Inexact Reasoning In Prolog-Based Expert Systems

Koenraad G. Lecot January 1986
CSD-860053

UNIVLERSITY CF CALITORNIA
Los Angeles

Inexact Reasening in

Prolog-Based Expert Systems

A thesis submitted in partial satisfaction of the
requirement for the degree Master of Science
in Computer Science

by

Koenraad Georgius Lecot

1984

© Copyright by
Koenraad Georgius Lecot
1984

-

The thesis of Xoenraad Georgius Lecot is approved.

P atall Lmp ™

Michael Dyer

-~ .
S’ A
-L’:';‘I'L-L,f/'-"{_d:_.. \(\... ‘;‘"h); -
Lawrence Miller
Tl U
“é /! ;j ‘\ f‘—‘-——s/

D. Stott Parker, Committee Chair

University of California, Los Angeles
1984

TABLE GF CONTENTS

..

...

2. The Prolog Programming Languageococoooi
2.1 InTOdUCHOn ..o
2.2 The Horn Clause Subset of Logic

2.3 Prolog and Exgpert SYSTEMS oot

3. Inexact Reasoning in Expert Systems
3.1 Introduction e e,

3.6 Fuzzy LOGICcouommiiviciciiioeee

4. Inexact Reasoning in Prolog oocooiiiiii e
4.1 Introductionc.oooovieionnniiic

4.3 Fundamentals of Probabilistic Reasoning in Prolog
4.4 Interpreters for Logic Programs with Uncertainties

n

5. Subjective Bayesian SITQIEZY ..oooviiiiii e
5.1 IntrodUCHOn veeriii it
5.2 Uncertainty of Evidence ...,
5.3 Multiple Evidenceccoiiiiiiiiiiiiiii e
5.4 ConclUSION .iniiinieiici e e
5.5 Problems with Shapirc’s Methed PP

5.6 Proleg Implementation of Prespector Lo,

6. Belief Strategy {Mycin) oo e
6.1 INTrCAUCHON ..ottt i e e e e et v r e en e ieaas
6.2 The Consultation Subsystemccociiiiiiiiiiiiiiiiiiiaiiane,
6.3 ExXplanationscccoiiiiiiiiiiiiiiiiiiiiiri e eaeaaaas
6.4 Prolog Implementation of Mycin ...oiiviiiiiiiiiiniiiieine,

0.5 COn S OM ottt

7. Comparison of Probabilistic Approaches to Inexact Rcasonirjg .
7.1 Introduction ... iiiiieiiiiciii e e
7.2 Knowledge Representation of Uncertaintyoocevniiinnanen.
7.3 Assumptions in the Inference ...,
7.4 The Coatrol Structure for Propagating Uncertainty
7.5 Dealing with Inconsistent Information c.ceevvvevnennnen..

8.2 Fuzzy Set THEOTY .oreiciniiiiii i iaii et rctir e ee e eaaas
8.3 The Cencept of a Linguistic Variable ...,
8.4 Prolog Implementation of Fuzzy Sets ...t

iv

8.6 Fuzzy Inferenceccovooeiiiiiiiooeeeiieeeees 105
7 Psychological Censiderations of Fuzziness 109
8.8 Conclusion ..o 110
5. Conclusion and Future Work ..o.oooooioiiinno 112
9.1 Motivation for this Work i12
9.2 Comelusiono.ooviiiiiiiiii e 114
9.3 Future Workooiiiiii e 116
BibLiography ..ooeiviiiiiiii e 119
APPENTICES ...ooeiiiiiiiii e 127
1. Prolog Implementation of Prospectorcoovovoiovvveen. 128
2. Execution Trace of Prospector in Prologccovevirennnnnn, SO 141
3. Prolog Implementation of Myeincccouvvvveevvunreeoseonnens 148
4. Execution Trace of Mycin in Prologcoeeeuvvvvioeeeviaenn. 164
5. Prolog Implement~*ion of Fuzzy Set Operatorsc.ccvuvvenenn.n., 168
6. Prolog Implementation of a Fuzzy Database 173

ACKNOYWLEDGEMENTS

It is my pleasure to acknowledge the help and contributions of the fcllovwing
pecple and crganizaticas and cifer them my sincere gratirude:
Stott Parker, adviscr and friend, who told me about Prole; from the mome

I arrived at UCLA. I would like to thank him for his help and advice, beth dur-

5]
rr

ing this thesis project and during my stay in UCLA’s computer scieace depart-
ment.

Russ Abbott, Kamran Parsaye and Tulin Mangir. Their critical reviews of
earlier drafts of this thesis are much appreciated.

Larry Miller and Mike Dyer, for serving oo my committse and for their uss-
ful rémarks on this thesis. I especially like to thank Mike as this project started

under his direction.

Rik Verstraete, for his critical reading of this work, his useful suggestions
-—and most of all, for his help with the formatting of this text.

Safaa Hashim, with whom I had enlightening interactions cn fuzzy logic, acd

Christian Valcke for precofreading this manuscript.

Finally, the Belgian American Educational Foundation, for financial support
during my first year at UCLA, and the IBM corporation, who joiatly funded a
University of California MICRO grant under which part of this research was cen-
ducted.

ABSTRACT OF THE THISIS

Inexact Reasoning in Proleg-Based Expert Systems

by
Kcenraad Georzius Lecot

Master of Science in Computer Scisnce
University of California, Los Angeles, 1934
Professor D. Stott Parker, Chair

Expert systems are only worthy their name if they can cope in a consistent
and natural way with the uncertainty and vagueness that is inherent to real world
expertise. This thesis explores the current methodologies, both in the light of
their acceptability and of their implementation in the logic programming language
Prolog. We treat in depth the subjective Bayesian approach to inexact reascaing
and describe a meta-level implementation in Prolog. This prebabilistic method is
compared with an alternative theory of belief used in Mycin. We describe an
implementation of Mycin’s con:f»ultation phase. We argue further that the theory
of fuzzy logic is more adequate to describe the uncertainty and vagueness of real
world situations. Fuzzy logic is put in contrast with the probabilistic approaches

and an implementaticn strategy is described.

CHAPTER 1
INTRGDUCTION

1.1. Expert Systems

An expert system 1s 2 software system whose behavior in a given pretlem
solving area is close to that of a human being with expertise in the given domain.
Expert systems have been desigred for many deomains including msdical dizg-
nosis, geclogy, analysis of chemical sivuctures and computer configuration. New
applications arise as computing power becomes cherrer and more gezerally avail-
able.

Expert systems use many of the techniques of Artificial Intelligence (Al), a
field where the purely'detcrministic execution of a program is replaced by an
apparently spontaneous reasoning. Human knowledge is an essential part of all
expert systems and is stored as the knowledge base. The expert system interprets
this knowledge, performing the logical deductions and inspiring the guesses and
decisions that might otherwise have been performed by the human expert himself.

Expert systems function as computerized inference engines. They deduce
relationships from a collection of rules which are also part of the knowledge base.
In traditional expert s}'stems, such as Mycin,?* the inference rules are of the gen-

eral format:
IF <symptom—1> AND <symptom—12> AND ... AND <symptom—n>
THEN <conclusion>

The rules are usually nested so that the conclusion of one may become a sympiom
or cause of another. When trying to prove a coaclusion, the expert system uses
deductive inference to generate a virtual search tree by backward-chaining

through the rules. From this tree, a solution may eventually be found when facts,

i.e. rules with no descendacts, are reached. In order to exprass uncertainty about
rules one may asscciate a certaiaty measure with their preconditions enabling

their conclusions to te given with a specified degree of certainty.

An expert system, as its pame implies, is an informaticn system which pro-
vides the user with a facility for posing questions and obtaining answers related to
the expert knowledge stored in its knowledge base. Typically, such systzms pos-
sess a nontrivial inferectial capability and, in particular, have the capability to
infer conclusicns from premises which are imprecise, iocomplete or not tctally
reliable.

Since the knowledze base of an expert system is a collection of human
knowledge, and since most of human knowledge is imprecise in nature, it is usu-
ally the case that the knowledge base of an expert system consists of facts and
rules which, for the most part, are neither totally certain, nor totally consistcnt.

As a general principle, the uncertainty of information in the snowledge base of an
expert system induces some uncertainty in the validity of its conclusions. Hence,
to serve as a useful tool, the answer to a question must be asscciated, either
explicitly or implicitly, with an assessment of its reliability or certainty. For this
reason, a fundamental issue in the design of expert systems is bow to equip them
with a computational capability to analyze the propagation of uncertainfy ffom the

premises to the conclusion and associate a cerzainty factor with this conclusion .

1.2. Prolog for Expert Systems

Traditional computer programs in languages such as Pascal or ADA consist
of sequences of imperative instructions, from which control may occasionally
transfer to other such sequences. The languages used to encode such programs
have little to offer to the expert system builder, since he would have to write all
bcokkeeping routines and deductive algorithms himself. This would divert his

time and efforts from the more important task of modeling his expertise. Thus, a

“

programming language is needed that already embedizs the powers of deductive
reasoning. Preferably, the language sheuld itself funcscn deductively so that its
mode of cperation would resemble that of human logic.

One language that mests all these criteria is Prolog. Prolog programs consist
of a collection of clauses, i.e. assertions and implications, describing the relation-
ships that are to be computed. They may be regarded as statements of truth: the
declarative view or they may be thought of as precedures for computing these
relationships: the procedural view. Tbe Prelog interpreter is aa inferance engine
which can compute complex relaticnships from these simple clauses. This makes it
an ideal language for modeling human reasoning and implementing exp;ert sys-
tems.

In all expert systems, it is important that the user understands how the sys-
tem is reasoning and how it reaches its conclusions. This will greatly increase the
user’s confidence in the expert system’s decisions. Because deductive reascaing is
intrinsically comprehensible, all that is needed to enable the human understanding -
of ap expert system’s execution, is a display of its path of réasoning. When a vir-
tual relation has been built from a series of implications in the knowledge base,
the system only needs to backtrack over these relations, displzying the rules at
each of its nodes, in order to explain its thinking to the user. Most existing expert
systems provide commands such as “HOW" and “WHY" which will initiatz such
machine explanaticns.

As a Prolog interpreter is best described in terms of Prolog itself; adding an
explanation facility to a Prolog-based expert system is then a natural extensicn of

the given reasoning strategy.

1.3. Cverview of the Thesis

This thesis investigates various methodologies that have been apglied o han-
dle the modeling of uncertainty in expert systems. As Prclog is 2 natural choics to
implement an expert system, we experimented with some of the most imrortant
approaches by programming them in Prolog.

The ideas in this thesis are developed in a top-dewn manner. We try to make
the reader from the start familiar with the terminolczy and issues of inezact rea-
scning in expert systems. Rather than describing each methedology serparatsly
from the tegianing, we ccnsidered it essential to maks corrarisons as early as
possible in order to understand better the fundamental differences between vari-

ous systems.

In the chapter that follows, we give a brief intréduction to the Prolog pro-
gramming language. This research involved a lot of programming as w2 wanted
to experiment with the programming aspects of different approaches to inexact
reasoning. A result is that the thesis contains a lot of Prolog code. In the
interest of completeness, as the idea of deductive reasoning is central both to Pro-
log and to expert systems in general, we considered it to be nacessary to include a
brief overview of Prolog to show this duality. Prolog is a narural choice to imple-

ment expert systems.

Chapter 3 provides a general intreduction to the issue of inexact reasoning in
the context of expert systems. We briefly describe the most important methcds.
This chapter serves as an initial exploration into the world of fuzzy reasening,
This thesis essentially focuses around three approaches which in the author's
opinion are the most important. The first two are included because of their histor-
ical significance and their influence on today’s new expert systems. They are the
Bayesian approach to inexact reasoning, used in the Prospector system, and the
theory of belief of the medical diagnosis system Mycin. The third approach, fuzzy

logic has been chosen as its holds the most promise for the future. Ve

demonstrate this in our thesis. After geing through chapters 2 and 3, the reader
should be ready for the more technical chapters of the rast of this werk.

The next chapter gives an cutline of implementation approaches to inexact
reasoning specific for Prolog, and discusses the usefulness of the so-called meta-

level approach.

In chapter 5, we give a detailed description of the Bayesian theory of condi-
ticnal probabilities. This treatment is rather thorough as it is the first reascning
methcdelegy that we implemented. After a theoretical exposure, we ccmment ca
unplementation issues.

Chapter 6 provides a detailed overview of Mycin’s theory of ~-:sures of

belief and its Prolog implementation. In contrast with the Bayesian imzlementa-

Mycin's reascaing strategy.

The next chapter discusses important differences tetween the thrzz predom-
inant probabilistic approaches. This thesis makes a clear distinction berween se-
called probabilistic methods, which are all based on somc'notion of probability,
and the non-probabilistic ones such as fuzzy logic. In this chapter 7, we bundled

our critique on the various probabilistic approaches.

In chapter 8, we discuss what we feel is the most natural appreach, namely
fuzzy logic. We start with a technical treatment of the theory of fuszy se:s, the
underlying analytical building blocks of fuzzy logic. We devote a secticn to
linguistic variables, as the major goal of fuzzy logic is to capture the fuzziness of
natural language concepts. An important effort was the implementation of fuzzy
set operators and a fuzzy database in Prolog. This work is described in the
further sections of this chapter. We also argue for the use of fuzzy logic from a
psychological point of view,

The final chapter serves both as a retrospection on this thesis work and as a

prestection for furure research work,

At the end of this work, we included an extensive bibliography and complote
listings of the Prolog implementaticns of Prospecter, Mycin and a fuzzy logic-
based system. None of these pregrams is complete but each conrains the comglete

inexact reasoning component of one system.

CIIAPTER 2
THEZ PROLOG PROGRAMMING LANGUAGE

2.1, Intreduction

In this thesis, we assume that the reader is familiar with the logic program-
ming language Prolog. Prolog is a simpia but powerful pregramming language {cr
symbolic computation tased on a cemputaticpally treatable subset cof first-crder
legic, the so-cailed Horn subset, named afrer Alfred Horn.®® It is a clzan combi-
naticn of tixe concepts of symbelic programming languages such as LISP and :hose
of relational databases.3! For a gced iatroduction to the language, we refer to
Clocksin and Young?3 and the textbook by Clocksin and Mellish.27

Prolog might te calied a Eurcpean programming lané,uagc.ssv 10 1t was torn
at the University of Marseille in the early seventies. After eight years of being
known only to a small community of dedicated implementors and users, mainly at
the University of Edinburgh, Prolog has been brought to the attention of the
wider world, in particular the 'US,™ by its surprising édoption as the starting
point for the Japanese “Fifth Generation” computer research effort.1% Prolog has

been used for a variety of applications:

O natural language interaction with computer systems;$2.29,30,32.95

Q architectural design and site planning;’!:96.13

O drug design (very successful commercial application in Hucgary) and
biomedical analysis;>3

0 VLSI circuit analysis;!12.9

O various fields of artificial intelligence research;2!:92,19

O compiler writing (Prolog itself, APL);103

0 algebraic computaticn applications;!2 14,1520

O database access and data description language;?:16,33,34,48,60

O discrete event simulation;*

O program devalopment systems;*3
O expert Systems;39,77,90,44,76,52‘25
O plan formation in robotics;1%0, 101

The list of applicatica areas of Proleg is growing every day. A sids effsct of
this thesis was the creation of a database of 12C0 references cn Prolcg and logic

programming. Tnis collection has been submitted for publicaticn.
In this chapter, we will briefly review the Horn clause logic on which Prclog
is based. We fccus on the key features of the language :
1. Horn clauses;
Declarative versus procedural programming;

No explicit input/cutput notions;

> e

Deduction, unification and backtracking.
The main part, however, will be devoted to Prolog’s relationship with expert

system technology.

2.2, The Horn Clause Scbset of Logic

‘Thc similarity between the use of logic for representing programs and as a
database language can be secen most clearly with the Horn clause subset of
logic.80:61,62 Horn clauses provide the basis of the Prolog logic programming
language.38:27
 Before we deal with Horn clauses, we should first explain what clauses are.

A clause is an expression of the form
BBy B, mAAy A,

where 8,,...B are alternative conclusions and A,,..,A are conditions of the

clause. In the above clause, the arrow “~" reads “if’ to indicate lozical implica-
tion. If the conclusicn part of a clause contains variables, we assume that those
variables are universally quantified. Variatles in the conclusicn part of a clause
might also appear in the condition part. Variables that appear only in the condi-
tion part are existentially quantified. If x.,..,¥, are variables in the conclusion

part of the above clause, the interpretation is as follows:

YV x X, Boor,.,orB if
m

1!
Al and,..,and A
n

A Horn clause is a special case of a general clause in which there is ar most

one conclusion B. A Horn clause is thus an expression of the form
B-AjA, A

In the above format, we distinguish tetween unit clauses (n=0) and non-uzit

clauses (7 #0).

A Prolog program, also sometimes lakeled database, is a collection of Her
clauses that express information which can be used to solve problems. A Horn

clause is either
1. A unir clause, also called a fact.

For example, B
father(john,mary).

is a representation of the fact that john is the father of mary. The consiants
“john” and “mary” are called aroms tn Prolog and have to start with a
lower-case character. The body of 2 Horn clause is its conditica part, which

in the case of a unit clause is empty.
2. A ron-unit clause, also called a rule.

For example,

mortal(X) :- man(X),old(X).
represents the idea that every old man is mortal or in other words:
X is mortal if X is a man and X is oid
or, in plain English,
every old man is mortal

The symbol “X” is an example of a Prclog variable and has to tegin with a

capital. The symbol “:-” reads as “if”” and the comma “,” means “and”

A Proleg rule “:: the general format of a Horn clause:

B:i=ALA,. A (n#0)

n

where B is the #2ad of the rule and A1""An form the zail or body. Al""An
are called atomic coaditions. The procadural interpretaticn is that in order
to solve B onc has to solve the ccnjunction Ap-A . Facts and rules are
used to represent knowledge which can then be queried.

3. In general, a guery, also called question or prégram invocation, is a collection

of atomic conditions, written as

ALA, ...,

which is interpreted as the conjunction of goals A, of finding a substituricn of

terms for the variables in the query such that all of the resulting conditions

are implied by the database (program) either directly by means of a fact or
* indirectly through a rule.

As an example, let us consider the following set of family relationships (com-

ments are preceded by a %):

10

% facks

father(john,mary}). % parents cf rary
mother(judy,mazry}.

rother{jane, john). ¥ parents cf john
father({ jack, john).

% rules

parent(X,2),parent(2,7).
father{X,2),parent{2,Y).
mother(X,2),parent(s,¥).

grandparent(X,Y)
grandfather(X,Y)
grandmother(X,7)

i

parent(X,¥) :~ rmothex(X,¥7). ! mother and father arsa
parent(X,¥) :- father(¥X,¥). % both parents

Variables that appear both in the head and the body of a rule are universally
quantified where variables that only appear in the body are existentially quant-
fied.

‘Given this program, we could ask the following questicns:
Who is the father of mary ?
with translates into the Prolog query: .
?- father(X,mary).
The Prolog system will answer this question with
X = john -
This process is called unification of the goal father(X,mary) wita the clause
father(john,mary) which results recursively in the unificaticn of the variabl
X with the atom john. If we now type a semi-colon (*;”) Prolog will try to find

another solution by backrracking. In this case, no other answer is possible and the

system will respond with
no

Let us now ask the question “who are the parents of mary ?”

11

?- parent(X,mazy).

X = judy ;

X = john ;

no
We should note at this point that Prolog, while answering questions, aiways starts
its search at the top of the internal database. This is the reason why the answer
“judy” appeared befcre ““john.”

The basic computational mechanism of Proleg is top-down search throuzh &
tree of goals. Arcther question on the given database might te:

Who are the grandparents of mary ?

or in the Prolog notation,
?- grandparent(X,mary).

X = jane ;

X = jack ;

ne
Note that we only get two answers here as nothing is known about the parents of
mary’s mother, judy.

One of the powerful ideas behind the Proleg programming language is that a
prcgram can be viewed in two different ways: a declarative and a procedural way.
2 On one hand, a Prolog program can be viewed simply as a collection of state-

ments, i.e. facts and rules. This is the declarative interpretction.

' On the other hand, the same program can also be understced as a number of
procedure definitions: the procedural view.

As an example, let us consider one of the rules of our previous “‘family”

relationship example:

12

parent{X,¥) :- rother(X,¥).
parent(X,¥) :-~ father(¥,¥Y).

We can read these two clauses, declaratively, as “ X is a parent of Y f X i5 a
mother of Y or if X is a father of Y.” In the procedural interpretaticn, they rea:
in two different ways: ““In order to find an X that is a parent of Y, find an X that
is either the mother of Y or the father of Y and “'In order to find a Y such that
Xisaparentof Y, find a Y so that X is either the mother cr the father cf Y.”

We see that there are even two precadural interpretations possitie. The rwo
clauses of the example coastitute together coe precedure paorent that caa be usad
in two differeat ways, namely to find a parent of given child, e.g. parens(X, mary)
or to find a child of a given parent, e.g. parent(john,X). The parent procedure can
even be used in a third way, namely to generate all instances of the (parent,child)
relation. This effect is realized by the goal parentX.Y).

A common example cf this multi-directionality of Frolog precedurss is the
append precedure which concatenates two lists into one list. 102

append([],List,List).
append([XiList1],List2,[X!List3)) :- append(Listt,List2,List3).

We read these two Prolog clauses, in a declarative way, as ‘‘the empry list,
denoted by “[]’ appended to a List yields the same List” and “a list cf ths form
X followed by a Listl appended to a List2 results in a list of the form X fcllowed
by a List3 where List] appended to List2 gives List3.” A Prclog list is either the
atom “[]” or a structure denoted as “[H|T]” where H is the first elemant of the
list (In LISP terminology, the “car’”) and T is a variable standing for the
remainder or tail (“‘cdr’) of the lift.
Now, executing the procedure call
?- append([a,bl,[(c],L}.
will result in the answer

L = [a,b,c]

13

which is, of course, the cozcatezaticn of {a,b] and [c].

However, we can also use the same append precedure to find all lists L1

and L2 that, when appended together, result in [a,b,c].
?7- aprpend(L1,L2,[a,b,c]).

L1 = (] L2 = [a,b,c] ;
L1 = [a} L2 = [b,c] ;
L1 = [a,b] L2 = [¢] ;
L1 = [a,b,c] L2 =[] H
no

We cornclude that Prolog avoids the notion of input and output arguments of

ADA, Pascal or other purely procedural programming languages.

2.3. Prolog and Expert Systems

The knowledge needed for an expert system is usually held in the form of
facts and IF-THEN rules. The expert system itself is a program, most often in -
LISP, that infers advice from the facts and the rules. In Prolog, a program con-
sists of facts and rules, so the knowledge needed for an expert system can be
written down directly. To get advice, one can either use Prelog's built-in inference
mechanism, or one can write further rules about how to use the given knowledge.
The facts in Prolog correspond to a relational database, while the rules contain

expertise about how to use the data.

As Prolog treats programs and data in a similar manner, it is a perfect tcol

for the implementation of knowledge-based systems.

Many researchers, especially in Europe, find Prolog well-suited for imple-

menting knowledge-based expert systems.26:52,99
An expert system generally consists of three parts:

1. A database of krnowledge (facts and rules) zbout a particular domain.,

14

2. An inference engine for generaling and contrciling logical deductions.
3. An interface for communicating with the user.

Prolog itself provides a powerful database and oze kind cf infereace mechan-
ism, namely backtracking. Cther types of control have been implement=d.i% A
user-friendly interface is easily implementable in Prolog, using one of the various
logic grammar formalisms, which will not be discussed in this thesis. We will ela-
borate further ca the architecture of expert systems in the next section.

The mostly used programming language to implement expert system is LIS2.
The reascns for this are, in cur opinion, rather histcrical. As we have seen, Pro-
log has all the basic constructs that are needed to implement a prcduction system.
This is not the case for LISP which does not have pattern matching and search
algorithms predefined. The recent efforts to implement logic programming in
LISP demonstrates the need for an alternative programming methedology. 39,87

To summarize, we can say that programming in Prolog may be viewed as:

1. specifying facts about obj'ects and their relationships
2. specifying rules about objects and tﬁci.r relationships

3. asking questions about objects and their relationships

15

CHAPTER 3
INEXACT REASGNING IN EXPERT SYSTEY

3.1. Introduction

In this chapter, we will give a general introduction to the area of expert sys-
tems and the most important metheods for inexact reasoning.

An expert system has been .defined as a computing systam that embodias
crganized knowledge concerning some specific area of human expertise, suffician
to perform as a skillful and cost-effective consultant. Thus it i3 a high-
performance special-purpose system that is designed to capture the skill of an

expert consultant such as doctor of medicine, a chemist or a mechanical engineer.

Expert systems differ considerably from one another in terms of system
design and capatbilities, insofar as the term “expert system” itse!f is not yet pre-
cisely defined. However, in practice, the most important systems have many

features in common:
1. A database of facts.
2. 1‘-{ database of inference rules, i.c. the knowledge base.
3. A contro! strategy

Most expert knowledge, however, is of an ill-defined and heuristic nature,
frequently formulated at an subconscious level. It is most unlikely that standard
text books will give sufficiently detailed, precise, and accurate information suit-
able for direct use. Much of the expert’s skill will undoubtedly be hidden in
approximate rules of thumb, which are seldom or never recorded. It is the task of
the ‘mowledge engineer, i.c. the system implementor, to extract this knowledge
and to organize it. To achieve this, a period of intensive discussion with one or
more experts in the subject and the analysis of a selected set of test cases, is gen-

erally needed.

16

Expert knowledge, i.e. expertise, is usually nct eaccded in 2 precsdural
fashion, i.e. ts procedures and functions in a particular programming language,
but in a declarative form, known as a knowledge bese . This knowledge base

comprises a medular set of rules cf the form
situation - action.
for example

if the car has a battery discharge problanm
and the battsry has just Leen raplaced
then consider testing the charging system

Each such rule is intended to correspond in a natural and direct fashion to a

chunk of knowledge meaningful to the domain expert.

In addition to a knowledge base of rules, a mechanism is needed for manisu-
lating these rules to form inferences, make diagnoses, etc. This mechanism,
which is essectially a form of thecrem proving, is often referred to as the infer-
ence engine. A design aim is to keep the inference engine standard across a wide
range of systems and applications. It should be kept separate from the knowledge
base, which is domain-specific. '

Apn important complication arises from the fact that expert knowledge in
many domains, e.g. medicine, is not precisely defined, but of an inkerently

imprecise nature such as

if: the infectieon is primary-bacteremia and
the site of the culture is one of sterilesites an
the suspected portal of entry of the organism is the
gastro~-intestinal tract

then: there is suggestive evidence (0.7) that the identity cf
the organism is bacteroides

Many systems permit imprecise rules to be included in their knowledge base and

provide means of manipulating them. This is often described as inexact reasoning,

17

plausible reasoning or reasoning with uncertainty.

The recommendations made by an expert system will b2 acceptad by the user
only if this user understands and accepts the underlying reascnirg. Many expert
systems provide an explanation facility which enables the user to consult the sys-
tem interactively to ask for explanations of the system’s decisicas, diagneses, etc.
and the lines of reasoning used to cbtain them.

A user-friendly interface is of great importancs to the aceaptancs of an expe
system. However, this dces not necessarily imply the need to handle unrestrictad
natural language. Communication in a restricted form, in tke jargen of the fizld,

may be fully justified and even more preferred.

An important way in which expert system rules can be incorporated into a
working program is in the form of a preduction system. A preducticn system is a

*

collection of rules of the form “conditions - action,” wiers the conditions ars
statements about the contents of a global database of facss and the actions ars
procedures which may modify the contents of the database. Program execution
consists solely of a comitinuous sequence of cycles terminating when some halting
action is executed. At each cycle, all rules with conditions that are satisfied by the
contents of the database are determined. If there is more than one such rule, a
-selection is made by means of some pre-determined confiict resolusion strategy.
All the actions associated with the selected rule are then executed and the data-

base is changed accordingly.
Although expert systems are now becoming commercially available, there are

still some fundamental issues in this area that need to be resolved. One of them
is using a production system architecture to model the knowledge base. We mean
by this the almost universal assumption that expert knowledge is best mcdeled
using IF-THEN rules. Another, mcre fundamental issue which still requires a lot
of research is the rcle of inexact reasoning. Each expert system has adopted its

own methed, some of them backed by a formal theory, otkers purely ad hec.

18

3.2. Inexact Reasoning

In this thesis, we investigate the most common metheds for insxact reason-

ing, we compare and evzluate them and describe an implementation in Prolog.

The techniques to deal with uncertain and/or fuzzy ‘mowledge can te classified
as foliows:
1. Non-monoionic reascning (default reasoning)’3-36
2. Probatilistic reasoning*l:32,94,73
3. Fuzzy logic (Possibilistic Reascaing) 07

Non-monotonic logic has oot teen used yet in any existing expert system; it is
more oriented towards natural language prccessing systems. We do zot treat it
here but rather concentrate oo the probabilistic approaches and on the fuzzy logic

method. We will compare the various methodologies that were implemented in

real systems, or that were propesed as a methodology. 73109
The class of probabilistic strategies includes : '
QO Mycin-like inexact redsoning (measures of belief and distelief)
Q Prospector-like inexact reasoning (subjective Bayesian updaﬁng)

8 Dempster-Schafer theory

Each of these will be discusséd m t.be; Subseﬁuent chapters. First, v;c; wiil formu
late the prcblem of inexact reasoning in general terms.

In a binary problem, each symbol is assumed to be ecither complately true or
completely false, and only two relationships in the decompositicn of a problem
are possible: AND and OR. However, in real-world problems, two kinds of uncer-
tainties exist:

1. The uncertainty asscciated with the observed evidence £.
2. The uncertainty of the expressed kanowledge itself, i.e. the uncertainty of the

inference rule £ - A (read : if E (evidence) then H (hypothesis)).

19

Thus, an AND/OR tree is insufficient for most of the real-world problem
descriptions. Expert systems coemmonly distinguish between thres kinds of rules

which all have uncertaiznty asscciated with them:

1. AND-rules

if E and Ej then H with C‘.

2. OR-rules
if £ or EJ. then A with C,
3. DMultiple Evidence rules
i.fE‘. then H with Cl.
if Ej then H with Cj
In the above formulae, we used
E, EJ. as pieces of evidence
H, for hypothesis
C, as certainty measures

We note that if £, and E,- in an OR-rule are indzpendent of each otker, tkan

the rule becomes a multiple evidence rule.

Expert systems commonly employ some means of drawing inferences frem
domain and problem kncwledge, where both the knowledze and its implications
are less than certain. Methods used to express this uncertainty include, among
others, subjective Bayesian reasoning (Prospector}, measures of belizf and disbelicf
(Mycin) and the Dempster-Schafer theory of evidence.

Thus, when expert systems are applied to real-world situations, and ot to
idealized theoretical worlds, Boolean logic is no longer sufiizient. The first teck-
niques that were used to deal with uncertainty were based ca Bayes' rule of condi-

rional probebilities, which is part of the traditional probability theory.

