COMPILER CONSIDERATIONS AND RUN-TIME STORAGE
MANAGEMENT FOR A FUNCTIONAL PROGRAMMING SYSTEM

Jose Nagib Cotrim Arabe August 1986
CSD-860041

UNIVERSITY OF CALIFORNIA
Los Angeles '

Compiler Considerations and Run-Time Storage Management

for a Functional Programming System

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

José Nagib Cotrim Arabe

1986

© Copyright by
José Nagib Cotrim Arabe
1986

In memoriam of Nagib Arabe, my father
To Yvonette Cotrim Arabe, my mother

To Heloiza Emilia Blanc, minha companheira

ii

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES
ACKNOWLEDGEMENTS

VITA

ABSTRACT OF THE DISSERTATION

1. INTRODUCTION
1.1 Background
1.2 The FP Functional Language
1.3 Description of the Problem
1.4 Related Work
1.5 QOutline of the Dissertation

2. SYMBOLIC STRUCTURAL EVALUATION FOR FP
2.1 An Algebra of Structural Computations
2.1.1 Symbolic Computations
2.1.2 Basic Relations for Primitive FP Functions
2.1.3 Structural Behavior of Functional Forms
Analysis of the Restrictions
Using Structural Evaluation: Examples
2.3.1 Matrix Multiplication
2.3.2 Fast-Fourier Transform
2.4 Representation of Regular Structures in a Linear Memory
2.5 Conclusion

3. COMPILATION AND MEMORY MANAGEMENT
3.1 Manipulation of Algebraic Equations
3.2 Uniprocessor Implementation
3.2.1 General Structure of the System
3.2.2 Object Descriptors
3.2.3 Intermediate Code Generation
3.3 Other Realization Aspects

4, EVALUATION OF THE COMPILATION APPROACH
FOR UNIPROCESSORS
4.1 Assumq\t}ons and Comparison Measures
4.2 Matrix Multiplication
4.3 Fast-Fourier Transform
4.4 Interconnection Patterns
4.5 Associative Searching
4.6 Conclusion

2.2
23

iv

page

5. ISSUES IN PIPELINED AND MULTIPROCESSOR SYSTEMS 102

5.1 Vector Processing in FP 102
5.2 Control of Interconnection Networks 117
5.3 String Reduction Machines 120
6. CONCLUSIONS AND SUGGESTIONS

FOR FUTURE RESEARCH 126
6.1 Conclusions 126
6.2 Suggestions for Future Research 129
REFERENCES 132
APPENDIX 1: DESCRIPTION OF FP 141

APPENDIX 2: SYMBOLIC STRUCTURAL TRANSFORMATIONS
FOR FP 153

APPENDIX 3: FP IMPLEMENTATION OF THE LAWRENCE
LIVERMORE LABORATORY KERNELS 158

1.1
1.2
1.3
1.4

2.1
3.1

32
33
34
35
3.6
4.1
4.2
5.1
52
53
54
5.5

LIST OF FIGURES

String Reduction of (b+1)*(b-c) [Trei82]
Graph Reduction of (b+1)*(b-c) [Trel82]

Execution Models for FP

Source-to-Source Program Transformation Approach for

Optimization of FP Programs

Symbolic Structural Transformations

Compilation: Proposed Approach for Optimization of

FP Programs

MM Example for A(2x3) and B(3x4)
Compiler Structure

Object Descriptor Nodes

Examples of Object Descriptors
Intermediate Code Generation for MM
Traditional Uniprocessor

Associative Searching: Range Query

FP Implementation of gather Instruction
FP Implementation of compress Instruction
Livermore Kernel No. 7

Livermore Kernel No. 6

Hardware Model of Parallel Processing Systems

A3.1 Livermore Kernel No. 1

A3.2 Livermore Kernel Nos. 2 and 3

A3.3 Livermore Kernel No. 5 - First Version

vi

page

12
13
15

25
33

57
59
65
67
68
71
77
98
108
109
112
114
117
159
160
161

A3.4 Livermore Kemnel No. 5 - Second Version 162

A3.5 Livermore Kernel No. 6 163
A3.6 Livermore Kernel No. 7 164
A3.7 Livermore Kernel No. 9 165
A3.8 Livermore Kemel No. 10 166
A3.9 Livermore Kernel No. 11 168

A3.10 Livermore Kemel No. 12 168

vii

2.1
22
23
4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
49
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

LIST OF TABLES

Static Frequency of FP Primitives

Ten Most Used Primitives

Static Frequency of Functional Forms

Memory Requirements, Interpretation of MM

Bus Traffic, Interpretation of MM

Memory Requirements, Compilation of MM

Bus Traffic, Compilation of MM

Memory Requirements, Execution of Compiled MM
Bus Traffic, Execution of Compiled MM

Bfly: Memory Requirements for Compilation

Bfly: Bus Traffic for Compilation

fftstages; 4 points: Memory Requirements for Compilation
fftstages; 4 points: Bus Traffic for Compilation

fftstages; 4 points: Memory Requirements for Execution
fftstages; 4 points: Bus Traffic for Execution

fftstages; 4 points: Memory Requirements for Interpretation
ffistages; 4 points: Bus Traffic for Interpretation
fftstages: Comparison for Memory Requirements

Bus Traffic for Interconnection Patterns

Memory Requirements for Interconnection Patterns
Summary of Memory Requirement Results

Summary of Bus Traffic Results

viii

page

45
45
81
82
83
84
84
85
87
87
89
89
91
92
93
93
94
95
96
100
101

5.1 Memory Requirements for Livermore Kernels 116

5.2 Bus Traffic for Livermore Kernels 117

ix

ACKNOWLEDGEMENTS

I wish to express my appreciation to my doctoral committee consisting
of Professors Milos D. Ercegovac (Chairman), Tomds Lang, Dan Berry, Bruce
Rothschild and Richard L. Baker. I also wish to thank Professor Loyce
Adams, who served as a member of the committee at an earlier stage. I am
specially grateful to my advisor, Professor Milos D. Ercegovac, who intro-
duced me in the area of Functional Programming and suggested the problem.
His illuminated guidance and our helpful discussions provided the necessary

encouragement and confidence throughout this research.

Financial support to this work was provided by Coordenacdo de
Aperfeicoamento do Ensino Superior (CAPES), Ministry of Education, Brazil,
through fellowship 3906/81; by ONR Contract NO00014-83-K-0493,
"Specification and Design Methodologies for High-Speed Fault Tolerant
Array Algorithms and Structures for VLSIL" and the State of California
MICRO-Rockwell Grant "A High-Level Language Approach to Custom Chip
Layout Design.” Additional support was provided by Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil, which also granted me a leave of
absence thus making possible this achievement. To all these entities I express

grateful appreciation.

During my stay in Los Angeles, I have enjoyed the friendship of
several people. My office mates T.M. Ravi, Paul Tu, Socrates Dimitriadis,
Shun Cheung, Pak Chan, Martine Schlag and Miquel Huguet provided a nice
working environment. My brazilian friends Valmir C. Barbosa, José Diaulas

Palazzo Rolim and Frank Schaffa provided unforgetable moments of moral

support during lunch and coffee breaks.

My mother, Yvonette Cotrim Arabe, and my friend, Professor Chris-
tiano Gongalves Becker, took care of my Brazilian affairs while I was absent;

their hard work there made my life here easier.

Lastly, and most important, I must remember Heloiza Emilia Blanc, my
wife, companion and friend, who sacrificed four years of her professional
career to endure by my side the hardships of life abroad. Without her support

and love this dissertation would not exist.

xi

January 15, 1955
1973-1977

1979-1982
1977-1979
1979-

1984-1986

VITA

Born, Belo Horizonte, Minas Gerais, Brazil

Electrical Engineer,
Universidade Federal de Minas Gerais, Brazil

Master of Science in Computer Science,
Universidade Federal de Minas Gerais, Brazil

Systems Analiést, Computer Center,]
niversidade Federal de Minas Gerais, Brazil

Assistant Professor of Computer Science,
Universidade Federal de Minas Gerais, Brazil

Post-Graduate Research Engineer,
University of California, Los Angeles

xii

ABSTRACT OF THE DISSERTATION

Compiler Considerations and Run-Time Storage Management

for a Functional Programming System
by

José Nagib Cotrim Arabe
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1986

Professor Milos D. Ercegovac, Chair

This dissertation deals with the efficient execution of functional pro-
grams. First, we identify sources of inefficiency in the functional language FP
that contribute to slowdown program execution irrespective of machine imple-
mentation. Then, a system for symbolic structural evaluation of FP programs
is defined. The system is given a description of the structure of the input
object and the FP program; based on this information and on basic algebraic
relations, the system derives the structure of the result object without the need

for the actual input object.

