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ABSTRACT OF THE DISSERTATION

Multiple Strongly Typed Evaluation Phases:

A Programming Language Notion

by

David S. Booth
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1983

Professor David F. Martin, Committee Chair

This work introduces the programming language notion of mulriple
strongly typed evaluation phases, or simply, phases. In general, a program
might be executed through several phases. Each phase requires its own
input, and acts as compiletime relative to the next phase, or runtime relative
to the previous phase. Thus, each phase is the execution of a program, and

may play the role of compiletime or runtime.

The notion of phases offers a framework for understanding compiled
strongly typed languages, and works toward an improved, strongly typed
language basis for reusable software. The research shows how types can be
manipulated as first-class values, and notions of compiletime and runtime
can be unified, without sacrificing strong typing ({(compiletime type
checking) or runtime speed. Tvpe checking and expression evaluation are

performed using the same evaluation mechanism.
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The apparent conflict of allowing types as first-class values, yet enforcing
compiletime type checking, is resoived by the notion of multiple phases:
though types may be manipulated as first-class values during one phase, the

computed type values become invariants for the next phase.

We demonstrate the notion of phases by defining a sample source
language, Phi, which looks like a typed lambda calculus; an object language,
IL, which is syntactically similar to an untyped lambda calculus, but is
strongly typed; an associated IL Machine that interprets IL programs; and a
translator for converting Phi programs to IL programs. Strong typing is
guaranteed in spite of the fact that the Phi translator does no type checking.
We also discuss how phases might be used to efficiently perform partial

evaluation,

A phase, i, is the execution of an IL program, p. The result may be
another [L program, p,_ , to be executed in phase /+/, or it may be the
desired final answer. Phase 7 acts as compiletime for phase i+ /, doing all
type checking necessary to guarantee that program P is free of runtime
type errors. During phase /, program p. can manipulate types as first-class

values; in general these computed types will be invariants of the next phase.

xi1



Chapter 1
Introduction

1.1. Research Contribution

This dissertation describes a programming language notion -- phases -
and an associated programming method. Its contribution is both practical
and academic: it takes a small step toward providing a strongly typed
language basis for more reusable software; and it provides a more general,
unified view of certain notions in programming languages and methodology,

including compiletime and runtime.

This work is not advocating any particular programming language or
method. The main intent of this dissertation is 10 expose the essence of
multiple strongly typed evaluation phases, without encumbering the reader
with extraneous details or tangential issues, We illustrate the essential ideas
by defining some pedagogical languages based on the Lambda
Calculus [Barendregt 84]: Phi and IL. As of this writing, two versions of

these languages have been implemented and tested.



1.1.1. Ideas in This Research

It is often difficult, in reading research reports, to distill the important
ideas being advocated from the mundane details of the particular system
described. Outlined below are what the author considers to be the most

interesting ideas embodied in this research.

1.1.1.1. An Abstract Data Type for Type-checked Program Fragments

A particular abstract data type (the data type ERT) is defined for
constructing and manipulating type-checked programs. This allows
program fragments to be securely manipulated as data, and thus allows
compiletime operations to be treated in the same manner as runume
operations. The primitive operations implementing this data type ensure
that every program constructed in this way 15 syntactically correct and

strongly typed. (Section 2.2.1.)
1.1.1.2. One Machine Acts as Compiler and Runtime Machine

Notions of compiletime and runtime are unified: compiletime operations
are generalized and become a superset of runtime operations. A single

abstract machine can do both efficiently. (Section 3.1.2.)

1.1.1.3. Multiple Strongly Typed Evaluation Phases

Each phase is the execution of a program on the abstract machine. The
result of each phase mav be the final answer or another type-checked
program. Each phase type checks and generates the program for the next
phase. Types may be manipulated as first-class values during any phase;
they become invariants for the next phase. "Compiletime” and "runtime"

thus become relative terms. (Sections 3.2 and 3.3))



1.1.1.4. The Translator Does No Type Checking

Given a program in the source language, the translator can produce a
strongly typed program in the implementation language without doing any
type checking. That is, the translator does no type checking, but the
resulting program is guaranteed free of runtime type errors. This fact may at

first sound contradictory; it is explained in Section 3.3.3.

1.1.1.5. One Machine Does Partial and Full Evaluation

A single abstract machine can efficiently do both partial evaluation and
full evaluation. (Chapter 3.)

1.1.1.6. Phase Compilation

Chapter 5 discusses how phases might be used for partial evaluation for a
strongly typed language. Partial evaluation is often slow, but it might be
made more efficient by using two steps: phase compilation and phase

evaluation.

Given a list of the free variables 10 be given fixed values, a phase compiler
would prepare a program for phase evaluation, which will achieve the effect
of efficient partial/full evaluation. The program would first be “"phase
compiled.” using a list of the free‘variab]es -- and their types -- to be
instantiated. Efficient partial/full evaluation would then be performed by
executing this "phase compiled” program using phase evaluation. (Section
54.)



1.1.1.7. An Unusual View of Abstract Data Types

Since types and code are first-class values, our view of Abstract Data
Types (ADTs) is in-terms of what primitive functions are necessary in order
to support user-defined ADTs. Operationally, one needs these functions in
order to convert between the domains of the abstraction and the
representation. However, they can be ordinary functions rather than special

language constructs. (Section 6.1.)

1.2. Background to This Research

Programming language experts should read the definitions of “"runtime
type errors” and "strong typing” in Sections 1.2.1.1 and 1.2.1.2, but may

otherwise wish to skip to Section 1.3, which describes this research.

1.2.1. Two Models of Program Evaluation: Interpreted and Compiled

Figure 1-1 shows two models of how a source program written in some

language L might be evaluated.

In the interpreted case, the program is given directly to an interpreter. A
program generally also needs a specified environment, which might include
values for the program’s input variables and definitions of some standard
funcuons. The interpreter runs the program with the given environment
and produces the desired result of the computation -- the final answer, which
might be some number, a character string, or a more complex object such as

a file.

In the compiled case, the source program is first translated, by a compiler,

into an object program in some other language L’; this step is called



Figure 1-1:
Two Models of Program Evaluation
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compiletime. An L’ interpreter then runs the object program with the
desired environment to produce the final answer,; this step is called runtime.
The object program may be stored and run repeatedly using different

environments or inputs, without re-translating the source program.

This work concerns the compiled, rather than the interpreted, model.

1.2.1.1. Definition: Runtime Type Errors

Suppose the source program contains a mistake, causing the L interpreter
(in the interpreted case) or the L interpreter (in the compiled case) to try to
apply some erroneous operation, such as multiplying two character strings.
It may be detected by the interpreter, and an error message issued, or it may
not be detected, in which case the result of the computation will be garbage.
In either case, it is called a runtime type error to distinguish it from any

errors that the compiler might issue before the program is executed.

1.2.1.2. Definition: Strong Typing

If the source program contains adequate information about the types of
values to be computed, the compiler can ensure that the generated object

program will be free of runtime type errors. Strong typing means providing



an a priori, or compiletime, guarantee against runtime type errors.!

This work concerns only languages providing strong typing.

1.2.2. The Purposes of Compiling

There are two basic advantages to compiling the source program, as

opposed to interpreting it directly: type security and efficiency.

Type security Because the source language is strongly typed, the
compiler can provide an a priori guarantee that no
runtime type errors will occur when the object program is
executed on the implementation machine. This provides
an assurance that the program is at least parually correct,
without executing the program.

Efficiency A compiler can improve a program’s runtime efficiency
in three ways. by computing constant expressions at
compiletime; by selecting optimal object program code,
based on values and types known at compiletime; and by
translating the program into a language inherently more

1The question sometimes arises: Is division by zero considered a runtime type error?
What about an array index out of bounds? Or an attempt to read beyond the end of the
input?

Paul Eggert [Eggert 81] has shown that it is possible to define the type system securely
enough that such runtime errors are not possible. For example, one can define a type
non-zero-integers that includes all integers except zero, and another type
possibly-zero-integers that includes all integers. Only values of the type non-zero-integers
would be allowed as divisors. and (for exampie) subtraction of two non-zero-integers would
vield a result of type possibly-zero-integers. To convert a value of type
possibiy-zero-integers to a value of type non-zero-integers. one must use a special case-
conformity clause, placing the detection of a zero value under explicit program control. The
type system can similarly be defined in such a way that array-index-out-of-bounds and other
such errors are not possible. Although many languages that purport to be strongly typed,
such as Pascal, allow such loopholes in the type system, this work assumes that the type
system is defined securely enough that such runtime errors are not possible.



efficient for the implementation machine to execute.?

1.2.3. Problems with Traditional Compiled Languages

The benefits of compiling are well established, and languages specifically
designed to be compiled -- compiled languages -- are common. In spite of
these advantages, there are some problems with traditional compiled

languages.
1.2.3.1. Lack of Programmer Control

Inherently, the compiler must know a great deal about the source program
and the types of values being manipulated in order to produce an efficient,
type-checked object program. However, the programmer generally does not

have access to much of this compiletime information.

For example, in Pascal, there is no way to ask for the size of an array or for
the first value of an enumerated type.3 Certainly the compiler has this

information, but the programmer has no way of accessing it.

2This third method of improving efficiency will be ignored when we generalize
compiletime to arrive at the notion of phases. However. the idea of translating to a more
efficient language is not incompatible with the notion of phases. Instead of executing an
Implementation Language program directly, we could first translate it to another more
efficiently executed language.

3An enumerated type is a tvpe for which all values are explicitly listed. for example, type
color = (red, green, blue).



1.2.3.2. Ad Hoc Notions

It is easy to see similarities between the kinds of operations performed by
the compiler at compiletime, and the operations performed under program
control at runtime. In spite of the conceptual similarities, compiletime
notions tend to be ad hoc. For example, the shortcomings of Pascal
mentioned above were addressed in Ada* by supplying artribute operations,
which ask for an array’s size or an enumerated type’s first value. The Ada
Reference Manual [Ada 82] defines 48 such attributes! Some of these

attributes are computable at compiletime and some are not.

Type expressions are usually treated very differently from other --
conventional -- expressions, such as numeric expressions. In fact, they
usually have different syntactic rules. Consider Pascal. One can define a

variable x to be some user-defined type I
var x: t; { t is some user-defined type }

Or one can declare x using an array type expression involving 7.
var x: array [1..20] of t;

However, one cannot compute an arbitrary function of 7
var x: f(t); { Illegal }

To various extents, some languages, such as Donahue’s Extended Lambda
Calculus {Donahue 79}, Russell [Boehm 80], ELI [Wegbreit 74] and
Pebble {Burstall 84], do treat types as first-class vafues; that is, one may use
type variables and write functions and expressions involving types.
However, these languages tend to syntactically separate type expressions

from normal expressions, restrict the kinds of computations allowed on

4Acla is a registered trademark of the U.S. Government. Ada Joint Program Office.



types to ensure that the type values are statically computable, or forego
strong typing and use runtime type checking. Pebble’s treatment of types is
general and uniform in these respects, but it does treat one aspect of types

differently, as mentioned in Section 1.2.3.4.

1.2.3.3. The Conflict Between "Strong Typing" and "Types as First-Class

Values”

The motivation for allowing types as first-class values is clear: the abilities
to parameterize by types, use arbitrary algorithms to construct new types,
and make decisions based on types, would support more reusable software.
Similarly, the benefits of strong typing are well established: type secunty
and efficiency.

Unfortunately, there is an inherent conflict berween allowing types as first
class values and the desire for strong typing. Basically, strong typing
requires that the iype of every expression be known before runtime.
However, allowing types as first-class values means that types may involve

arbitrary expressions, use variables, invoke functions, depend on input, etc.
1.2.3.4. Different Mechanisms for Type Checking and Evaluation

Type checking is similar to program evaluation. The similarity is readily
apparent when one compares a typical language's semantic rules for type
checking with its semantic rules for evaluation: both draw conclusions
about an expression's value or type based on ‘the values or types of the
expression’s subexpressions, and both follow lexical scoping rules for

1dentifiers.

Nonetheless, strongly typed languages have invariably defined separate

10



mechanisms for type checking and program evaluation. For example, even
in Burstall and Lampson’s Pebble [Burstall 84], though type checking
involves evaluation, a different mechanism is used for type checking than for
evaluation. This is shown clearly in Table 6, Section 5.3 of Pebble [Burstall
84], where the type checking rules are separated from the evaluation rules to
form what is essentially a different machine. (The rules are separated to
demonstrate the distinction between the act of type checking and the act of
evaluation.) Both sets of rules apply to the same language constructs, but
they are applied at different times, depending on whether the program is

being type checked or executed.

1.3. This Research

Can types and code be manipulated effectively under programmer control
during compiletime, while retaining strong typing? Can compiletime

notions such as type checking be unified with runtime notions?

The answer is "Yes." The language notion of multiple strongly typed
evaluation phase55 unifies compiletime and runtime, and allows types and
code to be manipulated as first-class values, while retaining strong typing.
Types, manipulated as first-class values in one phase, become invariants of
the next phase, as explained in Section 3.3.2. Phases might also be used to
perform partial evaluation, as discussed in Section 5. The purpose of this

work is to explore and introduce the notion of multiple strongly typed

5 The term phases is often used in this work instead of the longer. more descriptive term
multiple strongly typed evaluation phases.

11



evaluation phases.6
Our particular approach to type checking was motivated by certain key

biases:

- A firm belief in strong typing, that is, in providing an a priori
guarantee that a program is free of any possible runtime type
eITors.

- A desire to unify the notions of compiletime and runtime.

- An orientation toward explicit programmer expression rather
than inference performed by the language implementation.
These orientations are contrasted in Section 1.3.1.

- A desire to support the general programming method described
in Section 2.1.

1.3.1. Expressing versus Inferring

Programming languages are designed under two competing orientations:
the programmer can express information, or the language implementation
can infer the information. The Phi language described in Section 4.1 is
strongly oriented toward expressing rather than inferring. This section

explains this choice and the differences between the two orientations.

6This work was approached @ little differently than most doctoral research., Rather than
first carefully defining a problem and then seeking a selution. we pursued an interesting
idea and developed it to see how it might be useful. This unusual approach is risky, because
there is less assurance of a useful outcome. and it places a greater burden on the researcher
for scholarly review and integration of related work. Nonetheless, this approach should be
encouraged much more. The traditional approach of defining a problem and then seeking a
solution is contrary to creativity. because every problem definition presupposes a certain
view of the world. The most interesting and innovative deveiopments are those that change
one’s view of the world. making problems irrelevant instead of solving them.

12



For example, rather than requiring the compiler to infer the type of an
expression from its context, in Phi the type is simply computed as any other
computation. Another example of this distinction is that type checking
polymorphic functions in ML [Gordon 79] involves unification, a process of
pattern matching to find the most general type solution. If the same kind of
polymorphic functions were offered in a language oriented toward
programmer expression, the programmer would have the responsibility of
expressing the desired type solution, and the language should provide useful
type operations to make this easy. This is like the difference between proof

checking and proof discovery.
1.3.1.1. Advantages of Inference over Expression

The main argument for having the compiler infer whatever it can is that it -
reduces the burden on the programmer. This is a2 good argument, but it 1§
not prima-facie evidence that compiler inference is preferable to language
expressiveness. It does, however, point out that ease of expression is very
important.  Concise syntactic constructs and libraries of reusable

components should be provided to make expression easy.

Another argument for having the ‘compi]er infer information is that the
inferences are assured correct (assuming that the compiler is correct, and
that the programmer understands the inferences). If the programmer is
given the responsibility of computing the types of expressions, for exampie,
it is conceivable that the programmer would occasionally make a mistake
and compute the wrong type, thus allowing an operation to be applied
erroneously. In this case (to ensure strong typing), if the programmer is
allowed to compute types arbitrarily, it is clear that the compiler must have

some way of verifying that any computed types are in fact legal.

13



1.3.1.2. Disadvantages of Inference as Opposed to Expression

One disadvantage of relying on the compiler to infer information is that
the compiler must be more complex. Thus, compilation may involve such

tasks as unification or solving systems of simultaneous equations.

Perhaps the most important disadvantage, though, is that the programmer
may want to express things that the compiler is not capable of inferring.
This may be viewed as both a theoretical and a practical problem. As a
simple example of the theoretical difficulty, suppose that every expression in
the language must be guaranteed to halt, and that this is considered part of
the expression’s type correctness. The halting problem shows that this is
theoretically impossible for the compiler to algorithmically determine,
however, a compiler could much more easily verify a proof supplied by the
programmer. As another example of the theoretical difficulty,
Coppo [Coppo 80] asserts that when the type system of ML [Gordon 79] is
extended, the question of whether a term possesses a type becomes only

"semi-decidable"”.

The practical difficulty is that the compiler may not be smart enough to
allow constructs that the programmer may wish to express. And
unfortunately, making the compiler smarter generally makes it more

complex.

14



1.3.1.3. The Gray Area Between Inference and Expression

There is no rigid distinction between inference and expression. For
example, under the expressive orientation, a hibrary routine implementing
an inference engine could be provided. Or conversely, a language
implementation's inference rules could simulate expression evaluation.
Language processors generally contain elements of both inference and

expression.

The work presented here is based on a strong bias toward expression,
tempered with the compiletime checks necessary to ensure that any
computed type values are legal. We do not intend to argue that expression is
unequivocally berrer than inference. We are simply pointing out the

importance of this orientation with respect to this work.

1.4. Related Work

1.4.1. Pebble

The Pebble language, by Burstall and Lampson [Burstall 84], uniformly
allows types, bindings, and declarations as first-class values. Pebble’s
bindings are name-value pairs; they are essentially environments. Giving
explicit access to bindings as first-class values makes it easy to build and
access libraries or modules of reusable functions or other values under

programmer control. Pebble’s declarations are the types of bindings.

For simplicity, and to focus attention only on the notion of phases, in Phi
we do not provide bindings and declarations as first-class values, though

they would be very interesting to add. The idea fits our general philosophy

15



perfectly.7

Pebble also provides dependent types (see Section 6.2), though our Phi
language does not. The need for them in Phi is somewhat reduced by the

notion of multiple phases; this is discussed in Section 6.2.

Pebble deals with language ideas, whereas the notion of strongly typed
evaluation phases might be more accurately characterized as a language
implementation idea. As such, Pebble's semantic rules have no rigid
separation between evaluation stages representing compiletime and runtime.
However, Pebble’s type checking and evaluation rules can be separated to
provide static type checking, This separation essentially leads to different
machines (that are applied to the same program) for doing type checking
and evaluation. In contrast, our work provides a single machine that
performs both roles of type checking and evaluation, ciepending on the
expressions in the program. To clarify this distinction, in Pebble, whether a
program 1is being type checked or evaluated depends on the set of rules
applied -- it does not depend on the program itself. Whereas in our work,
the syntax of the program determines whether our singie type-checking-and-

evaluation machine will do type checking or conventional evaluation.

7In fact, the first implementation of phases did treat bindings and declarations as first-
class values. :
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1.4.2. Partial Evaluation

Partial evaluation is variously also known as symbolic evaluation, partial
execution, symbolic execution, or mixed computation. Ershov [Ershov

77a] [Exrshov 82] has probably been its main proponent.
1.4.2.1. Definition of Partial Evaluation

Partial evaluation reduces one program to another equivalent program in
which some parts of the first program have been evaluated or simplified.
For example, the expression a+ b+ 2*3 might be reduced to the equivalent
expression a+b+6. Or, if a value of 5 is provided for variable b, expression

a+ b+ 2*3 might be partially evaluated to a+ /1.