20

Probability theery is the approach most widely used for the representaticn
and manipulaticn of uncertain information. If we assume that we have, in gen-

eral, an inference rule

E-H

-

then, using probability theory, we may attribute a probability P to both F and &

and define a conditional probability as

P(H & E)
P(HI|EY= —""— (Bayes rulz)
P(E)
P(H & E) is called a joint probability. P(E) is @ prior probability. The basic
axioms of probability, together with the above rule for conditional probability, are
the basis for the Bayesian probability theory, named after the 18th century British

mathematician Thomas Bayes.

We note that the specification of a2 value of the conditioral prebatility
P(H | E) is the way to express the validity of the implication |

if E then H

The success of Bayes’ theorem in early expert systems was due largely to the
vast amounts of data available for their domain of application, mostly specific
medical fields or geology, as in Prospector. However, a Bayesian apprcach in
domains where the appropriate data are not available pecessitates the use of
numerous approximations and assumptions. The subjective probabilities, providad
by the domain expert, replace the statistically estimated probabilities. Obviously,
with subjective estimates, it is hard to guarantee consistency. We will explain this
further in the chapter on Prospector.

The inadequacies of Bayesian probability in the analysis of some real-world
problems has led to various other approaches. These include the thecry cf‘ﬁ;zzy

sets107 | the theory of conﬁrrm:rriar122’94 ,the theory of upper ard lower probebilities

21

37,38 and the thecry of evidenced! Each of these provides aa altermative basis fer
mechanizing inferential reasoning. We will treat each of them separately in this

chapter.

3.3. Mycin

Mycin 94 is a program that attempts to recommend appropriate therapies for
patients with bacterial infections. Medical diagnosis is an example of the scrt of
real-world task that defies absclute analysis because of its complexity and lack of
complete knowledge. In such domains, inexact reasoning is nscessary.

According to the authors of the Mycin system, Bayes’ theorem could not te
used for two major reasons:

1. It is often difficult to collect all the prior probabilities in the field of medical
diagnosis.

2. Bayes’ theorem is too static and tco expenmsive when new knowledge, i.e.
facts and rules, are acquired. In particular, most of the joint probabilities
would have to be recomputed as the sum of the probabilities of the pessible

outcomes has to be equal to one.

_Let us formulate, in general, a medical diagnosis problem using Bayes’

theorem. We adapt the following notations:

D. = ith diagnosis (disease)

i

E = sum of all the relevant data, total evidence
Then

P(D, | E) = the conditional probability that the patient has

disease i in the light of the evidence E

To be able to compute this conditional probability, i.e. solve the inference prob-

lem, we try to use Bayes' formula

22

P(D, & E)
P(D,|E) =
P(E)

We note that the domain expert has to provids a prior probability P(E) for each
" proposition E, which is difficult in practice and that the joint probabilites
P(D, & E) have to te known for each (£,D,) combination. Ia other words, Eayes’
approach to medical diagnosis would require a huge amouat of data. This idza
convinced the authors of Mycin to use another approach in their system.

In Mycin, the domain expert provides a cermainty facror (CF) for each infar-

ence rule E - H. This factor may vary on a scale of -1.0 to 1.0 where

-1.0 = complete confidence that H is false when evidence E is true
1.0 = complete confidence that H is true when evidence E is true

0 = no information (H is independent of E)

The certainty factor captures the expertise of the expert system builder. Prorcsi-
tions in Mycin have two parameters associated with' them, a measure of belief and
.8 measure of disbe!ief. These measures are based on Carnap’s rheory' of cornfirma-

tion?2 and are defined as follows:

MB(H ,E) = measure of belief in A for given £, i.¢., the degree to which
the hypothesis H is supported by an observed evidence E

MD(H,E) = measure of disbelief in H for given E, i.e., the degres to wiich
the hypothesis H is negated by an observed evidence E

These two measures can be defined formally in terms of the Bayes coaditional
probability P(H | E) and the prior probability P(H). The certainty factor is

defined in terms of measuras of belief and disbelief as follows:

CF(H,E) = AWB(H,E) - AMD(H,E)

23

CF(H,E),MB(H,E) acd MD(H,E) are judgemental measurss that reflect a sartic-

ular model of belief. They are net probatilities as the general rule
CF(H,E) =1 — CF(not H,E)

does not hold. The CF of a hypothesis is used to compare the evidential streng:h
of competing hypotheses. '

According to the authors of the Mycin system, their proposed model for
inexact reascaing is a pleusible representation of the numbers an expert gives
when asked to quantify the strengrh of his judgemerial rules. We quete frem
Shortliffe?*

“The expert gives a positive number (CF > 0) if the bypothesis is con-

_ firmed by the observed evidence, suggests a negative number (CF < 0)
when the evidence suggests the negation of the hypothesis and says
there is no evidence at all (CF= 0) if the observation is indeperdent of

the hypothesis under consideration.”

The CF(H,E) combines knowledge of both the prior probability P(E) and the
Bayes conditional probability P(H | E). Since the medical expert often has trou-
ble stating P(E) and P(H | £) in quaantitative terms, a CF(H,E) that weights toth
numbers is a more natural intuitive concept. Certainty factors in Mycin play the
role of the conditional probabilities in Bayes' theorem. Mycin’s ccnainry‘ facters
reflect the idea that medical diagnosis is based on judgemental date rather than cn

statistical data as in the Bayes approach, used in the Prospector system.

Thus, Mycin,?* which is one of the most successful and influential expert sys-
tems, is based on a theory different from Bayes’, namely the theory of confirra-
tion. The approach here was, in fact, to develop a system that was both based on
theoretical results and of practical use. Whenever this was not possible, intui-
tively motivated techniques were added. Mycin’s knowledge base is a set ci

rules, each consisting of one or mcre stimulus propositions (evidence), a response

243

proposition (hypoihesis) end a certainty facior that quantifies the degres to which
belief in the stimulus propositions confirms the responmse proposition. All this

information is provided by the domain expert, who sets up the expert system.

A certainty factor combines two measures from the theory of confirmation,
the measure of belief and the measure of disbelief. The justification for their
approach is not to attempt to improve cn Bayes’ theorem but rather to develep a
mechanism whereby judgzemental knowledge can be efficiently represented and
utilized for the modeling of medical cecision making. This is especially valid in
contexts where

1. statistical data are lacking

2. probabilities of the negation are not known or not guaranteed

3. conditional icdependence can te assumed in mest casss

Mycin's success in diagncsing bacterial infections, despite a lack of statistical
data, suggested that similar techniques might be advantagecusly employed in
other domains with a-shortage of statistical data. This resulted in the EMycin sys-
tem that was ported to other domains.!7-2 EMycin stands for Esseatial Mycia,
i.e. Mycin stripped of its domain knowledge.”’

Finally; as we will see later, propagation of uncertainty in Mycin uses formu-
las, similar to those in Prospector, and also various appreximations to guarantes
consistency within the given model. We should also notz that Mycin only uses
inference rules with a CF above a predefined threshold.

3.4. Prospector

Mycin’s use of production rules to represent judgemental knowledge aad its
inclusion of formally based mechanisms for handling uncertainty influenced the
design of Prospector,*l:# a geological consultant system intended to help geclo-

gists in evaluating the mineral potential of exploration sites. However,

25

Prosgpector’s inference mechanism is not based on the thecry cf confirmation, but
on a subjective Bayesian technique that retains, inscfar as possible, the well-
understcod methods of Bayesian prebability theory, intreducicg only these medii-
ications needed to compensate for the subjectivity of the prcbatiiities. Subjective
probabilities are interpreted as measuring degrees of belief rather than long-run
relative frequencies of occurrence. Prospector uses approximations to overcome
many of the protlems of dealing with subjective probabilities. Some of thzese

approximations include:

1. The use of a piecewise linear interpelation function to correct for incensisiant
probabilities, i.e. probabilities that do not conform with Bayes’ rule. Tae

* definition of this function is, as the authors admit themselves, pretty ad hoc.

2. The assumption that evidence combines either independently or as a logical

function, i.e. conjunction, disjunction or negation.

3. An interpolation formula to account for the combination of uncertain

independent evidence.

4. The use of simple formulas from fuzzy set theory to combine dependent evi-
dence.
These approximations led ta a computationally simple method for updating prebe-
bilities that has proven to be very successful in practice.!,50
Prospector’s formulation offers several advantages over that of Myein. Since
Bayesian probability theory is the most widely known, Prospector’s formulaticn
often creates fewer conceptual barriers. Unlike Mycin, Prospector can utilize a
rule regardless of the level of support that exists for its stimulus propositions.
Mycin can only use a rule once it stimulus propositions have reached a level of
support above a preset, empirically selected threshold. Thus, Prospector makes
more complete use of the available information than Mycin does. We will go into

more detail on this subject when we discuss the inference formulas Prospector

26

uses in chapter 5.

Although both Mycin and Prespector represent giant steps towards a well-
founded theory cf mechanized inexact reasoning, they share some common prob-
lems. A pumbter of these problems center around their lack of intermal con-
sistency. Both Mycin and Prospector partially correct for these problems by con-
straining their inferencing prccess. Inference is restricted to a single, predeter-
mined directica aleng each arc within the inference graph. No lcops are permit-
ted. However, it seems to us that such lcops are part of human rsasening.
Another major criticism on Prospector has teen its single-valued prebabilities.®
Mycin uses an alternative approach in which there are two separate values for the
validity of each proposition. However, this two-valued approach is also subject to
the criticism about precision of the actual estimates, since both of the belief meas-
ures Mycin is ﬁs'mg are als0 point values. We refer to chapter 7 for a comprehen-

sive comparison tetween the two systems.

3.5. The Dempster-Skafer Theory

A mathematical theory of evidence and an accomparying theory of proba-
bilistic reasoning by Shafer®! provides an alternate foundaticn for the construction
of mecharized systems for inexact reasoning. Shafer’s work is an extension of
Dempster’s>’ on partial belief. Shafer's theory departs from the more tradisional
Bayesian theory!l avoiding several of its documented difficultiss, especially its
inability to represent ignorance and its insistence that new evidence be expressible
as a certainty. Shafer’s theory is fundamentally different from the theories
underlying Mycin and Prospector. Unlike the theory of confirmation and the
Bayesian theorem, Shafer’s theory does not rely on prior subjective probabilities.
It takes a conservative view: inferences are made by eliminating the impessible,

not by assuming the probable.

Sets of confidences are asscciated with propositions. It is presumed that the

27

true confidence cf each preposition is an element of its assccizted sat. Infarencing
consists of reducing these sets by eliminating those elements that are incensistant
with the sets assigned to related propositions. Shafer’s thecry is the basis for
dependency-graph medels of evidential support.58 Dependency-graph modzls cf evi-
dential support are fcrmal systems capable of peoling and extending evidential
information, while maintaining internal consistency. In this formalism, the likeli-
hood of a prcposition is represented as a subinterval of the uait interval. Tze
lower tound represents the degree of support and the upper tound stand for the
extent to which the proposition remains plawsible. Evidential informaticnisin ¢

form of mass distributions which are collected from different sources of knowlzdzz
and combined through Dempster’s rule of combination.3” Using this theory, prior
probabilities are no longer needed. The Dempster-Shafer theory has, to the

author’s knowledge, only teen emgployed in the VISIONS system. 105
Ishizukas’ discusses an extension of the basic Dempsier-Schafer theory to

include fuzzy expressions, i.e. fuzzy predicates and fuzzy certainty. Basically, ne

describes a system based on two theories:

1. Dempster-Schafer theory

a. Prcbabiliiies are seen as mass distributions.

b. The calculation of the probatility of a hypothesis under multiple evidern
uses Dempster’s rule of combination.

2. Fuzzy logic

a. The natural language constructs in the propositions also have a measure of
fuzziness. .

b. The arﬁ'ibutcd degrees of uncertainty may be fuzzy themselves.

Although the Dempster-Schafer theory overcomes many of the inadequacies

of the single-valued probabilistic schemes, it still suffers from scme problems:

1. It is difficult for pcbplc to think in terms of probatbilities.

28

2. The Dempster-Schafer detects conflicting hypothesss but cannot rasclvz
them.

As fuzzy logic extends the capabilities of the Dempster-Schafer thecry, we

decided to concentrate our efforts on the former.

3.6. Fuzzy Logic

Arother approach to inexact reascning that diverges from classical legic is
fuzzy logic, as discussed by Zadeh and others.107,110,4,70

In existing expert systems, as we have mentioned previcusly, the computa-
tion of certainty factors or similar measures is carried out thrcugh a combination
of methods which are based on, or at least, similar to, two-valued logic and pro-
bability theory. However, these methods have serious shortcomings that are com-
mented throughout this thesis. In particular, ore open question is the universally
made assumption that if each premise is asscciated with a numerical certainty fac-
tor then the certainty factor of the conclusion is a number which may be
expressed as a function of the certainty factors of its premises. Zadeh claims that
this assumption is in general invalid because it does not capture all the uncer-

tainty of the rule as we will show below. 109

He argues that the employment of furzy logic as a framework for the
management of uncertainty in expert systems makes it pessible to consider a
number of issues which cannot be dealt with effectively or correctly by conven-

ional methods. According to him, the more important of these are the following:
1. The fuzziness of antecedents and/or consequents in rules of the form
(a) if X is A then Y is B
(b)ifXisAthenY s Bwith(CF =«

where the antecedent, X is A , and the consequent,Y is B, are fuzzy proposi-

tions, and « is a numerical value of the certainty factor CF. For example,

29

if X is simall then Y is lorge with CF = a
in which the antecedent X is smail and the consequezt Y is large ars fuzzy
propositions.
Partial match between the antecedent of a rule and a fact supplied by the
user.
Since typically, the number of rules in an expert systzm is relatively small,
i.e. of the crder of a few hundred, there are likely to be many cases in which
a fact dces not exactly match the antecedent.

The presence of fuzzy quantifiers in the antecedent and/or conmsequent ¢f a
rule.

In many cases, the antecedent and/or consequent of a rule contain implicit or

explicit fuzzy quantifiers such as most, many few,etc.

Zadeh!®? claims that most of the facts and the rules in a real-world expert

system contain fuzzy predicates and are thus fuzzy propositicns. In the existing

expert systems, he continues, the fuzziness of the knowledgze base is ignorsd

because neither predicate logic nor probability-based methods provide a sys-

tematic basis for dealing with it. For example, one of the traditional laws cf pro-

bability theory

PH|E)=1- P(not H|E)

does not hold when E is a fuzzy proposition. Zadeh defines a knowlaedoe base as

a collection of propositions of one of the following canonical forms:

1.

2.

An unconditional, unqualified proposition, i.e. fuzzy fact

e.g. John has a young daughter

young is a fuzzy predicate

An unconditional, qualified progosition, i.e. fuzzy fact

30

e.g. it is very likely that John has a young daughter
young is a fuzzy predicote

very likely is a fuzzy prcbability
3. A conditional, unqualified proposition, i.e. fuzzy rule

e.g. if X is young then X is good-looking

young and good-looking are fuzzy predicates

4. A conditional, qualified propositicn, i.e. fuzzy rule

e.g. if a car is old then it is probably not very reliable
old and reliable are fuzzy predicates

probably is a fuzzy prcbatility

not very is a fuzzy quaxtifier

In order to be able to convert any natural language proposition into its

canonical form, Zadeh devised what he calls rest-score sementics. For example,

the fuzzy fact
John has dark hair

has a canonical form X is F where X = color(hair(John)) and F = dark, a fuzzy

subset of the set of colors of human hair.

Canonical forms are also able to deal with conjuncticns, disjunctions and
negation, based on fuzzy set theory. We will treat fuzzy set theory in depth in
chapter 8. Zadeh shows!®8 that any natural language proposition may be
expressed in a canomical form by the use of test-score semantics. We will not ela-

borate on this.

Each fuzzy concept has a possibility distribution asscciated with it. This
accounts both for the propositions and for the certainty factors. Zadeh proves

that the problem of drawing inferences is, by the use of fuzzy logic, reduced to

31

that of solving a nonlinear program
D = f(R) with lccal and global constraints
where f is a nonlicear function and D and R are matrices of variables. We will
elaborate on this in chapter 8.
We conclude temporarily that fuzzy legic has two principal components:
1. A translation system for representing the meaning of propositions and otzer
semaatic entities in the form of possibility distributions.
2. An inference system to propagate these possibility distributions.

The theory of fuzzy logic has been applied in a variety of domains, but
mostly in the fields of pattern recognition and decision-making. Fuzzy systém
theory has had lttle impact on the literature of Artificial Intelligence. Xling™3
and LeFaivre®.67 give extensions to the Al programming language, PLANNER,
to allow the use of fuzzy logic. LeeS3 made a study of resolution theorem nroving

for a fuzzified form of predicate calculus.

We see several reasons for the fact that fuzzy logic has almost never been
used in Al:

1. Fuzzy logic bhas a very formal and theoretical basis unlike meost Al tech-

niques which often lack thecretical foundations.
2. Fuzzy logic is difficult to implement,

3. There is a misconception that all research in fuzzy logic is conducted by

one person, Zadeh.

We will go into more detail on the theory of fuzzy logic in chapter eight.

32

CHAPTER 4
INEXACT REASONING IN PRCLOG

4.1. Intrcduction

A rule-based expert system can te regarded as a production system. A prcduc-

tion system consists of three parts:

1. A global database of facts (pieces of evidence and deductions)
2. A set of producsion rules (inference rules, deduction rules)

3. A control system (search mccbanism)

The set of preduction rules operates on the global database cf facts. A production
rule has the format:
HifE

where A is called hyporhesis, conclusion, postcondition or consequent aad £ is the
evidence, premise, precondition or antecedent. The precondition £ of a produc-
tion rule R is either satisfied or not satisfied by the global database. By “‘satis-
fied” we mean provable. If it is satisfied, the rule can be applied, or in other
words, the inference (decduction) can be made. Applying a rule, i.e. matching its
premise pattern, changes the state of the global database. The control mechanism

chooses which rule should be applied and halts the computation when a termina-

tion condition on the global database is reached.

Most expert systems are implemented as so-called backwvard-chaining preduc-
tion systems, i.e. reasoning backwards from the top goal to the pieces of evi-
dence, supplied by the user in a consultation session. This approach is also called
goal-driven, i.e. standard Prolog. Some expert systems, however, are forward-
reasoning systems, especially those that depend on real-time data. They are also

called dara-driven expert systems.

4.2. Probakilistic Reasoning

Probatility is a calculus for eXpressing uncertainty. This uncers: Ty may be
due to inccmplete kncwledge and/or to the variability of the werld the expert sys-
tem is defined upen. Practically each successful €Xpert systzm, that ussd proba-
bilistic calculus to deal with uncertainty, tcok a different approach. Tae difference
could be characterized by the meaning the different systems atiribute to the pro-
babi!iry fuaction P. Prospector adopted the persenalissc laterpretaticn of preba.
bility: the prebability of a proposition is the confidence of an individval iq the
truth of the propositicn. Mycin on the coatrary uses the corfirmarion definition of
probability: P is regarded as a unique relation between propositions £ and A
where P(£ - H) denotes the support of E for H.

The problem we are dealing with consists of drawing inferences and concly-

sions from uncertain or incomplete evidence.

An inference rule has the general format

£, and E,..andE -H
n
where £, is a piece of evidence and H stands for the hypothesis. This inference
rule can be abbreviated as
E-H
where the probability P of E is defined, in most expert systems, as
P(E) = min { P(£) }

following Zadeh.!% The probability of a disjunction is defined in a similar
manner, i.e. as a maximum. It is still unclear to us why most existing expert
systems adopted formulas from fuzzy set theory to caleulate the probabilities of
conjunctions and disjunctions of propositions.

Several pieces of evidence may lead to the same bypothesis, so, in general,

we are dealing with an inference net.

34

There are two kinds o uncertainty:
1. The swrengthof therule £ - H.
2. The uncertainty of a piece cf evidence E cr of a propesition X in general.
The distincticn between these two kinds of uncertainty is important because typi-
cally only the values asscciated with prepositions can be altersd as a result of the
inference.

The problem we are dealing with is the propagafion of uncertainty throvgh
the inference network. More specifically, the inference problem consists ¢f com-
puting tke posterior conditional p;cbabiliry P(H | E) afier the acquisitica of infor-

mation on evidence E.

4.3. Fundamentals of Probabilistic Reasoning in Prolog
Prolog provides a natural way for implementing a production system.
1. Facts are expressed as Prolog unit clauses.

2. Production rule$ can be directly expressed as, or transformed into nonunit

Horn clauses.

3. Prolog provides a built-in search mechanism, namely backtracking (depth-
“first). However, other search strategies, such as breath-first, may be imple-

mented without tco much effort.

One important component of a real-world rule-based expert system that is
not readily available in Prolog is some mechanism to deal with uncertainty. This
uncertainty appears both in facts and rules in every day applications. What is
needed is a way of associating probabilities with facts and rules and more impor-
tantly a general strategy for computing the uncertainty of a conclusion, given the
uncertainties of all the premises. In one of the first papers on this subject, Clark
and McCabe?6 suggest to add one extra argument to each predicate whose value

is the uncertainty of the solution returned in this predicate and to augment the

35

body of each non-unit clause with an additional geal, wheee purpose is to com-
pute the certainty of the clause, given the certainties of the solutions to the gcals

in the condition {-ody) of the clause.

So, instead of, for example

we would write
ai{X,¥,P) :- e1(x,Y,P1),e2(X,Y,P2),compute(?1,?2,?)

where compute would be the definition of the reascning strategy followed. 21
and P2 would be the uncertainty of e1 and e2 respectively. Thus, inexact rea-
soning is embedded in the knowledge base itself.

However, Ehud Saapiro®? suggests dealing with uncertainty in Prelog pro-
grams at the mera-level . This consists of augmenting the Prolog interpreter to
compute probabilities while doing infsrences. This technique, which is both
simpler and more powerful than what Clark and McCabe suggested, will be fol-
lowed in this chapter. Shapiro called his approach logic programs with uncertgin-

ties. The advantages of his method are:
1. Precise semantics can be given to logic programs with uncsrtainties. 93

2. Standard logic prcgrams are a special case of logic programs with uncertain-
ties. If all the certainty factors are equal to ope, then the given semantics
and interpreter for logic programs with uncertainties reduce to the standard
semantics and interpreter for logic programs.

3. It is easier to define debugging algorithms on top of logic programs with
uncertaintics, when defined in this way.

36

4.4, Interoreters for Logic Programs with Uncertainties

In this section we will give a brisf overview of Shapiro’s approach.?® A cer-
tainty factor is a real number, greater than zero and less thaa or equal to one. A
certainty function f is a functioa from multisets of certainty factors to certainty fac-
tors. A logic program with uncertaintes is a finite set of pairs <A :(— B, f >,
where A :—= B is a definite clause and f is a certainty function. A multiset is
essentially a Prolog list.

The certainty functicn is used to compute the certainty of the conclusion of 2
clause, given the multise: of certainties of solutions to goals in the conditicn of
the clause. A certainty function f has to fulfill the following constraints for every

multiset 5

1. /(S U {1}) = f(5) (adding a true proposition)

2. 5 C 51 implies f(5) = f(51) (f is monotone increasing)

Now, for every pair < A :— B, f > in a logic program with uncertainties P, the
number f({}) is called the certainty factor of A :— B in P.

An interpreter for logic programs with uncertainties may te written as a logic
program. An interpreter for Prolog programs without uncertainties is traditicnally

implemented as:

solve(true).
solve((A,B)) :- solve{A),sclve(B).
solve({A) :- clause({A,B),sclve(B).

An interpreter for logic programs with uncertainties is an exteasion to this inter-
preter. It assumes that the program P is represented as clauses clause(A,B,7)
for any clause A:-B with certainty function ¥ in P. Multisets may be represeated
-using Prolog lists where [1 is the empty list or set and [Xi¥] is the list with
head X and tail Y, which represents the multiset {X} U Y. Now, an interpreter

solve for a logic program P with uncertainties could be described as:

37

solve(true.{]).
solve((a,B),[X1Y]) :- solve(A,X),solve(B,Y).
solve{a,7(S})) :- clause(A,B,F),solve(B,s}.

The semantics of solve({a,C) is: “A is provable from P with certainty ¢.” Tha
interpreter, described above, returns in C an unevaluated expression with
occurrences of certainty function symbels in it. To compute the actual certainty
factor, one has to evaluate this expression. Most Prolog implementations do not
allow expressions of the form F(S) where F is a variable symbol. This would
add second-order logic constructs to Prolog. One way to get around this is to
define apply as follows:

% apply{foo,[X,¥Y]) == fool(X,Y¥)
% apply{foo(X),[Y¥]) == foolX,¥)

apply(Pred,Args) :- atom({Pred),

Goal =.. [Predlargs],!,
call(Gocal).

apply(Pred,Args) :- Pred =.., 0ldList,
append{0QldList,Args,NewList),
Goal =.. NewlList,!,
call{Goal).

With this definition, F(S) == Y becomes equivalent to apply(F,[S,v1} and

we may rewrite the basic interpreter as

solve{true,[]).
solve({A,B),[XI¥]) :- solve(A,X),solve(B,Y).
solve({A,V) :- clause(A,B,F),solve(B,3),apply(F,[s,V]).

where
clause{A,B,F) :- clause(A,B}),current_function(F).

The current-function looks up what the current certainty function is. This
feature is useful for comparing the effect of different strategies. This predicate is
the only side effect when we want to use the same basic interpreter for another

certainty function. Using a new strategy for inexact reasoning means defining a

38

new certainty fuaction.
Tke basic interpreter, described above, may te extended, for example, with a
certainty thresheld by putting additiornal constraints such as gt(S,C) in the body

of

solve(Aa,V}) :- clause(A,B,F),
solve(8,8),
thresheld(s),
gt({s,2),
apply(F,[(S,V]}).

where gt(S,C) means that S is greater then scme threshold €, which is
retrieved by the call threshold(S). This will prune low-certainty executica

paths. Certainty thresholds are for exampie used in Mycin.

When we compare Shapiro's proposal with the previously mentioned cem-

pute predicate suggested by Clark and McCabe, we note the following:
1. Both approaches also support sets of probabilities in addition to point values.

2. Applying another inference mechanism will involve recoding of compute

(for Clark and McCabe) or ¥ (of Shapiro).

However, in Shapiro’s approach, the certainty function is completely separate
from the knowledge base. In the first approach, the computations depend on the
inference rule itself, i.e. conjunction in the premise part. Introducing a disjunc-
tion rule cannot be easily modeled. The first approach handles conjuncts and pos-

sibly disjuncts at the object level where Shapiro deals with them at a meta-level.

It turns out that, if one would use the first approach to implement a subjec-
tive Bayesian approach,' that the Prolog definition of “‘or” would not correspond
to the logical “or”.

We conclude here that indeed Shapiro’s propesal provides a clear and clean
strategy for introducing uncertainty in Prolog programs. However, we will ques-

tion its practical use in the context of Prospector.

The major novelty, intrcduced in this chapter, is that we demonsrated how
uncertainty can te dealt with at the meta-level. In our opinion, this is one of the
mosi artractive features of Prclog. We have seen that one can describe a Prelog
interpreter in three lines of code. Adding additional power to this interpreter,
such as inexact reasoning, is equivalent to extending the interpreter with addi-
nioaal control features. Tais has the following advantages:

1. We use Prolog to implement Prolog with uncertainties.

2. The augmented interpreter has a clear and concise declarative notatica.

CIAFTERS
SUBJECTIYE BAYES STRATEGY (PROSPECTOR)

8.1, Intrcduction

In this secticn, we will give an overview cf the inexact reasoning stratezy
that is used in the Prospector system. This strategy was implemented in Prolog
and the code is included in appendix 1. Some of the material in this section is
based on Retoh'’s dissertation.®*

Prospector is an expert system that —2: developed to help geolegists in

exploring for hard-rock mineral deposits.®=

knowledge base, corresponding to a node in an inference metwork, which meas-
ures the degree to which the statement is Celieved to be true. The basis for the
reasoning precedure Prospector uses to propazate a probability from evidence E
to hypothesis H is an elementary theorem of probability theory called Bayes’ rule.

We assume for the moment that we are dealing with a general inference rule
H-E

The Bayesian method assumes that before any information has been entered into
the expert system during a consultation session, each statement § has some prior
prokability P(5). We note here that this may create some conceptual barriers.

A prior probability of a proposition is the probability of that propesition in
absence of any specific evidence in favor or disfavor of that proposition.

As evidence is acquired during the consultation process, a posterior probebil-
ity is computed. If £’ denotes all the evidence about E accumulated up to some
point in the consultation, then the posterior probability P(H | £’) denotes the
current probability of H given the evidence E’. The prior probabilities arz gen-

erally supplied by the domain expert at the time the model is constructed.

41

The formulas we used are described in Duda et al.*! and Reboh’s work.$
The basic formula is the odds likelihood form of Bayes' rule
O(H | E) = LS X O(H) (1)

where

O(H) = prior odds cn hypothesis H

O(H | E) = posterior cdds on bygothesis H

(given that evidence E is present)

LS = level of sufficiency

‘The odds O and probability P {or any situation are related by
P

0=
1-p

so that odds and probatilities are equivaleat. The level or measure cf suificisncy
LS is defined as
P(E | H)

P(E | not H)
Thus, Bayes’ rule (1) specifies that the observation of E changes the cdds on &
by the factor LS. The odds likelihcod formula is equivalent to the conditicnal
probability formula of Bayes’ theorem. Basically, it avoids ths joint probabilities.

Analogous formulas and remarks hold for the case in which the evidence £ is

observed to be definitely absent (not E), in which case Bayes’ rule has the form:
O(H | not E) = LN X O(H)

where LN is called the level of necessity and is defined by
P(not E | H)

P(not E | not H)

Numerical values for the likelihcod ratios, LS and LN, are also supplied by the

42

dogmain expert.

5.2. Uncertainty of Evidence

Bayes’ rule can only te used when there is absolute certainty about the tuth-
fulness or falseness of a piece of evidence. In actual practice, the user is often
unable to cbserve either the definite presence or absence cf the evidence. Typi-
cally, the user is prepared oaly to indicate a degree of confidence that the evi-
dence soucht is actually present. In this case, Prospector uses a formula that

effecrively interpolates between the two extreme cases of cerfect cerfainty.

Let E’ denote the observations that cause the user to suspect the presence of
evidence E. The posterior probability P(H |E') is thus somewhere between
P(H | not E) and P(H | E). In Duda et al.,! it is shown that under certain
assumptions, P(H |E’) is a linear function of P(E|E’), with
P(H|E')=P(H |not E) when P(E|E')=0 and P(H|E') = P(H|E) when
P(E|E) = 1. |

Because the probabmty values P(H | not E), P(H | E), P(H) and P(E) are all
obtained from the domain expert’s subjective estimates, they might be inconsistent
with the theoretically expected values. In particular, we must make certain tha
when nothing is know about E, i.e., when P(E | E') is equal to P(&), th= interpo-
lation function should leave H at its prior value, yielding the theoretically
expected value P(H | E') = P(H).

