5-ideograph compound 2 20
(10 bytes each)

Number of 6-ideograph compound 2 24

(12 bytes each) :
Total 68,768

Table 3.2 Storage requirement for the dictionary tables.

As words with the same phonetic spelling are grouped together, a tag is necessary to identify
the beginning of a group. Since 15 bits is enough to uniquely identify an ideograph, the extra bit can

be used as a tag to indicate a break between groups of words.

5.3. The Tries

5.3.1. The zi trie

Each node of the trie is a variable size list of structures. Each structure is a union of three

possible types:

» Grey an ordered triple of a phonetic symbol, a pointer to the next node, and a
representation of the pinyin.

. Black an ordered pair of a phonetic symbol and & pointer to the next node.

49

« White an ordered pair of phonetic symbol and a representation for the pinyin spelling.

Fig 3.7 is a pictorial description. In the diagram, *“ps’’ corresponds to a phonetic symbol, and

the sign *‘#’’ corresponds to a number which represents a pinyin.

Grey m _:_..

Black | ps | ——s

i

Fig 3.7 Node structure of the zi tre.

The phonetic symbol in the structure is part of the key, and it is used to construct the original
key. For the grey nodes and the white nodes, the representation of the pinyin indicates that a valid
key can be constructed by combining the partial key at each level, starting from the root to the current
node. Two bytes are enough to represent all possible pinyins and these two bytes are called coded-
pinyin.

The nodes of the trie are varied in size since the number of different phonetic symbols appears
as the ith character of a spelling is varied. As there are approximately 500 different spellings, two

bytes are more than enough to represent them,

An exhaustive counting of pinyin indicates the total number of nodes in the trie is less than 2K.

Hence, two bytes is enough to store a pointer to a node. Black node and white node can fit in 4 bytes,

30

while the grey node requires 6 bytes. A loose upper bound for the storage requirement of the zi trie is

12K bytes (2K nodes x 6 bytes).

Since a node can have at most 26 children {the set of all possible phonetic symbols), a
sequential search through the node to locate a correct partial key is not inefficient. Adding an extra
byte to the beginning of a node and some modifications to the node structure allow a binary search on
the node to locate the partial key. This idea is used in the implementation of the node structure of the
ci trie,

The whole trie can be implemented sequentially, without storing any addresses explicitly. Two
bits are needed to tell the type of a given node. One bit is used to indicate the beginning of a node.
Since 6 bits is enough to represent a phonetic symbol, there exists 10 extra bits out of the 2 bytes that

is reserved to store the phonetic symbol.

Though 12K bytes is a very loose upper bound for the zi trie, it will be used as an

approximation because this storage requirement is much less than the one used by the ci trie.

5.3.2. The ci trie

Each internal node of the ci trie is a variable size list of structures. Similar to the indexing in

the Zfu, each structure is a union of three possible types:

«Grey anordered triple of a coded-pinyin, a pointer to the next node, and a pointer to
the dictionary tables.
« Black an ordered pair of a coded-pinyin, and a pointer to the next node.

« White an ordered pair of a coded pinyin and a pointer to the dictionary tables.

The coded-pinyin in the structure is part of a word. For the grey nodes and the white nodes, the
pointer to the dictionary table represents the word constructed from the sequence of coded-pinyin
along the path from the root of the trie to the current node. Of course, the coded-pinyin has to be
decoded. Depending on the level of the node, the pointer peints to the appropriate ideograph table,
e.g., the node at level 3 points to the 3-ideograph table. Similar to the zi trie, the internal nodes are

different in size. Fig 3.8 is a detail description of the ci trie with the words *‘aiban’* (5% , #X), and

“aidai” (B EK).

{ai,ban] [ati,dai]
(13,60) (3,511)
(1K) (E 7))

Fig 3.8 Detail of a ci trie,

o=~

s

The actual implementation is similar to the zi trie, except for the following two differences:
1. The phonetic symbol in the zi trie is replaced by the coded-pinyin in the ci trie.
2. The coded-pinyin in the zi trie is replaced by the pointer to the dictionary table in the ci trie.

The ci trie is also implemented sequentially. The basic unit of memory of this trie is 2 bytes:
the pointer to the dictionary table is 2 bytes, and the size of the coded-pinyin is 2 bytes. If the whole
trie can be implemented with 128K bytes, 2 bytes are enough to store a pointer. With reference to the

statistics of the word dictionary in chapter 2, it can be shown that 2 bytes are enough for a pointer.

Since the number of 4 ideograph compounds, 5 ideograph compounds, and the 6 ideograph
compounds is so small compared to the others (Table 3.1), they will not be considered in the

following analysis.

From a counting of the phonetic spelling dictionary, the number of different phonetic spellings
is 416. So the number of structures at the root node is 416. With reference to table 3.1 above, the
number of two ideograph compounds is 11,993, implying that the number of structures in the second
level is at least 11,993, The number of 3 ideograph compounds is 3,376. If each 3 ideograph
compounds needs an intermediate structure at the second level (which is not always the case), then the
total number of structures at the second level is 15,369 (1 1,993+3,376). So 15,369 is an upper bound
on the total number of structures of the trie at level 2. The number of structures at level 3 is 3,376,
since the 4-, -, and 6-ideograph compounds are neglected. An upper bound on the number of
structures is then 19,161 (416+15,369+3,376), which is approximately 20K. Since each structure
requires at most 6 bytes, an upper bound on the storage requirement is then 120K bytes (20K nodes x

6 bytes). So the whole ci trie can fit in 123K bytes.

A major difference between the zi trie and the ci trie is the size of a node in the ci trie is much

bigger than the one in the zi trie. In the zi trie, the maximum number of structures in one node is 26,

53

while in the ci tre, the maximum number of structures is 416. In order to locate a coded-pinyin in a
node efficiently, the node structure is modified to allow binary search on a node. An additional
information required is the size of a node, which takes 2 bytes. The structure is also modified to be
uniform in size. The grey node is changed to a 4 byte structure, with the first 2 bytes storing the
coded-pinyin, and the second 2 bytes storing a ponter to an ordered pair. The ordered pair contains a

pointer to the dictionary table, and a ponter to the next node. Fig 3.9 is a pictorial description.

Grey cpy . -% # } node

Black [cpy| —— node

White |cpy| #

Fig 3.9 Node structure of the ci trie,

Now each structure within a node is 4 bytes. The first 4 bytes of a node store the number of

structures within the node. A binary search is possible to perform in the node structure to locate the
correct coded-pinyin.

Table 3.3 summarizes the storage requirement for the design.

Data structure__Size (kbytes) |
Ziu 432
Dictionary tables 70
ap 12
CiD 120
Total 634

Table 3.3 Summary of storage requirement.

6. The Transient Words

Besides the static words discussed in last section, there exists an infinite number of transient
words or temporary words. These transient words are single word syntactically. They are part of the
ci dictionary and help resolving some ambiguities. Their usage in Chinese text is very common.
Unfortunately, it is impossible to list all of them. For example, an infinite number of words can be

constructed from a numeral, followed by ge (i}), and followed by ren (A), such as:

yigeren (— 1 A (one person)
lianggeren (A (two persons)
sangeren (= "l A (three persons)
shigeren (“f‘ T A (ten persons)

In this section, methods to generate these transient words are discussed. These methods do not
cover all aspect of transient word generation. They just provide some ideas of how to handle these

infinite sets of words. Implementation details are not presented.

35

6.1, Numerals

fhe first group of transient words to be discussed is the numerals. Similar to Roman numerals,
there exists an infinite number of Chinese numerals. These Chinese numerals can be generated by a
regular expression. Unlike Roman numerals, the regular expression can generate some numerals that
are illegal. This will not cause any problem since the dictionary is used in detecting the existence of a

legal word instead of checking the correctness of a word. Following is the regular expression.

D(dfgi:)=~|:|E|EH|£|7<|+:|J\|71.|§$
N (number) =D*
c=+ 18T |E
N=(DCY}|(DCYINFEN
F(frac:ion)=C1‘ﬁ' Z Cyl
BH Z N
NX F|
NIE N
NT&

Since a regular expression can be represented by a deterministic finite automaton, it can be

implemented by extending the ci tre to a deterministic finite automaton.

6.2. Numeral-Measure-Noun Combination

In English, the phrase *‘one pair of chopsticks”’ consists of the following components: “‘one’’ is
a numeral, “*pair’’ is a measure, and ‘‘chopsticks’’ is a noun. In Chinese, the measure ge ({1) is
used with the noun ren (Ay, wenti () B), xuexiao (%‘Af’i‘), and jihui { #% £). There does not
exist any general rule that governs the Measure-Noun combination pair. The only possible method is

to list all of them. A fairly complete list of these combinations is in Chao's book [7]. Usually the

Measure-Noun pair is proceeded by a Numeral.

A specifier (SP) may exist in front of a Nu-M-N construct. Part of the set of specifiers are listed

as follow:

{ zhe (32), na (30).ge(%), di (5%), tou (58) }

Other types of transient words that can be generated with the combination of DFA and

exhaustive listing are the place words and time expression.

6.3. Affixes

Similar to English, there exist affixes in Chinese language. Affixes are bounded morphemes
that are added to other morphemes to form larger units. Other affixes are grammatical morpheme
indicating number and aspect. Chinese has few affixes. The three kinds of affixes — prefixes, suffixes,
and infixes — are discussed in the following sections. The list of affixes is extracted from Li and

Thompson's book [33].

6.3.1. Prefixes

Following is the list of prefixes and their constructs:

PREFIXES CONSTRUCT EXAMPLE

lao (€) lao-Surname lao-Zhang (& %)
xiao (/I) xiap-Surname xiao-Zhang { AN DR)
di (%) di-Numeral di-liv (5% 55)

chu (9]) chu-Numeral chu-er (7)

ke (7) ke-Verb ke-ai (7] %)

hao (HF) hao-Verb hao-kan (¥ 53)
nan (3£) nan-Verb nan-kan (¥€ %)

6.3.2. Infixes

“—de—"" (1F) and “~bu="" (T) are the only infixes in Chinese. They are called potential

infixes of verb compounds. For example,

shuo-de-qingchu (%ﬁ 13 (??
shuo-bu-gingchu (3¢ F @

Ha fi
R

6.3.3. Suffixes

Following is a list of common suffixes.

SUFFIXES CONSTRUCT

-men { |) Human Noun-men
Human Pronoun-men

-xue (2) Subject Name-xue
(equivalent to -ology)

-jia () Subject Name-jia
(equivalent to -ist)

Zi(F) Noun-zi

-tou (58) Noun-tou

7. Summary

EXAMPLE

xuesheng-men (&Efﬁ) (students)
wo-men { &M) {we)

xinli-xue (/0 TE & {psychologist)

wulixue-jia (7 T 8452 y (physicis)

ti-zi (#% F) (ladder)

gu-tou { W 58 } (bone)

In this chapter, an implementation of the static word dictionary and the construction of the

transient word dictionary are discussed. The static word dictionary provide a fundamental frame for

the Chinese dictionary. The transient word dictionary is augmented to the static word dictionary. Itis

just a technique to compress the size of the dictionary and store an infinite number of words. The

tradeoff is that some illegal words are stored. Since the goal is to store all legal words instead of

checking whether a word is legal or not, these minor defect will not cause any problem.

52

CHAPTER 4

Constraint Generation

This chapter concerns methods for generating the set of high level constraints for the Chinese
input problem. High level constraints here correspond to the grammatical structure of Chinese
language, whereas the low level constraints are the dictionaries. The analysis consists of two parts:
automatic generation of constraints and heuristic rules. The heuristic rules are derived from Chinese
language and grammar books [7, 33, 34]. Constraint generation applies only to a context free
grammar for the language. There is no universally accepted Chinese grammar, so the automated
process is just of theoretical interest. On the other hand, if there exists a context free grammar such
that its language is a superset of Chinese language, the constraint generation technique can be used.
The result is a set of constraints which is a superset of constraints that would be generated by a
Chinese grammar. Any solution that is inconsistent with the superset is inconsistent with the Chinese
language. The smaller the difference between the superset and the Chinese language, the better the

performance it is.

The constraint generation technique is an iterative relaxation algorithm. The presentation starts
with the automatic construction of binary ¢constraints from a context free grammar. The algorithm is
then generalized to n-ary constraints. The set of algorithm is represented by a set of fixed point
equations. The set of constraints is the solutions of these equations. Negative results are presented if

the given grammar is not context free.

59

Heuristic rules are presented to help resolving ambiguities due to homophones. These rules are
of two kinds: syntactic and statistics. The set of syntactic rules provides a framework for constructing
Chinese sentences. The set of statistic rules based on statistics collected on some Chinese language

texts, such as frequency analysis on the occurences of all hanzis.

1. Automatic Generation of Constraints

Expert systems normally require experts to write down their expertise in rules form. Most of
these rules are heuristic in nature. Recent work has tried to generate these rules automatically based
on a formal model [32]. Generation of the knowledge base was done automaticaily using a model of
the electrical heart activities [39, 38]. The basic idea is to develop a formal model for the target
domain of the expert system. An automatic process then generates the set of constraints that govern
the consistency of the formal model. The set of constraints and a constraint interpreter together form

the required expert system.