This system lays the groundwork for the implementation of a compiler
that solves an FP program structurally in order to generate efficient run-time
environment for the actual execution of the FP program. Algebraic equations
are used to represent the structure and the location of FP objects in a given
memory organization. The manipulation of these algebraic equations allows

the structural solution of FP primitives at compile time; this process reduces

xiii

the amount of data replication and data movement required by the original FP
program. The specific result is a more efficient run-time environment with

respect to a given architecture for FP programs.

The approach is demonstrated by a comparison between the memory
requirements of the compiler and of the conventional mode of implementation
for FP, namely, interpretation. We show that the compilation approach indeed

results in less data replication and less data movement.

Lastly, compilation issues for pipelined and multiprocessor systems are
discussed. We show that the ideas implemented in the compiler are also useful
when the machine model is not an uniprocessor. A number of common vector
operations as well as some actual problems are implemented in FP and their
execution performance is analyzed. Then, we discuss the use of compilation in
the control of interconnection networks, a crucial element for multiprocessor
architectures. Finally, a string-reduction architecture developed for the
specific purpose of executing FP programs is examined; we show that this

architecture also can take advantage of the compilation techniques.

Xiv

CHAPTER 1
INTRODUCTION

This work describes a new approach to improve the efficiency in the
execution of functional (or applicative) programs. The functional style of pro-
gramming has been recently advocated as a paradigm for the development of
software because of its mathematical basis, semantic elegance, ease of

expressing implicit and explicit parallelism, expandability, and modularity.

We begin by identifying sources of inefficiency in the functional.
language FP [Back78] that are likely to slow down program execution
irrespective of machine implementation. These sources of inefficiency are
then considered as targets for optimization by the FP system. Basically, the
problem can be stated as: “given an FP program and an architecture, generate
an optimized run-time code.” In other words, we are looking for FP code
optimization, a problem well-known also for conventional languages. How-
ever, the complexity of code optimization in FP turns out to be smaller than
the complexity of code optimization for conventional languages. This is due to
the cleaner semantics of FP, with no side-effects and variables, factors that are
a source of problems in the optimization of procedural languages. Also, FP
has a powerful algebra of programs that can be used in the process of program

transformation,

Then we describe the new approach to deal with those efficiency prob-
lems. We advocate the use of compilation techniques for FP programs to gen-
erate more efficient FP code. Algebraic equations are used to represent the
structure and the location of FP objects in a given memory organization. The
manipulation of these algebraic equations allows the solution of some FP
primitives at compile time; this process reduces the amount of data replication
and data movement required by the original FP program. The specific result is
a more efficient run-time environment with respect to a given architecture for
FP programs. This chapter is dedicated to the presentation of the motivations

for the research and to a more precise definition of the problem.

1.1 Background

In recent years very active research has been done in the area of con-

current computation. This trend is justified by a number of facts:
a. many computations have a highly parallel structure;

b. VLSI technologies allow processors to be combined into large parallel

structures;
C. greater demands for faster and more powerful computing resources.

This research into parallel computation has brought with it new prob-
lems in the creation of algorithms and in computer architecture design. One
of the aspects of these new problems is the development of high level
languages (HL.Ls) to enhance the programmability of highly concurrent sys-

tems.

HLLs have been developed to allow algorithmic specifications in a con-
cise and machine-independent form. However, the most popular HLLs (such
as FORTRAN, Pascal and Algol) were developed some time ago and are
based on the so-called von Neumann architecture concept; these machines
were designed to perform sequential operations on individual items of scalar
data. As a result, conventional programming languages — also called pro-
cedural or imperative languages — enforce an artificial sequentiality in the
specification of algorithms. This sequentiality not only adds verbosity to the
algorithm, but may prevent an efficient execution of the algorithm on con-
current architectures. Various proposals have been made to attack such inade-

quacies. In the next paragraphs, some of them are outlined.

One approach to overcome these problems is the development of vec-
torizing compilers which try to recover parallelism from a sequential
specification. This process is rather artificial since the user specifies a poten-
tially parallel algorithm using a sequential language and then the compiler
tries to infer the lost parallelism. It seems clear that to translate a parallel pro-
cess to a sequential one is easier than to do the inverse process. This is
because in the first case an arbitrary ordering suffices, whereas in the second
case the process requires an analysis. Another serious limitation to this
approach is the existence of variables and their associated side-effects on con-
ventional languages. Lastly, algorithms coded cleverly to save memory or run
faster on a sequential machine can prevent the compiler to find parallelism in
the code. Nonetheless, some very good results have been obtained as can be

seen in [Kuck81, Padu80, Amo82].

To increase the efficiency of this process, the user either has to be
aware of the machine instruction set or of the method of detection of parallel-
ism used by the compiler. Furthermore, the organization of the transfer of
data to and from the memory, through an interconnection network, can require
the use of low-level primitives and can critically affect the performance of a
program. The only justification for this approach is to avoid the rewriting of
software, given that software is more expensive than hardware. Therefore it
should be considered only as a temporary approach for the move from sequen-

tial machines to parailel machines.

Another approach is to extend conventional programming languages, in
particular FORTRAN, by incorporating parallel constructs. This allows the
programmer to explicitly exhibit the parallelism in the problem. It has been a
widely used approach, as can be seen by languages such as CFD (a
FORTRAN-like language for the Illiac-IV) [Stev75], BSP FORTRAN

[Burr77], and Vectran [Paul75]. Some shortcomings can be pointed out:

a. since the languages are based in old concepts, they inherit their
deficiencies, most important of them the presence of variables and

side-effects;

b. although recent efforts have been made towards standardization, these
languages are generally modified versions of old languages to suit a
given architecture; they incorporate details of that machine architecture
(in fact, most of the parallel constructs mimic the assembler language

parallel constructs of the machine), making the languages non-portable;

C. even languages that are claimed to be architecture-independent
[Perr79] suffer from the fact that they are based on the von Neumann
model of computation which make them unsuitable to novel massively

parallel architectures.

The class of multitasking languages such as Ada and Modula-2 also
present problems, since they require explicit programmer concern with the
creation and synchronization of multiple tasks. This clearly adds complexity
and cost to the software development process. Furthermore, within a specific
process, these .languages have the same lack of parallelism of the earlier con-

ventional languages.

One exception among the old languages is APL [Iver62]. APL is based
on mathematical concepts and notations, and allows a concise and elegant
expression of problems. By having arrays as basic data types and powerful
operators to manipulate them, APL can express parallelism consistently. But,
as noted by {Back78], APL still has variables and side-effects, and presents

some of the shortcomings of von Neumann languages.

In recent years, various scientists have advocated the use of a new class
of programming languages to overcome some of the deficiencies of conven-
tional languages. The class of applicative or functional programming
languages has been developed with the aim of having the following charac-
teristics fulfilled: they should be as machine-independent, natural and high-
level as possible; they should enable the essence of an algorithm to be cap-
tured in a program, by allowing the elimination of any arbitrary detail not

directly associated with the problem itself; and they should be amenable to

correctness proofs with a minimum of analysis.

Various proposed languages can be classified as functional languages,
among them: Backus’ FP [Back78], SISAL [McGr83], Hope [Burs80], Val
[McGr79], Id [Arvi78], and KRC [Turn82].

The important characteristics of functional languages are:
a. the program is a function in the mathematical sense;

b. the basic operation is function application: the program is applied to the

input and the resulting value is the program’s output;

c. the value of an expression depends only on its textual context, not on
computational history (no concept of present state, program counter or
storage as in von Neumann machines); this property is called referen-

tial transparency [Back72];

d. absence of variables and side-effects (although some of the languages
have an assignment statement — for example Val, Id and SISAL are
called single-assignment languages — it is simply a notational conveni-

ence for binding an expression to an identifier).

Imperative languages promote a style of programming based on nam-
ing of elementary cells, assignments to these cells, and repetition of elemen-
tary actions. The functional programming style, on the other hand, does not
depend on these three actions. The simple and uniform data objects (e.g., lists)
allow the design of data structures without concern for memory cells; instead

of being assigned, values are produced by function application and passed on

to other functions; and functional forms and operations that distribute over the
data objects reduce the reliance on repetition. Therefore, one advantage of
functional programming is that it allows programs to be written at a higher
level than imperative programming. Other advantages claimed by functional

language proponents are:

a. functional languages have concise and simple semantics;
b. functional languages are expandabie and modular;
c. compact notation allows more algorithm to be expressed per line of

code. Evidence suggests that number of lines of correct code per day is
roughly constant for a given programmer, independent of the language
used [Wass82]. Programming experience seems to indicate that func-
tional languages do in fact increase programmer productivity. Some
users and designers of functional languages have made claims of

improved productivity [Burs80, Turn81, Morr80];
d. freedom from side-effects;

e. functional programs are easier to verify because proofs can be based on
the concept of a function rather on the more cumbersome notion of

state transitions {Back78];
f. functional programs can represent implicit and explicit parallelism.