P(:I | E') is therefore chosen to be a piecewise linear function of P(E | E') so
that the desired values for P{H | E') are obtained at the three fixed peints
P(E|E') =0, P(E) and 1. The resulting function can analytically be expressed

as follows:

43

P(H) — P(H ! rot E)
P(H | not E) + X P(E|E")
P(E) lor 0= PE|E') < P(E)

(Hi{E) =
P(H) + X P(E|E') - P(E)
1 - P(E)

()

So, in a sense, the basic formula Prospector is using is net justfied by the tad

tional probability theory but has proven to be eliective practical methed for

treating uncertain ev:dence.S“

§.3. Multiple Evidence
In real-world applications, a single inference rule of the form
H-E
is inadequate. Two genefah'zations are needed,

First of all, there might be multiple evidence leading to the same hypothesis.
In general,

-

2

LA R

E,
~E
-E,

H~E

n
Prrospcctor assumes that all the E, are independems. In a simple backtracking pro-
duction system, like Prolog, in order to prove H, it is sufficient to prove one of
the E. However, in a S)stem with inexact reasoging the certainty of a hypothesis
A is updated by the probablhncs of each of its pieces of evidence. The general

formula Prospector uses is

0(13']E') = H Lj. O(H) (3)
j=1
where

OH | E)

O(H)
and is called the efective lirelihoed ratio for E‘,. So, the prebatility of a
bypothesis 7 with multiple pieces cf evidence £, will be updated by all of them.
A second generalization is the fact that the antecedent of an inference rule

may contain a logical combination of evidence, for example
H-E or(E,and E,)

Prospector uses simple formulas from fuzzy ser theory to compute the probabilities

of logical combinations of evidence.

fE=E andE,ond .. and E
then P(E | E’)=min P(E |E’) (4)
i
UE=E orE,or..orE
- n
then P(E | £')=max P(E | E") (5)
i
fE =not E
then P(E |E')=1- P(E, 1E") (6)
Almost all existing expert systems that have a fuzzy inference mechanism use
equations (4),(5) and (8) to compute the probability of the AND/OR ccmbinatica
of evidence. These equaticns are generzlizations of the classical truth manigula-

tion formulas of two-valued logic. It is still unclear to us why these formulas are

45

preferred over others. Clearly, they are easy to compute and are in mest cases a
reasonable approximation.

Equation (3) is a geperalization cf Bayes’ rule (1). Wheaever the probatility
of an antecedent for X changes, the correspording effsctive likelihood ratio
changes, and the probability of H is updated by reevaluating equation {3). If H is
itself the antecedent of other inference rules, or part of the antecedent of other
rules, the compuiations are repated to update the probatilities of these higher-
level hypotheses. Thus, by repeated use of the formulas (3,4,5,6), the effacts cf

acquiring new evidence are propagated throughout the infereacs network.

5.4. Conclusion

Each statement is either the logical combination of other statements in which
case we use the atove formulas (4,5,6) to compute its probability, or it right be
the consequent of cne or more inference rules in which case we use the multizle
evidence rule (3).

Initially, the domain expert who builds the expert system has to provide

1. for each node : the prior odds (or prior probability)

———--—2+— for-each-arc : the effective likelihood ratio
In the consultation phase, the user of the expert system provides his belief in 152
evidence, by specifying P(E, IE‘.’), after which a new effective likelihood rato
will be calculated for each rule H - £, which will produce updated posterior cdds
for the final hypothesis. If the user doesn’t know anything about a piece of evi-
dence, the prior odds can be used.

A major problem in Prospector is that the domain expert has to provide 2!l
the prior probabilities.

Bayesian statistics presents an attractive approach. It provides a practical

solution provided all information is available, in particular the prior probabilities

46

for each prepositicn. This is not always pessible for real-world applicatica.
Mcreover, people are usually peer at assigning probabilities oa a prepesition.

In a system like Mycin, thers is tco much imperfect knowledge so thar a
rigorous prcbabilistic analysis is not possible. Shortlifie et al. devised their owa

theory of uncsrtainty, which was discussed before.

5.5. Problems with Shapiro’s methed.
We encountered a few preblems when trying to use Saogiro’s imterorarer 3

for Prospector. His basic interpreter lecks like:

solve(true,[]).
solve((A,B),[Xi¥]) :- solve(A,X),solva(B,Y)
solve(A,F(S)) :- his_clause(A,B,F},sclve(B,S).

We recall that 7 is called a certainty function, is monotone increasing and mars a
list into some numeric value in (0,1]. In his paper, Ehud Shapiro dafines clear
semantics for lcgic programs with uncerteinties. The question we asked cursalvas
~ was, how useful is it for existing expert systems?

One feature Prospector and Mycin have in common is that all evidance for a
particular hypothesis is collected tefore any conclusion is made. In Prespector, for

example, we saw _that there are two ways of combining evidencs:

1. logical combinations

2. multiple pieces of evidence

If a hypothesis has multiple pieces of evidence, each will influence the probability
of the hypothesis independently of the other. Note that Prolog needs only one
piece of evidence. On the other hand, the antecedent of an inference rule may
also be a logical combination of evidences using the logical operators AND,CR
and NOT. We note that Prospector makes a distinction tatween

47

H-E (1) ‘
H-E,
and

H~-E orE,(2)

where Prolog dces rot.
In fact, pure Homn clause logic, ca which Proleg is based, hes no iczical CR.

In this theory, multiple clauses with tae same cocnsequent are used 1o danciz CR.
Prelog is one particular approach o Horn clauses. Oze could do a breadsh-first
search instead of a depth-first and still be logically consisteat withing the frame-

work of Horn clauses.

In a Prolog clause
H-E E, (2)

. where “;" is the Proleg “or”, the second argument E, gets evaluated ccly when
the first one faiis. In the multiple evidence situation howcvcf, all arguments of
the premise part have to be evaluated. We would have to change the definition cf
“;” in Prolog to achieve this effect. This is cne cf the reascns why we decided
that the most natural way to implement Prospector in Proloz was to take ths
meta-level approach. We also note that Mycin has no “or’”. ’f‘zerefore, Mycia
could be implemented on the object-level, i.e. in standard Proleg without having

to rewrite the interpreter.

The reason a distinction is made between (1) and (2) in the case of Prospec-
tor is that (1) assumes conditional independence where (2) covers the cases where
this assumption cannot hold because of interaction between the different pieces of
evidence. We mean by this that, for example, the presence c¢f one particular kind

of ore deposit has its effect on the probability of the presence of another kind.

Thus, a problem cccurs when tryicg to apply Shapiro's methed to Prospecter.,

48

The question is bow to deal with multiple evidence. Cur sclution was to change

his interpreter into the following:

% we assume that all pricr probabilities whera defined
% by the dcnain expert who sets up the expert systenm
% the problem is to compute posterior probabilities

solve((A,true),V) :- solve(A,V}.
solve((A,B),V) :- solve({A,V1),s0lve(B,V2),nin(Vi,V2,V).
solve((A;B),V) :~- solve(A,V1),solve(B,V2),max(V1,V2,V;.

% use of setof to handle multiple evidence

golval(a,V) :- rule_nhead(A),setof((3,clause(A,3),Bcdies),
gsolve_list(Redies,List),computa(A,List, V).

solve({A,V) :- fact(A), % ask ths user for his estimatz cr uss:
prior probability if he doesn’t xzmow

solve_list([1)

1,

1,01).
solve_list({H!T1,[VHIVT]) :- solve(H,VH),solve(T,VT).

In the above program,

compute(Head,List,Value)

correspords to formula (3).

This means that we are no longer within the semantically clean framework of

logic programs with uncertainties as defined in Shapiro’s paper. It is inpossible to

devise one certainty function that is monotone increasing, and that captures all of

Prospector’s inference rules. This is due to the fact that this approach <annot-

deal with multiple evidence.

The major novelty brought by Shapiro’s paper is that he shows that uncer-

tainty can be dealt with at the meta-level, i.c. by extending the basic Prolcg inter-

preter. However his method rests on fundamental assumptions that might con-

strain its applicability:

1.

The certainty function has to fulfill some constraints, c.g. be monotone
increasing. The question is whether inexact reasoning can be captured in

such a certainty function. Shapiro doesn’t make a point of it:

“Each school of expert systems is using its own particular way of

49

computing certainties, with no ncticeable difference in the validity of

their results. So we take our pick ..."%3

Another problem arises from assuming that an £xpert system may be
modeled as a Horn-clause production system. Such a system must be medi-
fied to deal with multiple evidence. The interpreter in his paper? is based
cn the logic of Horn clauses: in order to prove a goal, you need to prove it
only once. In real-world expert systems however, especially when dealing
with uncertainties, all evideace has to be takes into aceount to concluds a
hypothesis.

If Horn clauses would be suitably generalized, these prevlems could obvi-

ously be removed. However, redesigning Prolog was beyond the scope of this

thesis. By using a meta-level approach, we obtained basically the same effect.

5.6. Prolog Implementation of Prospector

In this section, we will describe the main parts of a Prolog implementation of

Prospector’s reasoning strategy. The complete program and a trace of its execu-

tion are included in appendices one and two.

the consultation phase. We used the following stratezy

1.

Our implementation is fairly complete. We implemented the defnition and
The prior probabilities of all propositions and inference rules in the given

knowledge base are supplied by the domain expert and stcred permanently.

The posterior probabilities of the pieces of evidence are supplied by the user

and are stored tcmporarﬂ)f.

All other posterior probabilities are computed by the inference system and
are NOT stored at all.

The definition phase is the phase in which the knowledge engineer, in colla-

boraticn with the domain expert, defines the expert system.

30

The Definition phese
The program will ask the domain expert all necsssary informaticn needzd.
This consists of the following prior probabilities:
a. ForeachruleH :— E:
1. P(HIE) which is stored in the program as pzior_phe(H,E,PHI);
2. P(H| not E) which is stored as prior_phne(#,E,PHNE);
b. For each rule head (avpothesis):
P(H), i.e. the uncertainty cf the hypethesis H is represeated in the pre.
gram as prior_prob(H,?);
c. For each piece of evidence E, i.c. non-rule head in knowledge base:
P(E), i.e. the initial probability stored as prior _prob(E,?);

The top level centrol of the definition phase lcoks like

ask_prospector_expert -
print_expert,
clear_info, % remove all old information
ask_rules.

In this phase, the program collects all inference rules that constitute the

knowledge base and asks for all necessary prior probabilities.

ask_rules :-
setof0(R,rule(R),Rules),
ask_info_rules{Rules).

51

ask_info_rules([]}.
asic_info_rules{[(X :- ¥v)!T]) :-
nl,

print_info,

write(’ What is the
write(X),

write(’ ? ’),
readnumber(?rob),

Prior probability of),

assertz(prior_prob(x,Prob)),

nl,

write(’ What is the
write{(X),wzite(’ if
write(Y),write(’ ig
write{’ ?),
readnurber (PH3),

Prior prcbadility of "),
you know that ‘),
true’),

assert(prior_phe(X,7,Py=)), % P(E1zZ)

nl,

write(’ What is the
write(X),write(’ if
write(Y),write(’ is
write(’ ? /),
readnumber({PHNE),
assert(prior_phne(x,
ask_info_rules(T).

In our implementation, fact refers to evidence.

ask_facts :-
setofO(R,fact(R),Facts),
ask_info_facts(Facts).

ask_info_facts([]).
ask_info_facts{[X!T]) :-
. o
print_info,
write(’ What is tha
write(X) [
write(’ ?),
readnumber(Prob),

Priorx prodability of ‘),
you know that ‘),
falsgse’},

Y,PHNZ)), % P(H!-3)

1)

prior prokability of),

assertz(prior_prob(x,Prob)),

ask_info_facts(T).

The Consultation Phase

Here, the program will be asking for posterior probabilities of the evidencs.

This means asking the user for his opinion about the varicus pieces of evidencs,
We let him provide P(E'|E). Thisis a posterior probability. A fact, also callad

52

a piece of evidence, is any statemest {propesition) in the koowledge bose, wiic
is not a hypothesis for an inference rule.

The top level of the consulation phase lcoks like

ask_prospector_ussr -
print_user,
setof0{R,fact(R},Facts),
ask_user_info_facts({Facts).

ask_user_info_facts([]).
ask_user_info_facts({[XIT]) :-
ni,
print_info,
prior_vrob(i,P},
write{’ The domain exgyart providad a zrobability cf '),
write(P),write’’ for ’‘},write{X),nl,
write(’ If you agree with this value’),
write(’ or you have no idea at all, then press CR ‘),nl,
write(’ otherwise enter your estimate ‘),
- readnumber (Prob),
replace{Prob,post _prob(X,P)),
ask_user_info_facts{T).

The following routice replaces old postericr probabilities of the pieces of evi-
dence. “When the user cannot supply any new evidence, then we use the pricr
probability, supplied by the domain expert in the definition phase.

replace{Prob,post_prob{X,P)} :-
name(Prob,[1),
prior_prob(X,P),
retract_check{peost_prob(X,_)),
assertz(post_prob{X,P)).

replace(Prob,post_prob(X,?)) :-

retract_check(post_proh({X,P)),
assertz(post_prob(X,Preob)).

The Prospector Subjective Updating Strategy

The routine compute forms the kernel of our implementation. As explained
previously, it is basically an extension of the Prolog interpreter, written in Prolog.
We called this the meta-level approach. compute takes as first argument a con-

ju.nétion or disjunction of propositions and computes in its second argumexnt the

53

posterior prebability cof the first. compute calls itself recursively.

A first case, to be considered, is an argument being the head of a rule, iz, a
conclusion or hypothesis with possible multiple evidence. Here cozpute will
compute the posterior probability given the user's belief in the various pieces of

evidence.

compute(Goal,Pron) :- rule_head(Geal),
setofO(Bcdy,clause(Gcal,Body),Ecdies),
compute,likelihocd(Gcal,Bcdies,L),
prior_prob(Geal,?ricr),
calculate_odds(?::ior,PriorOdds) s
PostOdds is L » Priorcdis,
calculate_prcb(PostOdds,Prob).

In case of a conjunctions or disjunctions of predicates, we use the basic fuzzy set

formula.

compute({(A,B),Prob) :- compute{A,P1), -
compute(8,P2),
nin([P1,P2],Prob).

cecmpute((A;B),Prob) - cormpute(A,P1),

compute(B,P2),
max({P1,P2],Pxob).

A negation of a proposition is treated using:

compute (not{A),Prob) :- compute(A,P1),
Prob is 1 - p1,

In case of a fact, we have to look up the user supplied estimate of the Foste-

rior probability
compute(A,Prob) :- evidence(Aa) ypost_prob{A,Prob).,

We note that the meta-level definitica compute corresponds to the forward pro-
pagation of uncertainty under a backward reasoning strategy. The most impor-

tant routines, used by compute, are:
1. to compute the odds corresponding to a given probability:
calculate_odds(¥rob,0dds)

2. to compute the probability corresponding to a'given cdds:

54

calculate_prrob{Cdds,Prch)

3. to compute the posterior probability cf a hypotbesis using Prosgecter’s
piecewise linear function:
compute_li(H,E,PostPHI)

4. to compute the effective likelihood ratio of HE’ in the case of multiple

evidence:
compute_likelinrood(G,{H!T],L)

The implementation of these routines is descrited in appendiz 1.

A final note about our implementation of Prospector’s reascaing siTatzzy is
that we used a special consult routine for loading a knowledze base. We wanted
to store the database referemces of the Prolog clauses that constitute the
knowledge base, for efﬂciency réasons. This enabled us to makxe a distinction
between knowledge base and program. As compute is an interpreter for logic
programs with uncertainties, we waated it only to consider clauses that had a gro-

“bability asscciated with them.

Our consult looks like:

consult2{File) :-
seeing(Input),
gsee(File),
clear_knowledge_khase,
repeat,
read(Term),
process(Tern),
seen,
see(Input),l.

process(Term) :- Term = end_of_file,l!.

process(?-G) :- !,call(G),!,fail.

process(Clause) :-
agsertz{Clause,R),
assertz(ref(R)), ¥ store the database reference
fail.

By storing the database reference, we are able to make the distinction between

program and data. We can also distinguish berween facts and rules in the

55

following manner:

fact{(?) :- ref(R},clause(7,true,R).
fact(F) :- rule_bedy(B) yand_member(F,B) snot(rule _head(r)).

rule{{ X := ¥)) :- ref(R),clause(:z,Y,R),Y == trus,

The Execution of the Pregram
We ran our implemeatation’ on a Prospector inferencs pet exampls taken

from Gaschnig.*? We refer to appeadices one and two for mers datails,

Coaclusica

The meta-level approach provides a clean implementation: deductive reason-
ing is implemented using Prelog’s basic deductive inferencs strategy and posterior
probabilities are computed along the way. Throughout this worX, we demonstrate
that highly praised expert systems as Mycin and Prospector can te easily imple-
mented in Prolog in a more natural and concise manner than the original LISP-

based programs.

56

CHAPTZR &
BELIEF STRATEGY (MYCIN)

In this chapter, we will give a brief outline cf the internals cf ths Mycin sys-
tem, 94 and comment on its Prolog implementation. We refzr to chapter three for

the theoretical issues of Mycin’s medel of belief propagatica.®

6.1. Intrcduction

During the early mestings cf the Mycin group, patient case histories wers
analyzed and an attempt was made to identify the criteria used by the mccﬁca.l
experts in determining a therapy. It was decided that a computer program could
be written using rules which encapsulate both the medical expert’s knowledge and
their decision process.® The aim of the program was to aid the doctor in dater-
mining a therapy for certain cases of bacterial infections cf the blcod. The pro-

gram would be able to:
1. decide if a patient has a significant infection;
2. determine the likely identity of the organism that causes the infection;
3. decide on an effective treatment,
4. choose the most appropriate drug, given the patient’s clinical condition.

In order to encourage doctors to accept and use the Mycin system, thres further

objectives were that the system should be
1. both useful and competent;

2. able to contain a large body of knowledge which is subject to frequent
change;
3. able to communicate easily with its user and, in particular, te able to

explain its decisions and decision making precesses.®?

The system consists, as most expert systems, of the fellowing medules:
¥ o J =)

57

1. A Coazsultzden Module;

2. A Definiticn Mcdule.
The consultation module handles the interacdoa with a user cf the Mycin system.
The definition moduie is to be used by the knowledge engineer, in ccoperation
with the medical expert, to add new medical knowledgs to the knowledge base.
Each of these modules uses two sub-modules

a. Explapaticn Program;

b. Question/Azswering Program.
The explanaticn facility, ome of the most important compenszis of the systen,
serves toth as a debugging facility for the knowledge engineer and as a help for

the user.
There are also two conceptually differeat databases:
a. Patient Database (case dependent knowledge);
b. Knowledge Base (Mycin's rules)
The patient database is defined during consultations by the user; the knowledge

base embtodies the knowledge engineer’s expertise, i.e medical knowledge on bac-

terial diseases.
6.2. The Consulation Subsystem

f.2.1. Data Structures

The most important part of the knowledge structure in Mycin is the set of
some 450 rules which make up the knowledge base. Each rule contairs both an
action part and a premise. The action part contains a numeric quantity, called a
certainty factor, which is a measure of the expert’s confidence in the validity of the
rule. This measure plays an important role in the inexact reasoming process,

which will ba descrited further.

58

When Mvycin makes decisions, it takes a cumber of factors into considara-
tion: the pacient’s :linical conditien, his infections, the cultures taken from the
patient, organisms which have been isolated from the cultures, and drugs which
have been administerzd prior to the consultation. Each cf these factors is called a
context. Each time a new context is created, it is given a unique name ac

included in a cuntext tree. In general, a context tree looks like

patient-1
infecticn-1
culture-1
crganism-~1

The context tree structures the clinical problem and helps to infer relationships

between coatexts during the consultation.

Although the Mycin rules are responsible for the creaticn of context types in
the cootext tree, the rules themselves are not linked at all in a decision tree cr
. reasoning network. Each rule is modular and usually deals with ons of the cca-

text types. The premise of a rule is, in general, of the form

-

{ <predicate function> <obj> <attribute> <value>)

For example, the English-like rule

zule (0Q9
if 1. the stain of the organism is gramneg and
2. the morphology of the organism is coccus
then there is strongly suggestive evidence (0.8)
that the genus of the organism is neisseria

is represented in Mycin as
premige : (and (same cntxt gram gramneg)
(same cntxt morph coccus))
action : (conclude cntxt genus neisseria tally 0.8)
It is the purpose of (same cntxt gram gramneg) to cause the collectio:
of all evidence tearing ca the gramstain of the organism in question and then to

find the certainty factor of the hypothesis, if any, which supports the possibility

59

1

that the gramstain is nagative. If toth clauses of the premise are valid, i.e. their
certainty factors are greater toan 0.2, then the deduction genus is neissezia
is made with asscciated certainty factor tally times 0.8, where tally is the
smaller of the two clause certainty factors. Tke thresheld of 0.2 for certainty fac-

tors was determined by the Mycin designers.

6.2.2. Inexzct Reasoning

Pecause c¢f the uncertainty of medical diagnesis, aa atmibute or elizical
parameter in Mycin always hes a certainty factor (CF) which indicctes a bellef
that the value of the atiribute is the correct one.57 Tke certainty factcr may be
deduced from the knowledge base or it may be supplied by the user in respense to
a question which demands from the user a value for the attribute. A certainty
factor is stored as a real number in the interval [-1,1], where positive values indi-
cate evidence in support of the value and negative valuss suggest that the
hypothesis is false. In practice, the user may provide an integer value in sexe
.predefined range which is then converted into [-1,1].1

In Mycin, values of attributes and their associated certainty factors are stored

as 4-tuples. For example,

—tgites cultuze=1-blcod-1.0 ") -
{ ident organism-1 klebsiella 0.34)

We note that more than one hypothesis may be stored as evidsace for the velue
of an attribute. In fact, the hypotheses for a particular atiribute are stered

together. A typical set of hypotheses would be stored as

‘val{organism-1,indent] = ((streptococcus 0.8)
(staphyloccus 0.4)
(dippneuminiae =-0.7))

Predicate functions like same are used in the Mycin rules in almost ail cases with
respect to the set val[C,P]. This is the set of hypotheses which are relevant to
the value of the clinical parameter P of the context type c.!

o .
[N

We will illustrate the use of val by explaining the use ¢f the funcden

©“
w

in rule 009, described earlier. Let us suppose that the eviderce accumulatad for

organism1 is

vallerganismi,gram]
vallorganismi,morph]

[gramneg 1.0))
(zed 0.7) { coccus 0.3 })

{
{
Now, same returns the CF value supporting the hypothesis it is aprlied to, or

NIL if no such evidence exists or the CF is 0.2 or less. Taerefore,
{ same organismi gram gramneg)
returns the value 1.0 and
{ same organismi1 morph coccus)

returns 0.3.

To complete the evaluation of the example rule, we must explain “anz.
and differs from the usual Bcolean ccnjunction in that it returas the value =xu=
only if each clause in the conjunction has a non-NIL CF of at least 0.2, a thras-
hold determined by the medical expert. In the current example, the .premise is
evaluated as true, since the conjuncts have CF's 1.0 and 0.3 respectively, and
the action statement would have been activated. In other words, the hypothesis
(neisseria 0.24) would be added to vallorganism1,genus].

A more formal definiticn for sare is

(same ¢ p 1st) = cfmi if cfmi » 0.2
= nil cthexrwise

where

cfmi = max { ef ! (v,ef) in val{C,P) and v in 1lst }

We note that Mycin, unlike Prospector, has no logical “or.” This mads a

meta-level approach unnecessary.

61

6.3. Exglanations

The explanaticn capability of Mycin is one of the mest important features for
the medical user. It 2llows the user to obtain a much clearer picture of the rea-
soning prccesses involved in particular deducdons or in the overall consultation.
The three parts of the explanation facility provide the following features:

1. Displaying on demand, during the consulation, the rule which is

currently being invoked.

tJ

The asscciaticn, after the censultation, of specific rules with specilic
events and the explanaticn why each of them cccurrad.

3. Searching the knowledge base for a specific type of rule.
6.4. Prclcg Implementation of Mycin

6.4.1. Introduction

In this section, we will give.a detailed description of the Prolog implementa-
tion of Mycin. The complete program and a trace of its execution are included ia

appendices three and four at the end of this thesis.

Our design is similar to a program written in Waterloo Frolog by Peter Ham-
mond of Imperial College, London in 1980.°1 e used som= parts of his program
by converting them to C-Prolog. However, we extended tic original design iz

various ways.
These extensions include :
1. Better /O interface, and error recovery;
2. Modification of the explanation facility to make it more general;

Modification of the “dataclass” datatype to make the whole prezram

(¥}

more indeperdent of its application area, i.e. a first step toward EMy-

cin;

62

4. More meaningful names for precdicates and varizbles;
5. Documentation of the program.

The data structures included in the Prolog version of Mycin are: a2 knowladge

)

Lol d

base in the form of rules; a context tree to store background data and importan
facts obtained during the conmsulation phase; and finally, a sesparate reccrd cf the

possible identities of each suspected organism.
The context tree is defined by a datatype that reflects the hisrarchical struc-
ture:
dataclass(class-nunter,class-name,class-cdetails)
A record of possible identities of each organism is kept by
| know(<organism»,<identity>,<certainty-factor>)

Finally, the predicate rule embodies the actual knowledge base.

6.4.2. The consultation system

The top level is initiated by étart_session defined below.

start_session :- therapy_required,consulation.
start_session :- close_down.

The call therapy_required will ask the user if he has obtained positive cul-
tures, so that the system will know if the consultaticn sessica should contiaue or

not.

therapy_required :-
print_header,
get_answer(0,initiator,Answer),!,
Answer = yes.

The call get_data(0,PatientData) starts the consultation phase.

63

cecnsulaticn :-
get_data(0,PatientData),
nl,
write(’ The patient data cbtained are:’),
nl,
write_out(PatientCata),

The predicate get_data will ask for patient data in order to build a context Tes.

get_data(Class1,[Class Dataltem:CtherClassilatal) :-
lt(Class1,4),
gen_new(Classt,Intity),
get_details(Class1,Entity,Desc:),
sum(Class1,1,Class2),
get_data(Class2,ClassZData),
ClassibataItem =., fEntity,Descr,c1a592Data],
check_for_more(Class1,otherclass1Data).

The end of the recursion in the data gathering process is reacked by the call

get_data(4,Hypothesis) :-
current(3,Entity),
get_hypcthesis(Entity,genus,Hypothesis).
% use the given knowledge base

The call gen_niew will generate a new entity of the required class and also cause

the printing of a headline announcing the new entity.

gen_rew(Class,Entity) :-
gen_no({Class,NewNo),
dataclass(Class,ClassName,Details),
concat({ClassName,NewNo,Entity),
genheader (Entity)s

gen_no generates a unique number for each new entity.

gen_ro{Class,Newla)} -
retract{numder(Class,0ldNo}),
sum(1,01dNc,NewNo),
assert(nunber(Class,NewNc)).

genheader(Entity) :-
write(’ ’}),write(Zntity),
nl.

Tae prccedure get_details asks the user to supply izformaticn of a back-
ground pature for a particular eatity and can olso cause a message to be printed |
announcing the name of the first entity in the cext class in the hierarchy.
get_details{Class,Entity,Descr) :-
dataclass({Class,Name,Details},

get_list(Class,Details,lescr),
generate_messages(Class,Entity).

We note again that the datatype dataclass embodies the hisrarchical strucmurs

of the context tree.

_ get_list(Class,(],[]1). _
get_list(Class,{ItemiOtherItens],[AnsweriOtherAnswer]) :-
get_answer(Class,Item,Answer},
get_list{Class,OtherItems,CtherAnswer).

The predicate current returns the current entity of a particular class

current(Class,Entity) :-~
number(Class,No),
dataclass(Class,ClagsName,Details),
concat(ClassName,No,Entity).

number stores the number of a current entity for a particular class. Tuis

declaration serves as initial data for the gen_no predicate described earlier.

65

nurker (0,0} .
numbkexr(1,0}).
number(2,3).
numnber({3,9}.

number {quasticn,d).
number{rule,Q}.

The predicate get_arnswer will ask the user for data and read the value of an

item of background cata. Each question is preceded by a new guestion cumber.

get_answer(Class, Item,angvwer) -
gen_ro{questicn,Q),
writeno{Class,Q},
question(Item),
readstx{Answer),nl.

check_for_more is a procedure to ask the user if there is another entity of a

particular class to be considered.

check_for_more(Class,OtherData) :-
dataclass(Class,ClassName,Details),
write(’ I3 there another ‘),
write(ClassName),write(’ ? ’},nl,
write(’ CR means no to me ’),write(’? '},
readstr({Answer2),
{Answer2 = unknown -> Answer = nojAnswer = Answerl),
nl,
consider (Answer,Class,OtherData}. ——

consider(no,Class,[]).
consider(yes,Class,CtherData) :-
get_data(Class,OtherData).

The call get_data, in the previous preccedure will continue the consultation pro-

cess at any level in the context tree.

The rest of the predicates in this section deal explicitly with the predefined
knowledge base. The predicate same is used in the rules that are described at the
end of this section. Confidence factors are entered or defined ca a scale of [-

1000, + 16601

same will cause evidence to be gathered which tears on a particular valus cf
a clinical parameter and succeeds if the confidence facter (CF) supporting this
value is greater than 2C0, a thresheld determined by the medical expert.

same (Entity,Attribute,RequiredvValues,MaxCF)} :-
get{EZntity,Attribute,Requiredvalues, MaxCr),l!,
gt (MaxC¥,200}.

Mote the use cf ;‘cut" in the above definition as we do nct want the prcesss cf
evidarce collection to te repeated if the CF of the result is less that 200. saze
{s dzi~-1in terms of get, a funciico that will compute the CF of the hypotaesis,
supporiod by Entity and Attribute.

The predicate get will collect the hypotheses relevant to determining the
value of a clinical parameter and find the largest of the confidence factors sup-

periing ke pessible values.

o=

czt{EZntity,Attridbute,ReguiredvValues,MaxCF) :-
get_hypothesis(Entity,Attribute,Hypotheses),
intersect{Hypotheses,Requiredvalues,Intersection),
max_hypothesis(Intersection,MaxCF).

get_hypothesis is the most important procedure in this implementation of
Mycia in Prolog. We have three possible methods of determining an attribute

value:

1. First, we can test if it is already known in the current context

get_hypothesis{Entity,Attribute, [Hypothesis]) :-
know(Entity,Attribute, [Hypothesisl]).

2. Next, we can try to deduce it from the knowledge base

get_hypothesis(Entity,Attribute,[Hypothesis]) :-
deduce(Entity,Attribute, [Hypothesis]).

67

3. Finally, we may ask the user to supply it. We note that the user always has
the option o enter “unkaown.”

get_hypothesis(Entity,Attributs, [Hypothesis]) :-
ask_for(Entity,Attribute,[Hypothesis]).