This section presents an iterative relaxation algorithm that generates n-ary constraints for a
given context free grammar. Two points are emphasized here: the concept of automated generation of

constraints for a given model, and the iterative relaxation algorithm for constraint generation.

Grammatical structure is defined over the parts of speech, such as “*noun’’, *‘verb’’, and
‘‘preposition’’. The constraints here mean the possible adjacency relationship between adjacent
symbols. As in English, a transitive verb is always followed by a noun phrase. This kind of constraint
can be viewed as a set ot: ordered pairs with the parts of speech as the possible elements. The simple
adjacency relationship extend to sequences of three elements, four elements, ..., n elements. The set
of constraints then consists of ordered pairs, tripies, ..., n-tuples. The problem is then to find the set of
all possible ordered pairs, triples, ..., n-tuples, for a given grammar. I shall assume that the given

grammar is context free. Some negative results are also presented if the given grammar is context

60

sensitive.

1.1. Generation of Binary Constraints

I shall start with the simplest case of generating the constraints that are ordered pairs (binary
constraints), and then proceed to the general case (n-ary constraints), Generating binary constraints is
similar to building a predictive parse table in compiler design [1]. Instead of a direct adaptation of the
predictive parse table algorithm, an iterative relaxation algorithm is presented. The iterative

relaxation algorithm can be generalized without much change to generate n-ary constraints,

Since every context free grammar (CFG) can be written in Chomsky Normal Form (CNF), 1
assume that the given grammar is in CNF with the allowance of e-productions. The algorithms

presented below can be modified easily to handle context free grammars in any form.
For a CFG in CNF, the production rules are of the following forms only:

1. A= BC
2.A—=a
3.A>¢

Here, A, B, and C are nonterminals and a is a terminal.

The following definitions are used in the iterative relaxation algorithm. Let EXACT (4) be
{ € } if A — € is a production of the grammar. Let EXACT (A) be the set of terminals that can be
derived from A, i.e., A = a. Given a context free grammar in CNF, for all nonterminals A,

EXACT (A) and EXACT ((A) are formally defined as follows:

fe} ifA—oe
EXACTo(A)= | o otherwise

61

EXACT ,(A) is defined by the following rules:

1. IfA — g, then a € EXACT ((A).

2 IfA — BC and EXACT ((B) = { € }, then EXACT ,(C) = EXACT ((A).
3. If A — BC and EXACT ((C) = { £ }, then EXACT (B} < EXACT (A).
4, EXACT ,(A) is the smallest set satisfying these rules.

The set concatenation for two sets A and B is defined as follow:

AB = {aﬁ | ae A and BEB}.
IfA=0orB =0, thenAB = ©.

The above set of rules can be represented by a set of equations. Given a CFG and EXACT 4(A)
for all nonterminals A, the sets EXYACT (A) can be determined by solving the following set of fixed

point equations.
If A -_)Blcli anCn | ail Iam!
EXACT ((A) = \EXACT ({(B))EXACT (C)) \UEXACT (BHEXACT ((C) {a L ,a,,,}.

(4.1)

These set of equations can be solved by the following iterative relaxation algorithm (algorithm

4.1). It generates the set of EXACT (A) for all nonterminals A,

Algorithm 4.1

for all nonterminals A, EXACT {A) :=@.

while there are changes to any of the EXACT (A) do
begin

for all nonterminals A do
for each production A — ot do
begin
ifA —>a then
EXACT ((A) = EXACT ((Ay) {a};
ifA — BC and EXACT (B} = {€} then
EXACT(A) := EXACT ({A W JEXACT (C);
if A — BC and EXACT ((C) = {} then

EXACT ((A) .= EXACT ((A)_EXACT (B),
end

end,

Since algorithm 4.1 is similar to the algorithm of finding transitive closure and there is a direct

correspondence between the equation and the algorithm, the presentation of algorithms will be

omitted in the rest of the chapter. They are given in appendix 1.

To illustrate the algorithm, consider the following example. Given the CFG:

S§o=T«<
T —alb |t

The Chomsky normal form is:

63

S =X X,
X1 XX,
X;—> &
Xqg—o=
Xa—=XXsle
Xs— XX,
Xg—b

X-,——)a

and the set of nonterminals is N = { 8§, X, X3, X3, X4, X, X6 X7} EXACT (X ,) ={ £} and the
other EXACT y’s are &&. The set of terminals is { =, <, a, b }, where = is the start of input symbol,
and <= is the end of input symbol. Table 4.1 is the iterative process in obtaining the EXACT ’s. In the

table, EXACT 's are denoted by £ ;’s. Line 3 is the solution.

EdS) EX)) E(Xy) EX5) EXy) EXs) E(Xe) E(Xy
0 & & 1] @& %] 1] %) %}
1 7] & {<} {=1} %] & {b} {a}
2 1% {=1 {=} {=1 %) {a} {b} {a}
3 % {=} {<} {=} @ {a} {b} {a}

Table 4.1 EXACT (V).

In order to generate the possible adjacent pairs, two sets FIRST (A) and LAST (A) are required
for all nonterminals A, FIRST (A) is the set of terminals that begin strings derived from 4.

LAST (A} is the set of terminals that end strings derived from A, If A — abcede, then

FIRST (A} = {a}, and LAST ,(A) = {e}.

FIRST (A) and LAST (A) can be represented by the following set of fixed point equations.

For all production rules of the formA — B, C | -+ | B, G,
FIRST ((A) = \FIRST |(B;) \ J \UEXACT (B)FIRST ((C;). (4.2)
LAST ((A) = LAST ((C3) \)\ ULAST 1 (B)EXACT o(Cy). (4.3)

Equations (4.2) and (4.3} correspond to algorithm 4.2 and 4.3 in appendix 1.

For the previous example, the iterative processes for generating FIRST |(A) and LAST (A) are

given in table 4.2 and table 4.3, In the tables, FIRST, and LAST | are represented by F; and L ,.

Fi§)y FXy) FiXy) FXy) FiXy Fds) FiXe Fi(Xy)
D @ {=} {=1) @ {b} {a}
@ {=1 {=} {=} % {a} {b} {a}

{=1} {=>} {=1 {=} {a} {a} {b} {a}
{=1 {=} {<=} {=} {a} {a} {b} {a}

[V S B

Table 42 FIRST (N).

LyS) LX) LX) LyXa) Li(Xg LiXs) LiXy) Li(X7)
0 %] %) {=} {=} & 1] {b} {a}
1 {«=} {=} {=t {=1} {b} {a,b} {b} {a}
2 {«} {=b} {=1 {=1 {b} {a,b} {b} {a}
3 [} {=b} {<=} {=1} {b} {a,b} {b} {a}

Table 4.3 LAST (N).

With the sets FIRST (A) and LAST (A) for all nonterminals A, the set of possible pairs of

adjacent terminals { CONST,) can be generated by following equation.
For all production rules of the formA — B ,C, | -+ | BCy,
CONSTZ=ULAST1(B,)FIRST1(C,). (4_4}
i

For the previous example, the possible adjacent pairs can be represented by the following table
{table 4.2} with a **x’* means the element at the corresponding row followed by the element at the

corresponding column is a legal pair,

el |

Table 4.4 CONST ..

65

1.2. Generation of n-ary constraints

This section generalizes the result in the last section for n-ary constraints. Given a context free
grammar in Chomsky normal form, for all nonterminals A, let EXACT; (A) be the set of sequences of
terminals of length i that can be derived from 4, i.e.,, A — ... > ot and | = i. It is defined recursively

by the following equation:

For all productions 4 —»8,C; | --- | B,C,,
EXACT/(A) = \UEXACT;(BL)EXACT,;_;(C;) @.5)
ik
fori=2,3,...

EXACTy(A) and EXACT |(A) are defined in the previous section; for convenience
EXACT{(A)=Difi<0.

Similarly, FIRST; (A} and LAST.(A) are defined. FIRST;(A) is the set of sequence of terminals
of length i that begin strings derived from A. LAST;(A) is the set of sequence of terminals of length i

that end strings derived from A. They are defined by the following fixed point equations:

For all productionA - B,C,| '--B,C,,

FIRST(A) =\ FIRST By} \ J \UEXACT (B)FIRST,_(Cy) (4.6)
k ik
k ik
fori=2,3,....

The N-ary constraint is denoted by CONSTy, and is defined by equation (4.8).

67

For all productions A - B,C, | --+ | B,C,,
CONSTy, = \JLAST (B)FIRSTy_;(Cy) (4.3)
ik

The equations (4.5), (4.6), and {(4.7) provide three algorithms (algorithm 4.5, 4.6, and 4.7 in

appendix 1) to generate EXACT;{A), FIRST;(A), and LAST;{A).

Table 4.5, 4.6, and 4.7 give the iterative processes for the EXACT 5(A), FIRST 4(A), and

LAST 5(A) for the example in the previous section.

Ex8)Y EJXy) ExXyy ENX3) EXy) E(Xg) ExXg) ExX9)
0 [=<} & & %] {ab} & %] &
1 {=<«} 1% & %] {ab}] 1] &

Table 4.5 EXACT 5(N).

Fy(§) FaXy) FaXy) FaoX3) FaXy FaoXs) Fal¥e FalXy)
0 {=e=} {=a} & & {ab} {aa} & o
1 [=e=a} [=a} @ & {az,ab} {aa}])
2 {=ée=al {=a) 1] %) {aa,ab} {aa} & &

Table 4.6 FIRST (N).

63

Ly(S) LAX) LaXy) LyXy) LaXa)

LyXs) LaXe LX)

0 [=&=besd {ab}) @ {ab,bb}
1 {=¢bel {ab} & %) {ub,bb}

{ab,bb} @ @
{ab,bb} @ %)

Table 4.7 LAST ,(N).

The set of ordered triples are:

{ =>aa, =>ab, aaa, aab, abb, bbb, abes, bbe=}.

1.3, Practicality

1.3.1. An English grammar

How useful is it to generate the n-ary constraints with n > 2? Following is a simple grammar

that can generate a limited set of English. LetNg = { Start, S NP, VP ,RC } be the set of

nonterminals, and { =, <, det, n, name, tv, iv , that } be the set of terminals.

Start = =§ &

S - NP VP

NP — det n RC | name
VP — tv NP | iv

RC — that VP 1 ¢

(sentences)

{noun phrases)
(verb phrases)
(restrictive clauses)

The above algorithms can be modified ensily to handle context free grammars in any form

instead of Chomsky normal form. The results for the above grammar are in tables 4.3—4.14.

69

EoStart) EyS) EoNPY EfVP) EHRC)
@ @ @ & {e}
Table 4.8 EXACT o(Ng).
FI(SICU'!) Fl(S) F](NP) FI(VP) F](RC)
EES det det tv that
name name iv
Table 4.9 FIRST }(Ng).
L(Starty L(§) L{NP)Y L|(VP) L,RC)
= iv iv iv iv
name name name name
n n n n

Table 4.10 LAST |(Ng).

= | < | det | n | name | tv { iv | that
= % | P
—
det %
n % x | % X
name X x | X
tv X x
iv x X e
that X X
Table 4.11 CONST,.
E(Starty E S}y E(NP) E|((VP) E|(RC)
1] 7] name iv &
Table 4.12 EXACT ;(Ng).
Fy(Start) FofS) Fa(NP) F(VPY F4(RC)
(=,det) (det,n) {det,n) (tv,det) (that,tv)
(=,name) (name,tv) (tv,name} (that,iv)
(name,iv)

Table 4.13 FIRSTo(Ng).

0

L o(Stare) L4(S) L(NP) LA(VP) LA(RC)
(iv,=) (det,n) (det,n) (det,n) (det,n)
(name,«<) (tv,name)} (tv,name) (tv,name) {(tv,name)
(n,&) (iv,iv) (that,iv} (that,iv) (that,iv}

(name,iv)

(n,iv)

(that,iv)

Table 4.14 LAST5(Ng).

There are 27 ordered triples (CONST 4):

(=,name,tv)
(iv,iv,&=)
(det,n,=)
{iv,tv,det}
(iv,tv,name)
{name,tv.det)
(name,tv,name}
(n,tv,det})
(n,tv,name)

(=,name,iv)
(name,iv,<=)
(tv,name,&=)
(det,n,tv)
(tv,name,tv)
(that,iv,tv)
(det,n,iv}
(tv,name,iv)
(that,iv,iv}

(=.det,n)
{n,iv,&=)
(that,iv,<=)
(det,n,that)
(n,that,tv)
(n,that,iv)
(iv,det,n)
(that,tv,det}
{that,tv,name)

On the other hand, if the ordered pairs are combined to form ordered triples, e.g., combine

(det,n) and (n,tv) form (det,n,tv), there are 40 ordered triples:

(=»,det,n) {n,=,det) (n,&=,name)
(name,<=,det) (hame,—=,name) (iv,<=,det)
(iv,<=,name) {det,n,<=) (n,iv,&=)
{(=,name, <) (=,name,tv) (=>,name,iv)
(name,iv,e=) {tv,name, <) (iv,iv,=)
(detn,tv) (det,n,iv) (det,n,that)
{n,tv,det) (n,iv,tv) (n,that,tv)
(n,tv,name) (n,iv,iv) (n,that,iv)
{name,tv,det) (name,jv,tv) (tv,name,tv}
{name,tv,name) {(name,iv,iv) (tv,name,iv}
(iv,tv,det) (iv,iv,tv} (that,tv,det)
(iv,tv,name) (iv,iv,iv) (that,tv,name)
{tv,det,n} (that,iv,tv) (that,iv,iv)
(that,iv,=)

1.3.2. A Chinese grammar

The Chinese grammar in appendix 2 is constructed from examples in Hashimoto’s paper [21]
and Wang’s paper [61]. [t only generates a limited set of Chinese. It can also generate some illegal
sentences. There are 13 production rules, 13 nonterminals and 19 terminals in the grammar, There
are 361 possible ordered pairs from 19 terminals. The constraint generation process generates 176
orderéd pairs. More than half of the 361 possible pairs are considered illegal by the generation
process. Qut of the 176 ordered pairs generated, some of them are obvious illegal. A better grammar
would not generate these impossibilities. This shows that if there exists a Chinese grammar, useful

constraints can be generated automatically,

1.4, Other languages

Other languages, such as recursively enumerable languages and context sensitive languages,

have been used in language processing. Can the iterative relaxation algorithms in the previous section

73

be applied to these languages? Unfortunately, the problem of generating the set of adjacent
nonterminal pairs for a context sensitive grammuar is unsolvable. Before giving the proof, some

definitions are presented.

