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The functional style approach to describing digital systems has also been used.
Lahti [Lahti81] showed that a functional style language could be used to specify com-
binational circuits and investigate their behavior. This was extended to sequential
systems by Sheeran in [Sheeran84]. Functional style languages have also been used
to extract layout information [Schlag84], examine timing in combinational and
sequential systems [Meshkinpour85], and as the basis for a design environment

[Patel85].

1.5. Objective and Scope of the Thesis

The objective of this thesis is to develop a high level method for describing
and managing a net list representation of digital systems. Both the description

language and the method for net list extraction will be examined.

In Chapter 2, a high-level computer language (Pascal) is used to describe a
simple net list; its problems and limitations are discussed. The motivation for a func-
rional style description is developed. Chapter 3 presents the syntax, semantics, and
features of the UCLA Functional Programming Language, which is used subsequently

as the net list description language.

The use of functional style net list description is covered in Chapter 4. Two
styles are examined and compared: the picture style, which reflects the structure of the
system; the generator style, based on the synthesis of the system. The ‘‘flow of infor-

mation extraction’’ technique of extracting net lists is explored.
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CHAPTER 1

INTRODUCTION

1.1. Digital System Specification

The design of a digital system is aided greatly by the ability to clearly describe
its structure and behavior in a high level language [Shiva79]. Besides providing a
system specification, a system representation can also serve as a computer simulation
language. This permits rapid testing and preliminary debugging of designs; tuning
and analysis can be done without repeated physical realizations. The specification
might also serve as input td automated design processes, such as placément and rout-

ing on a printed circuit board.

A behavioral/structural specification can be given in both the top-down and
bottom-up design methodologies. In the top-down approach, a description specifies
the behavior and interface for each subsystem at each level of the design hierarchy.
Because the design is on paper, it is easy to experiment with different partitions of
functionality. The precise definition of each subsystem allows them to be developed
and tested in parallel. Further, behavioral simulation at higher levels can uncover
possible problems and pinpoint considerations in implementing lower levels before

they are designed.

Specification assists the bottom-up strategy of putting simpler modules

together to achieve the desired operation. The designer can use simulation to
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and one or more outputs. Some inputs are the output of another element; others, the

system inputs, are generated externally. A subset of all outputs are the system ouputs,

most often the final result(s) of a computation or a sequence of control signals.

(1)

@

3

4)

Modeling a system as a network provides a good basis for specification:

The model is general. There is no restriction on the type of components or the

structure of the system.

The operation of the network is easily understood. The output of each element
can be determined by examining its operation and the operation of all elements
generating its inputs.

The model is hierarchic:‘leach element in the network can, itself, be a network of
yet simpler components. For example, a multiplexer may be one component in a
larger system. The multiplexer, in turn, is a system consisting of a decoder, an

array of and gates and an or gate tree.

Parallelism and dependencies are explicitly expressed by the input-output rela-

tionship of the components.

A simple method of describing a network is by listing each element with its

inputs and outputs. Each element is labeled with a mnemonic for its operation; all

inputs and outputs must be uniquely labeled. This linear, textual representation of a

network is called a ner list. This thesis will use the following format for a single

entry, or element, of a net list:

ELEM input |, inputy * * - input, :: OUIpUL), OUIpULy ~ - OUIpUly



experiment with different combinations, evaluating functionality and performance and
deriving system parameters. Once designed and tested, specifications for new subsys-

tems can be stored away in libraries for future reference.

To be useful in describing digital systems, the specification language must be
general enough not to restrict the overall structure of the system, This requires that
there are no implicit or explicit assumptions on how systems are put together. In

addition, the specification language should:

(1) have clear semantics, éo that a description can be easily understood by either a

person or a computer program,

(2) be hierarchical, to be able to describe both primitive and higher level parts of the

system clearly, and
(3) be able to explicitly express paralle] and sequential operation within the system.

The structure, strengths, and limitations of a specification language arise from
its abstract model of a digital system. If the underlying model cannot express an
operation or a structure, the language will hinder problem solutions rather than help.
In the next section, we will examine the network model of digital systems that serves

as the basis for system specification.

1.2. Networks and Net Lists

A digital system can be viewed as an interconnection of simpler subsystems.
This nefwork model represents a system in terms of the operation and input-output

relationship of its components. Each element in the network has zero or more inputs

[ O]



full_add x,y,Cin ::  Cout,s

half add x,y n O
and X,y N O
xor X,y S

half add s,,Cin it Cays
and 51 Cin .~ C2
xor s, Cin s

or CnC, . Cout

1.3. High Level Network Description

A net list specification of a digital system presents the complete connectivity
of the system. Being a textual representation of the network model in a simple, regu-
lar format, it is usable by both humans and computer programs. Unfortunately, a
human user would rapidly become lost in the sheer volume of information. System
specifications can easily become long and bulky; even net lists for simple systems

may be tedious to generate by hand or to read and understand. Use of hierarchy in the

net list can alleviate this difficulty, but the user wouid still be forced to think in terms

of module interconnection.

In translating the system to a net list description, the inzens, i.e., the higher
level meaning, of the structure and behavior of the system cannot be captured. The
gquation

P=Ax?+Bx+C
is more readily recognizable as a second degree polynomial than the equivalent net

list:

wn



If a set of elements are subsystems of a more complex element, this hierarchy will be

denoted by indentation, i.e., in the net list

ELEM x,y,z = ab
SUB1 x,y woat .
SUB2 t,z b

the elements SUB1 and SUB2 make up a network contained within the higher level
element ELEM; the connection labeled t is internal to ELEM, hidden from higher lev-

els of the system.

Consider the binary full adder, a system with three inputs (two summand bits
and an initial carry) and two outputs (a sum bit and a final carry). Using a top down
approach, this can be implemented as a network of two half adders (adds two bits to

produce a sum and a carry) and an or gate as follows:

full_add x,y,Cin :x Cout,s

half_add * x,y n Cpsy
haif add s, Cin 2 Cas

or C,C, i Cout

Each half adder, in turn, consists of an exclusive-or (xor) gate to produce the
sum and an and gate to generate the carry. Thus, the specification of a full adder

down to the gate level would be



defined once in the description. Connections can be logically organized into bundles
having more meaning than the individual connections taken together, e.g., a single

byte width data path instead of eight individual wires.

These languages provide a more human readable form of a connectivity
description than a simple net list; however, they stiil force the designer or reader to'
think in terms of module interconnection instead of the overail operation on the sys-
tem. Procedural description languages represent a digital system in terms of high
level operations, which a later compiled into lower level, implementation specific
details. The operation and sequencing can directly reflect the hardware behavior, as
found in CDL [Chu65], DDL [Duley68} or any of many register transfer languages.
Higher level languages, such as HARPA [Viega84], ZEUS [Lieberherr82], = (Xi)
[Feldman83] and the proposed VHSIC description language VHDL {Shahdad85], use
idioms found in software languages, such as assignment, general arithmetic expres-
sions, and procedure calls. The use and drawbacks of procedural languages will be

examined in Chapter 2.

- One compromise between the two previous methodologies is to describe both
the functionality and the structure of the system. Robinson and Dion [Robinson82]
use the Modula-2 language to describe each module twice: once for the functionality,
once for the structure. The language ELLA [Morison82] uses a function oriented

syntax to express these two facets in a single description.



MULTIPLY B,x i M1

ADD C, M1 ¢ 81
MULTIPLY x,x i M2
MULTIPLY A, M2 @ M3
ADD S, M3 = P

though they contain exactly the same information about the computation. Even with
good use of hierarchy, the form of the net list can only express the whar characteris-

tics of a system, not the how or why.

Difficulties of net list specification can be overcome by using a high level
description from which the net list can be derived. This is similar to the use of high
level computer programming languages, translated to machine instructions by a com-
piler; the net list can be produced rapidly and without translation errors. By express-
ing the operation, structure, and intent of a digital system while hiding other details
(e.g., the intermediate sum S1 in the polynomial net list), the high level description is

semanticaily denser, more readable and easier to manage than the equivalent net list.

1.4. Previous Work

The advantages of specification languages in the design of digital systems
have long been recognized [Dasgupta84]. Many languages, with different assump-
tions, intents, and features, have been proposed and impiemented. Connection
oriented languages, such as HIDSL [Lim63] and BDL [Slutz84], model a system ‘as
interconnected structures or blocks. The advantage of these languages over a simple
net list description is the degree of abstraction that can be achieved. System com-

ponents can be hierarchically combined into more complex units, which need only be



Finally, in Chapter 5, the FP description of VLSI circuits is discussed; the
advantages of an FP description as a base for a design environment are examined.
The translation and layout of a ripple carry adder, starting from the FP description, is

examined as a practical application of functional programming to VLSI design.



CHAPTER 2

NET LIST DESCRIPTION AND FUNCTIONAL PROGRAMMING

2.1. Qverview -

A net list description language (NLDL) provides a high level representation of
the network model of a digital system. The language should capture the operation,
components, connectivity and high level semantics of the system without constraining

the high level solution or forcing the designer to manage too many details.

In this chapter, two styles of languages are discussed. The procedural style
language, though useful for describing algorithms, is limited by the underlying model
of computation. This leads to consideration of a functional style language; a func-

tional language is presented in the next chapter.

2.2. Procedural Description

A digital system can be considered to implement an algorithm, such that each
step from system inputs to system outputs is realized by one or more elements in the
system. As noted in the previous chapter, some existing hardware description
languages have been modeled after computer programming languages, which describe
software algorithms: HARPA and ZEUS are based on Pascal, = on C, AHPL [Hill75]
on APL. and VHDL on Ada. Given a algorithmic, or procedural, view of a digital

system, the Pascal language, as an examﬁle of a procedural language, will be used to

10



examine how a binary full adder might be described.

Digital circuits operate on binary values. This can be reflected in Pascal by
defining a type bir equivalent to the Pascal type boolean. The first step is to define the

logic gates used in a full adder: and, or and exclusive or (xor).

types
bit = boolean;

function andgate(x, y : bit) : bit;
begin

andgate :=xand y
end;

function orgate(x, y : bit) : bit;
begin

orgate :==xory
end;

function xorgate(x, y : bit) : bit;
begin

xorgate := X <> y {* Simulate exclusive or *}
end;

Once the basic gates are defined, the next step is to describe a half adder cir-
cuit. Unlike a logic gate, however, a half adder has two outputs: the sum and carry
bits. Since Pascal function can only return a single value, the two half adder outputs
will be returned by side effect, i.e., changing a value outside the function. Since there
is no explicit value returned, the binary half adder takes the form of a procedure as

follows:

11



procedure half add(x, y : bit; var Sum, Cout : bit) : bit;
begin

Sum := xorgate(x, ¥);

Cout := andgate(x, y)
end;

Now, the full adder can be constructed from two half adders and an or gate.
Like the half adder, the full adder is a procedure, returning its two outputs by side

effect.

procedure full_add(x, y, Cin : bit; var Sum, Cout : bit) : bit;
var
Stmp, Ctmp, Ctmp?2 : bit;
begin
half add(x, y, Stmp, Ctmp);
half add(Stmp, Cin, Sum, Ctmp2);
Cout := orgate(Ctmp, Ctmp2)
end;

2.3. Limitations of Procedural Description

Though the functionality of a digital system can be adequately described in an
algorithmic style, the usefulness of procedural languages for specification is limited
by the implicit underlying machine model. Almost all procedural languages mimic,
albeit at a higher level, a Von Neumann machine. The classic Von Neumann machine,
is a single central processing unit (CPU) connected to a linear, addressable memory
by a fixed width data path. The CPU sends addresses and data to the memory; the

memory sends instructions and data to the CPU.