In general, if one or more of a program’s input parameters are constant,
the program may be partially evaluated to produce a new, more efficient

program by taking advantage of those known constant values.
1.4.2.2. Uses of Partial Evaluation

Partial evaluation has mainly been used as a flexible mechanism for
specializing programs. The purpose has generally been to produce a more
efficient resulting program -- pan of the computation has been done already.
This efficiency motive is one of the two basic reasons for compiling
programs as opposed to interpreting them direcﬂ_v.8 However, the
advantage of partial evaluation over compilation is its flexibility -- any
subset of a program’s free variables (or inputs) can be fixed by supplying
particular values for them. Gifford. Schooler, et al. [Schooler 84] are also
working on using partial evaluation to perform type checking; this

correctness motive is the other basic reason for compiling.

8Section 1.2.2 outlines the basic purposes of compiling.

17



Partial evaluation is also useful in separating notation from data
representation. For example, in Pascal, the syntax for accessing data is tied
to the representation of the data, making it difficult to change data
representations. The programmer must choose between representing some
data as a function or in a record, a linked list, or an array, and the syntax for

accessing the data reflects this choice:

a(b) Function invocation.

a.b Accessing a component of a record.
at.b Accessing through a pointer variable.
afb] Array subscripting.

Function invocation is the most general case, because any kind of data
structure can be hidden inside the function body.9 WI}y shouldn't the
programmer always hide the data structure inside a function? The answer is
the traditional high cost of function invocation. But using partial evaluation,
the function call can be avoided by beta-expanding10 (also called
beta-reducing) the function calt in-line, thus eliminating the performance
justification for using specialized notation. Beta-expanding recursive
functions can be a problem in general, but since (at the moment) we are
simply discussing the possibility of hiding data structure access inside of

function calls, recursive functions are not an issue here.

9Actua]]y, in Pascal, only scalar types can be returned by a function. However, other
languages do not have this restriction.

1OBe!a expansion or beia reduction teplaces a function call with the function’s body.
having substituted actual parameters for formal parameters in the body. Care must be taken
to preserve the properties of lexical scoping. Beta expansion is similar to macro expansion.
except that macro expansion does not always guarantee that the properties of lexical scoping
are preserved.
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1.4.2.3. Comparing Phases and Partial Evaluation

As developed in Chapter 4, phase evaluation differs from partial
evaluation in two important ways: (1) a program’s various phases are
explicitly indicated in the application program, and (2) program fragments
can be manipulated as first-class values of an abstract data type (the data
type ERT). The latter difference gives a macro-like capability, and the
primitive operations that implement the abstract data type ensure that all

generated programs are type correct.

The development in Chapter 5 shows how modifying and restricting
phases might result in a system that essentially performs partial evaluation.
Section 5.4 proposes a "phase compiler™ approach that is analogous to the
"compiled generation" approach of Beckman, et al. [Beckman 76], but ours-
applies to strongly typed languages, whereas theirs applied > the untyped
language LISP [McCarthy 66]. This approach allows one abstract machine
to efficiently perform both "partial” evaluation and "full” evaluation.

If phases were adapted to perform partial evaluation as discussed in
Chapter 5, the most important remaining differences between phase
evaluation and partial evaluation would be that: (1) phase evaluation
syntactically distinguishes between those portions of a program that are
being "partially” evaluated and those that are being "fully” evaluated, thus
allowing the phase evaluator to perform both "partial” and "full” evaluation
efficiently; and (2) under phase evaluation, a program'’s result type is always

known before the program is evaluated.
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1.4.3. Current Work by Gifford, Schooler, et al.

Gifford, Schooler, et al. apparently assume a similar general programming
method to ours (described in Section 2.1). Their "kernel” language, the
Imagine Base Language (IBL), corresponds to our Implementation
Language (IL). Their programming method also assumes a partial
evaluator, compilers, and interpreters, whereas ours includes a single
Implementation Language Machine; our programming method makes
explicit the operation of combining programs to form new programs,

whereas theirs does not.

Their approach to providing an extensible, yet efficient, language is based
on partial evaluation: specially defined forms can be converted to simpler,

more efficient forms by partial evaluation. From Schooler [Schooler 84]:

Our proposed methodology is a generalization of the
Russell [Boehm 80] and EL1 [Wegbreit 74] techniques: all
[language] extensions are implemented in the language, allowing
full user access to the extension mechanism. In addition, partial
evaluation will be used to optimize the code to the point where
using the user-defined extension mechanisms is essentially free in
terms of runtime performance.

Gifford, Schooler, et al. also use their "front end” translators to insert
assertions into the kernel language (IBL) code, and use the partial evaluator
to compute as many of these assertions as possible. Since type checking is
handled by inserting assertions about types, they thus provide compiletime
type checking where possible and runtime typé checking where necessary.

Again from Schooler [Schooler 84]:

The code which the partial evaluator acts on will be generated
by syntactic transforms from surface language constructs. The
generated code will preserve all user-specified side-effects but will
also include applicative constructs for type checking, etc.

20



Finally, since Gifford, Schooler, et al. are using partial evaluation, the
comments on partial evaluation given in Section 1.4.2.2 apply to their work

as well.
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Chapter 2
Programming Method

This chapter discusses an assumed programming method.  This
programming method 15 very simple and rudimentary, and is not the focus
of the research. It is included only to provide the necessary framework for

discussing the main thesis of this work: the notion of phases.

The reader wishing to skim this chapter must be sure not to skip over
Section 2.2.1, which defines ER T, and is essential to subsequent chapters.

2.1. General Programming Method

The general programming method shown in Figure 2-1 illustrates how
programs (or program fragments) may be used to create other programs.

There are three essential aspects, described in the following sections.

2.1.1. Distinct Application and Implementation Languages

First, the general programming method assumes that humans write source
programs (or fragments) in an application language (Phi) that is syntactically
convenient for humans. and that these programs-are then translated into an
implementation language (IL)} that is more convenient for mechanical
interpretation. This prevents the programmer from directly writing ill-
formed programs in the common implementation language. Because all

programs in the implementation language are generated and manipulated
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Figure 2-1:
General Programming Method
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mechanically, they can be guaranteed to have certain properties: in
particular, to be syntactically correct and to be free of possible runtime type

errors. (Runtime type errors were defined in Section 1.2.1.1.)

This work defines two versions of a simple application language, Phi, and
a simple implementation language, IL. A Phi Translator, which translates
from Phi to IL, is also defined.

2.1.2. Programs Are Combined

Second, the programming method assumes that useful programs in the
common implementation language, possibly from libraries, may be
combined to form new programs. In this way, various software components

could be reused.

v

The operation of combining IL programs is not defined here. It is

assumed to be handled by whatever particular programming method the

programmer uses, and is not essential for discussing the notion of phases.11

uNonetheless, the special data type ERT, described in Section 2.2.1. and the example
languages Static-Phi and Static-11.., described in Chapter 4, make it easy 10 manipulate and
combine type-checked program fragments with integrity under program control. In fact.
that is precisely the purpose of the unusual (cheek-) constructs of Static-IL listed in section
4.2.3: they ke type-checked IL pregrams (in the form of ERTs). and combine them 10
produce new type-checked IL. programs. A combining program would thus take ERT
values as input (from the environment) and produce an ERT value. Section 4.3 discusses
the environmenis required by Static-IL programs and shows examples of ERT values.
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2.1.3. Programs Are Instantiated

Finally, the programming method assumes that a program can be
specialized, instantiated, refined, or evaluated to form various versions or to
compute the final answer. An entire tree of versions might be derived. This
aspect is consistent  with notions of  transformational
implementation {Cheatham 81], mechanized top-down stepwise refinement,
and partial evaluation [Ershov 77a]. It also means that a version might be
generated that would gather program performance statistics, and these
statistics could be used in automatically instantiating a more efficient version

for those data characteristics [Balzer 83].

Instantiation is defined in this work by the semantics of the

Implementation Language (IL), that is, by the IL Machine.

2.2. Specific Programming Method

Before describing the notion of phases, let us first discuss the assumed
programming method more specifically as it relates to the succeeding
description of phases. Figure 2-2 illustrates the specific programming
method. It involves application programs written in Phi, a Phi Translator,

IL programs in the form of ERTs (defined below), and an IL Machine.

2.2.1. ERT: Expression, Required-environment, Type

In order to interpret the specific programming method shown in Figure
2-2, we must first define a special data type for representing type-checked
program fragments: the data type ERT. An ERT is a triplet having the

following components:
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Figure 2-2: Specific Programming Method
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Expression An expression in the Implementation Language.

Required-environment
A list of each free variable appearing in the Expression
component, paired with its type. Each free variable is
listed once, with one type, and no other variables are
listed.

Type The Expression component will evaluate to a value of this
type.

The purpose of ERT triplets is to facilitate manipulating programs
(expressions), both in the overall programming method and in the
implementation language, while ensuring their integrity. We are not
interested in just any conceivable <er2> triplet - only those that are

meaningful, or valid, as defined below.12

12David MacQueen and John Mitcheil have apty pointed out that a valid ERT
corresponds closely to the notion of a fyping. To quote Reynolds [Reynolds 85}

"Let e be an expression, = (often called a 1ype assignment) be a
mapping of (at least) the identifiers occurring free in e into types,
and o be a type. Then

7~ e o
is called a typing, and read "e has type o under #’."

Note that this interpretation is assuming a particular deduction or evaluation mechanism,
represented by the symbol """ (It might be more precise to subscript this symbol with the
name of the deduction mechanism, such as "I—D".) Similarly, there is a corresponding
implied deduction mechanism for ERT wiplets, which is given by the semantic rules for
interpreting expressions in the Implementation Language.
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2.2.2. Valid ERTs

An ERT <er e is valid if expression e, evaluated in an environment that
satisfies the required-environment r, is guaranteed to evaluate to a value of
type . By "an environment that sazisfies the required-environment” we
mean an environment env such that for each varniable-type pair <v,2 listed in

required-environment r, variable vis bound to a value of type ¢ in env.
Every ERT generated by the Phi Translator or the IL Machine is valid.?

2.2.3. Interpreting the Specific Programming Method

First, the programmer writes a Phi program.

Next, the programmer invokes the Phi Translator to translate this program
to a valid ERT (i.e. an IL program).

The programmer might next use some method of combining various ERTs

to create a new ERT.

Then, the programmer creates an appropriate environment, and evaluates
the ERT by invoking the I[L Machine on this environment and the
Expression component of the ERT. The environment supplies the input,
and must include values of the proper types for all free variables in the
expression.  (That is, the environment must salisfy the Required-
environment component of the ERT, as discussed in Section 2.2.1. The
command interpreter used to invoke the IL Machine must enforce this, as

discussed in Section 2.2.4.)

13To prove this assertion would be quite tedious. The last section of Appendix A
includes a brief sketch of how to approach proving it.
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The Type component of the ERT telis what type of value the IL. Machine
will produce, assuming no "compiletime” error occurs. (If such an error
does occur, one can either think of the I Machine as returning some special
error value distinct from all other legitimate values, or as returning nothing
at all, since evaluation is aborted.) If the Type component is ert, the result
will be another ERT; otherwise it will be some final answer -- a number, for
exarnple.14 Thus, one knows beforehand whether the result of executing

each IL program will be another ERT (another program) or a final answer.

The case when the IL Machine produces another ERT is especially
interesting. Since an ERT contains an expression in the Implementation
Language, the IL Machine can be viewed as specializing, instantiating, or
(possibly) partially evaluating a program, as in the General Programming
Method (Section 2.1). But it can also be viewed as compiling a program,
though the source and object languages are the same. This is further

explained in Chapter 3.

Note that it is trivial to determine whether the result produced by the IL
Machine will be a final answer: the Type component of an ERT specifies the
type of value that will be produced then the Expression component is
evaluated. Thus, if the Type component is anvthing other than the literal
ert, the result of the phase evaluating the expression will be a final answer.

This is evident in the exampies of Section 4.4.

14A final answer is defined as any value other than an ERT, that is, it is not another
program. It might be a number, boolean. string, or other such basic value. Conceptually. a
final answer might be an entire file, though in our simple pedagogical languages it will not.



2.2.4. A Command Interpreter

Certain aspects of the programming method shown in Figure 2-2 must be
done by the human. For example, the human must write the original Phi
program, invoke the Translator on it, combine program fragments (ERTs) as
desired, supply the desired environment, and invoke the IL machine on the
Expression component of the desired ERT. The simplest method of doing
these things is to provide a command interpreter -- most naturally written in
the Phi language itself -- and this is what we will assume, though any other
more automated method is possible as well. It is the command interpreter’s
responsibility to ensure that the expression and environment actually given
to the IL Machine are syntactically correct, type correct, and compatible.
However, the use of ERTs makes this very easy to enforce, especially since
every ERT produced by the Phi Translator or the IL Machine 1s guaranteed
to be syntactically correct and type correct, and the Required-environment
explicitly lists the identifiers and types of values required in the

environment,

2.2.5. Environments

An environment simply provides bindings of identifiers to values. As
shown in Figure 2-2, along with each IL program (EXPR), the IL Machine
must be given an environment (ENV) that supplies values of the correct type
for all free variables in the IL program (EXPR). In our simple model, an IL
program’s input must be supplied via the environment; that is, the IL
program might have a free variable representing the program’s input, and
the environment would have to supply a value for that free variable, thus

providing the program’s input.
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For example, consider the following trivial program that computes the
cosine of a number, x.

(cos x)

The free variabie x represents the program'’s input, and the free variable cos
refers to a standard cosine trigonometric function. Thus, the environment
for this program must be constructed to include bindings for x (a number),
and cos (a function from numbers to numbers). Typically, the binding for
cos would come from a standard library, whereas the binding for x would be

explicitly provided by the user.

We do not show how environments are generated, but the command
interpreter can provide ways of creating, combining, and storing
environments, while keeping track of the types of the variables defined in
them. Pebble [Burstall 84), for example, uses bindings as first-class values,

and provides operations for creating and combining them.

Section 4.3 explains more about the environments required for Static-IL

programs, (Static-1L is discussed in Section 4.2.)

2.3. Motivating Example: General Purpose Sorting Function

This section describes a hypothetical example of how general-purpose
reusable programs might be created and used. The purpose of this example
is to provide a tangible goal to guide the reader’s intuition through the rest
of this work, where the notion of phases is explained. The reader may wish

to skip this section at first, and return to it later as needed.

Bear in mind that the languages discussed in this work are provided for
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pedagogical purposes only. They would not be practical for real-life
applications such as the motivating example described in this section.
However, these pedagogical languages should demonstrate the basic
semantic notions necessary in a full, usable language that could be

practically applied to the example below.

2.3.1. The Desire for a General-Purpose Sorting Function

Consider the problem of providing a truly general-purpose sorting
function. Such a function should be able to efficiently handle a wide range
of sorting needs, from sorting a small fixed number of items in the
computer’s primary memory, to sorting thousands of records in primary
memory, to sorting millions of records in secondary memory such as disk or
tape. 5

Clearly, it is impossible for a single sorting function to fill all of these
needs efficiently enough to be generally useful, because there are many
different algorithms that are appropriate for different needs. Any single
program that tried 10 meet all needs would be much too large to be practical

for the smaller cases.

15T"his example comes from another author, but we have been unable to determine
whom,
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2.3.2. A Sorting Function Generator

But consider a sorting function generator. This generator could be given
input characterizing a particular sorting need, and would produce a sorting
function custom-tailored for that application. Input to the generator might
include parameters describing the data types to be sorted, where the data are
stored, the type of algorithm to be used, or even a characterization of the
generated program’s expected input data distribution. The generator would
use this information to choose the most appropriate algorithm (from some

repertoire) and produce the most efficient data structure declarations.

An automatically generated sorting function probably would not be quite
as efficient in every case as a sorting function that a programmer could write
from scratch. However, it could be good enough in most cases that it would
be far more cost-effective to use the automatically generated version than to
write a new one. This is a fundamental assumption behind the desire for

reusable software.

2.3.3. Explicit Generation vs. Partial Evaluation

The sorting function generator could be written in two ways: it could
explicitly manipulate program fragments for the generated program, or it
could be written as one big parameterized sorting program that is partially
evaluated to produce a small specialized version. Ignoring the lack of strong
typing in LISP, the approach of explicit manipulation might correspond to
LISP programs that construct other LISP programs as S-expressions. In the
partial evaluation approach, the language would have to allow types as first-
class values so that data type declarations could be parameterized by input

values, and the partial evaluator would manipulate program fragments to
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produce a specialized version -- the program would not express this
manipulation explicitly. Regardless of which approach is taken, the
important point here is that the work of producing the specialized or
generated sorting program must be separated from the sorting program’s
execution. For this discussion, we will assume that explicit generation is

used.

2.3.4. Phases Used

Let us now clearly distinguish between the act of executing the sorting
program generator and the act of executing the generated sorting program.
These executions correspond to two acts of instantiation, shown in Figures

2-1 and 2-2, or two phases, n and n+ I, as described in Chapter 3.

To ensure strong typing, both the sorting program generator and the
generated program must be guaranteed against runtime type errors. In the
phase parlance of Chapter 3, if the generator is to be executed in phase n, it
can be type checked in phase n-7; if the generated program is to be

executed in phase n+ /, it can be type checked in phase ».

2.3.5. Generalizing Further

So far we have focused on the application program’s need to use a general-
purpose function. To generalize the example further, suppose that the
sorting program generator also uses some general-purpose mathematical
function that also must be specialized before being used. Thus, a math
function generator would produce a specialized version of the math
function, which would be used in the sorting function generator to produce

a specialized sorting function, which would be used in some application
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program. Again, in the parlance of Chapter 3, the math function generator
would be executed in phase n-1 to produce and type check the specialized
math function, which would be used by the sorting function generator in

phase n. These phases are illustrated in Figure 2-3.

In summary, general-purpose function generators can be used to produce
specialized functions, which may themselves be used by other general-

purpose function generators.
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Figure 2-3: Phases of Sorting Example
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| Chapter 3
The Conceptual Model of Multiple Phases

This chapter describes the conceptual mode! of multiple strongly typed
evaluation phases. Proper understanding of the conceptual model is critical
in understanding the Phi language, the Phi translator, and the

Implementation Language.

3.1. Arriving at Phases by Extending Compiletime

The conceptual model of phases is best understood by presenting the
arguments that led to its development. We begin with a simple conceptual

view of traditional compiletime and runtime, shown in Figure 3-1.

First, a source program, written in a strongly typed language, is compiled
into an object program. This step is Phase 1 -- compiletime. During this
phase, the compiler manipulates type values and program code, and as a

result produces an intermediate object program that is guaranteed free of
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Figure 3-1:
Traditional Compiletime and Runtime
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runtime type errors. 16

The object program, with a suitable environment, is then executed on an
implementation machine. This step is Phase 2 -- runtime. During this
phase, basic values such as numbers, character strings, and booleans are
manipulated, and the resuit of the computation is some basic final value
such as a number, a character string, a boolean, or, conceptually, a file. The
environment defines all identifiers that are not locally declared in the

program, that is, it provides bindings for all of the program’s free variables,

3.1.1. Generalizing Compiletime

Let us now view the compiler as executing the source program to produce
the object program, and allow the programmer to express types as first-class
values that are manipulated during compiletime. And to provide really
useful expressive power, let us also allow the programmer to express other
types of values, for example, numbers and booleans, at compiletime, and to
write arbitrary compiletime expressions and functions involving these

values.

Now, with values of various kinds (numbers, booleans, and of course

16"1"1'1(: question of whether there could be type errors in a program’'s input sometimes
arises here. For example. an input operation requiring a number could instead be given
some meaningless character string, This problem can be avoided by only providing an
input operation that always reads characters. and forcing type conversion 10 be
accomplished by ordinary functions under programmer control. Thus, for example, the
input sequence "123" would be read as the characters "1"."2", "3" of known type, and then
converted by the program to the numeric value 123,

For simplicity, the simple pedagogical languages described in this work do not include
input or output operations.
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types) being manipulated at compiletime, it is conceivable that a so-called
"runtime” type error could occur during compiletime. For example, one
may mistakenly try to add a number to a type during compiletime,
Therefore, we add another phase -- 2 pre-compiletime phase -- that does the
type checking required to ensure that no "runtime™ type errors can occur

during compiletime.

