RELAXATION PROCESSES: THEORY, CASE
STUDIES AND APPLICATIONS

Ching-Tsun Chou February 1986
CSD-860057

UNIVERSITY OF CALIFORNIA

Los Angeles

Relaxation Processes:

Theory, Case Studies and Applications

A thesis submitted in partial satisfaction of the
requirements for the degree of Master of Science

in Computer Science
by

Ching-Tsun Chou

1986

© Copyright by
Ching-Tsun Chou
1986

The thesis of Ching-Tsun Chou is approved.

— Bz

Robert Uzgalis()

3 Vibach

Sheila Greibach

st T st

David Martin

m(\/v"\\

D. Stott Parker, Committee Chair

University of California, Los Angeles

1986

i

To my
Mom and Dad

il

TABLE OF CONTENTS

page

1. INIroduction ... 1
1.1. What Are Relaxation Processes? A Very Abstract Discussion 1

1.2. An Outline of this Thesisccccriiiicriiririiier e e s 2

2. Some Typical Examples of Relaxation Processesccccccoeiiiniie. 4
2.1. (Single-Source) Shortest-Path Problemcooceeeiiiiiiiiiviiinicnn. 4

2.2, Term INEQUALITIES ...coveererurerrercneremrarneessisnneesoreneesecsnncessionsnessessssesaes 10

2.3. Monadic Term Inequalities: Prefix Inequalitiescceveeviiecriiinnnans 12

3. A Formal Theory of Relaxation Processescccococervievrvenrvnivcnenenes 16
3.1. Relaxation Problems ..o et seeceenenans 16

3.2, Examples of Relaxation Problems ..., 17

3. General Relaxation Semi-Algorithmoocooiiiiviriiniiee e 21

2.4, Applications to SPPand PI ... 24

-wo Case Studies on Relaxation Processescccccceevvvvnicinicinicnnen. 27

+.1. Possible Non-Termination of GRSAcccccoviiiiiiininiiiinncnn, 27

4.2, Case Study I: LI-Formulated Shortest-Path Problem 30

4.3. Case Study II: Prefix Inequalitiesccceceervvrvvivenmninsenceesreeennecne 35

3. An Application of Relaxation Techniques: Type Inference for Prolog 40
5.1. A Polymorphic Type System for Prologcccovceevrivienivrincnnsonnnnns 40

5.2. Type Inference and Term Inequaliti€scccovvivivirninrivircnnnnnseenan. 45

5.3. TYPEINF: A Polymorphic Type Inferencer for Prolog 47

5.4. Demonstrations of the Capabilities of TYPEINFc.cccveunnesn 49

6. Directions of Future Researchccccvvvvieniiieenneneinnieenecnoneinenn 53
BibHOZIapRy ..ottt s srene st st s sasnconssreasansones 55
Appendix I. Some Mathematical Notions and Terminologiesc..ccec..... 56
L.1. General TErmMINOIOZIEScccovceiiiieciiieeiirreereitesaeeeseeitee s rasiraeseenbeeans 56

L2, Graphs oot e 56

1.3. Partial Orders and PoSetsccccivevoieriiniiiiiiiiecirecie e e 57
Appendix II. Program Listing and Test Data for TYPEINF 59

iv

2.1.1.
3.3.1.
3.4.1.
34.2.
4.1.1.
4.1.2.
4.2.1.
4.3.1.

LIST OF FIGURES

page
An Example of (Single-Source) Shortest-Path Problem ..o 8
General Relaxation Semi-Algorithm (GRSA). ..oocviiiiiniiniiiiiiniie. 22
RSA-SPP: Relaxation Semi-Algorithm for LI-formulated SPP. 24
RSA-PIL Relaxation Semi-Algorithm for PL. ... 26
A Shortest-Path Problem with a Negative Cycle.covvvieveanicnnnicnnnens 28
An Instance of PI with a Negative Cycle. ..ot 30
RA-SPP: A Relaxation Algorithm for LI-formulated SPP. 34
RA-PI: A Relaxation Algorithm for PL.vvvriiii 38

ACKNOWLEDGEMENTS

I wish to express my deep gratitude to my advisor, Professor Stott Parker,
whose guidance, encouragement and patience were essential to the completion of my
Thesis. I thank all of the other "Relaxers”, Kam Chow, Paul Eggert, Koenraad
Lecot, Reichi Lee and Joan Marshall, for many stimulating discussions in our Relax-
ation Meetings. I also acknowledge the UC-MICRO grant "RAPPORT" (co-

sponsored by IBM) for financial assistance.

I am grateful to the members of my Thesis Committee, Professors Sheila
Greibach, David Martin and Robert Uzgalis, for their helpful suggestions during the
preparation of this Thesis. Professor Greibach is also thanked for many interesting
discussions. Buz is also thanked for his tasteful inputs which helped in the fermen-

tation and fruition of my concepts.

I am deeply indebted to Ping Wei for her encouragement, patience and

understanding. Her company was greatly enjoyed.

Finally, I wish to thank my parents for their endless love for me. This

Thesis is dedicated to them.

vi

ABSTRACT OF THE THESIS

Relaxation Processes: Theory, Case Studies and Applications
by
Ching-Tsun Chou
Master of Science in Computer Science
University of California, Los Angeles, 1986

Professor D. Stott Parker, Chair

Relaxation is a powerful problem-solving paradigm in coping with problems
specified using constraints. In this Thesis we present a study of the nature of relaxa-
tion processes. We begin with identifying certain typical problems solvable by relax-
ation. Motivated by these concrete examples, we develop a formal theory of relaxa-
tion processes and design the General Relaxation Semi-Algorithm for solving gen-
eral Relaxation Problems. To strengthen the theory, we do case studies on two
relaxation-solvable problems: the Shortest-Path Problem and Prefix Inequalities.
The principal results of these studies are polynomial-time algorithms for both prob-
lems. The practical usefulness of relaxation is demonstrated by implementing a pro-
gram called TYPEINF, which employs relaxation techniques to automatically infer
types for Prolog programs. Finally we indicate some possible directions of future

research.

vii

CHAPTER 1.
Introduction

The purpose of this Thesis is to present a study of the nature of relaxation
processes. Both theoretical and practical aspects of relaxation processes will be
investigated. For the theoretical aspect, we shall not only develop a general theory
of relaxation processes, but also examine two specific cases in depth. For the practi-
cal aspect, we shall apply relaxation techniques to the implementation of a type
inference program for Prolog.

Now let us start with a very abstract discussion on relaxation processes.

1.1. What Are Relaxation Processes? A Very Abstract Discussion

Relaxation is a powerful problem-solving paradigm in coping with problems
which are specified using constraints. The process through which a problem is
solved using relaxation techniques is (of course) called a relaxation process. Gen-
erally speaking, the relaxation paradigm of problem solving exhibits the following
characteristics:

() A problem to be solved by relaxation techniques has a constraint satisfication
problem as a subset of its specification. The solution to be found is required to
satisfy all constraints and (possibly) some additional optimization criteria.

(i1) A relaxation process begins with a very crude "guess” of the final solution to the
underlying problem, which satisfies only part of the constraints. This guess is called
the initial approximation.

(iii) The relaxation process proceeds to satisfy some of the violated constraints by
locally adjusting the current approximation. In most cases, it takes many iterations
through this adjustment step, which we shall call a relaxation step, before the
current approximation can be adjusted to satisfy all constraints. This final approxi-
mation is the solution we are looking for. Notice that if there are any optimization
requirements to be met, they are taken care of in the selection of the initial approxi-
mation and the relaxation steps.

(iv) Relaxation processes are non-deterministic, in the sense that before the final
solution is reached, there are usually many different orders in which relaxation steps
can be applied. The interesting fact is that the order does not affect the arrival at a
correct solution but only the rate of convergence to this solution.

The reader should, however, be aware that these characteristics by no means
constitute a precise definition of either relaxation problems or relaxation processes.
They are just meant to give the reader some flavor of what relaxation is. We will
discuss relaxation in a more precise way in the remaining chapters of this Thesis,
which are outlined in the next section.

1.2. An Outline of this Thesis

This Thesis consists of six chapters and two appendices. The remaining
chapters and appendices are briefly described in the following paragraphs.

In Chapter 2 some specific examples of problems subject to solution by
relaxation techniques are introduced. The first is the classical single-source
Shortest-Path Problem. 1t is shown that Shortest-Path Problem can be formulated
using a set of Linear Inequalities, which typify constraint-satisfaction problems.
Then we illustrate by means of examples how to solve the Linear-Ineguality version
of Shortest-Path Problem using relaxation techniques. The second example of
relaxation-solvable problems is called Term Inequalities. This problem resulted
naturally from the author’s work in implementing a type inference program for Pro-
log, the details of which will be discussed in Chapter 5. In Chapter 2 we content our-
selves with defining the problem of Term Inequalities and illustrating its solution by
relaxation techniques through some examples. The third, and the last, example of
relaxation-solvable problems is a restricted version of Term Inequalities, called
Prefix Inequalities, which will be the subject of one of the case studies in Chapter 4.

Motivated by the concrete examples in Chapter 2, a formal theory of relaxa-
tion processes is developed in Chapter 3. We begin with defining what a Relaxation
Problem is. It is shown that both the (Linear Inequality version of) Shortest-Path
Problem and the problem of Prefix Inequalities are indeed special cases of Relaxa-
tion Problems. Then we introduce a semi-algorithm, called the General Relaxation
Semi-Algorithm, for solving Relaxation Problems. It is called a semi-algorithm
because its termination is not guaranteed. Several useful properties of this semi-
algorithm are proved. They are used to obtain some results about Relaxation Prob-
lems themselves. Finally, we specialize the General Relaxation Semi-Algorithm to
solve the Shortest-Path Problem and Prefix Inequalities, and investigate what conse-
quences the new points of view have.

However, the reader should be aware of the fact that there is nor a definition
of either relaxation problems or relaxation processes upon which everyone would
agree. The "definition” of Relaxation Problems in Chapter 3 is given in such a way
that it encompasses the examples discussed in Chapter 2 and permits the develop-
ment of an interesting theory of relaxation processes.

The theory developed in Chapter 3 is not strong enough, however, in the
sense that we do not have a must-terminate algorithm, but just a semi-algorithm, for
Relaxation Problems. Therefore, in Chapter 4 we will present the case studies on
two specific Relaxation Problems -- the Shortest-Path Problem and Prefix Inequali-
ties. The major results of these studies are improvements to the General Relaxation
Semi-Algorithm which produce two polynomial-time algorithms for the problems
under study. The reader will also notice the interesting similarities between the

Shortest-Path Problem and Prefix Inequalities, which become most apparent in
Chapter 4.

In Chapter 5 our investigation turns to the practical aspects of relaxation
techniques. Built upon the work of Mycroft and O’Keefe in [MyOK], we will
describe a type inference program for Prolog, called TYPEINF, in this chapter.
First, we introduce a type system for Prolog and explain why we need a type infer-
ence program. Then it is shown that the task of type inference can be reduced to that
of solving Term Inequalities discussed in Chapter 2. This is followed by an outline
of the type inference strategies adopted by TYPEINF. Finally, we demonstrate the
capabilities of TYPEINF by applying it to some test data, one of which is izself!

~_ In the last chapter, the author, in a tentative manner, points out some possible
directions of future research in relaxation processes. This chapter is much more
speculative and much less rigorous than its preceding chapters.

There are two appendices at the end of this Thesis. The first one of them is a
short summary of some mathematical notions and terminologies used in this Thesis.
The second is a complete program listing and some test data for TYPEINF.

CHAPTER 2.
Some Typical Examples of Relaxation Processes

In this Chapter we examine some typical examples of relaxation problems
and their solution through relaxation processes. The purposes are: (1) to give the
reader some concrete ideas as to what relaxation is and, (2) to motivate the develop-
ment of a formal theory of relaxation processes in Chapter 3.

Three examples are examined. The first example is a classical problem in
Operations Research --- the (single-source) Shortest-Path Problem. The second
example is called Term [nequalities, which originated from the work in automatic
type inference for Prolog. Please see Chapter 5 for details. Term Inequalities have,
unfortunately, proven to be resistant to the development of a formal theory. So, in
the third example, we consider a restricted version of Term Inequalities, called
Prefix Inequalities, in which only monadic functors are allowed.

It is striking that two problems with completely different origins (namely,
the Shortest-Path Problem and the Term Inequalities) can be solved using very simi-
lar techniques. In the next chapter we will try to formalize the common aspects of
these problems.

2.1. (Single-Source) Shortest-Path Problem

In this section we first give the traditional definition of the (single-source)
Shortest-Path Problem (SPP, for short) in terms of an integer-labelled di-graph and
paths within this di-graph. Then we re-formulate it using Linear Inequalities (LI),
for the latter formulation is more suitable for solution by relaxation processes. We
also discuss the relationships between these two different formulations. Finally, we
use an example to illustrate the relaxation techniques for solving LI-formulated SPP.

What Is SPP?

Traditionally, an instance of SPP is specified as a problem of finding the lengths of
the shortest paths from a given source node to every other nodes in a di-graph. More
formally, we have:

Definition 2.1.1: An (instance of) Skortest-Path Problem (SPP) consists of:
(@) A di-graph G =(V,A) with node set V={0,1,2,..,n} and arc set

A={1,2,.,m}, forsomen 20, m 2 1. Node O is distinguished from other nodes
and called the source node.

(b) A length-labelling mapping L : A —» Z which assigns to each arc j € A an
integer-valued length, L;. The concept of lengths can be naturally extended to paths:
the length L (P) of a path P in G is the sum of lengths of all arcs on P. In particular,
the length of an empty path is 0.

The problem is to evaluate these quantities:
D; =min{L(P) | P is a path from node 0 to node i. }, 0<i <n, (2.1.1)

if they are well-defined. (See Remark (ii) below.) D;, if it is well-defined, is called
the shortest distance from the source node to node . A path from the source node to
node i whose length is the shortest distance D; is called a shortest path from the
source node to node i.

Remarks:

(i) We define min{J = oo, (See Appendix L) So, if node i is not reachable from the
source node, then D; = oo, but the shortest path to node i is undefined.

(ii) If the set after the min operator in Eq. (2.1.1) contains arbitrarily small integers,
D; (and hence the shortest paths to node i) are undefined. This happens when, for
example, node i is on a cycle of negarive length which is reachable from the source
node.

(iii) A simple consequence of the above observation is that, if D g is well-defined,
then D 3=0. For, D¢ <0 would imply the existence of a negative cycle on which
node 0 resides, thus contradicting to the well-definedness of D ;. On the other hand,
there is always the empty path from node 0 to itself with length 0.

(iv) Any algorithm for SPP allowing negative arc lengths must have the capability of
detecting the kind of "pathological” conditions discussed in (ii). It will be shown in
Chapter 4 that a relaxation algorithm for SPP with this capability can be imple-
mented.

The Linear-Inequality Formulation of SPP

The formulation of SPP in the last subsection is intuitively appealing and expalins
nicely why people used the term "Shortest-Path". However, it is not suitable for
solution by relaxation techniques. Therefore, we introduce an alternative formula-
tion of SPP in this subsection.

Consider an arbitrary arc j € A. By the very definition of the min operator
in Eq. (2.1.1), the shortest distance from the source node to node to (j) can not be
greater than the shortest distance from the source node to node from(j) plus the

length L; of arc j. Hence the following inequality’ holds:

1t is interesting to note that this inequality resembles the famous Triangle
Inequality in Euclidean geometry.

Dgomjy+ Lj 2 Dyoyjy-

Also note that, since there is at least the empty path from the source node to itself,
we must have

02D,

In summary, whenever D;’s (0<i<n) are all well-defined, each of the following ine-
qualities holds.

Dpom(jy +Lj 2 Dio(jy, 1SjSm

02D,

The preceding discussion motivates the following definition.

Definition 2.1.2: Given a (traditional) SPP as the one in Definition 2.1.1, its associ-
ated Linear Inequalities (LI) are defined to be

Ij : xﬁomU)+Lj 2x,00-), 15}'5’”
(2.1.2)
0210

An LI-formulated SPP is a problem of finding the grearest (n+1)-tuple of extended
integers, in the natural order of poset products, satisfying the LI associated with a
(traditional) SPP.

Equivalence of the Two Formulations of SPP

We have formulated SPP in two different ways: one as an optimization problem on
di-graphs and the other as the solution of a set of Linear Inequalities. A question
naturally arises: are these two formulations equivalent? We claim that they are
equivalent, in the sense of the following theorem.

Theorem 2.1.3: Given an instance of SPP and its associated LI, the shortest dis-
tance to each node in the di-graph is well-defined if, and only if, there is a greatest
tuple of extended integers which satisfies the associated LI. Moreover, that tuple of
extended integers is exactly the tuple of shortest distances from the source node to
all nodes in the di-graph.