Most procedural languages provide only a small degree of abstraction from

this model of computation. Variables are simply convenient symbolic names for



mcmorf addresses; data types are just an indirect means of grouping and organizing
memory cells. Even the most elaborate flow control structures can be decomposed
into test-and-branch instructions. A procedural style language, while hiding many of
the details of machine and assembly level programming, maintains the sequential,

one-step-at-a-time nature of the Von Neumann machine.

The implicit, sequential machine model produces two fundamental weaknesses
in the procedural style of system description: the representation of system information
(data) is limited and inflexible; constructs for building larger systems from the
descriptions of smaller ones are few, and cannot cl;zarly express the structure of the
system. The cause of these weaknesses and the problems they introduce are discussed

in detail below.

2.3.1. Data Representation

Data representation in most high level languages is closely tied to the organi-
zation of memory in a Von Neumann machine. Basic data types normaily correspond
directly either to a single memory storage cell (e.g., a byte), or a small integral
number of cells which can be directly manipulated by machine instructions (e.g.,
words, addresses).

Mechanisms to build other data types, such as arrays or structures, only form
combinations of the basic types; further, these new types are static templates, unable
to adapt and change as the computation progresses. Dynamic storage management,

e.g., flexible arrays or linked lists, still only builds on the basic data 1\ pe, and makes

13



the designer painfully aware of how information in the digital system is represented.

One difficulty this memory oriented representation introduces is in the descrip-
tion of modules with a variable number of inputs and outputs. An N-bit adder, for
example, must map the input and output bit vectors into some organization of
memory, usually an array. Operating on arrays normally requires some form of
repetitive looping, involving language constructs (e.g., a for loop) and information
(e.g., an index variable) extraneous to the structure and function of the system. This
difficulty even appears in languages with array operators if the inputs or outputs can-

not be forced into an array organization.

A more important difficulty introduced by the data representation is the limita-
-tion on the utility of functions. Almost a-ll high level system description languages
use functions, commonly for low level primatives, such as logic gates. The descrip-
tion of more complex modules as functions, however, and their use in expressions, is

constrained by limits the language may place on the data rype a function may return.

One solution, adopted by some description languages, is to return a// values by
side effect, as in the Pascal desbriptions above. This use of side effects, however,
introduces an artificial distinction between modules that return a single value, modei-
ing them as functions, and those with more than one output, modeling them as pro-

cedures.

Modules with more than one output can be described as functions by choosing

one output value to return as the explicit result. If the carry-out bit of the half and full

14



adders is retumed as the result of the function, the modules can be described as

function half add(x, y : bit; var Sum : bit) : bit;

begin
Sum = xorgate(x, ¥);
half_add := andgate(x, y)
end;
and

function full_add(x, y, Cin : bit; var Sum : bit) : bit;
var
Stmp, Ctmp, Ctmp?2 : bit;
begin
Ctmp :=half_add(x, y, Stmp);
Ctmp2 := half_add(Stmp, Cin, Sum);
full_add := orgate(Ctmp, Ctmp2)
end;

Unfortunately, this method only reduces the number of outputs returned
through side effect by one, while introducing the additional complexity of choosing

and remembering which value is explicitly returned.

2.3.2. Module Combination

A top-down design methodology decomposes the functionality of a system
into progressively simpler units, whether they be arithmetic expressions or integrated
circuits. A bottom-up approach starts with simpler units and builds toward the
desired functionality. Both are based on the combination of smaller units into more

complex systems.

In a procedural style language, the basic units are the steps in the computation.

The combination of two steps requires that the first step modify some portion of the

15



global state, which can then be referenced by the next step. Language features, such
as arithmetic expressions, can combine functions without explicit storage of results,

but their use is restricted by the limited utility of functions, discussed above.

In general, storing and fetching data from global storage is the only means of
combining units in a procedural style language. This splits a description into two
domains: expressions, which return values, and statements, which modify the state of

global storage through assignment.

While any combination of modules can be described using global storage to
represent connections, it lacks the ability to clearly and explicitly represent structure
of the system. The connection of modules is implicit in the description, so the struc-
ture must be extracted to be seen or analyzed. Instead of expressing how modules are
combined, a procedural style description hides the structure in a clutter of temporary

variables and side effects.

Constrained by an inflexible data representation and weak, implicit combining
forms, a procedural description style forces a designer to compress the two dimen-
sional structure of a net list into a one dimensional, sequential stream. The task of
specification becomes concerned with how best to map the system into a sequence of
steps, instead of concentrating on how modules are combined. Using a procedural
style description complicates the design of a digital system, obscures the intent and
structure of the system, limits the ability to use existing systems as new building

blocks, and makes the net list description of the system difficult to extract.
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2.4. Functional Style Description

The ability'of procedural languages to describe digital systems is restricted by
the underlying, sequential model of computation. A language designer, of course, is
not bound by the restrictions c:f the Von Neumann machine. Language features can
be implemented to circumvent or remove specific difficulties. The difficulties intro-
duced by the memory oriented data representation can be overcome by using a more

flexible and dynamic model of data. The list notation used in LISP languages

presents an attractive alternative:

(1) The basic data units, symbois, are simple, yet general enough to include both

numeric and alphabetic data.

(2) The single data combination mechanism, /ists, can express an arbitrarily com-
plex grouping of data.

(3) A list can change dynamically.

(4) The data representation is completely independent of the organization of under-
lying memory.

Even with a flexible data representation, however, a procedural style language
still models a system as performing a sequence of steps, relying on global storage for
combining modules. As the difficulty with data representation was solved by choos-
ing a different high level model for data, the difficulty with combining modules can

be solved by choosing a different high level model of digital systems.
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Instead of describing a sequence of steps in an algorithm, each component ina
digital system can be considered to be a (mathematical) function, i.e., a one-to-one
mapping on the inputs to the outputs. A binary half adder, for example, performs a

function on bits, which can be clearly defined by the equations

sum =X XOr'y

carry =xand y
or by the table:
X y | carry sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 i 0

A microprocessor system also implements a function: its input and output are
the contents of memory and internal registers. Uniike the half adder, the mapping
from inputs to outputs has no closed form or tabular description. Instead, it operation
is defined by a set of _smaller functions, called machine instructions, combined

sequentially to produce the full function.

With a list representation of data, each module can be represented as a func-
tion with exactly one argument, a list, as its input, producing exactly one output, also
a list. To eschew using the global state for combining modules, the description
language must provide explicit combining forms, so that modules (functions) can be

manipulated as well as data. With sufficient combining forms, it is possible to

remove the global state entirely for combinational digital systems.
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A specification language that models a computation as the application of func-
tions to a data object is a funcrional style language. The emphasis in functional style
programming is on the combination of functions, much as the design of digital sys-
tems focuses on the combination of modules. In the next chapter, the outline of a
functional style language, the UCLA Functional Programming language, is presented.

It will be subsequently used as a specification language for digital systems.
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CHAPTER 3

THE UCLA FUNCTIONAL PROGRAMMING LANGUAGE

3.1. Overview

The UCLA Functional Programming Language follows the language proposed
by Backus in [Backus78] as implemented by Baden [Baden82]. This implementation
simplifies the original mathematical notation, and expands the set of primitives and
functional forms. A functional language is characterized by its objects, syntax and

semantics of application, primitive functions, and functional forms.

3.2. Objects

An object is an atom, or a parenthesized sequence of objects. In general, an
atom may be a number, quoted ASCII string, or alphanumeric string beginning with a
alphabetic character. A sequence consists of zero or more objects separated by a
blank, surrounded with parenthesis. LISP users will note the similarity of functional
objects to LISP objects. The predefined atom ?, the error atom, is returned by ail

functions when an error occurs. The following are examples of valid objects:

12 “FPstring" Xxyz
O @123 (abe () (1 2(3)M)

Logical values have two representations: boolean and bir. Boolean values use

() for false; any non-null object is considered to be true, but the value wiil be



represented by the symbol T. Bit values, used with functions describing digital algo-

rithms, use the constant values 1 and 0 for true and false, respectively.

3.3. Application
The application operator is the colon, ‘:’. The syntax of application is
expression : object
For example, if the function average calculates the average of a sequence of
numbers, then

average: (46215 8)

will return the numeric atom 7.

Functional languages are error preserving, i.e., for all functions f,

f:?=2

and

3.4. Primitives
Each primitive is defined in the form

primitive : x = if x =o0bj, then result
if x =obj, then result,

if x =obj, then result,
else ?

where x is an arbitrary object, and 0bj |, 0bj4, - - - obj, are expected structures. The

first if clause to yield T will determine the value returned, as described by the then
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part. If none of the if conditions yield mxe; then the error atom, ?, will be returned.

3.4.1. Selector Primitives

These primitives are used to access parts of a sequence. The functions id and
out both return the input object x, but our also prints it on the terminal. The element
selector 1 represents any unsigned integer; the other selector names are intended to be

a mnemonic for the function performed.

id : x
out X

i
®

kS
®
|

=if x=(x1x7 " X,)andlspsn
then:cu
else ?

pick :x = if x=(y (x;x7 "' x,)and 1Sy sn
then x,

else ?

il

if x =()then ()

if x=(;xy ' x)andn 21
then x,

eise ?

last ' x

if x =()then ()

if x=(x;x7 ' x,)andn 21
theﬂxl

eise ?

first : x
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tail @ x if x=()then ()

if x =(x)then ()

if x=(x;x3 " x,)andn 22
then (x, x5 ' X,)
else ?

head : x

if x =() then ()

if x =(x) then () ,
if x=(x;x3 """ xy)andn 2
then (x1x2 x,,_,l)

else ?