We sheuld also note that the real Mycin makes use of meta-rules in its definition
of get_hypothesis. We did not include this powerful feature in our implexen-
taticn, due to the small size of the inowledge base.
The predicate decduce collects all the evidence Sor the value of a farameser
, merges evidence for the same value into one hypothesis and stores the informa-
tion obtained in the context tree. By calling rule-check in a setof, deduce
will inspect the whole knowledge base.
deduce(Entity,Attritute,Hypotheses) :-
setof{v(Vvalue,CTF)},
rule_check(Entity,Attribute,vValue,CF) sHypothesis1),

merge (Hypothesis1,Hypotheses),
assert(know({Entity,Attribute,Hypotheses)).

rule_check investigates a rule for applicability and calculates the CF.of the

deduction when the rule succeeds.

rule_check{Entity,Attribute,vValue 2 CF) =
is_rule(RuleNo),
asserta(cuxrentrule(RuleNo)), % for explanaticas
rule(RuleNo,Entity,Attribu’te,Value,c,Tally) ’
product(C,Tally,CF).

The above call Tule(RuleNo,Entity,Attribute,Value,C,Tally) wil
backtrack until an applicable rule is found.

We mentioned that the real Mycin system uses meta-rules to guide its search.
These meta-rules are used to prune down the list of rules first fetched when

evaluating a parameter. Using the meta-rules, different search strategies can be

68

implementaed. Given the small sample knowledge base, we chcose ret to imple-
ment this feature. It could however easily be done using the meta-level approach,

as we showed in the previous chapter on Prespector.

The procedure merge causes evidence for the same value of an attribute to

te combined together to form a single hypothesis.

mexrge({1,0]).

merge((v{unxncwn, 1650)1,(1).

merge({HiRest],[H1IR1]) :-
compara_lists(d,RPest,H1,81),
merge{S1,R1).

compare_lists(R,[1,R,{1).

compare_lists(v(value,CF1),[v(Value,CF2)iU],R,W) :-
new_cf(CF1,CF2,CF3),
compare_lists{v{Value,CF3},U,R,W)}.

compare_lists{(v({value1,CF1)}, _
[v(Value2,Cc¥F2)iUl,R,[v(Value2,CF2) W]} :~
eq{Valuel,Valuel)},
compare_lists(v{value1t,CFP1),U,R,W).

new_cf(CF1,CF2,CF3) :-
dif£(1000,CF1,CF4),
product(CF4,CF2,CFS),
sum(CF5,CF1,CF3).

intersect([v(value,C¥) H],(Value!Rest],[v(Value,CF) H1]) :~
intersect(H,Rest,H1).
intersect{[v(vValue,CF)!H],[MIRest],H1) :-
ne(value,M),
intergsect(H#,[M],X),
intersect([v(value,C?)IK],Rest,Y},
union(X,¥,H1)}.

~intersect([],Anything,(]).
intersect({Anything,[1,(])

union([1,Y,¥).
union(X,[(1,X).
union([R],¥,[RI¥]).
The predicate max_hypothesis computes the maximum of the confidence fac-

tors.

69

max “y—c*h::‘qu »37.

max_hypothaaisl] V(V C)id],MaxCF) :-
max_hyyothesis(H,C1),
larg=:stiC1,C,MaxCF).

largest(C¥1,C72,CF1) -
gt(CF1,CF2).

largest(CF1,CF2,CF2) :-
gt(CF2,CF1).

ask_for causes the user to be asked for the value cf 2 clinical parameter. Tu:

answer in read and a chack is made to see if the answer is lazat
=

ask_for(Entity,Attribute, [v{Actuealvalue,CF)]) :-
question{Entity,Attribute),
parameter{Attribute,ExpectedValues),
nl,
writeln(’ Please enter one of the following values: ’},
write{(’ ’),
write_list{Expectedvalues),
write(’ Default, CR, is the wvalue unlcicwa ‘),nl,
read_answer (Answer1,CF1},
check_for_query(Answer1,CF1,A,C),
check_answer (Attribute,A,C, ActualValue cT),
assert(know(Ent;ty Attribute,[v(Actualvalue,CF)]l)).

check_answer(Attribute,A1,C1,A1,C1) .-
parameter(Attrlbute EzpectedValues),
member{Al,ExpectedValues).

check_answer (Attribute,Al,C1,4,C) -
parameter(Attrzbute,ExpectedValues),
write(’ Sorry, but we will have to do this part on the ',
write{Attribute),
write(’ over again’),nl,
write{’ You will have to reenter the value and CF ’),nl,
writeln(’ Please enter one of the following values: *),
write(’ ’),
write_list(ExpectedvValues),
read_answer(Aa2,C2),
check_answer{Attribute,A2,C2,A,C).

70

nestion(Intity, Attribute) -
write{’ Enter the '},
write(Attribute),
write(’ of ’),
write(Entity).

read_answer is used to read to user’s reply to a request for the value of a clini-
cal parameter. Toe value and its certainty factor are both read (the default CF is
1CCO).
read_answer(Answer,CF) :~-
readstr(Answer),nl,
write{‘Enter CF on scale [-1000,+1000], default 1000 (CR)’)

nl,readstr(Something),
(Something = unknown -> CF = 1000 ; CF = Something).

6.4.3. The Explanation System

The Mycin queries why and rule are easily implementable in Waterioo
Prolog which has an *ancestor” system predicate. This predicate can be used to
examine fhc ancestors of the literals which invoked the predicate. When *‘ances-
tor” is used with ope argument, its argument is unified with the most récazt
ancestor for which this is possible. If the predicate succeeds and subsequexntly
backtracking returns to this point in the preof, then the argument is unified wita
the next most recent ancestor, and so forth. This latter feature is most useful in
the repeated use of why. As CProlog does not have this ancestor predicate, we
used a global stack mechanism, implemented by currentrule, to implement the

same capability.

The procedure check_for_query is called after the user is asked to give a
parameter value. If either why or rule is input then the explanaticn sys-

tem is used.

71

check_£for_guery({Answer,CrF,A,C) :-
membes {Answer, [why,rule]),
answer _gquecy(Answer),
get_nearest{Rule},
report{Answer,Rule),
check_again_for_quary(A,C).

check_for_query(Answer,C?,A,C) :-
A = Answer , C = CF., % 1.e. no special action is takan

answer_query{why) -
Wwrite(’ We are asking this to determina tha gerus '),
nl.

answar_query{rule} :-
writeln(’ Current rule is *).

check_again_for_query{A,C) :-
read_answer(A1,C1},!,
test{A1,C1,A,CQ).

test(why,1000,A,C) :- fail.
test(A,C,A,C) :~ eq(why,A).

get_nearest(rule(RuleNo,E,A,R,C,T)):-
currentrule(RuleNo),
rule(RuleNo,E,A,R,C,T).

report(why,Rule) :- explain(Rule).

report(rule,Rule) :- clause(Rule,Body),
translate({Rule:-Body)).

explain prints the known parameters in a rule, those stll to be determined and
the deduction which should result.

72

axpnlain(Head) :- clause(Hesad,Bedy},
divide(Bedy,Xnowprens,Unicicwnprans),
write_known(Xnowprems),
translate{(Head :- Unknownprens)).

The next predicate investigates what evidence is known alrzady, and what is still

to be determined to ¢come to a certain conclusion.

divida((A,B),{A,Qthexrinown), Uniciewn) -
iewn(A),
divide{3,Cthezknovm,Uniciown}.

divida({A,3),[{1,(A,B)) :-
krown(A).

divide(A,[1,4) 1= l,knewn(A).

write_known{([1)}.

write_known((A,3)) - .
writeln(’ It is lmow that :’),
write_premise((A,3)),
writeln(’ therefore ’).

write_premise([]).

write_premise((A,B)) :=-
translate_predicate(A),
write_premise(B).

write_premise(A) :- translate_predicate(a).

The translate gives a simple English translation of a ntle.

translate({Head !- Body)) :-
Bedy = (!,min{(_,_)}),
writeln(’ we conclude : ‘),
translate_predicate(Head).

translate({Head :- Body)) :-
writeln(’ if : ’),
write_premise({Body),
writeln{’ then 1 "},
translate_predicate{Head).

73

bvomiiara rcdicatall), % no nzed to translate this

—rXraTiilald

tran+lane_predicate(min(M,N)). ¥ no nezed to translats this
translar :_ovedicate({same(E,A,R,C)) :-
current(3,Entity)},
writE(' the ’)o
writelA),wzite(’ of '),
write(Entity),
write{’ is '),
write_value(R},
nl.
translate_predicats(rule(N,E,a,V,C,T)) :-
current(3,Zntity},
write(’ There is’),
give_evidencs
write(’ evidz-
nl,
writel(’ 7},
write(A),
write{’ of ’
write(Entit:r)
write{’ is)
writeln(V),
rule_no(N},
nl.

O -
-

¥now will determine if a piece of evidence is known already.

kniown(same{E,A,R,C)) :-
now(E,A,Hypothesis),
intersect(Hyrothesis,R,I),
max_hypothesis(I,MaxCF),
gt(MaxCF,200).

known(!l).

6.4.4. Data Structures

The dataclass predicate enables the user to declare the classes of data
objects; their names; and the background details required. There are no “class-
details” for “organism’ because at this class level, we begin to use the knowledge

base to obtain more specific information from the user, i.e. test each applicable

rule.

74

dataclagsl),zatient,name, ge: x,ace 1,
dataclass!i,infection,[infecticn_type,infaction_data]).
dataclasga{Z.culture,[culture_site,culture_date]).
dataclass(3,organism,[]).

We note that this definition of the data classes involved in the consulation prccess
makes this process almost subject independent, Thus, usizg it for ancther appli-
cation area should te streightforward.

The next impeortant predicate in this Preleg implemantaton of Miyeia s
parameter which records the possible values of a clinical paramerer.
parameter(genus, [unknown,strept,neisseria,bact,staph,corynl).
parameter (gramstain, {unknown,pos,negl).
parameter (morphology, (unlmown,rod,coccus]).

parameter {conformation, {unknown,singles,longchains, shortchains]).
parameter{aerobicity, [unimown,anaerobic,facul]).

6.4.5. Knowledge Base

A typical Prolog version of a Mycin rule looks like

rule(9,Entity,genus,neisseria,800,Tally) :-
same(Entity,gramstain,[negl,CF1),!
same(Entity,morphology; [coccus],CF2),15 : -
min({CF1,CF2],Tally;.

In the above rule, the call same{Zntity,gramstain,[neg],C71) causes all
the evidence bearing on the gramstain of Entity to be collected. If the certainty
factor of the hypothesis which suggests the gramstain is negative is larger than
200, then CF1 takes this value. Otherwise the call same fails and the cut ("!")
prevents the collection of evidence being repsated. If each clause in the premise
succeeds, then Tally takes the value of the weakest of the certainty factors. We
note here that the definition of same also coptains a cut to avoid the repetition of

unnecessary evidence ccllection. We refer to the program listing in the appendix

75

for other Nlycin rules.

6.5. Conclusion

Throughout the various stages of development of both our implementation of

Prospector and of Mycin, it has become clear that thers are many benefits to be

gained from using the logic programming language Proleg as the means for defin-

ing an implementing an expert system. The most cbvicus and mest gezerally

bereficial one is Prolog’s inherent clarity. Mere specifically, the majcr advan-

tages can be summarized as follows:

1.

The incremental pature.of comstructing a Prolog program allows the
expert system developer to determine the immediate effect of adding or

deleting a rule.

There is 2 natural translation of a production rule representing an ela-

ment of knowledge into a Prolog clause.

Prolog has a built-in search mechanism.

' Unification providés pattern matching.

Backtracking can be used to find all possible paths in a search of a list of
rules. There is no need for explicit programming of this behavior.

Prolog allows for quick and simple updating of the acquired knowledze

during a consultation.

76

CHAPTER 7

COMPARISCN OF PROBARILISTIC APPROACHES TO INZXACT DEASCNING

7.1. Intrcducticn

In this chapter, we will put the major differences between the probabilistic
systems treated so far on a row.

As described in previcus chapters, we may classily the varicus prebabilistic
approaches into
1. Subjective Bayesian Reasorning {e.g. Prespecior)

2. Measures of Belief and Distelief (e.g. Mycin)
3. Dempster-Schafer Theory (e.g. VISIONS)

The fuzzy logic eppreach will be treated separately as it is cot a strict prota-
bilistic approach. The major differences between the different systems that we
investigated are in:

1. The way in which uncertain information about knowledge is represented.
2. The assumptions that form the basis for propagating uncertainty.

3. The control structure used for this propagation.

4. The treatment, if any, of inconsistent information.

In this chapter, we will make a cross-reference between the three probabilistic
approaches and the four major concepts in which they differ. Some of the
material here is based on Quinlan’s paper,3! who describes an alternative
approach not treated here, and Cohen’s dissertation.30 This chapter may be
regarded as a synopsis of most of the material that was described earlier. We
also bundled our critique on the various probabilistic approaches together ia this

chapter. The basic structure of this chapter is based ca Quinlan’s paper.Sl

77

7.2 Xnowledze Neprasentation of Uzcortainty
7.2.1. Subjective Egyesian Reasoning (e.g. Prospecter)

a. Methed

This approach provides a subjzctive, i.2. a user-defined, probebility for each
proposition. The adjsctive “subjective” means that the supplied prebability meas-
ure deces not come from the ideas of relative freguencies ia the =it but con

reflect a fair sub‘sctive estimate of the nropesition being true.
" Iy =

b. Criticism

“First of all, a single-valued estimate tells us nothing about iis precision,
which may be very low when the value is derived from vncertain evidence™ 81

A second criticism, noted by Quinlan ! is that “a single value combines the
evidence for and against a hypothesis, without indicating hew much there is cf
each”. .

Another difficulty is that the Bayesian view of probability does not allow one
to distinguish between uncertainty and ignorance. That is, one cannct tell whether
a posterior probability or odds was directly calculated from evidence, or indirectly

inferred from an absence of evidencs.
7.2.2. Measures of Belief and Disbelief

a. Method

The validity of each propositicn is expressed by two separatz valuss.
MB(H ,E) is a probability-like measure of belief in H given £ and MD(H,E) is a
similar value for disbelief in H given E. The telief and distelief measures are

independent of each other and therefore cannct be probabilities. Tuae two

78

measures are combined into a single assessment cf H in the light cf £, called the

certainty factor CF(H,E) and defined as

CF(H,E) = MB(H,E) - MD(H E)

b. Criticism

Quinlan3! points out: “This two-valusd approach is also subiect to the same
criticism ef precision as Prospector-like systems, since both of the belisf measures
are also point values. It dces cverccme, however, the seccad cbjection because
the interplay pro, MB(H,E), and con, MB(D ,Ej, a particular aypothesis is clear”™.
We note here that EMycin uses only certainty factors and is therefore, Like Pros-
pector, a single-valued system.

Mycin also suffers from the fact that certainty factors are sometimes inter-
preted as probabilities.

There is an interesting anecdote that applies both to Mycin and Prospector
and that proves that both methodologies are pretty much ad__hc;c. Clancey and
Cooper ran a study of Mycin's certainty factors in which they showed that “the
rules use CFs that can be modified by + .2 without seriously affecting its

advice.”!7 This brings us to a question raised by Davis:

“If the systems build around these mechanisms are tco seasitive to tke
numbers produced, that’s bad because no one is ready to defend the pre-
cise numbers. Yet if the systems are relatively insensitive to the numbers

~then all of that mechanism appears spurious.”

79

7.2.3. The Dempster-Schafer Theory (e.g. VISICNS)

a. Method

“Instead of representing the probebility cf a propesiticn A as a point value,
this approach bounds the prebability of A to a subinterval [s{4),p(4)] of the unit
interval [0,1]. The exact prcbatility P{4) of A may te unkaown but is bounded
by

s{a) = PIA) = p{A)

Thus, the uncertainty about the precision cf cur knowledge about 4 is expresce
as p(A) — s(A). The above inequality can be reformulated as

a. P(A)is at least s(A)

b. P(not A) is at least 1 — p(A)"8!

b. Criticism
None at this point as the Dempster-Schafer theory deals with both previously

mentioned criticisms of uncertainty representation.
7.3. Assumptions in the Inference
7.3.1. Subjective Bayesian Reasoning (e.g. Prespector)

a. Method
A problem arises when two distinct pieces of evidence E| acd E, are relevant
to a proposition H. Prospector overcomes this by assuming conditional indepen-

dence:

P(E,1Esqnd A) = P(E. | A)
P(E, | E,cnd not A) = P(E, | not A)

b. Criticism

We quote from Quinlan:S! “This assumpticn recsived a lot of criticism,””- ¢
but a receat peper by Pearl’® shows bow this assumpticn can be maintained if
prcpesitions are generalized to multi-valued variables. If A, B and C zre mutu-
ally exclusive and cemplete propesitions, they can Te replacer! by a single propesi-
tion H with values A, B and C. Thae correspending cenditional indegzndezcs
assummption is thereby weakened, and independence of the piscss of evideacz

relevant to H is no longer implied”.
7.3.2. Measures of Belief and Disbelief (2.3. Mycin)

a. Method

Myecin takes a similar approach to the above preblem and uses the formula

MB(A,E1 and E2) = MB(A,E1) + MB(A,E2) — M3(A,E1) X MB(A,E2)

7.3.3. The Dempster-Schafer Theery (e.g. VISIONS)

a. Method .

‘This approach also assumes conditional independence in the case of distinct
pieces of evidence for the same hypothesis. We note here that for all three
theories, making this assumption avoids the burden of asking the user for all jeint
protabilities.

Otker basic assumptions in Prospector and Mycin include the fuzzy formulas

to compute Boolean combinations of prcpositions and varicus approximations and

81

interpolation techniques in an attemps 1o correct for fotential ineopsivtancisg,

7.4. The Control Strvcture for Propapating Uncertainty

Quinlan®! observes: “Inference systems typically ooerates as copsuiting sys-
tems. They therefore draw a clear distinction tetween nodes reprasenting £roposi-
tions about which the system must ke informed, i.e. evidence, and those riae
depend cn others, i.e. hypctheses. This is tue fcr beth backweard- and forwazd.
chaining systems.

This means that the user can cnly provide input for progositiczs t=at cagmot
be inferred from others. The flow of inference is constrained 1o a single dirscsion,
from the propositions that constitute the “raw’ evidence to the “goals.” This “cri-

ticism’" applies for all three approaches.”

7.5. Dealing with Inconsistent Information

Neither the Bayesian nor the Mycin approach checks for inconsistency in the
evidence for or against a proposition; It is only in systems such as the Pempster-
Schafer approach, using an interval-valued probability, that there is a firm basis
for detecting inconsistency in general. If the prebability cf a prepesition A lLiss in
the interval [s(A),p(A)] and s(A) is greater than p(A), there is obviously sore-
thing wrong.

However, although the latter approach is zble to discover conflicts, the
method does not provide any way to deal with it other than atorting the ccmputa-
tion process. In the last chapter, we devoted a section on what we fesl constituses
futufe work in this area. It is our belief that the use of relaxation or constrain:-
propagation techniques in inference systems would provide a natural mechanism

to resolve conflicts.

82

0,1,2 acd 3 ar< 4l elexments of A, and 7,8,9 are not. But what about 4,5, and 6 ?
Intuitively, 4 is more in A than 6 is, or more precisely, it is more plausible, i.e.
possible, that.4 is an element of A then it is that 6 is an element of A. This zotion
of the plausibilicy of set membership, as opposed to the probebility of set mexber-
ship, leads to the generalization of the degree of memberskip in a set, and from
this generalizaticn comes fuzzry set theory.

A fuzzy set of scme uaiverse U is a collection of objects from U such that
with each object is asscciated a degree of membership. The degree of membership
1s always a real oumber betwesn 0 and 1, and it measures the extent to which an
element is io a fuzzy set. In other words, it measures the.‘plausibili':y of an ele-
ment being in a particular set. A degree of membership of 0 corresponds to an
element that is not in an ordinary set, and a degree of membership of 1
corresponds to an element which is in an orciinary set. For examrle, if we havz a
universe U teing the set {a,b,c,d}, then a fuzzy subset, A, of this universe co’d
be defined as

a is present in A with degree of membership 1.0
b is present in A with degree of membership 0.9

a is present in A with degree of memtberskip 0.2

d is present in A with degree of memberskip 0.0
Equivalently, A is written as
{1/a,0.9b,02c}

where the degree of membership is juxtaposed next to each elemesnt and elements

of degree 0 are omitted.

The exact relationship of the notion cf a fuzzy set to that of an ordinary sat
can be seen most clearly when one recalls the definition of the characteristic fuzc-

tion of a set. For an ordinary set A, this function was defined as

char (x) : U - {0,1}

85

3.2. Turry S:et Theory

While one can study this theory at a mathematically scphisticated level, it is
alsu possible to gain a great deal of insight at a more introductory and expository
level. At this more elementary level, one can consider fuzzy set theery to ke a
generalization of ordinary set theory: the theory of collections of things. In this
theory, we can, for any set, A, define a function that determines for any elexment
of the universe whether that element is a member of A. This functicn is callad t=2

characteristic function ot membership function of A, and is defined by

{0 if x is not in the set A

char (x) =

al 1 if x is in the set A

This function is defined for 2l the elements of the universe. It is a function map-
ring the whole of the universe U to the set of two elements {0,1}. We can write
this as

char (x) : U = {0,1}

With an identification of {0,1} as {true,false}, this characteristic function can also
play a role in assigning truth values to statements about A. The most elementary
statement about A is one of the form “x is an element of A.” In this case, the
characteristic function also acts as a truth function: if x is an element of A, then
char,(x) = 1 = true.

- Fuzzy set theory wiu basically generalize simple set theory by suitably modi-
fying the notion of membership in a set. In traditional set theory, an element x is
either completely in, or completely out of a set. Fuzzy set theory deals with balf in

and half out also. Consider the following example:
A = { x| x is a natural number ard Mary's car can hecld x"adult passengers }

Now suppose Mary’s car is a Ford Pinto. Then it seems safe to state iz

84

AN B={ min(a(x),b(_r))/x | x is an element of U}

It has been shown that thess definitions of the fuzzy unicn and the fuzzy intersec-
tion are patural and recsonable definitions extending the standard set thecry
notions of union and intersection.®> The only other set cperator frem traditicnal
set theory that is extended to fuzzy set theory is that of the complement of a ser.
The definitien proposed by Zadeh for the complement of a fuzzy set A, frem a

universe U, is
A = {Q=-alx}|xisinU}

As in ordinary set theory, the characteristic function of fuzzy sets links fuzzy
set theory to fuzzy logic. The degree of membership of x in A corresponds to a
“truth value’ of the statement “x is a member of A.” This means that if S and T
are statements in fuzzy legic, with truth values s and ¢, respectively, thea the
truth value of the statement "S and T" has to be min(s,t), corresponding to the
definition of fuzzy intersection.

The fuzzy set operators presented so far are extensions of those from ordi-
nary set theory. It is quite reasonable to expect that there will be important
dperations in fuzzy set theory that do not have their counterpart in ordinary set

theory.

In fuzzy set theory, we can concentrate the fuzzy elements of a set by reduc-
ing the degree of membership of all elements that are only “partly” in a set and
in such a way that the less the element is in the set, the more we reducs iis
membership. Another operation is to dilate a fuzzy set by increasing the member-
ship of elements that are only barely in the set. Normalizing a fuzzy set is a pro-
cess of adjusting the degree of membership of the elements so that at least one of
them is “totally” in the set. We can intensify a fuzzy set by increasing the degres

of membership of elements that are at least half in the set and decrsasing the

87

where for a fuzzy set, itis
char,(x) : U - [0,1]

where here the degree cf membership is the characteristic functicn.

The universe from which a fuzzy set is constructed need rot te finite.

sider the following subset of the reals:
Y = { m(x)/x | x is a positive real number }
where

1.0 for 0 < x = 25

-]

m(x) =

2]-1 forx> 25

Coea-

The set Y can be thought of as a fuzzy set describing the imprecise term ycung,

i.e. the set of ages of people who are young. Clearly, someone under twenty-five

is young, so the degree of membership of a number less than twenty-five is 1.0. It

is not so clear that a person who is thirty is young, e.g. a degree of membership

of 0.5. In this way, the imprecision connected with the corcapt of youth can te

captured mathematically and can be dealt with in an algorithmic fashicn.

The definition of the basic operations on sets must also be mcdified for use

in fuzzy set theory, and the most basic of these are ser union and se: intersection.

The definition proposed by Zadeh was the following: if A and B are two fuzzy

subsets of U and a(x) is the degree of membership of x in A and if &(x) is the

degree of membership of x in B then
A U B = { max(a(x),b(x)Vx | x is an element of U }
and

86

m = max { a{x) }
xel/
Normalizzticn allows us to, in some sense, reduce all fuzzy sets to the same basa.
It insures us that at least one element of each fuzzy set wil have a degres of

membersiip equal to one.

Intensification
INT(A) = {m(x¥x |z is an element of U }
where
{Zaz(x) for 0 = s(x) = 0.5
) = 1_2[1__4(,‘)]2 for 0.5 = a(x) < 1.0

Intensification acts like a combination of concentration and dilation. It raises the
degree of membership of some elements, lowers some others, and medifies the
steepness of the degree of membership curve. Since intensification increases the
degree of membership only for the elements that have a degres greater than 0.5
and since it lowers the degree of membership of elements lower than 0.5, this
operation hesightens the contrast between the elements that are more than half in

the set and those that are less than half.

Fuzzification

FUZ(A) =) {a(x)*K(x) }

where X maps elements of U into fuzzy subsets of U, “*”’ is an extension of ordi-
nary multiplication to the multiplication of a fuzzy set by a real number, and 6

is the fuzzy union discussed earlier. An example may clarify this operation. Lat

&9

degree cf membership of the elements that are less than helf in the set. Finally,
another cperation is to de-intensify or fuzzify a fuzzy set by increasing the extant
of its fuzziness. All these inherently fuzzy operations are defined telow for the

fuzzy set A = { a{x)x | x is an element of U }.

Concentration
)
CON(A)Y = {a (x)/x | x is an element of U}

The CON ogerator dacreases the degree of mextbership of all elsxeats, excapt for
those with degrees of O or 1. In addition, it has the prcperty that it decreases the
membership of elements that have low degrees proportionally more than for cle-

ments with high degrees of membership.

Dilation
DIL(A) = { SQRT(a(x))/x | x is an element of U }

Dilation is the opposite of concentration. Elements that are barely in the set, e.g.
with a degree of membership of 0.01, increase their degree ¢f membership
tremendously, e.g. tenfold in the case of a 0.01 degree of membership. All this
follows, of course, from the fact that the square rcot operation is =g invarss

from the square operation, which also implies that

A = CON(DIL(A)) = DIL(CON{A))

Normalization
NORM(A) = { (a(x)/m)/x | x is an element of U }

where

83

8.3. The Concent of a Linguistic Varizble

The very core of {uzzy set theory models an imprecise sirzation like the esti-
mation of uncertainty by allowing one to estimate the plausitility or the possibility
of an element being a member of a set. However, the thecry can be cifficult to
use directly, especially for a novice. Fortunately, a linguistic varizkle, a noticn
build on top of fuzzy set theory, offers a viable alternative. The use of such a
linguistic variable allows the precise modcling of imprecise statements [ke
“LOW,” “SOMEWHAT LOW” and so forth. Linguistic variakles allow for taz
easy acd narural specification of values for imprecise concepts, a specification that
has a firm theoretical basis that can te performed behind the scenes.®8

A linguistic variable is a variable whose values are patural lapguage expres-
sions referring to some quantity of interest. These natural language expressions
are then, in turn, names for the fuzzy sets composed cof the possible numerical

values that the quantity of interest can assume.!!!

A detailed, small example of a linguistic variable may demonstrate its struc-
ture. Let us define one, named Number. The quantity of interest, i.e. our

universe, will be an integer between 1 and 10. Let us assume that the set of

natural language expressions that Number can take as its values s

{ few , several , many_}. These values are names for the following fuzzy sets:
few = { 4/1,.82,173,.4/4 }
several = { .5/3,.8/4,1/5,1/6,.8/7,.5/8 }

mary = { .4/6,.6/7,.%/8,.9/9,1/10 }

The set of natural language expressions in which a linguistic variable takes its
values is oot an unrestricted set of English phrases. Rather it is a finite set that
is structured by the system designer. This set can be specified using Backus-Nzur

Form (BNF), and incorporated in a logic grammar, such as a dzfinite clauss

o1

U=1{1,2,3,4}
A=1{.81,62}
X(1) = { 11,42}
K@) = {.41,12,.473}

Then

It

| FUZ(A) = 8X(1) V) .6x(2)

B{v,.421Y) .6 .41,12,.43}

{81,322}) {.241,.62,.243)
= { .&1,.62,.243 }

What we are deing in this coperation is to fuzzify each element of a particular
fuzzy set, e.g. the element 1 is mapped into 1 with a degree of membership 1 and
into 2 with a degree of membership .4. This is thé definitica of X(1) above, the
fuzzification of the element 1. Analogously, X(2) defines the fuzzification of the

second element of the original fuzzy set. We note that the definition cf fuzzifica-

tion depends heavily upon the cheice of the function X. Intuitively, we see that
the cperation of furzification has enlarged the set of elements with noa-zero
degrees of membership - the so-called support of a fuzzy set. More specifically,
this support fuzzification spreads the degree of membership cf individual elemeats

of a fuzzy set to a possibly large number of elements, i.e. its support.

S0

primary terms and hedges fulfill certain functicnal reles ia the construction of the
set of possibie natural language expressions that a linguistic variztle can zssume
s its values. The primary terms are the fundamental noticns from which all the
other elements of the set are built and the hedges allow for fine tuning of these
primary terms.!!! When a system designer is building an expert system, using
fuzzy logic, it is his goal to have a sufficiently rich set of primary sets and hedges
50 that the user feels almost unrestricted in his range of expressions and that ke is
able to asscciate with each pessible natural language expressica a techaical, pre-
ise meaning that is still consistant with the imprecise Ecnglish mzaning. Ths:
expert system designer has three degress of {reedom: He selects the primitives, the

hedges, and the possible ranges as well as their exact technical definitions.

The assignment of meaning to the primary terms is the assignment of a fuzzy
restriction to each one of these terms. Suppose that we have a universe cf the set
of integers from 1 to 3. Then a possible fuzzy restriction that can be assigned to
LOW is

" { 1/1,.8512,.53/3,.24/4,.08/5,.02/6 }

The other primary terms, in the given grammar, can be assizned similar defini-
tions. It cannot be overemphasized that these definitions are subjective, somewhat
arbitrary choices made by the system designer a priori. 1t is up to him to malke

sure that these definitions are close to the user’s intuiticn.

The hedges are not themselves modeled by fuzzy sets as the primary terms
are, but rather are modeled as operators on the fuzzy restrictons that represeat
fhe primary terms. For example, in everyday English, the hedgs ‘“‘very” intensi.
fies the particular word it modifies. An implementation of this hedge should
therefore decrease the fuzziness of the elements of the fuzzy set that models the
modified word. That is, the implementation of “VERY" should remove the ele-
ments that are only part of the way in the set, i.e. it should decrease the degree

of memtership for elements whose degres of membership is less than one. The

93

grammar. Below, we repreduce an example we tcck from SchmuckerS?