The definitions are adapted from the book by Hopcroft and Ullman [25]. A phrase structure
grammar permits productions of the form & — 3, where & and f are arbitrary strings of grammar
symbols, with ¢« # €. This grammar is also known as type 0 grammar, or unrestricted grammar. A
context sensitive grammar permits productions of the form ot — B, where o and B are arbitrary strings

of grammar symbols, and B is at least as long as o, and o # €.

Theorem 4.1

Given a context sensitive grammar (CSG), the problem of generating the set of all possible

adjacent pairs of terminals is unsolvable,

Proof:

Proof is by contradiction. It is known that given a context sensitive language L, and a word w,

the question of whether w is in L or not is decidable. It is undecidable whether L is empty or not [25].

Assume there exists an algorithm that can generate all possible adjacent terminal pairs for a
context sensitive grammar, Given a CSG G, let P be the set of all adjacent terminal pairs. If the
language L generated by G is empty, then the set of adjacent terminal pairs P is empty. Soif Pis not
empty, then the language L generated by G is nonempty. If P is empty, each terminal of G and € is
tested whether it is in L. This is possible since a word w in L is decidable. If none of these tests
succeed, L is empty. Otherwise, L is nonempty. This gives an algerithm that can decide whether L is
empty or not. It contradicts that fact that it is undecidable whether a context sensitive language is

empty Or not.

T4

Corollary 4.2.

Given a phrase structure grammar, the problem of generating all possible adjacent pairs of

terminal symbols is unsolvable.

2. Heuristic Rules

Since the goal of the Chinese Input System is to resolve the ambiguities that appear in Chinese
homophones instead of parsing a Chinese sentence, I will not derive a grammar and generate the set
of n-ary constraints. On the other hand, the low level constraints (i.e. the dictionary) are not able to
resolve all ambiguities. Single character words always exist in Chinese sentences. The word
dictionary cannot resolve any of these ambiguities. There also exists about 4% of word homophones.
Some previous systems display all possible solutions and let the user to select the right one from the
terminal. In my proposed system, high level constraints based on heuristic rules are used to solve this
problem. Some of the rules presented here are based on particular properties of the language

structure. No formal analysis will be presented to justify these rules.

This section describes a set of heuristic rules to help resolving ambiguities. These rules are
classified under two categories: syntactic rules and statistic rules. The set of syntactic rules provides a
framew-ork for constructing Chinese sentences. They are only heuristic rules since one can always
come up with counterexamples that violate these rules. The second set of rules are statistics rules.
They are based on statistics collected on some Chinese language texts, such as a frequency analysis on

the occurences of all hanzis, and the homophones are ordered according to their frequencies.

Most ambiguities appear in single characters that do not form words. So the heuristic rules
concentrate on the detecting and resolving of these ambiguities. The most common hanzis that
usually appear as single characters are the prepositions (often called coverbs). Following sections
describe the pattems used to construct sentences with prepositions. Then constructions on particles,

conjunctions, and verb suffixes are presented. This list is not complete and is just for illustration.

For a given input, the low level constraints are applied first, the high level rules then applied to
deal with the unresolved ambiguities. If one has a sufficient large set of rules, the performance of the

system will be improved.

2.1. Notations

Table 4.15 contains notations that are used throughout the rest of the thesis.

Notation
S

0]
Mod
Dir
N
PN
SP
Qw
M
NU
™
PW
L
sv
A
MA
C
cv
Fv
AV
EV
RV
PV
P

[
vO

Subject

Object

Modifier

Directicn

Noun

Personal pronoun
Specifier
Interrogative pronoun
Measure word
Numerical expression
Time expression
Place word

Localizer

Adjective

Adverb

Movable adverb/conjunction
Connective
Preposition

Functive verb/transitive verb/intransitive verb
Auxiliary verb
Copula

Resultative verb

Post verb

Particle

Interjection
Verb-object

2.2. Preposition Patterns

Table 4.15 Some notations.

There is one general pattern for all prepositions (CV)} and there are numerous special constructs

for individual ones. These patterns can be expressed as regular expression and can be generated by

deterministic finite automata.

The general pattem is:

S [A] [AV] CV-N FV {Mod] O.

This pattern tells us that a noun always follows a preposition (CV-N). The simplest sentence
pattern that can be generated from this patterm is:
S CV-N FV O.
The other elements, A, AV, and Mod, can be inserted to build more complex patterns., Most
prepositions also have specific individual patterns for sentence construction, Following is a specific

pattern for wei (55):

cwei (F3)

A wei N suo FV.

A list of common pattemns for common prepositions is in appendix 3.

2.3, Particles

Particles follow a word, a phrase, or a sentence to indicate some particular function or aspect.
They are divided into two major families: structural particles and modal particles. Particles that‘_occur
after the main verb and are used as verb suffixes are structural particles, such as le (T), zhe (&)
guo (32), and de (BY, 7% , 3). Modal particles are free form morphemes placed at the end of
sentences. They do not have concrete or substantive meaning, but they do convey certain emotions

and moods. Some common modal particles are a (WF), ba (FE), de (AY), and le (T).

The modal particles are also known as final particles since they always appear at the end of a
sentence. If a sentence always terminates with a EOS (end of sentence) marker, the set of modal

particles can be represented by a rule like
MP - EOS

where MP is the set of modal particles, { A7, T, .. 1.

78

A list of pattemns that govern the construction of a phrase or a sentence with the structural

particles is in appendix 3.

2.4. Conjunctions

Conjunctions connect two or more clauses to make a coordinate sentence or a subordinate
sentence. When a conjunction is used to connect two clauses, it usually contains two components,

with one part attached to one clause. For example:

ta yue chi yue pang.
it #8 ng B8 A
The yue...yue (3 ... ¥ } is the conjunction.

A list of common conjunctions where at least one component contains a single character is in

appendix 3.

2.5, Statistic Rules

The statistic rules are based on statistics collected from Chinese language texts. Two measures

are used to help resolving some ambiguities arise from homophones.

+» Identification of bound morphemes.
+ Frequency analysis.

Identification of bound morphemes refers to the morphemes that cannot appear alone as a single
character. This is used loosely here: in most cases, if the hanzi does not appear by itself as a single
character unit, then it is called a bound morpheme. For example, the phonetic spelling ba corresponds

to the following common hanzis:

(EE BN TR0)

79

Table 4.16 is the bound/free properties for these hanzis. Following is the list of notations used in the

table:

bounded abounded morpheme.
free an unbounded morpheme.
usually usually bounded morpheme.

hanzi propernty

e usually

ok free (preposition)
B® bounded

AN bounded (numeral)
i usually

iR free

23 bounded

m, bounded

{9 free

Table 4.16 Statistical properties for some hanzis.

Frequency analysis refers to a counting on the occurrences of the hanzis in some Chinese texts.
Cheng [8] did a frequency analysis on 1,177,985 hanzis. The results suggested only 4,583 hanzis are
used in present-day Chinese. The frequency distributions for these hanzis are tabulated. These
distributions provide a heuristic to select a hanzi when ambiguities occur. For example, table 4,17

contains the frequencies for the hanzis with phonetic spelling bu.

{deograph

Frequency

T
i
'/IJ};.“
Tl
IH
&
f
e
tta
i

14,236
1,676
651
196
103
87
<25
<25
<25
<25

Table 4.17 Frequency distribution of bu.

3. Summary

In this chapter, two methods for constraint construction are presented. One is generated

automatically while the others are heuristic rules. For the antomatic construction technique, the

method is represented by a set of fixed point equations. The solution of these fixed point equations

determines the set of constraints. If constraints can be generated automatically, the multilevel search

can be applied directly. On the other hand, if only heuristic rules are present, a greedy approach is

used. This comresponds to the multilevel filtering process. All these will be studied in detail in

chapter 6.

81

CHAPTER §

Multilevel Model

In this chapter, a formal mode! for a multilevel problem solving framework is defined. The
validity of the Chinese input system is justified by the model. The model here is not general enough
to apply to all multilevel problem solving. But the approach to formalize it can be used to study other

problems. Methods to measure a multilevel system’s performance are proposed.
Y propo

The presentation starts with some definitions so that the multilevel model can be introduced
formally. In a multilevel system, each level is a constraint satisfaction problem. Each level has its
own set of variables and constraints. In the current model, the labels at one level are the variables #t
the next higher level. The labeling of a constraint at one level merges the variables at that level to
form an abstraction unit., This abstraction unit not only represents the labeling at the current level, but
also a variable at the next higher level. A problem instance is given to the lowest level. The problem
instances at the higher levels are generated during the processing stage. A solution to the problem

should not violate any constraint of any level. The solution is called globally consistent.

Concepts of join and covering are defined to represent the combining effect of constraints.
Constraint factor is used to measure the size of a constraint set, which is a measure on the
performance of a level. Intuitively, the smaller the size of a constraint set, the more efficient a search
can be performed, since fewer cases need to be considered. In a muitilevel system, higher level
constraints can reduce the size of a lower level constraint set. This improves the performance of the

lower level and is known as the local control.

1. Definitions

A problem consists of a finite set of objects, a finite set of constraints, and a problem instance.

The set of objects consists of two categories, a set of variables, V = {x b ,xN}, and a set of labels.

Each variable, x;, can attain a finite set of values L;, the label set of x;. The label set is finite so that a

measure can be defined to compare the performance of sets of constraints. Detail is discussed in the

section of constraint filtering power. The set of constraints, C = Cy, - ,C M}, defines the

relationship between the variables.

A variable-vector X is an ordered n-tuple of variables, (x ,x,, - X,), x;eV fori=1,.n. A
label-vector for a variable-vector X, denoted by {(, ...), is an ordered n-tuple of labels (/y, - - - da)s
I; € L; fori=1,..,n, where L; is the label set of x;. A label-vector denotes a legal labeling for the
variable-vector. A problem instance is a variable-vector. The goal is to find a label-vector for the
problem instance such that no constraint is violated. A label-vector I; for a variable-vector X is called
a consistent labeling if no constraint in the set of constraints is violated. The result may contain more
than one label-vector. The order of a vector, |v|, is the number of elements in the vector, e.g., |
(X1 x2.X3x4) =4

The set of constraints defines the relationships between variables. A binary constraint on

objects x; and x;, C, ., is a set of label pairs for the variables x; and x;.

For example, let the set of variables be {x 15X 25X 3% 4% 5} and the label set for all variables be

{a b ,c}. Cin= {(a a)(b,be.c)}is a binary constraint on x; and x4. If x; and x; appear

together in the problem instance, C, ,, is the set of legal label pairs for them.

33

A n-ary constraint Cy is a set of label-vectors for the variable-vector X of order n. For example,

C(‘x#z}:s) = {(a d,a) * (b vb Ib)}
is a 3-ary constraint. Each label-vector specifies a legal labeling triple for the variable-vector

{x 1,x4,x3). If variables x |, x,, and x 5 appear together in the problem instance, then (a,a2,a) and

(bbb} are the legal labeling for them.

The following notation will be used throughout the rest of the chapter;

Xis Xjs Yis Yjsenn variables

a,b, - labels

XY Z, - variable-vectors
I, ly, Iz, label-vectors

" 1.1. Covering

In order to compare constraints, it is necessary to know how to compare variable-vectors and
label-vectors first, Intuitively, a variable-vector X is less than (<) another variable-vector Y if X is a

subsequence of ¥ when X and Y are viewed as sequences of variables. For example:

(X 1% 2 4% 5) S (X ,X2,X 3, 4, 5)
{x3.%4) € (X3,% 4% 5)

(x 1% 3.X 4.X) is not comparable with (x ;,x,04,x,).