Our conceptual model, at this point, is shown in Figure 3-2. Phase 1, the
pre-compiletime phase, now manipulates type values and program code, and
as a result produces a program that is guaranteed not to commit a "runtime”
type error when executed during the next phase. Phase 2, compiletime, now
manipulates numbers, booleans, type values, and program code, and
produces a program that is guaranteed free of runtime type errors. Phase 3,
runtime, manipulates numbers and booleans as before, producing a final

answer (number, boolean, etc.).

3.1.2. Generalizing Pre-compiletime, And So On. ..

At this point, we can make two observations. First, the pre-compiletime
phase is now performing a role completely analogous to the role
compiletime had played. Hence, we can apply the same reasoning to
genefaiize pre-compiletime, and add a pre-pre-compiletime phase, and so
on, thus potentially allowing an unbounded number of phases. Each phase

except the last produces a type-checked program for the next phase.

Second, we observe that the operations performed by the compiler have
now become a superset of the operations performed at runtime. Hence we
can unify the two so that one Implementation Language (IL) Machine fills

both roles. The resulting conceptual model is described in Section 3.2.



Figure 3-2: Pre-Compiletime Phase Added
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3.2. Conceptual Model of Multiple Phases

Figure 3-3 illustrates how a Phi program is translated and then, in effect,
executed through several intermediate phases before producing a final

result.

Note the correspondence between Figure 3-3 and the specific
programming method illustrated in Figure 2-2. The loop shown in Figure
2-2 is unfolded in Figure 3-3; thus the conceptual model shows several
repetitions of the IL Machine -- one for each time it is invoked. Also, for

simplicity, the combine action in Figure 2-2 is not shown in Figure 3-3.

3.3. Interpreting the Conceptual Model

A Phi program is first translated to ERT,. The Expression component of
ERT, is then executed on the IL Machine in a suitable environment ENV,
- this is phase 1 - 10 produce ERT,. The Type component of ERT,
specifies the type of value that will be produced by phase 1. For the first
phase, it is always ert, indicating that another ERT will be produced.
Similarly, the Expression component of ERT , is then executed in phase 210
produce ERT 4, and so on. The Type component of ERT, specifies the type
of value that will be produced as a result of phase 2. etc. The result of some
phase n is considered the final resuit of the computation because it is not an
ERT. Thatis, the Type component of ERT  indicated that the result would
be something other than another ERT. Thus, the original Phi program
could be viewed as a meta-program because, in effect, it denotes a series of
programs ERT,, ... ERT

n
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Figure 3-3: Conceptual Model of Multiple Phases
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3.3.1. Properties of the Conceptual Model

The conceptual model has the following important properties:

- Each phase does the type checking necessary to ensure that no
runtime type errors are possible during the next phase.

- No runtime type errors are possible during the first phase, either,

- Every ERT produced by the Phi Translator or the IL. Machine is
valid.? Specifically, the Expression component is guaranteed
syntactically correct and type correct.

- The type of each subexpression is computed at least one phase
before the value of that subexpression is computed. Similarly,
the type of the program’s result is known before the program is
phase evaluated (i.e. it is given as the Type component of an
ERT).

- Each phase acts as compiletime for the next phase, and as
runtime for the previous phase. Thus, the terms “compiletime”
and "runtime"” are relative. These terms will still be used in the
rest of this work -- they are still meaningful terms -- but the
reader should recognize that their meanings are relative to other
implied runtime or compiletime phases.

- The Phi Translator does no type checking -- it will produce a
valid ERT, free of possible runtime type errors, for any
syntactically legal Phi program, This is explained in Section
3.3.3.

17As defined in Section 2.2.2.



3.3.2. Resolving the Conflict Between "Strong Typing™ and "Types as First-

Class Values™

Section 1.2.3.3 points out the inherent conflict between strong typing and
the desire for types as first-class values. In our model of multiple phases,
types are indeed allowed as first-class values, yet every phase is strongly

typed. How is the conflict avoided in our model?

In general, types manipulated as first-class values during one phase
become invariants of the next phase, in the sense that a type used in a
declaration represents an invariant. If an identifier is declared to be some
type, that type represents an invariant on the kinds of value that may be
bound to that identifier. Similarly, if a function’s return value is declared to
be a certain type, that type represents an invariant on the kinks of value that

the function may return.

In our model! it is not possible to use a type, computed as a first-class
value, as an invariant of the same phase during which it was computed.
Type values computed in one phase have no bearing on the types of the

expressions executed during that same phase.18

One can compute an
arbitrary type value during one phase, but that type value can only be used

in declarations pertaining to subsequent phases -- not in the declarations

18T‘his property is readily evident in Static-l1L. presented in Section 4.2. Expressions in
Static-IL are tvpe checked and gencrated in the form of ERTs. and in doing so, tvpes are
computed as first-class values. However, there is no censtruct in Static-IL for evaluating an
ERT. Thatis, there is no provision for invoking the Static-IL Machine from within Static-
IL. Hence, there is no way for the tvpe values. computed in one phase. (o have any effect on
the types of the identifiers or expressions evaluated during that same phase.
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pertaining to that same phase.19 For example, in the same phase, one
cannot both compute the type used to declare an identifier, and bind a value
of that type to the identifier. The type of the identifier must be computed
during at least one phase before the identifier may be bound to a value of
that type. Thus, the notion of separate phases prevents any possible circular

dependency between an object’s type and its value.

3.3.3. The Paradox of Strong Typing Without Prior Type Checking

We mentioned that every phase is strongly typed, and that the IL program
for every phase -- except the first -- is type checked by the previous phase.
We require that the first phase also be strongly typed, yet we also mentioned
that the Phi Translator does no type checking. How can we ensure that the
IL program produced by the Phi translator does not contain any runtime
type errors if the IL Translator does no type checking? The answer is
simple: the translator produces an IL program in which every subexpression

evaluates to a value of the same type: type ERT.

This means that the only operations performed during the first phase are
manipulations of program fragments. This makes sense when one considers:
what if it weren'r true. That is, suppose some other operation -- addition of
two numbers, say -- could be performed during the first phase, Then, to
guarantee that this operation could not involve a runtime type error, there
would either have to be another previous phase or the translator would have

to do some type checking.

19C011ceivab11.f, the type may even be computed by a recursive function, as mentioned in
Sectjon 6.3, though for simplicity recursive functions are not provided in the Static-Phi and
Static-IL languages described in Chapter 4.
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Hence, every variable is type ERT initially, and every IL program
produced by the translator evaluates to an ERT (assuming no compiletime
errors occur during evaluation). (If a compiletime error does occur during
evaluation, the program can either be thought of as returning some special
error value, distinct from all other values, or as returning nothing, since the

evaluation is aborted.)

3.3.4. All Expressions Start Qut Type ERT

If we view the IL programs ERT,..ERT in Figure 3-3 as representing
successive versions of the initial Phi program, then the type of every
subexpression or variable in the initial Phi program starts out as ERT, and
remains ERT until some phase when it becomes fixed as some basic type,
such as a number or a booiean (any type other than ERT). Finally, during
the following phase, the expression or variable will have a value of that type

(number or boolean).

This one-way progression represents the accumulation of information
about the expression or variable. Type ERT means that nothing is known
about the expression or variable. Then, during some phase, the type of the
expression or variable is known (number or boolean, for example). Finally.
during the next phase, the specific value of the expression or variable is

computed. This subject is mentioned further in Section 7.2.8.
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3.4. Assigning Computations to Phases

Given a source program, we need some way to decide during what phases
its various subcomputations should be performed. For example, we require
that the type of a function’s formal parameter be computed at least one
phase before the function can be applied to any actual arguments. There are

two basic approaches we can take; the first of these has two variations.

1. Static determination. The phase for each computation is fixed
during translation, before the first phase. This approach most
closely follows the reasoning presented in Section 3.1, which led
to the idea of multiple strongly typed evaluation phases, and this
is the approach on which this work was initially based. There
are two sub-options possible under this approach:

a. The source program can explicitly indicate which
computations are to be performed during each phase. This
was the original approach conceived as "multiple strongly
typed evaluation phases”, and is described in Section 4.

b. The Phi Translator might infer which computations should
be performed during each phase. This approach was not
pursued in this work. We do not know how difficult this
alternative might be, or what problems it might present. It
is open for future research, as mentioned in Section 7.2.9.

2. Dynamic determination. The phase for each computation is
determined during the various execution phases, and depends on
the environments supplied during the previous phases. This
would allow phases to achieve the effect of partial evaluation,
because the types and values of different free variables could be
"fixed” as desired during different phases. The essential
distinctions between this kind of phase evaluation and partial
evaluation are that, under phases, the same machine would be
used to perform “partial” and "full” evaluation, there is a rigid
requirement of strong typing in each phase, and the tvpe of
result -- either the final answer or another program -- would be
known in advance.
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This approach has not been fully explored, but the possibility is
discussed in Chapter 5.

3.5. How Many Phases Are Required?

How many phases will be required to execute a given Phi program to a
final answer? In general, the answer depends on the program, whether a
model of static or dynamic determination of phases is used, and might

depend on the environments provided in the various phases.

Any given program will always require some minimum number of phases
before it can produce a final answer. For the Static-Phi language described
in Section 4.1, an algorithm (Count, defined in Appendix A) is used to
compute this minimum based on the lexical nesting level of emits and evals
in the original Static-Phi program, and, hence, it cannot be infinite for a
finite-sized program.20 For example, the program demoxistrated In Section
4.4.3 requires three phases, whereas the program in Section 4.4.9 requires

four phases.

What about using more phases than the minimum? When phases are
determined statically, there is little flexibility for extra phases, because a
given program would expect certain inputs, via the environments, in certain

phases. (Section 4.3 discusses environments for Static-Phi.)

If phases were determined dynamically, with.each phase performing the

function of partial evaluation, then extra phases might freely be used.

2OWe do not know if there might be anv other reasonable language in which a well-
formed program could require an infinite minimum number of phases. We suspect not, and
the question s not considered here.

49



Partial evaluation is defined to preserve the semantics of the original
program, so extra phases should certainly cause no harm, and they may
improve the efficiency of later phases by allowing the values of some
expressions to be pre-computed. Of course, if there are no more expressions
that can be pre-computed, adding an extra phase does nothing useful. Asa
trivial example, consider the program consisting only of the variable x. 1f no
final value is given for x, x will just partially evaluate to itself. That is, the
program will be partially evaluated perfectly well, but no useful work will be
done because no further reduction is possible until a final value is supplied

for x.
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| Chapter 4
Static Determination of Phases

This chapter informally describes the originally conceived system of
multiple phases, in which the phase for a particular subcomputation is
explicitly denoted in the source program. That is, the phase for a given
subcomputation is determined statically during translation. We demonstrate
this approach by defining a source language, Static-Phi, a Static-Phi
Translator, and an implementation language, Static-IL. More precise

semantic definitions are given in Appendix A.

The reader well-versed in the typed lambda calculus may wish to skim
Section 4.1, which describes Siatic-Phi, noting the special emit and eval
constructs, and then turn directly 1o Section 4.2, which describes Static-IL.
Section 4.2.3 is important because it discusses the unusual language
constructs in Static-IL. Finally, the reader is strongly urged to read the
discussion of the two examples in Sections 44.3 and 449 to gain an

appreciation of how phases work.

4.1. The Static-Phi Language

The Static-Phi language is expression oriented, and looks like a simple
typed lambda calculus [Barendregt 84] with two extra constructs added.
Types are unrestricted first-class values; wherever a type is required, any

arbitrary expression that evaluates to a type may be given. There 1s no
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modifiable store, or assignment operation. There is one abstraction

operator, A, for data abstraction, function abstraction, type abstraction, and
code (ERT) abstraction.

4.1.1. Conventional Static-Phi Language Constructs

The Static-Phi language includes the following basic forms:

consiant

id

A literal constant, for example, a number 1234, a truth
value false, or a type constant number, bool, ert, or type.
Type constant type refers to the type of types; ert is the
type of ERTSs, described in Section 2.2.1.

An identifier (variable). An identifier always evaluates 10
the value bound to it in the environment.

A id:expry— expry.expryoq,

(expre expr,)

For creatlng an unnamed function abstraction. Expr,
and expr  are arbitrary eXpressions that must evaluate to
types; they declare the types of the domain and range of
the function, that is, expr, is the type of the formal
parameter id, and expr, is the type of the function’s
return value. Expr dy is the body of the function.
Because we require comp1let1rne type checking (that s,
one phase before "runtime”), the formal parameter type
will be evaluated one phase before the function value
(closure) is created. That is, if the function 1s to be
applied in phase /. the type of the formal parameter will
be computed in phase i-].

Function application. Expr, is an arbitrary expression
that must evaluate to a function; expr, will evaluate 10
the actual argument. The type of the actual argument
must match the declared type of the formal parameter for
the function; this is checked during the phase before the
function is applied. The function application always
occurs during the same phase that the actual function
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value is created, regardless of any nesting inside emits or
evals (described betow).

(funtype expry expr,)

Standard function for constructing the types of functions.
The subexpressions are evaluated (they evaluate to types)
and paired to represent the types of the domain and range
of a function. Expry is the domain type; expr, is the
range type. Of course, both subexpressions must be type
type; this is checked one phase before the function type is
to be constructed and returned.

4.1.2. Normal Runtime Phase

Normal runtime phase refers 10 the phase in which a particular operation is
actually performed (as opposed, say, to the phase in which the operation is
type checked). Within a single program the normal runtime phase will be
different for different instances of different operations. For example, the
type expression for a function's formal parameter might use an operation
that is also used in the body of the function. Used in the formal parameter
type expression, the operation’s normal runtime phase will be one phase
sooner than for the instance of the operation that appears in the body of the
function. "Normal runtime phase” is usually used as a comparative term, t0

contrast the different phases when two operations are performed.

By altering the normal runtime phase of an operation, one can cause the
operation to be performed during some phase earlier or later than it would
otherwise be performed. Basically, if an operation is used to compute a type
that will be used to type check a subsequent phase, then one would want the
normal runtime phase of the operation to be one phase earlier than it

otherwise would be. Or, if an operation is used to explicitly generate some
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code (an ERT) that is to be executed in a later phase (as with macro
expansion), then one would also want the normal runtime phase of the
operation 1o be one phase earlier than it otherwise would be. On the other
hand, if the operation in question were a part of the generated code, one
would want its normal runtime phase to be one phase later: that is, the
normal runtime phase of the operations that are doing the generation should
be one phase earlier than the normal runtime phase of the operations in the

generated code.

The normal runtime phase of a construct is altered in three ways: by being
inside an emit (discussed below), by being inside an eval (also below), or by
being in a function abstraction’s range or domain type expression. The
normal runtime phase for a function abstraction’s range or domain type
expression is implicitly one phase earlier than the normal Ijunrjme phase for
the function, since the function must be type checked during the phase
before it is applied. Emit and eval are used to explicitly change the normal
runtime phase of an expression: eval makes the normal runtime phase one
phase earlier, while emit makes it one phase later. These are discussed
below in Section 4.1.3, and are more precisely defined in the formal

semantics given in Appendix A.

4.1.3. Some Unusual Constructs

In addition to the familiar constructs outlined in Section 4.1.1, Static-Phi

also includes the following unusual forms.

(eval expr) The normal runtime phase of expr is one phase earlier
than in the surrounding context. Note that the domain
and range type expressions in the A construct, expr, and
expr . are effectively inside an implicit eval, because the



types need to be computed one phase before the function
value (closure) is created.

(emit expr) The nomal runtime phase of expr is one phase later than
in the surrounding context.

Note that our eval is very different from the LISP EVAL. Our emit and
eval forms are only used during translation. They are not executable

notions, and there are no Static-IL syntactic forms that correspond to them.

Note also that emit and eval cancel each other out, in a manner analogous
to the LISP back-quote ("*") and comma (",") macro constructs. Thus,
(emit (eval expr)), (eval (emit expr)), and expr are entirely equivalent in
Static-Phi.

4.1.4. Examples

This section shows some simple examples of Static-Phi programs. Section
4.4 shows how each of these examples would be translated to Static-IL
programs and appear in various phases. The explanations of the identity
function examples in Sections 4.4.3 and 4.4.9 give the flavor of what the
various phases do. We begin here with trivial examples and work up to

more interesting cases.

4.14.1. F Twice
(f{rxp

Some function fis applied twice to an argument X.
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4.1.4.2. Identity Abstraction

A x : number — number . x
An unnamed identity function that takes a number and returns that same

number.

4.1.4.3. Identity Application

(M x : number — number.x 3)
The identity function from the previous example is applied to the number
5. The final result will be 5.

4.1.4.4. Function Abstraction

A X : number — number . (succ (succ x))
If succ is the successor function on numbers, defined in the environment,

this is an unnamed function that adds 2 to its argument.

4.1.4.5. Function Application

(A x : number — number . (succ (succ x)) 5)
The function from the previous example is applied to 5. The final result
will be 7.

4.1.4.6. Higher Order Function Abstraction

A f: (funtype number number) —» number . (f ( x))
This function takes another function as an argument and applies it twice 10
some free variable x. The actual parameter must be a function from

numbers to numbers.
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4.1.4.7. Higher Order Function Application

(A {: (funtype number number) — number.(f(fx)) g)
The higher order function from the previous example is applied to g,
which must be a function from numbers to numbers. Thus, function g is

applied twice to the free variable x. The program is equivalent to:

(2(gx)
4.1.4.8. Identity-Function Type Abstraction

At:type — ert.(emit Ax:t— t.x)
This function takes a type 7 and returns code {(an ERT) that will become an
identity function in the next phase. The generated identity function will be

specialized for type 1, and may only be applied to values of type «.

There are two function abstractions in this example: the outer function
abstracts the type variable 7 in one phase, and the inner function abstracts
the variable x in the next phase. Note the emit surrounding the inner
function abstraction. The emit informs the Static-Phi Translator that the
inner function abstraction is to be created one phase later than the outer
function abstraction. This is required because the outer function abstraction
is manipulating a type value that will be used in type checking the inner
function. Hence, during the phase when the outer function is created and
applied, the inner function is just treated as code (an ERT), and is type
checked. The outer function is acting like a macro in returning the code (an

ERT) instead of returning a function value (or closure).

The outer function cannot both compute the type ¢ as a first-class value
ond return the inner function as a function value (closure) during the same

phase, because, to enforce strong typing, the inner function must be type
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checked during the phase before it is used as a function value. Therefore, if
the emit were omitted, a compiletime error would occur when the inner

function was being type checked.
4.1.4.9. Identity-Function Type Application

(At:type— ert.(emit Ax:t— t.x) number)
The identity-function generator of the previous example is applied to type

number to generate an identity function from numbers to numbers,

4.1.4.10. General Type Abstraction

A t:type — ert.{emit A f:(funtypett) = t.(f(fx))
This function takes a type 1 and returns code (an ERT) that will become a
function in the next phase. The generated function will take any function

from 1 to r and apply it twice to the free variable x.

This example demonstrates how types may be manipulated as first-class
values during one phase, vet become invariants of the next phase. The outer
M creates a function that takes (and could manipulate) a type as a first-class
value. However, it returns code (an ERT) that has been type checked using
this type. This returned code happens to be the code for a function
abstraction. (Incidentally. free variable x is also type checked when the ERT
for the function is generated and tvpe checked.) Section 4.4.10 shows how

this example would appear in various phases.
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4.1.4.11. General Type Application

(\t:type — ert.(emit A {: (funtype tt) = t.(f(fx))) number)
The ERT-returning function of the previous example is applied to type

number,

4.1.4.12. Macro Abstraction

Am:ert » ert.(m(mx))
This function takes some code m (an ERT) and returns code that applies m

twice to some free variable x.