If it was desired to remove the first and last elements from a sequence, for
example, the head primitive would be applied to the result of applying the tail primi-

tive to the sequence, i.e.

head : (tail : (123456)) = head : (23456)

(2345)

3.4.2. Structural Primitives

The structural primitives change the form of objects. This list does not
represent all possibilities, but is chosen as base from which desired manipulations can
be constructed. dist/ and distr distribute an object from the left or right, respectively,
to each element in a sequence. apnd! and apndr append an object on the left or right

end of a sequence.

trans produces the transpose of a matrix represented as a sequence of one or
more equal length sequences. reverse reverses the order of objects in a sequence.
rotl and rotr circularly rotate elements of a sequence to the left and right, respectively.

concat concatenates sequences together to form one sequence; any occurrences of the
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null sequence () disappear. pair groups objects of a sequence into subsequences of

length 2; split separates a sequence into two equal length subsequences.

distl :x = if x =( ()) then ()
if x=(y(x;x3 "~ x,)andn 21
then ((y x)) ¥ x3) *** O Xu))

else ?

distr . x

if x =(()y)then(}
if x=(x;x9 """ x,)y)andn 21

then ((x{¥) (x2¥) - (Xx ¥))
else ?

apndl :x = if x =(y ()) then (y)

if x=(y (x;xg " x,))andn 21
then (y xy x4 ** " X,)
else ?

apndr :x = if x =(()y) then (y)
if x=(x;x; """ x,)y)andn 21
then (x, x4 *** X, ¥)
else ?
trans 1x = if x=((c; XY Ya) {2y z,))
then((x1y1 31) e (X Y zn))
else ?
reverse :x = if x =() then ()
if x=(yx "' x,)andn 21
then (x, x,_; " x)
else ?
rot! :x = if x =()then ()
if x =(x;)then (xy)
if x={x;x2 " x,)andn 22
then (x, - - x, xy)
eise ?
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rotr .

concat .

pair :

spiit :

if x =() then ()
if x =(x,)then (x)

if x=(xxq """ x,)andn 22
then (x, x; " * X,_1)
else ?

ifx=(ry w01 ) K

then (x; “*- X *** y1 7" Ym)
else ?

if x=(x;x3 " x,)andn is even
then ((x; X3} =" (Xa_1 %a))

if x=(x,x2 "' x,)and n is odd
then ((xyxq) - (x,))

else ?

if x = (x,)then ((x}) ())

if x=(x;xp - x,)andn 22

then ((x1 tee anIZJ) x 2]+l * 77 X))
else ?

In a “‘perfect’’ shuffle of k equal length sequences, the n' element of the j™

the second elements, etc, formed by transposing the input object.

concat :(trans : (1357)(2468))=
concar : ({1 2)(3 4)(5 6)(7 8)) =
(12345678)

3.4.3. Predicate and Length Primitives

sequence becomes the (k(n—1)+j Y¥* element of the final sequence. This can be

accomplished by combining (concarenating) the sequences of all the first elements, ail

Predicates return a boolean value (T or ()) based on the input object. There
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described below; eq compares two objects, retuming T if they are identical, () other-

wise. length returns the integer value of the length of the input sequence.

if x is an atom then T
if x #? then {)
else ?

aiom . X

null :x = if x=()thenT
if x #?then ()
else ?

length :x = if x =() then0
if x=(x;xy """ x,)thenn
else ?

3.4.4. Arithmetic and Logical Operations

UCLA FP uses a full complement of arir.hmetié and logical primitives, written
in either prefix or infix notation. In prefix, the opera.tion is applied directly to a
sequence, €.g.

+:(11)

will yield 2 as a result. For addition, the sequence must consist of exactly two
numbers, or an error will result. When equations are complex, however, the prefix
format becomes almost unreadable and difficult to debug. The use of infix notation
improves the readability and simplifies the formatting of lengthy expressions. For

exampie, the expression

-@+@(12],31: 235

would be rewritten as



1+2-3:(235)
producing the result 0, as expected.

Using infix notation permits an interpreter or compiler to check for the correct
number of arguments when the expression is parsed, saving on run time checking and
debugging in general. The infix functions have a normal priority hierarchy among
themselves (multiplication and division before addition and subtraction, etc.), and are
higher priority than prefix operations. Parenthesis are used to alter the normal evalua-

tion order.

The arithmetic and logical primitives available are summarized below. Arith-
metic functions require a sequence of two numbers if prefix, a left and a right expres-
sion if infix. Logical functions, except for ~ (not), require a sequence of two logical

values, or a left and right logical expression.

Mathematical + - * /
Numeric Comparison < > <= >= = "=
Logical and or “(not) xor nand nor

3.4.5. Constants

A constant can be viewed as a function whose output is the same regardless of
the input, In UCLA FP, constants are denoted by a percent sign, ‘%, followed by an

FP object. If x and y are any objects other than ?, then

Jox.y=x
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3.5. Functional Forms

Functional forms serve as the glue for combining functions into more complex
expressions. Formally, a functional form is a metafunction: it takes one or more func-
tions as its arguments and returns a function whose operation is defined as some com-

bination of the argument functions.

Composition combines two functions sequentiaily. Construction and mapping
apply one or more functions in parallel to the same object or to each object in a
sequence, respectively. Apply-to-all applies one function to all objects in a sequence
in parallel. The four inserr functional forms, left, right, associative and tree, each
reduce a sequence of one or more objects to a single object by repeated application of
a function. A conditional applies one of two functions, determined by the result of a

decision function.

3.5.1. Composition
The composition functional form, ‘@’, is the mathematical function composi-
tion operator. Composing two functions combines them sequentially, so that

function | @ functiony : x

means

function | : ( function, : x )
The previous examples of removing the first and last elements from a
sequence and the perfect shuffle both represent the sequential combination of two

functions. Thus, the applications would be written using the composition functional

28



form as follows:

head @ tail : (123456)=(2345)

and

concat @ trans : ((1357)(2468)=(12345678)
3.5.2. Construction

Construction is the parallel application of one or more FP expressions to the
same object. The null construction [] is equivalent to the null atom (}, but should not

be used, since the constant %() is much clearer. The syntax of construction is

[expr |, expry, - -+ expry]:x
yielding the object

(expr,:.x,expry:.x, * ' exprp :X)
50, the result of a construction will be a sequence of N objects. Each FP expression in

a construction is separated from any surrounding expressions by a comma °,’.

The sum, difference, product and quotient of two numbers can be found by
applying the construction of addition, subtraction, multiplication and division to the

sequence:
(= *,/1:(42) = (6282)
3.53. Mapping

A possible usage for construction is the distribution of a different FP expres-

sion to each element of a sequence, i.e.,
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(expr @ 1, expr,@2, “ - expr,@n] i (xyXg * %)

This is common enough that UCLA FP uses the functional form mapping as a

cleaner shorthand. The syntax of a mapping is

{expry expry, *~* @pra) (X1 %2 *" %)
yielding the object

(expry:xy, &Xpra:Xy, ' €XPry i Xp)
As with construction, each FP expression is separated from any surrounding
expressions by a comma ‘,’. The number of exprs in the mapping must match the
length of the sequence; if not, the result is 7. The identity function id can be used as a

place holder.

3.5.4. Apply to All

Where construction and mapping distribute one object to several functions, the
apply-to-all functional form ‘&’ distributes one function to several objects. Apply to

all is defineqd as:

&expr ix = if x =()then ()

ifx=(x1x2 -“x,,)a.ndnzl
then (expr : x,expr 1 Xq, ‘' €xpr ! X,)
else ?

The expr can be a single FP function, a parenthesized FP expression, a con-

struction or mapping, or an applied-to-all or inserted expression.

To produce a truth table of the form

((bit_pattern o resultg) - - - (bit_pattern, resuit,))
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for a boolean function f, the construction of the identity function id and f would be
applied to all bit patterns. The truth table for and, for example, would be produced

by the application

& [id, and] : ((0 0)(0 1)(1 0)(1 1))
giving
(000 (01HO) (1O (1 1) 1Y)

3.5.5. Inserts

When it is desired to operate on all the elements of a sequence, such as taking
the sum of a sequence of numbers, one of the inserts is used. There are four types of
inserts: right (°1’), left (*\"), associative (’|"), and tree (’*").

The associative insert repeatedly splits a sequence and does a recursive associ-
ative insert on both halves until the length of a sequence is two, then applies the func-
tion. A ftree insert repeatedly performs an operation pairwise on a list until a single

result is obtained; this is distinct from the associative insert for all sequences of length

greater than five.
lexpr :x = if x =(x,) thenx,
if x=(xyx9 *- x,)andn 22
then expr : (x lexpr : (x, - x,))
else ?

\expr 1 x = if x =(x) then x,

if x=(x,x5 " x,)andn 22
then expr : (\expr : (x| -~ x,_1) X,,)
else ?
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|expr :x = if x =(x;) thenx,
if x=(x;x, """ X,)andn 22
thenexpr:(]expr:(xl-“xu)lexpr:(xn cr X))
Tl
else ?
“expr :x = if x =(x) thenx,
if x =(x,x,) thenexpr :x
if x=(x;xy "' x,)andn 22
then “expr @ &expr @ pair : (x 1 x3 ~ " X,)
else ?

The factorial of an integer n can be computed by inserting muitiplication into
the sequence of integers from 1 to 2. Since multiplication is both associative and
commutative, the result will be the same regardless of the particular insert used. The
right insert works from the left to the right of a sequence until one element remains,

then performs the multiplication from right to left:
* (1234 (1* (234

(1* 234

c(1* 2% (3P (4)))

(1> 2*:(34)

(1% 1 (212)

(1 24)

24

% ¥ ¥ ¥ ¥ ¥

WO WOH W W W

The tree insert, in contrast, performs the operation on pairs of elements until a

single result remains:

“*:(1234) = "* @ &* @ pair : (1234)
=" @ &*:((12)34)
= "% :(212)
= 24
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3.5.6. Conditional

The conditional functional form in UCLA FP is syntactically similar to the
Algol68 if statement. This format improves the readability of FP programs. To
preserve functionality, there must always be an else expression. The conditional
functional form is defined as

exprr :x exprc :x #()

if expr then exprr elseexprp fi:x = Yexprp :x exprc 1x =()
? otherwise

3.6. User Defined Macros

The functional style of programming is the combination of primitive functions
to perform larger, more powerful computations. There are no function programs in
the sense of a sequence of statements operating on a underlying storage, as in FOR-
TRAN or Pascal. It is convenient, however, to keep a record of previous combina-
tions around for use as building blocks. These combinations are called user defined
function macros (macros for short), equating a given user name with a functional

expression.

3.6.1. Macro Definition

The syntax for defining a function macro is

define macro name (object equates) FP expression end
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Like the primitive functions, user defined macros can appear in prefix or infix

form. Macros have the lowest precedence, and group left to right.

The object equates is a list of zero or more alphanumeric strings separated by
commas. Each string must begin with an alphabetic character and should not be the
name of a primitive or user defined macro. Certain macros expect to operate on a
sequence of a specific length; using W (selector) primitives to access the individual

objects quickly becomes unreadable and difficult to understand.

The object equates allow the user to give a mnemonic name to each object in
an input sequence. This not only improves readability, but also gives extra error
checking by requiring a proper length sequence. If there are no equates, the macro

will accept any object; but, the parenthesis must appear anyway.