<sentence> :»= <cumpound phrase> | <simple phrase>
<comgpound phrase> ::= <conjunctive phrase> | <range phrase>

<simple phrase> = <relaticnal phrase> | <hedged primary>

<conjunctive phrase> = <relational phrase> AND <relaticnal phrase>

<range phrase> 1= <hedged primary> TO <hedged primzry>

<relational phrase> 1= <comgosite relation> THAN <hedged primary>

<comgosite primary> ::= <relation hedge> <relation> | <relation>

<relaticn hedge> = NOT | MUCH | SLIGHTLY

<relation> ::= LOWER | HIGHER

<hedged primary> ::= <hedge> <primary> | <primary> | <fuzzy number>

<hedge> := NOT | VERY | MORE O:R LESS | FAIRLY | PRETTY | SORT OF |
EXTREMELY | INDEED | REALLY

<primary> = LOW | HIGH | MEDIUM

<fuzzy number> 1= <fuzzifier> <number>

<fuzzifier> ::= ABOUT

<pumber> ::= ONE | TWO | THREE | FOUR | FIVE | SIX | SEVEN | EIGHT |
NINE

This grammar covers a complex set of natural languags expressions such as:

“HIGH,” “LOW,” “MORE OR LESS HIGH,” “ABOUT FOUR TO ABOUT

SIX,” “NOT LOW,” “SLIGHTLY LOWER THAN PRETTY HIGH,” and so

forth.

The terms <hedge>, <primary>,<fuzzifier>, etc, play the role that “‘sub-
ject,” “‘verb,” etc., do in the construction of sets of English sentencss, i.e., they
are the building blecks used to construct the elements of the set. Of these, the
primary terms and the hedges are the most important. Just as “verbs” and “‘sub-

jects” have certain roles to fill in the coostruction of English seatences, so-tco tae

92

concatenatiun of sgveral hedges. An expression lixe “NOT VERY HIGH” can
be represented by the fuzzy set obtained as follews: The operator CON is aprlied
to the fuzzy restrictien for HIGH, and then the operator NOT is applied to that
result. Mathematically, we are determining the operator that represents a group
of several hedges by the funcrional composition of the operators for the individual
hedges. This has the advantages of ease of implementation aad theoretical simpli-
city. For example, “VERY VERY LOW"” can bte represeaisd by
CON(CON(LOW)). Tnis use of function composition autcmatizally makes the
expressions “NOT VERY HIGH” and “VERY NOT HIGH" difizreat. The first
is represented by NCT(CON(HIGH)) and the second by CON(NOT(HIGH)).
These are not the same fuzzy set restriction and that is exactly what is desired
from a thoughtful examination of the intuitive meanings of each natural language

expression.

The negative side cof representing hedges as operators is that some of them

do not seem to be easily modeled by such an apprcach:

8.4. Prolog Implementation of Fuzzy Sets

The Prolog implementaticn of fuzzy set operators is included ir appandix five.
As fuzzy set theory is the underlying theory of fuzzy logiz, this implementation
will be used in our future work on implementing a fuzzy logic reasoning schzme
in Prolog. The code is self explanatory and implements all the fuzzy set operators

that were described inr section 8.2.

8.5. Fuzzy Databases

95

concentration operator, CON, discussed in the previous secticn, performs this
fur.tics and a reascnable implementation of the hedge “VERY" could be bassd

on ‘his operator in the {ollowing manner:
VERY LOW = CON(LOW)

where ““low” is the fuzzy restriction we have chosen for the primitive term LOW.

Other hedges may be defined in a similar manner. We remind the readar
here that the definidon of hedges are biased decisicns of the expert system
builder. Tte set of nedges that the system designer bas to ¢acose from is almes:

endless. As an example, we tcok some frem Schmucker:39

ESSENTIALLY VIRTUALLY VERY

SORT OF RATHER NOT
TECHNICALLY ALMOST MUCH

KIND OF REGULAR FAIRLY
ACTUALLY MOSTLY PRETTY
LOOSELY SPEAKING IN ESSENCE BARELY
STRICTLY BASICALLY REASONABLY
ROUGHLY PRINCIPALLY EXTREMELY
IN A SENSE LOWER THAN INDEED
RELATIVELY HIGHER THAN REALLY
PRACTICALLY PARTICULARLY MORE OR LESS
SOMEWHAT LARGELY PSEUDO-
EXCEPTIONALLY FOR THE MOST PART NOMINALLY
ANYTHING BUT STRICTLY SPEAXING LITERALLY
OFTEN ESPECIALLY TYPICALLY

Representing hedges as operators acting upon the representation of the pri-

mary terms has both positive and negative implications. On the positive side, it

seems very natural and also allows for an easy implementatdon of the

04

8.5.2. Dcefinitions
A general fuzzy knowledge base with a general deductive capability consists cf
base relaticns, virtual relations, set theoretic relations and functions.

Base relations are relations in which each tuple, i.e. row, satisfies the relation
to some degree X which takes values in the interval {0,1]. Each column is asscci-

ated with an attribute that can take values from an asscciated domain.

As an example, let us consider the following representation for all:

tall height | X

I-Type | 5.7 0

5.8 0.6
5.9 0.8
6.0 1

.1 7.0 1

A virtual relation is a relation defined by means of a rewrite rule in terms of
base relations and other virtual relations, set theoretic relations and functions or
queries. For example, let’s assume we have the relztion s/l described above,

together with a base relation persons defined in the following manner:

- 8.5.1. Intredection

in this section, we present fuzzry databases, i.e. databases that have the noticn
of fuzzy sets and/or fuzzy logic. "We only consider so-called deductive relztional
databases, i.e. relational databases that have a deduction capability, such as Pro-
log?’ and DEDUCE.? A deductive database is essentially the same as a produc-
tion system.

Cne problem with the existing database systems in the market tcday is that
they only zllow the user to ask very precise questions, i.e. non-fuzzy queriss. Fer
example, consider the query “Find persons whose heights are greater than 3 fee: 10
inches’’. The criterion 3 feer 10 inches is somewhat arbiTarily chesen and it will
not find anybody who is, for example, 5 feet 9 inches. A better approach is to
allow the user to ask a flexible query such as “Find tall persons”. To build such

systems, we inevitable come to the notion of fuzzy set.106

Recent research 7+24 has show that fuzzy logic can be incorperated in deduc-

tive relational databases. Fuzziness can be dealt with at different levels:
1. Fuzzy Relations

A fuzzy relation is a relation where each tuple in the relation satisfies the
relation to some degres X which takes values in the interval [0,1]. Taus
a fuzzy relation is a fuzzy set.

2. Fuzzy Queries
A fuzzy query is a query containing a fuzzy copcept. The result of a

fuzzy query is a fuzzy set. A fuzzy query can operate on fuzzy and
nop-fuzzy relations.

06

Let us conpsider scme base relations. The relation 1likas sxpresses the

degree to whick a gerson A Likes a person B. Note that likes is not 2 symmetric

relation.

likes(Jim, irene, 1.

likes(jeohn, heather, 0.7).
likes(jehn, mary, 0.8).
likes(harry, jill, 0.4).
likes(Jill, tom, 0.2).
likes(irene, jinm, 2.9},
likes({ heather, john, 0.8}.

As our examrple wili be dealing with the height of people, we have o dafins the
fuzzy concept tall. In FRIL, this is an I-type base relatica, i.e. a relaton that

takes linear interpolation values

tall(5.25, al.
tall{ 5.590, 0.8).
tall(5.75, 0.8).
tall(&, 1Y,
tall(7, 1).

Linear interpolation is between consecutive values. In the following code, we rely

on the fact that the interpolation values are ordered in the base table.

t2ll(X,D) :-
nonvar({X),vax(D),not(clause(tall(x,_),tzrue)),
clause(tall(X2,¥2),true),nonvar(x2},X < x2,
clause(tall(X1,¥1),true),nonvar(X1),X1 < X2, X1 < X,
check(X1,X),
Dis (((¥2-Y1)/(X2-X1)) = (X - X1)) + ¥i,!.

tall(X,D) :-
nonvar{X}, var(D), not{clause(tall(X,_),true}),
clause(tall(X1,Y1),true}),nonvar{X1),X < X1,
D =%Y1,!.

99

persens | pame height | weizht | ¥
jim 6.1 12.0 1
john 5.9 11.9 1
irene 5.5 10.0 1
heather | 5.6 6.6 1
mary 5.3 8.5 1
il 5.7 9.2 1
tom 6.0 13.5 1

thern oz could define a virtual relation possible_athlete being equivalzsat to tz2ll per-
sons a=d defined in the following manner
rossible_athlete(X) :- persons(X,Y,_, _J,tall(Y,1).

A set thecretic relction is dzfined by a prccedure which tzkes as input a givea
tuple of values and returns a truth value in the interval [0,1]. For example,
less(X,Y) takes two two values, i.c. numbers, and returns true is X < Y and false

otherwise.

An example of a function is count which takes the name of a relation as argu-

ment and returns the number of tuples in the relation.

In Prolog terms, a base relation corresponds to a unit clause acd a virtual

relation is basically the same as a nonunit clause.

8.5.3. Example of the Use of a Fuzzy Deauctive Database

As an experiment, we implemented the language FRIL in Proleg. FRIL
stands for Fuzzy Relational Inference Language and was designed by Baldwia.”
The coroplete code is included in appendix six. FRIL is a fuzzy relaticnal data-
base, i.e. each relaticn has an additional argument: the degres of membersiip,

i.e. the possibility, of the tuple in the relation.

98

?- likes(X,Y,_.),z=ersons(¥,2,_,_),tall{z,1).

after which we get all the answers by backtracking:

2 =8

Y = tem

X = jill ;

2 = 6.1

¥ = jim

X = irene ; ‘
no

Suppose we waat to use a virtual relation in a query, an example of which is the
question

Name those people with their weights who kave a good friend

or in Prolog/FRIL:

{ ?- has_good_friends(X),persons(X,_,¥,_).

We included a program script in appendix. Using the fuzzy set operators
described eariier and their Prolog implementaticn, we can then implement queries

such as.
Whao is very tall ?

The hedge very corresponds to the fuzzy set operator COV, i.e. concentration.

101

tall({X,1) :- not(lause{tall(¥,_),true)),tall(x,v),!,¥ =1,1.
check(%1,X) :- ®alil¥,_},ncnvar(Y),
X1 < ¥,
Y < X,
i,fail.
check(X1,4).
Another base relation, described earlier, is persons which contains data abeus

persons. The Prolog version locks like

wersong| jim, 6.10, 12.,0Q0,1}).
persons(jehn, 5.90, 11.90,1).
pexrsons| irene, 5.50, 10.00,1).
persons | heather, 5.60, 9.60,1}).
persons| mary, 5.30, 8.50,1).
persons| jili, 5.70, 9.20,1).
persons | tom, 6.00,.13.50,1).

With these tase relations, we may define some virtual relations, such as

friends(X,Y) :- likes(X,¥,_),likes(Y¥,X,_).

. which says that X and Y are friends if they like each other. Ancther virtual rela-

tion could be that tall persons are considered to be possible athletes or

possible_athlete(X) :- persons(X,¥,_,.),tall(¥,1).

A last example of a virtual relation is that a person has gocd friends if he hes a

possible athlete as friend.
has_good_friends(X) :- friends(X,Y),possible_athleta(Y).

With this given knowledge base, we may ask some questions that contain fuzzy
concepts. We remind the reader that databases queries correspond to Prclog

goals. Let us assume that, we want to know
Who likes a tall person ?

In our Prolog implementation of FRIL, this corresponds to

1C0

The greater the L., the older
The greater the neizht, the taller
A membership atiribute may also be dafincd in terms of other attributes. VWe call
such an attribute a virsual or derived membership attribute. For ezample
size = height * weight
the sreater the size, the bigger

Cnoce the knewledge of the membership attributes is codad into the knowiad
base, we can use this to rank the answer of fuzzy queries instead cf using ths

membership functions.

8.5.5. Interpretations of Fuzzy Querics

Let us assume that the fuzzy formula F is in conjunctive normal form, i.e. of

the form
F=_C'1&C2&..Cr

where each of the Cl. is a clause.

Let A and B be atomic fuzzy formulas. We assume that there exist membe:-
ship attributes « and 8 for A and B respectively. Without loss of geperality, we
need to consider the following three cases:

1. F is the negation of A.

In this case, we sort the tuples by the values of the membership attributs o

in ascending order.
2. F is the copjunction of A and B.

Here, we first sort all the tuples by values of the membership attributs « in
the descending order. After the tuples are sorted, each tuple ¢ is ranked by its

position in the sorted list. let 7(¢,a) denote the rank funciion according o . We

103

8.5.4. Acquisition of Tuzzy Xnowledge

One of the difficulties for applying the fuzzy set theory to practical problems
is to obtain memberskip functions of fuzzy sets. The degress of membership of the
elements of a fuzzy set are usually assumed to te known. Then, coperaticns on
fuzzy sets may be defined as we saw in the first secticn of this chapter. However,

in reality it is not easy to obtain the precise membership functions, even for the

[4%

atomic fuzzy sets. This is due to problems such as scaling, compatibility, 2nd so

on.
 Fertunately, for evaluaticg a fuzzy query, we actually do ot need to knew
membership functions themselves. We will explain this in a moment but {irst we
have to make something clear. In the previous example, we represented the fuzzy
concept tall as a fuzzy set, i.e. a fuzzy relation. In other words, the fuzzy concept
was explicitly represented. It should be clear that we do not need to do it this way
in other to be able to answer queries that contain the fuzzy concept sall. Fer
example, Chang24 dces not store tall, but only height. The fuzzy ;6ncept tall is
dealt with at the level of query processing. This is the approach to take whken
membership functions are unknown. What we need to know is some aftributes
such that a membership function is a monotone increasing (decreasing) function of
these attributes. That is, find an attribute x such that the membership function f

satisfies the following condition:
if x, > x, then f(x,) > =)

Such an attribute x is called a membership attribuze of f. In the real world, finding
a membership attribute is much easier than finding the membership function
itself. For example, in our previous example, the attribute height is a membership

attribute cf the fuzzy concspt rall.

To acquire fuzzy knowledge, e.g. to state the membership atiributes, a sys-

temn should allow the user to enter stataments like these:

102

persca A | person B eight of B | ranking
irene jim 6.1 1
jill tom 6.0 2
heather john 5.9 3
harry il 5.7 4
john heather 5.6 5
jim ireae 5.5 6
john mary 5.3 7

8.6. Fuzzy Inference

In this section, we will give a btasic outline of how fuzzy logic deals with
inference rules. We first have to generalize the notion of furzy set and iatreduce

some more definitions.

Definitions

As we have seen in section two, a fuzzy set A might have an infinite oumber
of elements. The supporr of a fuzzy set A is the set of values in the universe U cf
which the degree of membership of the fuzzy set A, m, 1s positive. A crossover
point in A is an clement of U whose grade of membership in 4 is 0.5. A fizzy sin-
gleton is a fuzzy set whose support is a single point in U. If A is a fuzzy singleton

whose support is the point y, we write
A=nmly

where m is the grade of membership of y in A. The symbol = stands for “‘equal
by definition” or *‘denotes.” To be consistent with this notatica, a nonfurzy sin-

gleton will be denoted by 1/y.

105

then sort in a similar manner 2ll the tuples according to toz cther membersiin
attribute, 8, and <btwia a raak functon r(+,8). Finally, we sort all tuples by the

function
max { r(t,a) , r{s,8) }

in ascending order.
3. F is the disjuncticn of A aad B.
In this case, we first obtaia the same rank functiens r{z,a) and »{:,8) a5 Ia

the pravious case and we sort according to the function

min { r(t,a) , 7(#,8) }

in ascending order.

The max and min functions correspond to the respective max and min fucc-
tions used for the intersection and union of fuzzy sets.!08 The ordering of i:2
tuples in the answer set is intended to help the user for his study. The user wil
still have the final judgement. To help him in this process, the system will priz
all the values of the membership attributes along with the tuples in the answer
list.

For example, let us again consider our previous example with the base rzla-
tions likes and persons but without the fuzzy relation rall. Assume that we have 2

membership attribute definition of the form
The greater the height, the taller
Then, using the methods descrited earlier, the answer to the fuzzy query
Who likes a tall person ?

will lcok like the following relation

104

Fuzzy Conditional Statzments

A fuzzy conditiona! siatement is a statement of the form
if A then B

in which A and B are fuzzy sets rather than propositicns. A typical example might
be

if x is small then y is large
In essence, this starement defines a relaticn berwvesn the fuzzy verizbles x and vy,
e first have to define the cariesian preduct of two fuzzy sets.
Let A be a fuzzy set in the universe of discourse U and B a fuzzy set in the

universe V. Then, the cartesian product of A and B is denoted by AXB and
defined by

AxB= min[mﬁ(u) , mB(v))/(u,v)

Uxy
where UXV is the Cartesian product of the nonfuzzy sets U and V. The cartesian
prcduct AXB is a fuzzy set of ordered pairs (u,v) in UXV with the grads of

membership of (u,v) given by min [mA(u) , mB(v)]. In this sease, AXB is a fuzzy

relaticn from U to V.

The significance of the fuzzy conditional statement of the form if A then B is
made clearer by regarding it as a special case of the conditional statement
if A then B else C where A, B and C are fuzzy subsets of possibly different
universes U and V. In terms of the Cartesian product, the latter statement is

defined as -

if A then Belse C = AXB + [norA)XC

107

A fuzzy <ar roxy be viewed as tae union of its constituent singletcas. Ca this

basis, A may ue ceprzsanted as

A= fm o)y
v
where the integral sign s:ands for the uaicn of the fuzzy singletons m, (Wiy. £ A

has a finite support b’l'“’yn} then the above formula may te replaced by

A= 3mly
i=1
in which m_ is the grade of membership of y, in A. It should be noted that the

summation sign stands for union rather than the arithmetic sum.

A fuzzy relation R from a set X to a set ¥ is a fuzzy subset of ta2 cartesian

product XX Y and is defined by
- Rm J. mR(x,y)f(x,y)
Xxxy

If the demains of X and Y are finite, then the relation R may te represented ty a

relation matrix.

If R is a relaticn from X to ¥ and § is a relation from Y to Z then the compo-

sition of R and § is a fuzzy relation denoted by RoS and defined by

RoS= J' max [mm [mR(x,y) , ms(x,y))]/(x,z)
XxZ

If the domain of the variables x, y, and z are finite sets, then the relation matrix

for RoS is the max-min product of the relation matrices for R and S.

106

We also pote that applications of fuzzy logic, e.g. in decision azz!ysis and
operations research, commonly use dynamic programming techaiques to sclve the
max-min equations. In gereral, fuzzy sets that correspond to linguisdc varizbles
are defined by a functicn such as young in section two. This maans that inference
in fuzzy logic comes down !0 solving a linear or nonlinear program with lecal con-
straints on the variables.

3.7. Psycholegical Consideraticns ¢f Tuzziness

As we described in the previcus sections, the main advantage of usin
logic to mcdel uncertainty is that it captures the fuzziness that is contained in
linguistic variables. One might wonder if we should allow for the input of natural
language expressions as opposed for the input of numerical estimates such as pro-
babilities. Are the complexities involved to deal with fuzzy natural language con-
structs worth the trouble ? What are the gains of using fuzzy logic instead of a
probabilistic approach to deal with uncertainty? These are the questions we

answer in this section.

In Hofman and Neitzel,>* the applicability of natural language input is tested-
for the specific domain of risk analysis. This domain is closely related to the area
of expert systems. They conducted a preliminary study of the performance differ-
ences between subjects using natural language estimates and these using numeri-
cal estimates in the task of assessing the security risks of varicus computer instal-
lation configurations. Though this study used few subjects, it indicated thzt the
use of natural language estimates rather than numerical estimates was asscciated
with an increase of accuracy ranging from 16% to 32% due to the eliminatica of
extremely inaccurate estimates. This study addresses only the effect of input

style; bowever, it does not address the method by which these natural language

o
-~
results in dramiatic improvements over numerical estimates, the impertance of the

109

A typical preblem ecccuatered in 3 Froductien rule is the fellowing. Ve have a
fuzzy relation, say R, from U to v waich is defined by a fuzzy condidonal stasa.
ment. Then we are given a subset of I/ with typical element x ard 2ave to deduce
a fuzzy subset of V with typical element y, which is induced i3 V by x. For emam.

ple, we might have the tollowing two statements:
1. x is very small
2. ifx is small then yislzrge else y is nor very large

of waich the second definss a fuzzy relatica R. Tte questiozs s than: “YWhat wil
be the value of y if x is very small ? The answer to this questicn is crovided by
the following rule, which may be regarded as an extension of the familiar rule of

modus ponens.

The composirional rule of inference says that if R is a furzy relatica from U 1o
V and x is a typical elament of fuzzy subset of U, then the fuzzy subset y cf v
which is induced by x is given by the composition of R and x, that is

Yy =™ xoR

in which x plays the role of a unary relation. Thus, for finite X, yand R, y is
defined as the max-min product of x and R. We note the analogy of the composi-
tional rule of inference with Bayes rule for conditional probabilities. We shou!d
also note that because of the min-max product, the relation between x and y is
Dot continuocys.

_ As a final comment, it is important to realize that in practical applications of
fuzzy conditional statement to the description of complex or ill-defined relations,
the computations involved would in general be performed ia a highly approximate
fashion. Furthermore, an addidonal source of imprecision would be the resul: of

represeating a linguistic variable, e.g. small, by a fuzzy set.

103

The the-v .7 2pproximate reascaing is made up of two components,
represeataticu ¢ fcanslation rules and inference rules. The represeatatica rulss
provide a prcceduce for translating natural language statzmeats into possibility
distributions and thus providing a quantitative representaticn of ths infocrmation
contained in a statement. The rules of inference provide a means for manipulating
information, represeated as possibility distributions, to get new information. This
new infcrmaticn is aiso represented by a possibility distribution which can then be
retranslated into an atomic preposition.

We showed in this chapter that fuzzy legic is 2 much richer teol to deni with
uncertainty in expert systems. YYe are, however, aware of some issues:

1. The knowledge acquisition process will be much more time-consuming than
under a probabilistic strategy. The reascn is that, by definition, the fuzzy
logic approach, requires the expert and/or knowledge eagineer to clsarly
define whkat he means.

2. Fuzzy logic is complex, i.c. almost.as complex as human reasoning under
uncertainty. Up till now, fuzzy logic was a sub-fisld of mathematics.

Recently, however, we have witnessed introduction of this theory in the area
of Artificial Intelligence.45:55,5,47,6

We do believe, as natural language and/or expert systems will become com-

mon place, that the need for fuzzy logic will become more apparent.

111

behind-the-sce =« medeling of the natural languags terms is greatly increased.
> o j

The usc =t tuzzy sets in this behind-the-scenes medeling to directly represent
the primitives and o indirectly represent the hedges of natural language expres-
sions is in accordance with the psychological studies of the way people use such
expressions. It has been show that people naturally form fuzzy sets when classify-
ing objects.69:72 By saying that people form fuzzy sets when dealing with vag:e
ccncepts, we mean that the way pecple manipulate these concepts is very much
lixe the crperators we have defined for fuzzy sets. However, while pecple
comprehend vague concepts as if the concepts are intemnally represeatzd as fuzzy
sets, they do not always manipulate these concepts in exactly these way as we
have defined the fuzzy set operators. The choice and definition of an operator is
always a matter of context, mainly depending on the real world situaton that is
to be modeled.*0 In other words, all mathematical properties regarding the class
of fuzzy set operators must be interpreted at an intuitive level. Experiments have
demonstrated that fuzzy set theory is adequate to model the fuzziness of real-
world s1tuat10ns The correspondence between linguistic hedges and fuzzy set
operators has been experimentally verified. What remains as a “‘disagreement”
between mathematics and psychology is the exacr form these operators should
take. 8 - — - .

8.8. Conclusion

Much of the information available in the real world involves linguistic infor-
mation. Furthermore, much of the reasoning performed in practical problems
involves inferences with this linguistic information. The thecry of fuzzy sets
introduced by Zadeh and developed by numerous researchers provides a mechan-
ism for representing information of this imprecise type. The theory of fuzzy logic
provides a method, based on the concept of fuzzy sets, for both representing and

reasoning with imprecise concepts.

110

engineering o i+ hwsed on linguistic reascring, and not tha artificially guaztiza-
tive approacues hat form the stereotvpe in modern science. He has developed a
ccmplete systemn of fuzzy logic that allows imprecise, but practically valid argu-
ments in everyday reasoning to be transiated in computable terms. This is kighly
needed and justified. Just comsider executive management, for exampele, where
one of the key aspects is planning under uncertainty. Normal language provides
a means for Lmprecisicn to be clearly and exactly expressed. The curres: natural

Lo

language front-ends to databasss such as LIFERSS are highly restrictzd, oot in tze

(&N

quantity cf informaticn, but in its quality and richness, comparad with tha: use
ia comparatie human reasoning within an organization.
It is well know that there are traditionally two camps in the Artificial Intelli-
gence community:
1. Those who belicve knowlsdge representation should bte basad on logic
(first-order logic, medal logic, ..). Examples are McCarthy, Nilsson,
Bibel and Kowalski.

2. The people who think representation of knowledge should be based on
ad boc methods and heuristics. Examples are Schank and Minsky.

Recently, we have seen the birth of a third camp, closely related to the first:
the fuzzy logic people. They believe in fuzzy logic as the logic undsrlying inexact
reasoning.

The traditional approaches to reasoning under uncertaiaty are based on the
premise that probability theory p.ovides the necessary and sufficient tools for
déaﬁng with the uncertainty and imprecision. The theory of fuzzy sets calls into
question the validity of this premise. More specifically, it suggests that much of
the uncertainty which is intrinsic in knowledge-based systems is rooted in the fuz-
ziness of the information, which resides in the database, and in the fuzziness cf
the underlying probabilities. Viewed in this perspective, then, it is the failure cf
the classical probability thecry to come to grips with the issue of fuzziness of data

113

CHAPTER 9
CGNCLUSION AND FUTURE WCRX
In this final chapter, we briefly review the motivation for this thesis werk,
our major accomplishments and directions for future research suggestad by this

work.

9.1. Motivation for this YYork

This exploraticn iato the 1évcrld cf inexact reasoning criginatzd frem cur
interest in expert systems technology and logic programmirg. Tke growing szt cf
literature on expert systzms and their current commercialization fails to meation
the unsolved issues of this field. One of the most important of these is, in our
opinion, the modeling of reasoning under uncertainty.

The enginesring appreach to uncertainty is simply when fermulating a prob-
lem to avoid the representation of uncertainty. This corresponds to the Closed
World Assumption, taken by Prolog, which is used to delimit what a system must
know.35 The Closed World Assﬁmpticn says: “If x is true, then it is deducible
from the database.” Under the Closed World Assumption, one assumes that
something is not true if it cannot be shown that it is true, fails to show tkat it is
true. This has been called Negation as Failure.? This stands in contrast with one
of the most important aims of Artificial Intelligence: “irying to model human rea-
soning which is inherently non exact.” Let us think of databases first. Adding a
fuz_z; logic component would highly extend their power: one would be able to talk
about concepts that are partly in a relation, one would be able to deal with
queries that contain fuzzy concepts, etc.. We touched on this in the sections of

fuzzy databases.

Database theory, even though it allows for non-numerical data, still requires
these data to be precise and well-defined. However, databases are moving out of

the exact domains. Zadeh has argued for many years ths nesd for systems

112

In this ttess, we explored the different methedologies for inesact recsozing
1n expert syscems it is well known that real world expert systems have to be akble
to cope with umcertainty to make them somehow “intelligent.” Expert systems
sbould, by defirutivn, model the reasoning precess of an expert in a particular
application domain. Most commonly however, experts have to make decisions
under conditions of imperfect information and uncertainty. Artificial intellizence
researchers were aiready aware of this problem since the early days of expert sys-
tems. Varicus methods to describe this nexact reasening precess were prepesad
and scme of them were implemented, with moderate sucé:ss.

We first investigated the different probabilistic approaches that are currently
used. These methods are all based on some notion of probability and they form
the most widely used strategy. As an experiment, Prospector-like and a Mycin-
Like inexact reasoning schemes were implemented as a2 Prolog program. Prospec-
ter is an expert system for mineral exploration and is one of the most suessssful
commercial applications of artificial intelligence techrology. Mycin is an expert in
bacterial diseases. | —

As observed by many researchers in this field, none of the existing methods
for reasoning under uncertainty is ccmpletely satisfactory,

All our criticism on probabilistic approaches has been concentrated in chapter
seven. The main prcblem, each of the existing systems has, is being unable o
guarantee internal consistency.

We gave z~ intreduction to fuzzy logic and demonstrated the reasoning
power this theory could bring to expert systems, especially those with which the

user communicates in a natural language.

115

that [imi- iix erfectiveness in dealing with a wide variety cf groblzm aracs,
including expert systems, in which scme of the prizncipal sources of uncertaiary
are not statistical in nature.

In applying the theory of fuzzy sets to the analysis cf real-world groblems, it
is natural to acdopt the view that imprecision in primary data should, in general,
induce impreacision of the same prepertion in the results of tae analysis. It is basi-
zaily this view that motivated Zadeh the intrcduction of a Enguistic varictls, that

is, a variatle whose values are not numbers but words or santances |

(%)
1
o

T
1
by
[

or synthetic language.lll The theory cf fuzzy sets provides a framework for dzal-
ing with such variables in systematic and consistent way a=d thereby cpens the
door to the application of the linguistic approach in a wide variety of problem

arcas.

§.2. Conclusion

. Thesis
The two initial goals of this research were:
1. Augment Prolog with an inexact reasoning compozent.

2. Investigate the various methods for dealing with uncertainty in a critical

manner.

Summary

Logic programming languages, notably Prolog, have features that make them
natural for pattern-oriented programming. These languages offer simplicity and
ease of use, the ability to express both factual and precedural knowledge declara-
tively, backtracking facilites and a restricted theorem proving capability based on
Hoern clauses and resolution. Prolog has also received special attention siace its

selection by the Japanese as a cornerstone of their Fifth Geaeration Project.

114

efficient implementatica. We would like explore a reclaxation approach s imple-
mentation methodology. This would provide us with a lot of insight in the prob-
lems of both relaxation in logic programming and the validity of fuzzy logic in
modeling inexact reascnizg.

Relaxation is a gensral computational paradigm for finding solutions for a
given set of equations that satisfy a number cf constraints. %5 It has applications
in interactive graghics, soluticn of comstrained search problems, and efficient exe-
cuticn of recursively deficed parttern matching precedures. Relaxation mrimisives
in a logic programming language will give both paive and experienced users sizmi.
ficant new power, and will te particularly useful for writing expert systems or
production systems in which programming is done through pattern matching and
application of rules.

We would like to explore the use of relaxation in probabilistic schemas.50 As
an example applicaticn in expert systems, one may want to specify measures cf
confidence on certain events using Bayesian assertions on probabiliies. For
example, let us view the set of possible events as a graph as in Duda et al.4! agd
each event is a node in the graph and edges connect related events. If we model
the problem as one of labeling nodes, and let p;(‘\) te the prebability of label A at
node i, where ru.()\,)\‘) is a subjective measure of the compatibility of lakel A at
node / and label A’ at the neighboring node J, then a homogeneous Bayes rule for

calculating p in terms of 7 is

q,(\)

where g {A) is defined by

9,(8) = p,(MNII2r, (AP, (0)

RS

117

Results
In this thesiy, we demonstrated two fundamental things:

1. Fuzzy logic ‘s more adequate than the various probabilistic approaches to
medel human reasoning because it captures more uncertainty. Probabilistic
approaches basically come down to first-order logic plus probabilities. Fuzzy
logic extends multi-valued logic with fuzzy quantifiers and fuzzy probakbili- -

ties.