Formally, the less than relation (=) between two variable-vectors can be defined recursively as

follows:

(1) ()< any variable-vector;

(2) (‘r]"”rxn.)g(ylv'“vyn;)
if (cep=yydand (xp, "X,) S (Y2 " Yad)

Of(xls"'-xu,)i:()’zv"‘dm)

The projection 1 of a label-vector for a variable-vector X on Y tells the effect of the label-

vector of X on the subset of variables Y. It is defined as follows:

([l!”'rlm) if(x;,---,r,u)S(yl,---,y,“).
Uy da . m) YO) = undefined otherwise.

For example:

(a boc.de)(x:..l:rhrh#s) J’ x 1~ 4,1'5) = (a d,e).

(d !b a -b){x;,n,z,,:.) ‘L (X l»xS) = (d 3)

The projection of a constraint of X on Y can be defined as follows:
Cxw={1x¢¥ | Ixer}.
For example:
C(m,_h.,.,s) = {(a,b aba) {aaaaa),ab ,c,d,e)}.
C lxoxmmpons) ¥ (X 1X2X3) = {(a b.a),(a,a,a),(ab ,c)}.

C(X:.Xz..h.h..h) J’ (J:],J."_;) = {(a ,(l) y (G :C)}-

g4

83

The feasible set of a constraint Cy is the set of all 1abel-vectors that satisfy Cy. Intuitively, a
constraint Cy is said to be stronger than another constraint Cy if the feasible set of Cy is a subset of
the feasible set of Cy. Formally speaking, Cy is stronger than Cy with respectto Z if Y <X <Z and

Cx 1 Y o Cy. Cy is also said to be cavered by (or less than (<)) Cy with respect to Z.

For example:
Clxirazazd = {(ﬂ Bbedy,(ab,e,c), bbb ,c)}.

C(Iz.-h) = {(b ’d) ' (b »C)}

C(zz;n)': {(a ,d)}

If Z = (x . x3.03,04),

C iz 2 C xxa with respect to Z.
Cximrzany 2 Cxny With respectto Z.

C(x1ay) i5 not comparable with C .,

Ifz = (x 2X 4)v
C (xuxaxaxy 5 ROt comparable with C ;5
A label-vector, !y, is said to be covered by another lubel-vector, Iy, with respectto Z, if

Y <X <Z,and Iy 1 Y =ly. In this case, the label-vector Iy is called redundant with respect to Z. For

example, given the following two constraints:

[(ll,lzJ:.x.J = (a,b,a,b)

It(x;,x.) =(b,b)

86
[(1,2, 15 Tedundant with respect to (x |,x 4,0 45,%).

1.2, Join Operation

Since constraints are sets of labels, operations on sets, such as union, can be applied. After a g=t
union is performed on two constraints, some label-veciors may become redundant. So the set union is
not a good representation for the combining effect of the two constraints. The operation join is
defined to represent the combining effect of two constraints. The jein operation is more complicated
than just taking the union of two constraints, and eliminating the redundant label-vectors. For
example, the label-vectors, (a,b). ., and (&,),) are not redundant with respect to (x |,x3,%3).

Their combining effect is (a,6,¢)z, 2,10

Given two label-vectors, Iy and ly, their join is defined as:

1. IEX Y =3, then Iy join Iy = {!x ,zy}.
2. HXAY=Z, andix $Z 2l 4 Z
then Ix J-Oill lY = {lx N ly}.

3. UXAY=Z, andlxy lZ=1y12Z
then IX join ’Y =IW

suchthat ly LX =ly by LY =lpand W =X Y.
Following are examples.
(a 1b »C)(x;,Zz,z)) J;Oin (a)(x,) = {(a $b W)(zl,x;_x,} , (a)(z,)}

(@656)z 20,29 JOIR (@ Yiay 2 = {(“ 818 sy » (@€)(x],x.)}‘

87

{a NS)(z 1X23,53) jOin (C e)(x;} g {(a bied)(x 1X2,01,K4) }

The outer-join of 2 constraints, Cy and Cy, is defined as:

Cx outer-join Cy = {IX join ly | lyeCy and Iye CY}.
The join of 2 constraints, Cy and Cy, with respect to Z, is the set of non-redundant label-vectors
in the outer-join of Cy and Cy with respect to Z.

For example:

C (xsX3,03,%0) = {(a by ’d)}-

C("Z«“) = {(b), (a,c)}.

IfZ = (x,x3.x3.x4), then

C(;;;:,,:,,z.) oufer-join C (X2,%4) = {(d !b sC)d)(xm;,x,,z.)] (b vd)(x;,x.)] (ﬂ i)(z;,z.)}'

In this case, the label-vector (b,d), .., is redundant with respect to Z. So the join is

C(,,,,,J,J‘)jofn C(,u.) = {(a be ,d)(,l',h,,,,‘) ,{a,c){,u‘)}.

2. Multilevel System

In a traditional constraint satisfaction problem, a set of constraints is given to define the
relationship between the variables. For a multilevel system, each level is itself a constraint
satisfaction problem. Each level consists of its own set of objects (variables and labels), and its own
set of constraints, A binary relationship exists between adjacent levels. There are two relations: one
is delined between the objects of the two levels; the other is defined between the solutions of the two

levels. In the current model, the labels at one level are the variables at the next higher level. The

88

labeling of a constraint at one level merges the variables at that level to form an abstraction unit. This
abstraction unit not only represents the labeling at the current leve!l, but also a variable at the next

higher level.

A problem instance P is given to the lowest level, Level |. For the rest of the chapter, level { is
denoted by Level;. The problem instances at the higher level are generated during the processing
stage. The generated problem instance, P;, at Level; (i >1), is called the abstraction of the problem at
Level;. P; may contain more than one problem since the set of solutions at Level;_; may have more
than one element. P is the given problem instance P. For the abstraction of the problem at Level;,
the set of solutions is called the partial solution set at Level;. Each element of the partial solution set
at Level;_; corresponds to one, and only one, set of variables at Level;. Each set of variables is an
element of P;. Each element of the partial solution set at Level; corresponds to an element of the
partial solution set at Level;_;. On the other hand, an element of the partial solution set at Level;_;
may correspond to more than one element of the partial solution set at Level;. This is becauge higher
levels are constructed from the lower levels. The partial solution set at Level; is always generated
from a consistent partial solution set at Level,_;. Definition of consistency will be presented at the
end of the chapter. With the direct correspondence between the partial solution set at Level; and the
partial solution set at Level;_;, any inconsistent element at Level; will eliminate the corresponding
element at Level;_;. This in turn will eliminate the element at Level;_, and so on. On the other hand,
Jhe problem P; at Level; is generated from a consistent set of solutions at Level;_;, no inconsistency is
introduced. So once a consistent partial solution set is obtained for the problem P; at Level;, ail

partial solution sets at Level;, j<i, are consistent.

Each level has its own set of constraints. The constraints of each level define the relationship

between the variables at that level. Each element of the generated problem instance has a set of

variables which determines the set of applicable constraints. For the Chinese input problem, the
organization of data and the characteristics of the problem allow an efficient retrieval of the set of

applicable constraints given a set of variables. These will be illustrated in the next chapter.

Let’s define all these concepts formally. In a multilevel system, a problem consists of a set of
constraints, a set of objects, and a problem instance. The set of constraints is partitioned into levels.
Each level has its own set of variables and labels. For two adjacent levels, Level; and Level,,;, the set

of variables at level Level,y, is the set of labels at level Level;. So aleve! is

Level, =(C;,V;,Ly,)
Vi=Ly,, i>1

where
C, . set of constrainis,
Vi © set of variables,
Ly, : set of labels.

These are just the syntactic relationships between levels. There are also semantic relations
between levels, One can view one level as an abstraction of the next lower level. The constraint is
the definition of the abstraction unit. Each labeling of a constraint is an abstraction of the current
level to the next higher level. Itis also a surjection from the current leve! to the next higher level.
Semantically, the set of constraints at the current level defines the set of abstraction of variables at the

current level to the next higher one. The semantic relation between levels Level; and Level,,; is

provided by the constraints at Level;. Another definition of constraints is then

Cy= {Ix g€ Vm}

where X is a variable-vector from Level;.

o0

The Chinese input system is used as an illustration. The variables at the lowest level, Level y, is
the phonetic symbol, { a, b, ..,z }. The label set at Leve! | is the set of all legal spellings,

{a,ai,an,ang,ao, - - }. The set of constraints are the legal spellings:

C(a)= {(a)}!
C(a,i) = {(a:,ai)},
Coum= {(an ,an)},

These are rewritten as follows:

C(a)= {a},
C(a’i)ﬂ {a:},
Cam= {an}.

In this case, a, ai, and an are variables at Level 5.

The labels at Level , are the fegal Chinese words,

ﬁ{!

(R, B, LALE AE .

The variables at Level , are the legal phonetic spelling,

{a,ai,an,ang,ao,..}

91

The set of constraints is

C (@i ban) = {(% AR)},

C(ai,dai)‘—"{("'

C (gong zheng) = {(

i)
“g;lé
—

>~

zk,IE),(é},EI)},

The variables at Level 5 are the labels at Level 5, the legal Chinese words. The labels at Level 4
are the possible parts of speech. For example, one possible constraint is that a final particle (FP)

always appears at the end of the sentence (end of sentence marker, EOS). Some final particles are:
{ ¥ (a), Y8 (1), (a),"& (la), T (liao) }

The corresponding constraints are:

C (9 pos) = {(FP,EOS)}
C m gos) = {(FP,EOS)}
C (W gos) = L(FP,EOS}}
C (1%, gos) =1 (FP,EOS}}

= { (FP,EQS)}

C (T ,EOS)

3. Control

The control component of a system decides what the system performs next. Sometimes control
is centralized, a separate control executive decides how problem solving process should be expended.
Sometimes control is diffusely spread throughout the whole system. An efficient control should make
the best usage of the available information. If one is working on highly parallel architecture, the
system may be executed in a very nondeterministic way. The order- of constraint application is
unpredictable. The control of the system will then be solely determined by consiraints: the more

determinism you put in the system, the more communication between the levels of the system.

For the multilevel model, there are basically two kinds of control: global control and local
control. Global control determines how the whole system runs, what order the constraints are
executed, and where to apply the constraints. For example, the ordering of constraints may be
changed over time, which may speed up the problem solving process. Itis hard to measure how much
improvement is achieved. Sometimes this kind of rearrangement may degrade the system'’s
performance. One possible measure is the average performance of the system over a peried of time
instead of the instantaneous performance. Even on a simple system, it is very difficult to determine
the expected behavior. On a such complicated multilevel system, the expected performance will not
be studied. On the other hand, the behavior of some local control in the current model is measurable.
Local control is the control information propagated from a level to the next lower level, It only exists

between adjacent levels. Its existence is illustrated by the Chinese input application.

When a constraint can be applied at Level;,,, it determines some constraints are impossible to
apply at Level;. So aconstraint at Level;,; can be viewed as a meta-constraint at Level;. Alocal
control is the constraints that applied on Level,,, which removes some irrelevant constraints at Levei;.

For the multilevel framework, the partial solution is being filtered when going up the levels while the

93

local control information is propagated down the levels by applying constraints to remove the
irrelevant constraints in the lower levels. For example, if the variable is I, there are more than 40
legai label-vectors. If the next variable is EQS, then there is only one legal label-vector. The others

are illegal,

high level

partial local
solution set control

low level

Fig 3.5 Multilevel framework

The notion of constraint filtering power is defined to measure the performance of the system.

4, Constraint Filtering Power

Since the local control generates constraints at level i from level i+1, the set of constraints is
changing with time. Some kind of measure is necessary to indicate the possible increase in
performance introduced by the local control. Constraint factor (CF) is delined to measure the size of
constraint sets. Intuitively, for a set of constraints, the more label-vectors it contains, the bigger its
constraint factor, and the smaller its constraint filtering power, The smaller the constraint filtering
power, the less time it requires to process the set of constraints. For example, given the following two

set of constrains:

o4

C'1 = {(a,b sC ;)(x.,xz,xa) }'

Cy= {(a b s)(x .,z:,r;):(‘: .d.e -)(n.zz,rs) }

Given a variable-vector (x ,x 5,x4), there are two label-vectors satisfy C ,, whiie there is only one
label-vector satisfy C;. C, has a bigger constraint filtering power than C ;. The constraint filtering
power is defined as the reciprocal of the constraint factor. Following is the definition of constraint

factor. Let C;, C; be sets of constraints.

1. CF()y=0;

2. CF(C) 20 forall C;;

3. CF(C)+ CF(C;) 2 CF{Cn_C;) (subadditivity) ;

4. CF(CoUCH2CF(C) and CF(Cp_Cy) 2 CF(C));
3. IfC, cCy, then CF(C;)< CF(C;) (monotone) ;

This definition is similar to the definition of an outer measure {18], except that outer measure
requires countable subadditivity instead of subadditivity. Since the set of label-vectors is finite, the
total number of set of constraints is finite. In this case, countable subadditivity is the same as
subadditivity. If the set of label-vectors is extended to an infinite set, such as the set of real number,

countable subadditivity is then necessary. Measure theory is then needed to compare the sizes of
infinite sets,

Following is one possible definition for constraint factor, denoted by CFI. Let C; and C; be sets

-

of constraints.

CFI(C)= 2. 141,
Ire Cy

95

Since the join operation is commutative and associative, CF/ is well defined on finite unions of
constraints. The set of constraints of a level is a [inite union of constraints; its CF[is also well

defined.