Of course, these advantages have their price in terms of execution
efficiency. The inefficiency comes mainly from the fact that many objects are

created and discarded dynamically. The dynamic creation of objects such as

lists and arrays causes excessive data movement and data replication during
the execution of functional programs. These issues will be discussed in detail

in Section 1.3.

1.2 The FP Functional Language

We choose to use in this work the functional programming language FP
because it possesses excellent formal properties, among them referential tran-
sparency, and it has a powerful algebra of programs [Back78]. Here we
briefly introduce FP. It is basically the same as Backus’ FP except that it has a
few more primitive functions. The complete description of the syntax and
semantics of the language is given in Appendix 1; here we present only the

most significant features.

The FP language comprises (1) a set of data objects, (2) a set of primi-
tive functions, (3) an operation, application, (4) a set of functional forms, and

(5) a set of definitions.
Data Objects

The set of data objects consists of atoms and sequences. Numbers, characters
and boolean values (T and F) are all atoms. A sequence with n elements
X1,X2, ", X, is denoted by <xi, x3, **, x,>. Each element x; may be
any data object. The empty sequence (n = 0) is denoted by <>. A special atom,
bottom, represented by ?, denotes the value returned as the result of an

undefined function application.

Primitive Functions

Below is an informal definition of some of the primitive functions of FP; the
complete definitions can be found in Appendix 1. Note that function applica-

86,9

tion is denoted by “:”, as in fix.

Structure manipulating functions:

Selectors: 1: <xy, x2, ', x,>=x1 (n2l),

2:<x1, X2, ", Xp>=X7 (n22), - -
tail: <xq1, x3, **, xp> =<x3, ", x> (n21)
transpose:
<<X11, X125, " " X1m>s "7 <Xy Xp2s "7 Xgm >

= C<X11,X21: " s Xn1>y s X Ims X2y T s X 2>
distribute-right: <<x, x3, ', x;>, y>

= <X, Y>,<X3, ¥>, 1, <Xy, YOO
distribute-left: <y, <x|, x2, " -, X,>>

= <<y, X1>,<Y, X2>, ' 1, <Y, Xp>>
append-left: <y, <x1, X3, """, X, >> =<y, X1, X2, " " *, Xp>

etc.

Arithmetic and boolean functions:

+: <X, y> =x+y, = <x,y> =x-y, etc. (*,/, and, or, not)

Predicates:
null: x = T if x is the null sequence, F otherwise
eq: <x,y> =T if x is identical to y, F otherwise

etc.

Identity function: id: x =x
Functional Forms

Functional forms are used to create new functions by combining existing func-

tions:

composition: f@ g: x = f :(g x)

construction: [f1, fa, * -, frl: x =<f1x, fax, + o+, fax>

constant: %x: y =x, for any objects x, y

conditional: (f—g; h): x = if f x then g:xelse A x

apply-to-all: &f : <x1,x2, ', Xp>=<f Xy, fX2, "+, fXp>

right-insert: !f : <x, X7, """, Xp,>=f1<x1, If 1 <xg, " -, Xy >>
where !f : <x>=xand !f : <> =¢f

for some specific value ey in the range of f

Definitions

A definition has the form {name form} where name is the name of the func-
tion being defined and form is a functional expression made of primitive func-
tions, function names (other definitions) and functional forms. As an example,

the following is the recursive definition of the factorial function:
{factorial (eq0 ->%1; * @ [id, factorial @ subl]) }
{eq0 eq @ [id, %0] }

{subl - @ lid, %1])

10

Execution Models for FP Programs

The FP language may be characterized as a reduction language since it
supports a reduction-style program execution. In contrast with procedural
languages, which are built of and executed as sequences of simple operations
called instructions, reduction programs are built from nested expressions. In
reduction language programs, the equivalent to an instruction is the applica-
tion of a function to an object, the result being another object. A reduction
language program is an expression equivalent to the result of its evaluation in

the same sense that (2+2) is equivalent to 4.

Two basic approaches have been identified [Trel82] toward executing
reduction programs: string reduction and graph reduction. The basis of string
reduction is that a program is manipulated in place: each application of a func-
tion to an argument is textually replaced by an equivalent expression, and
expressions are not shared. Commonly used sub-expressions must be repli-
cated throughout the program where necessary. In graph reduction, implicitly

shared references (pointers) to expressions are manipulated.

For illustration purposes, consider the following FP definition of the
arithmetic expression (b+1) * (b-c):
{a *@ [t1,12])
{tt +@ [b, %1]) (2 -@i(b,c]}
(b %4) (c %2}

Figure 1.1 shows how the expression is evaluated using string reduc-

tion. Note that the reference to a is textually substituted by its definition.

11

R S = *@ [t1, 12} =>

=> *@ [+@[b,%1], -@{b,c]] =>
=> *@ [+H@[%4,%1), -@[%4,%2]] =>
= *@ [+:<4,1>, -:<4,2>] => * <52 => 10

Figure 1.1 - String Reduction of (b+1) * (b-¢c) [Trel82]

Then, possibly in parallel, the definitions of tl1 and t2 replace their
occurrences in the expression. Note also that each reference to b is followed
by a substitution by the value of b, that is, no sharing of the value of b occurs.
At later stages, the reducible sub-expressions +: <4,1> and -:<4,2> are
replaced by their result and, finally, the multiplication is executed leaving the
final answer in place of the whole original expression. This process happens

for each occurrence of a in the body of the FP program.

Figure 1.2 illustrates the graph reduction for the same program. When
the reference to a is found, instead of a copy of the definition, the reference is
traversed in order to reduce the definition and return the actual value. One way
of identifying the original source of the demand for a, and thus support the
return, is to reverse the arcs by inserting a source reference in the definition.
The traversal of the definition and reversal of the references continues until
constant arguments, such as b and ¢, are encountered. Reduction of the sub-

expressions starts with the rewriting of the addition and subtraction an shown

12

»
//\
tl: | + 1 je2:| - => .. =>
b: | 4 c |2
a
-
7T
=> => i+ 43112 -141]2
b: | 4 c |2
a
*15(2
=> tl: | §|2:| 2 =
b:| 4 |c:|2

Figure 1.2 - Graph Reduction of (b+1) * (b-c) [Trel82]

13

tl:

tl:

10

tl:

in Figure 1.2. The process continues until the value of a is calculated and
returned to the original demand. Any further reference to a immediately
receives the value 10; no recalculation is done, as is the case in string reduc-
tion. Note that if there are no further references to b, ¢, t1 and t2 they can be

garbage collected.

Another issue when executing reduction languages concerns the choice
of the next application to be reduced. There are two possible rules: in an
innermost selection rule, the applications selected are the most deeply nested;

in an outermost selection rule, the un-nested applications are those selected.

All outermost reduction architectures are demand-driven
[Turn79, Clar80, Kell79, Dari81], a term used to define computer organiza-
tions where instructions are only selected when the value they produce is
needed by another, already selected instruction. This means that an instruc-
tion is executed only when its result is demanded by some other instruction.
Outermost selection rules are best suited for a graph reduction model of exe-
cution. This is because, in the case of using innermost rules for graph reduc-
tion, no real use is made of the graph reduction’s by-reference data mechan-
ism: all subexpressions would be reduced before the functions referring to
them (the only references in functions would be-to values) and there would be

no sharing of subexpressions.

On the other hand, innermost reduction architectures are data-driven
[Arvi82, Gurd85, Mago80, Berk75], since an instruction is executed only when
all its arguments are available (evaluated). This means that no coercions

(demands) take place and that all functions have their arguments evaluated

14

whether this is necessary or not, as occurs in the data-flow model of computa-
tion [Denn80)]. Innermost selection rules are best suited for a string reduction
model of execution. This is because string reduction uses a by-value data
mechanism, where copies of actual arguments are generated for each formal

parameter occurrence. Figure 1.3 summarizes the above discussion.

outermorslh:eiecnon demand-driven graph reduction
mnermorsutlzelecnon data-driven string reduction

Figure 1.3 - Execution Models for FP

1.3 Description of the Problem

In the Section 1.1 we argued that functional languages offer advantages
with respect to ease of problem expression and also offer a great potential for
the exploitation of implicit and explicit parallelism. However, they are not

widely used in the real word of programming. What are the reasons?