Note that the formal parameter m and the function’s return type are both
ert, indicating that this function will take code (an ERT) as its argument and
return code (an ERT) as its result. This function manipulates code, much

like a macro.

4.1.4.13. Macro Application

(Am:ert — ert.(m(mx))
(emit A y : number — number . (succ (succ y)))

)

The macro of the previous example is applied to code which will become a
function to add 2 to its argument. Note that the actual argument is
surrounded by an emit so that the (macro) function of the previous example
will operate on it as code (an ERT) rather than as a function value (or
closure). Thus, the outer function treats the inner function as code during
one phase, and the inner function becomes a function value (closure) during
the next phase. If the emit were omitted, the outer function could operate
on the inner function only as a function value (closure), not as code. Section
4.4.13 shows the IL code that results from translating and executing this

example through the necessary phases.
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4.2. The Static-IL Language

As shown in the conceptual model (Figure 3-3), a Phi program is not
executed directly, but is first translated into a corresponding Static-IL
program. The translator is defined in Appendix A, though examples of
translation are given in Section 44. This section describes the Static-IL
language, which includes some unusual language constructs for creating and

combining type-checked program fragments in the form of ERTs.

Syntactically, Static-IL looks like an untyped lambda calculus. In fact
Static-IL is typed, though type declarations are not explicit. Under the
programming method shown in Figure 2-2, the Static-IL Machine is given
only Static-IL expressions that are guaranteed free of runtime type errors or
unbound variables, and it generates Static-IL expressions only within valid
ERTs.2! Since a valid ERT triplet includes a list of all the Static-IL
expression’s free variables and their types, and the type of the expression,
Static-IL expressions should be regarded as typed.22 We speak of Static-1L
expressions as being well typed in the same sense that one would speak of
the object code for a compiled Pascal program as being well typed, even
though the type information from the source program is stripped out after

being checked, when the object code is generated.

21ov7alid ERT" was defined in Section 2.2.2.

22] ohn Mitchell and David MacQueen have pointed out that it may be better to regard
the implementation language as consisting of the entire ERT triplet (rather than just the
Expression component), since the R (Required-environment) and T (Type) components of
the ERT triplet contain the tvpe information for the E {Expression) component.
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4.2.1. Lexical Sceping. ERTs, and Macros

Static-IL expressions are lexically scoped. Nonetheless, if ERTs are
explicitly manipulated by the programmer, just as with conventional macros,
it is possible to generate new expressions in which free variables have
become "captured” by local declarations. Note that this is possible only in
program fragments (ERTs) that are explicitly being constructed, as first-class
data objects. When an expression is executed, that expression is absolutely
lexically (or statically) scoped, and no such anomalies are possible.

The examples below illustrate how, in constructing an expression by
manipulating ERTs as first-class values, a variable can appear to become
"captured"”, as with macros. In the following Static-Phi program, x will
evaluate to the ERT representing the outer z, thus causing the outer z to be

placed into the scope of the inner 2z

A z : number — (funtype number number) .
(eval
(Ax:ert— ert.
(emit A z : number — number . x)
z
)
)
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For example, the following Static-Phi program (which simply supplies actual

parameters for the functions in the preceding program),

(M z: number — (funtype number number) .
(eval
(Ax:ert— ert.
(emit A z : number — number . x)

will be phase evaluated to produce the following Static-IL program,

(apply (apply (lambda z (lambda z z)) (quote 5)) {(quote 10))

which evaluates to 10.

The behavior illustrated above is quite intentional -- it was not an
oversight -- though it is different than one might naively expect. The
explicit intent here is to manipulate program fragments (ERTs) to construct
new programs with new semantics. “This behavior is useful for program-
writing programs, and is analogous to the behavior of conventional macros.
Also, bear in mind that under no circumstances can this behavior cause a
runtime type error. Any attempt to cause a type mismatch In the
constructed code will be detected as a compiletime error, one phase before

the constructed code can be executed.
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4.2.2. Conventional Lambda Calculus Operations

The following Static-1L primitives look and function exactly like the basic

operations of an untyped lambda calculus, written in the style of LISP:

ev Any quoted expressible value. The value ev is simply
returned, unevaluated. In Static-IL, constants appear as
explicitly quoted values.

id An identifier. Its value is simply retrieved from the
environment.

(1ambda id expr ) Function abstraction. Jd is the formal parameter, expr is
the function body. A lambda abstraction evaluates to a
closure, consisting of the current environment, the formal
parameter, and the function body.

(apply expry expr, ) .
Function application. Expr; evaluates t0 a function
closure; expr, is evaluated and becomes the actual
argument. The function application has already been
type checked during the previous phase.

(funtype expry expr_ )
This operation 1s used to generate the type of a function.
Subexpressions expry and expr . are simply evaluated in
the current environment; they evaluate to types. These
types, 1ypey and (ype, are used as the domain and range
types of the function type that is returned.

The returned function type is represented as a pair,
tagged with the word fun: <fun uype,, fype >. For
example, <fun number number> represents the type of a
function that takes a number and returns a number.

(incr expr) Increment. This operation returns the value of the
expression plus one. There is no corresponding operation
in Static-Phi: incr is only included in Static-IL to make
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the examples in Sections 4.1.4 and 4.4 more interesting.
(In the examples of Section 4.4, incr is used to
implement the succ function, which is assumed to be
supplied in the environment.)

These operations are not discussed further here.

4.2.3. Some Upusual Operations

The purpose of the conventional Static-IL operations listed above is to do
conventional computations -- to manipulate basic values as in a lambda
calculus. The only perceptible difference is that types are also manipulated

along with other basic values.

In contrast, the rest of Static-IL's primitive operations do not look so
conventional. Their ultimate purpose is to produce type-checked program
fragments (ERTs). That is, the ultimate purpose of the operations listed
below is to type check and generate the conventional operations listed
above. All of the Static-IL constructs discussed below return ERTs as their
result. Several of them involve a parameter n, which is a constant,
determined during translation, that indicates how many phases to wait
before generating one of the conventional operations. The Static-Phi
translator uses the emits and evals to determine during what phase each of
the various conventional operations should occur, and generates the Static-
IL program with the corresponding ns. The examples in Section 4.4, and in
particular the two examples in Sections 4.4.3 and 4.4.9, demonstrate what
happens in successive phases, how these language constructs work, and the

purpose of these n parameters.



4.2.3.1. (deep-const ¢ I 1)

This construct always returns an ERT, Its purpose is to generate a type-
checked quoted constant in the proper phase, i.e. a Static-IL program of the
form ‘ev. C is any constant value, 1is its type, and # is the number of phases
to wait before the constant is needed. Deep-const can be thought of as

deeply quoting the constant. (Constants are not assumed to be self-quoting.)

The operation deep-const is evaluated as follows. If n > 0, the ERT
<(deep-const ¢ [ n-1), <, ert> is returned; otherwise, (when n = 0),
the ERT <'¢, <>, » is returned. The idea is that each time deep-const is
evaluated, it basically just decrements n, returning the same kind of ERT
until » reaches 0. When n reaches 0, then an ERT containing the quoted

constant and its type is returned.?3

4.2.3.2. (check-funtype expr, expr, n)

Check-funtype always returns an ERT. It is used to generate an ERT

containing a funtype expression as its Expression component, when n is 0.

Both expry and expr. will evaluate to ERTs; call them <eyrg 142 and
(er.rr,zr).
Let us first consider the case when the number n is 0, in which case a

funtype ERT will be returned. Both ¢, and 7, must be the type constant

23 Note that the constant’s type is hidden until the phase before the constant is used, even
though the type is determined syntactically by the original Static-Phi program. This means
that if one type of constant is written where some other type is required. the type mismatch
will not be discovered until the phase before the value of the constant would have been
used, even though it certainly would be better 1o report the error as early as possible. This
issue is mentioned further in Section 7.2.8.
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type, indicating that e_and e, will evaluate to types during the next phase.
(It is a "compiletime" error if either 74 or 7_ are not type.) Next, the
Expression components e, and e, are used to build the Expression
component of the ERT that check-funtype will return. For example, if €4
and e. are 'number and ‘number, check-funtype will return an ERT with

the expression component (funtype 'number 'number).

Similarly, the resulting ERT's Required-environment is formed by
combining the Required-environments 7, and r_. This means that the free
variables of the resulting expression include the free variables of both of its
subexpressions e, and e.. However, the Required-environments must be
consistent: if a variable appears in both, it must have the same type,

otherwise it is a "compiletime” error.

Finally, the Type component of the resulting ERT will be type -- funtype

always returns a type.

If n > 0, then this is not the right phase to generate a funtype €xpression;
instead, another check-funtype expression will be generated, and n will be
decremented, as for deep-const. In this case, both 14 and {, must be the
type constant ert, indicating that e_and e, will evaluate to ERTs during the
next phase. The resulting ERT will be constructed in a manner similar t0
the case when a funtype expression is generated, except that the Type

component of the resulting ERT will be ert instead of type.
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4.2.3.3. (check-1ambda id expry expr, expryo,. )

The check-1ambda construct is analogous to the check-funtype coOnstruct:
it is used 1o generate a 1ambda Static-IL expression, and it always returns an
ERT. However, check-lambda differs from check-funtype in two
important ways: it has a bound variable, id; and two of its subexpressions,
expry and expr_, evaluate to types, while the other, expr, evaluates to an

ERT.

ody’

The check-1ambda construct is evaluated as follows. First, the type
expressions expr, and expr_ are evaluated in the current environment; call

the resulting types 7, and ...

Next, an ERT <id<id.t 2,1, is formed for the bound variable and its type.
The Expression component is simply the formal parameter; the Type
component is the function’s domain tvpe (the type of the formal parameter);
and the Required-environment lists only the formal parameter. This ERT

will be used in type checking the body of the function.

Now the body expression expr is evaluated in an environment

body
augmented by the binding of idto the ERT <id <id1,2,1,2, and the resultis a

(type-checked) ERT e, y.7p 00y lpoay> 10O verify that the function body

really does return the declared tyvpe, the Static-lL Machine must have

hody = Ir> it is a "compiletime” error if they are not equal.??

24Most languages would not actually require these types to be identical, but would
instead reguire only that "vod be a npe that is coercible 10 o Such gratuitous type
conversions do not make a tanguage fundamentally morc powerful when the programmer
could just as well explicitly call standard type-conversion functions as needed. Coercions
are simply provided for convenience.
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Because Static-Phi allows the programmer to write functions on ERTs --
like macros -- it is possible that the body expression references a variable
that has the same name as the formal parameter, /d, but a different type.
(This is discussed and illustrated in Section 4.2.1.) Therefore, to ensure that
any free instances of id in the body really are the declared type, id is looked

up in the required-environment r, . to verify thatits type is 1.

ody

Finally, the Static-IL Machine constructs the ERT that 1s returned by
check-lambda. The Expression component is (lambda id Chody )" The
Required-environment component is just the required-environment from
the body Toody"

component is <fun 74, 7.>.

with the formal parameter, i, removed.” The Type

4.2.34. (check-check-1ambda id expry expr expry .. ")

ody

This construct is used to generate a check-lambda IL expression.
Subexpressions expr,, expr., and expr, dy all evaluate to ERTs; an ERT is
always returned. Check-check-lambda is analogous 10 check-funtype In
that it waits for the phase when n = 0 before generating and returning a
check-1ambda expression. For other phases when n 2 0, it just decrements #

and returns another check-check-lambda expression in the resulting ERT.

Recall that the purpose of the check-1ambda construct is t0 generate type-
checked 1ambda expressions. Similarly, check-check-1ambda is provided
for generating type-checked check-lambda expressions. Remember that

every expression must be guaranteed type correct during the phase before it

25Thf: formal parameter id is a free variable in the function body. but looking from
outside at the entire lambda expression. it is bound by the lambda.
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is executed. But notice that two of the arguments to check-lambda arc
assumed 10 evaluate to types. Check-check-1ambda does the type checking

necessary to guarantee that those two arguments will indeed evaluate to

types.

At this point, the question usually arises as to whether further
check-check-check~ OF check-check-check-check-lambda constructs
might be needed. Fortunately, they are not, and the reason is that for
check-check-1ambda, all evaluated arguments evaluate to ERTs, and the
Static-Phi Translator ensures that every expression will initially evaluate to
an ERT. That is, the purpose of check-check-1ambda is to ensure that all of
check-1ambda’s evaluated arguments will indeed be the expected types, and
it is required because two of check-lambda’s arguments must be type
expressions. But all of check-check-1ambda’s evaluated arguments must be
ERTs. And since the Static-Phi Translator only generates expressions that
are guaranteed to evaluate to ERTs, no further check-check-check-Tlambda
is needed to ensure that the evaluated arguments {0 check-check-1ambda
will be ERTs.

Check-check-Tambda is evaluated as follows. Subexpressions expr, and
expr, are evaluated to ERTs. If # > 0, their type components must be ert;
otherwise (when n = 0), their type components must be type. Next, an
ERT is constructed from the formal parameter, id, for use in type checking
the body. This is similar to check-1ambda, except that the type of id is
always ert. As with check-lambda, the body expression expr, dy 18
evaluated to an ERT in an environment augmented by this binding. If this
ERT's required-environment lists the formal parameter u, its type should be

ert. Finally, the return ERT is constructed from the Expression and
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Required-environment components of the ERTs obtained from evaluating
check-check-1ambda’s subexpressions. If n 2 0, n is decremented and
another check-check-1ambda is generated for the Expression component;
otherwise (when n = 0), a check-1ambda is generated for the Expression
component. In either case, the Type component is ert. The Required-
environment component is generated by combining the subexpressions’
required environments, with the formal parameter removed. However, the
Static-IL Machine must first ensure that these required-environments are
compatible: any identifier listed in any of the required-environments must
be listed with the same type in each of the subexpressions’ required-

environments.
4.2.3.5. (check-apply expr; expr, )

This construct is used to generate an apply Static-ILL expression.

Subexpressions expr, and expr, both evaluate to ERTs; an ERT is returned.

This construct is different from the others in that the Static-Phi Translator
does not determine, in advance, the phase in which a function application
will actually occur, Instead, the check-apply operation monitors the Type
component from its first argument to see when it will become a function
rather than an ERT. If it will be a function, the function’s domain type 1s
checked against the type of the actual parameter; otherwise, another

check-apply 1S generated.

Check-apply is evaluated as follows. First, subexpressions expre and
expr, are evaluated 10 ERTs <ep.rp.t:0 and e, r,.0 2 If 1; is a fun type,

<fun 14 1>, then 1, must equal 7,, and an apply ERT is returned with Type

d
component 7. Otherwise, 7, must be ert (it is a "compiletime™ error ifitis
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not), and another check-apply ERT is returned with Type component ert.
In either case, the Required-environment component of the resulting ERT is
formed by combining r; and r,, which must be consistent. Finally, it is a
compiletime error if #; is ert but ¢, is not ert, because this means that the
function argument would evaluate to some final basic value (such as a
number O boolean) in the next phase, whereas the function expression will

evaluate to another ERT.

4.2.4. Efficiency of Static-IL.

Given that the Static-]L language includes both compiletime and runtime
operations, how efficiently can it be processed? Must it be less efficient than
a conventional lambda calculus? Might it be more efficient? Without
focusing on the details of any specific implementation, we can make some
general observations about Static-IL’s inherent efficiency. - Since the Static-
1L Machine is used both for compiletime and runtime, let us examine these

roles separately.

On one hand, when the Static-IL Machine is playing the role of runtime,
the operations performed are just the simple operations listed in Section
4.2.2. These are in fact identical to the operations of a conventional untyped

lambda calculus, and hence can be just as efficiently processed.

On the other hand. when the Static-IL Machine is playing the role of
compiletime, it may be more efficient than a conventional compiler because
it can use the basic operations of the runtime machine directly instead of
simulating them. For example, constant expressions are evaluated directly

at compiletime by our single Static-IL Machine, whereas a conventional
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compiler must evaluate them by simulating the action of the runtime

machine.

Hence, the Static-IL Machine can be just as efficient at performing
runtime operations as a conventional runtime machine, and may be more
efficient at performing compiletime operations than a conventional

compiler.

4.3. Environments for Static-IL Programs

As discussed in Section 2.2.5, environments supply bindings of identifiers
to values, for all of a program’s free variables. In our simple model, the
environment provides the input for a Static-IL program, and a separate
environment must be provided for each phase used. This section provides

some insight into the purpose of these environments.

4.3.1. Static-Phi Program X

Let us begin by considering a Static-Phi program consisting of only the
single identifier, x. This Static-Phi program will be translated to the ERT
<x, <x.ert>, ert>. The Expression component is simply x; the Required-
environment component is <x.ert>, meaning that the only free variable in
the expression is x and its type is ert; and the Type component is ert,

because the expression x will evaluate to an ERT.

In order to evaluate the Expression component x we must provide an

environment that satisfies?® the Required-environment. In this case, the

26,5 isfies is defined in Section 2.2.2.
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environment must include a value of type ert for x. As mentioned in
Section 3.3.4, every identifier starts out as type ert, that is, during the first
phase, every identifier must be bound to an ERT. Let us consider some of
the possible ERT values that we might provide for x.

Suppose we supplied the ERT value <x, <x,ert>, ert> as the value of x
in the environment. Then, in the first phase, the expression x would stmply
evaluate to this value -- <x, <x,ert>, ert>. Butthis is precisely the ERT
thét resulted from translating the original Static-Phi program! In effect, x
has simply evaluated to itself. This is known as the defaulr ERT for x.

4.3.2. Definition: Default ERT

For any identifier id, the ERT <id, <id.ert>, ert> is called the default
ERT for this identifier.

4.3.3. The Purpose of Default ERTs

Default ERTs are used to pass identifiers through some number of phases
before fixing their types. (Fixing an identifier’s type is discussed below in
Section 4.34.) They are called "default” ERTs because a command
interpreter would normally provide a default ERT binding for each

identifier of type ert that was not to be fixed to some other type.

4.3.4. Fixing the Type of an Identifier

Suppose that we supply a slightly different ERT value for x in the
environment: <x, <x,number>, number>. This looks similar to the default
ERT, but the type of x is given as number in the Required-environment, and

Expression’s result type is then number also. If we supply this ERT as the
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value for x in the environment, then, of course, x evaluates to this ERT --
¢x, <x,number>, number>. In this case, even though the Expression
component is again x, the type of x is now given as number, that is, x must be
bound to a number in the next phase. Whereas the default ERT simply
caused x to evaluate to itself, this ERT fixes the type of x to be type number.

4.3.5. Fixing an Identifier as a Function Type

The last example fixed x as type number. We could just as well fix it to be
some function type. For example, if we provided the following ERT value

for x in the environment,
<x, <x,{fun number number)>, (fun number number)>

then in the next phase, x must be bound to some function from numbers t0

numbers.

4.3.6. Fixing an Identifier as a Macro

We have just showed how the type of x could be fixed as a function from
numbers to numbers. If we instead fixed the type of x as a function from
ERTs to ERTs, by supplying the following ERT value for x in the

environment,
{x, <x,(fun ert ert)>, (fun ert ert)>

then x would act as a macro in the next phase. That is, in the next phase, x
would be bound to some function that takes code (an ERT) and produces

code (an ERT) as its result.
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4.3.7. Fixing the Value of an Identifier

In the last three examples, x was bound to an ERT that fixed the type of x
for the next phase, Tequiring x to be bound to some number or a function
during the next phase. Thus, the fype of x was fixed for the next phase, but
the value of x was not fixed for the next phase. Suppose we had instead
bound x to the ERT <'5, <>, number>. In this case, not only is the type
fixed for the next phase, but the value is a constant: 5. Since the Expression
component of this ERT has no free variables, the identifier x does not even

appear in the Required-environment.