In order to avoid repetitions of arguments, we do not prove this theorem in
its entirety at this point. Instead, we will finish the proof part by part. The only-if
part is proved in Lemma 3.4.1. The if part is proved in Lemma 4.2.4. Only the
moreover part is proved in the lemma below.

Lemma 2.1.4: (With the same notation as that in Definitions 2.1.1 and 2.1.2.) Sup-
pose that (D, Dy,..., D,) is well-defined, and that there is a greatest tuple of
extended integers, (D’g, D’} ,..., D’,), which satisfies every inequality in (2.1.2).
ThenD; =D’;, forall0<i <n.

Proof: Assume the contrary: D; #D’; for some iy Note that (Do, Dy ,..., D),
when it is well-defined, satisfies each inequality in (2.1.2). So D; <D’;, since
(D’e, D’y ..., D’,) is the greatest tuple which satisfies (2.1.2). Hence D; < e, 50
there is a shortest path P from node O to node iy with length D; . Since
Dy=02D", there must exist an arc j on path P such that D; 2D"; but
D;, <D’;,, where i =from(j) and i, =t0(j). Since it is a shortest path, P con-
tains a shortest path from node 0 to every node on P. Hence it follows that
Dil + LJ = DI' T
But this implies that
D"'1+Lj SDil +Lj =JDI'2 <D’i2,
that is,
D"‘l +L} <D"'z’

contradicting to the fact that D”;’s satisfy Ineq. (2.1.2)! H

Solving LI-Formulated SPP through Relaxation Processes

Example 2.1.1: Consider the graph G =(V, A) depicted in Figure 2.1.1, where
V={0,1,2,3,4}, A={1,2,3,4,5,6,7,8}. The nodes are represented by circles
labeled by node numbers. The arcs are represented by arrows which are directed
from their from nodes to their z0 nodes. The number and the length of each arc are
written adjacent to the corresponding arrow. The arc numbers are circled; the arc
lengths are boxed. As usual, node O is the source node.

The LI assoctated with this instance of SPP are given below.

02xg
xg+42x, (arc 1)
x|+ (=3)2x, (arc 2)
xs+52x, (arc 3)
Xa+12x, {arc 4)
x3+(=2)2x, (arc 3)
x4+02x, (arc 6)
x3+42xy (arc 7)
xg+22x, (arc 8)

Now, let’s use the relaxation technique to find the greatest solution to the above

Two sequences of relaxation steps:
(x(),xls x29 x33 x4) =

(0! OQ, °°) O'O, m)

(arc 8)
J
(O’ ©9, 0o, 09, °°) (Oa ©9, 69, 29, 2)
{arc 1) arc 1)

l (l
0,4, °=|’ w,00) (0,4, T oo, 2)
(arc 2) arc 4

i @ ®
(0,4, 00,00, 1) (0,4,3,0,2)
|
(arc 6) (arc 2
l §”
(0, 4! olo! 1! 1) (03 4! 3! oo, 1)
|
(arc 5 6
ari) (ari)
(034:_1:1’1) (0:4:3’1’ 1)
I
(arc 5)
T
©0,4,-1,1,1)

Figure 2.1.1. (Continued)

inequalitics. We start with an overly conservative guess of the solution:
(X, X 1,X72,%3,X4) = {0, 00,00,00,00). This initial approximation satisfies some of the
inequalities (those corresponding to arcs 2, 3, ..., 7) but violates others (arcs 1 and
8). Choose a violated inequality, say (arc 1). We can lower the value of x to
0 + 4 = 4 to make (arc 1) satisfied. Now, (xg,%1,X2,%3,x4) = (0,4, 00, 00,20). We say
that inequality (arc 1) is relaxed by the lowering of the value of x;. However, some
other inequalities are violated (arcs 2 and 8). We can choose one of them to relax,
say (arc 2). This makes (xg,x ,Xo,X3,%4) = (0,4,00,20,1). At this stage, inequali-
ties (arc 4) and (arc 6) are violated. We relax (arc 6), resulting in
(Xgo X X2, X3,x4) ={(0,4,00,1,1). Finally, we relax (arc 5) and get

(x gy X1,X2,X3,x4)=(0,4,-1,1,1). The reader can verify that every inequality is
satisfied by this tuple of integers.

The above sequence of relaxation steps is, of course, not the only possible
one. But it happens to be one of the shortest possible sequences of relaxation steps
leading to the desired solution. We will prove in Chapter 3 that, under the assump-
tion that no negative cycle exists, any possible sequence of relaxations leads to the

correct answer (namely, the greatest tuple). W

2.2, Term Inequalities

In this section another problem solvable by relaxation processes is intro-
duced. It is called Term fnequalities. The need of solving Term Inequalities arises
from the author’s work in implementing a type inference program for Prolog, which
will be described in detail in Chapter 5. Here the reader just need to know that the
task of type inference for Prolog can be reduced to that of finding a most general
solution to a system of Term Inequalities, whose meaning is made precise in the fol-
lowing subsection.

What Are Term Inequalities?

First, we define the concept of terms [En]. Let Var and Func be two disjoint,
infinite sets of symbols. Var is the set of variables (ranged over by Greek letters
near the beginning of the alphabet, possibly with subscripts). Func is the set of
functors (ranged over by Italic words). Each functor f € Func has an arity, which
is a non-negative integer. Functors of arity O are also called consrants. The set
Term of terms (ranged over by o and 1, possibly with subscripts) is defined recur-
sively in terms of Var and Func by the following three rules:

(a) Every variable is a term. (That is, Var ¢ Term.)

(b) If f is a functor of arity n and 1,1, ,..., T, are terms, then f (T}, 17 ,..., T,) is also
a term.

(c) Every term is generated through finitely many applications of the above two
rules.

A term can be viewed either as a string composed of variables, functors and
parentheses, or as a tree with internal nodes labelled by functors of arities = 1 and
leaves labelled by constants and variables. Either view works well in subsequent dis-
cussions.

Secondly we need the concept of substitutions (ranged over by 6,0,y).
Abstractly speaking, a substitution 6 is simply a finite set of pairs of variables and
terms, 0 = {0,/ 1,03/ Ty ,..., &, / T, }, with the additional requirement that variables
O, 0y ,..., O, are all distinct. Given a term 6, we can apply the substitution 0 to o to
obtain another term 6C by substituting t; (1<i<n) for every occurrence of a; in ©
simultaneously. For example, let 6=f(a,B,0) and 6={a/f, B/g(}. Then

6o =7 (B.g (1),B).

10

Now we can define a pre-order on Term. Given two terms ¢ and T, we say
that G is more general than t, or, equivalently, T is an instance of o, iff there exists a
substitution 6 such that T = 00, denoted by 6= 1 or 1< 0. We write ¢ = T iff both
¢ 27 and 6 £ 1. This means that ¢ and 1 differ only in the names of their variables
and that the substitutions involved are only renamings of variables. We write 6 >
(or T < o) for the case that 6= Tt but not 6 = 1.

A system of Term Inequalities (TI) is just a finite collection of inequalities of
this form:

c2T,

where ¢ and 7 are terms. The goal in solving a system of TI is to find a substitution
0 such that, after 8 is applied to each of ¢’s and 1’s, all inequalities are satisfied.
We also require that the substitution 8 we are trying to find is a most general one, in
the sense that if ¢ is another substitution satisfying all inequalities, then there is a
substitution y such that ¢ = w0, the composition of substitution 8 followed by sub-
stitution y. It is evident that the most general solution to a system of TI is unique
up to renamings of variables, if it exists at all.

Solving Term Inequalities by Relaxation Technique

At this point the reader might have observed some similarities between TI and the
LI formulation of SPP: both of them are expressed in terms of a finite collection of
inequalities and demand a greatesr solution which satisfies every inequality in the
collection. Indeed, Term Inequalities can also be solved using similar relaxation
techniques. This is illustrated in the following example.

Example 2.2.1: Consider the following system of Term Inequalities, which results
from Example 5.3.1 where the type of the Prolog predicate append/3 is inferred.

Approximation 0:

(list (11),62,82) 2 (Y1,Y2,Y3) (1%
([iSt (n3)!86!1i5t (T!3)) 2 (Yl 372373) (2)
(Y1,Y2,Y3) 2 (list (N3),86,list (M3)) (3)

Observe that only Ineq. (3) is satisfied now, both Ineq. (1) and Ineq. (2) are violated.
So, let’s choose an inequality, say Ineq. (1), to relax. By relaxing a term inequality
0 2 T we mean finding a most general substitution 6 such that 8¢ > 67 really holds.
For Ineq (1), one obvious substitution that relaxes it is

{11/ list(Mg), Y2/Ms> Y3/ M5 }-
After applying this substitution to all inequalities, the system becomes:

Approximation 1:
(st (M).85,8) 2 (list (M) MsiM) M

11

(s
&

@
g o] |y
o ()
)

| 4]
o
5] |@
(&)

Figure 2.1.1.
An Example of (Single-Source) Shortest-Path Problem
and Its Solution by Relaxation.

12

(list(M3),8g.list (M3)) 2 (lisz (Mg):Ms:Ms) (2%)

(list (M) Ms:M5) 2 (list (M3),86,ist (13)) (3)

We can repeat such a relaxation step again and again, until every inequality in the
system is satisfied. The trace of one possible sequence of relaxation steps is listed
below. The inequality chosen for relaxing at each step is marked by an asterisk (*).

Substitution:
{ N4/Me, N5/ list (Mg) }

Approximation 2:

(list (M}),99,07) = (list (M), list (Mg),dist (Ng)) (D
(list (N3),06,list (M3)) 2 (list (Mg),list (M), list (Mg)) (2)
(list (g, list (Mg),list (Mg)) 2 (list (M3),0,list (M3)) (3%

Substitution:
{ M3/M3, 8¢/ list(n7) }

Approximation 3:

(Vist (N}),82,8) 2 (list (M),list (Me).Jist (M) (1)
(List (M), list (Ng),Jist (M7)) 2 (Uist (M), list () fist (M) @)
(list (Mg, list (Ng),list (Mg)) 2 (list (Mo, list (M) list (7)) (3)

At last, every inequality in the system is satisfied. The composition of all substitu-
tions used in this sequence of relaxation steps is

{ Y1/ list (M), Y2/ list (g), Y3/ list (Ng), Bg/ list (N7), M3/ M7 }.
|

2.3. Monadic Term Inequalities: Prefix Inequalities

Due to their complexity, it turns out to be very difficult to develop a formal
theory for the relaxation processes we used to solve Term Inequalities. Yet, a for-
mal theory is still highly desirable, for it can give us some insight into the underly-
ing mechanisms of these relaxation processes. Therefore, we consider in this sec-
tion a restricted version of Term Inequalities, which does permit a formal analysis.

The restriction which we impose on Term Inequalities is called the Monadi-
city Restriction: only monadic functors (i.e., functors of arity 1) are allowed in the
terms of a system of Term Inequalities. It will be shown that the monadic version of
Term Inequalities can be re-formulated as a problem concerning merely sirings,

12

instead of terms. This new problem is called Prefix Inequalities, which will be stu-
died extensively in Chapter 3 and 4.

Effects of the Monadicity Restriction

Under the monadicity restriction every single Term Inequality is of the form:
(i,j20)

F1lF 2lf i (@).0)) 2 g 1(8 208 (B)--.)). (2.3.1)

It is easy to see that, by the definition of 2, Ineq. (2.3.1) holds iff f ;f ... f; (viewed
as a string) is a prefix of g ,g,... g; (also viewed as a string). Any instantiation of o
will replace o by a term of this form: (k 2 0)

hy(ha(. e (Y).2)),

which can also be viewed as a string h;h,... by, The substitution itself may be
‘viewed as the concatenation of sitings ff,...f; and hh,... b (in that order).
Similarly for instantiations of B. Therefore, (2.3.1) is equivalent to the following
inequality on strings:

fif2-fion2g182--8;8, (23.2)

(here 2 is now read as "is a prefix of"; o and B now range over strings), in the sense
that the solution of either one can be transformed into the solution of the other in an
obvious way. Ineq. (2.3.2) is called a Prefix Inequality, since the relation "is a prefix
of" is used to construct it.

The above argument for replacing a monadic Term Inequality by a Prefix
Inequality applies equally well to the case in which there are many inequalities cou-
pled together which need to be solved simultaneously. The reason is that, with only
monadic functors allowed, we never need to identify (i.e., unify) two different terms
as might be needed for the general case. For example, if we want to solve the ine-
quality

flo,a) 2 f (B, g ()

it is necessary to unify terms P and g (y) by applying a substitution like:
{B/g(d),v/8}.

Obviously, this kind of situation never happens when there are only monadic func-
tors. Hence, under the monadic restriction, when a variable o is substituted for by a
term k ((h,(...h(B)...)), the actual name of the variable B is of no importance, as
long as it is different from all the other variables. The only thing that matters is the
string h h,.. h;. Therefore, we will re-formulate the problem of monadic Term
Inequalities into a problem on strings -- Prefix Inequalities, because the latter is
mathematically and notationally much easier to deal with than the former.

Formal Definition of Prefix Inequalities
To make the term Prefix Inequalities more precise, some concepts and notations

need to be introduced or made more precise. This is done in the following para-
graphs.

13

Let Z be an alphaber of symbols, T* the set of all (finite) strings over Z,
including the empty string €. We will use Latin letters such as a,b, ¢, for sym-
bols and Greek letters such as A, p, 0, T, for strings. The concatenation of two
strings © and T is defined in the usual way, denoted by ot. For any string p, let
|p| € N denote the length of p, which is the number of symbols in p (including
repetitions). In particular, |g| = 0.

Definition 2.3.1:1 For any two strings 6,T€ X', we say that G is a prefix of 1,
denoted by 6 = T or T < G, iff there exists a p € " such that T = op.

Lemma 2.3.2: > partially orders £*.
Proof: It suffices to show that > has the following three properties:
(a) Reflexiviry. This is so since 6 = O¢ forany G € =*

(b) Anti-symmetry. Suppose ¢ 2T and T2 6. Then there are p, p” such that
t=06p, o=1p’.
This implies that
e=1=0p = (1p)p = Tp’P),
which in turn implies that p’p = €. But this holds only if p’=p =¢.

(c) Transirivity. This can be easily verified using the associativity of the concatena-
tion operation.

A property of the partial order > which has important implications in Chapter
3 is proved below.

Lemma 2.3.3: Let {0, }ien be @ decreasing sequence of strings with a lower
bound 1 under ordering 2, that is,

0’020'1 20‘22...21'.
Then there must exist a kg € N such that o, = ¢ _for all k 2 kg

Proof: If otherwise, then { |0y} }y-n IS an unbounded sequence of natural
numbers, contradicting the hypothesis .hat [T| € N is an upper bound of that
sequernce.

Briefly speaking, an instance of Pl is just a finite collection of inequalities of
this form:
Ax 2 py,
where A and p are given strings, x and y are string variables whose values are to be

IThe symbols > and < are used for many different purposes in this Thesis. The
reader should, however, always be able to see the desired interpretation from the
context.

14

found. More formally, we have:
Definition 2.3.4: An instance of Prefix Inequalities (PI) is a triple (Z, G, I), where
(a) Z is an alphabet;

(b) G=(V,A) is a di-graph with node set V={1,2,.,n} and arc set
A={1,2,..,m} forsomen,m21;
(c) Iis an assignment which assigns to each arc j € A a prefix inequality

Ij : leﬁom(j) 2 pjx,a(]-), (2.33)
where *lj, p; € ¥ are given strings, {x, X3 ,..., X, } is a set of variables ranging
overX'.

The problem is to find the greatest n-tuple of strings (under the partial order 2)
which satisfies eachI;, 1</ <m.

Observe the similarities between PI and LI-formulated SPP. Indeed, both are

special cases of Relaxation Problems defined in Chapter 3. More striking similari-
ties will be seen in Chapter 4.

15

CHAPTER 3.
A Formal Theory of Relaxation Processes

In this chapter a formal theory of relaxation processes is developed. We
begin with the definition of Relaxation Problems, which is a formal characterization
of problems subject to solution by relaxation techniques. The Shortest-Path Prob-
lem and Prefix Inequalities are shown to be special cases of Relaxation Problems.
Then we formalize the relaxation procedures which have been exemplified in
Chapter 2 into the so-called General Relaxation Semi-Algorithm, which can be used
to solve Relaxation Problems. Some important properties of this semi-algorithm are
proved, which give us some insight into, and also {partially) justify our definition of,
Relaxation Problems. Finally we specialize the General Relaxation Semi-Algorithm
to solve the Shortest-Path Problem and Prefix Inequalities, and study what conse-
quences the general properties of the semi-algorithm have on these two special
cases. In particular, the only-if part of Theorem 2.1.3 is proved.