One aspect of the problem is resistance to change. Programmers have
to be reeducated to think in functional terms and not in procedural terms; this
can be a long and arduous process. Also, economic reality dictates that the

whole body of already built imperative software must be used.

15

Another aspect is that functional languages have a reputation of being
very inefficient to execute. It is clear that the user community must be con-
vinced not only that functional languages are appropriate tools, but also that
they can be efficiently executed. Therefore, this work will deal with the prob-

lem of efficiently executing functional programs.

Several reasons can be listed for the performance degradation in func-

tional programs:

a. von Neumann architectures are not suited to FP execution, mainly
because FP does not reflect the structure and operations on those archi-
tectures. That is, FP is not based on naming of memory cells (vari-

ables), assignment to these cells, and repetition of elementary actions;

b. programs are based in the manipulation of lists, which require a general
list manipulation system with garbage collection, causing an associated

overhead;

c. lack of destructive updating; a new copy of a structure is (logically)

needed when the structure is modified;

d. in general systems are interpretative rather than compiled. The reason
for this is that programming languages that adopt dynamic binding
between objects and types, which is the case of FP, are processed more
naturally by interpretation. In these languages, there generally is not
enough information before run-time to generate code for the evaluation
of expressions involving objects of unknown type. This makes

languages with dynamic type binding interpretation-oriented, whereas

16

languages with static binding are translation-oriented. However,
dynamic binding does not completely preclude the use of compilation,

which oftentimes removes sources of inefficiency.

Even novel architectures that have been proposed to directly execute
functional languages have not been very impressive in terms of performance.

Some of these new architectures are:

a. data-flow machines: MIT Data Flow Project [Denn80], Arvind’s U-
Interpreter [Arvi82], Rumbaugh’s Data Flow Multiprocessor
{Rumb77], Manchester Data Flow Machine [Gurd85], and LAU

{Syre77].

b. string-reduction machines: Magd’s Tree Machine [Mago80],
Berkling’s Reduction Machine [Berk75], and Kellman’s Machine
[Kell83].

c. graph-reduction machines: Turner’s Combinator Reduction Machine

[Turn79], SKIM [Clar80], AMPS [Kell79], and ALICE {Darl81].

Since most of the proposed architectures are “paper-designs,” real per-
formance evaluations are not available. However, performance predictions by
analysis and simulation corroborate the fact that many issues remain to be
solved with respect to efficiency. Some of the new machines have actually
been built; again, performance results show that they still fall behind current

conventional high-speed machines [Gurd85].

17

It has been recognized by the designers of these machines that one of
the critical points is memory allocation and management. Most machines
handle very poorly regular data structures such as arrays and vectors. This
make them non-competitive with existent super-computers and easy targets to
criticism. Furthermore, there is a big class of problems that manipulate arrays
and it seems unlikely that functional and data-flow architectures will succeed

if they do not handle well this class of problems.

The easiest way to make data structures free of side-effects in func-
tional languages is to forbid sharing or overlapping of data. However, this can
be prohibitively expensive since it requires each structure to be completely
copied whenever its value is modified, even if only one element is changed.
To circumvent this problem, Dennis [Denn74] proposed to store arrays as
trees, with array elements at the leaves, allowing most access and manipula-
tion operations to be performed in logarithmic time. In Dennis’ proposal,
structures are shared whenever possible by using reference counts. Each node
of a structure has a reference count, which is the total number of pointers to
that node from other nodes. Then, if a copy B of array A is created, the pointer
for B points to the same root as the pointer for A. This approach has the disad-
vantage that the complexity of many simple access and data manipulation

operations is increased.

Another proposal to avoid excessive storage demand and slow access
time for regular data structures in functional languages is the so-called /-
structure, proposed by Arvind and Thomas [Arvi80]. These are array-like

data structures whose storage is allocated before expressions to produce them

18

are invoked. To improve parallelism, it is possible for a part of a program to
attempt to read an element before the creation of that element. Therefore, a
presence bit is associated with every element, and an attempt to read an empty
location defers the read operation. Checking for those deferred reads on every
write is the main cause for performance degradation in I-structures. Another
problem is to optimally distribute the I-structures over many processors to

minimize traffic through the network that interconnects the processors.

While the approaches described above are different implementation
attempts to overcome the inefficiencies in the representation and manipulation
of regular data structures in functional languages, there are other sources of
inefficiency that, without regard to implementation, will be likely to contribute -

to slow down program execution. They are listed below.

Excessive data movement: While nobody expects a programmer to
write code such as: trans @ trans, or reverse @ reverse, or even 1 @
reverse (which is the same thing as last), these cases can occur in a subrepti-
tious manner. Suppose a function f1 does a given job and finishes it by rev-
ersing the result list. Suppose also that another function needs exactly the
result of f1 but without the reversing step. Naturally, a programmer can take
advantage of the existence of fl and write reverse @ fl. At execution time,
the undesired encounter reverse @ reverse will occur; a system that blindly
executes such segment of program will spend some, maybe long, time doing

operations with a null effect.

19

Note also that influence of programming style can generate excessive
data movement and therefore bring inefficiencies. Suppose a programmer
writes this piece of code in FP: 1 @ trans. If this code is to be applied to a
matrix, the intention is to have as a result the first column of the matrix. It is
clear that the same objective can be achieved with the following function: &1.
If the FP code is directly interpreted by a machine, in the first program the
matrix is first transposed, while in the second no such data movement occurs,
there being only selection operations. Therefore, the first version is likely to

be slower no matter how the system is implemented.

To avoid this type of problem, either the programmer has to be aware
of the potential inefficiency of the first version or the system has to be smart‘
enough to avoid the actual transposition of the matrix. It is important to noté
here that both versions of the program are very clear in their intent, i.e., to
select the first column of the matrix. Therefore, we do not advocate that the
second version is clearer than the first one; such a conclusion is at least debat-
able. In conclusion, if the programmer has to deal with efficiency questions of
this nature, one of the very first motivations to use functional languages, i.e.,
to be machine-independent, high-level and as natural as possible, will be no
longer valid. It remains the option of building a system that detects such

sources of problems; some approaches will be discussed in the next section.

The issue of data movement is a serious one in the functional program-
ming style. Because there are no variables in FP, a function locates its argu-
ments by their position within the input object; thus operations that direct data

movement (transposition, selections, reversings) occur frequently in func-

20

tional programs. Therefore, one of the objectives of any implementation of a
functional programming system should be the minimization of data move-

ment.

Redundant computations: Another potential source of inefficiency in
functional programs is that sometimes a straightforward execution causes the
same computation to be performed repeatedly. For example, with unlimited
resources, the execution of [fl@reverse, f2@reverse] can take the same time
as the equivalent program [f1, f2] @ reverse. However, in the real situation
of limited resources, it is quite recommended that the system discovers the
common subexpression in the first case to avoid its recomputation. The issue
is a delicate one, because sometimes it is difficult to detect common subcom-
putations that would reduce execution time; and sometimes, with enough'

resources, it may be desirable to ignore the redundancy.

Excessive data copying: It is well known that the introduction of redun-
dancy often brings opportunities for parallelism. For example, the expression
a(bcd+e) can be executed in four steps with only one functional unit. On the
other hand, its equivalent abcd+ae, obtained by applying the arithmetic law
for the distribution of multiplication over addition, can be executed in three
steps using two functional units. Note that distribution has introduced one
extra operation and that two copies of a are needed. It is this redundancy that

enables the speedup gain.

However, data replication does not always lead to gains in speedup.
Suppose that the piece of code [1, trans@?2] is to be applied to object <A B>,

where A and B are matrices. If this code is executed according to a string

21

reduction semantics, for exan‘iple, as in Magd’s Machine [Mago80], the fol-

lowing steps are obeyed:
1. <1: <A B>, trans@?2: <A B>>
2. <A, trans: B>

3. <A, B’>, where B’ is B transposed.

It is clear that unnecessary replication of data occurs at step 1. The semantics
of this piece of code is only to transpose the second argument, leaving the first
as it is. While implementations such as graph reduction machines, which use
pointers to the real data, do not have this as a critical problem, string reduction
machines such as Magd’s machine can have performance degradation because
of excessive data replication. Therefore, any implementation of a functional
programming system should minimize or even eliminate unnecessary data

replication.