4.3.8. Other Possibilities

Of course, these are not the only interesting ERT values that might be
bound to x. For example, suppose the ERT <y, <y.ert>, ert> were
provided as the value of x. This ERT is identical to the default ERT for x
except that it uses the identifier y instead. This, in effect, renames x to y for

the next phase.

So far we have discussed some of the ERTs that might be supplied in the
environment as values of a Static-IL program’s free variables. Of course,
free variables of other types, such as number Of (fun number number),

would have to be bound to values of those types in the environment.

4.3.9. What Values to Supply in What Phases

Since a different environment is supplied for each phase, the question
arises as to what each of these environments should include. Of course, the
Required-environment specifies the #ypes of the values that must be

provided in the environment, but it does not tell the purposes of these values.
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In particular, there were several different kinds of ERT values discussed
above that might be used for an identifier of type ert. How do we know

which is appropriate?

The answer dépends on the program and the programmer’s intent. Every
program will be expecting certain kinds of input, via the environment, in
certain phases. Information on the kind of input expected in each phase
(other than its type) must be provided as external documentation, in the
same way that the purposes of any conventional program’s inputs must be

documented.

There is, however, a pattern to the types of the free variables that one
would generally expect to see in various phases. Since every identifier starts
out type ert (as mentioned in Section 3.3.4), the default ERT would initially
be used for that identifier. Then, during some phase the type of this
identifier will be fixed to some basic (non-ERT) type, as described above,
and finally during the next phase the identifier will have a value of that basic
type. Thus, pertinent documentation on this identifier should specify during

what phase its type should be fixed.

The examples in Section 4.1.4 hélp provide an understanding of how

various phases are used and what happens in each phase.

4.4. Examples of Translation and Evaluation

This section shows examples of translating all of the Static-Phi programs
shown in Section 4.1.4 to Static-ll. programs, and executing the resulting
Static-IL programs through phases. The most straight-forward and

informative examples with which 1o begin are the two that involve creating
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and applying an identity function in Sections 4.4.3 and 4.4.9. The Static-Phi
Translator and Static-IL Machine are formally defined in Appendix A.

In the examples below, ERT values <e,r > are displayed in a LISP-like

form:

(ern

Similarly, environments are displaved as LISP-like lists. Each element of
the environment lists an identifier-value binding, which is in turn displayed
as a LISP-like list, for example:

{
(id value )

a” value )

( id” value )

Finally, Required-environments are also displaved as LISP-like lists. Each
element of the Required-environment lists an identifier-type pair, which 1s
in turn displaved as a LISP-like list. for example:

(
(id; type;)
a'! type2

([dﬁ' Iypen)
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4.4.1. F Twice

This example is complicated by the need for a (non-empty) environment.
Therefore, the reader is advised to first study the example of Section 4.4.3

Y

Identity Application, which involves no free variables.

(f(dx))
Hi e Result of Translation =----r-----=-==-----
(
(check-apply f (check-apply T x)) ; Expression
({f ert} {(x ert})) ; Regq-env
ert i Type
)
He e it Environment for Phase 1 ------------===----
(
{x (x ({x number)) number})
(f (f ((f (fun number number))) (fun number number)))
)
Hinee e il Result of Phase 1 =------------------
(
(apply T (apply f x)) : Expression
((f (fun number number)) (x number)) : Reg-env
number . Type
)
e Environment for Phase 2 -------------=-=---
(
{x 5}
(f {closure 2z (incr z) ()))
)
il iy Result of Phase 2 =------------------
7
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4.4.2. Identity Abstraction

See the example of Identity Application in Section 4.4.3.

A x : number — number . x

R it bbbty Result of Translation -~----------------

{check-check-lambda ; Expression
X
(deep~const number type 0)
(deep-const number type 0)

X
0
)
) : Required-environment
ert : Type
)
et e Environment for Phase 1 =------------=-----
()
jemmmmmmmmmmmmromoo Result of Phase 1 --------------=----
(
(check-lambda x 'number 'number x) : Expression
() : Required-environment
ert . Type
o
e il Environment for Phase 2 ------------------
()
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(
(lambda x x) ; Expression
) ; Required-environment
(fun number number) i Type
)
H Environment for Phase 3 ~—-=----------co--ee-
()

(closure x x ())

4.4.3. Identity Application

This is the best of these examples to study first.

The correspondence between the Static-Phi program and the ERT that
results from translation (shown below) is as follows. To dispense with the
easy parts first, the Required-environment component of the ERT is empty,
because there are no free variables, and the Tvpe component is ert,
indicating that the result of the first phase will be an ERT, as it always is. In
the Expression component, the function application of the original Static-
Phi program has been translated 10 a check-apply Static-IL construct. The
A abstraction was translated t0 a check-check-lambda, using the formal
parameter name; the type constants number and number were translated 1
deep-const forms, listing the number of phases to wait as 0; and the
identifier, x, supplied as the function body, was simply translated to itself, x.
The generated check-check-1ambda lists the number of phases to wait as 0.
Finally, the constant 5 that was given as the actual argument was translated
to another deep-const form, listing the number of phases to wait as 1. Note

that the deep-consts generated for ‘the number type constants have one
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fewer phases to wait than the deep-const generated for the function’s actual
argument, 5. This is because the type values will be needed to type check
the function application, one phases earlier than the function is applied to

the constant 5.

The progression through phases is as follows. During the first phase, the
types of the function’s type expressions (number and number) are checked o
ensure that they really are type expressions and not, say, numeric
expressions. Upon doing this check, the check-check-1ambda produces a
check-1ambda. During the second phase, these type expressions will be
evaluated to the type values number and number and these types will be used
to generate a type-checked 1ambda. In turn, the check-apply verifies that
the type of the actual argument matches the function’s declared formal
parameter type, and generates an apply form. Finally, m the third phase.

the function 1s applied to the constant 5 to produce a result of 5.

The original Static-Phi program and the progression through phases are

shown below. Compare this example with the example in Section 4.4.9,
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(A x : number — number.x 5)

e b bbbt Result of Translation =--=--=-=----cc-=----
(
{(check-apply : Expression:
(check-check-1ambda
x : Formal parameter
(deep-const number type 0) ; Domain type
(deep-const number type 0) ; Range type
X ; Expression body
0 ; Phases to wait
(deep-const § number 1) : Actual argument
)
() : Required-environment
ert i Type
) .
R b e bl Environment for Phase 1 -~~-=----c-c-scc-no-
()
jemmomo s Result of Phase 1 ------------------
(
{check-apply ; Expression
{check-iambda x 'number 'number x)
{deep-const 5 number 0)
)
{) ; Required-environment
ert v Type
)
e it bbbty Environment for Phase 2 =---------c--==----
()
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------------------- Result of Phase 2 ---~-~~vve--oooo-

(
(apply (lambda x x)} '5) ; Expression
0) ; Required-environment
number ' i Type
)
jmmmmmmmmemme e Environment for Phase 3 --------------+c-"
()
et e Result of Phase 3 =------------rr--o--
5

4.4.4. Function Abstraction

A X : number — number . (succ (succ x))

------------------- Resuit of Translation ------------------

{check-check-1ambda x ; Expression
{deep-const number type 0)
{deep-const number type 0)
{check-apply succ {check-apply succ x))

0

)

({succ ert)) : Reg-env

ert ; Type
)
e bbbl Environment for Phase 1 -------------oc-u-
(

(suce {(succ ((succ ert)) ert))
)

83



"o an -

(closure

----------- Result of Phase 1 --~---=--=--------

(check-lambda x 'number 'number ; Expression
(check-apply succ {check-apply succ x))

)

({suvcc ert)) ; Reg-env

ert i Type

----------- Environment for Phase 2 --------sc-ccco---

(svcc {(succ (fun number number))) (fun number number)))

----------- Result of Phase 2 ---------------=--

{lambda x (apply succ (apply succ x))) ; Expression
{(succ (fun number number))) : Reg-env
{fun number number) ; Type

——————————— Environment for Phase 3 ~-----=vccccrm-o--

(succ (closure z (incr 2) ()))

X .
(apply succ (apply succ x))
({succ {closure z (incr z) ())))
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4.4.5. Function Application

(A x : number — number . (succ (succ x)) 5)

jomemmmmmmmmm— - Result of Translation =---=---------------
(
‘(check-apply ; Expression
(check-check-lambda
X

(deep-const number type D)
{deep-const number type 0)
{(check-apply succ (check-apply succ x))

0
)
{deep-const 5 number 1)
)
{(succ ert}) ; Reg-env
ert ; Type
)
{mmmmmmem— e —m o Environment for Phase I ----------——vww—-n-
{
{succ {succ ((succ ert)) ert))
)
jmTmmmmmmmmmemmeme- Result of Phase 1 ----=-=-=--e--eoe-
{
{check-apply ; Expression
{check-Tlambda
X
'number
‘number
{check-apply succ {check-apply succ x))
)
{deep-const 5 number Q)
)
{{(succ ert)) ; Req-env
ert iy Type
)
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------------------- Environment for Phase 2 ~--~r-smwcswocanoaaa

{succ (succ ({succ (fun number number))) (fun number number)))

e bbb bbbl b Result of Phase 2 ---====------c--n--
(
{apply (lambda x (apply succ (apply succ x))) '56) : Expression
{(succ {(fun number number))) ;: Req-env
number : Type
)
jemmmmo—m oo Environment for Phase 3 ----------oosooen-
(
(suce fciosure z (incr z) (}))
)
joessssssssoccon-- Result of Phase 3 ~------rm---c-roooen
7
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4.4.6. Higher Order Function Abstraction

A {: (funtype number number) - number . (f (f x))

------------------- Result of Transtation =-=--=---=--=v------

(
{check-check-Tlambda : Expression
f
{check-funtype
(deep-const number type 0)
(deep-const number type 0)
0
)
{deep-const number type 0)
{check-apply f (check-apply f x))
0
)
((x ert)) ; Reg-env
ert ' ;'Type
)
e et Environment for Phase 1 --------------onon-
( i
(x {x ((x ert)}) ert))
)
S itk ekt Result of Phase 1 -----r---r----v---
(
(check-Tambda : Expression
f
(funtype ‘'number 'number)
‘number
(check-apply f (check-apply f x))
)
{({(x ert}) : Reg-env
ert
)

87



------------------- Environment for Phase 2 ------------------

(
{x (x ({x number)) number))
)
R it bbbty Result of Phase 2 ~--~--------------
(
(lambda f (apply f (apply T x))) ; Expression
({x number)) : Reg-env
(fun - (fun number number) number) i Type
)
jomemsssescemso———- Environment for Phase 3 ------------------
(
(x 5)
)

H Sttt Result of Phase 3 ~-----==-=w=-onmcoa-
{(closure f (apply f {(apply f x)) ((x 5)))
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4.4.7. Higher Order Function Application

(A T : (funtype number number) — number.(f(fx)) g)

(
{check-apply
{check-check-1ambda
f
{check-funtype
(deep-const number type 0)
(deep-const number type 0)
0
)
{deep-const number type 0)
{check-appty T {check-apply f x))
0
)
9
)
{(x ert) (g ert)) ; Reg-env
ert i Type
)
etk el ey Environment for Phase 1 =-------------cee--
(
(f (f {({T ert)) ert))
(g (g ({g ert)) ert))
)
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(
(check-apply ; Expression
{check-lambda
f
{funtype 'number 'number)
'number
{check-appiy f (check-apply f x))
)
9
)
({x ert) (g ert)) ; Reg-env
ert i Type
)
e il Ttk Environment for Phase 2 ~----rr---mo--o---
(
(x {(x ({x number}) number})

(g (g ({g (fun number number)}} (fun number number)))

jrmmmmeTemeo—o-ooo- Result of Phase 2 ~----------=-------
(
{apply (lambda f (apply f (apply ¥ x))}) g) : Expression
{{x number) (g (fun number number))) ; Reg-env
Aumber : Type
)
s Environment for Phase 3 ----ver-oce-o—meuae
(
(x 5)
(g (closure z (incr 2) ()))
)
e bttt Result of Phase 3 ~------------------
7



4.4.8. Identity-Function Type Abstraction

At:type — ert.{(emit Ax:t— t.x)

jommTessssss---o--- Result of Translation ------v-vc----w---
(
{check-check-lambda ; Expression
t
(deep-const type type 0)
(deep-const ert type 0)
{check-check-lambda x t t x 1)
0
)
() : Reg-env
ert : Type
)
(o meemo oo Environment for Phase 1 --------=-----=c--
() '
(T mesesssmm——---- Result of Phase 1 --------r=--r--—---
{
{check-Tambda t 'type 'ert : Expression
{check-check-lamhda x t t x 0)
)
() : Reg-env
ert ; Type
)
jmememmmmm—m - Environment for Phase 2 ------------------
()
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------------------- Result of Phase 2 «++-----eeccencaa-

(1ambda t (check-lambda x t t x)) : Expression
() : Reg-env
(fun type ert) : Type
)
------------------- Environment for Phase 3 -----------covuumo

Rl Result of Phase 3 ------------------
(closure t {check-lambda x t t x) {})

4.4.9. Identity-Function Type Application

This example requires one more phase than the example of Section 4.4.3.
If we view what happens in the various phases in terms of the original Static-
Phi program. phase 1 checks the types of the type expressions in the outer A
abstraction: phase 2 type checks the outer A abstraction and its application,
and the types of the type expressions in the inner A abstraction; phase 3
applies the outer function to the actual argument and produces an ERT for a
type-checked 1dentity function on numbers; and during phase 4 this identity
function becomes an actual function value, or closure, that could have been

applied to a numeric argument.
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e ity Result of Translation =------c---ccccea--
(
{check-apply ; Expression
(check-check-lambda
t
(deep-const type type 0)
(deep-const ert type 0)
{check-check-Yambda x t t x 1)
0
)
(deep-const number type 1)
)
{} : Reg-env
ert ; Type
)
e Environment for Phase 1 ------------------
()
e bbbttty Result of Phase 1 ------------------
(
(check-apply
{(check-Tlambda
1
"type
‘ert
{check-check-lambda x t t x 0)
)
{deep-const number type 0)
) .
) ; Reg-env
ert : Type
)
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jm==--eoessse-ss---= Result of Phase
(
(apply {lambda t (check-lambda x t
()
ert
)
jrmT o T ssesseso-o- Environment for
0
jmmmmmmreooomooee-- Result of Phase
(
{1ambda x x)
()
(fun number number)
)
Hintabehaiaiaieieie bt Environment for
()
jemmmmmmeomo--o---s Result of Phase

(closure x x ())

%4

t x)) "number) ; Expression

: Reg-env

i Type
Phase 3 —----=-=-=-=------
3 ------------------

; Expression

; Req-env

: Type
Phase 4 ~----s-c--=--------
4 __________________



4.4.10. General Type Abstraction

At:type — ert.(emit A f: (funtypett) — t.(f(f x)))

e bt Result of Translation ------------=-e---

(check-check-lambda ; Expression
t
(deep-const type type 0)
(deep-const ert type 0)
(check-check-1ambda

f
{check-funtype t t 1)
t
{check-apply f (check-apply f x))
1
)
0
) *
{({x ert)) : Reg-env
ert : Type
)
e ikl Environment for Phase 1 -=---~-----=w-c----
(
{x {(x ({x ert)) ert}))
)
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bttt Result of Phase 1 =--------=-=--------

{
{check-lambda ; Expression
t
'type
‘ert
(check-check-lambda
f
{check-funtype t t 0)
t
(check-apply f (check-apply f x))
B
)
)
((x ert)) : Reg-env
ert ; Type
)
e el bbbty Environment for Phase 2 ====-------c------ '
(
(x (x {((x ert)) ert))
)
jrmmmmmsesessmo-oo- Result of Phase 2 ------------------
(
{1ambda ; Expression
t
{check-lambda
f
(funtype t t)
t
(check-apply f (check-apply f x))
)
)
({(x ert)) ; Reg-env
(fun type ert) ; Type
)
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(e mmssssemmm s Environment for Phase 3 --------cccmvooaan

(
(x {(x {{x number)) number))
)
jmememmmssssesmse--- Result-of Phase 3 ------------------
(closure
t
(check-lambda f (funtype t t) t
{(check-apply f {check-apply f x))
)
({(x {x ({x number)) number)))
)

4.4.11. General Type Application

(A t:type —» ert.(emit A {:{funtype tt) = t.(f(fx))) number)

{(check-apply ; Expression
{check-check-lambda
t
{deep-const type type 0)
(deep-const ert type 0)
{check-check-lambda

f
{check-funtype t t 1)
t
(check-apply T (check-apply f x})
1
)
0
)
{deep-const number type 1)
)
((x ert)) ;: Reg-env
ert ; Type
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------------------- Environment for Phase 1 =~=====--s--m-----x

(
(x {(x {({x ert)) ert))
)
ki Result of Phase 1 ====-=----==----=---
(
(check-apply ; Expression
(check-lambda
t
‘type
‘ert
(check-check-Tambda
f
(check-funtype t t 0)
t
{check-apply f (check-apply f x))
0
)
)
(deep-const number type 0)
)
({x ert)) : Reg-env
ert ; Type
)
e bt bttt Environment for Phase 2 -—----==-------=----
(
{(x (x {((x ert)) ert}))
) .
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(
(apply ; Expression
(1ambda ’
t
{(check-lambda
f
(funtype t t)
t
(check-apply f (check-apply f x))
)
)
"number
)
({(x ert)) : Req-env
ert : Type
)
jmmmmmmm e —=een - Environment for Phase 3 ~—--------------ne-
(
(x (x {{x pumber)) number))
) .
jooeeesesssmsm----- Result of Phase 3 ------------------
(
{(lambda T (apply f (apply f x})) ; Expression
{(x number)) ; Reg-env
(fun (fun number number) number) ; Type
)
jommm oo eesmmme—es Envircnment for Phase 4 ---------=----v---
(
(x 5)
)

jmmmmmm oo Result of Phase 4 ---=r==c--crere-=-
(closure f (apply f (apply f x)} {(x 5))})

99



4.4.12. Macro Abstraction

Am:ert — ert.(m(mx))

jmmeesmssssoeoo—oao- Result of Translation ~-===-=-=---m-c=-=---

(
(check-check-1ambda : Expression
m
(deep-const ert type 0)
(deep-const ert type 0)
(check-apply m {check-apply m x})
0
)
((x ert)) ; Reg-env
ert ; Type
)
jmmemmom——sese———-- Environment for Phase 1 =--------s-=re-re--
{
(x (x ((x ert)) ert))
)
bt Result of Phase 1 --------==-------~
(
(check-lambda m ‘ert 'ert : Expression
{check-apply m (check-apply m x))
) .
{(x ert)) ; Reg-env
ert ; Type
)
jmmmemmmmosme————ee Environment for Phase 2 -----=-==r----~---
(
{(x (x {((x ert)) ert))
)
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jmmme-esmss=m—-ooo- Result of Phase 2 ~------r-==-=-------

(
(1ambda m (check-apply m (check-apply m x}}) ; Expression
({x ert)) : Reg-env
(fun ert ert) ; Type
) .
jmmm - osesssse---- Environment for Phase 3 ~----------~-------
{
(x (x ({x ert)) ert))
)
jremmmT o mmemmmoomoe Result of Phase 3 -----------=------
(closure

m
(check-apply m (check-apply m x})
({(x (x ((x ert)) ert)))
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4.4.13. Macro Application

(A m:ert — ert.{m(mx))

(emit A y : number — number . (succ (succ y)))

102

)
jmmmmmessss——eee— - Result of Translation ---------------===
(
{check-apply ; Expression
(check-check-lambda
m
(deep-const ert type 0)
(deep-const ert type 0)
(check-apply m (check-apply m x)}
0
(check-check-lambda
y
(deep-const number type 1)
(deep-const number type 1)
(check-apply succ {check-apply succ y)}
1
)
)
{(x ert) {succ ert)) : Reg-env
ert ; Type
)
jmmmommsmmmmmemmmmo- Environment for Phase 1 -===----====-=----==
{
{succ (succ {(succ ert)) ert))
(x {x ((x ert}) ert})
)



{check-apply : Expression
(check-lambda
' m
‘ert
‘ert
{(check-apply m (check-apply m x})
)
{check-check-lambda
y
(deep-const number type 0)
(deep-const number type 0)
(check-apply succ (check-apply succ y})
0
)
)
({x ert) (succ ert)) ;: Req-env
ert : Type
)
e mmmm———memmo—e Environment for Phase 2 ~---=--=--=---------
(
{succ {succ ({succ ert)) ert))
{x (x ({x ert)) ert))
)
jossrmmmommm——esmee Result of Phase 2 =----------=<s--=---
(
{apply : Expression
(1ambda m (check-apply m (check-apply m x}))
(check-lambda
¥
‘number
‘number
{check-apply succ (check-apply succ y))
)
)
((x ert) {(succ ert)) : Reg-env
ert : Type
)
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________

----------- Environment for Phase 3 =-------r-~--------

{x ({x number)) number))
{succ ((succ (fun number number))) (fun number number}))

{apply : Expression
(1ambda y (apply succ {apply succ y)))
(apply (lambda y (apply succ (apply succ y))) x)

)

((succ (fun number number)) (x number)) : Reg-env

number ; Type
----------- Environment for Phase 4 =--rr-------------
{x 5)

{succ (closure z (incr z) ()))
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Chapter 5
Using Phases for Partial Evaluation

This chapter describes how phases might be used to perform partial
evaluation. In this approach, the phase for a particular subcomputation is
not denoted in the source program or determined when the program is
translated, but is determined dynamically by the environment supplied for
each phase. This approach has not been fully explored, and is open for
future research, but we demonstrate how it might proceed by describing a
source language, Dynamic-Phi, and the beginnings of an implementation
language, Dynamic-IL. There is no formal semantics' given for these

languages, since they are not fully developed.