Not all questions are settled down by the formal theory of this Chapter. The
most prominent one is the possible non-termination of the General Relaxation
Semi-Algorithm. We will study, and solve, this problem with respect to SPP and PI
in the next Chapter.

3.1. Relaxation Problems

Several problems which are solvable by relaxation techniques have been
presented in Chapter 2. The reader, after examining those problems and their solu-
tions through relaxation processes, must have sensed some striking similarities
among them. In this section we will attempt a formal characterization of this kind of
problems, which will be termed Relaxation Problems. The justification of our for-
mal definition, however, does not reside in the definition itself, but in its implica-
tions, as will be seen later.

To give a formal definition of Relaxation Problems, some notions are
needed.

Definition 3.1.1: A poset (P, 2) has the Bounded Descending Chain (BDC) pro-
perty iff, whenever { p; }; c N IS an infinite descending chain in P with a lower
bound q € P, that is,

Pozp12p22..24,
then there exists a k5 € N such that p, = p; forall k 2 k.

16

Definition 3.1.2: Let (P, 2) be a poset. A set C c P is called a relaxable subset of
P iff for any p € P, the set

Clp={qe Clq<p} (3.1.1)
either has a greatest element, or is empty.

Definition 3.1.2a: Whenever C is relaxable and C | p = &, let
RELAX(C,p)= max {C ! p}.
Moreover, whenever RELAX(C, p) is used, it is implied that C l p=<.

Notice that p € C iff RELAX(C, p) = p. Now we are ready to give the for-
mal definition of Relaxation Problems.

Definition 3.1.3: A Relaxation Problem (RP) consis " a triple (P, =, pp), where
(a) P = (P, =) is a poset with the Bounded Descend:: ! _ain property;

(b)) 2={C;,C,...., C,,}is a finite collection of re/ - ‘= subsets of P;

(c) pg is an arbitrary element of P.

The task is to find the greatest element of P which is < p, and belongs to each C;
(1<j<m). In other words, we want to find the greatest element of the set

m
Zlpp= [nlcj]ipo. (3.1.2)
j= :
Z 1 pg is, of course, an abuse of notation.

Intuitively, the subsets C;, C, ,..., C,, represent the constraints that we want
to satisfy. For a constraint C; and a pomt pe P, wezay thatp satisfies CjorC;is
in-kilter at p, if p € C;, otherwise we say that p violares C; or C; is our- of - kilter at
p. Thus, the task of an RP is to find the greatest element Wth{l satisfies all con-
straints and < some given element. Moreover, we call RELAX(C p) the relaxa-
tion of constraint C; at point p. This terminology stems from the observatlon that,
if p violates C R]fLAX(C p) is in some sense the minimal adjustment to p that
is necessary to relax the out-of-kﬂtcr constraint C; (that is, bring C; back to in-
kilter state).

3.2. Examples of Relaxation Problems
In this section we show that our definition of Relaxation Problems is general
enough to encompass (LI-formulated) SPP and P1. Before digging into the details of

individual problems, we would like to state (without proof) some simple properties
of products of posets, which will be very useful in the subsequent discussion.

17

Let (P, 21), (P2, 23),..., (P,, 2,) be posets, (P, 2) their Cartesian product
with the natural order. It turns out that both the Bounded Descending Chain pro-
perty and the relaxability of subsets are inheritable from the component posets to the
product poset. More precisely, we have:

Lemma 3.2.1: Poset P has the BDC property iff each P;, 1 <£i < n, has the BDC
property.

Lemma 3.2.2: Let1<i;#i,<n. Suppose C is a subset of P defined by

Cz{(P} :---;Pn)e P | (Pil:Piz)E D }’

where D is a relaxable subset of P; xP;. Then C is a relaxable subset of P.
Moreover, we have:

RELAX(C, (P 1, P2 1t Pa)) = (@ 1 42 o Gn)
if, and only if,
RELAX(D, (7;,,p:,)) = (¢, d q;=p; for i #iy,ip, 1<i<n.

Now we are ready to show .. oth (LI-formulated) SPP and PI are special
cases of Relaxation Problems.

(LI-Formulated) Shortest-Path Proniem

Recall that an LI-formulated SPP is the problem of finding the greatest tuple of
extended integers satisfying the Linear Inequalities associated with a (traditional)
instance of SPP. Using the same notation as in Section 2.1, let (G, L) be an instance
of SPP, where G =(V, A) is a di-graph without self-loops, V=1{0,1,2,..., n} is the
set of nodes, A={1,2,...,m} is the set of arcs, node 0 is the source node, and
L : A — Zis the length-labelling mapning. Its associated Linear Inequalities are

IJ . xﬁ0m0)+Lj me(j), ISjSm
(3.2.1)
02x0

To show that the LI-formulated SPP comresponding to the above system of LI does
specify a Relaxation Problem, it suffices to identify the three components of an RP.
With the same notation as in Definition 3.1.3, this is done in the following:

(a) Let P=2Z""1, the (n+1)-st power of the poset Z of extended integers, partially
ordered by the component-wise generalization of the natural (total) order of
extended integers. Since Z has the BDC property, it follows from Lemma 3.2.1 that
P also has the BDC property.

(b) Let Z={C,, C,,..., C,, }, where C; (1<j<m) is the constraint subset associ-
ated with the inequality I; in (3.2.1) and defined by

18

C_] ={ (do,dl yendy) € P | dﬁ'om(j) +L] 2 to (j) }. (3.2.2)
The relaxability of C; will be proved soon (in Lemma 3.2.3).

(€) pg=(0,00,00,...,00) € P.

Lemma 3.2.3: Each C; (1<j <m) is a relaxable subset of P.

Proof: By Lemma 3.2.2, to show that C; is a relaxable subset of P, it is sufficient
to show that the set

D={(x,y)e Zx2Z |x+L; 2y}

is a relaxable subset of ZxZ. Note that since there is no self-loop in graph G, it is
always true that from (j)#to(j). This is_why we need only to consider the 2-
dimensional set ZxZ. Given any (a, b) € ZxZ, consider the set

E=Dl@,b)={(x,y)e Exilx-}-Lij, x<a,ysb}.
There are two cases:

(i)Ifa +L; 2 b, then (a, b) is clearly the greatest element of E.

(i) If a +LJ <b, forany (x,y)e E, we have (x,y) £ (x, x+L;)<(a,a+L;), so
(a, a +L;) is the greatest element of E.

So, D is a relaxable subset of ZxZ and
(a,b) ifa+L;2b

(a,a +Lj) ifa +Lj <b (3.2.3)

RELAX(D, (a, b)) = {
H

Prefix Inequalities

Using the same notation as in Section 2.3, let us consider an instance of PI,
(Z, G, I), where £ is an alphabet, G =(V, A) is a di-graph without self-loops,
V={1,2,.,n}is the set of nodes, A={1,2,...,m} is the set of arcs, and I assigns
to each j € A a prefix inequality

D A Xpom(j) 2 P X0 () (3.2.4)

with given A;, p; € =*. The problem is to find the greatest n-tuple of strings under
the partial ordcr 2 ("is a prefix of ') which satisfies each I;, 1 £j <m. To show that
this instance of PI also specifies an RP, we need to 1dent1fy the three components of
a Relaxation Problem, as required by Definition 3.1.3. This is done in the following:

(a) Let P=(=*) the n-th power of the poset =¥ partially ordered by the
component-wise generahzanon of the pamal order "is a preﬁx of' on £*. Since it

has been shown in Lemma 2.3.3 that £* has the BDC property, it follows from
Lemma 3.2.1 that P also has BDC property.

19

(b) Let =E={C,,C,,...,C,}, where C; (1<j<m) is the constraint subset associ-
ated with prefix 1nequa11ty I (3.2.4) and, deﬁned by

f ={ (Tl s Ty) € P| A‘jtﬁ"om(j) 2 Pi T () }- (3.2.5)
The relaxability of C; will be proved soon (in Lemma 3.2.5).

(©)pgp=(g,€,....e)e P. Clearly py2pforanype P.

To prove the relaxability of C;’s, we need the following notation.

Definition 3.2.4: Let ,T< X*. Suppose 62 1. We define 6!t to be the unique
string p € ¥ such that 6p = .

Intuitively, 6~ is obtained from 1t by "cutting away" the prefix . Note that
o~ 1 is undefined if 6 2 1 does not hold.

Lemma 3.2.5: Each C; (1<j £m) is a relaxable subset of P.

Proof: By Lemma 3.2.2, to show that C; is a relaxable subset of P, it is sufficient
to show that the set

D={(x,y)e *xZ" | Aix2p;y}
is a relaxable subset of £* x*. Given any (0, 1) € Z* xZ*, consider the set
E=Dl(0,0)={(x,y)e Z*xE* | A;x 2p;y, x <0,y <T}.
There are three possible cases:

() If A; 6 2 p; T, the greatest element of E is clearly (0, 1).

(11) If A\jo< p; ° then for any (x,y)e E, Ajx £A;0< p;T<p;, so both
p; (7L x) and p;”" (A; ©) are well-defined. Furthcr, we have

0, ¥) S (x, p; A x)) € (0, p; 7 (A O)).
Since (o, p j"l (A;j o)) € E, it is the greatest element of E..

(m) If C and p; T are incomparable, then we note that for any 0’ < cand v < 7,

c{p ;T are still incomparable. So E = @.

Therefore, D is a relaxable subset of *xx* and

(5, 1) ifA;jo2p;1
RELAX(D, (6,1)) =1 (5,p,7'(A;0)) ifX;0< p;1 (3.2.6)
undefined if A; 0 and p; T are incomparable

20

3.3. General Relaxation Semi-Algorithm

In the last section it is shown that'both SPP and PI fit into our definition of
Relaxation Problems. We will, in this section, formalize the relaxation techniques
which are used in Examples 2.1.1 and 2.3.1 to solve SPP and PI, respectively. The
result is a semi-algorithm, the General Relaxation Semi-Algorithm (GRSA), for
solving Relaxation Problems. It is called a sermi-algorithm because it may never halt
on some problem instances. Then we will prove some important properties of
GRSA, which justify our claim about the capability of GRSA and also shed some
light on the properties of Relaxation Problems themselves.

As having been pointed out in Chapter 1, a typical relaxation process consists
of the selection of initial approximation to the solution and the (possibly infinite)
iteration through relaxarion steps, which are local adjustments to the intermediate
approximations in attempt to satisfy some constraints. The goal, that is, the ter-
minating condition, of the iteration is the satisfaction of a// constraints. Put formally
and supplemented with error-handling code, we get the semi-algorithm GRSA

shown in Figure 3.3.1,! which is supposed to be applied to a Relaxation Problem
(P, =, pg) as the one in Definition 3.1.3.

Note that the if test at Line (4) of GRSA is both necessary and sufficient for
the applicability of the Relaxation Step at Line (5), since each C; is assumed to be a
relaxable subset of P.

Properties of GRSA

Given a Relaxation Problem (P, Z, pg) as the one in Definition 3.1.3, let us consider
the execution of its corresponding GRSA. Suppose the successive values assumed
by the variable Approx when the control is at Line (2) of GRSA are
Pos P1> P2 s--s Pis oovee This sequence may or may not be finite, depending on whether
or not the semi-algorithm terminates (either through Line (7) or through the halt
statement). In either case, the following two propositions are true.

Lemma 3.3.1: Each p, is an upper bound of the set Z | py.

Proof: First note that this lemma is vacuously true when = | p=@. So suppose
= 1 p # @. The proof is by induction on k. Note that the argument is valid whether
{p,} is finite or not. The induction base is simple: py is an upper bound of Z | p,
simply by definition. For the induction step, suppose that p, is an upper bound of
Z | py. Assume that

Pr+1 = RELAX(C; , pr)

1All (semi-)algorithms in this Thesis are expressed using an Algol-like syntax.
Their semantics should be self-explanatory in most cases. Comments (/*....*/) are
added for clarification in spots.

21

/* Approx is a variable whose values are Approximations to the solution. */
var Approx . P;
begin
(1) Approx « pyg;
(2) while ~(V;j(1<j<m) Approx € C;)do
(3) Select arbitrarily a C;, 1<j<m, such that Approx ¢ C;;
4) if C; l Approx # & then
(5 Approx « RELAX(C;, Approx) /* Relaxation Step */
6) else
print("Error: Z | py = @");
halt
end if
end do;
(7 print("The greatest element of = | pgyis ", Approx);

end.

Figure 3.3.1. General Relaxation Semi-Algorithm (GRSA).

=max{C;, { py}, forsome C; , 1<jo<m. (3.3.1)

m
Notice that Z ! pg= ﬁl C;|{ppcC;,. By the induction hypothesis,
j'—“

ElpycC;, L p,. It follows tifat p,,; is an upper bound of = | p. This com-
pletes the induction. W

Lemma 3.3.2: {p,} is a strictly decreasing sequence.
Proof: Note that any two consecutive terms p; and p;,; in sequence {p,} are

related by an equation like Eq. (3.3.1). Hence py 2 py,- Also note that, by the
selection at Line (3) of GRSA, constraint C; is chosen for relaxing at Line (5)

22

because p, ¢ C;. But p;,;€ C;. So p; and py,; can not be equal. That is,
Pk > Pi+1

There are three possible outcomes of the execution of GRSA: (a) it exits
through Line (7), (b) it halts by taking the else branch at Line (6), or (c) it just runs
forever, never stops. If the outcome is (a), then we say that the GRSA exits success-
fully. Below is the main result of this section.

Theorem 3.3.3: Given a Relaxation Problem (P, Z, py), ZE 1 pg # @ if, and only if,
the corresponding GRSA exits successfully. Moreover, the final value of variable
Apg_rix when the semi-algorithm exits successfully is exactly the greatest element
of = Po-

Proof: Suppose that the semi-algorithm exits successfully with the final value of
Approx equal to p;, for some kg e N. Due to the test at the start of the while-loop

(Line (2)), pg, satisfies all constraints. Bcsidcs, Pr, < Po, since sequence {p;} is

dccreasmg by Lemma 3.3.2. So, p;, € = =l pg But Py, is an upper bound of

=4 pPg by Lemma 3.3.1. It follows that Py, 18, as desued the greatest element of
=4 Po- This completes the proof of both the if and the moreover parts.

For the only-if part, suppose that = { py # @, containing (at least) an element
q. Note that, by Lemmas 3.3.1 and 3.3.2,

Po2P12P22...24.

So the semi-algorithm can never halt prematurely by taking the else branch of the if
test at Line (4), since at least q & 4 p for any j and k. Now assume that the
semi-algorithm never terminates. Tincn sequence {p,} is an infinite descending
chain with a lower bound q. Since P has the Bounded Descending Chain property,
we conclude that there exists a kg€ N such that p; =p,_ for all £ 2 k(. But this
contradicts the szrict decreasingness of {p;} shown in Lemma 3.3.2. Therefore, the
semi-algorithm must exit successfully. This completes the proof. M

Corollary 3.3.4: Z ! py always has a greatesr element as long as it is not empty.
(In other words, the property of relaxability is closed under set intersections.)

Proof: Just run the General Relaxation Semi-Algorithm, which, by the above
Theorem, will give the greatest element of = | po whenever it is not empty. Il

Notice that the selection of violated constraints at Line (3) of GRSA is
entirely arbitrary. Theorem 3.3.3 guarantees that, if there is any solution at all, then
you will get it no matter how you select constraints to relax. So we may say that
GRSA is nondeterministic. However, GRSA has a serious weakness: it may never
halt when there is no solution. Remedies will be presented in Chapter 4 with respect
to SPP and PI. There, it turns out that to detect the potential non-termination of
GRSA, violated contraints can not be selected to relax in an entirely arbitrary way.

23

3.4. Applications to SPP and PI

In this section we will apply the results of Section 3.3 to (LI-formulated)
SPP and PI, both of which have been shown in Section 3.2 to be special cases of
Relaxation Problems. We will first specialize GRSA to solve the individual prob-
lem, and then see what consequences this new approach has.

(LI-Formulated) Shortest-Path Problem

Since (LI-formulated) SPP is a special case of RP (Section 3.2), GRSA can (of
course) be used to solve it. The specialized version of GRSA is called RSA-SPP

(for Relaxation Semi-Algorithm - SPP) and shown in Figure 3.4.1.! Notice that the
Relaxation Step at Line (4) of RSA-SPP uses Eq. (3.2.3). Also note that the error-
handling code in GRSA 1is unnecessary here, since any single linear inequality is
always relaxable.

var x :array [0 .. n] of Z; /*The counterpart of Approx in GRSA */
begin

(1) x «(0,00,00,..., 00);

(2) while ﬂ(Vj(lstm)xﬁa;,,U)+LjZx,o(,-))do

3) Select arbitrarily a j, 1$jSm, such that X, (i) + Lj <X ()5

4 Xo(j) € Xpom(j) T L; /* Relaxation Step */
end do;

(5) print("The solutions are: ", xg, x 1, ... , X,);

end.