For example, in chapter 4 section 1.3.1, the automatic method generates 27 ordered triples, The
constraint factor is 81 (27x3). On the other hand, if the ordered pairs are combined to form ordered
triples, there are 40 of them. The constraint factor is then 120 (40x3), which overestimate the true

value.

Theorem 5.1

CFI is constraint factor.

Proof:

1. CFI (&) =0 since nothing is in &.
2. CFI(C;)z0 forall C;.
3. CFI(C) + CFI(C;) 2 CFI(Cp_C)) because C; join C; < C\C;.
4. CFI(C\Cj) 2 CFI(C;) is the same as CFI(C;joinC ;) 2 CFI(C;).
Let €y = CjjoinC;.
Since none of the element of C; or C; is redundant,
soforall iy € C;, thereexists I; € Cy,
such that iz L X =1ly. .

5. IfX <Y, then CFI(X)< CFI(Y} (obvious).
g.e.d.

06

The constrzint filtering power (CFP) is defined as:

1

CFP(X):CT(X).

Theorem 5.2

CFP is a non-decreasing function with respect to the local control operation,

Proof*

Since the local control operation remove some constraints, CFI is decreasing by the monotone

property of CFI, This implies CFP is a non-decreasing function by definition.

q.e.d.

5. Consistency

As defined in section 1, a label-vector for a variable-vector is called a consistent labeling if no
constraint is violated. In a multilevel system, there are two kinds of consistency: local and global.

Local consistency refers to one level, while global consistency refers to the whole system.

Assume a problem with levels, Level |, Level s, - -+, Levely, and a problem instance, P, is
given. The notation, P, P,, - - -, Py, is used to represent the abstraction of the problem £ at levels
Level | Level ,, - - - Levely. A solution §; for the problem P; at level Level, is called locally
consistent if no constraint at level Level, is violated. A solution § for the problem P is called

globally consistent if the abstraction of the solution § is locally consistent at all levels.

Theorem 3.3

97

Given a multilevel system, if a solution’s abstraction at level Leve!; is locally censistent, then

the solution’s abstraction at Level;, for ail j<i, are locally consistent.

Proof:

Direct consequence from ihe discussion in the section on multilevel system (section 2),

Corollary 54

Given a multilevel system, if a solution’s abstraction at level Ly is locally consistent, then the

solution is globally consistent.

Proof;

Obvious from the definition and previous theorem.

6. Summary

[n a traditional consistent labeling problem, the set of constraints is fixed. The constraint
filtering power does not vary with time. This measure gives a number which does not represent much,
On the other hand, in a multilevel system, constraint filtering power of a level may be varied over

time since some local control information may be propagated from a higher level to a fower level,

Different levels usually have different filtering power. Constraints at different levels have
different costs to apply. The efficiency of a level should be detined in terms of the constraint [iltering

power.

98

CHAPTER 6

Control Mechanism

Previous chapters discussed data organization, constraint generation, and the theoretical
framework. This chapter discusses several different control mechanisms and their disadvantages.
First, one restriction is required on the formal model of chapter S to make it applicable to the Chinese
input problem. Then a search method is presented for the lowest level to solve the character break
problem, It identifies the break points for the phonetic spellings. The character break search is a form
of dynamic programming, with input symbols processed one at a time from left to right and matched

againist the database.

This search strategy is generalized for the multilevel system. In the multilevel generalization,
several databases are matched simultaneously during the processing of input symbols. An alternative
control discussed, multilevel filtering, is also quite useful in practice. The input problem is presented
to level 1. Level 1 processes the input with the constraints and a partial solution is generated. The
partial solution is submitted to level 2 as a problem. The level 2 constraints then process the
generated problem and generate another partial solution. The process then continues for the next
higher level. A combination of the multilevel sea.ch and filtering is the best candidate for
implementation. The multilevel system solves the character break problem, word break problem, and

the hanzi labeling problem simultaneously.

99

1. Restriction on the Formal Model

One restriction is needed on the multilevel formalism in order to mode! the Chinese input
problem. The restriction is that constraints must be defined on a sequence of variables that are
adjacent to each other. Constraints can only be applied to contiguous sequences of variables, For
example, C, can only be applied to a variable sequence of the form o x ;x 3x .3 where ¢ and

ate variable sequences. It cannot apply to our 0Lx 0 x 50t 3 if any of ¢, &, and o is nonempty.

For example, the constraint

Chim= {jin }

can only applied when the input variable sequence contains *‘jin’’ as a subsequence.

2. Character Break Search

The character break search is the level 1 search. It solves the character break problem. Input is
a sequence of phonetic symbaols. The character break search locates break points between phonetic
spellings in an input sequence of phonetic symbols. It is called character break search because each
phonetic spelling corresponds to a hanzi in the final result. The search strategy is similar to the beam
search in HARPY [35]. The difference is that all possible partial solutions are kept here while in the
HARPY system, a threshold value called beam width, is used to prune away some solutions. So the
character break search can be viewed as a beam search with infinite beam width. No pruning is
required since high level constraints are used filter out the impossible solutions. The filtering process
is discussed in the next section.

As discussed in chapter 2, the pinyin dictionary is stored as a trie. Each node in the trie

indicates whether the sequence of phonetic symbols along the path from the root to the current node

constitutes a legal phonetic spelling. The corresponding coded-pinyin is stored if the sequence is a

109

pinyin.

The input is a sequence of phonetic symbols x ;x4 -+ - x,. The last symbaol is always the end of
sentence symbol, EOS. The EOS is assumed to be part of the alphabet. The goal is to identify the
break points such that each subsequence between a pair of break points is a legal pinyin. The final

solution set may contain more than one solution. For example, the input
xianggang
has the following two solutions:

xiang gang,
xi ang gang.

The character break search is a form of dynamic programming, with the input symbols
processed one at a time from left to right and matched against the database. As the database is a trie,
matching can be done very efficiently. The algorithm to be presented below can be modified easily if
the database is a deterministic finite aytomaton. The basic idea is tha, at the ith step, the firsti—1
symbols are processed and a set of partial solutions is generated. Each element is a possible candidate

to be in the final solution set.

For easy visualization, the following notaticn for break points is used. For a sequence of
phonetic symbols, [x, x5, -, x,], if the break points are after x, , x,,, ..., Xp,, X,., the representation

is

[xl.”xbl—-l !xblll.xb-x—] y Ty Xyttt Xp]_

For example, the sequence

(xiangegangl

(AP

with a break point after the first **g’’ is written as

10t
[xiang, gang 1.

Each partial solution contains the following information:

= A list of recognized pinyins obtained so far. It is represented by a list of break points.
= A sequence of phonetic symbols that is a legal prefix for a certain pinyin,

= A pointer to a node in the deterministic finite automaton,

Consider the following more detailed example. Assume the input sequence is
[x,i,a,nggang].
and that the set of possible pinyins that can applied to these phonetic symbols is

{a, an, ang , gang , xi, Xia, xian , xiang }

The corresponding trie is shown in fig 6.1.

102

(xi]

[xia]

f xtan]

[xiang]

Fig 6.1 A pinyin trie.

The sat of possible break point lists is

{ [xi,ang, gang], [xiang, gang]}.

After the first four symbols are processed, the partial solutions are:
([xi,an], (], 1)

(fxian],[1,1)
([xi},[an],5)
([xial,[n],PtoDB,)

([xi,a],{n],PtoDB,)

The third element of the above triples is a pointer to the trie. If it is a number, it corresponds to
a node of the trie in fig 6.1. PtoDB, is a pointer to a node in the trie which is not in fig 6.1. The

current state of execution contains the following information:

» The set of partial solutions.

+ The list of remaining phonetic symbols.

For the above example, the current state is

([([xi,an],{},1) ---,([xi,a],[n],PwoDB,)], [g 8 anzg])

The search algorithm proceeds as follows. The next character in the list of unprocessed
symbols is appended to the sequence of phonetic symbols which is a legal prefix. The result is a list of
phonetic symbols. If this is a pinyin, a new partial solution is created with a new break point after the
current symbol, and an empty legal prefix. The database pointer is set to the root of the trie (the

£0_ 33

database). For the above example, the current symbol is “‘g’’. For the partial solution

([xi],[an], 1),

a new partial solution is created:

14

([xi, ang], [1, PtoRoot).

If the newly created list of phonetic symbols is also a legal prefix for some cther pinyins, the database
pointer of the current partial solution is advanced to the next node of the trie according to the current
symbol, The current symbol is also appended to the legal prefix. If the new list of phonetic symbois
does not form a pinyin but form a legal prefix, the partial solution is updated by advancing the
database pointer and appending the current symbol to the legal prefix. If the new list of phonetic
symbols does not even form a legal prefix, the partial solution is removed from the set of partial

solutions, This is done for all elements in the set of partial solutions.

The following notations are used in the algorithm presented below.

(1 the empty list.

ESL--.5.] a list with elements § |, ..., 5, .

[Car|Cdr] a list with the head Car and the tail Cdr.
head({Car|Cdr]) a function returns the head of the list, Car,
tail{[Car|Cdr]) a function returns the tail of the list, Cdr.
L+M a list created by append the list L to the list M,

e.g. [a,b] + [¢,d] = [a,b,c,d].

CS the current state of execution with components PSL and PSS.
EOS the end of sentence marker. EOS is denoted by **#’" in figures.
PSL the list of unprocessed phonetic symbols. PSL{CS) denoctes the

PSL for the current state CS.
PSS a list of partial solutions. Each is a structure of three components

BS, PPS, and PioDB.

105

BS a list of break points.
PPS a list of phonetic symbols that is a legal prefix for a certain

phonetic spelling.

PtoDB a pointer to a node in the deterministic finite automaton
{database).

Input the input to the system, a list of phonetic symbols [x, x5, ., x, L.

PtoRoot a pointer to the root of the database (the trie), or the starting node

of the deterministic finite automaton.

tmp a temporary variable to store a sequence of phonetic symbols.
tmpPS,tmpPS1 a temporary variable to hold a partial solution.

tmpPSS a temporary variable to hold a partial solution set.
advancePt(PtoDB,s) move the PtoDB to the next node in the trie according to the

symbol s, If moving is unsuccessful, a nil pointer is returned.

Algorithm 6.1 is the character break search. The notations defined in chapter 3 are used here.
Each node of the trie is a union of three possible types: grey, black, and white. A grey node represents
a legal pinyin and a legal prefix. A black node represents a legal prefix. A white node represents a

legal pinyin.

Alsorithm 6.1 Character break scarch.

procedure charBreakSearch;
begin
PSL(CS) := Input;
PSS(CS):=[([1[], PtoRoot}];
while PSL(CS)#[] do
begin
first := head(PSL(CS));
PSL(CS) := tail(PSL(CS));

tmpPSS:=[1;
for all partial solutions PS in PSS(CS) do
begin

tmp := PPS(PS) + {first];
PioDB(tmpPS) := advancePt(PtoDB(CS),first};

if PtoDB(tmpPS) is grey or white then
begin
BS(tmpPS1) := BS{PS) + tmp;
PioDB(tmpPS1) := PtoRoot;
PPS(tmpPS1):=[1];
tmpP3S := tmpPSS + tmpPS1;
end,

if PtoDB(tmpPS} is grey or black then
begin -
BS(tmpPS) := BS(PS);
PPS(tmpP3) := PPS(CS) + [first];
tmpPSS = tmpPSS + tmpPS;
end

end

PSS(CS) := tmpPSS;
end
end,

Trace 6.1 is a trace of the search. Part of the search tree is shown is fig 6.2. In the figure, a
square node represents a failure node, i.e., no sofution is under that subtree, In the trace, each element
corresponds to a circular node in the search wee. Since no fulure node is generated in the algorithm,

none is shown in the trace, The path in the figure indicates the search path of one solution. Since all

107

partial solutions are kept simultaneously, all solutions are obtained at the same time.

Trace 6.1 Trace for character break search on “*xianggang’’.

{{x1}
{{xi],.[x,i]1}
{{xial,{xi,a]}

{[xian],{xia,n],[xi,an],[xi,a,n]}
{[xiang], [xian,g},[xi,ang]}
{[xiang, g1, [xi, ang,g]}
{[xiang,ga],[xi,ang,ga]}

{ [xiang, gan], [xi, ang, gan] }

{ { xiang, gang], [xi, ang, gang] }

0. { [xiang, gang, EOS], [xi, ang, gang, EOS] }

i b A o

Each element in the trace corresponds to a possible partial solution at that step. For example,

step 6 above contains 2 partial solution:

{ xiang, g]
{xi, ang, g]

[xiang, g] means a break point exists after the first ‘‘g”", and the second ‘‘g”" is a legal prefix for a

pinyin. [xi, ang, g] means there exists two break points, one is between **i’’ and “*a”’, and the other

is between the two “*g" 's. The second ‘g’ is a legal prefix for a pinyin.

[xi,ang,gang,EOS]

Fig 6.2 Search tree for “*xianggang”’.