The issue is partially treated by Magé in [Mago81]. He proposes a
temporary overriding of the string representation used in the machine to avoid
copying sufficiently large operands. There are two main problems in the pro-
posal: first, it is not clear even for his machine what is meant by a sufficiently
large operand; second, the approach can introduce sequentiality in the execu-
tion of the construction functional form, an otherwise parallel specification
tool in FP, Furthermore, for situations as the one described above, the replica-
tion of data in step 1 is unproductive no matter the sizes of A and B. Realiz-
ing that, Magd proposes the introduction of a new functional form “apply to

the rightmost operand” — AR [Mago84]. In this case, the application above

22

would be written AR trans: <A B> and indeed no excessive data copying
would occur. The clear shortcoming of this proposal is that we cannot keep

incorporating ad hoc primitives into the language to suit the occasion.

The problem of data copying is more critical when programming with
regular data structures such as vectors and matrices. In functional program-
ming, to modify a regular structure means to modify a copy of the whole
structure, even if only a small part of the structure is to be modified. Clearly,
the expense of copying large structures cannot be ignored — indeed one might
try to limit parallelism in order to avoid copying [Mago84]. There are a
number of ways to avoid this problem. The most brute-force is to allow some
impure operators with side-effects (like RPLACA and RPLACD in Lisp).
Clearly this is a non-solution, since it destroys referential transparency which

was claimed to be one of the chief advantages of functional languages.

Another approach to attack this problem is described in [Huda85]. The
authors describe a combination of static compilation techniques and dynamic
run-time techniques to avoid excessive copying of arrays. Statically, if it can
be determined at the moment an array is to be updated that no other function
depends on that array, it is modified in place. If this analysis fails, they pro-
pose limiting the parallelism if the objective is to avoid copying at all costs or
to use a modified reference counting scheme that determines dynamically if

copying can be avoided.

In summary, the problem for which this work will propose some solu-
tions is the excessive data movement and data replication that occurs in func-

tional languages as a consequence of the functional semantics. This problem is

23

more serious when the data structures involved are of regular nature such as
vectors and matrices and we show later how compilation techniques can take
advantage of regularity in lists and treat them as arrays in order to improve

performance of FP programs at run-time.

The next section examines some related work that has been done in the
area of functional programming transformation with the objective of increased

performance of execution.

1.4 Related Work

We examine two basic approaches, schema methods and folding-
unfolding methods, that have been explored in the literature to remove
inefficiency in the execution of functional programs. Figure 1.4 schematically

represents both techniques.

The first approach applies source-to-source program transformations.
Wadler [Wadl81] describes a set of functional forms that possess a complete
set of four transformation rules that resembles algebraic manipulation. The
objective is to convert applicative style programs to more efficient equivalents
to be executed in a sequential machine. Basically, the transformations elim-
inate unnecessary list creations and traversals and remove some function call
overhead. However, the author conceded in a later work [Wadl84] that the
hope of extending the set of rules to handle additional functions proved to be
difficult. He then developed a uniform procedure, which he calls a listless
transformer, that performs lazy evaluation and garbage collection at compile

time. The transformer uses symbolic evaluation to unfold function definitions

24

SOURCE
FP PROGRAM

TRANSFORMATION
SYSTEM

MODIFIED
FP PROGRAM

i

MACHINE
EXECUTION

Figure 1.4 - Source-to-Source Program Transformation
Approach for Optimization of FP Programs
and programs are transformed using an optimization technique called tail-
recursion elimination. The net effect is the elimination of intermediate lists

where possible.

In [Bell84], source-to-source transformations based on algebra of FP
are applied to programs in order to minimize the number of intermediary
sequences used in iterative programs. The objective is to optimize applicative

expressions to run in a von-Neumann machine.

The implementation of a compiler for Lazy ML, a strongly-typed, stati-
cally scoped language with lazy evaluation is described in [Augu84]. Among
the features of the compiler is the use of source-to-source transformations on

the original program which is claimed to generate more efficient code. Other

25

works on the same line are [Isla81] and [Kieb81].

All the works described above, based on the so-called schema method,
use a catalog of predefined proven transformations on various program
schemes. They rely on pattern matching algorithms to discover the templates
that can be transformed and lack some generality, since all ransformations
must be predefined. In these works, transformations are expressed as schemas
containing patterns; a program must be recognized as being an instance of a
pattern in the transformation schema. The effectiveness of this approach is
always limited by the difficulty in recognizing instances of the schemas.
Existing techﬁiques are ad hoc and incomplete, and tend to rely on manual
intervention. The paper [Givl84] examines the pattern-matching problem.
By noting that the conditional functional form is impossible to handle in a
manner that is complete and fast, the authors partition the matching problem

in two theories: a conditional-free sub-theory and a sub-theory of conditionals,

A different approach, presented in [Mann75, Mann79, Burs77], is based
on the so-called folding-unfolding method. An expression is unfolded by
expanding a function call using the function’s definition until an instance of
the original expression is found. This is then folded (replaced by a function
call). The main result of this method is to eliminate tail-recursion by
transforming the function into iterative form. This technique clearly improves
performance in a von Neumann machine; however it can reduce the potential
for parallelism for certain functions. Although more general than the schema

methods, it relies on heuristic search and is more complicated.

26

Finally, one approach that is more close to the one proposed in this
work was first presented by Abrams in his APL machine [Abra70]. Abrams
developed a technique called beating, in which certain data manipulation
operations are implemented by performing transformations on array descrip-
tors rather than on the arrays themselves. He also introduced a type of lazy
evaluation for APL, which he called dragging, in which a compiler defers per-
forming certain operations by transforming code which a low level interpreter
must later be called upon to execute. His work was further extended by
[Mint76, Budd84, Guib78]. Although Abrams’s work was developed with a
von Neumann machine as model (for sequential execution), several of his
ideas can be well applied to a parallel framework. No similar work has been

done for applicative languages.

1.5 Outline of the Dissertation

This chapter has presented the definition and scope of the problem we
propose to treat in the remaining of this Dissertation. We briefly presented the
characteristics and advantages of functional languages, focusing attention on
sources of inefficiency in the execution of functional programs written in FP,
These sources of inefficiency are then considered as targets for optimization
by an FP system. We also discussed some work done by other researchers

that is related with this research,

In Chapter 2 we define a system for symbolic structural evaluation of
FP programs. The system is given a description of the structure of the input

object and the FP program; based on this information and on some basic alge-

27

Finally, one approach that is more close to the one proposed in this
work was first presented by Abrams in his APL machine [Abra70]. Abrams
developed a technique called beating, in which certain data manipulation
operations are implemented by performing transformations on array descrip-
tors rather than on the arrays themselves. He also introduced a type of lazy
evaluation for APL, which he called dragging, in which a compiler defers per-
forming certain operations by transforming code which a low level interpreter
must later be called upon to execute. His work was further extended by
[Mint76, Budd84, Guib78]. Although Abrams’s work was developed with a
von Neumann machine as model (for sequential execution), several of his
ideas can be well applied to a parallel framework. No similar work has been

done for applicative languages.

1.5 Qutline of the Dissertation

This chapter has presented the definition and scope of the problem we
propose to treat in the remaining of this Dissertation. We briefly presented the
characteristics and advantages of functional languages, focusing attention on
sources of inefficiency in the execution of functional programs written in FP.
These sources of inefficiency are then considered as targets for optimization
by an FP system. We also discussed some work done by other researchers

that is related with this research.

In Chapter 2 we define a system for symbolic structural evaluation of
FP programs. The system is given a description of the structure of the input

object and the FP program; based on this information and on some basic alge-

28

braic relations, the system is capable of deriving the structure of the result
object without the need for the actual input objects. Since some restrictions
on the structure of objects is imposed by the algebra, we make an analysis of a
collection of real FP programs to ascertain that real gains can be obtained by

the use of the algebra.

The algebra of Chapter 2 lays the groundwork for the implementation
of a compiler that is described in Chapter 3. The compiler solves an FP pro-
gram structurally in order to generate efficient run-time environment for the
actual execution of the FP program. Algebraic equations are used to represent
the structure and the location of FP objects (inputs) in a given memory organi-
zation. The manipulation of these algebraic equations allows the structural’
solution of FP primitives at compile time; this process minimizes the amount

of data replication and data movement required by the original FP program.

Chapter 4 investigates the effects of compilation on a conventional
uniprocessor model. We compare the approach described in Chapter 3 with
the conventional mode of implementation for FP, namely, interpretation. We
show that, for the class of programs characterized in Chapter 2, the compila-

tion approach results in less data replication and less data movement.