Equates are not parameters or variables, and should not be treated as such.
They are only a means of replacing { selectors with more meaningful symbols. Gen-
erally, equates are not even valid after the first level of composition, since the struc-

ture of the object will likely have been aitered.

A function to find the product of all integers between a lower bound and an

upper bound can be recursively stated as follows:

if lower bound = upper bound
then the result is the lower (or upper) bound

else multipiy the upper bound by the product of integers from
the lower bound to one less the upper bound
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The macro for this function can be easily defined using the conditional func-

tional form:

define  product(lower, upper)

if lower = upper

then  upper

else upper * (lower product (upper - % 1))
fi

end

3.6.2. Macro Execution Tracing Facility

The execution of user defined macros may be traced to debug functional
expressions or to examine the structure of the computation dynamicaily. Each time a
specified macro is entered, i.e, evaluated, the interpreter prints out a message stating
that a macro has been entered, the name of the macro, and the input object. When the
macro is exited, i.e, evaluation is complete, the macro name is printed again, along

with the output object.

A function is set to be traced using the special interpreter command )trace. If

the macro product, defined above, was traced, then the appiication
product : (1 3)

would display
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ENTER product : (1 3)
ENTER product : (1 2)
ENTER product : (1 1)
EXIT product: 1
EXIT product : 2
EXIT product: 6

6

3.7. Symbolic Execution

In addition to performing arithmetic and boolean operations on numeric and
logical values, the UCLA FP interpreter will also operate on symbolic values, or a
combination of symbolic and numeric/logical operands. The result of a function

application is determined as follows:
(1) If both operands are numeric (logical), perform the function:
+:11) =2
(2) If both operands are symbolic, generate a new, unique symbol based on the func-
tion name:
and : (a b) = ANDI

In this example, the new symbol is the name of the function concatenated with a

number to make it unique.

(3) If one operand is symbolic and the other constant (numeric or logical), generate
a new symbol unless there is an identity rule for the function involving the con-

stant operand. That is,

* :(a3) = MULS
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but,
*:(al)=a
and
*:(a®) =0
since a* 1 = g and a* 0 = 0 for all a, except the error atom 2.

Logical functions are further extended to work on a combination of bit,
boolean, and symbolic values. The input-output results are summarized in figure 3.1
below. Functional forms are unaffected by the use of symbolic values except the con-
ditional functional form: the conditional expression must generate a boolean or bit

value.

Input Types | Boolean | Bit Symbol
Boolean- Boolean Bit Symbol*
Bit Bit Bit Symbol*
Symbol Symbol* | Symbol* ; Symbol
Symboil* = Symbol based on identity for function
(eg.xand l=x,yxor1=y)

Figure 3.1 - Symbolic Logical Operation Result Matrix
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CHAPTER 4

FUNCTIONAL NET LIST DESCRIPTION AND GENERATION

4.1. Overview

A functional style programming language fulfills many of the goals for net list
specification. The data model does not restrict either the types of data or what combi-
nation of values a module can produce. Functional forms provide a general, explicit
means of putting modules together into a network, and can clearly express the two
dimensional structure of a system. Since the emphasis of functional programming is
the combination of simpler functions, it encourages hierarchic design and develop-
ment. The language itself is flexible: a solution can be built up from powerful primi-

tives, instead of trying to fit it into the language framework.

In this chapter, two complementary techniques for describing net lists are
examined. The first approach uses FP to describe a system by capturing its structure
using functional forms. The second uses the ability of FP to manipulate functions to
describe the structure of a group of net lists. By tracing the symbolic execution of an

FP description, the specified net list can be extracted for both methods.

4.2, “‘Picture’’ Style Net List Description

One approach to net list description is to use functional forms to reflect the

structure of the system in a functional expression. Composition denotes consecutive
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levels of the system; modules that execute in parallel are grouped by the construction
or mapping functional forms. Structural primitives, such as selectors, serve to make
connections between levels where routing is necessary. This method is called picture
style description, since the functional specification captures a picture of the placement

and relationship of modules in the system.

In Chapter 2, a procedural description of a fﬁll adder and its components was
developed; tﬁe equivalent functional description will be developed here. The basic
logic gates (and, or, and xor) each operate on a sequence of two logical values.
Though these functions exist as FP primitives, macros will be defined for each to dis-
tinguish them as logic gates.

define andgate() and end
define orgate() or end

define xorgare() xor end

The half adder is easily described as an and gate and an exclusive or gate
applied to both inputs in parallel, ie., constructed. The macro definition is written
with two parameter equates to convey that the macro expects exactly two inputs and

to indicate more clearly that the gates operate on the two inputs.

define  half add(x,y)
[ x andgate y, x xorgate y ]
end

The correspondence between the macro definition and the actual circuit is

represented in figure 4.1 below.
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|

Figure 4.1 - A half adder circuit and FP description

£

The full adder description is more complex than the previous modules. While
the logic gates and the half adder each have one level between input and output, the
full adder has three levels, and must route the outputs of one level to the proper inputs
of the next. The macro definition uses parameter equates: this tells a designer what
input is expected (a sequence of three objects) and gives more meaningful names to
each object. Using the half adder and the or gate, a binary full adder can be dcscribcd

as

define  full add(x,y, Cin)
[1 orgate 2, 3]
apndl
(1, 2 haif_add 3]
apndr
[x half addy, Cin]

OYORORS

end

At first glance, this description seems more complicated than the Pascal
equivalent. The functional description, however, explicitly shows the structure of the

system, as depicted in figure 4.2 below. Modules, their inputs and their outputs are
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Figure 4.2 - A full adder circuit and FP description

clearly specified. Each level of the computation is distinctly marked by the composi-
tion functional form. Though the selectors are initially confusing, they provide an
unambiguous map of how data moves from one level to the next. Since the elements
of a full adder (half adders and the orgate) the description can use the macro names in
infix format. Most important, there are no side effects to interfere with understanding

the description.

apndr and apnal are used to combine the sequence of two bits produced by the
half adder with the single bit cartied through that stage of the system. This permits
the use of single selector primitives at each level. The function could be rewritten

without them as follows:
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define  full_add(x,y, Cin)
[1orgate (1@2),2@ 2] @
[1@1,Q2@1) half add2] @
[x half_addy, Cin]

end

but with a slight loss in clarity.

Picture style net list descriptions combine modules by functional forms to
reflect the structure of the system. Parallelism, computational levels, and input-output
relationships are all clearly mapped out. Macro definitions make hierarchical

specification simple and natural, and can serve as the basis for libraries of systems.

4.3. “Generator’® Style Net List Description

Because a picture style description accurately captures the structure of a digital
system, the specification represents a fixed pattern of net list elements. For certain
systems, this is acceptable: a full adder, for example, only operates on three bits and
always generates two bits. For other types of systems, the ability of FP to manipulate
functions and data can be employed to create a generic system specification. In con-
trast to the picture style, the generator style description specifies how a network is to
be constructed given parameters of the system, rather than the structure of the system

itself.

One general type of system is binary adders; the simplest of the adders is the
n-bit ripple carry adder, made up of n full adders. Each full adder takes one bit pair
and the carry from the previous full adder (or the initial carry in the first stage), pro-

ducing a sum bit and the next carry. The algorithm for building an n-bit ripple carry
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adder can be stated as a simple recursion:

1

if n
then apply a full adder to the bit pair and the initial carry,
else  build a ripple carry adder for the n-1 previous bit pairs,
then apply a full adder to the current bit pair and the carry
from the previous n-1 bits.
_This readily translates into a functional description using the if-then-else func-
tional form. The macro will take two arguments: a non-empty vector of bit pairs bitpr
and an initial carry Cin. The output will be a vector made up of the carry bit and the

sum bits.

define  rc_adder(bitpr, Cin)
if (length @ bitpr) = %0
then full add @

apndr @ [1 @ bitpr, Cin]

else  concat @
[full_add @ apndr @ (1, 1 @ 2], ¢ @21 @
(1 @ bitpr, (rc_adder @ [¢ @ bitpr, Cin]]

end

The description of the ripple carry adder is completed by a macro to take two
vectors of bits and an initial carry and transform it into a vector of bit pairs and a

carry, then apply rc_adder:

define ripple_carry_add(x, y, Cin)
rc_adder @
[trans @ {x, y], Cin]

end
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Unlike the picture style, 2 generator style description does not reflect the expli-
cit structure of the system. What is lost in clarity, however, is gained in the flexibility
to describe a general class of net lists. Any system with a repetitive structure, such as
adders, multiplexers, decoders, or ALU’s, can use one description regardless of how

many times the basic modules are repeated.

Both styles maintain the advantage of the functional style: freedom from side
effects, flexible data representation, and powerful combining forms. Since the two
approaches address different specification requirements, a system description, such as
the ripple carry adder, would use both, each where appropriate to the solution of the

problem.

4.4, Tracing and Net List Extraction

Many types of digitai systems can be described using the picture and generator
styles. Besides providing a system specification, the functional representation can be -
executed by an interpreter to verify its correctness. It is still necessary, however, to
extract the net list from the specification. A net list is a more readily usable input
form for design and analysis tools, since the FP description would require each pro-

gram to act as an interpreter.

Further, there are many applications requiring a two pass interpretation in
order to be performed in the functional domain. Consider a system where the output

of an and gate is distributed to three other modules:
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[mod |, mod 3, mod ;] @ andgate

If this system were implemented in NMOS technology, the delay of the and
gate would be approximately three times greater than if its output only went to one
module [Mead80]. The fan-out of an output, however, cannot be determined when it
is generated during interpretation; therefore, a preliminary pass must extract this
information before accurate timing analysis can be done. Since this information is
already present in the net list, it is more general to orient analysis tools to work on net

lists instead of the functional description that produced them.

Since the net list specified by both picture and generator style descriptions is
determined by which fuﬁctions are applied to what objects, it can readily be extracted
by watching when each fnnction is applied, and what are the input and output objects.
This can be accomplished through the macro zracing facility of FP. If the execution is
symbolic, as discussed in the previous chapter, the interpreter will automatically gen-

erate unique labels for the input-output relationships of the system.
Using the functional definitions for a full adder circuit, tracing the full_add
macro applied to the symbolic values a, b, and C will yield

full add:(ab <)

ENTER full_add : (a b C)
EXIT full_add : (OR_1 XOR_2)

(OR_1 XOR_2)
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Hierarchy levels in the net list can either be hidden or displayed by the choice
of which macros are traced. The connectivity of logic gates in the full adder would be
derived by tracing the macros for the and, xor and or gates, so that the same applica-

tion would yield

full add: (abC)

ENTER full_add:(abC)
ENTER andgate :(ab)

EXIT andgate -: AND_1
ENTER xorgate :(ab)

EXIT xorgate : XOR_1
ENTER andgate : (XOR_2 C)
EXIT andgate : AND_2
ENTER xorgate : (XOR_2 C)
EXIT xorgate : XOR_2
ENTER orgate : (AND_1 AND _2)
EXIT orgate :OR_1

EXIT fuil add: (OR_1 XOR_2)

(OR_1 XOR_2)

The transformation from a symbolic trace to a net list is a simple, mechanical
process. Each ‘ENTER’-‘EXIT’ pair corresponds to one element in the node list; any
pair appearing in-between another ‘ENTER’-‘EXIT’ represents an element of a lower
level network. Each pair is rewritten in the trace with the module name followed by
the input and output object, without parenthesis. If all macros are traced, the net list

derived from the full adder description is
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~ full_add a,b,C ::  OR_],XOR_2

half add a,b - AND_1,XOR_1
andgate a,b : AND_1
xorgate a,b +  XOR_1

half add XOR_1,C ;. AND_2,XOR_2
andgate XOR_1,C @ AND_2
xorgate XOR_1,C 2 XOR_ 2

or AND 1,AND 2 = OR_l

which is the form of the net list for a full adder, as shown in Chapter 1.