3. Multilevel Filtering

The first, and the simplest, control strategy for the multilevel system is multilevel filtering, A
problem is presented to the lowest level, level 1, Level 1 processes the input with the constraints and
a partial solution set is generated. It usually consists of more than one solution. The soltution set is

then submitted to the level 2 as a problem. The level 2 constraints then process the problem and

109

generate a solution set. The process then continues for the next higher level. If one is interested in the
solution at level £, one needs to do processing up to at least level i. The process stops when there is at
most one solution at level {, or all levels are processed. The input is assumed to be a correct Chinese

sentence.

The following assumption is used in the algorithm presented below. It can be implemented
easily.
» Partial solution sets at adjacent levels are linked together by the definition of abstraction

mapping. Any change at one level will change the corresponding ones at adjacent levels.

In multilevel filtering, a variant of the character break search is used. The character break
search is modified so that when the input is a sequence of variables at level {, the level / database is
used. When the input to the character break search is a sequence of phonetic symbols, zi trie is used.

If the input is a sequence of pinyins, the ci trie is used.

110

Algorithm 6.2 Multilevel filtering.

procedure levelSearch(i,input);
begin
PSL(CS;) := input;
PSS(CS;):=[(1, [], ProRoot; 3];
while PSL(CSY#[] do
begin
first := head(PSL(CS;));
PSL(CS;) := tail(PSL(CS)));

tmpPSS ;= [];
Sfor all partial solutions PS in PSS(CS;) do
begin

tmp := PPS(PS) + [first];
PtoDB(tmpPS) := advancePt(PtoDB(CS,). first);

if PtoDB(tmpPS} is grey or white then
begin
BS{tmpPS1) := BS(PS} + tmp;
PtoDB(tmpPS1) := PtoRoot;
PPS(tmpPS1):=[1;
tmpPSS := tmpPSS + tmpPS1;
end;

if PtoDB(tmpPS) is grey or black then

begin
BS{tmpPS} := BS(PS);
PPS(tmpPS) := PPS(CS,) + [first];
tmpPSS := tmpPSS + tmpPS;

end

end

PSS(CS;) := tmpPSS;
end
end.,

111

procedure multilevelFilter(targetLevel);
begin
set solution at level 0 to input problem;
Sfor i:=11totargetlLevel do
begin
curinput := solution at level i ~ 1;
levelSearch(i,curlnput);
end;

1:=targetlevel + 1;
while set of solution at targetLevel is not unique
and 1< maximum number of levels do
begin
curlnput ;= solution at leveli- 1;
levelSearch(i,curlnput);
i=i+1;
end;

output the set of solutions at targetl evel;
end.

In order to have a clear picture of the filtering process, following example is discussed in
details. Fig 6.3 is a pictorial description of the process. Consider the input sequence of phonetic

symbaols
xianggang.

These are level 1 variables. They are the nodes at level 1 in fig 6.3. The corresponding labeling sets
are:

x: { xang, xi, xia, xian, xiang, xiao, xie, xin, xing, xiong, xiu, xu, xuan, xue, xun }

-

: { ai, bai, bei, bi, bian, biao, bie, bin, bing, cai, chai, chi, ... }

£

: { a, ai, an, ang, ao, ba, bai, ban, bang, bao, bian, biao, ca, ... }

=

: { an, ang, ban, bang, ben, beng, bian, bin, bing, bong, can, ... }

: { ang, bang, beng, bing, bong, cang, ceng, chang, cheng, chong, ... }

=]

By applying the character break search, the solution set is

{ [xiang, gang], [xi, ang, gang] },
which are variables at level 2. They are nodes at level 2 in fig 6.3. Two partial solutions exists, one
contains two variables: xiang, gang; and the other contains three variables: xi, ang, gang, These

correspond to two problems at level 2. Following are the labeling sets for these variables:

ang: {E:};
xiang: {89,758, 8 m,F .=, .4
gang: {fﬁ,iﬁ,fﬁ,?&,...};

xi: {2 .68 W, &,.5

There is only one constraint defined on these variables:

C{xiang,gang)= { [ﬁy‘;—% 11

The solution set at level 2 is

{ [xianggang], [xi, ang, gang] }
such that xi, ang, gang are all possible single characters by themselves. Here, two partial solutions
exists, one consists of one variable and the other consists of three variables. These solutions are then
variables at level 3. They correspond to nodes at level 3 in fig 6.3. With the constraint Cyizny sane

above, the labeling sets for variables xiang and gang become:

xiang: {F};
gang: {1

113

This forms an unique solution for the variable-vector (xiang, gang). The solution is (ﬁ ,‘i‘g).
On the other hand, the solution corresponds to the break [xi, ang, gang] still have more than 100
combinations., By a greedy decision rule, the solution [(#F , % 31 s selected, and the correspending

character break is [xiang, gang .

Fig 6.3 Multilevel filtering.

4. Multilevel Search

In the multilevel filtering, every level is an individual problem. A problem is solved level by
level. Every level can be viewed as a filter, A level gets a problem and generates a set o solutions,

The constraints at a [evel are used to eliminate all impossible solutions. The solution set is then

114

passed to the next higher level and the process continues, The disadvantages to this approach is there
are many unnecessary solutions passing from one level to another, and a level does not use
information from higher levels during processing. Since the problem solving process is from left to
right, the process at the ith stage can use information from the previous i—1 stages and the higher level

constraints to reduce the size of the partial solution set,

In this section, the character break search is extended to work on n levels simultaneously. For
the Chinese input problem, only three levels are present. The basic idea is that the search processes at
all levels proceed at the same time. At a certain level i, if an element of level i +1 is found, it will be
sent to level i +1 immediately so that the search at level { +1 move forward. The assumption for this

method is that the constraints at all levels can be checked from left-to-right.

Formally speaking, for the multilevel system with » levels, the current state (CS) is a set of
states, {CS 4, ..., €S, }. Each C§; is a snapshot of the system at level i. The database is a set of finite
state machines, {FSM |, .., FSM,}. Each FSM; defines the set of constraints at level {. In the

muitilevel model, the solution at level i is the problem at level i +1,

Each current state at level i, C§;, is a list of ordered pairs, (PS; , PtoDB;), where PS; is partial

solution, and ProDB; is a pointer to the database FSM;. The list is written as

CS; =[(PS;, ,PtoDB;), ... (PS;_,PtoDB.)].

For each F5M;, each node may be of the following three types:

= white: The sequence of elements from the starting node to the current node is a
constraint. This sequence forms a legal element at the next higher level.

= black: The sequence of elements from the starting node to the current node is a legal
prefix for a certain constraint.

. grey: A node with properties of both a grey node and a white node.

This corresponds to the implementation of the dictionary in chapter 3.

Algorithm 6.3 Multilevel Search.

Sfunction advancePtr(PtoDB; next): boolean,
begin
advance the pointer PtoDB,; for FSM; to the next state
according to the element *‘next’’;
if advance is successful then
return true;
else

return false;
end;

procedure multilevelSearch(i,nextEle};

begin
for all partial solutions at level i (PS; ,PtoDB}) do
begin
if advancePtr(PtoDB; nextEle) then
begin
if the new PtoDB; point to a white or black node then
begin
generate a new partial solution;
update the current state;
end
if the new PtoDB; point to a white or grey node then
multilevelSearch(i+1,nodeContent);
end
end
end;

procedure mainControi;
begin
for all levelsi do
CS;i:=1{k

while Input notempty do

begin
next := get the next element from Input;
multilevelSearch(1,next);

end;

owtput PS at targetlevel;
end,

116

117

Trace 6.2 is a trace of the multilevel search on input
jiaodian.
The trace displays the variables and the partially formed variables at all three levels. It also shows the

current states of the finite state machines. For example, step 3 of the trace is

3 Ly={l}ial}k
L2={[ji9a]’[jia]};
Ly={[jil};

L, is the list of input variables. L, is a set of 2 elements { ji, a] and { jia]. [ji, a] consists of one
variable *'ji’’ and a partial variable “‘a’’. A partial variable means it may become a variable as the
process continues, i.e., it is a legal prefix for a constraint. [jia] is another partial variable.

L= {[ji]}isapartial varizble at level 3. The ‘‘a’” is not propagated since no new variable is

formed at level 2,

115

3

Trace 6.2 Trace of multilevel search on “*jiacdian’’,

1: Ly={1j1k
La={lilk
Ly={[1}k
2 Ly={l§il}
Lo={[ii1}k
Ly={{jilh
3: Ll={[jli)a]};
L2={[jira]r[jia]};
Ly={(jilk
4. LI={{j’i:a:0]};

Ly={[ji,a0],[jiao]l};
Ly={[jiao],laoc]l}

5: L,={[}ia0d]}
L2={[ji! aoad])[jiaoid]};
Ly={[jiao],[a0]};
6: Ei={I[lji,a0dil}
Lz-""{{ji! ao, di]![jiao’di] }'
Ly={{jlao]},.[di]};
7 LI={[j.i,a10,d,i,a]};
Ly={[jiao,di,al,[ji,ao0,dia],[jiao, dia], [jiao, di,a] };
Ly={[jiao],[di]};
8: L1={[j,i,a,0,d,i,a,n]};
L,={[ji,ao0,di, an],[ji, ao, dian], [jiao, di, an], [jlao,dian] };
Ly={[jiaodian],[dian]};

9: Ly={[jia0,d1ianEO0S]}
L, = { [ji, a0, di, an, EOS 1, [ji, ao, dian , EOS 1, [jiao, di, an, EQS], [jiao, dian , EOS] };
L, ={[jiaodian ,EOS]};

Fig 6.4 is the corresponding search graph generated during the search process. Numbers next to
a node give the order of the nodes being generated. These nodes display the variables at the
corresponding level, and the solution at the next lower level, For example, the node 3 *%ji’" is a
variable at level 2, it is also a solution for the level 1 variables, j and i. The EOS symbol is denoted by

*“# in the figure.

119

17

15 18

3 7 11 . - -
Jiao,dian 1a0,dian,
J120,di jiao,dian jiao.di,an,#
ji,a0,di Ji,ao,dian ji,ao,dian,#

ji,a0,di,an i,30,di,an,

i2 16 19

4
Jiaodian
dian

em

Fig 6.4 Multileve! search for **jiaodian’’,

The input is a problem at level 1. The input variables are processed one at a time from left to
right. Exactly the same as the character break search, each input variable corresponds to a change of
the current state, which in turn generates a move at FSM ;. After the move, if the node in FSM
corresponds to an element at level 2, the element is submitted as input to level 2. This input will then
generate a move at level 2. This move is processed the same way as the move in level 1, This
propagation continues until no element at the next higher level is generated. A move at the next
higher level can be viewed as local control information propagated to the current level. When the
search process moves down the trie, the total number of applicable constraints is reduced. This lowers

the constraint factor, which in turn increases the constraint filtering power,

5. Ilybrid Control

The main problem with multilevel filtering is that the partial solution set passed from cne level
to another may be huge. On the other hand, the multilevel search requires the constraints at all levels
to be organized as finite state machines. In reality, constraints are usually expressed in rule form,
especially the high level ones. As in expert system development, constraints are usually rules and
driven by an interpreter. In the Chinese input problem, no Chinese grammar exists that can be used to
generate the set of constraints to build a finite state machine. Only a set of patterns exists. Incase a
finite state machine can be built for the set of constraints, one would like to make full use of them.
Under normal circumstances, finite state machines can be built for some levels and heuristic rules

exist for other levels, A combination of multilevel filtering and search is useful,

In the Chinese tnput system, a two level search is performed on level 1 and level 2. The partial

solution generated is sent to level 3 where rules can be applied.
Trace 6.3 and trace 6.4 are traces for the input
pengyouai.

Trace 6.3 is part of the trace of the multilevel search with level 1 and level 2. The solution is then

passed to the rules of level 3. Trace 6.4 is the filtering process.

Trace 6.3 Trace for hybrid control on “*pengyouai” (Searching).

1 Ly={[plk
L={[plh
Ly={0]1}
2 Li={{pel}
Ly={[pel}
L3={[]}s
9: L]={[preynog,y,09ulayi]};

L= {[peng youai]};
L,={[pengyoul,[youai]};

10: Li={[p,en,gvy0,u,3iE0S]}
L, = { [peng, you, ai, EOS] };
Ly={(pengyou],[youail}.

There are two partial solutions at level 3:

{ [pengyou }, [youai] }.
They correspond to two possible parses of the input:

Parse 1: [pengyou,ai];

Parse 2: [peng , youai] .

Each parse has its own labe! sequence assign to the variables at level 2, The corresponding level 2

variables and their labels are described below. The solution is denoted by a list of pairs, (x;,/;), where

x; 1s a variable, and /; is the list of possible labels.

Parse 1: [(peng,[ﬂﬁ]),(you,[?Zl),(ai.I-_'I'I JE LD

122

Parse 2: [(peng, (M 5€,..1), (you, &), (ai,)L

Trace 6.4 Trace of hybrd control on “‘pengyouai’” (Filtering).

Rule for final particles:
(ai,EOS) — (¥ ,EOS).

Parse 1: [(peng, [1), (you,[K1), (ai,[E ,E ,..1)}
— [(peng, BB), (you, 2), (ai,¥F).

Parse 2: [(peng,[A ,3E, . 1), (you, L), (ai, &).
- [(peng, (M1 ,5%,..1), (you, &), (ai, F).