Chapter 5 discusses compilation issues for pipelined and multiproces-
sor systems. We show that the ideas developed in the previous chapters are
also useful when the machine model is not an uniprocessor. The first section
deals with vector processing and pipelined computers. A number of common
vector operations as well as some actual problems are implemented in FP and

their execution performance is analyzed. Then, we discuss the use of

29

compilation in the control of interconnection networks, a crucial element for
multiprocessor architectures. Finally, a string-reduction architecture
developed for the specific purpose of executing FP programs is examined; we

show that this model also can take advantage of the compilation techniques.

Finally, Chapter 6 presents some concluding remarks and suggestions

for future research. In summary, the major contributions of this research are:

1. The development of an algebra of structural transformations for FP
programs that is used as a basis for the implementation of compiler

techniques for the FP system.

2. A compilation technique which minimizes the amount of data replica-
tion and data movement during the execution of FP programs. This
technique uses algebraic equations to represent the structure and the
location of FP objects (inputs) in a given memory organization. The
manipulation of these algebraic equations allows the optimization of FP

programs at compile time.

3. The identification of areas where the compilation of FP programs can
enhance the execution performance for pipelined computers, intercon-

nections networks and non-von Neumann architectures.

30

CHAPTER 2
SYMBOLIC STRUCTURAL EVALUATION FOR FP

The FP primitives can be divided in two main categories:

1. computational primitives that generate atoms based on the atoms of the

input object; and

2, structural primitives that do not create new atoms; they merely mani-
pulate the atoms within an object (e.g., trans, reverse), possibly leav-
ing some out (e.g., selectors, last, tl) or replicating others (e.g., distl,

distr).

Correspondingly, the cost of executing an FP program can be divided
between computational costs and structural costs. Clearly, one way to reduce
execution time of an FP program, as discussed in the previous chapter, is to
reduce the data movement and data replication required by the algorithm. This
can be achieved by gathering information on the structure of the algorithm and
of the input object, and solving the structural primitives using a symbolic

evaluator based on the algebra of FP.

In the introduction article to FP [Back78], Backus defines an associated
algebra of FP programs. He demonstrates the power of the algebra by proving
the correctness and equivalence of some FP programs. Others researchers also

made some contributions on this algebra, such as [Will82]. Further use of the

31

algebra has been shown in Section 1.4, where some systems designed to
improve the execution efficiency of FP programs make use of the rules of the

algebra. Below, another use of the algebra is described and explored.
2.1 An Algebra of Structural Computations

We define a system for symbolic structural evaluation of FP programs
as follows. The system is given a description of the structure of the input
object and the FP program; based on this information and on the basic alge-
braic relations presented below, the system is capable of deriving the structure
of the result object without the need for the actual input objects. In other
words, this systemn defines an algebra of structural computations for FP pro-.
grams. This algebra will be used as a basis for the implementation of the
compiler, described later in this work, which solves an FP program structur-
ally in order to generate efficient run-time environment for the actual execu-

tion of the FP program.
2.1.1 Symbolic Computations

An FP function f specifies how a data object d is mapped to another
data object f (d). If we consider only the structure of d and f(d), f can be
viewed as mapping the structure of d to the structure of f (d), and we can
associate with fa function f” which will define the mapping of the structures
only. If we let D be the set of data objects and S be the set of structures of the
elements of D, we can view the relation between f and f* according to the

diagram of Figure 2.1.

32

D = f = D

| |

structure structure
S > [= S

Figure 2.1 - Symbolic Structural Transformations

The function f performs the same computation as f, except that it
ignores the details irrelevant to structures. In this sense, we can view the com-
putation performed by f” as a symbolic structural evaluation. By using sym- .
bolic evaluation, we can often deduce the structure of the result object without -
actually executing the function. For example, for the FP function + we know
that the structure of the input object must be a sequence of two numbers and
that the structure of the result is a number. We do not need to execute the pro-

gram with real data to deduce this information.

However, two problems exist with this type of symbolic evaluation.
First, a program that contains a conditional functional form as in the following

example is not amenable to solution by symbolic evaluation:
{f =@I1,2]->%<>;id)}

In this function the structure of the output object depends on the values of the
input object; therefore the result of a symbolic evaluation system would be

non-deterministic.

33

The second problem is that symbolic evaluation cannot capture the
semantics of the bottom object as it is defined in conventional FP. This is
because a computation in the structural domain will not have the information
necessary to decide whether a computation terminates and produces proper
values or not. For example, the division function expects a pair of numbers
and is supposed to deliver a number as result. However, it can deliver bottom
if the input object is not a pair of numbers or, even if it is, if the second
number is zero. Clearly, a symbolic structural evaluation system cannot cap-
ture the behavior associated with this last case. On the other hand, there are
instances where a structural evaluator can detect inconsistencies. For example,
if an arithmetic function is applied to anything other than a list of two atomic
elements, the result is undefined (e.g., +: <1 2 3>=?). Therefore, we define a

structural bottom, A, to capture such cases.

Although symbolic structural evaluation cannot always be performed, it
is important to realize that a partial evaluation can be done on FP programs
that present the obstacles described above. That is, the symbolic evaluator can
solve the program structurally up to the point where a restriction is found, and
then leave the remaining portion of the program to be solved when the data

values are known.

2.1.2 Basic Relations for Primitive FP Functions

We begin by defining the structure of an FP object. This definition sin-
gles out atoms and finite sequences as the fundamental structures for FP

objects.

34

Definition: The set § of structures is defined in the following way:

(1) atoms € S;

(2)if 51, 52, ***, S, € Sthen <5, 52, "**, > € §;

(3) length: < 51, 53, ', sy>=n€ S;

(4) FP-defined objects that are argument of the constant functional
form also belong to S.

Only the above belongs to S.

We denote & (f :s) the structure of the object resultant from the appli-

cation of fto an object of structure s.
Operationally, we represent the structure of FP object as follows:

a. Atoms (numbers, characters and boolean values) have structure a. Note
that if we assign different types to these atoms (like num to numbers,
char to characters, and bool to boolean values), we go into more detail
than needed for a structural evaluation system. Clearly, the function +
expects a lists of two numbers, and the function and expects a list of
two booleans; however, from the structural point of view, both expect a
list of two atorns. This is sufficient for the system we are describing
here. The type information is needed for type inference systems, as can
be found in works like {Cart85, Mish85, Kata84]. However, type infer-

ence is beyond the scope of the system we are developing here.
b. The empty sequence has structure <>;

C. If s, represents the structure of object x, 52 represents the structure

of object x2..,s, represents the structure of object x,, then

35

<51, 83, ', 8> represents the structure of the sequence

<X1, X2, ", Xp>.
d. Homogeneous sequences: If every element x; of a sequence
<x1, X2, "' *,X,> has the same structure 5, we can define a more

compact representation for the structure of the sequence. Two represen-
tations are defined. Representation I is simply <s™>. Representation 2
captures more information than the previous one. It enumerates the
structure of the elements of the homogeneous sequence: <s L. Note
the difference between <54, 59, *--, §,> and <s'*>. In the former
case, the structure of each element of the sequence may be different,
whereas in the later case all elements have the same structure. In
Representation 2, if we want to single out one element of the sequence
(say, the k% element) we use s¥*. This is to remove ambiguity
between this case and s¥, which represents a list of £ elements with
same structure under Representation 1. The usefulness of the distine-

tion between the two representations will soon become clear.

Example: The input for a matrix multiplication program, consisting of
the sequence of a matrix A,x, and a matrix B,,x;, has the following structure

representation: <<<a™>"> < <a'

>™M> >, Since this case presents homo-
geneous sequences, we can use the alternative representation:

<<c<glmslng o cqlistimy

The distinctive treatment given to homogeneous sequences will be of
foremost importance in practice. It will allow the compiler to detect and

efficiently manipulate such sequences, which are nothing more than regular

36

structures (vectors and arrays). As for the two alternative representations, we
will sometimes want to capture more detail and sometimes less. For example,
if we apply the primitive tl to a sequence of structure <s"> the result will
have structure <s"1>. Similarly, tlr applied to <s"> also has a result with
structure <s”71>. Only the alternative representation captures the distinct

2:n

behaviors of t! and tlr, The primitive tl applied to <s > results in <s%”>;

whereas tir applied to <s "> results in <s "1,

If we pose some restrictions on the structure of input objects we can
describe, for each FP primitive, the structure of the expected result object.
Now we describe the basic structural transformations induced by some of the
FP primitives. The complete description can be found in Appendix 2. In the_ y
description, the notation f: s — ¢ means that an FP function f applied to an
object of structure s returns an object of structure . Note the restrictions
imposed on the primitives distl, distr, trans, pair and split; they will be

analyzed in the next section,

Selectors: k: <5y, 52, *°*, §;> and 1<k<n — 54 A
For homogeneous sequences:

k: <s "> and 1<ksn — s5%: A

last: <s1,582, ~-',s,>and n2l 55,5 A
For homogeneous sequences:

last: <5 1> and n21 = s A

tl; <51, 82, ", s> and n22 = <53, 53, 0, >0 A

For homogeneous sequences:

37

tl: <s1%> and n22 —= <525 A

distl: <s, <t1"> > 5 < <5, 1517 50 A

Restriction: Second element is a homogeneous sequence.