5.1. The Dynamic-Phi Language

The Dynamic-Phi language is identical to the Static-Phi language
described in Section 4.1, except it does not provide the emit and eval
constructs or the type constant ert: hence Dynamic-Phi is not discussed
further here. Instead of allowing the programmer to explicitly manipulate
ERTs under program control, the system uses ERT values transparently, to

represent the results of a partial evaluation.
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5.2. The Dynamic-IL Language

As with the Static-IL language, Dynamic-IL looks like an untyped lambda
calculus because type declarations are not explicit, but in fact it is strongly
typed. In fact, almost all of the constructs of Static-IL and Dynamic-IL look
similar, though the semantics of constructs that manipulate ERT values are

necessarily different, as discussed in Section 5.2.2.

5,2.1. Conventional Lambda Calculus Operations

Dynamic-IL has the following simple operations that look like a
conventional lambda calculus written in the LISP [McCarthy 66] style.

These function exactly the same as in Static-IL. They are:

“ev Any quoted expressible value.
id An identifier.

(1ambda id expr} Function abstraction.

(apply expry expr, )
Function application.

(funtype expr, expry ) 7
The type of a function. As with Static-IL. the returned

function type is represented as a pair, tagged with the
word fun: {fun 1ypey, type.2.

These operations are not discussed further here.
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5.2.2. Other Operations

All but one of the other operations look similar to operations in Static-IL,
except that the operations below lack the n parameter, and hence their the
semantics are somewhat different. In Static-IL, the n parameter specified
how many phases to wait before generating one of the conventional
operations, and this was determined statically, during translation. But in
Dynamic-IL, the determination of when to generate one of the conventional
operations is done dynamically by each of the operations listed below.
Compared with Static-1L, Dynamic-IL is missing one operation,
deep-const, and contains one new operation, hotd. Deep-const IS
unnecessary because there is no a priori determination of when a constant
will be needed; hold is now used 1o pass a value computed in one phase, to

the next phase.

5.2.2.1. (hotd 1 expr)

Hold always returns an ERT. The argument / may be any value of type
type -- it is not an expression -- and expr Is an expression that evaluates 1o a
value of that type. Hold simply evaluates expression expr 10 some value ev,
and returns the ERT <'ev, <. p. Thus, even though expr is evaluated

during this phase, its value is not used until the next phase.

Hold is typically used to synchronize two values that are needed by an
operation. Each of the check- operations must detect this and generate
holds as needed. For example, the fun.type operation has two
subexpressions that must evaluate to types. During the phases before the
subexpressions evaluate to types, they will evaluate to ERTs. What if one of

the subexpressions is ready to evaluate to a type during some phase, but the
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other is still going to evaluate to an ERT, and will not evaluate to a type until
the following phase? In that case, the subexpression that is ready to evaluate
to a type can be evaluated, and the ho1d operation can be used to pass the
resulting type value on to the next phase, when the other subexpression will
also evaluate to a type. Thus check-funtype can force both subexpressions
to return ERTs during one phase. and during the next phase, the funtype
operation will have both type values as needed. Section 5.2.2.2 explains
specifically how this works for the check-funtype operation. Other check-

operations work analogously.

5.2.2.2. (check-funtype expry expr. )

Check-funtype always returns an ERT; it is used to generate a funtype
ERT. However, unlike in Static-IL, check-funtype will not necessanly
generate a funtype expression during this phase. If its arguments will not be
ready to be fully evaluated to types during the next phase (that is, if its
arguments are still going to evaluate to ERTs), another check-funtype
expression is generated. This is similar to the way check-apply in Static-1L
generates an apply if the function arguments will be ready in the next phase,

and a check-apply if not.

Check-funtype is evaluated as follows. Both subexressions expr, and
expr, are evaluated to ERTs, call them <ey,r 7,2 and <er 1.2, If both 7
and 7_ are type, a funtype expression is generated, as in Static-]L. If both 1
and 7, are ert, the returned ERT will contain a check-funtype €xpression:
the Expression component will be (check-funtype €4 ¢€.); the Required-
environment component will be the combination of r, and r, which must
be consistent (as defined in Section 4.2.3.2); and the Type component will

be ert.
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Note that, for a funtype expression to be generated, both 7, and 7, must
be type, indicating that e, and e, will evaluate to types. Since every
expression starts out (after translation) evaluating to an ERT, in effect 14 and
1. will start out as ert and will become type during some later phase. But
what if one of the check-funtype’s subexpressions is ready to evaluate t0 a
type before the other is ready? That is, what if either 7, or 7. is type, but the

otherisert?

In this case, we can simply allow the type value to be computed during the
next phase, but use a hold expression to pass the result on to the next phase,
to be ready during the phase when the other subexpression is also ready to
evaluate to a type. Thus, a check-funtype is generated as before, but a hoid
is inserted to pass the type value to a subsequent phase as a constant. For
example, if 7, is type and 7, is ert, the resulting Expressiqn component will

be (check-funtype (hold type €,) €.).

It is a "compiletime” error if either 7, Or 7_ 1S ot type Or ert.

5.2.2.3. (check-Tambda id expry expr, €XPThogy )

Analogous to check-funtype, check-1ambda is used to generate a 1ambda
but should generate another check-1ambda if the body expression will not
be ready during the next phase (that is, if the body expression evaluates to
an ERT whose Type component is ert). If another check-tambda is
generated, the type expressions will simply be the quoted type values that

were computed during this phase.

The implementation of check-Tambda i not as straightforward as it may at

first seem; its discussion is postponed to Section 3.3.
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5.2.2.4. (check-check-1ambda id expry expr, eXPryogy )

This construct is handled straightforwardly in a manner analogous to
check-funtype above. After evaluating expr, and expr,, an ERT binding
(with Type component ert) is created for the formal parameter, and the
body expression expr, 4 v is executed in an environment augmented by this
binding. If both expr, and expr_ have evaluated to ERTs whose Type
component is type, a check-1ambda will be generated. Otherwise another

check-check-1ambda should be generated, with ho1d used as necessary.

5.2.2.5. (check-apply expry expr, )

This construct is evaluated as in Static-IL, except that hold may be
inserted as needed if either the function or the argument is ready before the
other (that is, if one will still be an ERT when the other will be a function or

non-ERT value during the next phase).

5.3. Problems in Implementing Check-Lambda

Before discussing these issues, it should first be noted that there are
several ways of partially evaluating function calls. Beckman et al. {Beckman
76] provide a good outline of the various methods. We will restrict our
attention to the simplest choice. |

Suppose we have the following lambda abstraction in Dynamic-Phi, which

has free variable f:

A x : number — number . (f x)
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And consider the corresponding Dynamic-IL program:

(check-lambda x ‘number 'number (check-apply T x))

where f is type ert.

check-1ambda operation. As a general outline, it should proceed according

Now, our goal here is to come up with a method of implementing the

to the following steps:

the body is ready to evaluate to a number), such as the following (call this
ertA): .

(

1. Evaluate the two type subexpressions. In this example, they are

‘number and 'number, and they simply evaluate to the type
values number and number.

. Decide on a suitable ERT binding for the formal parameter, and

add this binding to the environment. In our example, we must
bind x to the proper ERT, and add this binding to the
environment. (An ERT binding for f will already be in the
environment.)

+

. Evaluate the body expression to an ERT in this new

environment. In our example, we must evaluate the
check-apply to an ERT.

.Using the ERT that resulted from evaluating the body

expression, construct and return either a 1ambda ERT, if the
body is ready to be evaluated to some basic non-ERT value in
the next phase; or a check-1ambda, if the body must evaluate to
another ERT in the next phase.

Thus, in our example, the result of step 3 will either be an app1y ERT (if

: ertA
(apply f x) . Expression
{(f (fun number number))) : Required-environment
number : Type
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or a check-apply ERT (if the body must still evaluate to another ERT), such
as the following (call this ertB):

( ; ertB
(check-apply f x) : Expression
{((f ert)) ; Required-environment
ert ; Type

)

The Type component of ertA indicates that it is ready to evaluate to a
number, whereas the Type component of errB indicates that it will evaluate
to another ERT.

Finally, the result of evaluating the check-1ambda (i.e. the result of step 4)
should either be a 1ambda ERT, such as the following (call this eri7):

( v oert]
(lambda x (apply f x)) : Expression
({f (fun number number))) : Required-environment
(fun number number) i Type

)

or it should be a check-1ambda ERT, such as the following (call this erz2):

{ . ert2
(check-Tambda x (check-apply f x)) : Expression
((f ert)) : Required-environment
ert i Type

)
That is, the result of step 4 should be ert/ if the result of step 3 is eri4,

whereas it should be eri2 if the result of step 3 is ersB. That much is
straightforward. The difficulty is this: What ERT binding should we

provide for x in step 27

If the result of step 3 will be eri4, then we should supply a binding of x to
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the ERT (x (x number) number) in step 2, since x the function can be
applied to a number in the next phase, and hence x will be bound to a number
in the next phase. This binding, in effect, declares x t0 be type number in the

next phase.

On the other hand, if the result of step 3 will be ertB, then we should
supply a binding of x to the ERT <x, <x.,ert>, ert> in step 2, since x
another check-apply will be evaluated in the next phase, and hence x must
be bound to another ert in the next phase. This binding, in effect, declares

x to be type ert in the next phase.

Here is the dilemma. Since the result of evaluating the body in step 3 will
in general depend on factors other than just the binding of x (in this case it
also depends on the binding of ¢ from outside), we cannot generally know
which binding for x to use in step 2 until we know the result of step 3.

In our example, two potential values for f that would cause different
resuits would be the ERT:

(

f ; Expression
({f (fun number number)}) : Required-environment
(fun number number) : Type
)
and the ERT:
( X
f ; Expression
((f ert)) : Required-environment
ert ; Type
)
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5.3.1. Evaluating the Body Twice

One way to deal with this dilemma might be to first assume that the
check-1ambda’s body expression will evaluate to an ERT that will be ready
to be “fully" evaluated during the next phase; that is, first assume that step 3
will evaluate to an ERT such as ert4, in which the Type component is not
ert. Thus, we would initially bind x to the ERT <x,<x,number>,number>.
If the Type component of the result of step 3 turns out to be a basic (no-
ERT) type, such as erA, then all is well, and the result of check-1ambda
should be a 1ambda ERT, such as ert/. However, if the Type component
turns out to be ert, such as in ertB, then we bind x to the ERT

<x,<x,ert>,ert> and re-evaluate the body as in step 3 again.

5.3.2. Evaluating with Both Choices at Once

A more efficient solution might be to have the execution of eXPry oay
generate the two ERTs, under both assumptions. But what happens when
functions are nested? Must 4, 8, etc,, ERTs be generated? When can the

choices be eliminated?

5.3.3. Using an Extra Environment Variable

Since the difficulty seems to be in deciding which binding to use for the
formal parameter, another possibility might be for the Dynamic-IL Machine
to use an extra environment variable while a check-1ambda body is being
executed, indicating the names of any identifiers that are bound as formal
parameters. Those identifiers could then be treated specially by the
Dynamic-1L Machine. This might allow the body to be evaluated in one

pass. But notice, then, that the machine would essentially be playing the
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role of two distinct machines, depending on whether this extra environment

variable were set.

5.3.4. The Root of the Problem

The root of the problem is that we are asking the Dynamic-IL Machine to
do two kinds of things during the same phase: to partially and fully evaluate
certain subexpressions, and to compile certain subexpressions for future

partial or full evaluation. Section 5.4 proposes another solution.

5.4. A Strongly Typed Phase Compiler

A better approach to the problems of implementing check-1ambda in
Dynamic-IL might be to evaluate programs in two distinct passes: call the
first pass phase compilation and the second pass phase evaluation. As before,
phase evaluation would perform both partial and full evaluation, filling the

roles of traditional compiletime and runtime.

During phase compilation every expression would be treated symbolically:
none of the subexpressions would evaluate to a finai {(constant) value and no
type checking would be done. The purpose of phase compilation would be
t0 decide which subexpressions can be fully evaluated and which should be
partally evaluated. The resulting program will have these decisions
syntactically built into it {(as with 1ambda, check-Tambda, etc.), ready for
phase evaluation. To make these decisions, the phase compiler must know
which of the program’s free variables are to be given final (constant) values

during phase evaluation.

Phase evaluation could then fully evaluate some subexpressions and
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partially evaluate others. The result of the phase evaluation would either be
some final constant or another program (ERT), but its type would be known
beforehand. The kev to this approach is that the type of every expression is
known before phase evaluation. Thus, those expressions being fully
evaluated can be evaluated just as efficiently as on a conventional (i.e. fully
evaluating) abstract machine, even though the phase evaluation machine is

also performing partial evaluation for a strongly typed language.

This approach, for strongly typed languages, is analogous 1o the "compiled
generation” approach used by Beckman, et al. [Beckman 76} in partially
evaluating LISP programs.
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Chapter 6
Remarks About Other Language Notions

This section discusses some miscellaneous language notions, and shows

how phases are relevant to them or vice-versa.

6.1. Abstract Data Types

This section discusses one possible approach to providing Abstract Data
Types (ADTs) under a model of phases. The purpose of this section is to
demonstrate some of the usefulness of manipulating ERTs under a model of
phases. The ERT data type makes it easy to talk clearly and sensibly about
compiletime notions such as enforcing the information hiding needed to

implement ADTs.

Our notion of ADTs is intended to be ordinary -- corresponding basically
to Ada packages, for example -- but our view of implementing ADTs is
somewhat unusual, and is motivated by the fact that we treat types and code
(ERTs) as first-class values. That is, we intend to provide the same basic
functionality of traditional ADTs. but we take an unusual view of what is
required and how to provide it. In effect, this discussion treats ADTs from a
compiler's point of view, since phases fill the role of traditional compile-

time.

We consider a newly defined ADT to be essentially a unique type and a
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set of operations that are privileged to operate on values of that type. Asin
Ada, we assume that an ADT has no separate functional or behavioral
specification: its intended behavior is defined only by its implementation.
The programmer defines a new ADT in terms of other types and operations,
thus supplying an implementation for it. The implementation should be
hidden from the user; this information hiding should be enforced by the

language.

Since, in a strongly typed language, this information hiding must be
enforced by the compiler, and there need not be anything special about the
runtime code, ADTs are essentially compiletime notions. Under a model of
phases, a phase fills the role of compiletime, manipulating both types and
code (ERTs) as first-class values. Therefore, to understand the following
discussion, it is best to think of ADTs in terms of what a compiler must do to
enforce the required information hiding. To focus only on the essential
elements, we do not address scoping rules or other extraneous issues such as
providing separate declarations of ADT headers and bodies, as is aliowed in
Ada.

6.1.1. Four Essential Functions

Let us personify the portion of the program that implements the ADT as
the implemenior, and the portion of the program that uses the ADT as the
user. To employ the canonical example, we might define an ADT called
stack, offering only push and pop functions for accessing values of type

stack, and use an array to implement the stack.?’ The compiler, then, must

27Usually. a stack would be implemented by a pair consisting of an array and an integer.
with the integer representing a pointer to the current stack top. This detail is irrelevant
here, and we are ignoring it for the sake of simplicity.
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ensure that the implementation of type stack as an array is hidden from the

user, but is available to the stack implementor.

The stack implerﬁentor, then, must be privileged to perform two essential
acts: to create a value of the ADT from a value of the implementing type, for
example, creating a stack value from an array value; and to view a value of
the ADT as a value of the implementing type, for example viewing a stack
value as an array. Less obviously, though, in a language in which types are
first-class values, the implementor of the stack ADT must also be privileged
to perform two additional essential acts: to create the type value stack from
the implementing type value array: and to view the type value stack as the

type value array.

All four of these privileged acts are compiletime sleightr “hand?® -- they
are functions involving types that are computed at compilc. e, Recall that
during "compiletime" (a relative term), type and ert values are manipulated,
and that in our model a phase fills the role of traditional compiletime. Thus,

to create a stack ADT, we need the following four functions,

abs-stack: ert - ert
For creating values of type stack from values of type

ngascal's ord function is probably the best known example of a "compiletime sleight of
hand”. For any scalar type. the ord function returns an integer representing the argument's
the ordinal value. Ordis almost universally implemented in the compiler simply by viewing
the binary representation of its argument as a value of a different type. For example in a
Pascal system in which the ASCII character set is used. the value of ord('X’) would be 88.
That is, the binary value 1011000 is simply interpreted as representing an integer (88)
instead of representing the ASCII character 'X". Because the binary representations of these
values are the same, the compiler does not emit any code to implement the ord function.
Although the compiler would view the expression 'X" as producing a value of type char and
the expression ord("X') as producing a value of type integer. the code generated for these
two expressions would be absolutely identical,
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array. Note that this function takes an ERT value and
returns an ERT value - it does not take an array value
and return a stack value. Rather, it takes an expression
(an ERT) that will evaluate to an array value, and returns
an expression (an ERT) that will evaluate to a stack value.
Only the Type component of the argument ERT and the
result ERT will differ.

imp-stack: ert — ert
For viewing values of type stack as values of type array.
Again, this function takes an expression (an ERT) that
will evaluate to a stack and returns an expression that wiil
evaluate to an array.

type-abs-stack: type — type
For creating a stack type value from an array type value.
Note that this is a function that takes a type and returns a.
type. The type value that is supplied as the actual
parameter must be an array type value; a stack type value
will be returned.

type-imp-stack: type — type
For viewing stack type values as array type values. Note
that this is a function that takes a type and returns a type.
The type value that is supplied as the actual parameter
must be a stack type value; an array type value will be
returned.

6.1.2. Type Values: <tag.value> Pairs

Let us now assume that type values are represented as <tag, value> pairs.