6. Parallel Execution of the Character Break Search

The character break search in section 2 can be executed in parallel without much change. If one
starts the search with any of the input symbols and finds a solution, and there is a break point right
before that selected symbol, then the combination of the list of the break points is a solution for the

problem. For example, consider the input
laopengyounai.

If the search starts with the symbol ‘‘y’’, the input is then “*youai’’, and the solution set is
[you,ai, EOS].

For the first part of the input, *‘laopeng’’, the solution is
[lao, peng).

A final solution is then

[lao, peng, you,ail].

The parallel approach works as follows. Each variable checks whether the current variable and
the next variable forms a legal pinyin. If so, the result is stored in a global data area. It then checks
whether itself and the next 2 variables form a legal pinyin. The result is stored if it is rue. The
process continues for the next 3, 4, ... variables. Since the maximum length of a pinyin is six, the
number of processing is at most six times. A global control is executed in parallel to lccate a legal

path from these partial results. Traces for input **xianggang’’ and ‘‘jiaodian’’ are presented fig 6.5

and {ig 6.6,
—(0O0—Ca0O—00—0—0—0—0——0@—0O

(gang] - [#]

[xia] (ang]

Fig 6.5 Trace for “*xianggang”’.

124

N T g T 7 g N o~ N £~ W &
O—CO—CE@O0—00—0O—(0O—@O—0—0

il — [e0] [di] y [#)
.[jia] [dian]

[jiao]

Fig 6.6 Trace for “‘jiaodian’’.

Another nice pfoperty of the problem is decomposability, that is, the problem can be broken
down into smaller subproblems. The solution of the original problem is obtained by combining the
solutions of the subproblems. The difficulty of problem solving by decomposition is how to find the
subproblems. Since some phonetic symbols cannot appear before another cone in a pinyin, e.g., *‘0”’
never appears before “‘d"’, a break point can be inserted between these two symbols. With this

property, an input problem can be divided into smaller subproblems. For the input
xianggang.
A break point is inserted between the two “*g2”" ’s. Two subproblems are generated:

xiang,
gang.

These two subproblems can be executed in parallel.

125

7. Summary
In this chapter, different control stratzgies are presented. Due to incomplete information
available in the real problem, the hybrid control method is usually the best candidate for

implementation.

126

CHAPTER 7

Conclusion

1. Related Problems and Future Research

A system based on phonetic spelling for inpuiting Chinese has been presented. The basic

approach can be applied to other oriental languages, such as Japanese and Korean,

Around 1,500 years ago, the Japanese and Koreans borrowed the hanzi from Chinese to develop
their own languages with some changes. Japanese and Korean have grammatical word endings,
something like “‘-ed’” or ‘‘-ing’’ in English. Since hanzi provided no way to write these grammatical
endings, they devised their own phonetic alphabets, known as kana and hangul. The Japanese kana
exists as katakana, formed by all or part of a hanzi; and hiragana, formed by cursive writing figures.
The hanzi is called kanji in Japanese. Though the use of phonetic alphabets made hanzi unnecessary
for writing Japanese and Korean, they are still written in an amalgam of hanzis and native phonetic
letters. In Japanese sentences, kanji is not commonly used by iself but is accompanied by katakana,
hiragana, and alphanumeric symbols. In Japan, most nouns are written in kanji while the kana are
employed as auxiliary letters to denote grammatical inflection, the transliteration of foreign sounds,

onomatopoeia, and exclamation, On the other hand, hanzis are being phased out of Korean gradually.

[N

The existence of these alphabets makes the input problem for Japanese and Korean easier than
Chinese. People of these countries are used to phonetic symbols. In the kana system, there are
symbols to represent different intonation which reduce ambiguities. During the process of importing

hanzi to Japanese and Korean, Chinese words (cis) have been imported in vast number 10 the point

127

that the majority of words in Japanese and Korean dictionaries are Chinese style compounds. A
similar design can be used for inputting Japanese and Korean. In Japanese, ;he best input method is
the kana to kanji conversion technique [37), in which the user types in the kana and the system finds
the corresponding kanji. This is similar to typing Chinese with phonetic spelling.

The application of the problem solving schema to other oriental languages is straightforward.

On the other hand, many other interesting and important problems appear as a result of this research:

1. The presented framework is not perfect. There still exists some unrescolved ambiguities, Since
they cannot be removed by syntactic analysis, I think semantic analysis is necessary to achieve

a better performance.

2. Semantic analysis is closely related to language understanding. Even though research on
natural language understanding has been actively performed in North America, Europe, and
] épan, less work has been done on the Chinese language. The reason may be the Jack of an
uniform input method and an uniform internal representation. Since the Chinese language is
quite different from other languages, the question of how hard it is to parse a Chinese sentence
is still open. For example, in most Chinese sentences, the subject is determined by the relative
position of the noun and the existence of prepositions, The field of Chinese language
understanding is still in its infant stage.

3. The presented system cannot tolerate any error input, such as spelling errors. How hard is it to
perform error recovery? How much modification of the algorithm is required? I think some
kinds of probabilistic reasoning is necessary.

4. As the input method is based on phonetic spelling, can the idea be adapted to Chinese speech

processing? Since speech input usually contains many errors, problem 3 has to be solved first.

5. Cun the multilevel framework be used in other problem domains? The HARPY structure has
been applied to an image understanding task [50]. Can the multilevel framework used in a
similar way?

6. Most existing expert systems require experts to write down their expertise in rules. Previous
research was on building user friendly tools which allow experts to build their own expert
systems. Can an expert system be generated from an expert system? | think the idea of

constraint generation is a step towards this direction,

2. Conclusion

Twao problem solving techniques, multilevel framework and constraint generation, are
discussed. They are closely related to relaxation. The constraint generation algorithm is an iterative
relaxation algorithm. The multileve! problem solving framework can be viewed as a subproblem
relaxation process. A problem is partitioned vertically into several subproblems. Higher level
subproblems are relaxed initially. The simplest subproblem is solved first. The solution is then
improved by strengthening the relaxed subproblems. On the other hand, the partial solution is sent up
the levels, and control information is propagated down the levels, which makes it different from pure

subproblem relaxation. These problem solving strategies are applied to the Chinese input problem.

Three fundamental problems for inputting Chinese are addressed here: sentence segmentation,
homophone analysis, and dictionary organization. A design for a Chinese input system is presented.
In the process of solving these problems, three other problems are discussed: multilevel problem
solving, constraint generation, and dictionary organization. The solutions to these problems are
related to each other. The organization of the dictionary facilitates the search strategy of the

multilevel framework. The constraint generation makes the building of such a system easier.

In this thesis, I have pointed out how iterative relaxation can be used for constraint generation
and multilevel frameworks as a general control mechanism for problem selving. 1do believe that
these two fundamental ideas, automatic construction of constraints and multilevel problem solving

framework, could have more applications,

9

10,

11

12.

130

References

A. V. Aho and 1. D. Ullman, Principles of compiler design, Addison-Wesley, Reading, Mass.

(1979).

A. V. Aho, I. E. Hoperoft, and J. D. Ullman, Data structures and algorithms, Addison-Wesley,

Reading, MA (1983).
D. N. de G. Allen, Relaxation methods, McGraw-Hill, New York (1954).
1. D. Becker, Typing Chinese, Japanese, and Korean, /EEE Computer 18,1 (Jan 1985), 27-361.

A. Bluke, A convergent edge relaxation algorithm, Memorandum MIP-R-135, Machine

intelligence research unit, University of Edinburgh (April 1982).

B. G. Buchanan and E. A, Feigenbaum, Dendral and Meta-Dendral: their applications

dimension, Artificial intelligence 11,1 (1978), 5-24.
Y. R. Chao, A grammar of spoken chinese, University of California Press (1970).

C. Cheng, Analysis of present-day Mandarin, Journal of Chinese linguistics 10 (June 1982},

281-357.

C.T. Chou, Relaxation and polymorphic type inference, Master thesis, Computer Science

Dept., UCLA, Los Angeles (1985).

N. Christofides and C. Whitlock, An LP-based TSP algorithm, [mperial College Report 78-79,

Imperial College (1978).
Hanyu pinyin cihui, Wenzi Gaige Chubanshe, Peking (1958).

IEEE Computer, January 1985,

13.

14.

15.

16.

17.

18.

19.

20.

21,

22

23.

24,

131

W, Cui, Evaluation of Chinese character keyboards, /[EEE Computer 18, 1 (Jan 1985), 54-59.

L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy, The Hearsay-II speech-
understanding system: integrating knowledge to resolve understanding, Computing survey 12,2

(June 1980).

I..R. Emman and V. R. Lesser, A muiti-level organization for problem solving using many,

diverse, cooperating sources of knowledge, Proc. 4th IJCAL, Thilissi, USSR (1975), 483-490.

M. L. Fisher and I. F. Shapiro, Constructive duality in integer programming, SIAM J. Appl.

Math. 27 (1974}, 31-52.

M. L. Fisher, The Lagrangian relaxation method for solving integer programming problems,

Management Science 27, 1 (Jan 1981}, 1-18.
A, Friedman, Foundations of modern analysis, Dover publications, inc., New York (1982).

A. M. Geoffrion, Lagrangean relaxation and its uses in integer programming, Mathematical
programming study 2 (1974), 82-114.

R. M. Haralick and G. L. Elliott, Increasing tree search efficiency for constraint satisfaction
problems, Artificial Intelligence 14 (1980), 263-313.

AY, Hashimoto, The Mandarin syntactic structures., Unicorn 8 (1971), 1-149,

M Held and R M Karp, The traveling salesman problem and minimum spanning trees,
Operations rescarch 18 (1970), 1138-1162.

M Held and R M Karp, The traveling salesman problem and minimum spanning trees: Part I,
Mathematical programming 1 (1971), 6-25.

J. Hobby and G. Guoan, A Chinese Metafont, STAN-CS-83-974, Standford Computer Science

Department (1983).

25.

26.

27.

29,

30.

31.

32.

33.

34,

35.

1. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and compuiation,

Addison-Wesley, Reading, Mass. (1979).

L.R.Hu, Y. W. Chang, and I. K. Huang, The Three-corner coding method: the digitalized
Chinese dictionary, Northern Gate Book, Taipei (1977).

R. A. Hummel and A. Rosenfeld, Relaxation processes for scene labeling, JEEE trans. systems,
man, and cybernetics SMC-8, 10 (October 1978), 765-768.

Chokho Ip, A Chinese Japanese word processor, Master thesis, Computer Science Dept., UCLA,
Los Angeles (1985).

L. Kitchen and A, Rosenfeld, Discrete relaxation for matching relational structures, J/EEE trans.

systems, man, and cybernetics SMC-9, 12 (December 1979), 869-874.

L. Kitchen, Relaxation applied to matching quantitative relational structures, fEEL (rans.

systems, man, and cybernetics SMC-10, 2 (February 1980}, 96-101.

D. E. Knuth, TEX and METAFONT, New directions in typesetting, Digital Press and American

Mathematical Society (1979).

N. Lavrac, I. Bratko, [. Mozetic, B. Cercek, A. Grad, and M. Horvat, KARDIO-E — an expert
system for electrocardiographic diagnosis of cardiac arrhythmias, Expert systems 2 (January

1985}, 46-50.

C.N.Liand 8. A. Thompson, Mandarin Chinese: a functional reference grammar, University

of California Press, Berkeley (1981).
H. T. Lin, Essential grammar for modern chinese, Cheng & Tsui company, inc., Boston (1931).

B. T. Lowerre and R. Reddy, The HARPY speech understanding system, pp 340-360 in Trends

in speech recognition ,ed Lea, W. A,, Prentice-Hall, Englewood Cliffs, N.J. (1980).

36.

37.

38.

39.

40.

41.

42.

43,

44,

45.

46.

47.

48.

133

A. K. Mackworth, Consistency in networks of relations, Artificial intelligence 8 (1977), 99-118.

H. Makino, Beta: an automatic kana-kanji translation system, {EEE Computer 18, 1 (Jan 1985).

46-53.

I. Mozetic, L. Bratko, and N. Lavrac, An experiment in automatic synthesis of expert knowledge
through qualitative modelling, Proc. logic programming werkshop 83, Albufeira, Portugal

(1983).

I. Mozetic, L. Bratko, and N. Lavrac, The derivation of medical knowledge from a qualitative

model of the heart, ISSEK workshop 84, Bled, Yugoslavia (1984).
N.J. Nilsson, Principles of artificial intelligence, Tioga Press, Palo Alto: Calif. (1980).

J. M., Ortega and W, C, Rheinboldt, fterative solution of nonlinear equations in several

variables, Academic Press, New York (1970).
J. M. Ortega, Numerical analysis -- A second course, Academic Press, New York (1972).

C. H. Papadimitriou and K, Steiglitz, Combinatorial optimization: algorithms and complexity,

Prentice-Hall, New Jersey (1982).

D. S. Parker, Relaxation problem solving, UCLA working paper, Computer Science Dept.,

UCLA, Los Angeles (1985).
G. Polya, How to soive it, Doubleday Anchor, New York (1957).
G. Polya, Mathematical discovery, John Wiley & Sons, New York (1981).

I. A. Richards, D. A. Landgrebe, and P. H. Swain, On the accuracy of pixel relaxation labeling,

IEEE trans. systems, man, and cybernetics SMC-11, 4 (April 1981), 303-309.