Figure 3.4.1.
RSA-SPP: Relaxation Semi-Algorithm for Solving LI-formulated SPP.

The reader can verify that both sequences of relaxation steps shown in Figure
2.1.1 are obtainable by making different selections at Line (3) of

RSA-SPP when it is applied to the instance of SPP in Example 2.1.1.

IThe notation for arrays in Figure 3.4.1 (and all later figures) is somewhat non-
standard. Instead of using x [], we use x; for the i -th component of array x.

24

Now we are able to prove the only-if part of Theorem 2.1.3 in the lemma
below.

Lemma 3.4.1: Given an instance of SPP and its associated LI, if the shortest dis-
tance to each node in the di-graph is well-defined, then there is a greatest tuple of
extended integers satisfying every inequality in the associated LI, and RSA-SPP will
exit successfully when applied to the associated LI

Proof: Just note that the tuple of the shortest distances to all nodes in the di-graph
always satisfies the associated LI. By Corollary 3.3.4, there is a greatest tuple satis-
fying the associated LI. Moreover, by Theorem 3.3.3, RSA-SPP must exit success-

fully, because it is just a specialized version of GRSA. M

Prefix Inequalities

Similarly, we can specialize GRSA to solve PI. What we get is called RSA-PI,
shown in Figure 3.4.2. Notice that Lines (4) - (6) of RSA-PI use Eq. (3.2.6).

Theorem 3.4.2: Given any instance of PI with n variables, there is always a
greatest n-tuple of strings which satisfies every inequality in this instance, as long
as there is any solution at all. Moreover, RSA-PI will exit successfully with the
greatest solution when applied to this instance.

Proof: Since PI is a special case of Relaxation Problems (Section 3.2), this theorem
is just a specialized version of Theorem 3.3.3 and Corollary 3.3.4. W

25

(H
(2)
(3

4

)
(6)

(M

varx :array [1..n] of ¥ /* The counterpart of Approx in GRSA */
begin
x ¢ (&,¢€,...,8);
while —(Vj (1< <m) X Xpom () 2 P X1o(j)) 40
Select arbitrarily a j, 1$j<m,
such that A; Xom (j) 2 P} X0 (j) dOes not hold;
if X X50m(j) < PjXio(j) then
X0y € P Aj Xpom(j)) /* Relaxation Step */
else
print("Error: No solution at all!"});
halt
end if
end do;
print("The solutions are: "', xq, ... , X,);

end.

Figure 3.4.2. RSA-PL Relaxation Semi-Algorithm for Solving PL

26

CHAPTER 4.
Two Case Studies on Relaxation Processes

In the last chapter we described a General Relaxation Semi-Algorithm
(GRSA), which can be employed to solve general Relaxation Problems. However,
GRSA is far from practical, since it may run forever on some input without giving
any answer or even warning. Some of this kind of "pathological" situations are
presented in Section 1 of this chapter.

In an attempt to improve GRSA, the author decide to concentrate on two spe-
cial cases of Relaxation Problems: (LI-formulated) SPP and PI. In Section 2 we first
prove some interesting and very useful properties of LI-formulated SPP, which are
concerned with spanning trees of shortest paths. With these results we are able to
modify GRSA to obtain a polynomial-time algorithm for solving LI-formulated SPP.
As a by-product, we are also able to finish the proof of Theorem 2.1.3.

Analogous results for PI are obtained in Section 3, using arguments almost
identical to those in Section 2. Then these results are used to transform GRSA into
a polynomial-time algorithm for solving PL. Moreover, the reader will observe the
striking similarities between LI-formulated SPP and PI.

4.1. Possible Non-Termination of GRSA

The General Relaxation Semi-Algorithm (Figure 3.3.1) and its variations
RSA-SPP (Figure 3.4.1) and RSA-PI (Figure 3.4.2) are only semi-algorithms: they
may never terminate on some inputs. Although it has been shown in Theorem 3.3.3
that, whenever the set = | p, of feasible solutions is non-empty, GRSA must ter-
minate in finitely many steps with the correct answer (i.e., the greatest element of
= ! py), nothing was said about what might happen if =1 py=@. It turns out that
GRSA may indeed run forever in some of this kind of situations, as the following
two examples will show.

Example 4.1.1: Consider the Shortest-Path Problem shown in Figure 4.1.1, which
is drawn according to the same notational conventions as Figure 2.1.1.

The Linear Inequalities associated with this SPP are given below:
0 2Xx 0

x0+12x1 (arcl)

27

x1+(-3)2x, (arc 2)

xp2+12x (arc 3)

Now let us run RSA-SPP on these Linear Inequalities. An initial segment of the
execution trace is also shown in Figure 4.1.1. Though RSA-SPP is nondeterminis-
tic, this particular instance of SPP allows only one single sequence of relaxation
steps, in contrast to the many in Example 2.1.1. It is easy to see that, after the first
relaxation step (relaxing (arc 1)), (arc 2) and (arc 3) are alternately violated, result-
ing in a relaxation sequence: (arc 2), (arc 3), (arc 2), (arc 3), (arc 2), ad infinitum!

The trouble results from the cycle consisting of nodes 1 and 2: it is of a
negative length (-2). Summing up inequalities (arc 2) and (arc 3) and cancelling the
unknowns x, and x,, we get

=220,

an obvious contradiction! This means that the LI have no solution at all. So the
non-termination of RSA-SPP does not conflict with Theorem 3.3.3. H

Example 4.1.2: For another example of the possible non-termination of GRSA, we
turn our attention to Prefix Inequalities. Consider the following instance of PI:

ax12x2 (1)

b122X1 (2)

where a and b are two symbols. Let us run RSA-PI on these Prefix Inequalities.
An initial segment of the execution trace is shown in Figure 4.1.2.

It is clear that we can alternate the relaxations of inequalities (1) and (2)
indefinitely but never satisfy them simultaneously. Just as in the previous example,
the trouble stems from some kind of "negative" cycles. Note that from inequality
(1) we have:

bax 1 2 bx 2. (3)
Using the transitivity of 2, we get from (2) and (3) the following inequality:
bax 1 2 X1

which clearly can never be satisfied by any (finite) string x ;.

The above two examples show that it is indeed possible for GRSA never to
halt on some inputs. In order to make GRSA _practically usable, we would like to
modify GRSA in such a way that, whenever = Ll pg =, the improved version of
GRSA is able to discover and report this fact in finizely many steps. We will do this
for SPP and PI in the next two sections.

29

ax12x2

bx,2x,

xpxg)=

(E,l £)
(1)
d
(&,a)
|
(2
l.)
(ba,a)
|
(1)

l
(ba,aba)
|
(2
l)
(baba,aba)

|
1
(L)

(baba, fbaba)

Figure 4.1.2. An Instance of PI with a "Negative” Cycle.

ey
2

4.2, Case Study I: LI-Formulated Shortest-Path Problem

30

In this section we will concentrate on one particular Relaxation Problem --
the LI-formulated Shortest-Path Problem. The major result of this section can be
summarized as follows. Suppose an LI-formulated SPP has a greatest solution.
Using the maximality of the greatest solution and some general properties of di-
graphs, we will argue that there exists a spanning forest in the underlying di-graph
with the properties that the Linear Inequalities corresponding to the tree arcs of the
forest are satisfied as equalities by the greatest solution, and that the final values of
the root nodes in the forest are their initial values. This result will enable us not only
to design a polynomial-time algorithm for LI-formulated SPP, but also to finish the
proof of the equivalence of the two formulations of SPP (Theorem 2.1.3).

Throughout the rest of this section we will work on the following instance of
LI-formulated SPP:

I_] : xfrom(j)""Lj me(j), 1€j<m
(4.2.1)
02X0

which is associated with an instance (G,L) of SPP, where G =(V, A),
V={0,1,2,...,n} (node O is the source node), A={1,2,..m},and L : A > Z.
We also make the following assumption:

Assumption: LI (4.2.1) have a solution.

By Corollary 3.34, (4.2.1) has a greatest solution, which is denoted by
d=(dg, dy,..,d,). Letus apply RSA-SPP to (4.2.1). The initial approximation is
(xgs X1 sooer X;) = (0, 00 ,...,). By Theorem 3.3.3, RSA-SPP must reach the final
approximation (xg, X1 ,..., X,) = {(dg, dq ,..., d,;) in finitely many steps. So, we can
say that the initial value of x; (or, atnode i)isecfor1<i <n,or 0ifi =0. Simi-
larly, we say that dg, d, ,..., d, are the final values of xg, x1,..., x,, respectively.
Note that, by the monotonicity of RSA-SPP (Lemma 3.3.2), the final value at each
node is less than or equal to the initial value.

Qur first observation is that there must be some node whose final value is
equal to its initial value, as proved below.

Lemma 4.2.1: Let
V,={i e V| d; is the initial value of x; }.
Then V, = .

Proof: In fact, we will prove a stronger result: 0 € V, (i.e.,, dg=0). Suppose the
contrary: dg < 0. Let’s consider the tuple

d'=(dy.d, . d,)=(do+1,d+1 .., d,+1).

It is easy to see that each inequality in (4.2.1) is still satisfied by d”. In particular,
02dy, since dy<-1. But d’> d, for at least dy’ > d, This contradicts to the

assumption that d is the greatest solution of (4.2.1). I

Remark: The reasons for which we choose to use the weaker result are: (a) the
weaker result is already enough for our purpose, and (b) by using the weaker result,
most of the arguements in this section can later be translated almost literally to
prove similar results for PI. Remember that in the case of PI, there is no longer any
distinguished source node.

Throughout the rest of this chapter "tree” really means "direcred tree”. Simi-
larly, a forest is a finite collection of disjoint direcred trees. We say that a tree in G
is well-rooted iff its root is in V,. A forest in G is said to be well-rooted iff each
tree of the forest is well-rooted.

31

Now we define a subgraph of G, G, =(V, A,), as follows. For any arc
j €A, je A, if and only if
dﬁom(j)"'L': to (j)- (422)

In other words, an arc j is in A, iff inequality I; is satisfied as an equality by the
greatest solution d. Since G, is finite and V, ;t@ there must exist a maximal
well-rooted forest F, = (V,, A[) in G, (not G') That is, F; is a well-rooted forest
in G, and for any j €A, —As (oranyie V~V,), F, U {j} (resp. F, U {i})is
not well-rooted, if it is a forest at all. It follows immediately that V, ¢ V,, for
F, UV, is still a well-rooted forest in G,. What we want to show is that F, is in
fact a spanning forest of G, i.e., V;, = V. To prove this, we need the following sim-
ple lemma.

Lemma 4.2.2: For any arc j € A, if from(j)e V, but ro(j)e V-V, then
Jj ¢ A,, thatis,

dﬁ'om(j) +Lj > dwo) .

Proof: Suppose the contrary: j € A,. Then clearly F, U {j} is still a well-rooted
forest in G,, contradicting to the maximality of F,.

Now we are prepared to prove the major result of this section, which is stated
in the following theorem.

Theorem 4.2.3: F, is a well-rooted spanning forest of G, (hence of G).

Proof It remains to be shown that V, = V. Suppose not, i.e., V-V, # . Define
=(dg,dy{ ,...d,)e Z" by

d, ifieV,
4 = d;+1 otherwise.

We claim that d’ satisfies each inequality in (4.2.1). First, notice that, since

V, 2 V,,02d, even when node 0 € V,.! Consider an arbitrary j € A. There are
four possibilities as to the positions of from (j) and to (j):

(DI from(jye V;andro(j) e V,, then
4 pom(jy + Lj = dpom(jy + Lj 2 dig(jy = d ()
) Iffrom(j) e V,andto(j) ¢ V,, then
’_ﬁ'om(i) +Lj = (dﬁom(])+Lj)+ 1 2dt00)+ 1 =d’to(j)'
(3)If from(j) & V;andto(j) € Vg, then

'And it does! But we pretend ignorance. See the proof of Lemma 4.2.1 and the
remark there.

32

pom() tLj = @romy + Li) + 1> dpomjy + Lj 2 dip(jy = d ' ().
@) from(j)e V;and ro(j) ¢ V,, then by Lemma 4.2.2
dﬁ'om(j) +Lj 2 dlo(j) +1,
which implies that
dtff‘Oﬂ‘l(j) +Lj =dﬁ'om(j) +L_] = dm(i) +1= d'fo(j)‘

Therefore, in any one of the above four cases, I; is satisfied by d”. This completes
the justification of our claim. Note that V-V, #@ and V, c V,. So d’ > d, since
d; <eoand d;"=d; + 1 for any i € V- V,. But this contradicts to the maximality

of d. SoweconcludethatV,=V. M

A Polynomial-Time Relaxation Algorithm for LI-Formulated SPP

With the help of the above theorem, we are now able to design a relaxation algo-
rithm for solving LI-formulated SPP. This algorithm we call RA-SPP (Relaxation
Algorithm - SPP), which is shown in Figure 4.2.1.

To understand RA-SPP, let us reason as follows. Given an LI-formulated
SPP with (n+1) nodes, suppose that it has a greatest solution. By Theorem 4.2.3,
there exists a spanning forest F, in the underlying di-graph with two important pro-
perties: (1) the final values at the root nodes of F, are equal to their initial values;
(2) the inequalities corresponding to the tree arcs of F, are satisfied as equalities by
the final values. Therefore, if F, were known in advance, then we could get the
final value at each node in the di-graph by doing relaxations along the branches of
F; until every leaf node gets its final value. Since F, contains no more than n arcs,
we could get the desired solution using no more than » relaxation steps.

Of course, we can not have known F, in advance. But the existence of F,
does help us design better sequencing of relaxation steps. In RA-SPP, relaxation
steps are arranged into phases. One phase corresponds to one iteration of the for-
loop beginning at Line (2) of RA-SPP. During each phase RA-SPP checks all ine-
qualities in turn (Lines (3) & (4)) and relaxes any out-of-kilter inequality whenever
one is encountered (Line (5)). A node in F has deprh k iff the (unique) directed
path from a root node of F; to this node contains k arcs. Initially, only the root
nodes (depth 0) of F; have got their final values. During the first phase, any inequal-
ity corresponding to a tree arc in F,; which connects a root node to a node of depth 1
is checked and relaxed if necessary. Recall that any relaxation process is monotonic
(Lemma 3.3.2) and that any intermediate approximation is an upper bound of the
final solution (Lemma 3.3.1). Hence, after the first phase, each node of depth 0 or 1
in F; gets its final value. Similarly, after the second phase, each node of depth 0, 1,
or 2 in F; acquires its final value. And so on. It can be easily shown by induction
on k that, after £ phases, each node of depth no more than £ in F; acquires its final
value. Since F; is a spanning forest of a di-graph with (n+1) nodes, every node has
a depth no more than n in F,. Therefore, if the greatest solution does exist, RA-SPP
must be able to reach it after n phases. If, after n phases, there is still some out-of-
kilter inequality, then there must not be any solution at all! This explains Lines (6) -

33

var x :array [0 .. n] ofi;
begin

(1) x & (0,00,00,...,00);

(2) fork « 1ton do

(3) forj « 1tom do

4) if Xpom (jy + Lj < Xgp(j) then
(5) Xi0(j) € Xpom(j) t Lj /™ Relaxation Step */
end if
end do
end do;

6) i Vj(1sjSm) xpom(jy+Lj 2 %, then
)] print("The solutions are: ", xq, X, ... , X,)
else
(8) print("Error: No solution at all!™)
end if
end.
Figure 4.2.1.

RA-SPP: A Polynomial-Time Relaxation Algorithm
for Solving LI-formulated SPP.

(8) of RA-SPP.

Time Complexity of RA-SPP

Line (1) takes O(n) time. Each iteration through the part from Line (4) to Line (5)
takes only O(1) time. So the for-loop beginning at Line (2) takes O(nm) time. The
rest of the algorithm takes at most O(n) + O(m) time. So the total time complexity
is O(nm).

34

Notice that instead of executing exactly n phases, RA-SPP could stop as
soon as all inequalities are satisfied. This can reduce the number of phases in some
occasions. But the worst-case time complexity is unaffected anyway. So we have
ignored this improvement in Figure 4.2.1 for simplicity’s sake. The same remark
applies to RA-PI (Figure 4.3.1).

Finishing the Proof of Theorem 2.1.3

The rest of this section is devoted to finishing the proof of Theorem 2.1.3, which
asserts the equivalence of the two formulations of SPP we used in this Thesis. The
only not-yet-proved part of Theorem 2.1.3 is its if part, which follows immediately
from the following lemma.

Lemma 4.2.4: Given an instance of SPP and its associated LI, if there exists a tuple
of integers satisfying the associated LI, then the shortest distance to each node in the
di-graph of the SPP (from the source node) is well-defined.