The rag component is a symbol identifying the type; for example, it might
be the symbol "array, representing any array type. It is the same for every

array type.
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The value component holds other information about that particular type;
for example, it might include information about the array’s element type and
size (if the size is a part of the type, as it is in Pascal, for example). The value
component will generally be different for different array types. For

programmer-defined ADTSs, it will always be a type.

6.1.3. Type-of and Tag-of

The representations of types and erts should of course be hidden, but to
determine the Type component of an ERT, or the Tag component of a type,
functions type-of and tag-of can be provided:

type-of: ert — type

tag-of: type — symbol

If the representations of ERTs and types were visible, these functions
would be defined simply:

{type-of <e,r,t> ) = t

(tag-of <t.,v> ) =t

6.1.4. Implementations of the Four Essential Functions

The four essential functions for a stack ADT can be roughly defined as
follows. Bear in mind that types type and ert should also be ADTs, and the
programmer would not have indiscriminate access to their representations.
However, for expository purposes. the functions defined below show the
representations of types as pairs and erts as triplets. (Error, below,
represents a "compiletime” error condition indicating that the programmer
tried to use one of these stack functions to convert between something other

than a stack and an array.)

121



(abs-stack <e,r,<{t,v>> )
if t = 'array

then <e,r,<'stack,<t,v>>> -~ Save the implementing type.

else error

(imp-stack <e,r,<{t,v>> )
if t = 'stack
then <e,r,v>
else error

(type-abs-stack <t,v> ) =

it t = 'array
then {'stack.<t,v>>
else error

-- Restore the implementing type.

-~ Save the implementing type.

(type-imp~stack <e,r,<t,v>> } =

if t = 'stack
then v
else error

-- Restore the implementing type.

The relationships between these four functions are illystrated in Figure

6-1.

6.1.5. Defining a New Abstract Data Type

To allow a new abstract data type to be defined, the language needs to

supply a function that will create and return the four functions described

above, with a new uniquely generated tag embedded in them. The new tag

should also be returned, to allow the programmer to test for this new type

without incurring an error.
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Figure 6-1:
Implementing Abstract Data Types

Abstraction Implementation

type-abs-stack

-

< stack, <array, v> > < array, v >

type-imp-stack
—
Types
(represented as
<tag,value> )

type-of type-of
ERTs
( <e,r,t>)
abs-stack
<
< e, r, <stack,<array, v>> > <e r, <array, v> >
imp~stack
—_—
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6.2. Dependent Types

Dependent types, for example, of Pebble [Burstall 84}, are compound
types in which thé type of one element depends on the value of another
element. For example, in Pebble a dependent type is used to express the

type of a polymorphic pair-swapping function:
(t1:type X t2:type) — > (t1x 2 — t2x tl)

The symbol "— »" is similar to "— " except that bound variables appear on
the left and may be used on the right to refer to their values. This
polymorphic swapping function is actually a function that returns a
function; it is first given the types of the elements to swap, and the result is
then a swapping function, specific to those types, that may be applied to an
actual pair of elements. It swaps and returns the first and second elements
of the pair. Thus, for example, if we wish to swap [int, bool] pairs, returning
[bool, int] pairs, instantiating swap for these types would yield a function

value of type intX bool — boolx int:
swap[int,bool]: intX bool — boolx int

Dependent types seem to have arisen mainly from the desire 1o assign
sensible types to all expressions. vet also be able to parameterize something
by a type, such as a polymorphic function: manipulate type-tagged values at

runtime; and define recursive types.

Phi does not offer dependent types, but some of the same functionality

could be obtained in other ways, as described below.
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In Static-Phi, arbitrary type expressions can be evaluated at compiletime,
and polymorphic functions or data structures can be instantiated to
particular types. In Pebble [Burstall 84)], one is unable to talk about a
function’s actual parameter without dealing with the parameter’'s runtime
value. But in Static-Phi, a function’s actual parameter is an ERT value
during the phase before the function is applied, so the Type component can
meaningfully be extracted and used at that time. This also means that a

polymorphic function need not have an extra explicit type parameter.

Dependent types also allow type-tagged values to be manipulated at
runtime, and this may be a desirable capability to provide. This can be
accomplished by providing a type any -- a variable of type any could hold a
value of any other type, tagged with the value's type. A case conformity
clause can be used to query the variable’s current type and access its value
while retaining strong typing. (This is essentially the way Algol-68 [Lindsey
71] provides union types.) Note that the current work of Gifford, Schooler.
et al. [Schooler 84] takes a very attractive approach to this: where possible.
they do type checking before runtime; if a type cannot be determined before

runtime, dynamic type checking is used.
Recursive types are discussed in Section 7.2.7.

6.3. Type Checking Recursive Functions

The question usually arises: "Is there any special difficulty in type
checking recursive functions?" Not when the function’s parameter and
return types are declared. In fact. the type checking is very similar to the

non-recursive case, even when types are allowed as first-class values.
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The idea of a recursive function is that the function’s name can be used
inside the function body. The only impact this has on type checking is that
the function’s type must be known inside the body. This is easy to arrange,
because the function's type is known from parameter and return type

declarations.

Compare the type checking required for a non-recursive let construct

versus a recursive letrec construct. The two constructs would be:

let id - eXPryype = €XPlyatue in expry gy

letrec id : expr = expr in expr

type value body

In each case, expr, yp

1. The only difference in type checking the two constructs is that in type

o gives the type of the bound variable id. Call this type

checking expr for letrec, id is known to be type 7, rather than whatever

value
type it may have been declared to be in the surrounding scope. This is true

. . 7
even if the function happens to construct a type value.”’

29A$ mentioned in Section 3.3.2. the type that 1§ constructed can be used as an invariani
of the next phase (i.¢. it can be used in a declaration pertaining to the next phase). but it
cannot be used as an invariant of the phase during which it is computed.



Chapter 7
Conclusions and Future Work

7.1. Conclusions

This work has addressed the basic question of whether types and code can
be manipulated as first-class values while retaining strong typing. We
demonstrated how this can be done by introducing the notion of multiple
strongly typed evaluation phases. In the simplest case, two phases
correspond to the traditional notions of compiletime and runtime, though a '
single machine is used for both. In general, multiple phases may be used,
and each phase acts as compiletime relative to the next phase, or runtime
relative to the previous phase. Types that are freely manipulated as first-
class values during one phase become invariants of the next phase, thus

guaranteeing that the next phase is strongly typed.

One benefit of allowing types and code to be manipulated as first-class
values under the model of phases is that the same abstract machine can be
used to both compile and run the program. This means that all of the
features that are available in the language at runtime are also available at
compiletime. The features only need to be implemented once in the single
machine, and they are thus guaranteed to have the same semantics at
compiletime and runtime. Thus, for example, constant expressions can be
evaluated at compiletime using the same efficient evaluation mechanism as

is used at runtime, whereas, in general, a conventional compiler must

127



simulate the action of the runtime machine in evaluating constant
expressions. The single machine is therefore inherently "efficient” in two
respects: (1) for runtime operations, it can have the same efficiency as a
conventional machine in evaluating untyped lambda calculus expressions,
even though it has the additional capability of performing compiletime
operations; and (2) for compiletime operations it can be much more efficient
than a conventional compiler, because compiletime tasks that can already be
performed at runtime, such as evaluating constant expressions, are executed

directly rather than being simulated.

The special abstract data type ERT is essential to constructing and
manipulating code fragments as first-class values, while capturing all
information necessary to ensure that any code generated in this manner will
be strongly typed. The ERT data type makes it possiblg to use the same
abstract machine to do the compiletime operations of type checking and
code generation, as well as conventional runtime operations. The ERT data
type also makes it easy to talk sensibly about compiletime notions such as
asking for the type of an expression, or dealing with the type conversions

involved in implementing abstract data types.

The notion of phases, with its ERT data type and uniform treatment of
compiletime and runtime, gives insight into the semantic processing that
occurs during compiletime and runtime. It also gives insight into how to
efficiently implement compiletime notions such as type checking, using
runtime machinery, and how to efficiently provide runtime notions at

compiletime.

We believe that the notions of strong typing, types as first-class values, and
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partial or phase evaluation complement each other handsomely in providing
a language basis for writing more reusable, correct, and efficient software:
"reusable” because types can be manipulated as first-class values, and
because of the ability 10 construct new strongly-typed programs with phases
or specialize programs with partial evaluation; "correct” because of strong
typing; and “efficient” because of the ability to perform much of the

computation before runtime.

The following sections outline some suggested future work.

7.2. Subjects for Further Study

7.2.1. Developing a Practical Language Based on Static-Phi and Static-IL

The particular model of phases embodied in the Static-Phi and Static-IL
languages of Chapter 4 are based on typed and untyped versions of the
lambda calculus, and were presented as purely pedagogical languages. It
would be reasonably straightforward to expand these into useful real-life

functional languages with a full complement of data types and operators.

7.2.2. Using Phases for Partial Evaluation

This was discussed in Chapter 3.

7.2.3. Constructing and Maintaining Environments

More work is needed on how to effectively generate and manipulate the
environment required for each phase. This comes in the larger context of

programming methodology.
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7.2.4. Determining the Source of a Bug

Suppose a bug is discovered. Where did it originate? During what phase?
To some extent, the difficulty of determining the origin of a bug becomes
inherently more difficult with more reusable software, in the following
sense. When a program is constructed from several pieces of different
origins, it may be more difficult to know which piece of the program is at
fault when a bug is discovered. On the other hand, if a standard set of
reusable software components are provided, they can be very thoroughly
debugged. Overall, we do not know whether multiple phases will make

debugging significantly more or less difficult.

7.2.5. Universal Polymorphism

A function is polymorphic if different parameter types may be used in
different invocations. Burstall and Lampson [Burstail 84] distinguish
between two kinds of polymorphism (attributing the distinction 1o
C. Strachey [Strachey 67]):

Ad hoc [or Generic] polymorphism
The code executed depends on the type of the
argument, e.g., ‘print 3" involves different code
from 'print "nonsense™’.

Universal [or Parametric] polymorphism
The same code is executed regardless of the type
of the argument, since the different types of data
have uniform representation, e.g. reverse(1,2,3,4)
and reverse(irue false false).

Ad hoc polymorphism is the natural form of polymorphism under phases.

Universal polymorphism seems to require something additional. The basic
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difficulty is that, in type checking the call of a universally polymorphic
function, such as reverse (above), different result types should be returned
for calls using different actual parameter types, even though the same
function will be called at runtime. Furthermore, a mechanism for type
checking the function body once, independent of call types, should be
provided.

ML [Gordon 79] uses unification in type checking polymorphic functions.
Unification involves having the language processor perform substantial
computations involving types. This approach might be used here, although
it would seem to be somewhat contrary to the underlying philosophy of
having types of expressions simply computed rather than inferred by a more
complex language processor. It would be most attractive to use an approach
that takes advantage of a language’s existing ability to exp.licitly manipulate
types as first-class values, as the Static-Phi language does, rather than adding
type inference machinery to the language processor. We do not know how

best to do this.

7.2.6. Inferring Types

As explained in Section 1.3.1, this work was motivated by a bias toward
expressing rather than inferring. However, much notable work on data
types, such as ML {Gordon 79] has involved type inference. It would be
good to explore the relationship between type inference systems and our
model of multiple phases, which is based on typ‘es being computed directly.
Maybe a hybrid would be feasible.
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7.2.7. Recursive Types

A recursive type is a type defined in terms of itself. Recursive types are
most often used in defining lists, sequences, or trees of unbounded size. The
problem of representing recursive types is similar to the problem of
representing recursive function values or any other infinite structure. The
basic problem is how to represent the infinite structure in finite space and
time while providing convenient mechanisms for manipulating and
comparing values of the infinite structure. There are several ways recursive

types might be implemented in Phi.

One way to represent recursive types might be to use a circular data

structure to represent the type.

Another approach to representing recursive types might be to use
abstraction to delay the evaluation of a recursive type.30 Consider the
following hypothetical type definition:

letrec 7 = (list-of 1)
in ...

The list-of operation is intended to return a list type for any given element
type. The hypothetical example above is intended to define a type 7 that is
recursively a list of elements of type £. Some example values of this type

might be the empty list (), or the list containing two empty lists ({)()).

Clearly, some kind of delay mechanism is needed to avoid going into an

30Reyno]ds [Revnolds 85]. for example. uses a special rectype operation. which is a kind
of abstraction mechanism, for expressing recursive {ypes.
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infinite loop in trying to evaluate (list-of 7) in the example above, 3!

Function abstraction generally provides a kind of quoting that delays
evaluation of the function body until the function is invoked, rather than

evaluating the body when the function value (closure) is created.
Now compare the following:
LA (element-type-df (list-of )} = 1

v 1, {(apply (lambda ) D ()) = ¢

The list-of operation creates a list type where the elements must be type 1,
and element-type-of returns a list type's element type. Note that these
operations deal with #ype values - they do not create or examine Jist values.
Lambda (with an empty formal parameter list, in this case) ¢reates a function
abstraction, and apply applies the function abstraction (to an empty actual
parameter list, in this case), as in LISP [McCarthy 66]. The operation list-of
is analogous to function abstraction, and the operation element-type-of is

analogous to function application.

The example above showed that there is an analogy between function
abstraction and the kind of delay mechanism needed to allow recursive type
definitions. Could function abstraction be used to implement recursive
types? Certain type operations, such as list-pf, might act as function

abstractions, and one of these would have to enclose each appearance of the

31P. Z. Ingerman’s Thunk, used to implement call-by-name parameter passing in Algol
60. is the classic example of a delay mechanism [Pratt 73}, Lazy evaluation [Henderson 80]
is another technique.
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type name being recursively defined. (Note that this corresponds to the
Algol-68 or Pascal rules for defining recursive types, in which an intervening
reference or pointer type must be used in any recursive type definition.)
Other type operations, such as element-type-of, would act as function
application, forcing the element type of the list 0 be computed, just as
function application causes the function body to be evaluated.

This approach has not been worked out for Phi. We do not know if it

would be feasible or practical.

7.2.8. ERT Subtypes

One unsatisfactory aspect of ERT triplets <ert> is that if the type
component is ert (indicating that the expression will evaluate to an ERT in |
the next phase), there is no further information about what type of value
might be computed in the following phase. In fact, the Static-IL construct
deep-const hides the types of constants until the phase before the constant
will be used, thus preventing any compiletime tvpe errors regarding that
constant from being detected earlier. It would certainly be better to detect

all errors as early as possible.

One way to support earlier error detection might be to introduce subtypes
of the ert type that provide some information about an expression’s final
type, if known. Consider the following Static-Phi program.

Ax:tl - 12.(gx)

Recall from Section 3.3.4 that every subexpression starts out being type ert;
thus the A expression above will initially be considered type ert. But

regardless of what types t1 and 2 turn out to be, it is syntactically obvious
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that the above expression will eventually evaluate to some kind of function
value. Hence, it might be useful to initially consider the expression to be a
type that is a subtype of ert, such as "ert of fun”, which carries more
information than the simple ert type carries. Similarly, if t1 and (2 happen
to be type constants such, as number, an even more specific subtype might
be returned, such as "ert of <fun number number>"”, which represents the
type of an expression that will become a function from numbers to numbers

in some future phase.

We do not know whether ERT subtypes will provide the right practical
mechanism for early error detection, or whether some other approach would

be better.

7.2.9. Statically Inferred Phases

In Static-Phi, phases are assigned statically by the Translator, based on
“emit and eval constructs explicitly embedded in the Static-Phi program. To
ease the programmer's burden, it might be possible to have the Phi
Translator automatically determine which subcomputations should be
performed during which phases, without requiring the programmer 10

designate them explicitly.
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Appendix A:
Formal Semantics of Static—Phi and Static-IL

Introduction

This section gives a semantics for phase evaluation of Static-Phi expressions.
The semantics of a Static-Phi expression are given by two sets of semantic
equations: one set of equations corresponds to translating the Static-Phi
expression into a Static-IL. expression (in the Expression component of an
ERT); the other set corresponds to evaluating a Static-IL expression. This is
therefore an operational semantics, though we write it in a denotational style

using continuations.

Static-Phi Syntax Domains

id € ID —— Identifiers.

b € BOOLEAN -- Booleans.

n € NUMBER -- Numbers.

t € BTYPE -~ Basic type constants.

e € EXPR —— Static-Phi expressions. A program is an EXPR.

Static~Phi Syntax Equations

ID = . . . —- Identifiers.
BOOLEAN= true, faise —- Booleans.
NUMBER= 0, 1, 2, ... —— Numbers.

BTYPE= boolean, number, type, ert
—-- Basic (non-function) type constants.

141



EXPR = 1D
BOCLEA
NUMBER
BTYPE
(funty

+ (emit

+ (eval
earlier

+ A ID

+ ( EXPR

—— Identifier
N —— Boolean constant
—-— Number constant
-- Basic (non-function) type constant

pe EXPR EXPR )

—— For expressing the types of functions
EXPR ) —— Normal runtime phase is one phase later
EXPR ) —— Normal runtime phase is one phase

EXPR — EXPR . EXPR
-— Abstraction, with parameter, return types
EXPR ) —— Function application

Static-IL (Semantic) Domains

These domains

sometimes used

are best interpreted as semantic domains, though they are

as though they were syntactic domains. The reason for this is

to avoid having to deal with the cumbersome detail of two paralle! domains —

one syntactic and one semantic — and a trivial semantic correspondence

between them.

id e D

b € BOOLEAN

m,n € NUMBER

te TYPE

r e RENV

e € EXPR

ert € ERT

-~ Identifiers. Same domain as in Static-Phi.

—— Booleans. Same domain as in Static-Phi.

—— Numbers. Same domain as in Static-Phi.

—— Types. Includes both basic types and function types.
—-- Required-environment. Lists identifiers and their types.
—— Static-IL expressions. A program is an EXPR.

— Triplet < e, r, t> e is an expression, r is a list of
identifier-type pairs, and t is a type. We deal only with a
restricted set of ERT triplets, for which r lists all free

variables and their types in e, and e is guaranteed to
evaluate to a value of type t (or some error condition).
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env ¢ ENV —— Environments

vekEV -- Expressible values.
k € ECONT —— Expression continuations.
err e ERROR  —- "Compiletime” errors of various Kinds.

Static-IL Domain Equations

ID =1ID —— Identifiers from Static-IL.
BOOLEAN = BOOLEAN —- Booleans from Static-IL.
NUMBER = NUMBER —— Numbers from Static-IL..

FTYPE = {fun} x TYPE x TYPE —- Function type: domain, range.

TYPE = BTYPE -- Basic types,
+ FTYPE —— Function types.
RENV = {<>} —-- Required-environment.

+ (ID x TYPE ) x RENV  (Identifier, type pairs.) Note that
required-environments are represented
slightly differently in this appendix than

in
the body of this work.

EXPR= ID —— Static-IL expressions.
+ (quote EV )
+ (incr EXPR }
+ (check-funtype EXPR EXPR NUMBER )
+ (funtype EXPR EXPR )
+ (check-check-lambda [D EXPR EXPR EXPR NUMBER )
+ {check-lambda ID EXPR EXPR EXPR )
+ {lambda ID EXPR )
+ {check-apply EXPR EXPR )
+ (apply EXPR EXPR )
+ (deep-const EV TYPE NUMBER }
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ERT = EXPR x RENV x TYPE —- ERT triplet. Free variables of EXPR are
listed in RENV with their types. EXPR
evaluates to a value of type TYPE.

CLOSURE = ID x EXPR x ENV-- Function closures

EV = BOOLEAN -- Expressible values

+ NUMBER

+ TYPE

+ ERT

+ CLOSURE
ENV =D w4 EV -- An environment is a function from

identifiers to expressible values. Note

that environments are represented slightly

differently in this appendix than in the
body of this work.

ECONT = EV — [ EV + ERROR ] -— An expression continuation.