[39]

It has been said that, as Preleg is a preducton system, it is an ideal langua

z2
for goal-driven expert systems. However, one component not readily avail-
able in Prolog is a fuzzy reascning strategy. In this thesis, we showed bow
one could implement probabilistic approaches using either a meta-level
approach (cleaner) or an object-level approach. We also showed how a non-
probabilistic methed, furzy logic, can be integrated into Prolog in a con-

sistent manner.

9.4, Future Work
This research suggested some new directions that are worthy to investigate.

We would like to explore the idea of using relaxation techniques to hazdie
fuzziness in production systems. The first major effort would te to use relaxation

to implement fuzzy logic.

Fuzzy logic is a well-defined, mathematically sound and complete formalism
to deal with uncertainty that captures more of the real world fuzziness than tradi-
tional probabilistic strategies. In particular, it deals with the vagueness, inherent
to natural language concepts. Fuzzy logic has well-defined notions of internal
consistency, unlike the more traditional approaches. We also note here that fuzzy
logic up till now has not been used in all its aspects in existing expert systems.

Most of the research has been theoretical and. there seems to te a problem of

116

(8]

10.

11.

BIBLIOGRAPHY

Adams, J.B., “A Probability Model of Mcdical Reasoning and the MYCIV
Model,” Mathematical Biosciences 32 (1976). '

Aikins, J.§., J.C. Kunz, H. Shortliffe, and R.J. Fallat, “PUFF: An Expert Sys-
tem for Intcrpretation of Pulmenary Fuacten Cata,” STAN-CS-32-331, Suian-
ford University Computer Science Dept (1982).

Ancersen, S.0., R.C. Backhouse, J.C. Neves, aad M.H. Wiliams, “A Froleg
Implementation of Query-By-Examgle,” Technical Report, Heriot-Was
University, Edinburg (1982). Also in Prcecedings of the Seventh Internaticnal
Symposium on Computing, Germany

Baldwin, 1.F., “Fuzzy Logic and Fuzzy Reasoning,” in Fuzzy Reasoning and lts
Applications, cd. E.H. Mamdani and A B.R. Gaines, Academic Press (1981).
Baidwin, LF. and B.W. Pilsworta, “An Inferential Fuzzy Logic Knowledge
Base,” Tecchnical Report, Department of Enginecring and Mathemarics,
University of Bristel, U.X. (1982).

Baldwin, J.F., “Fuzzy Expert Systems,” Proceedings International Symposium
on Multi-Valued Logic, Japan (1983). :

Baldwin, J.F., “Knowledge Enginccring Using a Fuzzy Reclaticnal Infercnce
Language,” Proceedings of the Conference of the International Federation on
Automation and Control, Marseille, France (1983).

Barmett, J.A., “Computational Methods for a Mathemarical Theory of Evi-
dence,” Proceedings aof the Seventh Internationai Joint Conference on Artiicial
Intelligence, Vancouver, Canada, UCAI-81 (1981).

Barrow, H.G., “Proving the Correctness of Digital Hardware Designs,”
Proceedings of the National Conference on Anificial Intelligence, Washinzton
D.C., AAAI-83 (August, 1983).

Battani, G. and H. Meloni, “Interpreteur du Langage de Programmation Frc-
log,” Teehnical Report, Groupe d'Intclligence Artificiclle, Universite d'Aiz-
Marseille II, Marseille, France (1973).

Bayes, T., “An Essay Towards Solving a Problem in the Doctrine of
Changes.,” Philosophical Transactions of the Royal Society 53, pp. 370-51
(1763).

Bclovari, G. and J.A. Camgtell, “Generating Contours of Integraticn: An
Application of Proicg in Symbolic Computing,” pp. 14-23 in Lecure Noies in

119

Such a reguirement corresponds to a set of consiraints on the current confidsace
measures of an eveat p (), Linking it to the measures for its antecedents and con-

sequents in the graph.

We also feel that fuzzy logic could be implemented more efficiently in a logic
programming language that has a relaxation-based search mechanism to replace

the exhaustive backtracking of standard Prolog.

Ideally users skculd be able to present a computer with problems dirzcily,

and await responses containing scluticas. Existing pregramming systems ars
compremisas towerds this ideal, compromises that cope pecrly with many users’
problems. Many of these problems consist of sets of constraints, for which users
seek feasible solutions. Therefore, adding a constraint satisfaction scheme or

relaxation to Prolog-based expert systems is 2 worthwhile endeavor.

118

32.

33.

34,

35.

39.

40.

41,

Cla':k, XK.L. and F.G. r’ICCg.t‘C “P"GIQO A Lar-m_a-:rc fer T .:n‘* C'"C'".ﬂ'—'" EX""I'.
Systermns,” Machine Inzelligence(10) (1932).

Clocksin, W.F. and Chris S. Mellish, Programming in Proiog, Springer Verlaz,
New York (1981).

Clecksin, W.F. and J.D. Young, “Pralog,” Computervorld 17{31) {Auguse,
1583).

Ceclho, Helder, “Database Interrogation by Means of Nasural Language,”
Proceedings the First [niernational Workshop on Naswural Language Communica-
tion with Computers, Warsaw, Polen, Hcld in Warsaw, Polen (Seprember,
1930).

Ceelbo, Helder, “A Formalism for the Stmuctuml Analysis ef Dialcgues,”
Proceedings of she 9ih International Conference on Compuistional Linguistics
(July, 1582).

Coben, Paul R., “Heuristde Reasoning about Unceraainry: An Artificial Intelli-
gence Approach,” Technical Report STAN-CS-83.986, Stanford University,
Department of Comptuer Science (August 1983).

Colmeraver, Alain, “An Interesting Subset of Natural Language,” in Logic
Programming, ed. K.L. Clark and S.-A. Tamlund, Academic Press (1982).
A.P.I.C. Studies in Data Preesssing No. 16

Dahl, Veronica, “Logical Design of Deductive Natural Language Consultable
Data Bases,” Proceedings Fifth Idternational Conference on Very Larze Daia
Bases, Rio De Jancire, Brazil (1979).

Dahl, Veronica, “On Database Systems Dcvclopment Through Logic,” ACM
Transactions on Database Systems 7(1), pp. 102-123 (March 1582).

Darvas, F., L. Futo, and P. Szcredi, “A Logic Based Pregram System for
Prcdmnng Drug I.ntcracnons," International Journal af Biomedical Computing
9(4) (1977).

Davis, R., “Panel on Dealing with Uncertainty,” Proceedings of the 6th Inizrna-
tional Joint Conference on Artificial Intelligence, pp. 1101-1102 (1979).
Dempster, A.P., “Upper and Lower Probabilities Induced by Muldvalued Mzp-
ping,” Annals of Mathematical Statistics 38, pp. 325-339 (1967).

Dempster, A.P., “A Generalization of Bayesian Inference,” Journal of the
Royal Siaristical Society 30, pp. 205-247 (1968).

Dincbas, M., “A Knowledge-Based Expert System for Automatic Analysis and
Synthesis in CAD,” Proceedings IFIP 80, AFIPS Press (1980).

Dubois, D.J. and H. Pracde, “Operations in a Fuzzy-Valved Logic,” Informasion
and Contrel 43(2), pp. 224-240 (November, 1979).

Duda, R.O., P. Hart, and N. Nilsson, “Subjectve Bayesian Methods for Rule-

121

13.

15.

16.

17.

18.

19.

20.

21.

24.

Computer Science 87: 5ih Corference on Automated Deduction, e¢d. Welfzang
Bitel and Retert A, Kowalski, Springer-Verlag, Berlin, Germany (1930V.

Bijl, A., Fernando C.N. Pereira, and P.S.G. Swinson, "A Fact Dependeney
System for the Logic Programmer,” Computer-Aided Desizn, Also avalatle as
EdCaad Technical Report 82-03, University of Edinturgh (July, 1983).
Rorning, A., “A Powerful Matcker for Algebraic Equaticn Solving,” Werking
Paper 67, Dcpartment of Artificial Inielligence, University of Edinburgh,
Scotland (May, 1580).

Boming, A. and Alan Bundy, “Using Matching in Algetraic Equation Solv-
ing,”” Proceedings of ihe [nternaticnal Conference on Ariificial Intellizence 15931,
£p. 9£6-471, Also eavailable from Toe University of Edinburzd as DAl
Research Paper No. 158 (1981). ‘

Bowen, X.A., “Logic Programming and Rcelational Databases,” in Workshop on
Logic Programming, cd. Sten-Ake Tarniund, Debrecen, Eungary (July 1530).
Brooks, A., “A Comparison Among Four Packages for Knowledge-Based Sys-
temns,” Proceedings of the International Conference on Cybernetics and Society,
pp. 279-283 (1981).

Buchanan, Bruce and Edward Shortliffe, Building Expert Systerms with Produc-
tion Rules: The MYCIN Experiments, Addison-Wesley (1934).

Bundy, Alan, Lawrence Byrd, G. Luger, Chris Mcllish, and M. Palmer, “Sclv-
ing Mechanics Problems Using Meta-Level Inference,” pp. 153-167 in Exper:
Systems in the Microelectronic Age, ed. D. Michie, University of Edinburgh,
Scotland (1579).

Bundy, Alan and L.S. Sterling, ““Mcta-Level Inference in Algebra,” Research
Paper 164, Dcpartment of Artificial Intelligence, University of Edinburgh,
Scotland (September, 1981). Presented at the Workskop on Logic Program-
ming for Intelligent Systems, Long Beach, California, 1581

Bundy, Alan, The Computer Modelling of Mathematical Reasoning, Academic
Press (1983).

Camap, R., “The Two Concepts of Probability,” pp. 19-51 in Legical Founda-
tions of Probability, University of Cricago Press, Chicago (1950).

Chang, C.L., “DEDUCE 2: Further Investigations of Deducticn in Relatienal
Data Bases,” in Logic and Databases, ed. H. Gallaire and J. Minker, Plenum
Press (1978).

Chang, C.L., “Decision Support ia an Imperfect Werld,” Research Repert
RJ3421, IBM Research Division, San Jose, California (March, 1982).

Clark, X.L., “Negation as Failure,” in Logic and Databases, ed. H. Gallaize, J.
Minker, Plenum Press (1978).

120

56.

57.

59.

60.
61.

62.

€4.

6.
67.
68.

69.

[EEE 1980 Iniernasioral Conference on Cybernetics and Society, Boston, Mas.
sachusetts (Cetober, 1980).

Horn, A., "On Sentences Which are True of Direer Unions of Algebras,”
Journai of Symbalic Logic(16) (19351).

Ishizuka, M., K.S. Fu, and J.T.P. Y20, “A Rule-Based Infercace System =iih
Furzy Sets for Structural Damage Assesment,” in Fuzzy Information and Deci-
sion Processes, ed. M. Gupta and E. Sanchez, North-Hcland, Amsterdam
(1982).

Ishizuka, M., “Inference Metheds Based en Extended Dempszer and Shafer
Trcory for Problems with Uncertainty/Fuzziness,” Mew Generation Corputing
2, Springer Verlag (1983).

Kling, R., “Fuzzy Planner: Reascning with Incract Concepts in a Preesdumal
Preblem-Sclving Language,” Journal of Cybernesics 3, rp- 1-16 (1973).
Komorowski, I., “QLOG - The Programming Environmeat for Prolog in
LISP,” in Logic Programming, ed. K.L. Clark and S.-A. Tarnlund, Acadcmic
Press, New York (1982). A.P.LC. Studies in Data Processing No. 16

Kowalski, Rotert A., “Lagic for Data Bescription,” in Logic and Datakases,
cd. H. Gallaire, J. Minker, Plenum Press (1978).

Kowalski, Rebert A., Logic for Problem Solving, Elsevier Morth-Holland,
New-York (1979).

Kowalski, Robert A., “Logic as a Database Language,” Workshop on Lozic
Programming, Long Beach, Los Angeles, Also available as Technical Rerport
from Imperial College, London (September 1981).

Lakoff, G., “Hedges: A Study in Meaning Criteria and the Logic of Fuzzy
Concepts,” Journal of Philosophical Logic 2, pp. 458-308 (1973).

Lecot, Koenraad, “Probabilistic Inczact Reasoning in Prolog-Bascd Expert Sys-
tems,” Term Paper, University of California, Los Angeles (Fall, 1983).

Lee, R.C.T., “Fuzzy Logic and the Resolution Prirciple,” Journal of the ACM
19, pp. 109-119 (1972).

LeFaivre, R.A., “The Representation of Fuzzy Knowledge,” Journal of C yoer-
netics 4, pp. 57-66 (1974).

LeFaivre, R.A., “Procedural Representation in Fuzzy Problem-Solving Sys-
tem,” Proceedings of the National Computer Conference (1976).

Lowrance, John D., “Dependency-Graph Models of Evidental Sugport,”
COINS Report 82.26, Computwer and Information Science Department,
University of Massachuscrts at Amherst (1982). Ph.D. Dissertadon
Macviar-Whelen, P.J., “Fuzzy Scts, The Conecpt of Height, and the He
“Very”,” IEEE Transactions on Systems, Man, and Cybernetics SHC-3(8),

dra
UD\‘

123

42,

43,
44,

45.

46.

47.

- 48.

49.

50.

51.

52.

54.

Based Inference Systems,” Proceedings 1976 National Computer Conferance Vol
45, pp. 1075-1982, Also in Readings in Arificial Intelligencs, edited Sy
Webber and Nilssen, publisked ty Tioga, 1981 (1976).

Duda, R.O., J. Gaschning, and P.E. Hart, “Model Design in the Prospector
System for Mineral Expleraticn,” pp. 153-167 1o Expert Systems in the
Microelectronic Age, ed. D. Michie, Uaiversity of Edinburgh, Scotland (1579).
Also in Readings in Artificial Intclligence, edited by Webber and Nilsson, pub-
lished by Tioga, 1981

Dwiggings, Don, “Prolog as a System Decsign Tcol,” Proceedings of the 16:h
Annual Hawaii International Conference on System Sciences (1983).

Dworkis, C., “Experiments in Elementary Rule-Based Reasoning,” Inwermal
Report, Cperating Systems Division, Legicon, Ine (August, 1981).

Fekete, G., 1.O. Ecklundh, and A. Roesenfeld, “Relaxadon: Evaluaticn and
Appiication,” [EEE Transactions on Paitern Analysis and Machine Inteliigence
3(4), pp. 459-469 (July 1981).

Fieschi, M., D. Fieschi, M. Joubert, and M. Roux, “SPHINX: An Interactive
System for Medical Diagnosis,” in Fuzzry Information and Decision Processes,
ed. M. Gupta and E. Sanchez, Nerth-Holland (1582).

Freksa, Christan, “‘Linguiste Description of Human Judgments in Ezpert Sys-
terns and in the Soft Sciences,” pp. 297-305 in Approximate Reasoning in Deci-
sten Analysis, ed. M.M. Gupta and E. Sanchez (1682).

Furukawa, K., “An Intelligent Access to Relational Databases,” pp. 334-349 in
Computer Science and Technologies: 1982, ed. T. Kitagawa, Elsevier North-
Hoiland, New-York (1982).

Fute, I. and T. Gergely, “A Logical Appreach to Simulatdon,” Proceedings of
the [niernational Conference on Model Realism, Bad Honef, Germany (Apri,
1982).

Gaschnig, J.G., 1. Reiter, and Rene Retoh, “Development and Applicaticn ef
a Knowledge-Based Expert Systern for Uranium Resource Evaluation,” SRI
Technical Report, Stanford Rescarch Insttute, Menlo Park (1981).
Hammond, P., “Logic Programming for Expert Systems,” Master’s Tacsis,
Imperial College, London (1980). Available as Technical Report DCC 824
Hammond, P., “Appendix to Prolog: A Language for Implementing Expert
Systems,” Machine Intelligence 10 (1982).

Hendrix, G.G., E.D. Sacerdoti, D. Sagalowics, and J. Slocum, “Developing a
Naturai Language Interface to Complex Data,” ACM Transactions on Daizbase
Systerns 3(2) {June 1978).

Hoffman, L.J. and L.A. Necitzel, “Incxact Analysis cf Risk,” Froceedings of iite

122

84,

85.

g6.

87.

88.

9.

90.

91.

83.

94.

9s.

96.

97.

98.

California

Quinian, J.R., “INFERNC: A Cauticus Appreach to Unesmain Infcrence,” The
Compuier Journal 25(3), Also available as a RAND Techaical Repert (August
1983).

Rebol, Rene, ““Knewledge Enginecring Teciniques and Tools in the Prospectcr
Environment,” SRI Teehnical Repert 233, Stanford Research Institute, Menlo
Park (1981).

Reiter, R., *“On Clesed World Dartabases,” pp. 55-76 in Logic and Darabases,
cd. H. Galaire and J. Minker, Plenum Press (1973). A'so in Readings in
Artificial Inteligence, edited by Webker and Nilsson, publisked by Tioga, 1981
Reier, R., “A Legic for Default Reasoning,” Arificial Intellizence 13, po. 2.
132 (Octoter, 1930). '

Robinson, J.A. and E.E. Sitert, “LOGLIS?: An Altemative to Preleg,”
Machine Inteiligence(10) (1982).

Roussel, P., “Prolog: Manuel de Reference ¢t d’Utdlisation,” Technical Repert,
Groupe d'Intelligence Artificielle Marseille-Luminy (1975).

SchmucXker, ., Fuzzy Sets, Netural Lenguage Computations and Risk Analysis,
Computer Scienee Press (1984).

Scrgot, M., “Prospects for Representing the Law as Logic Programs,” in Logic
Programming, ed. K.L. Clark and S.-A. Tarnlund, Academic Press, New York
(1982). A.P.L.C. Studies in Data Processing No. 16

Shafer, G., A Mathematical Theory of Evidence, Princeton University Press, -
Princeton, New Jersey (1976).

Shapiro, Ehud Y., Algorithmic Program Debugging, MIT Press (1983). Pa.D.
thesis, Yale University,May 1982

Shapire, Ebud Y., “Logic Programs With Unceruinties: A Teol for Implement-
ing Rule-Based Systems,” Proceedings of the [mternational Joint Conference on
Artificial Intelligence, Karlsrube, Germany (1983).

Shortliffe, Edward H., “A Model of Inexact Reasoning in Medecine,”
Mathematical Biosciences 23, pp. 351-379 (1875).

Silva, Georgette and Don Dwiggings, “Towards a Prolog Text Grammar,”
SIGART Newslenter(73), pp. 20-25 (Octcber 1980).

Swinson, P.8.G., “Logic Programming - A Computing Tool for the Architect of
the Future,” Computer-Aided Design 14(2) (March 1982).

Szolovits, Pewer and S.G. Pauker, “Categorical and Probabilistic Reasoning in
Medical Dlagnosis,” Artificial Intelligence 11, pp. 115-144 (1978).

Tong, R.M. and P.P. Bonissone, “A Linguistic Appreach to Decision Making

~I
<

75.

76.

77.

78.

79.

80.

81.

o, 307.511 (June, 1973).

Wieoo, EJHL, “Preesss Centrel Using Fuzzy Legic,” in Designing for
Husiun omputer Communicarion, ed. M.J. Simep and M.J. Coombs, Academic
Troeas (1983).

Markusz, Z.S., “How to Design Variants of Flais Using the Programming
Language Proleg bascd on Mathematical Logie,” Proceedings [FIP 77,
pp. 885-889, North Holland (1977).

McCloskey, M.E. and S. Glucksterg, “Natural Categories: Well Defined or
Fuzzy Scts?,” Memory and Cogniion §(4), gp. 462-472 (1978).

McDermott, Drew and 1. Doyle, “Nenmonotenic Legie,” Arificizi Iniellizence
13(1), pp. 41-72 (Novemeer, 1980).

Mclermett, Drew, “Tae Prcleg Phaencmencn,” SIGART Newslener(71),
£p. 16-20 (July 1980).

Melle, W. Van, A.C. Scott, I.S. Bennet, and M. Pears, “Tte EMYCIN
Manual,” STAN-CS-81-885, Stanford University Computer Science Dept
(1981),

Oliveira, E., Luis Moniz Pemcima, and Paul Sakatier, “ORBI, An Expert System
for Environmecntal Resource Evaluation Through Natural Language,” Proceed-
ings of the First International Logic Programming Conference, Marseille, Fraace,
ADDP-GIA, Faculte des Sciences de Luminy (Scptember 1982).

Parsaye, Kamran, “Database Management, Knowledge Base Management and
Expert System Development in Prolog,” Proceedings of Workshop on Logic Pro-
gramming, Algarve, Portugal (1983). ‘

Pearl, Judea, “Reverend Bayes on Inference Engines: A Distributed Hierarchi-
cal Approach,” Proceedings of AAAI-82, Pittsburg (August 1982).

Pednault, E.P.D., S.W. Zucker, and L.V. Muresan, “Cn the Independence
Assumption Underlying Subjective Bayesian Updating,” Artificial Intellizence
16(3), pp. 213-222 (May, 1981).

Peleg, S. and A. Rosenfeld, “A Note on the Evalvation of Probabilistic Lakel-
ings,” [EEE Transactions on Systems, Man, and Cybernefics SCM-11(23,
pp- 176-179 (February 1981).

Pereira, Fernando C.N., Luis M. Pereira, and David H.D. Warren, “Prolog:
The Language and its Implementation Compared with LISP,” Proceedings of
the Symposium on Arificial Instelligence and Programming Languages.
SIGPLAN/ISIGART Notices, Rochester, N.Y. 12(8}, pp. 109-115 (August 1977).
Pereira, Fernando C.N., “Logic for Natural Language Analysis,” Ph.D. tzesis,
University of Edinburgh, U.X. (1982). Reprinted as Technical Now 275,
January 1983, Artificial Intelligence Center, SRI International, Mealo Park,

124

APPENDICES

127

99.

100.

103.

104.

105.

106.
107.

108.

109.

with Foory Sets,” [EEE Transaciions on Systems, Man and Cybemetics SMIC-
1(i (14920).

Walker, adrian, “Data Bases, Expert Sysiems, and Prclieg,” Technical Report
RJ-3870, IBM Rescarch Center San Jose (1982). Also in Artificial Intalligence
Applications for Business, Edited by W. Reitman, Publiszed by Akblex, 1984
Warren, David H.D., “WARPLAN: A System for Gererating Plans,” DCL
Mcemo 76, Department of Artificial Intclligence, University of Edinburgh
Scotland (1974).

Warren, David H.D., “Generating Conditional Plans and Program,” Proceed-
ings of the AISB Summer Conferencz, Edinburgh, Scotland (July, 1976).
Warren, DPavid H.D., “Prclog on tze DEGsysiem-19,"” pp. 153-167 in Exges
Systems in the Microelecrronic Age, ¢d. D. Mickie, Uriversity of Edinturzl,
Scotland (1979).

Warren, David H.D., “Logic for Compiler Writing,” Sofiware Practice cnd
Experience 10(1), pp. 97-125, Also available as DAI Research Paper 44 from
Department of Artificial Intelligence, University of Edinburgh (1980).

Warren, David H.D., “A View of the Fifth Generation and its Impact,”
Rescarch Report, SRI International, Mcenlo Park (1982). Also in Artficial
Inweiligence Magazine, Fall 1932

Wesley, L.P., “The Use of an Evidental-Bascd Mode! for Represcnring
Knowledge and Reasoning atout Images in the VISIONS System,” Proceedings
of Workshop on Computer Vision: Representation and Control, Rindge, New
Hampshire, Franklin Pierce College (1982).

Zadeh, Lofd A., “Fuzzy Sets,” Information and Control 3, pp. 338.353 (1965).

Zadeh, Lofd A., “A Theory of Approximate Reascning,” Machine Intelligence
10 (1979).

Zadeh, Lofd A., “Test-Sccre Scmantics for Natural Language and Mezaning
Representation via PRUF,” SR!I Technical Report 247, Stanford Research
Institute, Menlo Park (May 1981).

Zadeh, Lofti A., “The Role of Fuzzy Logic in the Management of Uncertainty
in Expert Systems,” Fuzzy Sets and Systems 11, pp. 199-227 (November 1583).
Zadeh, Lofti A., “Commonsense Knowledge Representation Based on Fuzzy
Logic,” Computer 16(10) (October 1983).

Zadeh, Lofti A., “A Compurational Approach to Fuzzy Quandifiers in Nartural
Language,” Computers and Mathematics 9, pp. 149-184 (1983).

Zaumen, W.T., “Computer Assisted Circuit Evaluaticn in Prolog for VLSL,”
Proceedings of ACM/SIGMOD Conference on Modelling of Daia, San Jose
(1983).

126

print_expert :- clear,

nl,

WIite(HE et I AR IR ERLII ISR IARILERILE () Yo,
write(’ + * ’},nl,
writa(’ = CONSULTING THZ DOMAIN EXPIRT = ’),nl,
write(’ = + “),nl,
write{’ s#sssessaesiiisesssransarssssreassrssizs) 0l
=l

asx_rules :-
setof0(R,rule(R),Rules),
ask_info_rules{Rules),

ask_infs_xrules{[]).
ask_info_rules{[(X := ¥}IiT]) :=~
~nl,
print_info,
write(’ Waat is the prior prodadbility of *),write(X),
wzite(” ? ‘),
readnumber{Prod),
assertz(prior_prob(X,Prob)),
nl,

write{’ What is the prior probadbilisty of ’},
write(X),write(’ if you X=ow that °),
write(Y),write(’ is txue’),

writa{’ ? '),

readnumber(?HZ),

assert(prior_phe(X,Y,PHZ)), ¥ P(HI!E)

nl,

write{’ What is the prior probadility of '),
write(X),write(’ if you knew that ‘),
write(Y),write{’ is false’),

write(” ? *),

readnumber (PHNZ),
assert(prior_phne(X,Y,PHNZ)), % P(H!-3)
ask_info_rules(T). '

ask_facts :-
setof0(R,fact(R),Facts), % a fact is a piece of eviderce
ask_info_facts(Facts).

ask_info_facts([]).

ask_info_facts([X!T]) :-
nl,
print_info,
write(’ What is the prior probadility of
write{’ ? ’),
readnunber (2rodb),
assertz(prior_prob(X,?rob)),
ask_info_facts(T).

129

APPENDIX 1
PROLOG IMPLEMENTATION CF PRCSPECTOR

% filename ! prospector

% author : Xoenraad Lecot

% update 1 Decembter 5, 1583

% purpose : Prospector probabllistic reasonin

% Pruspecior stratagy

L o b

% Strategy

Y ~—m——m————

% The prior probabilities of all propoesitiens . - inferanca rulas
% in the xnowledge Ddase are supplied by tha doi:in expert an
% stored permanently.

% The posterior probabilities of the evidenc:z zr2 supplied
% by the user ard are stored temporarily

% All other posterior prohabilities are computsd by ths
% infererce system and are NOT stored

DEFINITION PHASZ (get all PRIOR probabillities)

R R

ask the DOMAIN EXPIRT all necessary informasion needed for
Prospector, this information consists of
A) For each rule H := Z
1) P(H'T) (prior prodmabiliity) (prior_phe(:,ZI,?
2) PLHI-E) {prior probadbility) (prior_pnne(H,Z,
B) For each rule head { hypothesis)
1) P(H) =» uncertainty of the nypothesis (prior probability)
{ is stored as pior_prob(H,?))
¢} For each plece of evidence Z (nen zule h2ad)
1} P(E) = initial probability (prior probability)
{ is stored as prior_prod(Z,?))

ARTARARRAAAEER

ask_prospector_expert :-
print_expert,
clear_info, % get rid of all old info
askx_rules.

128

% clear tha l.idbase

clear _irzc
abslisifvost _prob,2),
ape L~ prior prob, 2),
ay +i- - prior_odds,2),
a:-" . :(pricr_pne,2)},
arol‘sniprior_phne,2}.

X Prospect. .r updating
K mmmmrm e ———————

% the head cf a rule (a conclusion or hypothesis)

X with posgsgirle multiple evidencs

% compute the posterior probabilicy given the user’s belies
X in the various pilszces of evidancs

compute{Geal,Prob} :- ruls_read(Gcal},
setofl(Body,clavse(Goal,Body),Bodies),
compute _likelihood(Geoal,Bodies,L},
prior_prob(Goal,Prior),
calculate _odds{Prior,Pricrodds),
PostOdds is L # Priorodds, '
calculate_prodb{Postfdds,Proh).

% a cenjunction of predicates (basic Zadenh fuzzy trheory)
compute((A,B),Prob) :- compute(A,P1),
. compute(3d,?2),
- min({P1,P2],Pzob).
% a disjunction of predicates (basic Zadeh fuzzy theory)
compute({A;3B),Prob) :- computel(A,®1),
compute(B,P2),
max{{P1,P2],Prod).

X a negation

compute{not(A),Prod} :~- compute(A,?1),
Prob is 1 - P1.

% a fact { a basic plece of evidencae)
compute(A,Prob) :- evidence(A),post_prob{a,?rob). % unit clauses
X use the user supplied posterior probdabiliiy for

X this piece of evidence
% { or the default prior probadbility)

31

% CONSULTATION PEASZ '?RICR prcehadilitiasg of thme evidernce)

¥ masssssssmnusr -rTsw=

ask USER are-al 2is cpiniocn about the various pleces if evidence
let him perovida P/EZL1Zi°) (posterior prodability)

a FACT, . "~ «iallad a piece of ZVIDENCZ, is any statement

in the ~nmwizadue base, which is not a ~ypothesis for

an inferenca rule

FARXAAR

ask_prosnector_user -
print_user,
setcfO(R, fact(R),Facks),
ask_user_info_facts(Tacts).

print_user :- clear,
~l,
write(’ FESEARFFRRFRREIIREEIARRRLRIRSRESRRIIRRESY) D,
write(’ = : * 7),nl,
writa{’ = CONSULTING THI USER * ’),nl,
write(’ » + ’),nl,
writa(’ F2434R 4430344254232 0202% '), 1],

nl.

ask_user_info_facts([]).

ask_user_info_facts{[XIT]) :-
nl,
print_info,
prior_prob{X,?),
write(’ The domain expert provided a probadhility of ‘),
wrice(P),write(’ ‘for ’),write(X),nl,
write(’ If you agree wiih this value’},
write(’ or you have no idea, then press CR “),nl,
write(’ otherwise enter your estimate '},
readnunber(?rob},
replace{?rob,post_prob(X,2}),
asx_user_info_facts(T).

% When the user canncot supply any new evidence, then use
% the prior propadbility

replace(Prob,posc_prob{X,P)) i~ name(Probd,{]},
prior_preb(X,?),
retract_check({post_prod(X,_)},
assertz(post_prob(X,P)).

% the user supplied rnew evidence

replace{®rob,post_pro%(X,?)} :~ retract_check(rost_pred(X,?)),
assertz(post_prodb(X,Prob)).