Proof: Without any loss of generality, consider the LI (4.2.1) and its corresponding
SPP. By Theorem 4.2.3 there exists a well-rooted spanning forest F; of G, and
(hence) G. Consider an arbitrary well-rooted tree T in F; whose root node has final
value o, Since oo +x =oo for any x € Z and T is a tree in G,,, it follows that for any
node i in T, d; = e. Recall that the initial value at any node except the source node
(node 0) is o0, So, if there is any node with a final value < oo, then it must belong to
a tree in F, rooted at node 0. In particular, we know from the proof of Lemma 4.2.1
that dy = 0 < s, Hence node 0 is the root of a tree in F;, which we denote by T,.

Now consider an arbitrary node i in G. If i is not reachable from the source
node, then the shortest distance to i is trivially well-defined, namely e. So, assume
node i is reachable from node 0. Let P be an arbitrary path from node O to node i.
Since L; <o for any j € A, L(P) < oo. Observe that we can run RSA-SPP on this
instance of SPP in the following manner: we start with the initial value at each node
in the di-graph, and then do relaxations from node O to node i along path 7. When
we get to node i, x; =L (P). By Lenm}a 3.3.1, L(P)2d;. Hence node i is in tree
Top. Note that there is a unique path P from node 0 to node i which is entirely in
tree Tg. Since P’ is in G,, L(P) =d;. Since we have shown that no path from
node 0 to node i can be shorter than d;, P " is a shortest path from node 0 to node i .

So the shortest distance to node i is well-defined. The proof is now complete.

4.3. Case Study II: Prefix Inequalities

In this section our attention is turned to the study of Prefix Inequalities. The
results and arguments are extremely analogous to those in the preceding section.
More specifically, we will also argue the existence of some kind of well-rooted
spanning forest, and then use the result to design a polynomial-time relaxation algo-
rithm for solving PL

35

Throughout the rest of this section we will work on the following instance of
PI:

IJ' : ljxﬁomg) 2pjx,o(j), _] €A (43.1)

where mappings from and ro are defined in terms of a graph G =(V, A),
V={1,2,.,n}, A={1,2,.,m}, and lj and p; (j € A) are (finite) strings over
an alphabet £. We also make the following assumption:

Assumption: PI (4.3.1) have a solution.

By Corollary 3.3.4, (4.3.1) has a greatest solution, which is denoted by
d=(d,,.., d,). Letus apply RSA-PI (Figure 3.4.2) to (4.3.1). The initial approxi-
mation is (xq,..., X,) = (€...., €). By Theorem 3.3.3, RSA-PI must reach the final
approximation (x ,..., X,) = (dy ,..., d,;) in finitely many steps. So, we can say that
g is the initial value of x; (or, at node i), for any 1 £i <n. Similarly, we say that
dq,.., d, are the final values of x ,..., x,,, respectively. Note that by the monotoni-
<f:iity of RSA-PI (Lemma 3.3.2), the initial value at each node is a prefix of (2) the
nal value.

Before provin,g any results, we need to define a unary operation on strings.
For any string 6 € " and 6 # ¢, let ¢ | denote the string obtained_from & by strip-
ping off the last (right-most) symbol of 6. For example, (aba)]|=ab, (a)]=¢,
where a,b € X.

Qur first result asserts that there must be some node whose final value is
equal to its initial value.
Lemma 4.3.1: Let
V,={ieV|d =¢e}
Then 'V, # Q.

Proof: Suppose the contrary: d; = € foreachi € V. Let
d=d/,..d)=W],.d,].
Consider an arbitrary inequality I; (€ A) in (4.3.1). Note that
A pom () = Qi dromD 12 (jdio () 1= 04 0)
Hence each inequality in (4.3.1) is still satisfied by d”. But d’ > d, contradicting to
the assumption that d is the greatest solution to (4.3.1). M

We say that a (directed) tree in G is well-rooted iff its root belongs to V, . A
forest in G is said to be well-rooted iff each tree of the forest is well-rooted.

Now we define a subgraph of G, G, =(V, A,), as follows. For any arc
je A, je A, if and only if

Ajjrom) = o i) (4.3.2)
In other words, an arc j belongs to A, iff inequality I; is satisfied as an equaliry by

36

the greatest solution d. Since G, is finite and V, # &, there must exist a maximal
well-rooted forest Fy = (V,, A;) in G, (not G!). That is, F is a well-rooted forest
in G, and forany j € A, ~A; (orany i € V-V,), F, U {j} (resp. F, U {i})is
not well-rooted, if it is a forest at all. It follows that V, g V., for F, UV, isstill a
well-rooted forest in G,. What we want to show is that F; is in fact a spanning
forest of G, i.e., ¥, = V. To prove this, we need the following simple lemma.

Lemma 4.32: For any arc j e A, if from(j)e V, but ro(j)e V-V, then
j ¢ A,, thatis, _

Aidgom(jy > Pido)-

Proof: Suppose the contrary: j € A,. Then clearly F, w {/} is still a well-rooted
forest in G, contradicting to the maximality of F; .

Now we are prepared to prove the major result of this section, which is stated
in the following theorem.

Theorem 4.3.3: F; is a well-rooted spanning forest of G, (hence of G).

Proof: It remains to be shown }ihat V. =V. Suppose the contrary, ie., V-V, 2.
Defined = (d’,..., d,”) € (Z*) by
d, ifieV;
d; = d;| otherwise.

Note that d” is well-defined: since V, ¢ V,, so d; #€ forany i € V-V,. We
claim that d’ satisfies each inequality in (4.3.1). Consider an arbitrary j € A. There
are four possibilities as to the positions of from (j) and ro (j):

(DIffrom(j)e V,and to(j)e V,, then
A id fom () = M jbom () Z Pjdio (i) = Pid 10 (j) -
(D Iffrom(j)e¢ V,and 10(j) € V,, then
A’jd’from(j) = (R-jdﬁom(j))-l 2 (pjdto(j))] = pjd’to(j)'
() If from(j) ¢ V,and to(j) € Vi, then
%4 som () = Mjdpom(iD 1 > Mjdpomiy 2 Pidio(y = Pjd 10y
@) Iffrom(jye Voand to(j) € V,, then by Lemma 4.3.2
Ajdpom (i) 2 (Pjdio) 1
which implies that
%4 hom () = M dpom(iy 2 (Pjdo) 1= Pid 10y -

Therefore, in any one of the above four cases, I; is satisfied by d. This completes
the justification of our claim. Since V-V, #J, d" > d. But this contradicts to the

maximality of d. So we conclude that V,=V. W

37

A Polynomial-Time Relaxation Algorithm for Solving PI

With the help of the above theorem, we are now able to design a relaxation algo-
rithm for solving PI. This algorithm we call RA-PI (Relaxation Algorithm - PI),
which is shown in Figure 4.3.1. The justification of the correctness of RA-PI is
almost identical to that of RA-SPP and hence is omitted. Here we just note that,
since there are now only n nodes in the di-graph, at most (n—1) phases of relaxation
steps are needed.

varx :array[l .. n]of £*;
begin

(1) x & (g,¢€,..,£€)

(2) fork «1to(n-1)do

(3) for j « 1tom do

(4) if A jXpom (j) < Pj¥0(j) then
(5) Xo() & P AjXpom(y) 1* Relaxation Step */
end if
end do
end do;

(6) if Vj (1<j<m) ljxfmmm 2 pjx,o(,) then

(D print(" The solutions are: ", x4, ... , x,;)
else
(8) print("Error: No solution at all!")
end if
end.
Figure 4.3.1.

RA-PI: A Polynomial-Time Relaxation Algorithm for Solving PIL

38

Time Complexity of RA-PI

First we need to estimate the lengths of the final values d{, d», ..., d,, (if they exist).
Note that all of them can be obtained by doing relaxations along the branches of a
well-rooted spanning forest K. Since the maximum depth of a node in F, is (n-1),
the Iength of any d; is of the order of O(in), where

I'=max{ |A;], |p;| | 1<j<m }.

Therefore, each pattern-match operation (in Lines (4) and (6)) and each relaxation
step (Line (35)) take at most O(/n) time.

Now we can estimate the total running time of RA-PL. Line (1) takes O(n)
time. Each iteration through the part from Line 54) to Line (5) takes O(In) time. So
the for-loop beginning at Line (2) takes O(Imn*) time. The lf-tcst at Line (6) takes
O(lmn) time. The output of answers at Line (7) takcg O(ln %) time. Line (8) takes
only O(1) time. So the total time cc . ~lexity is O(/mn <)

39

CHAPTER 5.
An Application of Relaxation Techniques: Type Inference for Prolog

After doing much theoretical work in the last two chapters, we now turn to
the investigation of the more practical aspects of relaxation techniques. In this
chapter we demonstrate the power of relaxation techniques on a real-world applica-
tion: polymorphic type inference for Prolog. An extensive knowledge of Prolog,
however, is not required in order to understand the materials in this chapter. An out-
line of the syntax of Prolog is given in Section 5.1. Those who do not know Prolog
a(t: all are referred to the excellent introductory textbook by Clocksin and Mellish
[ClMe].

We begin with introducing a polymorphic type system for Prolog and briefly
discussing why we need a type system and the corresponding type inference. Then
we show that the task of type inference is reducible to that of solving a system of
Term Inequalities and, hence, can be automated, as illustrated in Chapter 2. The
automation of type inference results in a program called TYPEINF which, given a
small amount of type information, is able to analyze a set of Prolog clauses and gen-
erate most general types for the predicates defined by those clauses. The type infer-
ence strategy adopted by TYPEINF is described. Finally, we demonstrate the capa-
bilities of TYPEINF by applying it to some test programs including itself, since it is
also coded in Prolog.

A complete listing of TYPEINF and some of its test data can be found in
Appendix II.

5.1. A Polymorphic Type System for Prolog

Prolog, like Lisp, was designed as a typeless programming language -- every
data object in Prolog is a term, and vice versa. No static (i.e., compile-time) type
checking is done. The typeless approach of programming, though flexible, is highly
error-prone, as the usefulness of strong typing in detecting errors at compile-time
has been well-known through such languages as Pascal. If we want to use Prolog as
a serious tool for building large software systems, a type system for Prolog which
enables static type checking is highly desirable.

Furthermore, any type system for Prolog should be polymorphic. Polymor-
phism means that types may contain parameters which can be instantiated to other
types, thus giving a good degree of flexibility to the type system. For instance, we
will give the type (list (o), list (o0),list (@) to predicate append/3 (Example 5.1.1)
which defines the relation that its third argument is the list concatenation of its first
and second arguments. The type parameter o may be instantiated to integer, real,

40

list (B), or any other types. Without polymorphism, we need a separate type (and
hence a separate copy of code) of append/3 for each of the above types of data
objects.

In [MyOK] Mycroft and O’Keefe introduced such a polymorphic type sys-
tem for Prolog. They also described a compile-time type checker based on their
type sytem, which can check the well-typedness of a Prolog program provided with
sufficient type specifications. In this chapter we would like to go still further: is it
possible to implement a program that, given only parrial type specifications of a
Prolog program, can automatically infer the types of those unspecified objects? The
answer is positive, as the reader will see.

Before we can describe the polymorphic type system of Mycroft and
O’Keefe, we need to briefly review the syntax of Prolog.

Outline of the Syntax of Prolog

A Prolog program is just a (finite) set of clauses. A clause is the disjunction of a
number of positive and/or negative lirerals. Prolog allows only the so-called Horn
clauses, which are clauses containing at most one positive literal. The Horn clauses
containing one positive literal are called positive clauses, which correspond to the
procedure definitions in a conventional programming language. The other Horn
clauses are called negative clauses, which are queries to the database defined by the
positive clauses. We are only interested in positive clauses, which we shall simply
call clauses. The positive literal in a clause is written on the left-hand side of a :-

sign1 (read as "..., if ..."); all other (negative) literals are written on the right-hand
side of :-, if there are any. A literal is a predicate applied to a tuple of terms, the
number of which is called the ariry of that predicate. Terms have been defined in
Section 2.2. We notice that a variable in a Prolog program is local to the clause in
which it occurs. (The skeleton of) the syntax of Prolog can be summarized in the
following BNF-like notation:

Program ::= Clause*

Clause ::= Literal ’:-’ Literal*

Literal ::= Predicate ’(" Term* *)’

Term ::= Variable | Functor *(’ Term**)’

In this chapter, unless stated otherwise, we will write fragments of Prolog
codes in bold face. We also follow the common practice of capitalizing the first
letter in the name of a Prolog variable to distinguish it from Prolog functors and
predicates, whose names begin with lower-case letters. Underscores also denote
Prolog variables.

1Some dialects of Prolog use <- instead of :-.

41

(x03x17x2) =

(0,00,)
(arc 1)
T
(0,1,)
|
(arc 2)
l
0,1,-2)
(arc 3)
(03 -1 » “2)
I
(arc 2)
l
(0,—|1, -4)
(arc 3)
{

(0’ —?: —4)
(arc 2)
l
(0,-3,-6)

Figure 4.1.1. A Shortest-Path Problem with a Negative Cycle.

42

Type Algebra

4
The scheme of rypes of [MyOK] is simple: a type is simply a term made of type con-
structors (ranged over by [talic words) and type variables (ranged over by Greek
letters near the beginning of the alphabet, such as o, B, ¥). Types are ranged over by
(possibly subscripted) o and T. The scope of a type variable is the extended type
(see later) in which it occurs. Some examples of types are:

integer, list (list (integer)), list (Q0),
which are, respectively, the types of integers, lists of lists of integers, and general
lists.

Therefore, we have actually two kinds of terms: type terms and Prolog terms.
In order to avoid any conceptual ambiguities, we assume that the sets of (Prolog)
functors, (Prolog) variables, type constructors and type variables are mutually dis-
joint. The set of (Prolog) terms is ranged over by Bold-Italic words.

An extended type is a type, or a tuple of types:
(T4 T2 o0 T),
or a tuple of types paired with another type:
(T, T, T,) 2O,
where n 2 0. Extended types are ranged over by p (possibly with subscripts).

Extended types, like types, can also be viewed as terms by considering the

tupling operations and — as new type constructors.! Therefore, the relations "is
more general than" (2), "is an instance of" (<), and "is obtainable by variable renam-
ing from" (=) are also defined over extended types. (See Section 2.2 for the
definitions of these relations.) For example,

list (o) 2 list (list (integer)),

((B, list (B)) = list (B)) = ((real, list (real)) — list (real)) .

Now we are prepared to describe the polymorphic type system proposed by
Mycroft and O’Keefe, which is the subject of next subsection.,

Well-Typing of Prolog

Let P be a Prolog program. Since a Prolog variable is local to the clause in which it
appears, we may assume without loss of generality that variables in different clauses
of P have different names. A zyping t(P) of P consists of two sets of type associa-
tions:

(i) type premises, which associate an extended type p with each symbol s (predicate,
functor or variable) occurring in P, denoted by:

IBut they are nor type constructors in the strict sense, because they can not be used
recursively in constructing extended types.

42

s:p
(ii) type attachments, which associate a (non-extended) type T with each (sub)term ¢
in P, denoted by attaching the type to the (subjterm as superscript:

t‘t‘

We say that ¢+ (P) well-types P, or t(P) is a well-typing of P, if and only if
all of the following conditions hold:

(0) The type premises of 7(P) associate with each symbol in P an extended type of
the correct form and arity. More specifically, for each variable X in P, each predi-
cate p of arity n in P, and each functor f of arity # in P, ¢ (P) contains type prem-
ises of the following forms:

X:t,
p: (Tl, 12 FXITY) ‘cn)!

f: (TI, T2 yers 1:,1)—90',
where n 2 0.

(1) For each literal at the head of a clause in P of the form
P, ta . ty,) -

where £y, £, ,..., t, are (Prolog) terms, if z (P) contains the type premise

P: (T T2, Ty)
and the type attachments

t%, 0%,
then

(01,07,..., O) = (T1, T3 4eees Ty)

(Recallthat o=t iff botho=tand o £ 1.)

(2) For each literal in the body of a clause in P of the form
RN + ¢ ST TP 250 T

where £y, £, ,..., £, are (Prolog) terms, if # (P) contains the type premise

P: (T, T, Ty)
and the type attachments

0% 8,5, 1,
then

(T, 1250, T,) 2 (01, G350, Gy)

(3) For each (sub)term £ in P of the form

43

flt,t0,....2,)
where ¢, ¢5 ,..., t , are (Prolog) terms, if z(P) contains the type premise
f: (1,%,..7T,)—7
and the type attachments
t°,6,%,6,% ..., £,

then
(T, T2 ,0es T,) —T) 2((01,02,..., G,) —>0C).