A. Rosenfeld, R. A. Hummel, and §. W, Zucker, Scene labeling by refaxation operators, /IEEE

trans. systems, man, and cybernctics SMC-6, 6 (June 1976), 420-433.

49,

50.

51.

52.

53.

54.

55.

56.

57.

58.

39.

60.

6l.

134

G T Ross and R M Soland, A branch and bound algorithm for the generalized assignment

problem, Mathematical programming, & (1975), 91-103.

S. Rubin, The ARGOS image understanding system, Doctoral thesis, Dept. of Computer

Science, Carnegie-Mellon University, Pittsburgh, Pa. (1978).

E. D, Sacerdoti, Planning in hierarchy of abstraction spaces, Artificial intelligence 5,2 (1974),

115-135.
J. Sheng, A pinyin keyboard for inputting chinese characters, Computer (January 1985).

E H Shortliffe, Computer-based medical consuitations: MYCIN, Elsevier Scientific Publishing

Company, Inc., New York (1976).

T. R. Smith and R. E. Parker, An analysis of the efficacy and efliciency of hierarchical
procedures for computing trajectories over complex surfaces, Unpublished manuscript,

Department of Computer Science, UCSB, Santa Barbara (1985).
R. V. Southwell, Relaxation methods in engineering science, Oxford U, Press (1940).

I.F. Sowa, Conceptual structure: information processing in mind and machine, Addison-

Wesley, Reading, Mass. (1984).

R. E. Tarjan, A unified approach to path problems, JACM 28, 3 (July 1981), 577-593.

H. C. Tien, The Pinxxiee Chinese word processor, {EEE Computer 18, 1 (Jan 19835), 65-66.
J. R. Ullman, An algorithm for subgraph isomorphism, JACM 23 (Jan 1976), 31-42.

D. Waltz, Generating semantic descriptions from drawings of scenes with shadows, pp 19-92 in

The Psychology of Computer Vision . ed P. Winston, McGraw-Hill, New York (1975).

W. §. Wang, Some syntactic rules for Mandarin, Proceedings of the ninth international

congress of linguists. (1964), 191-202,

63.

135

Asia Computer Weekly, Dec 1983,
S. W, Zucker, E. V. Krishnamurthy, and R. L.. Haar, Relaxation processes for scene labeling:
convergence, speed and stability, IEEE trans. systems, man, and cybernetics SMC-8, 1 (January

1978), 41-48.

S. W. Zucker, Production systems with feedback, pp 539-555 in Pattern-Directed Inference

Systems ,ed D. A. Waterman and F. Hayes-Roth, Academic Press (1978).

Appendix 1

Algorithm 4.2

for all nonterminals A, FIRST ((A) := EXACT ((A);
while there are changes to any of the the FIRST (A} do
begin

for all production rules A - BC do

begin
FIRST ((A) := FIRST ((AN_FIRST (B);
if EXACT y(B) = {g} then
FIRST ({A) 1= FIRST (AW _JFIRST |(C);
end
end,

Algorithm 4.3

for all nonterminals A, LAST (A) := EXACT [(A);
while there are changes to any of the the LAST ({A) do
begin
for all production rules A — BC do
begin
LAST [{A) := LAST (A W LAST (C);
if EXACT ((C) = {€} then
LAST ({A) 1= LAST (AW _LAST (B),
end
end.

137

Algorithm 4.5

tor all nontermmalsA and productions A - 8,C, | --- { B,C,,

k=n =i

EXACT,(A) = U, _ EXACT;(BY)EXACT, ;(Cy),

while there are changes to any of the the EXACT;(A) do
begin
for all production rules A — BC do
begin
if EXACT (B) = {€} then
EXACT (A) = EXACT, (AR JEXACT{(C);
If EXACT ((C) = {€} then
EXACT(A) = EXACT (AW _JEXACT,(B);
end
end.

Algorithm 4.6

for all nonterminals A, FIRST;(A) =&

for ail productions A — BC, .

FIRST,(A) = FIRST{ANW_JEXACT (B)UuEXACT (BYIRST,_{C);

while there are changes 10 any of the the FIRST (A) do
begin
for all production rules A — BC do
FIRST,(A)= FIRST (A) FIRST (B W JEXACT o(BYFIRST(C);
end.

Algorithm 4.7

for all nonterminals A, LAST;(A) = &;
for all productions A — BC, .

LAST(A) = LAST; (A W JEXACT, (C)uuLAST L(BYEXACTHC);

while there are changes to any of the the LAST (A) do
begin
for all production rules A — BC do
LAST;(A) = LAST(AW_LAST(C W _LAST(B)EXACT ((C);
end,

Algorithm 4.8

CONST, = &;
For all productions A — BC,
CONST, = CONST .\)\ JLAST;(BYFIRST, _,(C).

138

139

Appendix 2

Following is a context free grammar for Chinese. The set of terminals is { Start, S, TP, NP, N,
NPR, DET, TIME, VP, DEG, MAN, LOC, COMP }. The set of nonterminals is { o, w, particle, place,
men, noun-hwman, noun-nonhuman, pronoun, measure, prep, asp, de, adverb, bi, verb, aux,

conjunction, dem, numeral, post-det }.

Start > = § =

S — conjunction S particle
| S particle
| NP VP
| NP VP TP
| NP VP TP particle
| £

TP — TIME | place | TIME place

NP - N
| NPR men
| DET N
| DET post-det N
| DET post-det S N

N — NPR | noun-nonhuman | place

NPR — noun-human | pronoun

DET — dem measure
| numeral measure
| dem numeral measure

TIME — prep NP

VP -» VP NP
| verb NP COMP
| aux verb NP prep COMP

COMP — asp COMP
| LOC COMP
| MAN COMP
| DEG COMP
| prep COMP
| measure COMP
l e

DEG — bi §
| adverb
| bi S measure

DEG -5 de S
i adverb

LOC — prep place

140

Appendix 3

Table a.1 is the list of phonetic spellings and the corresponding Hanzis that appear in the

appendix. If the entry in the following table is not the required Hanzis, the right one will be printed.

ba I | bei # | b I [oie Al
bu A | chi Z lcong T | doo |
duj ¥ | de :p} duo % er 1A
gei & | gen sy geng = guan [A
guo X3 | hai & | he | jia A0
jiao W} | kvai B | 1a B’ | le T
mei (% | i HE qi # qu *
rang i shang Lt | shao 7 shi pis
suo Ff [wng [{wan B | wang T
wei B | xia T xiang {§ yang Bt
yi — | you " yu T zai £
230 B | zhi Z zhong tF

Table a.] Some common Hanzis.

3. Patterns for prepositions

The general pattern is:

S [A] [AV] CV-N FV [Moad] O.

Foilowing is the list of all specific patterns.

cwei (55)

A wei N suo FV.

'gen(ﬁﬁ),tang(ﬁ),he(iﬁ])

S [A] [AV] gen-N yikuairlyiqi FV [Mod] O.

S [A) [AV] tong-N yikuairlyigi FY [Mod] O.
S [A] [AV] he-N yikuairivigi FV [Mod] O.

o dui (1)

S [A] dui-N [A] SV.
S [A] [AV] dui-N jiayi (50 L)) Fv.
S [A] [AV] dui-N yuyi (T L) Fv.
S [A] [AV] dui-N FV [le (T)] [Mod] O..

» duiyu (¥t F), guanyu (5 F)

(duiyu/guanyu-N] S [duiyufguanyu-N] [AV] FV O.

-zai(?’f)

S zai NP.

S FV-zai PW.

0O, S [A] [AV] FV-zai PW,

S [A] [AV] ba O FV-zai PW.

S [A] [AV] zai-PW FV [Mod] O.

S [A] [AV] FV-zai FV [Mcd] O.

[zai] PW, you Mod NP,

[2ail-PW, S shi comment.

(2ai]-TW § [zai-TW] A CV-N FV Q.

[zai}-TW, meilbuibie FV O,

[zai] condition zAi zhong, S [A] SV [le].

[zaf] condition zAi zhong, S [A] [AV] FV- O [le].
(zai] condition zhi shang, S [A] SV [lel.

[zal] condition z#i shang, S [A] [AV] FV O [le].
[zai] condition zhi xia, S [A] SV [le].

{zai] condition zhi xia, § [A] [AV] FY O [lel.

eyu(T)

Same set of rules as zai.

sdao (¥)

143

dao PW quilai {le].
S [cong PW|] qu/lai [lc] PW, [le].
S [A] [AV] cong-PW, dao-PW, FV [Mod] O fle].

«wang (£)

S [A] [AV] wang-N FV.

-laf(ﬂ{),qu(i";‘)

S [A] [AV] lailgu FV-N lailqu.
S FV; OI lal/qu FVZ Oz.

« cong (1€)

S [A] [AV] cong-PW, dao-PW, lailqu.
S [A] [AV] cong-PW, zuo-means dao-PW, lailqu,
S [A] [AV] zuo-means cong-PW, dao-PW, lailqu.

«bi ()

NP,

[A] bi NP, SV.

[A]) bi NP, hailgeng SV,

[A] bi NP, SV,-de-SV.,.

[A] i NP, SV-Nu-M-N.

[A] bi NP, SV Nu-bei (1).
[A] bi NP, FV-de-SV.

[AV] bi NP,
[AV] bi NP,
[AV] bi NP,
[AV] bi NP,
[AV] bi NP,

duo FV-le Nu-M-O.
shao FV-le Nu-M-0,
zao FV-le Nu-M-O.
wan FV-le Nu-M-Q,
chi ¥V-le Nu-M-0.

S FV O, TW, bi TW, + result of comparison.
S TW, FV O bi TW, + result of comparison.
S yi-M bi yi-M SV.

S yi-M bi yi-M AV FV [Mod] O.

-gen(EE)

144

NP; gen NP, [A] yivang.

NP; gen NP, [A] buyiyang.

NP, bugen NP, [A} yiyang.

NP, gen NP, [A] yivarg [de] 5V,

NP, gen NP, [A] yivang AV FV [Mecd] O.

» xiang (#)

NP, [A] xiang NP, yiyang.
NP, [A] xiang NP, yiyang AV FV {Mod] O.

*you (F)

NP, vou NP, Nu-bei ({5).
NP, you NP, SV-bei (15).

i (BE)

PW, li PW, A SV,

PW, i PW, [you/shi] Nu-M-N.

PW, li PW, gen li PW, yiyang SV,

PW, li PW, bi PW; li PW, SV.

PW, gen PW, li PW, yiyang/buyiyang SV.
PW, bi PW, li PW, SV,

«ba (1B

S [A] {AV] ba O FV + complement,

S {A] [AV] ba O gei FY + complement,

S [A] {AV] ba O gei FV le,

S [A] [AV] ba O gei FV-zai-PW,

S [A] LAV] ba O gei FV-dao PW [lai/qu].

S [A] [AV] ba O gei FV{-FV,-[PW]-FV,,

S [A] [AV] ba Mod Dir O FV-gei Ind O.

S (A} [AV] ba [Mod] [gei) FV-[le/guo]-Nu-M.
S [A] [AV] ba Mod O [gei] FV-[le/guo]-Nu-M.
S [A} [AV] ba Mod O [gef] FV de A SV,

S [A] [AV] ba O [gei] FV + functional ending.
ba person SV de + clause with FV.

S [A] [AV] ba NP, [gei] FV NP, [P].

4. Patterns for structural particles

Following is a list of patterns that govern the construction of a phrase or a sentence with the

structural particles.

o« de (B

cle (T

VY O de N.

V O de.

SV O deN.

zai (£ } S FV de shihou (F5 1%),
Ni de N2

PN de N

S V de N.

A SV de N.

shi (3&) .. de

[TW] S [TW} cai (¥) FV O de.
Nu-M Nu-M de

YV le
SVieO

SV e

S SV le Nu-M

zai (£) S FV [le] O [le] yehou (L1).

-guo(il".?l)

S [mei (i)] SV guo.
S [mei (X)] FV guo [Mod] O.

S conglai(?ﬁ':‘% } mei(?‘_ﬁ)V oguo O,
S xianglai(rﬂm Jmei(i)V guo 0.

ozhe(ﬁ'_“i:)

FV zhe
V| zhe V,

145

S zhengzai (1IE T£) FV zhe [Mod] O ne ().
S FV| zhe FV, O zhe ().

sde (i)

5 A de FV Mod [de] O.

sde (15)

V de complement
NP FV de AV SV,

S FV de 5-SV.

S FV de S-AV-FV-0,

5. Patterns for conjunctions

Following is the list of common conjunctions with at least one component contains a single

character.

yue ... yue (iR H)

Yu ... yu ("'f.f -0)
ye..ye (L A1)

YOU ... you (X . X }
bu..bu (1 T
suirean ... ye { % ..t }

fei .. bu (3E T

fei .cai (3E . F)

zhiyao ... jiu (K B 5
zai ..ye (..

duo ... ye (% ..)

Jiushi . ye (FL = .10)
Jishi ..ye (BN fE 10,
gangeai ... jiu (K F 3%)
gang ..jiu (FI§ B0
Yiojiu (— L0

yige .. jiu (— 18 %)
you ... meiyou (H ..i% H)

146