130

compute _li(H,Z,20s%PHI) ;-
compute_prior_prob(Z,Priorx),
coxzputei I, fost;,
Prior =< Post,
Post =< 1,
prior_ghe(Hd,z,?riorpxz),
Prior_prob(H,Pricrry),
R1 is PriorpHz - PriorPH,
R2 is 1 - prior,
R3 isa R1/R2,
R4 1s Post - Prigr ,
R5 is R3 + R4 |
PostPHI is RS + Prios=»y,

% compute the effactiva Litatineod ratio of Hiz’
% deals with muliipla evil. -na

b4 n

% O(HIZ’) = { » Li) ¢ =,

% i=1

% where

% Q(HIZL")

b1 Li a3 -—ccaea-aa

*% O{H)

compute_likelihoed(_,[],1).

compute_likeliheed(G,[2i7],1) :=-
compute_li{G,H,?),
calculata_codds(?,?o0st0dds),
prior_prodb(G,2rior?Pred),
cdlculate_odds(Prio:?rob,?ziorOdds),
P1 is Post0dds / PrioxCdds,
compute_likelinood!(G,T,Rest),
L is P1 » Rest.

% Prior probabilities of rcolsan ccmbinations of evida=c
% a conjunction of predica-ss (basic Zadeh fuzzy theory)

compute_prilor_prob((A,8),Pred) :=-
compute_prior_prob(A,F1),
compute_prior_prodb(B,?2),
nin([P1,P2],Prob).

% a disjunction of predicates { bas:ic 2aden fuzzy theory)

compute_prior_prob{{A;B},Prob) :-
compute_pricr_prob(A,?1),
compute _prior_prob(3,?2),
max([2?1,22],2rob}.

¥ r*y5ln ayes formulas
% m 4 emrmmmessa————-

%
X0 = —----
%

% compute odds for given prodbability
calculate_odds(Prodb,0dds) :-
P1 ia 1 - Prob ,
Cdds is Prok/?1.

% compute probability for given odds

calenlate_probiQdds,?Prob) :-

% compute the postericor probabllity of a hypothesis
% Prospector’s piecewige lineary function

% { { P{H} - P(HI-E))

% { P(HI=Z) + ———=—mmmmmmmomme e P(ZIZ*)

% { P(E)

% { for 0 = P(ZIZ’) < P!
% P(HIZ’) = {

% { { P(HIE) - P(H)) :

% { P(H) + =e=emccccaccacacna { P(EIE’) = P(Z))

% { 1 - P(Z)

% {

for P(E) < P(EIZ’) = 1

compute_li(H,Z,Post?HI) :-
compute _prior_prod(Z,?riorl},
compute(Z,Post),
Q =< Post,
Post < ?rior,
prior_pnne(H,Z,?riorPENZ),
prior_prob(H,PriorPH),
R1 is PriorPH - PriorPHNZ,
R2 is R1/Prior,
R) is R2 + Post,
PostPHZE is R3 + PriorPHNE.

\

retract_check(P) :- clause!?,true),!,retract(?}.
retract_chaeck{ (Head :- 3ody)) :-

clause(He=ad,30dy), |, recract({{Head :- Sody)).
retract_check(?}.

¥ minimum of two elemenis
min{[A,B],A) := A<B.
min{[A,B],3) :- B<A.
min{[A,B],A). .
¥ maxicum of t“wo elements
rax(f{A,8},A) :- A>3,

ra:x({[A,237,3) := 3>A.
zax([A,B31,4).

[y
(7]
(¥

% a neqacio

computa_pricr_prob(nmot{A),?zod) :-
conpute_prior_preblA,21},
?rob is t - 21,

% a fact

compute_prior prob{Aa,Prob) :=- prior_prob(A,Prod).

% control

:‘ _______

start :-
write{’ Select your tmowladgs base),
readname{Mana),conseleiiane},nl,
write{’ Select your infzrence nmechanisa '),

zeadname(lethod),
do{Method).

do(prospector) :- ask_prospector_expert,
ask_facts,
ask_prospector_user,
hypotnesis(®),
nl,
write(’ The posterior probability of
write(H) ,write(’ is '},
compute(H,?P},wzite(?).

print_prospector - clear,'
.al,

write(’ SEEF AR SR AR RRARRNRRRRERLRIIRRRIRES

write(’ »
write{’ » PROSPECTOR
o . write(’. s

L]
*
*

writa{’ #3 e A ER R ERERRERRRLARR RIS LSRRI ITAY

nl.

print_info :-

write(’ The probability of a statemexnt Is any ’}),znl,
write(’ real number batween 0 and 1 wnere 0 means false’),nl,

write(’ and 1 means true ‘),nl.

utilities
% cm——-— -

% clear screen
clear :-~ put{26).

% retract should not fail

154

"}.nl,
“},nl,
"},nl,
’},nl,
*),nl,

% filerane : conseltl

% author Yoenzzad Lecot

% update Zzeswber 1, 1583

% purpose . —onstlt imowledge base

% special consuli routine for locading a kowledge base
¥ mm— et memari e mmsemeEmEmEE—mAs At G e e —m—————————————

¥ We have to stcre the database referxences to be adle to
% make a distinction between xmowledge base arnd program

consuls2(File) -
seeing{Input),
see{File)},
clear _xowledge_base,
repezt,
raad!Term),
process(Ternl},
seen,
see(Input),i.

process(Term) :- Term = end_of_f£file,!.

procesa(?-G) := 1,call(G),!,fail.

procegs(Clause) :- assertz(Clause,R},
assertz(zef(R)), ¥ storae the dh raferernca too
fail.

¥ UTILITIZS

% find the head of a rule

head((X :~ ¥),X).

% find the hody of a rule

body((X :- ¥),¥).

% distinction between facts and rules

fact(F) :- ref(R),clause(?,trve,R).
fact(F) :=- rule_body(d),and_rmamdber(F,3),not(rule_head{7}).

evidence(Z) :~-
fact{Z}), % definition of a piece of evidernce
not(rule_head(IT}).

rale((X := ¥)) :=- ref(R),clause{X,¥,R),Y == true.

rule_head(X} :=- ref(R}),clause(X,7,2),¥ == true,

137

¥ fileram raxd

% author 7 =sraad Lecot
% update ¢ ovember 21, 1983
% purpose - -=ad real numbers

% REZAD routinews

"
YA mmmemmamm—— .

readnunher (N} -
nl,prompti{X,’ give a nuzder » 7)),
readstring(List),
reverse{List,[ZIiT]},
reverse(T,List2), % g2t rid of CR a%t ths end
name(N,List2}).

r2adnane(N) -
nl,prompt(X,”’ inpuet please > *),
readstring(List},
reverse({list,[HIT]),
reverse(T,List2), %X get rid of CR at the en
name{N,List2).

readstring{{X1iT]) :- get0{K1},readrest(X1,U).
readrest(10,[]) :-1. /2 newline /

readrest(12,{]) :-!. /2 mewline #/

readrest{13,[1) :=!. /% newline =/

readrest(14,(]1) :=!. /& newline =/
readrest(X,[K11U)) :- X<33,1,get(X1),readrest{X1,U7.
readrest(X1,[X2i{U]) :- get0(K2),readrest(K2,U).

% utilities

raverse(L1,L2) :- revzap(lLi,[]1,L2).

revzap([xiL],L2,L3) :~ revzap(L,{xi12],L3).
revzap({l,L,L).

retract_list(T1).
% Search for a sa2t of things,

setof0{Zxpr,Searchzxor,Answer)

like setof, but can returm nil

setof (Zxpr,Searcniipr, Answer), 1,

setof0(Zxpr,Searxcnzxpr,{]).

rule_ bedy: vt = ref(R),clause(d,¥,R),Y == trus,
% and_xzwaber : check if a predicate is a mexmbar of a conjuncticn

ard_mem»er(P,{P,Q})).
and_nmenher(?,{?1,Q})) :- !,and_namvex(?,Q).
and_mexber(?,?).

% transform a conjunchion of predicates Into a list of predicates

and_to_list((X,¥),[X!12]1) :-!,and_to_list(¥,2).
and_to_ list(tzrue,[]) :~ I.
ard _to_list(x,[X]) = 1.

% ancestor : find an anmcestor of a goal inm an AND/CR tres
% A is ancestor of G

ancester{G,A) - rule(R),bcd7iR,R3),and_nenter(G,RP3),head(R,A).

% parent : find the parent goal of a geal
% P is parent of &

parent{G,P) :- ancestor(G,P}.

% child ¢ fimd a child of a2 node In the AAD/QOR tree
% C is child of P if P is parent of ¢

child(?,C) :- parent({,P}.
% hypothesis = a rule head without an ancestor
nypothesis(H®) :- rule_head(H),!,setof0(X,ancestor(#,X),[]}.

% utilities

% clear the kowledge base

clear_xnowledge_base :-
satofQ{F,fact(T),Tacts),
retract_list(Tacts),
setof0(R,r1le(R),Rules),
retract_list{Rules),
abolish{ref, 1),
abolishiprior_odds,2).

% retract all clauses in a flat list
retract_list([]).

retract_lis=([H1IT1]) :-
retract_check(H1),

138

APPENDIX 2
EXECUTION TRACE OF PROSPECTOR IN FROLCG

Script startad on Wed Dec 7 21:43:18 135383
cprelog

C-Prolog version 1.4a, Silogic release A
Copyright University of Zdinburgh and Silogic, Inc. 1933
{ ?- [begin].

Prospector ceomsulted 6320 bytes 2.8 sec.
read consultad 1088 bytes 0.483334 sec.
matrix consulted 4112 bytes 1.45 sec.
consultl consulted 24490 bytess 0.95C001 sec.
Mo leasaing.

Debug meode switchad off.

ves
begin consultad 14440 bytes 6.6 sec.

yes
| 7= stare,
Select your xmowledge basa
input please > real

Select your inference mechanism
input please > prospector

FREEFEEFEEFLIFEALEEAEEI AR F R R ARRRTATR SRR

* *
* CONSULTING THE DOMAIN EXPERT *
* *

A EREZFEER AR AFARERREZRERAAAEAEERARAEREEDR

The probadility of a statement is any

real number between 0 and 1 where 0 means false
and 1 means true

Wnat 13 the prior probability of fle ?

give a number > 0.23

Wnat is the prior probability of fle if you kow
that covr is true ?
give a nunber » 0.52

What is the prior probability of fle if you know
that covr is false ?
give a number > .25

The probability of a statement is any

real number Dbetween 0 and 1 where (neans false
and 1 means true

141

% filename : r>»al

% Prospector =x~ple Lnference nat

% Exanmple from M7.su81)

% gir = grazni~ = istrusives in region

% fre a favoranle ragional envirorzent

% fle = favorabie level of erosion

% otfsys = preintrusive throughgoing fault system
% cvr = coeval volcanic rocks

% hype = nypadyssal regional environment

% stir = suggastive texture of ingeneous rock

% spir = suggestive morphology of ingeneous rock
% fxgs = fine-to-mediun grain siz

% ot = porphyriifiic texturs

% rcs = stocds

% rcad = dilzes

% roih = intrusive breccias

¥ rovp = volcanix plugs

gir := fre.

fre := fle. *

fre :- otfsys.

fle :- cvr.

fle :- hype.

hype :- stir,

stir :~ fxgs.

stir :- fmgs,pt. ,
fngs - pt.

hype :- snir.

smir :- recib.

smir :=- ros.

smir :- rcad.

SMir - TrCovp. ' ' T T - -
smir := reidb;rcas;rcad;rovp.

give a nunber > 0.54

Thne probability of a statenent is any

real nunmber hetween 0 axmd 1 where 0 means false
ard 1 peans true

Wnat is the prior probability of gir ?

give a mumber > (.63

Wnat is the prior probadbility of gir if you xTmow
that fre is tzue ?
give a rumber > 0.82

What 15 the prior probability of gir if you mow
that <fras is false ?
give a number > .64

The nreobability of a statenent fs any

real number between 0 and 1 where 0 reans false
ard 1 means true

Wnat is the prior probability of hype ?

give a number > (.63

Waat is the prior prodability of hyrpe if vou cow
that smir Iis true ?
give a number » 0.72

What iz the prior probahility of hype if you know
that smiy is false ? :
give a number > 0.72

The protability of a statement is any

real numdber between 0 and 1 where 0 means false
and 1 means true

What i1s the prior probability of hype ?

give a number > 0.74

wWhat I1g the prior probability of hype if you xow
that stir ls truae ?
give a number > (.42 “

What is the prior probability of hype if you know
that stir is false ?
give a number > 0.35

The probability of a statement is ary

real number between {0 and 1 where (0 means false
and 1 neans true

Wnat is the prior probability of snizr ?

give a nunber » 0.87

What is the prior probability of smir if you xmow

143

Wnat La the prior zrebadility of f£le ?
:+ 4 nuxmter > 0.12

What is the prior probability of fle if you xnow
nype 13 true 7
give a number > 0.23

Wnat is the prior prodbadbility of fle if you mow
that hype is false ?
give a number » 0.75

The prodadility of a statement i3 ars

raal number bhetween 0 and 1 whare 0 meansg false
and 1 mesans true

Wmat is the prior probability of fzgs ?

give a numder > 0.01

Waat is the prior prebability of fmgs 1f you ‘oW
that pt is true ?
give a number > 0.91

What is the prior probadblility of frgs if you Tow
that pt is false ? . -
giva a nunder > 0.52 ’

The probadbility of a statement is any

real nuxher between 0 and 1 where O means false
and 1 means true

Wnat is the prior probability of fre ?

give a number > 0.63

What is the prior probability of fre if .you ow
that fle is true ?
give a number > 0.47

Wnat i1s the prior probadility of fre if you Xnow
that fle is false ?
give a numbder > 0.52

The probability of a statement is an

real number between 0 and 1 where 0 means false
and 1 means true

What is the prior probabllity of fre ?

give a number > J.19

What is the prior probability of fre if you kow
that otfsys is true ?
give a nunber > 0.23

Wnat i3 the prior probadility of fre if you oW
that otfsys is false ?

142

ard 1 means =1ruia2
What is cthe srior prodabllity of smir ?
give numner > 0,23

Wnat is the prior probability of snir if you Tow
that zreibjres;rcad;revp is true ?
give a numher » 0.98

Wnat Zs the prior probability of smir if you know
that zrecib;xecs;rcad;rcvp is false ?
give a nuxbher > Q.34

The proXadbility of a statsment is any

real nuemPer between 0 and 1 where 0§ means false
arnd 1 me2ans true

Wnat is the prior Trokabiliiy of stiiz 7

give a numher > 0.98

wWhat is the prior probability of stir if you kmow
that fmgs is true ?
give a nunmber > 0.23

Wnat is the prior probability of stir if you know
that frgs is false ?
ive a numbar > 0,32

The prozability of a statement is any

real number between 0 and 1 where 0 means false
and 1 means true

What is the prior probabili ty of stir ?

give a number > 0.12

What is the prior probadbllily of stir if you thow
that frgs,pt is Ltrue ?
give a nuxber » 0.21

What 18 the prior prodadility of stir if you cow
that frgs,pt is false ?
give a number > 0.45

The probability of a statement is any
real nunber between 0 and 1 where 0 means false
arnd 1 means true
What is the priocr probability of cvr ?
ive a number > 0.65

The probability of a statement is any

real number between (and 1 where 0 means false
and 1 means true

What is the prior probability of otfsys ?

give a numdber > Q.32

145

tnhat reoad is true ?
give 2 —wrner > 0.23

Wnat i~ tae prior preozabllity of smir 1f you mew
thas rccad is false ?
give a nunter » 0.87

Tre probability of a statenment is an:

real number hetween 0 and 1 where 0 means false
ard 1 means true

Waat is the prior probability of smir ?

¢ive a numder > 0.12

wnat i3 the prior preobability of snir if you xowW
that =zeib is toue ?
cive a nurber > 0.34

What 13 the prior probability of saizr if you khow
that rgib isg false ?
ive a number > 0.54

The probadbility of a atatement is any
real number dhetween § and 1 where 0 means false
arnd 1 means trua
wnat is the prior probadbility of saix ?
ive a nmumber > 0.63

what is the prior probability of smir if you Icow
that zrcs is true ? .
give a rumder > 0.23

What is the prior probability of smir if you know
that zrcs is false 7
ive a number > 0.87

The prodbability of a statenent i3 an

real number between 0 and 1 whera (0 means false
and 1 means true

Wnat is the prior probability of smir ?

give a number > 0.65

‘What Is the prior prodability of smir if you know
that zrovp is true ?
give a number » 0.97

What is the prior probability of smir if you inow
that zrecvp is false ?
give a nuwber > 0.65

The probability of a statement ils any
real number between 0 and 1 where (neans false

144

real fuiombhaer

arn:l 1 means

Tha ducain sxXpert provided a probabilicy of
I7 you zgrae with this value or you have no

metween 0 and 1 where means false
true
G.12

icdea,

otiierwise enter your estimate
giva a nunker » 0.75

The probability of a statement is an

real nunber
ard 1 means

between 0 and 1 where 0 xteans false

true

Tne dcmain expert provided a probability of (.86
If you agree with this value or you have no idea,
otharwise enter your estinate

give a

The prozadbility of a statement
real nuxzker between 0 and 1 wih

arnd 1 means

—umber » .32

true

The domain expert provided a probadbility of Q.53

If you agree with this value or you have rno idea,

otherwlse entey your estimate
ive a number » 0.23

The prokabllity of a statenent is arny

real number
and 1 means

between 0 and 1 where Q peans falss
true

The domain expert provided ; probabllity of 0.87

If you agree with this value or you have no idea,

otherwise enter your estimate
give a number > 0.20

The probadbility of a statement 1s any

real number
and 1 means

between 0 and 1 where 0 means false
true

The domain expert provided a probability of 0.43

If you agrae witih this value or you have rno idea,

otherwise enter your estimate
give a nunber »

The probadbility of a statement isz any

real numder
and 1 means

batween 0 and 1 wnere 0 means false

true

The domain expert provided a probadility of 0.63

If you agree with tiis value or you have no idea,

ctherwise enter your estimate
give a number > 0.3

The prodadility of a statement is any

real number
and 1 means

between 0 and 1 where Q means false

true

The domain expert provided a probability of 0.62

147

Zoz ocisys

tien press
for pt
then press
for rrad
then press
for rcid
then press
for res
then press

for revy
then press

CR

cX

Tr2 prcochability of a statenment is any

real numher between (0 and 1 where Q zsans false
and 1 means true

Wanat is the prior probability of pr ?

give a number > 0.86

The prozability of a statement 1s any

real numbher datween § and 1 where 0 means false
and 1 means true

Wnat is the prior probability of rcad ?

give a nunrer > 0.53

The probadility of a statzment Is any

real nuxsher tatween 0 and 1 wheze 0 geans false
and 1 means toue _

wrat is the prior prorabilicy of reid ?

give a number > 0.87

The probability of a statament i3 any

real number between 0 and 1 where 0 means false
and 1 means true

Wnat is the prior prodadility of rcs ?

give a nunber > 0.43

The probability of a statement is am

real number between § and 1 where 0 rmeans falsa
and 1 means true

what is the priocr probability of rcvp ?

give a number > 0.63

The probability of a statement i1s any

real rumber between 0 and 1 where 0 means false

and 1 neans true

What is the prior pzobabillty of reib;rcs;rcad;zevp ?
give a number » 0.62

FEREFRRARRRRERA AR REIRERERATAERRARREREFEAD

* #
* CONSULTING THE USZR +
* *

EERRERREARERRERREERRAIEFRRR AR AR SR ER LI EETD

The probability of a statement is any

real number between 0 and {1 where (means false

and 1 means true

The domain expert provided a probabllity of 0.65 for cvx

If you agree with this value or you have no idea, then press CR
otherwise enter your estimate

give a nunher >

The probadility of a statement is any

146

KRR

-
-

./.
%
!

<
b1

»,
P

%

A R

RELAR

&R

APPENDIX 3
PROLOG DMPLEMENTATION CF MYCTY

Filenmane: nycin.pl
Autnor : Peter Harmmond / Xoernraad Lacot
Date : February 10, 1984

Subject : Prolog Implementation of Myecin

(2 A2 AR RS EES SRS SEREEL SRR]

* L]
* Mycin in Proleg | &
+* +

(R AREREEREERREEESDEERDE E-DEEEE L]

Crigiral »rogranm, wriiten by Pater Hamrornd, 1980
Debugged, convertad {rom Waterlco Prolcg to CProleg
by Kcenraad Lecot, 1984

Entensiona include

1. Better I/Q interface, and erITor racovary.

2. Modified the explanation facility to make iL more gansral,

3. Modifisd tha dataclass dataiyps to zake the whole progzax
more independent from its application area, i.e. a first step
toward EMycin

4. Using more meaningful names for predicates and variables

5. Dotument the progranm

The data structures included

in the Prolog version of Myein are a
twowledge base, i.e. rules,

A context tree to store background data
and important facts obtanened during the
consulation phase and firally, a

separate record of the possible identitiss
of each suspected organism.

The context tree is defined by a datatype

that reflects the hierarchical

structure
dataclass{class-number,class-name,class-details)

A record of posaible identities of each organi i3 kept by
know{ <organism>, <identitys», <certainty-factors>)

rule : embodies the actual xnmowledge bass

% The consultation systen

140

for rcin;rcs;rcad;rcvy

If you agree with this value or you hava no i1dea, than prass (R

otherwise antar your estinate
ive a number >

The postericr probability of gir is 0.63521

| ?- halt.

[Prolog execoution nalted]

& °D

script dore on Wed Dec 7 21:53:14 1983

[
S
(%]

% gen_.no : genmerates 2 unique numbey for each new antiiy

gen_no{Class,Nawlo) :-
retract(numbar(Class,0ldNo}),
sun(1, 0ldNo, NewNo) ,
assert(nuxber({Class,NewVNo)}.
genheader(Intity) :-
write(’ ’}),write{Zntity),
-

S

A cet_details : asks the user to supply informatissm of a
% bacikzground nature for a zazticular entity and
% can also cause a nessage to be printed

% anrouncing tha name of tha first entity “n the
% mext class in the nisrazchy

get_datails{Class,Intity,Descr) -
dataclags(Class,Name,Details),
get_list(Class,Details,Descr),
generate_messages{Class,Entity)}.

% We rnote again that the datatype dataclass entodies ths
%X nierarchical structure of the context Ltree

get_list(Class,[]1,[1).

get_list{Class,[ItemiOtherItens], [Answer!OtherAnsver]) :-
get_answer{Class,Iten,Answeaer),
get_list{Class,OtherItems,OtherAnawver).

% current : returns the current entity of a particular class

current{Class,Entity) :-
number(Class,No},
dataclass{Class,ClassVame,Details),
concat({ClassyNane,No,Intity).

number ! stores the numbder of a current entity

for a particular class

Tais declaration serves as initial data for the gen_no pradicate
described earlier.

KRAR

number{0,0).
number{1,0).
number(2,0}.
number{3,0).

number (quastion,).
number(rule,0).

X get_answer . asks the user for data and reads thes value
% of an item of background data.

.,‘ ASXSSI=SIETTRULEIITTISSTETE

% 1. Top Lewst ¢ initiation by start_session)
start_sess- .ourapy_required,consulation.
start_sassion - close_down.

% therapy_raguized will asx the user if ne has odbtained positiva
% cultures, 30 that the system will mow 1f the consultation
% session snould comtinue or not.

therapy_required :-
print_header,
cet_answer(0Q,iniciator,nswver), !,
Answer = Yes,

% The call get_data(G,PatientData) starts the consultation faza

consulation :- get_data{(,PatlentData},
nl,
write{’ The patient data obtained during this sessiocn are:’),
nl,
write_out(PatlentDatal.

% get_data : get patient data, teo »ulild a context tree

get_data(Class1.[Class1Datartemiotherclass1Data]) HE
1t(Class1,4), ;
gen_new(Classi,Intity),
get_details(Class?,Entity,Descr),
sum(Classi,1,Class2),
gei_data(Class2,Class2Data),
ClassibataItem =.. [Entity,Descr,Class2Datal,
chack_for _more{Class1,0thexClassiData).

% the end of the recursion in the data gatherirg process

get_data(4,Hypothesis) :-
current{ 3,Entity),
get_hypothesis{Entity,genus,Hypothesis).
% use the given knowledge hase

% gen_new : generates a new entity of the required class and
% also causes the printirng of a headline announcing the new entity

gen_new{Class,Zntity) :-
gen_ne{Classg,NewiNo),
dzataclass(Class,ClassName,Details),
concat{ClassName,NewNo,Zntity),
genneader(Entity).

150

-~

1me Test of the prodicates in this section deal explicitl;

A wirs the predefined knowledg2 base. The predlicate sate

% 1= uged in the rules that are descrized at the ernd.

Confidence factors are enterxed or defined on a scala of
(-1000, +«1000].

same : causes evidence to ke gathered wnich bears on a

value of a clinical parameter and succeeds if the CT

supporting this value is greater than 200, a threshold

deternined by the medical expert.

ARXRLRAR

same(Intity,Attridbute,RequiredValues,MaxC?) :=-
get(EZntity,Attribute,Requiredvalues, MaxCq), !,
gt{MaxCr, 200Q).

mote Lthnea use of "egui" in the above definition as wa do ot want
the process of evidence collection to be repeated if the
CF of the result is less that 200

LR

same is defined Iin terns of get, a function that will compute
the CF of the hypothesis, supported by Intity and Attribute

® ot

X get: collects the hypotheses relevant to determining
% the value of clinical

% parameter and finds the largest of the confidence

% factors supporting the possible values

get(Entity,Attribute,RequiredValues,MaxC?) :-
get _hypothesis{Zntity,Attzribute,Hypotheses),
intersect{Hypotheses,RequiredValues,Intersection},
rmax_hypothesis(Intersection,MaxCry).

¥ get_hypothesis is the most important procedure.

%X We nave three possible methods of determining an

% attributa value:

% 1. First, we can test if it already known in the current context

get_hyDothesig(iIntity,Attridbute,[¥ypothesis)) :-
cow(Entity,Attribute, [Hypothesis]).

% 2. Next, we can try to deduce it from the nowledge base

get_hypothesis(Intity,Attridute,[Hypothesis]) :-
deduce(Entity,Attribute, [Hypothesis]}.

% 3, Finally, we may ask the user to supply it. We note that the
*% user always as the option to enter "unknow"

get_nypothesis(Intity,Attribute, [Hypothesis]} :-
ask_for{EIntity,Attridute,[Hypotahesis]l).

153

% Tach questicn is preceded by a naw question
% number

get_answe. Clas=, Item, Angwer) -
gen_ony - [ne-3tion,Q),
writene!{Class,Q),
questio:{Item},
readstr{Answer),nl.

writeno(Class,Q) :-
write(’ 7},
write(('},
write(Q),
write(’)").

% check_for_more : askg the user if there i3 another a2ntity ¢l a
% particular class to be considered

check_for_more{Class,OtharData) :=-
dataclass(Class,ClassName,Details),
write(’ Is there another '},

_ write(ClassName),write{(’ ? *),nl,
write(’ CR means no to me ’),write(’? *},
readstr{Answer2),
(Answer2 = uniciown =-> ATnSwWer s O ; AnSWer s foswerl),
-t
nl,

consider(Answer,Class,OthexrData).

consider(no,Class,[]).
consider(yes,Class,Otherpata) :~-
get_data{Clasa,OtherData).

% The call get_data, in the previous procedurs will continue
% the consultation process at any level In tha context tree
% concat : concatenate two strings, using a hyphen

concat(M,¥,L) -
name(M,Lisc1}),
rname(N,List2},
name({’ -’ ,Hyphen),
append{List1,Hyphen,Liatl),
apperd{List3,List2,Listd),
name(L,List4).

% check if string A iz a substring of B
sunstring(A,B3) :-
name(A,List1}),

nane(B,List2},
append{List1,_,List2).

152

dif£{100G.:
rroducti Qs
sum{Cr., &

intersect({v. ~u=lng,CTYIH],[Valueinast], [v({Value,CT)IH1]) :-
invav.. ' . d4,Rest,q1).
intersect([+{value,CT}IH],[M!Rest],q1) :-
ne(Tilue, M),
irtersent [H,{M],X),.
intersect![v(Value,CF) 'H],2est,Y),
union: X, ,Hd1).

Lafaything,[1).
nytning,[1,01])

(]
o
[]
t‘D
rf rf
B

wnton(X,(1,%,.
unioni{[R],¥,[RIY]).

% max_hypotnesis computes the maximum of the confidence factors.

max_hypothesis((],0).

max_hypothesis([v{V,C)id],MaxCF) :-
max_hypothesis{H,C1},
largest(C1,C,MaxCy),

largesti{C¥1,C72,CF1) :-
ge{CF1,CF2}.

largest(C“1,_-2 CFr2) :-
£{CT2,CF1).

% ask_for: causes the user to be asked for

% the value of a clinlcal parametex

% The answWwer in read and a check is made to see
% if the answer is legal ’

ask_for(Zntity,attribtute,{v{Actualvalue,CT)]) ;-
quastion{Zntity,Attridbute),
parameter (Attribute, ZxpectedValues),
nl,
writeln(’ Please enter one of the following values: '),
write(’ '),
write_list(ZxpectedValues),
write(’ Default, when you press CR, is the valus unlcwown ‘) ,al,
read_answer(Answer1,CF1),
check_for_quary(Answer1,C¥1,A,C),
check_answer({Attribute,A,C,Actualvalue, T},
asgert{xnow(Intity,Attzibute,[v{ActualvValue,CT}]))

check_answer(Attrihute,al,C1,41,C1) -
parameter(Attribute,Ixpectedvalues),

p—
Ln
n

% We shout 1ac mote that the real Mycin makaes use of metarules
a Judinaszton of get_nytothesis, We did nmot include tinls

% in ¢

% powerT . fazru.a i1n out implementation, due to lack of tizs

% and trh- i . n.ze of the Xnowledge basa

% deduoe ;. collects 21l the evidence for the value of a parameter,
% merge-: avidence for ths same valua intc onme hyoothesis

% and stores the information obtained

% by calling rule-check in a setof, deduce will inspect the whcle
% ¥xmowledge base

dednge(Intity, Attribute,Hypothasas) :-
impof (vi{valuee,CF),

rale_check(Intity, Attxibute,Value,CT),Hypothesis),

1zrge(dYypothesist,Hypotheses),
azsert(mow(EInsity,Attribute, Eypothesas)) .

% rula_checlkt : investigatas a rule for applicadbiliiy
% and calculates the C® of the deductiocn wien the zule
% succeads

zule_check(Entity,Attridute,Value,CT) :-
is_rule(Rulelo)},
assertalcurrentrule(RuleNo}), % for explanation purroses
rule(RuleNo,Intity,Attribute,Value,C,Tally),
product(C,Tally,CT).

% The anove call "rule(RuleNo,Entity,Attridute,Value,C,Tally)”
% will backtrack until an applicadble rule is found

product(A,B,C} :- prod(A,B,D),quot(D,1000,C).