When a net list is extracted from a trace, structural primitives and functional
forms disappear. The information they represent is captured in the connectivity of the
system. For a generator style description, however, the if-then-else functional form
disappears completely. It is not part of the static structure because it is used to
dynamically build the net list. For example, the arrangement of full adders in a two
bit binary ripple adder can be extracted by tracing the full_add macro and applying

ripple_carry_add to two vectors of two bits and the initial carry.

ripple_carry_add : ((al a0) (bl b0) Cin)

ENTER ripple_carry_add : ((al a0) (b1 b0O) Cin)

ENTER full add : (a0 b0 Cin)

EXIT full add : (OR_1 XOR_2)
ENTER full add : (al b1 OR_1)
EXIT full add : (OR_2 XOR_4)

EXIT ripple_carry_add : (OR_2 XOR 4 XOR_2)

(OR_2 XOR_4 XOR_2)

which yields the net list.
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ripple_carry_add  al, a0, bl, b0, Cin :: OR_2,XOR_4,XOR_2
full_add a0, b0, Cin : OR_1,XOR_2
full_add al,bl, OR_1 : OR_2,XOR_4
The symbolic trace, or the extracted net list, can serve as a common input for a
large collection of analysis tools. Since net lists make no assumptions about physical
realization, each analysis program can be written to solve a specific problem. A func-

tional specification, then, can meet the requirements of both high level and low level

design of digital systems.
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CHAPTER §

FUNCTIONAL NET LIST DESCRIPTION IN VLSI DESIGN

5.1. Overview

A VLSI design passes through four phases: algorithmic, logical, electrical, and
physical. In general, the amount of information it takes to describe the design
increases as the design moves toward realization in silicon. Further, differing require-
ments of each step lead to vastly different descriptioﬁ techniques. Translating from

one step to the next is difficult; skipping steps and/or going backwards even more so.

In this chapter, functional style description is examined to see how well it can
serve as a multilevel specification. In order to serve all levels, technology speciﬁc.:
translation programs must be introduced into the cycle. These can be hidden from
the designer, however, so that a functional description can close the feedback loop in
the design cycle. Finaily, a design environment organized around a functional style
description is presented and examined through the generation of VLSI circuits for the

ripple carry adder described in the previous chapter.

5.2. The Need for a Multilevel Systems Language

From conception to production, the design of a VLSI digital system passes

through four (4) phases:
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(1) Development of one or more digital algorithms to solve the problem, often using

high level data representations and operations.

(2) Translation of an algorithm into small, medium and large scale logic blocks, e.g.,

gates, decoders and programmed logic arrays, respectively.

(3) Implementation of logic building blocks in technology dependent electrical com-

ponents.

(4) Realization of eleétrical components in the physical features of an integrated cir-
cuit.

At each step, the design information represents the basic components for the

particular level of design. As the design moves toward fabrication, the volume of

information swells dramatically as details, hidden from or irrelevant to higher levels,

are exposed.

Design information is managed both within and between steps. During the
design process of each step, the components of the design are coded in an understood
format, which is then used to test and evaluate the design, as well as serving as a
medium for exchange of information. A digital algorithm, for example, might be
described in a register transfer language; the electrical realization could be described

using SPICE for simulation purposes.

Between phases, however, the information changes: the components and inter-
connections differ, as well as the format suitable for the phase. While the register

transfer description and a SPICE description may represent the same circuit, neither is
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useful as a specification in another step.

The effect that is the overall design process becomes a Tower of Babel. The
specialization of description languages for the four phases of design necessitates a
series of complex translations when the design moves from one step to the next.
Translations are possible, but often difficult, since the information content is increas-
ing. Skipping a step is even more difficult; it can be impossible if the lower step

depends on information generated in the missing step.

It is most difficult, however, to go back up the chain, since a reverse transla-
tion would be a one-to-many mapping. Further, such changes are normally to details
that cannot be directly reflected in the higher levels. Changing a logic specification
because it cannot be realized in a limited area of silicon, for example, would effec-

tively require a complete re-design of the system.

A more practical method to handle design information would be to use a sys-
tem specification that can be used in all phases of the design. By changing a single,
central specification, each step in the design process can run in parallel instead of
sequentially. This allows rapid design evaluation at each level, rather than waiting for
changes in the higher levels to propagate through the translation process. Working
from a single specification insures that errors in one phase do not propagate to others.
Each design step is relatively independent, but can still coordinate changes to the sys-

tem when necessary.



§.3. Functional Description in the Design Cycle

A functional language is a good candidate for single muitilevel specification.
Since the functional style naturally builds from primitives to more complex systems,
it can equally well represent both high and low level views of a system. Hierarchy in

the description can be used to manage which level(s) are visible at each step.

The usefulness of z; functional description, however, is limited where the sys-
tem evaluation involves more than the pure functionality of the system. Electrical
parameters, such as voitages and parasitic capacitances, or layout characteristics, such
as area and system topology, can only be reflected in the functional description if
some macro has the information explicitly coded; each set of parameters would
require a different macro. This forces a designer to make a low level, technology

dependent decision at an inappropriate level of design.

A functional language specification, then, best serves to describe the high level
view of the system. The gap to the lower levels of design is bridged by transiating a
hierarchical net list, representing the application of a functional description to a
specific object, into a technology and application dependent form. Each translation
program makes decisions based on its specific needs: selecting transistor models,

approximating circuit parasitics, choosing from a standard cell library, and so on.

With the ‘‘smarts’’ of translation embedded in separate programs, the func-
tional description remains technology independent. The translation is more rapid than

hand design; given that the translation program is correct, the result is guaranteed to



conform to the functional specification. Further, the translation program can consider
the system as a whole and possibly employ design ““tricks’’ a human designer would

miss or simply not look for.

A functional description can, then, serve as the multilevel specification
language for each step in the design cycle. The functional description itself is used
directly in algorithm development and logical testing. Using net lists extracted from
the functional specification, translation programs can generate the information needed
to evaluate the design at the electrical and physical levels. The path from description
to net list to translator can be hidden by appropriate software, so that a designer only

sees the functional description at each phase.

Changes and optimizations to the overall design can either be reflected directly
to the functional description, or to the net list, which can be reverse compiled into FP.
By serving each step in the design process, a functional description closes the feed-

back loop in the design process.

5.4. A Functional Design Environment

A design environment for digital systems based on a functional style descrip-
tion might appear as in figure 5.1. Using an interpreter for the functional language,
the description can be tested for proper functionality; other parameters of the system
description, such as component count or parallelism, can also be evaluated here.
Other analysis tools can use the algebraic properties of the functional language to

inspect the description directly and perform expression optimization, generate circuit
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Figure 5.1 - An FP Design Environment
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test patterns, or automatically prove characteristics of the description.

The focus of this thesis, however, is the operation of the design environment
in the realization of the circuit. In this section, the design environment will be
inspected while generating the layout for a four-bit ripple carry adder, using the func-
tional description developed above. The translation program used will translate from
the output of symbolic execution into BDL [Slutz84], a connection oriented, hierarch-
ical digital system description language. A quick summary of BDL is presented

below.

5.4.1. The BDL System Description Language

BDL (for Block Description Language) is a structural description language for
capturing the structure of a digital system, and serves as input to VLSI design tools,
e.g., placement and routing or timing analysis. In the BDL model, 2 circuit is made
up of one or more interconnected blocks; each block, in turn, can be composed of one
or more sub-blocks. Blocks are interconnected by signals, which can be a ner (one
signal), or grouped into buses (analogous to Pascal arrays) or bundles (analogous to

Pascal records).
A block description is composed of up to six sections:

(1) A block declaration of the form BLOCK name. This declaration can also list a
hierarchical LEVEL, or a list of properties. Properties are extra information,

usuaily specific to the end use of the BDL description.
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)

3

4

(5)

(6)

A list of signals called PORTS, which are visible outside the block and are used
to make connections to other blocks. Ports may also have properties.

A list of signals called SIGNALS, which are all signals intcmﬂ to this block
Signals may also have properties.

A list of all sub-block INSTANCES that appear in this block. Any block in the

INSTANCES list must have been declared before the current block. Instances
may also have properties.
A SIGNALLIST, listing each signal along with the current block (referenced by

the name THISBLOCK) and/or sub-block PORTS the signal connects.

An INSTANCELIST, listing THISBLOCK and each sub-block along with the
signals their PORTS connect to. Since the SIGNALLIST and INSTANCEL-
IST contain exactly the same information, only one need appear in a block

description.

If the block is primitive, i.c. contains no sub-blocks, only the PORTS declara-

tion need appear; otherwise, PORTS, SIGNALS, and INSTANCES must appear

along with at least one of SIGNALLIST or INSTANCELIST.

3.4.2. Translation Considerations

issue

Depending on the characteristics of the target language, there are several

s that a net list translation program must manage. Foremost is the mapping from

2 hierarchical net list to the final desired output. Translations fall into roughly three

categories:
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(1)

(2)

€)

Only the primitive, or lowest level, modules in the hierarchy are used by the
translator. Each primitive is mapped into one or more description components,
so that the net list primitives act as macros for the target language. A primary
example are switch level and component level circuit simulators, where a basic
logic gate may be mapped into a combination of transistors, resistors, capacitors
and wires.

Each element in the net list maps into one description component. If the target
language does not have hierarchical constructs, only the primitive elements are

used by the translator. This is the case for most connection oriented languages.

Several elements in the net list may be combined into one description com-
ponent. A target language that uses arithmetic expressions, for example, might
combine logic gates from several levels of the net list into a single expression.
This type of translation ‘‘reverse interprets’’ the net list, and is therefore more
difficuit than the first two types. The target is probably an algorithm oriented,

high levei description language.

Since BDL is a connection oriented, hierarchical language, the translation

from a net list is reasonably straightforward. Elements in the net list map neatly into

blocks, with inputs and outputs becoming the ports and any subelements becoming

sub-blocks. Predefined blocks can be stored in libraries to handle primitive modules.