1l:n

distr: < <s'*>,t> 9 < <5, 1> > A

Restriction: First element is a homogeneous sequence.

apndli<s, <tq,t2, ', 4,>> <5, t, 12, 1, L,> A

For homogeneous sequences:
<s, <t¥s> < s A
Special case:

<1, <ttfs> o g plintl 5. A

trans: < <s P51 5 o gslinslim s ns 1 A

Restriction: Homogeneous sequences.
pair: <s"> o <<s2>V25: A
Restrictions: Homogeneous sequence and n even.

1:n/2 ni2+1:n

split: <s' > > < <s > <5 > > A

Restrictions: Homogeneous sequence and » even.

F, if s#¢

eq: <5, 1>]
a, if s=¢

nll: <>-> T;F

length: <§1, 82, ", 5> —=m<>—-0A

38

For homogeneous sequences:

length: <s!*> = nm; A

2>—)a;A

+, *y *, I’ and, Or: <a
iota: a — <a">, where n>0, ninteger; A

In general, » is indeterminate. However, iota can be solved if applied to
a (compile time) constant:

iota @ %3:x = <123>

iota @ length: <abc¢> = <1 23>

2.1.3 Structural Behavior of Functional Forms

Below is the description of the structural behavior of the FP functional

forms.
Compaosition
c(f@g:s)=c(f:0(g:s))
Construction
S ([f1, f2r =, fal:§) = <O(f1:5), O(f2:5), “*+, O(fyi5)>
Apply-to-All

S(&f:<81,52, -, fhn>)=<0(f5y), o(f:52), "+, O(f 54)>

39

Very often in FP programs, apply-to-all is used over a homogeneous
sequence, i.e., in the form &f s bns, Unfortunately, it is not true that if
objects x, y have the same structure then f x, f:y will have the same struc-

ture. An easy counter-example is:
&iota: <1, 2, 3> = <<1>, <1, 2>, <1, 2, 3>>.

However, there is a significant class of FP functions where it is true that if
objects x, y have the same structure then f ix, f:y will have the same struc-

ture. Formally, we have:

Definition: The class of structurally well-behaved FP functions is formed by

those functions f such that

if 6(x) = o(y) then 6(f x) = o(f :y),

where x, y are objects. In particular, all primitive FP functions, except for
iota, and with the restrictions imposed in the definitions of the previous pages,
are structurally well-behaved. In the next section, we study how often these

well-behaved functions occur in FP programs.

For the class of structurally well-behaved functions and for homogene-

ous sequences, we have the following behavior for apply-to-all:

o (&F: <sl>)y= <c(f15)>

40

Constant
% x:y=x, forall objects x, y.
Conditional

As pointed out before, the conditional functional form can be con-
sidered one of the major obstacles to a complete structural evaluation of FP
programs. Basically, whenever the structure of the output object depends on
the value of the input object the result of a symbolic evaluation system is

non-deterministic. Therefore, we restrict the conditional as follows.

Two types of conditionals are permitted. The first type act as a switch. -
For this type, (p —f:g), f and g must produce structurally equivalent output-

objects for any input object. For example, in
C@l1,2]->1;2)

the outcome of (> @ [1, 2]) depends on the value of the input object (which is
supposed to be a list of at least two numbers). However, independent of the
result of the predicate, the final result of the function has the same structure (in
this case, an atom). Formally, we allow all conditionals (p —f ;g): x where

o(f :x) =c(g x) for all x.

The second type of conditional can be interpreted as structural control.
The predicate must be based purely on structure (e.g., atom, null, = @
[length, %5]). The value of the predicate can be determined by the structure
of the input object. In this case, the structure of the result will be the structure

of one of the two functions (f or g) applied to the input, depending on the

41

value (T or F) obtained from applying p to the structure of the object. By
allowing this second type of conditional, all recursions that are terminated by
a structural predicate can be unfolded completely. This allows a whole class of
computations that can be represented by acyclic computational graphs to be

structurally evaluated.
Right Insert, Tree Insert

We treat both inserts uniformly. We restrict them so that they act upon
homogeneous sequences and are applied to the following FP primitive func-

tions only: +, -, *, /, and, or, xor. Then, we have:
o(lf: <al">)=a

o(|f:<al">)=a

2.2 Analysis of the Restrictions

In this section we will analyze a reasonable set of FP programs to
determine the percentage of real programs that do not fall in the class defined
by the imposed restrictions. We recall that we imposed restrictions on the
input object structure for the FP primitives distl, distr, trans, pair and split.
Also, the conditional functional form and the inserts functional forms are res-

tricted, It is also worth of note that the functional form while was not allowed.

A sample of 49 FP programs was collected for the analysis. They are

distributed according to the following sources:

42

a. 8 from [Schl84]: The programs were developed to demonstrate an FP
approach in the layout of VLSI circuits. This sample is somewhat
biased since the conditional functional form is restricted in that work;
therefore only predicates based on the structure are found on the 8 FP

programs.

b. 16 FP programs developed by us for the manipulation of graphs.
Graphs are represented by their adjacency matrix. The most elaborate

program computes the transitive closure of a graph.
c. 16 FP programs for parallel associative searching from [Will81].
d. 9 other programs from varied sources.

A total of 176 FP function definitions was present in the sample (49
definitions for the programs plus 127 definitions for auxiliary functions used
by the programs). Table 2.1 shows the static counts for the the 791

occurrences of FP primitives in the sample.

It is important to notice the high incidence of structural primitives in
the sample (83.57% of the total). Another indication of the importance of
structural primitives in FP can be seen in Table 2.2 which shows the ten most
used primitives (which accounts for 74.21% of all occurrences). Notice that
eight of them are structural; furthermore, only the selectors 1, 2 and 3 account

for almost 43% of the total.

Table 2.3 shows the static frequency of occurrence for the functional

forms. Notice that the while functional form did not appear at all in the sample

43

Structural Primitives Computational Primitives
primitive | freq. % primitive | freq. %
1 167 | 21.11 || ioa 7 0.88
2 152 | 19.22 || pick 8 1.01
3 21 265 || + 13 1.64
other 1} 013 |- 6| 076
selectors
id 49 6.19 || * 11 1.39
first 1 013 ({ / 1 0.13
last i9 240 || mod 1 0.13
tl 22 2.78 || not 8 1.01
tlr 13 1.64 || nand 0 0.00
distl 30 3.79 i nor 0 0.00
distr 15 190 || and 26 3.27
trans 43 544 | or 12 1.52
pair 16 202 || xor 2 0.25
split 16 2.02 || eq 25 3.16
concat 52 6.57 j| neq 0 0.00
apndl 12 1.52 § it 2 0.25
apndr 7 088 | le 2 0.25
length 17 215 || gt 2 0.25
atom 3 038 | ge 4 0.51
nuil 3 0.38
reverse 2 0.25
rotl 0 0.00
rotr 0 0.00

Totals | 661 | 83.57 Totals | 130 16.43

TOTAL | 791 | 100.00

Table 2.1 - Static Frequency of FP Primitives

examined.

The static counts presented in the these tables are useful to show how
often the opportunities for the use of structural evaluation occur in FP pro-
grams. However, static analysis is not sufficient to reveal whether an
occurrence of an FP primitive is in accordance with the restrictions imposed in
the previous section. In order to analyze those restrictions, we studied the

structure of the input object and of the intermediate objects, the results of

primitive | freq. %
1 167 | 2111
2 152 | 19.22
concat 52 6.57
id 49 6.19
trans 43 5.44
disu 30 3,79
and 26 3.27
eq 25 3.16
tl 22 2.78
3 21 2.65
Total | 587 | 74.21

Table 2.2 - Ten Most Used Primitives

functional form | freq. %
composition 595 53.89
construction 248 22,46
apply-to-all 143 12.95
constant 58 5.25
conditional 40 362
inserts 20 1.81
while 0 0.00
Total | 1104 | 100.00

Table 2.3 - Static Frequency of Functional Forms

which are summarized in the list below:

a. distl: two of the 30 occurrences did not have the second element as an

homogeneous sequence;

b. distr: one of the 15 cases was not in accordance with the restriction

(first element must be an homogeneous sequence);

c. trans: three out of the 43 cases violated the homogeneous sequences
restriction;
d. pair: four of the 16 occurrences did not have an homogeneous

sequence as input object;

45

e. split: two of the 16 cases violated the homogeneous sequence assump-

tion;

f. conditional: 25 of the 40 cases had predicates solely based on structure
according to the restriction; 8 of the remaining cases had predicate
based on value, but had a predictable output structure, thereby in accor-
dance with the restrictions. The 7 rematning cases must be considered

unsolvable by the restrictions outlined in the previous section.

g. inserts: all cases had homogeneous sequences as input objects; however
4 of the 20 cases did not have the required FP primitives as the func-

tional parameter.

h. apply-to-all: all cases had homogeneous sequences as input objects.
Furthermore, all cases belonged to the class of structurally well-

behaved functions as defined previously.