(4) For each variable X in P, if ¢ (P) contains the type premise
X: T,
then it must also contain the type attachment
X"

Example 5.1.1: Consider the Prolog program defining the concatenation of lists:

append(nil, L1, L.1).
append(cons(X, T1), L2, cons(X, T2)) :-
append(T1, L2, T2).

A well-typing of this program contains the type premises
nil : () = list (o),

cons : (B, list (B)) = list (B),

append : (list (), list (), list (7)),

L1: list(my), X:My, T1:list(ng), L2 : list(my), T2 : list(My),
and the type attachments
append(nil™ (), L1% (W 15y

append(cons(an,Tlﬁ“ (’12))"'" (’12), L2 (le)’ COﬂS(Xﬂz,Tzﬁﬂ (nz))h'sr (my)

append(T1°% () 1,251 M) ppfistnay

The reader can verify that all of the conditions (0) - (4) above are satisfied by these

type associations.

It is quite clear from the above example that the effort of well-typing even a
trivial Prolog program would be prohibitive to do entirely by hand. Some degree of
automation is definitely needed to make the type system practical. This raises our

interest in type inference, which is discussed in the next section.

5.2. Type Inference and Term Inequalities

By type inference we mean, in the context of the type system described in the
last section, the completion of a partial typing (i.e., a subset of the necessary type
associations) supplied by the user so that it satisfies the five conditions of well-
typing. The power of a type inference system is inversely proportional to the amount
of type associations the user must supply. The less type information the user rmust
write down explicitly, the easier it is to use the type inference system.

Ideally we hope for a system in which the user writes programs without giv-
ing any type information. The system will do all the rest automatically. This is the
goal taken by Mishra [Mi]. Unfortunately, he was not very successful in dealing
with polymorphism, which is a key feature of our type system. Moreover, it is
unclear how to choose appropriate type constructors without human intervention.

Mycroft and O’Keefe took another approach. The user is required to supply
the type premises for all functors and predicates used in a Prolog program. It is not
too difficult to infer everything else. This approach is quite practical, but it gives us
more of a type checker than a type inferencer. Consider the fact that a typical Pro-

log program often contains the definitions of hundreds of predicates’, each of which
need be given a type specification. It seems that this approach still requires too
much of the user.

Therefore, we propose a simpler approach: the user must supply only the
type premises for functors; all other types, including the type premises for predi-
cates, are inferred automatically. Since typical Prolog programs do not use too
many functors, the labor needed to well-type a program can be greatly reduced.

Of course, we still need to supply the type premises for certain predicates in
advance, namely, the types of built-in predicates. But this can be done once and for
all. Also, when some kind of data abstraction is desired, it is necessary to give
explicitly the type premises for the abstract data type access predicates, thus hiding
the actual implementation of those abstract data types.

Now we need to address the problem of how the proposed type inference is
done. It turns out that the task of type inference can be reduced to that of solving
Term Inequalities. Let us first use an example to illustrate this point.

Example 5.2.1: Consider the program for append/3 in Example 5.1.1 again. Sup-
pose we are given only the type premises for the two functors used:

10ne of the reasons for which Prolog programs typically contain a large number of
predicate definitions is that the structure of Prolog programs is "flat" -- the body of a
procedure (predicate) definition is in most cases just a linear list of procedure calls.
A subproblem which is solved in a conventional programming language by one
more level of nesting (e.g., a conditional branching or an iterative loop) usually
incurs the definition of a new predicate in a Prolog program.

45

nil : () = list (),

cons : (B, list (B)) — lisz (B) .

We would like to find the type premises for predicate append/3 and all the vari-
ables, and the type attached to each (sub)term in the two clauses above, such that,
when all put together, they form a well-typing of the program.

To begin, let us assign a type variable to each unknown type, as follows.
append : (Y, Y2, Y3),
L1:8,, X:8;, T1:8,, L2:3, T2:8,,
append(il®, L1%, L1%).
append(cons(X> T1%9% 1.2% cons(x® T2 :-

append(TlB‘, L25°, T26’).

Notice that conditions (0) and (4) of well-typing have been used in assigning these
type variables. Conditions (1) - (3) impose more constraints, which are listed below
with each constraint labelled by the number of the well-typing condition used.

(81,82,82) = (Y1, 72, 73) Cond. (1)

(0= list (@) 2 (0 —dy) Cond. (3)
(85,86,88) = (Y1,Y2 1) Cond. (1)

((Btist (BY) —= List (B)) 2 ((33,84) = Bs) Cond. (3)
((B.list (BY) — lisz (B)) 2 ((83,87) — &3) Cond. (3)
(Y1:Y2,Y3) 2 (84,06,87) Cond. (2)

Thus the task of inferring the types of append/3 and other symbols are reduced to
that of solving a set of eight Term Inequalities. (Recall that ¢ = T is equivalent to

c2tando<st) M

It is generally true that type inference for Prolog is reducible to solution of
Term Inequalities, in which the rerms are type terms, not Prolog terms. A naive
strategy of type inference is given below.

Naive Type Inference Strategy

Given a Prolog program P, and the type premises for the functors used in P and for
the predicates invoked but not defined in P, execute the following steps:

Step I: Assign an n-tuple of type variables to each predicate of arity n defined in P,
a type variable to each (Prolog) variable occurring in P, and a type variable to each

46

(sub)term in P. Except the requirement that the last assignment should coincide with
the second one on (Prolog) variables, all type variables assigned should be distinct.
This step takes care of conditions (0) and (4) of well-typing.

Step 2: Analyze P and collect all constraints (Term Inequalities) imposed by condi-
tions (1) - (3) of well-typing among the assigned type variables.

Step 3: Solve the set of Term Inequalities collected in Step 2 using relaxation tech-
nique, as explained in Section 2.2. After every Term Inequality is satisfied
(relaxed), the composition of all type variable substitutions used in the relaxation

process gives most general types to the predicates defined in P. |

The above type inference strategy is called "naive” because not all inequali-
ties collected in Step 2 are necessary. This point will be made clearer in the next
section.

Remark: It is now clear that the type premises for functors are the least we need to
conduct "meaningful” type inference in our type system. Since the type premises for
functors always appear on the left-hand side of 2 in a Term Inequality, they will
never get further instantiated during the whole relaxation process. So, if they were
not already given and tuples of new type variables were assigned in their places, the
constraints they impose would be effectively nuli!

5.3. TYPEINF: A Polymorphic Type Inferencer for Prolog

TYPEINF is a polymorphic type inferencer for Prolog. The input to
TYPEINF is a Prolog program (i.e., a set of clauses), together with the type prem-
ises for the functors used in the program and for the predicates which are invoked
but not defined in the program. The output is, if the input program is well-typeable
(that is, there exists a well-typing of the input program which contains the user-
supplied type premises), the type premises for the predicates defined by the pro-
gram, or, if the input program is not well-typeable, failure of execution. The type
inference strategy of TYPEINF is based on the naive strategy described in the
preceding section, with the following improvements made:

(i) We need only the 2-half of the bi-directional term inequality in condition (1) of
well-typing, provided that we are only interested in inferring the type premises for
predicates. This simplification is based on the following observation. The <-half of
the term inequality only affects the instantiation states of the types of Prolog vari-
ables occurring in the head of the clause under consideration. But the scope of a
Prolog variable is merely the clause in which it occurs. Also notice that the type of
a Prolog variable never appears on the left-hand side of > in any term inequality
arising from the body of a clause (due to condition (2) or (3) of well-typing). Hence
TYPEINF discards the <-half of any term inequality incurred by condition (1) of
well-typing.

(i) TYPEINF relaxes the term inequalities resulting from condition (3) of weli-

typing immediately after they are found, and then discards these term inequalities.
The rationale is that, as pointed out in the remark at the end of the last section, the

47

type premises of functors are (in fact, must be) always given and never changed
(further instantiated) during the whole relaxation process. Hence the constraint on
type variables created by the type premises of functors (i.e., condition (3)) can be
immediately relaxed and never worried about again later. Note that the same argu-
ment does not hold for conditions (1) and (2) of well-typing.

Example 5.3.1: Continue Example 5.2.1. We first relax all inequalities resulting
from condition (3) of well-typing. Relaxing the second inequality, we get:

{ 8,/list(ny) }.
Relaxing the fourth inequality, we get:
{ 83/My, 84/ list (M), 85/ list(My) }.
Relaxing the fifth inequality, we get:

{ M2/ M3, 8/ list (n3), Bg/ list(n3) }.
The composition of these substitutions is:

{ 81/1125'1’ (T]l), 83/7]3, 54/11'5'1 (Tl3)’

85/ list (n3): 8'I/hSr (”'13): 83 /it (n3) }

After discarding the unnecessary and already-relaxed ones, the following inequali-
ties are left:

(HSI (711):82,82) 2 (‘YI ’72’73) (1)
(list (M3),9¢,list M3)) 2 (V1,Y2,Y3) (2)
(Y1,Y2,¥3) 2 (list (N3),0¢,list (M3)) (3)

Thus the number of Term Inequalities are reduced from the 8 in Example 5.2.1 to
the current 3. The above set of Term Inequalities is exactly the one solved in Exam-
ple 2.2.1, which through a relaxation process generates the following substitutions:

{ v/ list (Mg), Yo/ list (Mg), Y3/ list (Mg), g/ list (M7), N3/ M7 }.

Composed with the previous set of substitutions, they indeed provide a correct type
premise for append/3:

append : (list (Ng), list (M), list Me)) -
||

Further improvements of the efficiency of type inference are possible. For
instance, consider the calling graph of a Prolog program, which is a di-graph with
nodes representing predicates and arcs representing the calling relations between
predicates. That is, there is an arc from node p to node q iff p calls ¢ in the pro-
gram. A type inferencer can first break the calling graph of the analyzed Prolog pro-
gram into strongly connected components, and then perform type inference on each
component separately. However, according to the author’s experience, this would
make the type inferencer much more complicated than it is now, thus obscuring the
role of relaxation in the inferencer. Since the main theme of this Thesis is

43

relaxation, not efficient type inference for Prolog, it seems appropriate to avoid this
unnecessary complication.

TYPEINF is itself coded in Prolog. A complete listing of the documented
codes can be found in Appendix II. The main routine of TYPEINF is contained in
file infer.pl. File ineq.prcontains the routines for handling a single Term Inequal-
ity. File misc.pl contains some miscellaneous routines, including those accessing
abstract data types. File work.pl contains some I/O routines. File op.pl contains
operator declarations. File load, when consulted, loads all of the above files into the
Prolog database. :

5.4. Demonstrations of the Capabilities of TYPEINF

We first demonstrate TYPEINF on our familiar example: append/3. The
followir s is obtained from the script of a Prolog session:

znrolog
“I=sleog wversion l.4d.edai

’- [load].
op.pl consultad 0 bytes 0.083335 sec.
infar.pl consulted 3852 bytes 1.7 sac.
ineq.pl consultad 388 bytes 0.15 sac.
mizc.pl consultaed 1444 bytes 0.75 sec.
work.pl consulted 2724 bytaes 1.25 sec.
locad consulted 8408 bytas 4.1667 sec.

yeas

| ?- type_inference(

i [(append(nil, ’$VAR’ ('Ll’), 'SVAR' (‘Ll’))

[).

| { append{cons (' SVAR' ('X'), TSVAR {"T1")).

I fsmf (fuf},

| cons (' SVAR’ (X'}, "SVAR' ('T2'}))

| :— appand(’ $VAR' (‘T1’), "SVAR' ('L2'), FEVAR' (1T27))
|) 1,

I [type(nil/0, (' -> list(Alpha))},

| type(cons/2, ('’ (Bata, list (Beta)) -> list (Bata)))

|
I

1.
InferredTypes).

InfarredTypes = [typa (append/3,

£ (list(_1327), 14ist(_1327), 1list(_1327)))1
Beta = _82
Alpha = 66

Yes

49

The result is the same as in Example 5.3.1. The first argument to type_inference/3
is the Prolog program to be well-typed, represented as a list of clauses. The second
argument is a list of user-supplied type premises for functors and predicates. When
the goal succeeds, the third argument is instantiated to the inferred type premises for
the predicates defined by the well-typed Prolog program. Notice that a variable in
the well-typed program is represented in the (meta-)program TYPEINF as a (Pro-
log) term of the form $VAR(Name), where Name is the name of the variable

represented by an atom. Type variables are represented by Prolog variables in
TYPEINF.

Obviously, it is very inconvenient to key in all input data interactively. A
better idea is to put the input data in a file and just refer to that file when the user is
interacting with the Prolog interpreter. This is what will be done next. The content
of file test is:

- type list(T) => [] | [T | 1list(T)].
1= type paix (T, U) => (T - U).
- typa trea(T) => leaf(T) | branch(T, trea (T}, tree(T)).

mamber (X, [X | _J]).
mamber (X, { | T]) :- member(X, T).

append([], L, L).
append({X [T1], L, [X | T2]) :- append(Tl, L, T2)}.

reverse({[]. [1).
reaverse([X | T], R} :- reversea(T, S), append(S, [X], R).

pairing([1. []. [1}.
palring ([X1 | T1], [X2 | T2}, [(X1-X2} | T]) :-
pairing(T1, T2, T).

append many{([], []}.
append many{{L | LL], M) :-
append many (LL, N), append(L, N, M).

% In-order flattaening of binary trees:

inordex (leaf (X}, [X]).

inorder (branch{X, T1, T2), L) :-
inorder(T1l, L1), inorder (T2, L2),
append many([L1, [Xj, L2], L).

Note that we resumed the usual Prolog practice of writing null list as [] and list con-
structor as [<head> | <tail>]. The ":- type ..." commands are shorthands for speci-
fying the type premises of functors. For example, the first type command in file
test specifies exactly the same thing as the second argument to type_inference/3

50

does in the last demonstration. In the following work/1 is a predicate Which given
the name of a file such as test, will read that file, prepare input for and invoke
type_inference/3, and finally print out the inferred types.

| ?- work (tast).

:- pred appand(list (A), list(A), list{d))}.

- pred append many (list (1ist(A)), list(A}).

:=- prad inorder(trea{d), list (A})).

:~ pred mamber(A, list (A}).

:-. pred pairing(list(A), list(B), list(pair{A, B))).

:i- pred reverse(list (i), list(A)).

yeos
The results are correct, as the reader can easily verify. Note that ":- pred ..." is a
shorthand for specifying the type premises of predicates.

The last, also the most interesting, demonstration is to apply TYPEINF to (a
part of) itself. The file self contains the Prolog codes from file infer.pl (the main
routine of TYPEINF) plus some necessary type informations. (A copy of self can
also be found in Appendix I.) Applying TYPEINF to self, we get:

{ ?- work(self).

i- pred arg_types_of_ literal (type_tuple, literal,
list (type spec), list (type_spac)).

:~ prad collect_inegs(list(clause),
list (type_spec), list (type_spac),
list (term inag}, list (term inaq)).

:= pred collect_inegs_in_ body(clausa,
list (type_spac), list (type_spac), list (type_spac},
list (term ineq), list (term inaq})).

:- prad collect_inegs in_clause(clausa,
list (typa speac), list (type_spec), list (type_speac),
list (term ineq), list (term ineq)).

pred collact_inaqgs_in goal (predicate, literal,
list (typa_spac), list (type spac), list(type spec),
list (term inaeq), list (term ineq)).

51

yes

pred

pred
pred
pred
pred

pred

pred

pred

collect inega_in head(litaeral,
list (type spec), list(type spaec), list(type_spac),
list (term ineq), list (term ineq)}).
init_praed types(list (pradicate), list (type_spec)).
init var types(list(variable}, list (type_spec)).
mamber{A, list(A)).

relax_inegs (list (term_ineq}, flag, list (term inaq)).

type_inference(list (clause), list(typae spec),
list (type_spec)).

walltype term(term, list (type_spec), list {type_spac},
typa}.

walltypa term list(list (term), list (type_spac),
list (type_spac), list (type}).

52

CHAPTER 6.
Directions of Future Research

In this chapter we indicate some possible directions in which the work of this
Thesis can be refined and/or extended, thus concluding our quest of the nature of
relaxation processes in this Thesis. The reader is warned that this chapter is much
more speculative and much less rigorous than the preceding chapters.

Fitting Term Inequalities into the Formal Framework

It was pointed out in Section 2.3 that Term Inequalities, due to their complexities,
had resisted the development of a formal theory. This resistance forced us to con-
sider a restricted version of Term Inequalities, namely, Prefix Inequalities, which
were studied extensively in Chapters 3 and 4. Though Prefix Inequalities do
preserve most of the "flavors” of Term Inequalities, many characteristics of the latter
are lost in simplification into the former. For instance, the significance of the identi-
ties of variables in Term Inequalities, which can be readily seen from the examples
of Chapter 5, is entirely lost in Prefix Inequalities. Therefore it is still desirable to fit
Term Inequalities into a formal framework similar to that in Chapter 3, so that we
can study their properties in a more rigorous way.