% merge : causes evidence for the same value of an attributa to be
% combined together %o form a aingle hAypotnesis

merge([(],(1).

rerge([v{unlkmown, 1000}1,[1).

rerge([HiRest],[H1IR1]) :-
conpare_lists(H,Rest,H1,51),
merge(Si,R1).

compare_lists{R,[],R,[1).

compare_lists{v(Value,CF1),[v(Value,CF2)iVU],R,W) :-
new_cf(C¥1,Cr2,CF3), :
compare_lists{v(value,CF3),U,R,W).

compare_lists{v{valuel,CF1),
(v(Value2,CF2)iUl,R,[v{Value2,C32)IW]) :~=
eqg(valuel,value2},
compare_lists{v(Value1,C31),U,R,W}.

new_cf(C¥1,C72,CF3) =

154

-

% stagk mecrnanl:o.a, Lo lemented by current_Tulea,
% to simulats =ne 3407
~ Dehavior,

A gcheck _for_quc.y .- ralled after the user is asked
¥ L 3ive a paramster

% vailae. If elthe: ARy oo RULE is inmput

» Fowe thne DAILANLTT <¥FSTIM ig used.

check_far_query(Ansvaer,CF,A,C) =
mamar{ Angwer, [why,Tulel),
annwer _query{Arswerl,
get_.oarest{Rualaj,
caportlAngwer,Rule),
chask again_for_querylA,C).

Thzok_Tor_query(Aansser,CT,A,C) -
A = Angwer , C a CF. X L.e. no gpecial action i3 taken

answer _query(why) :-

write(’Asking all this to determine the genus of the organisa ‘),
nl.

answrr_suzryizule) :-

wr 1 =1wi Currant rule is ‘).

check_agawn_ZSor_quazy(A,C) -
r=nd_answer(at1,C1),1,
tes={A1,C1,A,C).

test{why, 10CC,A,C) - fail.
tesc{A,C,A,C) - eq{why,A).

get _nearest(rula(RulesNo,E,A,R,C,T)):~
currentrule({RuleNo),
———rulsiRuleNo, 3 45R,0, 7. -

report(why,Rule) :- explaiz(Rulas}.
report{rule,Rule) :- clavse{Rule,Bedy),
tranglate({ (Rule:-20dy)).

explain{Head! :- clause(Head,3ody),

: divide(3ody,Xnowprens,Unknownprens),
write_lciown(Xnowprems),
translate({Head :- Uniciownprems)).

divide((A,B), (A,Otherknown),Mnknown) -
owni{A}]
divide(3,Ctherxmown,Unknown).

divide((A,B),[1,{A,3)) -
known{A).

divide(Aa,[1,A) = |,)own(A).

157

CheCck_anSwwr .

membex’ &, IxpectedValues).

Y
paran=car
writel’

WrLTe Anv:

e
waLeel PAX

reribets,A1,C1,A,C)
agzributa,IxpectedvValues),

< SOrry, bdut we will have to this part
ioate),

rar again’

en the

: !--l!

writu! ' ¥ou will nave to reentar the value and €7 ') ,nl,
write: . Pilease enter one of the following values:),
writel ” 4,

wrice_i.siiIxpectedvalies),

read answar(A2,C2),

crneck_answerlattriputa,A2,C2,4,C),

testion(Sntity, Attzibute) -
writa(’ Znmtar the 7)),
write{Attribute),
write(’ of '},
write(zZnticy).

read_answer

is8 used to read to user’s reply to a raquest for the
value of a clinical parameter., The value and its CT
ara toth read (the default CF ZIs 1000)

AR

read_answer (Answer,CF)
readstr!{ Answer),nl,
wrice{’Enter the CF on scale [-1000,+1000], default 1000 (CR)°),
nl,readstr{Something),
{ Sometihing = unknown =-> CF = 1000 ; CF = Scmething).

-
H

he Ixplanati System
ARSI DESITUWMIZTZRRES
% inzplementable in

"ancesztor®

The Mycin queries why and rule are easily
Waterloo Proleg which has a systen pradicate
This predicate can be

used to examine the ancestors of the literals which invecied the
predicate. When ancestor is used with one argument, Its argunent
is unified with the most recent amncestor

for which this is possible.

If the predicate succeeds and

subsequently backtracking returns to

this point in the proof,

then the argument is unified with the next

most recent arncestor, ard so forth.

This latter fsature is most useful

im the repeated usa of "why"

As CProleg does mot have this ancestor predicate,
we used a global

RARR

NXN:RRKBEXR‘XX

max_hyvothesis{I,MaxCT),
gt{MeuwlF, 200} .
ciown().

rule_no(M) ;-
write: (We used rule '),
write,),
writala{’)%).

write_value{[Ml) - write(M).

give_evidence(C) :~- ga((C,800),
write{’ strongly suggastive '),
write(’'{ ’),wzite(C),wzite(”)71},
cive_avidence(C) :- ca2{C,400),
write(”’ suggestiva *),
write('{ "),write(C),write(”)} ..
give_evidence(C) :- wxrite(’ weakly suggastive),
write(’('), write(C),write(’)}’}.

% Output Routines

%Y sas=scazs=raxc-ra=

% close_cdowT : informs the user that a ccnsultation Is un-ecessary

[y

closwe_dows :- writeln{’ Patient does rot requira therazy’!.

dataclass : enables the uger to declare the classes of data,
their names and the background details, required

There ars no ’‘class-details’ for ‘organisn’ because at thi
class level, we begin to use the knowledge kase to obtain more
specific information from the user.

AARAARR

dataclass(0,pastient,[narme,sex,age]).
dataclass{1,infection,[infection_type,infection_dax2l).
dataclass(2,culture,[culture_site,culture_datel).
dataclass(3, o’gan_51.[])

generate_messages(Q,Intity).
generate_nessages(1,Zntity) :-
writa{’ The most recent culzure associated with '),
ite{Zntity),
writeln(’ will be referred to as : ’'}.
generate_messages{2,Zntity) :-
write{’ The first significant crganism from ’)},
write(Entity),
writeln{’ will be referred to as : ’)}.
generate_messages(3,Intity)}.

question(namre) :@-
writeln({’ patient name :7),.

159

write_Xnown([]).

write_cwown{(A,3)) -
writeln(’ It i3 &uow thazt),
write_premise((A,3)),
writeln(’ therefore '},

praaise((]}).

-pram-se({A,8)) -
trarslate_predicate(A},
write_pramise(B).

write_premise(A) :- translatae predicatelA).

rr gt
o m

% translate : gives a simple EInglish translation of

translate{{Zead ;- 20dy)) :-
Body = (!,min(_,_}), ¥ mothizg to explain a:
writeln!{’ we comcluda @ 7)),
transglate_predicate(Head).

cranslate{(Haad :- Beody)) :=-
writeln(’ 1if : 3},
write_premise{3cdy),
writeln(’ thenm : ”),
translate_predicate(Head).

translate_predicate{!). % no need to translate thls

translate_pvedicate(azn(M,M))., % no meed to translat

translata_prelicate(saze{I,A,R,C)) :~
current(3,Intity),
writae(’ the ‘Y,
writeiA),write(’ of '},
wrila{Inticy),
writel’ is '),
write_wvalue(R),

Lol
Aam

translate_predicate{rule(N,EZ,A,Vv,C,T)) :-
current(3,3Intity),
write(’ Thars is’),
give_evidence!(C),
write(’ evidence that the 7,
nl,
write(’ '),
writelA),
write{(’ of ‘),
write{Intityl},
write(’ is '),
writeln(Vv},
rule_no(N},
nl.

Xmown(sama(Z,A,R,C)) =

kow(E,A,Hypothesis),
intersect(Hypotnesis,R, I},

158

w2
a Ltass

writel’ 7)) ,write_class_data_itexm{X),rnl,w=ita_cut(Y).

write_class_data_i=ex([]).

write_class_data_itam{ClassDataZten) :-
ClassDataItem =.. [Intity,Details,{Class2patall,
write_entity(zntity),
write_details(EIntity,Datails),
write_class_data_item(Class2Data).

write_class_data_ item{v(value,CF)}:-
nl,nl,
write{’ DIAGNOSIS OF GENUS "),nl,
write{’ value = ') write{Value),nl,
writel{’) ,wzitel{’'CT = ‘},write{C?).

write_entity(Intiey) -
=1,
write(’ INTITY “Y,
write(Intity)

write_details(_,[1) :-

nl.
write_details(Intity,Details) :-

substring{patient,Intity),

-

Ai-ﬁ'

writal’ DITAILS : "),
Details = [Yame,Sex,Age],

writa(’name of patient : ’),write(¥Name),nl,writa(’ sex :

write(Sex),write(’ age : 7),write(Age).
write_details(Zntity,Details) :-

substring(infection,Intity),

nl,

write(’ DIETAILS : '),

Details = [Name,Date],

write(’name infection : 7),write(Name),nl,

write(’ date first appearance : ’),write(Data).
write_detalils(Zntity,Details) :-

substring{culture,Zntity),

nl,

write(’ DETAILS :),

Details = [Name,Date],

write(’‘name culture : ’),write(Name),nl,

write(’ date obtained : ’),write(Date).

% arithmetic operations

1e(X,¥) (- X <« Y.

le(X,¥) :- X =< ¥,

ge(X,¥) :=- X » Y.
sun(¥,¥,Z2) 1t~ 2 is X + ¥,
dif£({X,¥,2) :- 2 is X - Y.

161

J)’

’

question{sex) :~ writeln(’ sex :’).
questicn{age) :- writeln(’ aga :
quastion{initiater):-

writeln(’ nave you been adble to obtain’),

writeln(’ cultures from a sita at which the patient’},

weiteln(’ has an infection ‘).
question{infection_type) :- writeln(’ what I3 the infecticon’.
quastion(infection_date) ;-

wzriteln(’ please give the data when this’),

writeln!’ infection first appeared { da/mo/yT)’').
question(culture_site):-

writeln(’ from whnat sita was the specinen for this’),

weitaln(’ culture taken 7?7 7).
qguestioni{culture_date) :=-

writaln{’ plzasa give the date when this’).

writeln(’ culsture was obhained (&2/zo/yT)7').

)
“)

;a:aneter(ge:us,[u:k:cwn,strept,:eisseria,bact,sta;h,co:y:}).
parameter(gramstai:,[u:k:own.pos,:eg]).

parameter {morphology, {uniciown,rod, coccus]).
parametér(conformation.[unknown,singlea,longchain:,shortchai:s]).
parameter{aerobicity, [unknown,anaercbic,facul]).

hypothesisi{pete,ilX,[]}.
% Utilities
% asmzmcsazas
¥ initial header message

print_header :-
clear_screen,nl,

write(’ AR EEFIREFIREIBALALRLIRAESY),],
write(’ » + ’"},nl,
write(’ * Welcome to Mycin + ’},nl,
write{’ » + "},nl,
writa(”’ FrR2FRGERIERIASSEERAIRRIAY T), 0],

clear_screen :- put({12). ¥ does not worik on Wyse-30
‘writeln(X) :- write(X),nl.

write_list({]) :- nl.
write_list([X!Y]) :- write(X),write(’ , ’),write_list(Y).

% special output procedurs for patlent data

-

write_out(f[]}) :- =i,
write_out([Xi¥Y]) :-

160

same(Enticy, conformaticon,(longcnaingl, 07y, 1,
nin([CT4,CF2,CF31,Tally).

rule(413,Zntity,canus, strept,800,Tally) -
same{Entity,granmstain,[pos],C1),!,
sane(Entity,merpnology, [cocous],CT2), !,
same(EZntity,confornaticn,[shertchains],Cc?3),1,
min{[CF1,CF2,C73],Tally).

is_rale(9}).
is_rule(35),
is_rule{306).
is_rule(412).
is_z2le(413).

prod(X,Y,2) - Z
2

s X » %,
quot{X,¥,2) :- 5%/, Y

[T

ain(lX],X).

pin({xivl,2) = nin(Y,U),least{,U,2}.
least(A.Y,x) 1= lel{X,Y).
least{X,Y,Y) - le{¥,X).

% comparing terns

eq(X,V) := X = Y,
nel{X,¥) i1~ rot X = Y.

=

P R Y EE XSS XS FE SR SRS SRR RS DS AR LRE S 2

% oE *
% % RULEIS IN THIE Mycin (PROLCG)} XNCWLIDGIE 3ASZ *
oe *

 EAAREIRR R R AR RN A LR R R R R AR R LA R E AR AR R AR A A AR R Y

rule(9,Entity,genus,neisseria, 800, Tally) HE
sape{Zntity,granstain,[negq],CF1),
same!Intity,norphology, [cococus], Cf2),l,
min{{CT,CF2],Tally).

% Im the above rule, the call .same(Intity,gramstain,(:. eg] cT1)

% causes all the evidsnce bearing on tiae granstain of ‘entity’

% to ba collected, If the certainty factor of the hypothesis which
% suggests the gramstain is negative is larger than 200, then CF?
% takes “n-3 value. Otherwise same fails and the cut prevents

% the collection of evidenca deing repeated. If each clause in t:
premise succeeds, then Tally takes the value of the weakest of
the certainty factors.

We rota here that the definition of same also contalins a cut

to avo:id the repetition of unnecessary evidence collection,

PR TS

rule(35,Intity,genus,bace, 6060, Tally) -
same{Entity,gramstain, [negl,CT1),1,
same{Entity,rorphology,{rod],C?2),!,
samaiZntity,aerobicity,faraerobic],CF3),!,
min({C¥1,CF2,CF3],Tally).

fule(336,Entity,genus, staph,700,Tally) :-
sane(Zntity,gramstain, (pesl,C1),!,
same(Entity,morphology, [coccus],CF2),!,
same(Entity,conformation, [singles],CF3),!,
min({CF1,072,CF3],Tally).

rule(412,ZIntity, genus, strept,950,Tally) :-

same{;:::t;.g*amsta-u,[pos] c71,1
same (Entits ,morpuology,[coccus] C?2}

162

(7) from what
culture taken ?

? arzpit

?

?

?

2

?

?

e

waaw

{8) please give

site was the specinmen for Lnis

date when this

culture was odtained (da/mo/yr)

15septenber 1933

The first significant organisn from culture-

will be referred to
organisn-1

-3

EZnter the graastai:n
Fleagse entar onz of

wienown , [os , neg ,
Default, when you Dress
pos

the CT on a scale
850

Enter the nmorphology of

Please enter one of the

of organism-1
ne following values:

CR, is the vaius unLocwn

of [-1CC0,+1000], defaul:

organism-1
following values:

1"
[5]

unknown , rod , coccous ,
Default, when you press CR,
coccus

Znter the CF on a scales of [-1000,+1000],

700
Enter the conformation of organism=-1
Please enter ore of the following values:

is the value untuown

defaunls

urknown , singles , longchains , shortchains ,
Default, when you press CR, is the value unixmown

singles

Enter the CF on a scale of [-1000,+1000],

Is there another ovganism ?
CR means o to me ?

Is thera another culture ?
CR means no to ne ?

Is there another infection ?
CR means 2o to ma ?

Is there ancther patient ?
CR means no to me ?

default

The patient data odbtained during this session are:

EINTITY : patient-t

165

1000

1080

1C

0

(CR)

(CR)

(CR)

AFPENDIX 4
EXECUTION TRACE OF MYCIN IN PROLCG

Script started on Sat Maxr 17 20:10:44 1984

Warning: o access to tiy; thus no job contzol in this shell.
% cproleg -u

| ?- [stazt].

mycin.pl conmsulted 17000 kytes 7.799939 sec.
/p/i/Roen/nroleglin/io consulied 10460 bytes 4.500004 szc.
/p/ifkoen/prologlib/lists consulted 8136 bytes 2.950006 sec.
/p/ i toensproleglit/general consulied 1492 hytes 0.5523578 sec,
No leasnairg.

util comsulted 20032 dytes 8§.25£6383 sac,
start consuliad 27132 Tytes 15.232327 =

2C.

e

—-—t

-]
7- start_session.

FEEHRAEAER RS R ERRNENTRRERE

L 3 *
* Welcome to MYCIN *
* €

I ETEESEESEE RS EEREA RS R R RS LN R J
{1} nave you teen adla to obtain
cultures from a site at which tha patient
has an Infection
7 yes

patient-1
(2) patient name
? xoenraad

{3) sex :
? rmale

(4) age
? 27

infection-1
{5) what is the infection
? bacteramia

(6) please give the date when this
infection first apreared { da/mo/yx)
? 12june 1983

The rost racernt culture associated with infecticn-1
will be referred to as
culture-1

culturs taken ?
? armpit

(8 please give the date when thi
culture was obtainmed { da/mo/yr)
? 12march1981

Tha first significant organism from culture-2
will pe referred to as

organism~2

Inter the granstain of organism-2

Plezse entzr one of the following values:
unnown |, pos , neg ,

Default, when you press CR, Zis the valuz uniciown
? neg

Inter the CF on a szale of [-1300,+1000], default s 1040 (C3)
? 800

Znter the morphology of organism-2

Please enter ome of the following values:

unknown , rod , coccus ,

Default, when you press CR, 1s the value unknown

7?7 why

Znter the CF on 4 scale of [-1000,+1000], default is 1900 {CR)
?

We are asking all this to deternize the genus of the organisn
Enter the morpnology of organism-2

Please enter one of the followirng values:

unknown , rod , coccus ,

Default, when you press CR, is the value unlciown

? coccus

Enter tha CT on a scale of [-1000,+1000], default 1is 1000 (CR)
? 990 .
It is knmow that
the granstain of organism-2 is neg
the morphology of organism-2 is coccus
therefore
we contlude
There is weakly suggestive (800) evidence that the
genus of organism-2 is neisseria
(We used rule 9)
7stop
ves
I 2
script done on Sun Mar 18 10:57:43 1984

167

DEZTAILS : rname of patient : XkXoernraad
sex : rmale aca : 27

ENTITY : infeccion-i

DETAILS : name infection : hacterenia
date first appearance :@ 123jure1983
EXNTITY : culture-1

DETAILS : name culivre : azrmpit

date cbtained : 15september 1983
ENTITY : organisz-1

DIAGHOSIS CF GZNUS
value = staph
CF = 430

ves
| ?- start_session.

R F 4 4EREE R LA RS ST ES RS

E *
* Welcome to MYCIN *
* . *

I 2T RZSE SIS R RS RS RRS LR L
{1} nave yocu beex able to cbtain
cultures from a site at which the patien
has an infection
? yes

patient-2
(2) patient name :
? john

(3) mex :
? prale

(4) age
? 21

infection-2
{5) what is the Znfection
?7bactczamia

{6) please give the dats when this
infection first appeared { da/mo/yxr)
? 1200t 1981

The rmost zecent culture associatéd with infection-2
will be referred to as :

culture-2

{(7) from what site was the specinen for this

-

166

underlying_possibilitcy_ses{[p{Zlement,ossi b;l;ty).Rﬂs*“"*""S
[PossibilityiRestSet])
underlying_possibility_seu{RestTuzzySes,lestSat).

X funion(FuzzySetl,TuzzySet2,ResultTuzzysSet): defined using the

% definition by Zaden:

% The grade of membership of an elemant X in the umicon is the

% max-*"n of the grades of nembersiip cof that elament ¥ inm the +wo
individual sets,

funion(TuzzySet1,Fuz2ySet2, ResuliTuzzySet) -
wnderlying_set(TazzySec?, Sett),
twnderlying_sat{Fuz jSetz,SetZ).
unionisett,Ses2,ResulssSet),
raconstruct_tnlon(ResuliSek, TuzzySet,
FuzmzySetl,FesultIuzzySet).,

% oceronstrect_union(RasultSet,FuzzySetl, FTuzzySat2, ResuliTuzeySet)
% w.ll reconmstruct the union fuzzyset by taking as the grade
% ¢l nixbership the maximum of the individual grades of mexbership

[P Y]

H il s in e O 6O

I"D iu [Y B B |

zruct_union{ll,_,_,{1}.

truct_union({HIT],FuzzySett, FuzzysSet2,
,Possibility) |RestFuzzySet]): -
rer(H,?1,TuzzysSat1),

roer(H,?2,TuzzySet2),

{(?1,22,20ssikility),
onstruct_union(T,FuzzySet1.FuzzySetz,RestFuz-'Set).

L} |

H
m @

.8
Z
ar
\ oea
am

The coda for fintersection is every similar to funicn
fi:tersect‘on(?u*zySet1.FuzzySetz,RgsultFuzzySet) is

defired using the traditional definition by Zaden:

The possidility of an element X in the intersection is the
m;:;num of the grades of nembership of that elament X In the two
individual sets.

We take the traditional set intersection of tha two undarlyin
sa2t3 as wa do not want to have elament with possibilicsy 0

in our result fuzzy set

RARXRAIIAERR

fintersection{FuzzysSetl,FuzzySet2,ResultTuzzySet) :-
underlying_sat{FuzzySet1,Set1),

- underlying_set(FuzzySet2,Setl},
intersect{Set1,Set2,ResultSet}, X traditiomal set intersect
reconstruct_intersecticon{ResultSet,FuzzySet?,
Fuzzyset2,ResultFuzzysSet).

% reconstruct_intersection(ResultSet,FuzzySetl,

% FuzzySet2, Q-sult“uzzySet)

% will reconstruct the intersection fuzzy set by talking as the
% possibility the minimum of the individual grades of membershi

APPENDIX 3
PROLCG DMPLEMENTATION OF FUZZY SET OPERATORS

% Filename: fursat,pl

% Author : Xoenraad Lecot

% Date : March 01, 1984

% Subject : Prolog Inplementation of Fuzzy Sats

% Now In startup £ila, called "star

start2
% 1~ [’ /p/i ccen/proleoglib/setutl. pl’

n
1. % load the set packzaga

% A fuzzy set {x/a,y/D,..} will be represented as a Prolog liszh
% [pea,x),p(b,y),..]

% Zlexzents with a ¢=2ld:2 of Rexbership ars nmot list:zd

is_fuzzy_set{[]). % crivial case , the empty Lfuzzy set
is_fuzzy_set([HIT]) :-
H=.. [p,Zlenent,Possinilityl],
not (Possibility = 0),
rot (fmember(Zlement,_,T)),
ig_fuzzy_set(T).

% fmender(Zlament,Possidility,FuzzySat): Zlement is a memder

% of FuzzySet with a possibility of Posaibility

% Note that unlike the membership function for traditional sets,
%X the "fmember" function never fails

fmember (Zlement,0,[]) :- nonvar{Zlement},!,fail.
fmember (Zlement,0,FuzzySet) -~
nonvar(Element),
rnot({memder{p{Element,) ,FuzzySet}).

fmember (Zlexent,Possidbility, [plZlement,Possidility)i_]).
foember (Zlement,Possibility,[_IRest]) :-
fmember{Zlement,Possidility,Rest).

% underlying_set(FuzzySat,Set) will find the Set of elements of
% a fuzzy set
underlying_set([],[]).
underlying_set({[p(Zlenent,Possidbility) |RestFuzzySet],
[ElemerntiRestSet]): -
underlying_set(RestFuzzySet,RestSet).

% underlying.possibility_set{FuzzysSet,Sset): find the
% Set of possibilities of a fuzzy set

underlying_possidility_set{[],[]}.

168

-}, TuzzySat 1, FuzzysSet2).

deletz_element(p(Zlement,
tn raditional set opsration

% delete_element: the ¢

X fadd_set_elements may be used to add a set of eleme=ts to
X fuzzyset with the same possidility (grade of merbership)

fadd_set_elements([],_,fuzzySet,TuzzySet;.

fadd_ set_elexents((4HiT]),Possidility, FuzzySet], fuzzySet2): -
fadd_element(H,Fossibility,FuzzySet !, FuzzySetd),
fadd_set_elements(T,?ossibility,?uzzySetB,FuzzySet2).

% concentration is a fuzzy set operation that squares all
% the grades of nsmbershi

con{f1,[1).
con([p{Zlement,Possibility) IRastTunzysSat]
[p(Element, Square) iRastCon]
Square is Possibility s Possibility,
con(RestFuzzySet,RestCon).

¥
Ji=

X dilation is a fuzzy set operation that takes the
% square root of all the grades of memvership

diz{[1,[D).
dil{{p(Zlement,Possibility) {RestTuzzySec],
[p{Zlexment,Poot) IRestCon]):-
Root is sgri(Possibility)},
dil(RestFuzzySet,RestCon).

% normalization is a fuzzy set operation that divides each
% grade of membership by the maximum of the grades of membership

norm{FuzzySet,NewFuzzysSet) : -
underlying_possibility_set(FuzzySet,SetofPossibilicias),
naxinum_list{SetofPossibilities,Maximun),
do_norm(FuzzySet,Maximum,NewFuzzySet).

do_norm([1,_,[]1).
do_nora{(p(Zlemexnt,Possidbility) |RestFuzzySet], Maximun,
[p{Element,Division) IRestlonl): -
Divigion is Peossidbility / Maximum, ¥ i.e. division of reals
do_norm{RestFuzzySet,Maximum,RestCon).

® intensification

int{[p(Zlement,Possidility) !RestTuzzyset],
[p(Zlement,NewPossibility) | RestResult]): -
intensify(Possibllity,NewPossidility),
int{RestTussySet,RestRasulc).

7

reconstrict_inmtersaction([),_,_,(1).
reconstruct_inmtersection{[H!T],TuzzySet1, TuzzySet2,
{p(H,Pos3ibility) iRestTuzzySes]): -
frpemver(H,?1,TuzzysSatl),
fmember({H,?2,FuzzySet2),
min(®1,22,?0s3ibility),
recenstruect_intersection{T,FuzzySet1,TuzxySet2,Res-TuzzySat).

% The conplenmant of a FuzzySet in a given Univarse

% complement(FuzzySett,Universe,CormplamentruzzySet) 1s defined:
% The grade of mexmbership of an elexzent Iinn the complement i3

% 1 - grade of membersniy i the origizal set

¥ Unlike the Tinion and fintersection operations, the cozplement
% acticn is an ~peration that needs teo iow tha gilvaen univarse

complenment: ¥uzzvSee,Universe,Conplenent) -
% 1. Consider the elsnents of the givern universe, that ars nct
¥ in the given fuzzy set
g 7

underlying_set(TuzzySet, Set),

subset(Set,Universea), % some checking here..
subtract{Universe,Set,Set1},
fadd_set_elements{Sett,1,{],Fuzzysett),

% 2. Now we consider the elements of the given fuzzy set

% by completing their given possidhility and excluding those
% with a grade of mentership, i.e. possibility, equal to 1
do_coxplement{FuzzySet, Tuzzysetl),
union(FuzzySet1,fuzzySet2,Conplenent). % not fuzzy union

do_cemplement([1,[]).
do_complenment{[p(2lement, 1) iRest},RastConplenent): -
do_complement{Rest,RestConplenent). X these are not included
do_complenent({p{Zlement,Possibility) |Rest],
[{p(Zlement,NewPossibility) |RestConplement]):~
NewPosgsibility is 1 - Possibility,
do_conmplenent (Rest,RestComplement).

% fadd_element(Tlement,Possibility,FuzzySet1,FuzzySetl)
% add an Zlement with Poasidility to FuzzySetd resulting in
% FuzzySet2

fadd_element(Elemert.Possibility, TuzzySet1,FuzzySet2): -
add_element{p(Elemant,Possibility),FuzzySet1,FuzzySet2).
% add_element: the traditional set operation

% fdelete_element({Zlement,FuzzySet1,TuzzySetl)
% deletes an Zlement to FuzzySet1 resulting in

¥ FuzzySetl
% { note that we do not have a Possidbility parameter here
% asgs elefignts in a fuszy set are uniquse

fdelete_element(Element,TuzzySet1,fuzzySetl): -

APPENDIX 6
PROLOG IMPLEMENTATION OF A FUZZY DATABASE

filerame : £fril.pl
author ¢ Koenraad Lecot
date : April 18, 1584

purpose ! Proleg implementaticn of FRIL

FRIL = Fuzzy Relatiomal Infarence Language

AR ARXRAEX

Saldwin, Proceedings ITaC 19321

% Zach relation has an additional asgunent
% the possibility, of the tuple in the relation

% base relations

likes(Jim, irene, 1).
likes(Jjohn, heather, 0.7).
likes(Johz:, mary, 0.6).
likzes(harry, jiil, 0.4).
likzes! jill, tom, 0.2).
likas! irane, Jim, 0.5}).
likes{ heather, john, 0.8}).

X tall is an I-type relation, this is
%X a relation that takes linear interpolation values

tall{ - 5.25, 0}).
tall(5.50, 0.6).
tall(5.75, 0.8).
tall(6, 1).

tall(7, 1),

% linear interpolation hetween CONSEICUTIVE values
% we rely on the fact that the izterpolation values are ordered
% in the base table

X interpolation

tall{X,D) :=- nonvar(X),var{D),not{clause(tall(X,_),t>rue)},
clavse(tall(X2,¥2),true},nonvar{X2),X < X2,
clause({tall(X1,¥v1),true},nonvar(X1),X1 < %2, X1 < X,
check{X1,X),
D is { ((¥2-Y1)/(X2-X1)) = (X = X1))} « ¥1,1.

% left extrapelation

173

incensify(Peossidilisy,NewPogsibilicy): -
0 =< Possibility,
Possinilicy =< 0.5,
NewPossibility is 2 + { Possibility s Fossidbilicy).

intensify(Possinility,NawrPossibility): -
0.5 < Possidbility,
Posginility a< 1.0,
VewPossidility is 1 - 2 2
{1 - Possidbllity) * (1 - Posgidility).
% utilities

max(X,Y,¥Y) ¥ » X.
nax{X,¥,X). M elssa

nin(X,7,7)
nin(X,¥?,3%).

1

Y < X.
else

W

minimum _list{[X],X}.
minimum_list{{X!¥]1,2) :- minimum_list!{¥Y,U),min(X,U,2}.

maximum_list{[X],¥X}.
maximum_1ist{[X!¥],2) :- maximum_list(¥Y,U),max(X,U,2}.

setof0{X,G,8):~- setof(X%,G,S).
setofQ(X,G,[1).

172

tall(x,m) :- nonvar{¥), wvar(n), meti{clause(tall(x,) yRrue)),
clause(t a’l(x1 X1}, tree) pROnVAr{i1),x < x1,
D= Tt
% rigat extrapolation
tall(x,1) .- :ot(clause{tall(x,_),“r*e}) talli{x,e),1,v a1,1.
check{X1,X} :- tall(Y,_),nonvar(Y),
X1 <« ¥,
Y < X,
I,fail.

check(X1,x),

% data abous Dersons

Persons{ jim, 6.10, 12. 00, 1).
Persons(jonn, 5.90, 11.90, 1),
Persons(irene, 5.50, 10.¢Q0, 1.
persons{ heather,5.60,9. 60, 1).

persons(mary, 5.30, 8.50, 1).
Pexrsons{ jili, 5.70. 9.20, 1).
persons(tom, 6.00, 13.5a, 1).

% virtual relations
friends(x,¥) :- likes(x,r,_),likes(Y,x,_).
possidble_atnhlete(Xx) :- persons(X,Y,,,_},tall(Y,1).

has_good_friends(x) :- fziendsfx,Y),possibla_athlete(?).

174