This has the advantage that the same net list can be translated towards several applica-

tions merely by specifying different libraries.



Symbolic execution guarantees that output symbols are unique, so that signal
names are provided by the net list. Though BDL provides compound signal types
(busses and bundles), assigning these types to a group of signals would require that
the entire net list be analyzed to find which signals appear together everywhere. It is

therefore simpler and more general to make each signal of type ne.

To exploit existing libraries and the hierarchy available in BDL the translation

occurs in two phases:

(1) Each element of the net list is examined to find modules that exist in any
libraries in use. If an element is found, the block that element represents is con-

sidered defined, and will not be defined again.

(2) The net list is. searched in a post-order traversal (i.e., subcomponents are exam-
ined first) to find undefined elements. The first time an element is encountered, a
block is defined for that element using the input and output objects for ports, any
sub-elements to define instances and signals. As with library blocks, each ele-

ment is defined exactly once.

The effect of hierarchy in the BDL description on the resultant layout will be
examined in the next section. For this purpose, the originai BDL translator was
slightly modified to be able to produce a flat description, i.c., one top level block con-

sisting entirely of library ceils, as well as the hierarchical block description.



5.4.3. Sample Translation: A Full Adder

The full adder description developed in the previous chapter will now be used
to generate the BDL description for a full adder. The functions used in the full adder
description are summarized in figure 5.2. Notice, however, that the definition of xor-
gate has been changed to reflect the absence of a primitive exclusive-or gate in the
BDL library, and is now defined as the 4 nand gate realization. The net list used
below was derived by tracing the full add, half add, andgate, orgate and nandgate

functions.

define andgate() and end
define orgaze() or end

define nandgate() nand end

define  xorgate(x,y)
nandgate
[1 nandgate 2, 2 nandgate 3]
[x, x nandgate y, y]

®B

end

define  half _add(x, y}
[ x andgate y, x xorgate y |
end

define  full add(x,y, Cin)

[1 orgate 2, 3} @
apndl @
[1, 2 half add 3] @
apndr @

[x half_addy, Cin]
end

Figure 5.2 - Full Adder FP Description
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During the first pass of the translator, the basic logic gates, defined in a BDL
library, will be defined. These descriptions contain extra information about the size of
the cell and the location of inputs and outputs used by the place and route program.
Three BDL library cells are found in a full adder: a two input and gate, a two input or
gate and a two input nand gate. The BDL library definitions are shown below (figure
5.3) without the application specific information. The input port names are A and B,
indicating a two input cell. The output port is named T for True, or positive logic

gates; the N output port denotes an inverted logic gate.

In traversing the net list, the half adder description will be the first new block

defined. The block has four ports: two inputs, two outputs. The port names for a

BLOCK ANDGATE
LEVEL LIBRARY;
PORTS

NET: A,B, T;
ENDPORTS
ENDBLOCK

BLOCK ORGATE;
LEVEL LIBRARY;
PORTS

NET: A, B, T;
ENDPORTS
ENDBLOCK

BLOCK NANDGATE
LEVEL LIBRARY;
PORTS

NET: A, B, N;
ENDPORTS
ENDBLOCK

Figure 5.3 - BDL Definitions of Basic Logic Gates
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block are derived by prepending the string *P_"’ to cach of the atoms in the input and
output objects when the element is first encountered. Since the first half adder ele-

ment encountered is
half add a0, b0 :: AND4, NAND12

the input and output port names will be P_a0, P_b0 and P_ANDA4, P_NANDI12,
respectively.

Signal names are collected for the SIGNALS declarations by scanning the ele-
ment input object and the output object for each subclemcrllt. Each time a new symbol
name is encountered, the name is added to the list of signals, printed out in declaration
form when the scanning is complete. There are seven signals in a half adder: two
inputs, two outputs, and three signals in the intermediate stages of the exclusive-or
logic.

The INSTANCES list is easily derived from the subelement list. An integer,
generated by a sequentially incremented counter, appended to the element name
identifies a particular instance of an element in the circuit. A half adder contains five

instances: four nand gates and one and gate.

The actual connectivity of elements in the block is detined in the SIGNAL-
LIST and/or the INSTANCELIST. The SIGNALLIST uses the list generated for
the SIGNALS declarations, looking for an occurrence(s) of the signal in the input
and/or output objects of the block and its subelements. Since the INSTANCELIST

represents the same information, it is omitted from the descriptions used in this thesis.
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The complete BDL block description for a binary half adder, as translated
from an input net list, is shown in figure 5.4 below. Once the block half add is
defined, the translator will generate the BDL description for the full adder, which
appears in figure 5.5. The full adder contains two instances of the block half _add,

and one or gate.

BLOCK haif_add;
LEVEL MACRO;

PORTS

NET : P_a0, P_b0;

NET : P_AND4, P_NANDI12;
ENDPORTS

SIGNALS
NET : a0, b0, AND4, NAND6, NANDS, NAND10, NAND12;
ENDSIGNALS ‘

INSTANCES

ANDGATE : andgate0;

NANDGATE : nandgatel, nandgate2, nandgate3, nandgate4;
ENDINSTANCES

SIGNALLIST
a0 : THISBLOCK*P_ a0, andgate0*A, nandgate1*A, nandgate2*A;
b0 : THISBLOCK*P b0, andgate0*B, nandgate 1*B, nandgate3*B;
AND4 : THISBLOCK*P_AND4, andgate0*T;
NANDS6 : nandgate1*N, nandgate2*B, nandgate3*A;
NANDS$ : nandgate2*N, nandgated*A;
NANDI10 : nandgate3*N, nandgate4*B;
NANDI12 : THISBLOCK*P NANDI12, nandgated*N;
ENDSIGNALLIST
ENDBLOCK

Figure 5.4 - BDL Description of Binary Half Adder
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BLOCK full_add,
LEVEL MACRO;

PORTS
NET : P_a0, P_b0, P_Cin;
NET : P_OR22, P_NAND2;
ENDPORTS

SIGNALS
NET : a0, b0, Cin, AND4, NAND12, OR13, NAND21, OR22;
ENDSIGNALS

INSTANCES
haif add : half addS, haif addé;
ORGATE : orgate7;
ENDINSTANCES

SIGNALLIST
a0 : THISBLOCK*P_ a0, half addS5*P_a0;
b0 : THISBLOCK*P_b0, haif add5*P_b0;
Cin : THISBLOCK*P_Cin, half_add6*P_b0;
AND4 : half add5*P_AND4, orgate7*A;
NAND12 : haif add5*P_NANDI12, half add6*P_a0;
OR13 : half add6*P_ANDA4, orgate7*B;
NAND21 : THISBLOCK*P_NAND?21, half add6*P_NAND12;
OR22 : THISBLOCK*P_OR?22, orgate7*T,

ENDSIGNALLIST

ENDBLOCK

Figure 5.5 - BDL Description of Binary Full Adder
5.4.4. A Ripple Carry Adder Layout
One of the tools which uses BDL as input is a standard cell place and route
program for integrated circuits. Using a library of cells defined with the necessary
properties (e.g., size, port locations), it is possible to derive actual circuit layouts

starting from a net list description.
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The net list for a ripple carry adder can be extracted from the FP description
(figure 5.6) by tracing the basic logic gates (andgare, orgate and nandgate), and the
top level macro, ripple_carry_adder. This would produce a single level trace; the
hierarchy in the adder can be extracted by tracing the half and full adder macros as

well.

In BDL, a circuit is a block; every BDL description, then, must consist of
exactly one block directly or indirectly containing all other block instances. For the
ripple carry adder, ripple_carry _adder is this special top level block. The
ripple carry_adder block description contains, in addition to the normal block infor-
mation, application specific global information which affects the circuit as a whole.
When used to generate a circuit layout, the ports of the top level block are associated

with input and output pads. The location of these pads, plus pads for power and

define  rc_adder(bitpr, Cin)
if (length @ bitpr) = %0
then full add @
apndr @ [1 @ bitpr, Cin]
else concar @
[full add @ apndr @ (1,1 @2],#4 @ 2] @
[1 @ bitpr, (rc_adder @ [ @ bitpr, Cin]]

end

define  ripple_carry_add(x, y, Cin)

rc_adder @

[erans @ [x, y], Cin] .
end

Figure 5.6 - Ripple Carry Adder FP Description
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ground, is also specified in the top level block.

For the layouts that follow, the input net list was produced by the symbolic

execution of a four-bit ripple carry add
ripple_carry_adder : ((a3 a2 al a0)(b3 b2 b1 b0) Cin)

tracing the andgate, orgate, nandgate, half add, full add, and ripple_carry_adder

macros.

The first layout (figure 5.7) shows the top level view of the circuit. The pads
labeled P_a3 - - P_a0, P_b3 --- P_b0 and P_ are the inputs; pads labeled P_OR79,
P_NAND78, P_NANDS59, P_NAND40 and P_NAND21 are the outputs (P_OR79 is
the carry out, P_NAND?1 is the least significant bit). The VDP and VSP are the
power and ground pads, respectively. The box labeled ripple_carry_adder is the

actual adder circuitfy, shown in detail in figure 5.8.

The logic for the four-bit ripple carry adder is 344.4 by 426.0 microns, the first
dimension measured across the row of cells. Logic gates are realized in 3 micron
CMOS technology, arranged in four rows. There are 32 nand gates, used to realize
the eight exclusive-or gates in the half adders, eight and gates and four or gates. In

addition, there are five feed rthrough cells, used to make connections through a row.

Connections are routed in the three channels between the rows. Some statis-
tics for the routing are summarized in figure 5.9 below. Columns are the number of
distinct vertical (across a row of cells) positions occupied by wires. Tracks indicate

the width of the routing channel, and is the number of horizontal positions used. The
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Routing for 4-bit Ripple Carry Adder
344.4 % 426.0 microns
Channel | Columns | Tracks | Wire/Area
1 43 12 1.000
2 42 5 0.417
3 41 9 0.750
Wire/Cell area ratio = 0.540

Figure 5.9

entry labeled wire/area refers to the ratio of the area of the wires to the total area
available in the channel. As an overall metric for the layout, the wire/ceil area ratio

represents the area occupied by wires compared to the total area of the cells.

The numbers in the corner of each cell are assigned by the layout program as it
traverses each successive level of the hierarchy. To clarify the layout, the logic func-

tion of the cells has been written in the corresponding box.