A Stronger Definition of Relaxation Problems

The major defect of the formal theory in Chapter 3 is that there exists merely a
semi-algorithm, viz. GRSA, for solving general Relaxation Problems. However,
there are indeed polynomial-time algorithms for solving the two Relaxation Prob-
lems (SPP and PI) we studied in this Thesis. This implies that our definition of
Relaxation Problems (Definition 3.1.3) is too weak, in the sense that it lacks struc-
tural properties which enables the design of general relaxation algorithms.

One hopeful alternative is to define Relaxation Problems in terms of graphs
or hypergraphs. Then it may be possible to design a general relaxation algorithm
using some kind of "spanning forest" arguments, just as we did in Chapter 4 for SPP
and PI. Other alternatives are also possible.

More Concrete Examples of Relaxation Processes
Tt is quite obvious that our development of the formal theory in Chapter 3 was

motivated by the concrete examples in Chapter 2. Similarly, if we want to develop
more powerful and more sophisticated theories of relaxation processes, it 1s

53

imperative for us to discover more concrete examples of relaxation processes. The
author believes that only from concrete examples can we draw the inspiration
needed in developing good abstract theories.

54

[Bi]

[CIMEe]

[En]

[Ev]
[Mi]

[MyOK]

Bibliography

Birkhoff, G., Latrtice Theory (3rd Ed.), American Mathematical
Society Colloquium Publications, vol. 25 (1967).

Clocksin, W. F. and Mellish, C. S., Programming in Prolog,
Springer-Verlag, 1981.

Enderton, H. B., A Mathematical Introduction to Logi:
Academic Press, 1972,

Even, S., Graph Algorithm, Computer Science Press, 1979.

Mishra, P., "Towards a Theory of Types in Prolog", Proc. IEE."
Internar. Symp. Logic Programming, Atlantic City, 1984.

Myecroft, A. and O’Keefe, R. A., "A Polymorphic Type System
for Prolog", Artificial Intelligence 23 (1984).

55

APPENDIX I
Some Mathematical Notions and Terminologies

. In this appendix we summarize some mathematical notions and terminolo-
gies used in this Thesis. For the convenience of reference, we group terminologies
by subject.

L1. General Terminologies
We use iff as an abbreviation for if and only if.

Given n arbitrary sets S, 5,,..., S, (n=1), their Cartesian product is
denoted by

SixSyx .. xSy ={(x;,x9,...,%,) | x;€8;,1<i<n }.

The set of narural numbers (ie., nonnegative integers) is denoted by
N=1{0,1,2,3,..} The set of integers is_denoted by £Z={...,-2,-1,0,1,2,... }.
The set of extended integers is denoted by Z = Z 1 { o }, where oo is a new, distinct
symbol denoting positive infinity. Note that we have

o4 Z —oo—2Z = o0, [- =224

forany z € Z.

1.2. Graphs
A general reference on the theory of graphs is [Ev].

In this Thesis di-graphs mean directed multi-graphs without self-loop. More
precisely, a di-graph G is a tuple, G =(V, A, from, to), where V is a finite set of
nodes (or, vertices), A is a finite set of arcs, from and to are two mappings from A
into V. For each arc e € A, from (e) is the from-node of ¢ and to (e) is the to-node
of e. For some minor technical reasons (see Section 3.2), we require that
from(e) # to(e) for any e € A. In a pictorial diagram of G an arc ¢ is depicted as
an arrow starting from its from-node and ending at its to-node. Note that we usually
omit the from and to mappings and just write G = (V, A).

A path P from node u to node v in G is a finite sequence of arcs in G,
P =ee; ... e (k20) such that u =from(e;), v =to{ey), and 10 (e;_;) = from (e;)
for all 1 < j < k. We can extend the notation and write u =from (P) and v =10 (Pj)
When k =0, P is called an empty path and we require that u =v. A cycleis a path

56

with identical from-node and to-node. We say that node v is reachable from node u
in G iff there exists a path from node 4 to node v in G. So each node is reachable
from itself by means of an empty cycle.

A di-graph G"=(V’, A)) is called a subgraph of G=(V,A) iff V'V,
A’ A, and whenever ¢ € A’, both from(e) and to(e) are in V', Lete € A be an
arc. By G’ U {e} we mean the subgraph of G whose arc set is A’ U {e} and whose
node setis V' U {from(e), to (e)}.

A subgraph T = (V’, A”) of G =(V, A) is said to have a roor r iff r € V" and
every node v € V' is reachable from r by a path entirely in T. Furthermore, if that
path is unique for every node v € V’, then T is called a (directed) tree in G. Clearly
a tree has exactly one root. A (directed) forest F in G is a subgraph of G which is
the union of a number of disjoint trees in G. F is called a spanning forest of G iff
the node set of F is the entire V, i.e., F contains every node of G.

I.3. Partial Orders and Posets
An general reference on the theory of posets is {Bi].

Given a set P, a pre-order 2 on P is a relation on P with the following two
properties:

(a) Reflexivity:p 2p forallp € P.
(b) Transitivity:p 2q andg 2r implyp 2r,forallp,q,r € P.
If > satisfy the additional property:
(¢) Anti-symmetry:p 2q and g 2p implyp =q,forallp,q € P.

then we say that 2 is a partial order on P, 2 partially orders P, or P is a poset (par-
tially ordered set) with partial order 2. We also say that (P, 2) is a poset. We write
p<qiffgzp,p>qgiffp2gbutp£qg,andp < q iffq > p. Wesayp and g
are incomparable iff neither p 2 ¢ nor p £ ¢ holds.

Let P be a poset with partial order 2, S a subset of P. An upper bound q of
S is an element in P such that ¢ 2 p forallp € §. The greatest element of S is an
element in § which is also an upper bound of S. It is easy to see (by anti-symmetry)
that the greatest element of S is unique as long as it exists. (So we are justified in
using article the.) We denote the greatest element of S, if it exists, by max $. The
lower bounds and least element of S are defined symmetrically with = replaced by <
and max by min.

The rop T and botrom | of P are, respectively, the greatest element and the

least element of the whole P. Note that either one may not exist. By convention,
max & = / and min & =T, as long as the elements involved exist.

57

Some examples of posets are N, Z and Z with their natural orders, and T
with the "is a prefix of" relation defined in Definition 2.3.1. Actually, the former
three examples are fotally ordered sets, i.e., there is no pair of incomparable ele-
ments. Note that Z and =¥ have top elements <o and €, respectively, while neither N
nor Z has a top element.

Let (P, 2)), (P2, 23),..., (Pn,2,) be n posets. Their Cartesian product
P=P,;xP,x..xXP, can be partially ordered by the component-wise generalization
of 24,2, ,...,2,, thatis, forany p= (@, P2, Pn) =G 1, 92, 9n) € P,

p2q iff D 2 q;, for 1<i <n.
We say that 2 is the natural order of the product P of posets P, P, ,..., P,.

58

APPENDIX IL
Program Listing and Test Data for TYPEINF

This appendix contains a complete listing of the program TYPEINF and
some of its test data. The following files are listed (in that order):

infer.pl
ineq.pl
misc.pi
work.pl
op.pl
load
self

59

FILE: infaer.pl
AUTHCR: Ching-Tsun Cheu
SPEC: Main program of TYPEINF

o dp d O P

% type_inference (+Program, +IypeEnv, -PredTypeSpecs)

% Program:

% A list of clauses, in which each (Prolog) variable is represented
% by a term of the form: ’SVAR' (var-name), where var-name iz an atom
% or a number denoting the name of the variable. This is the Prolog
% program to be well-typed.

% TypeEnv:

% A list of type associations, each of which is of the form:

% type {symbol, extended-type), where symbel is a predicate, a functoer,
% or a variable. This is the user-supplied typa information.

% PredTypeSpecs:

% Also a list of type associationa, whlch specifies the types of the
% predicates defined in Program. This i1s the ocutput.

type_inferencs (Program, TypeEnv, PredTypeSpecs) :-
colleact_predicates (Program, Predicates),
init_pred_types {Predicates, PredTypeSpecs),
collect_ineqa (Program, PredTypeSpecs, TypeEnv, {], Inaqualitiaes),
relax inags(Inequalities, yes, Inequalities).

% init_pred_types (+Predicates, -PradTypaSpecs)

% Predicates:

% A list of predicates.

% PredTypeSpecs:

% A list of type associations, which gives a most general type to
% each predicate in Predicates.

init_pred types([Pred | OtherPreds],
[type (Pred, MGTypeTuple) | OtherPredlypeSpecs]) :- !,
assign mg pred type(Praed, MGTypeTuple},
init pred types(OtherPreds, OtherPredTypeSpecs).
init_pred types{[]. []).

collact_ineqs (+Program, +PredTypeSpeca, +TypeEnv, +0OldInegs, -NewIneqs}
collacts the (type) Term Inegqualities arising from the conditiens of
well-typing (see Section 5.1}, except conditicn (3) (sea Section 5.3},
from Program, under the type associations PredTypeSpecs and IypeEnv.

of df dP P P

NewInegs is OldIneqs plus the newly found inequalities.

collect_ineqs ({Clause | OthaerClauses], PredTypeSpecs, TypeEnv,
OldInegs, NewInegs) :- !,
collect variables(Claunse, Variables},
init_var types(Variables, VarTypeSpacs},
collect inegs_in_clause(Clause, PredTypeSpacs, TypeEnv, Var?ypeSpecs,
0ldIneqgs, MidInegs),

collect ineqgsa(CtherClauses, PredTypeSpacs, TypeEnv,
MidIneqz, Newlnegs).
collect inegs{[]. _. _., Inegs, Inegs).

% init_var_types(+Variables, -VarTypeSpecs)

% Variables:

% A list of variables.

% VarTypeSpecs:

% A list of type asscclations, which gives a most general type to
% sach variable in Variablaes.

init_var types([Var | OtherVars],
[type (Var, MGVarType) | OtherVarTypeSpecs]) :- !,
assign mg var type(Var, MGVarType),
init_var types(OtherVars, OtherVarTypeSpecs).
init_var types{[]. [1).

% collect_inegs in clause (+Clause, +PredTypeSpecs, +TypeEnv, +VarTypeSpecs,
% +0ldIneqs, -NewInegs)

% does the same work as collect_ineqs/5, except that it works on a Proleg
% Clause.

collect_ineqga in clause((Head :- Body), PredTypeSpecs, TypeEnv, VarTypeSpecs,
QldIneqs, NewInegs) :- !,
collact_ineqs in_head(Head, PredTypeSpecs, TypeEnv, VarTypeSpacs,
0ldIneqs, MidInaeqs),
collect_ineqs_in body(Body, PredTypeSpecs, TypeEnv, VarTypeSpecs,
MidIneqs, NawInags).
collect_ineqs in_clause (Clause, PredTypeSpecs, TypeEnv, VarTypeSpecs,
CldInegs, NewIneqs) :-
literal of unit clause(Literal, Clause),
collect_ineqs in head{Literal, PredTypeSpecs, TypeEnv, VarTypeSpacs,
OldInaga, NewlInaega).

% collect_inegs_in head(+Head, +PredTypeSpecs, +TypeEnv, .+Var‘l'yp05p¢cs,

% +0ldIneqs, -Newlneqgs)

% does the same work as collect ineqs/5, except that it works on a Proleg
% clause’s Head.

collect inegs in head(Head, PredTypeSpecs, TypeEnv, VarlypeSpecs,
Inegs, {{TypaTupleal >== TypaeTuple2) | Ineqs]) :-
arg types of literal (TypeTuplael, Head, TypeEnv, VarlypeaSpacs),
predicate_of_literal {Prad, Head),
member (type (Prad, TypeTuple2), PredTypeSpecs).

% collect_inags_in_hody(+Body, +PredTypeSpecs, +TypeEnv, +VarTypeSpecs,
% +0ldIneqs, -Newlnegs)
% dees tha same work as collect_inegs/S, except that it works on a Prelog

% clause’s Body.

collect _ineqs_in body({(Gocall , Goal2), PredTypeSpeca, TypeEnv, VarTypeSpecs,

61

0ldInegs, NewIneqgs) :- 1, :
collect_ineqgs_in body{Geall, PredlypeSpecs, TypeEav, VarlypeSpecs, H
OldIneqs, MidIneqs),
collect_ineqs_in body(Goal2, PredlypeSpecs, TypeBnv, VarTypeSpecs,
MidIneqsa, NewIneqgs).
collect_inegs_in body((Goall ; Goal2), PredTypeSpecs, TypeEnv, VarTypaeSpacs,
CldInegqs, Newlneqgs) :- !,
collect_inega in body(Goall, PredTypeSpecs, TypeEnv, VarTypsSpecs,
OldInags, MidInegs),
collect_inegs in body(Goal2, PredTypeSpacs, TypeEnv, VarTypeSpecs,
MidIneqs, NewInegs).
collect_ineqs_in bedy{{!). _. _, _. Ineqs, Ineqgs) :- .
collect_ineqs_in body(Goal, PredlypeSpecs, TypeEnv, VarlypeSpecs,
0ldIneqgs, NewIneqs) :-
literal of unit_clause{Literal, Goal}.
predicate_of literal(Pred, Literal),
collect_ineqs_in goal{Pred, Literal., PradTypeSpecs, TypeEnv,
VarTypaSpecs, OCldIneqgs, Newlneqs).

% collect_ineqs in_goal (+Pred, +Goal, +PredlypeSpecs, +TypeEnv, +VarTypeSpecs,
& +0ldIneqs, -NewInadgs)

% does the same work as collect_ineqa/5, except that it works on a Prolog

% goal literal Goal with predicate Pred.

collect_inegs_in goal (Pred, Goal, PredTypeSpecs, TypeEnv, VarTypeSpecs,
Inegs, [(TypeTuplel >== TypeTuple2) | Inegs}) :~
mamber (type (Pred, TypeTuplel), PredTypaSpacs),
1
arg types of literal(TypeTuple2, Goal, TypeBEnv, VarTypeSpacs).
collect_ineqs in goal {(Pread, Goal, _, TypeEnv, VarlypeSpecs,
Ineqs, Inegs) :-
member (type (Pred, TypaTuplel), TypeEnv),
arg types_of literal (TypeTuplel, Goal, TypeEnv, VarlypeSpecs),
relax cne_ineq((TypeTuplel >== TypeTuple2)).

arg types of literal (-TypeTuple, +Literal, +TypeEnv, +VarTypeSpecs)
computes TypeTuple, which ia the tuple of the most genaral types assoclated
with the arguments of Literal as superscripts (sea Section 5.1), under the
glven type associations TypeEnv and VarTypeSpecs.

Note that we don’'t need PredTypeSpecs, since the arguments of Literal

dF P N K WP P

are Proleg terms which contain only functors and variables.

arg types of literal (TypeTuple, Literal, TypeEnv, VarTypeSpecs) :-
args_of literal (Args, Literal),
walltype_term list {Args, TypeEav, VarTypeSpecs, ArgTypes),
args_of type tuple (ArgTypes, TypeTuple}.

% welltype term list (+TermList, +TypeEnv, +VarTypeSpecs, -TypeList)

% applies welltypa_term to each member of TermList to genarate Typelist.
% See welltype term/4.

62

welltype term list ([Term | OtherTerms], TypeEnv, VarTypeSpecs,
{Type | CtherTypes])} :- !,
walltype term(Term, TypeEnv, VarTypeSpacs, Type),.
walltype term list (OtherTerms, TypeEnv, VarIypeSpecs, OtherTypes) .
welltype term liat{[], _, _. [1}.

welltype term(+Term, +TypeEnv, +VarTypeSpacs, -Type)
computes Type, which is the most general type assocliated with (Proleg) Term
as superscript (see Section 5.1}, under the given type assoclations TypeEnv

P d0 de df

and VarTypeSpecs.

welltype term(' $VAR’ (Var), _, VarTypeSpecs, Type) :- ',
menmber (type (Var, Type), VarTypesSpecs).
welltype_term(Term, TypeEnv, VarTypeSpecs, Type) :-
args_of_ term(hrgs, Tarm) ,
welltype term list (Args, TypeEnv, VarTypeSpeca, RrgTypes),
args_of_type tuple(ArgTypes, TypeTuple).,
functor_of_ term(Func, Term),
member (type (Func, (TypeTuplel -> Typal)), TypeEnv),
:ola.x_on._incq((('rypon‘uplal -> Typel) >w= (TypaTuple -> Type)}).

relax ineqs(+Ineqs, +Flag, +0ldIneqs)

chackas and relaxes, if it is unsatisfied, each (type} Term Inaequality in
QldInegs., Flag = yes if all inequalities checked so far are satisfied,
otherwise Flag = no. After all inequalities are checked (Inegs = []).