ERROR = { error-non-type, —- "Compiletime” errors possible.
error-non-function,
error-inconsistent-reg-envs,
error-type-mismatch,
error-different-type-used-in-body,
error-ert-expected,
error-non-ert,
error-body-is-not-ert,
error-body-and-range-types-differ,
error-arg-ready-before-function }

Meta-Language Notation

The translation rules and semantic equations will use a meta-language

including if, where, let and maximum constructs. They are written in this

"

font. Comments on a line are preceded by "--". Tuples are written, for

example, as "<a, b>". Function application is written, for example, as " (f

[IE)

x)”. The continuation-style operator ”;” also denotes function application,
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"

but it is right associative and binds weakly. Thus, "f; g; x” means "{f (g x))

The body of a lambda abstraction "\ X . extends as far to the right as

possible.

We use the operators "+” and "-" to concatenate two Required-environments,
and to remove all occurrences of an identifier from a Required-environment.
We use the notation env[v/id] to denote the environment env augmented by
the binding of v to id. (Remember that a "Required-environment” is not the
same as an “environment”!) More formally, we can recursively define these

operations:

M+r22  ifrl =<
then r2
else let <<id1,t1>,r1'> = r1
in <«<id1,t1>, r1’ + 2>

r-id2 ifr = <> then r
else let <<id1,t1>r> =r
in ifidl = id thenr - id
else <<idi,t1>, r' - id>
env[v/id] £ nidt . if id1 = id then v else env(id1)
(Note that the equality ”"=" used here between identifiers is true iff the two

identifiers are same identifier —— it has nothing to do with the values of those

identifiers.)

Translating from Static-Phi to Static-IL

A Static-Phi expression is not evaluated directly. Instead, it is first translated
to a corresponding Static-IL expression (contained in an ERT), which is in

turn evaluated through one or more phases. The function Trans-count is
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applied to the Static-Phi program and produces the Static-IL translation by
calling auxiliary functions Trans and Count. These functions have the --

following types:

Trans—count: EXPR -+ ERT
Count: EXPR X NUMBER — NUMBER
Trans: EXPR X NUMBER — ERT

The TYPE component of the ERT that Trans or Trans—count returns will always
be ert, the EXPR component will be the Static-IL expression corresponding to
EXPR, and the RENV component will list all the free variables appearing in
that EXPR component. Each variable is initially type ert. Trans—count is

simply defined as follows:

Trans-count| e 1 = Trans| e, Count] e, 0] ]

Function Count is used to count the depth of the minimum number of phases
required, and Trans does the real translation work. These functions are

defined below.

Auxiliary Function ”Count”

Function Count actually counts a depth, which may be positive or negative,
rather than the number of phases required. The parameter n represents the
current normal runtime phase —— the number of phases before some arbitrary
phase 0. Thus, a more positive n indicates an earlier phase, and a less

positive (or negative) n indicates a later phase. Thus, this numbering is the
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opposite from phase numbering used in previous chapters of this work. The
reason for this is that in translation and phase evaluation the emphasis is on --
the number of phases required, rather than the number of phases that have

already been performed. The following rules define Count.

Count{ id, n ] = n

An identifier does not need any extra type checking phases.

Count] b, n ] = n+l

Count{ m, n ] n+1l

Count] t, n ] n+1

Constants need only one extra phase for type checking.
Count[ (funtype el e2), n ] =
Maximum{ n+1, Count{el,n], Count[e2,n] }

The funtype construct itself needs one extra phase for type checking, but
the subexpressions may need more, so we take the maximum.
Count[ A id : el —e2 . e3, n ] =

Maximum{n+2, Count[el ,n+1], Count(e2,n+1], Count[e3,nl}
The A construct requires two extra phases: one to type check the function
itself, and one to check the types of the domain and return type expressions.
Of course, the subexpressions may need more, so, as with funtype, we take
the maximum. Also note that subexpressions el and e2 are implicitly
inside an eval; hence the "n+1"s.

Count| (el e2), n ] =
Maximum{ n+1, Count{el,n], Count{ie2,n] }
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Function application itself needs one extra phase for type checking, but the

subexpressions may need more, so again we take the maximum.

Count{ (emit e), n 1 = Count[ e, n-1 ]

The emit construct is not a runtime notion at all. The number of phases
required just depends on the subexpression, but note that its normal runtime
phase will one phase later. Trans will take that into account during

translation, so we anticipate it here by subtracting one from the current depth.

Count[ (eval e), n ] = Count] e, n+1 ]

The inverse of emit.

Translation Rules

Trans] id, n ] =< id, << id, ert >, <>>, ert > — Identifiers

Each identifier is initially type ert. The EXPR component is simply the

identifier, hence the required-environment only lists this one identifier of type

ert as the free variables appearing in it.

Trans[b, n ] =<eg, <>, ert >, —— Boolean constants
where € € EXPR = (deep-const b boolean n-1)

A constant is translated to an ERT in which the EXPR component is a

deep-const expression. There are no free variables in it; hence the

required-environment component of the returned ERT is empty.

Trans[ m, n ] =< e, <>, ert >, —— Number constants
where € € EXPR = {(deep-const m number n-1)

Similar to boolean constants.
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Trans[ t, n ] =<eg, <>, ert >, —-- Basic type constants
where & € EXPR = (deep-const t type n-1)

Similar to boolean constants.
Trans| (funtype el e2 ), n ]= -- Types of functions
let <eil’,rl,ert>eERT=Trans[ el, n |,

<e2,r2 ert >ec ERT = Trans[ e2, n ]
in < (check-funtype el’ €2’ n-1 ), (r1 +r2), ert >

The subexpressions are translated to ERT's, and their RENV
(required-environment) and EXPR components are combined to form the
resulting ERT. The expression components simply become the subexpressions
of a check-funtype expression -- they will evaluate to ERTs in the first
evaluation phase. The required-environments are simply concatenated
because the free variables of the whole check-funtype expression are simply
the free variables of the subexpressions e1' and e2'. All variables are type
ert in the first phase.

Trans[ A id : el —»e2 . e3, nj-= -— Abstraction

let < et’, 1, ert > e ERT = Trans| el, .

n-1 ]
< g2, 12, ert > € ERT = Trans[ e2, n-1 ],
<e3,r3, ert >¢ ERT = Trans[ €3, n ]

m <
(check-check-lambda id e!’ e2- e3 n-2),
(r1 + (r2 + (r3 - 14d))),
ert
>

The subexpressions are translated to ERTs, then combined to form the
resulting ERT. Subexpressions el and e2, which give the function’s domain
and range types, are inside an implied eval; hence they are translated so that
the function’s domain and range types will be computed one phase before the

function value (closure) is computed. The EXPR component of the resulting
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ERT simply uses the original bound variable, id, and the EXPR components
from translating the subexpressions to form the check-check-lambda
expression. The required-environments are combined, but since id is a
locally bound variable inside the body expression €3, it is removed from r3
before being combined with rt and r2. However, id is not locally bound in
e1’ or e2' (i.e. @1’ and e2’ are in an outer scope) so it is not removed from r1
or r2.

Trans[ ( el e2 ), nj-= -- Function application

let <etl’,rl,ert>eERT =Trans[el, n ],

<e2,re ert >e ERT = Trans[ e2, n ]
in < (check-apply e1' e2' ), (r1 + r2), ert >

The subexpressions are translated and combined to form the resulting

check-apply ERT.
Phase Evaluation

We now define a function, Pheval, that evaluates a Static-IL expression

relative to some environment env. Pheval has the following type:

Pheval: EXPR — ENV — ECONT — [ EV + ERRCR ]. or equivalently:
Pheval: EXPR - ENV - [ EV - [ EV + ERROR }] — [ EV + ERROR ].

The environment env is a function, with the following type:

env: ENV =D - EV

Pheval uses two auxiliary functions: Funtype? and Consistent?. Funtype? is used
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on TYPEs. It is true for functional types, i.e. types of the form <fun t1, t2>,

for some types t1 and t2. It is not defined here, but has the following type:

Funtype?. TYPE — BOOLEAN

Auxiliary function Consistent? checks whether the types of identifiers in two
required-environments are consistent. In other words, for each identifier and
type <id,t> in the first required-environment, Consistent? checks every
identifier-type pair <id'.t'> in the second required-environment, and returns
false if two identifiers id and id'" match but their types t and t' differ.

Otherwise it returns true. Consistent? has the following type:

Consistent?. RENV x RENV — BOOLEAN

Formally, Consistent? can be recursively defined as follows.

Consistent?( r1, 12 ) 2
ifrMi=<>o0rr2d=<
then true
else let <<id1,t1>, r1’> € RENV = r1,
<<id2,t2>, r2'> € RENV = r2
in if id1 = id1 and t1 # 12
then false
else Consistent?( r1’, r2 ) and Consistent?( 11, 12" )
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Phase Evaluation Semantic Rules

Phevall id ](env)(k) = k{env(id)) -- Identifier

The value of the identifier is simply retrieved from the environment. For at
least the first phase after translation, the identifier is guaranteed to evaluate to

an ERT. In a subsequent phase, it may evaluate to a value of some other type.

Pheval[ (quote v} J(env)(k) = k(v) —— Quoted value
A quoted value is simply returned as is. Quoted values may be of various

types.

Pheval[ (incr e ) J(env)(k) = —— Increment (add 1)
Pheval[ e ](env);
AveEV. k(v+1)

The subexpression is evaluated (it will be a number), and the resuiting value

plus one is passed on to the continuation.

Pheval| (check-funtype el €2 n ) J(env)(k) = —For function type
Pheval[ e1 ]{env);
A<el’, r, t1 >e ERT . Pheval[ e2 ](env),
A<e2, t2, t2>eERT.
if Consistent?( r1, r2 )
then if n >0
then if t1 = ert and {2 = ert
then k(<(check-funtype e1' €2’ n-1), ri+2, ert>)
else error-ert-expected -- Needed an ERT.
else if t1 = type and t2 = type
then k( < (funtype el1’ e2' ), r1+r2, type> )
else else error-non-type -- Needed type.
else error-inconsistent-req-envs

Excluding errors, check-funtype always evaluates to an ERT, passing it on to
the expression continuation. The purpose of check-funtype is to generate a

funtype expression whose subexpressions are guaranteed to evaluate to
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TYPE’s. In contrast with funtype, the subexpressions of check-funtype

evaluate to ERTs.

Subexpressions €1 and e2 are first evaluated; they evaluate to intermediate
ERTs. These intermediate ERTs will be combined to form the resulting ERT,
whose expression component will either be a check-funtype or a funtype
EXPR. The required-environment components of the intermediate ERTs must
be consistent, since they will be concatenated to form the
required-environment of the resulting ERT. The phase depth n determines
whether a check-funtype or a funtype expression is to be generated. If n>0,
we still have one or more phases to go before we should generate a
check-funtype expression, so the subexpressions must evaluate to ERTs;
otherwise (when n=0), we must generate a funtype expression, and its
subexpressions must evaluate to TYPEs.

Pheval[ (funtype el e2 ) J{env)(k) = —-Function type

Pheval[ el ](env);

A t1 € TYPE . Pheval] €2 1{env);
A2 e TYPE . k( <fun 11, 12 > ) —-- t1 is domain; t2 is range.

Excluding errors, funtype always evaluates to a TYPE. In contrast with
check-funtype, funtype’s subexpressions both evaluate to TYPEs. The final
result will be a function type, containing the types of the function’s domain

and range, obtained from evaluating subexpressions €1 and €2,
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Pheval[ (check-check-lambda id e1 e2 e3 n ) ]{env)(k) =

Pheval[ e1 ](env);
A <et’, r1, 11> € ERT . Pheval[ e2 ](env);
A <e2', 12, 12> ¢ ERT . Pheval[ €3 ](env[<id,<<id,ert>,<>> ert>/id});
A <e3', 13, 13> ¢ ERT .

if Consistent?( r1, r2 )

then if Consistent?(<<id,ert>,<>>,r3) and Consistent?(r1+r2,(r3-id))

then if t3 = ert
then if n > 0
then if t1 = ert and 12 = ert
then let e=(check-check-lambda id e1’

e2' e3' n-1)
in k{ < e, (r1+r2+(r3-id)), ert > )
else error-non-ert -- Needed ERT

else if t1 = type and t2 = type
then let e=(check-lambda id e1' €2' e3' )
in k( < e, (r1+r2+(r3-id)), ert > )
else else error-non-type
-~ Not a type expr
else error-body-is-not-ert -- Body should be ERT
else error-different-type-used-in-body

-- Clash of used/expected types
else error-inconsistent-req-envs

Excluding errors, check-check-lambda always evaluates to an ERT and
passes it on to the expression continuation. The purpose of
check-check-lambda is to generate a check-lambda whose first two
subexpressions are guaranteed to evaluate to values of type TYPE. In contrast

to check-lambda, all of check-check-lambda’s subexpressions evaluate to

ERT's.

Bound variable id is local to subexpression €3 (3 is in a new scope), and will
be bound to an ERT within 3, whereas subexpressions e1 and e2 are
considered to be in some outer scope. We first evaluate e1 and e2 in the

outer environment, and then evaluate e3 in an environment in which the
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bound variable id is bound to the following ERT: <«id <<id,ert>,<>>,ert>. The
expression component is simply the identifier, and it will evaluate to an ERT;
hence the type component is ert, and the only free variable listed in the
required-environment component is the identifier itself. In effect, this
declares instances of id already appearing in the body to be type ERT. (New
instances may be introduced, however, when subexpresstons evaluate to ERTs,

as with macro expansion.)

The first Consistent? test ensures that any variables used in the domain and
range subexpressions are the same types. The second and third Consistent?
tests ensure that the body expects the formal parameter to be type ert and
that any other free variables appearing in the body have the same types as
they do in the domain and range subexpressions. These tests are necessary
because subexpressions that evaluate to ERT’s can introduce new references

to bound variables.

If the phase depth n>0, we have to generate another check-check-lambda,
in which case the domain and range subexpressions must again evaluate to
ERTs; otherwise, we generate a check-lambda and the domain and range

subexpressions must evaluate to TYPEs.
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Pheval| (check-lambda id e1 €2 e3 ) J(env)(k) = —- e1, e2 will be TYPEs
Pheval| el ](env);
A t1 e TYPE . Pheval[ e2 ]{env);
A 12 € TYPE . Pheval[ €3 ](env] <t1,<<id,t1>,<>>,id> / id ]);
A <13, 13, e3 > e ERT.
if Consistent( <<id,t1>,<>>,id>, 3 )
then if t2 = {3
then K( < (lambda id . 3’ ), r3 - id, <fun t1 12 > > )
else error-body-and-range-types-differ
else error-different-type-used-in-body
—- id has different type in body

Excluding errors, check-lambda always evaluates to an ERT. Its purpose is
to generate a lambda expression whose body expects the formal parameter to

be the type declared for it.

Type subexpressions e1 and e2 are evaluated to types t1 and t2, then body
subexpression €3 is evaluated to an ERT in an environment that includes a
binding of the formal parameter id to the ERT <t <<id,t>,<>>,id>. In effect,
this declares existing instances of id in the body to be type t. The Consistent?
test is used to verify that a new instance of the formal parameter with a
different type has not been injected into the body expression (as can happen
with macro expansion). Finally, the body type must agree with the function’s
declared range type.

Pheval[ (lambda id . e ) J(env)(k}) = k( <id, e, env > ) —- Create a
closure.

This is a function abstraction. To implement lexical scoping, a closure of the
bound variable, expression body, and current environment is created and

returned.
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Pheval[ (check-apply e1 e2 ) ](env)(k) = -- e1 and e2 will be ert's
Pheval[ el ](env);
A < el’, ri, t1 > € ERT . Pheval e2 ](env);
A<e2, r2 t2>eERT.
if Consistent?( r1, r2 )
then if Funtype?( t1)
then let <fun t11, t12 > € FTYPE = {1 -- Domain, range
in ift11 =12
then k( < (apply e1’ €2’ }, r1+r2, 112> )
else error-type-mismatch
-- Formal-actual type mismatch
else if 11 =ert
then if 12 = ert
then k( <{check-apply e1' e2' ), r1+r2, ert>)
else error-arg-ready-before-function
else error-non-function —- Not function or ert
else error-inconsistent-req-envs

Excluding errors, check-apply will always evaluate to an ERT. Its purpose is
to generate an apply expression that has been type checked to guarantee that
the first argument will evaluate to a function, and the second argument will
evaluate to the type declared for the function’s formal parameter. In contrast

with apply, the subexpressions of check-apply both evaluate to ERTs.

Subexpressions €1 and e2 are evaluated to FERTs, and the
required-environments of these ERTs must be consistent; they are checked as
in previous cases. If t1 is a function type, the function subexpression €1’ will
evaluate to a function to be applied to the actual parameter in the next phase;
hence the type of the actual parameter must match the function’s declared
formal parameter type, and an apply ERT will be generated. Otherwise, t1
should be ert, indicating that the function subexpression will again evaluate to
an ERT during the next phase. In this case, t2 should also be ert (indicating

that the argument subexpression will also evaluate to an ERT), and another
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check-apply will be generated. At this point, it is an error if t2 isn’t ert,

since this means that the argument is ready to evaluate to some fixed,

non-ERT value before the function expression is ready to evaluate to a

function value.

Pheval[ (apply e1 e2 ) J(env)(k) = ——Function application
Pheval[ el ](env);

A <id, e, env' > € CLOSURE . Phevall e2 ](env);
A v e EV. Pheval[ e J(env'[v/id]) (k)

Normal function application. Subexpression e1 is guaranteed to evaluate to a
function closure, and e2 evaluates to the actual parameter, the type of which

is guaranteed to be the domain type of the function.

Proving That No Runtime Type Errors Are Possible

This section briefly briefly sketches how to approach proving the assertion
that runtime type errors are not possible in Static-IL. The more specific
assertion is that every ERT generated by this system is valid. (This will be
clarified below.) Overall, the proof is by induction on the number of phases
used to produce the ERT. The basis is zero phases, when the ERT is
produced directly by the Translator. Both the base case and the induction
step are, in turn, proved using structural induction on the original Static-Phi

program or the Static-IL Expression component of the ERT.

First off, we must define what we mean by "runtime type error” in order to
show that such errors are not possible. The easiest way to do this is probably
to add an explicit type tag to the values that are manipulated by Static-IL

programs, and then to define runtime type errors in terms of these type tags.
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Next we must specifically define what jt means for an environment to satisfy a
Required-environment. The environment must supply bindings of the proper

types for all of the identifiers listed in the Required-environment.

Now, we really want to prove that every ERT produced by this system is
"valid”, so we must define "valid”. Basically, an ERT <e,nt> is valid if, in an
environment that satisfies the Required-environment r, e is guaranteed to
evaluate to a value of type t (or to some compile-time error value) without

incurring any runtime type errors.

With the proper definitions in order, the proof would proceed by induction on

the number of phases used 1o produce the ERT.

Basis. The basis is when zero phases were used to produce the ERT, that is,
we must first show that the translator always produces a valid ERT. This part
would be done using structural induction on the original Static-Phi program.

The most important thing to note in this part is that the result of the Count
function used in transiation is completely irrelevant to the proof. The n
parameter used by several of the Static-IL constructs to determine how many

phases to wait, has no bearing on the type correctness of the system.

Inductive hypotheses. Next, we consider any valid ERT <eé,rt>, and any
environment env that satisfies the required environment r. Thus, the basic
inductive hypothesis is that <e,rt> is valid and that the environment env
satisfies the Required-environment r. But furthermore, we must construct the
right hypothesis on the environment to ensure that no Trojan horse runtime

type errors can sneak in through the environment. Every ERT value that
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comes from the environment must be valid, and every function that comes

from the environment must be assured to execute without runtime type errors.

Induction. We must now prove that if t=ert then Phevalle](env)(Av.v) is
either a valid ERT or one of the compiletime error values. This would

proceed by structural induction on e.
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