5.4.5. The Effect of Hierarchy

The preceding layout of the four-bit ripple carry adder used ail the hierarchy
available in the net list extracted from the functional description. With a slight
modification to the BDL translation program, the net list can be used to generate a
single level description of the full adder. Each step in the translation ié the same as
when the hierarchy was used except that the signals, instances and connections are all

derived from the bottom level of the hierarchy, rather than the next lower level.

ripple_carry_adder, as before, is the top level block. A top level layout of the

circuit derived from this flat BDL description (figure 5.10) appears almost identical to
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Figure 5.10 - Four-Bit Ripple Carry, No Hierarchy, Top Level View

the corresponding previous layout. The layout of the logic (figure 5.11), however,
shows some small differences. The logic occupies an area 344.4 by 444.0 mucrons,

4.23% larger than the previous layout.
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Figure 5.11 - Four-Bit Ripple Carry, No Hierarchy, Logic Level
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While the placement of the gates is identical, the routing, summarized in figure
5.12, shows a 60% increase in the number of tracks in the second channel, and a
11.48% increase in the total wire area. Two of the connections previously made in
the first channel have been moved to the second channel, possible since the logic cells
have input and output ports on both sides. These two extra connections force the

additional tracks in the second channel to accommodate them.

Since the design program flattens the hierarchy of the BDL blo;:ks before the
place and route begins, the expectation is that there would be no difference between
the layouts generated from a hierarchai and a flat circuit description. There is a slight
difference, however, in the order the design program encounters the primitive cells.
The hierarchy flattening is a breadth-first process: one level of the hierarchy is
flattened completely before proceeding to the next lower level. A flat description,
owing to the translation algorithm, represents a depth-first flattening, where the lowest

level in the hierarchy is reached before examining the next element in the net list.

Routing for 4-bit Ripple Carry Adder - No Hierarchy
344.4 x 444.0 microns
Channel Columns Tracks Wire/Area
1 43 12 1.000
2 42 8 0.667
3 41 9 0.750
Wire/Cell area ratio = 0.602

Figure 5.12
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This difference is indirectly reﬁected by the labels on the gates. In the flat
description, the number on the end of the name shows that the gates are encountered
in the sequence and gate, four nand gates, and gate, four nand gates and an or gate.
In the hierarchal description, the four or gates are encountered first, then the sequence

of an and gate followed by four nand gates, repeated four times.

Another interesting diffcrcﬁce between the two layouts is the computation time
involved. Measured with the system clock, the layout using hierarchal description
took 217 seconds of real time to generate. From a flat description, the design program
required 227 seconds, a 4.6% increase. While the hierarchal layout required exﬁ‘a
time for design flattening and routing, the first phase of the design program, which
builds the initial connectivity lists, ran in 40% of the time required for the flat descrip-
tion. Experiments with other circuits (see Appendix A for additional hardware
descriptions) show that these percentages are approximately proportional to the

degree of hierarchy in the circuit.
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CHAPTER 6

CONCLUSION

6.1. Summary

The advantages of a high level digital system description language are realized
in rapid prototyping, decreased testing and debugging time, increased flexibility to
evaluate and experiment and a smoother transition from system design to implementa-
tion. The simple, yet powerful, ner list model for digital systems provides a sound
basis for describing systems. Net lists themselves, however, are tedious for human
users, owning to their connection oriented nature and the large volume ot: information

present in a complete description.

In looking for a high level, algorithm oriented means to describe net lists, the
procedural style of description is found wanting. The memory oriented data
representation, weak combining forms, and inherent sequential nature present more of

a hindrance to describing digital systems than a help.

A functional style description, which uses a flexible data representation and
explicit, useful combining forms, can express the functionality and structure of a digi-
tal system clearly and concisely. A functional style description can describe either a
specific circuit, such as a full adder, or a general class of circuits, such as an N-bit rip-
ple carry adder. These styles are complementary; net lists can be extracted by tracing

the flow of information during symbolic execution.

73



The hierarchal nature of a functional description makes it readily usable as a
multilevel specification language in the VLSI design environment. The description
can serve directly for algorithm testing or formal analysis. Where the ability of a
strictly functional description does not suffice, translation programs can bridge the
gap. Extracting and translating net lists also allows existing design tools to be

included in the functional design environment.

6.2. Conclusions

A functional style of digital system description solves many of the difficulties
of the procedural style. The data representation is general and dynamic, so that func-
tions can have arbitrary inputs and outputs, and change the data freely as needed.
Powerful combining forms provide clear and explicit connections between pieces of a
function. Most important, the inherent sequential, word-at-a-time nature of the pro-

cedural style is removed from the language.

Since a functional style is based on the combination of functions, putting a
system description together is a natural part of the style. A bottom-up design is
enhanced by the ability to combine and test modules; the top-down approach benefits

from the ability to specify the functionality and interface to lower level modules

before they are defined.! The hierarchal nature of functional programming and the

well defined behavior and interface of functions, free from side effects and global

1See the conditional sum adder discussion in Appendix A for an example of top
down design using functional description.
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state, simplifies building and using libraries of functions.

‘Extracting net lists from the execution of a functional description and the use
of translation programs provides a simple method of employing the high level
description in lower levels (i.e., electrical and physical) of digital design. The separa-
tion of the functional and physical aspects of a system simplifies the design of both
the FP interpreter and translation programs. By keeping the functional description
largely independent of the underlying technology and implementation details, the
same description can be used for any transiation program. This allows the power of
fﬁnctional description to be combined with existing design tools, while guiding and

driving the development of new ones.

6.3. Future Work

Many important aspects of the use of functional style descriptions still need to
‘be developed to provide a useful and coherent design environment. These break
down into roughly three areas: the direct use of the high level description, the low
level interface and design tools, and modifications and extensions to the functional

language itself.

The analysis of functional hardware descriptions has been partially explored.
Lahti [Lahti81] showed how to obtain component counts and an estimate of parallel-
ism from functional descriptions. Schlag [Schlag84], using a special interpreter, was
able to extract system topology directly from an FP specification. Meshkinpour

[Meshkinpour85] was able to extract rough timing information from functional
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descriptions. Sheeran [Sheeran84] discusses the algebraic properties of a functional
language when extended to sequential circuits. Patel, Schlag, and Ercegovac
[Patel85] demonstrated the use of the algebraic properties of FP to optimize a system
design at the description level. Possible areas to explore next .includc automated algo-
rithm analysis, program proofs, circuit test generation, and expert systems for analyz-
ing or even synthesizing digital designs.

The design and construction of translation programs and lower level design
tool interfaces is almost a completely new area. In addition to the translator to BDL,
there is also a translator to a component level circuit simulator and a switch level
logic simulator. In addition to the mapping of the net list to the target language, addi-
tional translation considerations become relevant depending on the type of translation

and the target language:

The use of standard cells and/or libraries for generating output.

- Signal naming and typing

- Management of hierarchy in the net list if it can be expressed in the target

language.

- Peephole or global optimization, exploiting design *‘tricks’’ during translation
Finally, the functional description language itself may need extensions or

improvements as further experience is gained in the design environment. One obvi-

ous concemn is the inability of a functional language to reflect szare. Sequential

machines, shift registers, or any digital system with memory or feedback loops, can-
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not be described using the language presented here. One approach, as found in
[Meshkinpour85], is to define a new functional form, which the interpreter under-
stands as having an implicit state. A more general method would be to introduce a

single assignment state, passing the task of implementation to translation programs.

Another area for improvement is in the symbolic execution of programs. By
exploiting function identities, the interpreter can reduce the components of a circuit
when some of the values are constants or the same value. Ideally, the application

ripple_carry_adder : <<a, - ag><a@, ' a¢>Cin>
would generate
<@, ' agCp>
and there would be no gates in the net list.

The functional style of digital system description provides not only a new
‘method for describing systems, but a new model for what a digital system is. This
simple, consistent model removes the restrictions and limitations of the step-oriented,
procedural view. Though the syntax and semantics can be initially confusing, func-

tional style description quickly becomes a powerful tool in the design and develop-

ment of digital systems.
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APPENDIX A

A COLLECTION OF HARDWARE DESCRIPTIONS

A.l. Binary Decoders

Decoders take N binary inputs and generate 2V binary outputs. For each bit
pattern appearing on the inputs, exactly one of the 2V output lines will be true. The
outputs of a decoder are usually numbered 0, 1, * -, 2¥ such that output X is true if
and only if the input bit pattemn has the decimal value X interpreted as a binary
number. Decoders have many uses: finite state machines, device control circuitry,

memory circuits and in multiplexers, as shown later in the appendix.

The simplest decoder has one input and two outputs, consisting of a single
inverter. The FP description (below) and the block diagram (figure A.1) are

correspondingly simple:

define  decode_I(x)
{id, inverter]
end
This simple circuit, however, presents a difficuit problem for a translation pro-
gram: when this decoder appears in the net list, the input and one of the outputs have -
the same name. The solution, unfortunately, is most often specific to the target

language. In BDL, the signal must either be renafned or the output “‘version’” of the

signal must be ignored.
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Figure A.l - A Single Bit Decoder

There are several types of decoders, falling roughly into two categories: coin-

cident decoders and tree decoders.

A.1.1. Coincident Decoders
A coincident decoder decodes N bits by first decoding the most and least
significant % bits in parallel, then anding each of the possible pairs of bits from the

two smaller decoders to get the full decoding. This scheme is applied recursively
until the number of inputs to be decoded is small enough to be realized by an existing
primitive.

Before defining the coincident decoder, it is useful to define a function to
cross-match the bits from the two smaller decodings. This function will be called

cross_match, and is defined as follows:
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define cross_match(x, y)
concar @
&disti @
distr
end
The actual cross-matching can be formed by distributing either from the left or

right first, but the order above preserves the proper bit position for the results.

For simplicity, the coincident decoder described below continues to divide the
input bits until it encounters a single bit This can then be decoded using the decode !
circuit. Since the input is a sequence of bits, the single bit must be selected from the

sequence to be decoded. Otherwise, the sequence is splir, decoded, and cross-anded:

define C_decode()
if length = %1
then decode 1 @1
else &andgate @
cross_match @
&C decode @ split

end

The block diagram below (figure A.2) shows a four bit coincident decoder at
the logic gate level.
A.1L2. Tree Decoders

Like the coincident decoder, a tree decoder reduces the number of inputs until
a primitive module can do the decoding, then combines the resuits to generate the fuil

decoding, Instead of recursively splitting, however, the tree strategy divides the N
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Figure A.2 - A Four-Bit Coincident Decoder

inputs into G groups of the primitive size P. At the top of the tree, the most
significant P bits are decoded by the primitive module. At the next level, the next
most significant group of P bits is decoded 2? times in parallel; the output from the
previous level is used to enable one decoder so that the remaining 2P -1 decoders’
outputs are all false. The enabling is done by anding the n** bit from the previous

level with each bit of the output of the n** decoder in the current level.
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At the k,;, level of the tree, there are 2% bits from the higher level of the tree
and G-k groups of P bits left to decode. The current level can then be built by
decoding the nexf group 2* times in parallel, then anding each bit from the previous
level with each bit in the corresponding decoder, i.e., enabling the outputs. This
scheme continues until there are no more groups to decode and the input is fully

decoded.