P df df OF P

exit if Flag = yes, otherwise re-run tha whole process.

relax_ineqs([Ineq | OtherIneqs], Flag, OldIneqgs) :-
ineqg_satisfied(Ineq),
t,
relax ineqs (Otherlneqs, Flag, OldInegs).
relax ineqs({Inag | CtherIneqs], _, OldInegs) :- !,
relax one_ineq(Ineq),
relax ineqgs (OthexInegs, no, 0ldIneqs).
raelax ineqs([], no, CldInegs) :- !,
relax inegs (0ldIneqs, yes, OldIneqgs).
relax ineqs({]. yes, _).

% member {?Element, +List)
% succeeds if Element im a member of List, falls otherwise.

member (Element, [Element | _}1)}.
member (Element, [_ | ListTail]) :- member (Element, ListTail).

63

FILE: ineqg.pl
AUTHOR: Ching-Tsun Chou
SPEC: Predicates handling Term Inequalities

P P P WP R

o

ineq satisfied((Typel >== Typal))
succeeds iff Term Inequality (Typel >== Type2) is satisfied.
% Note that unification with occurs-check is neaded hers.

L

ineq_satisfied((Typal >== Type2)) :-
numbervars {Type2, 0. _),
+ unify(Typel, Typel},
1,

fail.
ineq satisfied{(_).

% ralax :-- .neq((Typel >== Typel))

% relaxe: - Inequality (Typel >== Type2), if it is relaxable.
% Note t' - :nification with occurs-check is neaded here.

relax or.. 3((Typel >m= Typel)) :-

ectr uerm(Typel, Typell),
unify{Typell, Type2).

% copy term{+Terml, -Term2)
% coples Terml to Term2 with all variables renamad.
% Note: This is a hack!

copy_tarm(Terml, Tarm2) :-
assert (‘ $copy_term$’' (Terml)).,
"$copy_term$’ (Term2),
retractall(’ $copy_term$’ (_)).

%

% FILE: misc.pl

% AUTHCR: Ching-Tsun Chou

% SPEC: Miscellaneous predicates used by TYPEINF
%

literal of unit_clause(Unit, Unit).

predicate of literal((Name/Arity), Literal) :- functor(Literal, Name, Arity) .
functor of term({(Name/Arity), Term) :- functor{Term, Name, Arity).

args_of literal(Args, Litaral) :- Literal =.. [_ | Args].

args_of_ term(Args, Term) :- Term =.. [_ | Args].
args_of_type tuple (hrgTypes, TypeTuple} :- TypeTuple =.._ [’* | Arglypes].

assign mg pred type{{_/Arity}, MGTypeTuple) :-
functor (MGTypeTuple, ‘', Arity).

asaign_mg var type(_, _).

¥ cellect_variables (+Tarm, -Vars)
% collects variable names (Vars) occurring in (Prolog) Term.
% Note that variablas in Term are marked by functor ’§VAR'/1l.

cnllect_variahles('l‘erm. Vars) :-
satof (Var, occurs_in(Var, Term), Vars),
1.

collact_variables(_, []).

occurs_in (Var, ‘§VAR' (Var)) :- !.
occurs_in(_, Atom) :- atomic{Atom}, !, fail.
occurs_in(Var, Term) :- ‘
functor (Term, _. Arity),
occurs_in_args (Arity, Var, Term).

occurs_in args(0, _,) :- 1, fail.
occurs_in args(I, Var, Term} :-
arg{I, Term, Arqg),
occurs_in(Var, Arg).
cccurs_in_args (I, Var, Term) :-
mce (J, I),
occurs_in_args(J, Var, Term).

% collect_predicates (+Program, -Predicates)
$ collects Predicates defined in (Proleg) Program.

collect_predicates(Program, Predicates) :-
setof (Pred, pred_defined_in prog(Frad, Program), Predicates),

65

collect predicates{_, []).

pred defined in prog(Pred, [Clause | _]) :-
pred defined by clausa(Pred, Clause).
pred_defined in prog{(Pred, [_ | OtherClauses]) :-
pred defined in prog(Pred, OtherClauses).

pred defined by clause (Fred, (Head :- _}) :-
predicate_of literal (Pred, Head)},
',

pred defined by clausae(Pred, UnitClause) :-
predicate of literal (Pred, UnitClause).

66

%
% FILE: work.pl
% AUTHOR: Ching-Tsun Chou
% SPEC: I/0 routinea of TYPEINF
%
work (File) :-

reads File, which contains Prolog clauses and type declarations, performs
type inference on the Prolog program in File, and then prints out the

L

results (types of predicates defined in File).

work (Flle)} :=-
read fila(File, Program, TypeEnv),
type_inference (Program, Typefnv, PredTypeaSpecs),
write_results (PredTypeSpecs).

read file(File, Program, TypeEanv) :-
seeling{OldInput, File),
read_filel{Program, TypeEnv),
sea (OldInput) .

read filel(Program, TypeEnv) :-
read (Term, NameVarPairs),
read terms(Term, NamaVarPairs, (1., Pregram, [], TypeEnv).

read_terms({end of file, [], Prog, Prog, Env, Env) - !.

read_terms (Term, NameVarPalrs, 0ldProg, NewProg, QldEnv, NewEnv) :-
process_term(Term, NameVarPairs, OldProg, MidProg, OldEnv, MidEnv},
read (NewTerm, NewNameVarPairas),
read terms (NewTarm, NewNameVarPairs, MidProg, NewProg, MidEnv, NewEnv).

process_term({:- op(Prec, Typa, Name)), _, Prog, Prog, Env, Env) :- 1!,
op(Prec, Type, Nama).

Process_term((:- pred PredDcl), _, Prog, Prog. 0ldEnv, NewEnv) :- 1,
process_pred_dcl(Pradbcl, OldEnv, NewEnv}.

process_term((:~ type TypeDel}, _, Prog, Prog, OldEnv, NewEnv) :- !,
process_type_dcl (TypeDel, OldEnv, NewEnv).

process term(Clause, NameVarPairs, Progqg, {Clause | Prog], Env, Env) :- !,
make ground (Clause, NameVarPairs) .

process_prod_dcl((?redTypc , OtherPredTypes), CldEnv, NewEnv} :- !,
process_pred_dcll{PredType, OldEnv, MidEnv),
process_prad_dcl (OtherPredTypes, MidEnv, NewEnv).
process_prad_dcl (PredType, 0ldBnv, NewEnv) :-
process_pred dell (PredType, 0ldEnv, NewEnv).

process_pred_dcll(Pred’l‘ype, Env, [type{Pred, TypeTuple) | Env]} :-
predicate of_literal (Pred, PredType).
args_of literal (Args, PredType),
args_of_ type_ tuple(Args, TypeTuple).

67

process_type_dcl{(Type => (FuncType | OtherFuncTypes)), OldEnv, NewEnv)

pProceas_type_dcll (FuncType, Type, OldEnv, MidEnv),

Process_type_dcl((Type => OtherFuncTypes), MidEnv, NewEnv).

proceas_type_dcl((Type => FuncIype), 0ldEnv, NewEnv) :-
process_type dcll (FuncType, Type, OldEanv, NewEnv).

process_type dcll (FuncTypae, Type,
Env, [type{Func, (TypeTuple -> Type}) | Env]} :-
functor of term(Func, FuncType),
args_of term{Args, FuncType),
args_of type tuple(hrgs, TypeTuple).

make_ground (Clause, NamaVarPairs) :-
make_groundl (NameVarPairs),
numbervars (Clause, 0, _}.

make groundl{[(Name = Var) | OtherPairs]) :- !,
Var = '§VAR' (Nama),
make_groundl (OtherPairs) .

make groundl([]).

write_ results(PredTypeSpecs) :-

rasult_fila (Newlutput),
',
telling (0ldOutput, NewOutput),
write resultsl (PredTypeSpecs),
tall (OldOutput) .

write_ results(PredTypeSpecs) :-

write resultsl (PredlypeSpecs).

write_resultsl ([PredTypeSpec | OtherPredTypeSpecsa]}) :- !,
write_pred type_spec(PradIlypaesSpec),
write_resultsl (OtherPredTypeSpecs) .

write reaultsl([]).

write pred type spec(type(Pred, TypeTuple}) :-
predicate_of literal (Pred, PredType),
args_of type tuple (Args, TypeTuple),.
args_of literal (Args, PredTypa).
numbervars (PredType, 0, _).
print ((:~ pred PredType)), write(’.’), nl, nl.

68

’

%

% FILE: op.pl

% AUTHCR: Ching=-Tsun Chou

% SPEC: Oparator declarations for TYPEINF

%

i~ op{ 800, xfx, ">mm'), % Used in Term Inequalities.

= op{1125, xfx, ‘=>"). % Used in type declarations.

69

%

% FILB: load
% AUTHCR: Ching-Tsun Chou
¥ SPEC: Load TYPEINF into memory
%
-t
‘op.pl’ R
‘infer.pl’ N
' inaeq.pl’ .
‘misc.pl’ .
‘work.pl’].

70

%

% FILE: self |

% AUTHOR: Ching-T@un Chou

% SPEC: infer.pl with type declarations added
% (Test data for TYPEINF)

%

% Type declarations for functors:

i~ type list(T) => [] | [T | 1list(T)].
1= type flag => yes | no.

1= type clause => (literal :- clause)
| {clause , clause)
| (clavea ; clause)
I (1.

1= type term => ’§VAR’ (variable).

i~ type type_spec => type(predicate, type tuple)
| type{functer, functor_type)
| type(variable, type).

:- type functor_ type => (type_tuple -> type).

:- type term ineq => (T >== U),.

% Type declarations for predicates which are invoked but not defined in
% infer.pl:

:~ prad litaral of unit_clause(literal, clause).

- pred predicate of_literal {predicate, litaeral).
:- pred functor of tarm(functor, term).

:- pred args_of_literal (list(term), litaral).

:- pred args_of term(list(term), term).

:- pred args_of_type tuple(list(type), type tuple).
i- pred assign mg pred type(predicate, typa tuple).
i~ prad assign mg_var_type(variable, type).

:- prad collect_variablas(clause, list (variable)} .
i~ prad collect_ predicates(list(clause), list {predicate)) .
:= pred ineq satisfied(term_ineq}.

:- prad relax one_ineq(term ineq).

% Prolog clauses in infar.pl:

type_inference (Program, TypeEnv, PredTypeSpacs) -
collact_predicates (Program, Pradicates),
init_pred types(Predicates, PredlypeSpecs),
collect_inegs (Program, PredTypeSpecs, TypeEnv, []. Inaqualities),
relax ineqs (Inequalities, yes, Inequalities).

71

init_pred_types({Pred | OtherPredas],
[typa (Pred, MGTypeTuple) | QtherPredTypeSpecs]) :- !,
assign mg pred type(Pred, MGTypeTuple},
init_pred types(OtherPreds, OtherPredTypeSpecs).
init_pred types([]l., []).

cellect_ineqs([Clause | OtherClauses], PredTypeSpecs, TypeEnv,
OldInaqs, NewInegs) :- !,
collect variables (Clause, Variables),
init_var_types (Variables, VarTypeSpecs),
cellect_inegs_in_clause(Clause, PredTypeSpecs, TypeEnv, VarTypeSpecs,
OldIneqs, MidIneqgs),
collect_inegs (OtherClauses, PredTypeSpecs, TypeEnv,
MidTneqs, NawInegs).
collect_inegs([]. _. _., Inegs, Inegs).

init var types([Var | OtherVars],

[type (Var, MGVarType) | OCtherVarTypeSpecs]) :- !,
assign mg var type(Var, MGVarType},
init_wvar_ types (OtharVars, OtharVarTypaeSpecs).

init_var_types{[], []).

collect inegs in clause({Head :- Body), PredTypeSpecs, TypeEnv, VarTypeSpacs,
OldIneqs, NewIneqs) :- !,
collact inegs in head (Head, PredTypeSpecs, TypeEnv, VarTypeSpecs,
OldInags, MidIneqs),
collect inegs_in bedy(Body, PredTypeSpecs, Typelnv, VarTypeSpecs,
MidIneagqs, NewIneqs).
collect_ineqgs_in clause (Clause, PredlypeSpecs, TypeEnv, VarTypeSpecs,
CldInegs, NeawIneqgs) :-
literal_of_pnit_plaua-(Literal, Clause),
collaect_ineqs_in head{Literal, PredTypeSpecs, IypeEnv, VarlypeSpecs,
0ldIneqs, NewIneqgs).

collect_inegs_in_head (Head, PradTypeSpecs, TypeEnv, VarTypeSpecs,
Ineqs, [({TypeTuplal >a= TypeTuple2) | Inegs]) :-
arg types of literal (TypeTuplel, Head, TypeEnv, VarIypeSpecs),
predicate_of literal(Pred, Head),
member (type (Pred, TypeTuplel), PredTypeSpecs).

collect_ineqgs in body({(Goall , Goal2), PredTypeSpecs, TypeEnv, VarTypeSpecs,
OldIneqgs, NewlIneqgs) :- 1!,
collect_inegs in body(Goall, PredTypeSpecs, TypeEnv, VarTypeSpecs,
0ldIneqs, MidInegs),
collect_inags_in bedy({Goal2, PredTypeSpecs, TypeEnv, VarTypaeSpecs,
MidInegs, NewIneqs) .
collect_ineqs_in body((Goall ; Goall2), PredTypeSpecs, TypeEnv, VarTypeSpecs,
0ldIneqs, NewIneqs) :- !,
collect_ineqs_in body(Goall, PredTypeSpecs, TypeEnv, VarlypaSpecs,
CldIneqs, MidInegs),
collect_inegs_in body(Goal2, PredTypeSpecs, TypeEnv, VarTypeSpecs,

72

MidInecds, NewlInegs).
collect_ineqs_in_bedy((!'), _, _, _, Ineqs, Ineqs) :- !.
collect_ineqs_in body(Goal, PredTypeSpecs, TypeEnv, VarTypeSpecs,

OldIneqs, Newlnegs) :-
literal_of unit_clause{Literal, Goal},
predicate of literal (Pred, Literal).,
collact_ineqs_in goal (Pred, Literal, PredTypeSpecs, TypeEnv,
VarlypeSpecs, OldIneqs, Newlnags).

collect_ineqs in goal({Pred, Goal, PredTypeSpecs, TypeEnv, VarTypeSpacs,
Inegs, [(TypeTuplel >== TypaeTuple2) | Inegs]) :-
mepber (type (Prad, TypaTuplel), PradTypeSpecs),
'l
arg_types_of literal (TypeTuple2, Goal, TypeEnv, VarTypeSpecs).
collact_inagqs in_goal (Pred, Goal, _, TypeEnv, VarTypeSpecs,
Inags, Ineqgs) :-
member (type (Pred, TypeTuplel), TypeEav),
arg_types_of litaral (TypeTuple2, Goal, TypeEnv, VarTypeSpecs),
relax _one_ineq((IypeTuplel >== TypaTuplel)).

arg_types of literal (TypeTupla, Litaral, TypeEnv, VarTypeSpecs) :-
args of literal (Args, Literal),
walltype term list (Arga, TypaEnv, VarTypeSpecs, ArgTypes),
args of type_ tuple (ArgTypes, TypeTuple).

walltype term list({Term | OtherTerms], TyreEnv, VarTypeSpecs,
{Type | OtherTypesl) :- !,
welltype term(Term, TypeEnv, VarTypeSpecs, Type),
welltype term list (OtherTerms, TypeEnv, VarTypeSpecs, CtherTypes).
walltype term 1list(([], _, _., (1}.

walltype_term{’$VAR’ (Var), _, VarTypeSpecs, Type) :- !,
mambar (type (Var, Type), VarTypeSpacs).
welltype tearm{Term, TypeEnv, VarTypeSpacs, Type) :-
args of term{Args, Term),
welltype term list (Args, TypeEnv, VarTypeSpecs, ArgTypes),
args_of type tuple (ArgTypas, TypeTuple),
functor_of_term{Func, Term),
member (type (Func, {(TypeTuplel -> Typal}), TypeEnv),
relax cne_ineq(((TypeTuplel -> Typel) >== (TypeTuple -> Type))).

relax ineqs({Ineq | CtherIneqs], Flag, OldIneqs) :-
ineq_satisfied(Ineq),
t,
relax lnags{OtherIneqs, Flag, 0ldIneqs).
relax ineqs([Ineq | OtherIneqs], _, OldIneqs) :- !,
ralax one_ineq(Ineq),
relax_ ineqs (CtherIneqs, no, OldIneqs).
relax ineqs([], no, OldInegs) :=- !,
relax_inegs (OldInegs, yes, OldInegs).
realax inegs([]., yes,).

73

member (Element, [Element | _]).
mambar (Element, [_ | LiatTail)) :- member (Element, ListTail).

74