The main function to describe a tree decoding scheme, then, is one which
takes two vectors of bits, the previous decoding and the remaining groups, performs
the necessary decoding and enabling, then continues the process with the new
decoded bits and the remaining groups. When the function is first applied, the vector
of decoded bits will be null; in this case, the first group is simply decoded and passed
to the next stage as the decoded bits. The building terminates when the vector of
input bits is null. As with the coincident decoder, the primitive decoder in this exam-

ple is decode _I, that is, G is equal to N and the size of G is one bit.

define T _decode_nexi(prev, groups)
if nuil @ groups
then prev
else T _decode_next @
if null @ prev
then [decode I @ 1 @ groups, #f @ groups]
else [concat @
&(&andgate @ dist! @ [1, decode_| @ 2]) @
distr @ [prev, 1 @ groups]
t @ groups]

end
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The main function for a tree decoder sets up the initial input for the actual

building function.

define T _decode()
T_decode_next @ [%(), id]
end

The block level diagram (figure A.3) clearly shows the tree structure of the

decoding scheme in a four-bit decoder.

A.2. Encoder

An encoder performs the inverse operation of a decoder. There are 2¥ inputs,
exactly one of which will be true at any time. The N outputs form a binary number

corresponding to the rue input bit.

A particular bit of the output is rrue if any of 2¥-1 of the inputs is true; which
set of 2¥~1 varies for each bit position. It can be observed that the | output bit,
where the least significant bit is numbered 0, is generated by dividing the inputs into
groups of 2% bits, then oring together the first, third, etc., groups in the sequence.
Further, the input grouping for the (k+1)" output bit is formed by pairing the current
groupings, then concatenating the groups in each pair.

The proper groups for oring are selected by pairing the input groups, then
selecting the first element in the pairs. Concarenation combines the groups into a sin-

gle bit vector, which is then ored by an associative insert of orgate.
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Figure A.3 - A Four-Bit Tree Decoder

define  encode_bits()
if length = %2
then |orgate @1
else  apndr @
[encode_bits @ &concat @ pair,
lorgate @ concat @ &1 @ pair]

end



Since the description above assumes that the inputs start as 2N groups of one

bit, there must be a preliminary description to do the grouping, then call encode_bits:

define encode()

encode_bits @

&(if aiom then [id] else id fi}
end

The gate level diagram for an eight-bit encoder (figure A.4) shows that an
encoder merely chooses which bits to or together; an interesting point is that the least

significant bit of the input, A0, is not used in the encoder circuit.

A7 A6 AS A4 A3A2A1A0

—

OR OR OR OR OR OR
[ —— | — | ——
OR OR OR

G00176 G00182 G00188

Figure A.4 - An Eight-Bit Encoder
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A.3. Multiplexer

A multiplexer circuit chooses one of 2V input values using N input control
signals. Since the choices may consist of single bits or bit vectors, it would seem that
two multiplexer descriptions are needed. One description can suffice, however, if an

input of 2V bits is viewed as choosing one of 2 vectors, each of length one.

First, a multiplexer decodes the N control signals, then ands each bit of the
decoder output with each bit in the corresponding input bit vector. Finally, all the k™
bits from each vector generated by the anding are ored together to form the k™ out-
put. In the description below, the coincident decoder circuit described earlier is used
to decode the control inputs; however, any decoder circuit can be used. The initial if

- then --- else statement converts an input of 2V bits into a sequence of 2N

groups of one bit each, as discussed above.

define  multiplex(control, choices)

&|orgate

trans @

&(&andgate @ distl) @

trans @

[C_decode @ control,

& (if arom then [id] else id fi) @ choices]
end

The gate level diagram in figure A.5 is a multipiexer that chooses between one

of two four-bit vectors.
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Figure A.5 - A 4 x 2-to-1 Multiplexer
A.4. Adders (vipera sumupus)

The relatively simple function of addition has received great attention in com-
puter design. There are many types of adders: ripple carry, carry look-ahead, carry
skip, carry save, and conditional sum, to name a few. Each different design makes
some tradeoff between the complexity of the circuit and the speed of operation.
Below are the functional descriptions for the basic adder circuits, a ripple carry, a

conditional sum and a binary coded decimal (BCD) adder, along with some
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explanation of their derivation.

A.4.1. Basic Adders

The basic adders are the half and full adders. The half adder consists of an

xor and and gate in paralle], easily described as:

define  half add(x,y)
[ x andgate y, x xorgate y ]
end

Given the description of a half adder, we can now describe the full adder:

define  full_add(x,y, Cin)

[1 orgate 2, 3] @
apndl @
(1,2 half add 3] @
apndr @
[x half_addy, Cin]

end

The full adder description, unlike the half adder, is more complex than the
actual circuit. The apndr and apndl steps are used to simplify the selection. Using the

proper selectors, the full adder description couid have been:

define  full add(x, y, Cin)
[1 orgate (1 @ 2),2 @ 2] @
1@1,2@)) haff add2] @
[x haif addy, Cin]

end

This bears a closer resemblance to the actual circuit, but is less readable; both

descriptions specify exactly the same circuit.



A.4.2. Ripple Carry Adder

The simplest adder is the ripple carry adder, performing addition much as a
human being would: forming the sum in the nt position, adding the carry (if any) to
the (n+1)"* position. The macro will be specified to add two vectors of bits using an

initial carry, so the input object will be of the form:

((Kn-i **° X0)0n=1 " ¥0) Cin)

with the output object being a single vector

(Cout Sn-1 """ S0)

Each step in the addition will be applied to an object consisting of the unadded

pairs (waiting for the carry to propagate), the computed sum, and the current carry:

((Xnmg Yr=1) " Xk Yk) Ck Sk=1 * "~ S0)

Each step will add the next pair and the carry together using a full adder:

define  rc_adder(bitpr, Cin)
if (length @ bitpr) = %0
then full add @

apndr @ [1 @ bitpr, Cin]
else concat @

[full add @ aprdr @ (1,1 @2, 4 @ 2] @
[1 @ bitpr, (rc_adder @ [¢ @ bitpr, Cin]]

end

The main function, ripple_carry_add, will set up the object for rc_adder to

operate on:
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-define  ripple_carry_add(x, y, Cin)
rc_adder @
[trans @ [x, y], Cin]

end

The gate level diagram for a four-bit ripple carry adder is shown in figure A.6.

A.4.3. Conditional Sum Adder

The conditional sum adder [Sklansky60] avoids carry propagation by forming
both possible sums (C;, = 0 and C;,, = 1), then chosing the proper result when the

carry becomes available. The formation of the two sums can be stated recursively:

if there is one pair of bits to add

then use a conditional half adder (which generates both possible
Sums).

else  divide the pairs to add in half; form both sums for each
half. For each carry of the least significant half sums,

choose the correct sum and carry from the most significant
half, and concatenate it.

In practice, the initial carry is known, so Y4 of the sums need not be formed:

the description below, however, makes no assumptions about the initial carry value.

The functional solution can now be designed in a top-down manner. The top
level function, cond_sum_adder, will cross match the bits, then apply the adder recur-

sion:
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Figure A.6 - A Four-Bit Ripple Carry Adder - Block Diagram
define  cond_sum_adder(x, y, Cin)

¢ _sum_add @
[trans @ {x, y], Cin]

1



end

The function ¢_sum_add will perform the conditional summing algorithm.

From cond_sum_adder, the object passed will be of the form:

((Xpei Yu-1) " ®oY0) Cin)

where (x,_; Y1) are pairs to add, and C, is the initial carry. At each step in the
recursion, the pairs to be added are split. c_sum_add will be applied recursively to
the right half of the vector, until a full addition is performed upon two bits and the ini-

tial carry. When the pairs are split, the carry will be grouped with the right haif.

define  c¢_swm_add (pairs, carry)

if length@pairs = %1

then  full adder
apndr
[1 @ pairs, carry]

else  picksum
[form_both @ 1, c_sum_add @ 2]
[l@1,[1@22]]
[split @ pairs, carry]

P B

end

The algorithm for form_both, generating both possible sums, was given above.

The functional version is easily derived to be:
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define  form_both()
if length = %1
then c¢_half add
else &pick nexx @

distl @
&form both @
split

end

The conditional half adder, ¢_haif add, is composed of a regular binary half adder

and the logic to generate the half adder output plus one:

define c¢_half add(x,y)
[ X orgate y, x xnorgate y 1, x half addy]
end

The remaining function to define is pick_next, which takes an object of the

form
(((c18n-1,1 """ Sk €0Sp10 " Sk-1,00) (6 Sk-1 ~ " 50))
and produces
(€1 Spo11 "7 Sk k-1 " So)) ifep =1
(CO Sn—-l,D L Sk‘osk_l e So)) if Cy =0

The function will use multiplexer, defined previously, to choose between the

two sum vectors. The code for pick_next is:

define  pick nexr(choices, sum)

concat @

[muitiplexer @ [1 @ sum, choices], @/ @ sum]
end
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The gate level diagram for a four-bit conditional sum adder is shown in figure

G00166 G0016600170 G00150 Go0134

Figure A.7 - A Four-Bit Conditional Sum Adder
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A.4.4. A BCD Adder Module

In a binary coded decimal (BCD) representation of a number, each four bits
encodes one digit of decimal number. For example, the integer 123 would appear as

0001 0010 0011 in BCD notation.
The algorithm for adding two BCD digits consists of two steps:
(1) Add the BCD digits as if they were four bit binary numbers.

(2) If the result of the addition (including the carry bit) is greater than nine (01001),
add six (0110) to the low order four bits, i.¢., exclude the carry. The carry out is
the oring of the decimal overflow and the carry (if any) from the adjustment

stage.

The addition of four bit numbers can use any addition algorithm; the ripple
carry adder described above will be used here. Using a top-down approach, the BCD

adder block description is:

define BCD_add(x, y, Cin)
bed_adjust @
ripple_carry adder
end
Adjusting the result requires a circuit to add six (0110) to a four bit number if
the BCD digit overflows. Since the logical result of the overflow is also a numeric
binary value, the adjustment simply consists of adding the overflow result to the

second and third bit positions of the result. This can be realized by two half adders

and a full adder circuit as follows:
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define  bcd_adjust(Cout, S3, S2, S1, SO)
apndl
[orgate @ [1,1 @2],[2@ 2,3, 4,5]]
(1, half add@[2,1 @3],2 @3, 4, 5]
(1,2, full_add @[3,1@4,1],2 @4, 5]
[1,2,3, half_add @ 1, 4], 5]
[bed_overflow, S3, 82, S1, §0]

DRABAD

end

becd_overflow returns true if the decimal value of the five bit binary input is
greater than nine (01001). For the value to be greater than nine, either the carry out
bit is true, or the most significant sum bit is rrue and one of the other two three most

significant bits is on. The translates easily in the functional description:

define  bcd_overflow(Cout, 83, S2, §1, S0)
Cout orgate (S3 andgate (S2 orgate S1))
end

The block level diagram for the BCD module (figure A.8) uses the four bit rip-

ple carry adder from figure A.6, and the half and full adders outlined in Chapter 4.
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Figure A.8 - A BCD Adder Module
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