A final and important analysis was made of the distribution of the
violating occurrences over the 49 programs. This is important because we
consider a program as not completely amenable to solution by the system
defined above when a single restriction is violated. At first sight, the results
were not very encouraging: only 23 of the 49 programs did not present any
violation of the restrictions. A closer look showed that 14 of the 16 associative
search programs were deemed unsolvable because of two defined FP func-
tions, min and index, which presented conditionals based on value. However,
as was discussed in Section 2.1.1, it is possible to solve the program partially,

until a non-solvable primitive or functional form is found. For those 14 pro-

46

grams, it was found that min and index are used in the programs only after a
fair amount of data replication and movement that can be structurally solved.
Therefore, most of the data manipulating functions can be solved also for

these programs.

Although 23, or 37, out of 49 seems to be a bad result, if we look at the
total of 176 FP function definitions, which includes the definitions of the pro-
grams and of the auxiliary functions, we find that 145 of the 176 are solvable.
This is a slightly better result and also an encouraging one, since modularity is
expected in the development of FP programs and can be exploited by a sym-

bolic structural evaluator.
2.3 Using Structural Evaluation: Examples

Below we present two examples of structural evaluation: a matrix mul-
tiplication program (MM) and a Fast-Fourier Transform program (fftstages).

2.3.1 Matrix Multiplication

The following program computes the product of two conformable

matrices of any size. It was taken from [Back78].
(MM &&(1+) @ &&&* @ &&trans @ &distl @ distr @ [1, trans@2])

The structure of the input for this program is:

<<<a™>"> < <al>™s >

The structural evaluation begins with the construction:

47

Ismy 5 5 <« <gMshs

!

1: <<<a™>"> < <a

Iamy o 5 < <als>™s

{

2: <<<a™>"> < <a

)

trans: < <a'>">> —» <<a™>'>>

Then:

! !

[1, trans@2]): <<<a™>"> < <a'>">> = <<<a™>"*> < <a™>

{

> >

>> o <<<a™> < <a™>is>ts

!

distr; <<<a™>"> < <a™>

&distl: <<<a™> < <a™>I>>"> o <<<<a™> <a™>>Ix">

= <<<<a™>2sisny
&&trans: <<<<a™>25I5%> 5 <<<<al>M>Isns
&&&+: <<<<a?>M>Ists 5 <cca™sists
&&('+): <<<a™>ists o < <al>"s a

2.3.2 Fast-Fourier Transform

Now, we analyze a program taken from [Schl84]. It computes the
Fast-Fourier Transform of a set of complex numbers, except for the final bit-

reversal stage. The size of the set can be any power of 2.

(fftstages (= @ [length, %2] -> W,
concat @ &fftstages @
split @ concat @ Bfly @ concat @
&W @ Bfly

43

(Bfly concat@ # butterfly permutation
[trans @ [1,3], trans @ [2,4]] @
concat @ &trans @ split @ pair}

(cadd &+ @ trans} # complex addition
{csub &- @ trans} # complex subtraction
(cmul [-@ [*@[1@1,1@2], *@[2@1,2@2]], # complex multiply
+@ [*@[1@1.2@2], *@[2@1,1@2]]
]
b
{u0 [%1, %11}
{W [cadd, csub] @ [1, cmul @ {2, u0]] }

The structure of the input for this program is:

<<a?>">, where n=2%, k2.

2

First, we show that Bfly: <s"> — < <s25"2>,

2>n/2>.

M2y 5 ccgsinniés?y,

pair: <s"> — < <s

2

split: < <5“>

2.n/4. 2 nl4d 2.2

&trans: <<<s“>"" 5> = <<<sM >4,

concat: <<<sM?>252> 5 < <s™ix4s
[1,3]): < <s™¥5%s o < <4525,
[2,4]: < <s™i5%> o < <5452,
trans@[1, 3]: < <sM4>%> o < <s?>M4s,
trans@[2, 4]; < <sV4>%> o < <s2>4s,

[trans@[1, 3], trans@]2, 4]]: < <sMA54s 5 ccgsisMASTs,

49

2.ni4 2 2 n/2>.

concat: <<<g“>""5>> 3 < <85>

2.2 2.2

Now, we show that W: < <g@“>“> = < <a“>“>.

ul: ¢t - <a?>.

[2, ul]: < <a?>?> — < <a?>?s,

cmul: < <a’>2> = <a’>.

[1, crnul@[2, ul]]; < <a?>2> - < <a?>?>.

cadd: < <a?>%2> 5 <a?>.

2525 5 <g?s.

fcadd, csub]: < <a?>%> o < <a?>?>,

csub: < <a

Finally, we show by induction on & that

2 2

' &
> — <52 >, where s = <a?

fitstages: <s >.

2 2

Basis: (k=1) fftstages: <s“> — <s°>.

[length, %2]: <s2> = <2,2>.
=:«<2,2>=T.

Therefore, the true branch of the conditional is applied and we have:

2

W: <52> = <5 >, as showed before.

2

I’
> —)<32

Hypothesis: fitstages: <s ‘>,

2i+1

Step: fftstages: <s“ >

2.2

> >, as shown above.

2

k+l
Bfly: <s2 > — <<s

2

k k
&W: < <5252 > = < <5258 >, as shown above.

] k1
concat: < <52>% > — <s% >.

50

2.!

Bfly: <> 5 < <> >, as shown above.

concat: < <s25%> — <%

split: <> 5 < <s¥52s.

&fftstages: < <s ¥525 5 < <s? >2>; by the induction hypothesis.
concat: < <s2>2> — <52 > 0

2.4 Representation of Regular Structures in a Linear Memory

In this section we expand the algebra of structural transformations by
imposing a memory model for the storage of objects. Assume a linear
memory as the model for storage of objects. The input object to an FP pro-.
gram will be stored in the memory beginning at location 0 and occupying con-.
secutive locations. We also assume that each memory location can hold any
FP atom (numbers, characters, etc.). With this storage model, we can represent
regular structures by using algebraic equations that describe the positions of

each atom of the structure in the memory.

For example, the positions of the elements of a vector A[l:n] can be

represented by the following equation:

loc(a;)=i-1, 1=%isn

Similarly, a matrix B[1:n, 1:m] would have the following equation:

loc(bi) =m(i-1)+(j=1), 1<isn, 1Sj<m

Clearly, similar equations can be derived to represent higher-order arrays.

51

Using these algebraic equations to represent regular structures, we can

derive the algebraic equation of the expected result object for each FP struc-

tural primitive. Now we describe the basic algebraic transformations induced

by the FP structural primitives.

Selectors

Last

k: A[l:n], 1<£k<n
input: loc(a))=i-1, 1<isn

output: loc(ay) =0

k: A[llin,t:m], 1<£k<n
input: loc(a;j) =m(i-1)+(j~1), 1<i<n, 1<j<m

output: loc(agj)=j-1, 15/<m

Similarly, for higher-order arrays.

last: A[l1:n]
input: loc(q;)=i-1, 1<i<n

output: loc(a,)=0

last: A[1:n, 1:m]
input: loc(a;j)=m(i-13(j-1), 1<i<n, 1<j<m

output: loc(ay)=j~-1, 15j<m

Similarly, for higher-order arrays.

52

Tail

tl: A[1:n]
input: loc(a;))=i—1, 1<i<n

output: loc(g;)=i=2, 2<i<n

tl: A(1:n, 1:m]
input: loc(a;;)) =m(i-1+(j-1), 1Si<n, 1<jsm

output: loc(gy) =m(i-2y+(j-1), 2<i<n, 1S5jsm
Similarly, for higher-order arrays.
Tail-Right:

tlr: Afl:n]
input: loc{a;)=i-1, 1<isn

output: loc{a;)=i-1, 1<i<n-1

tir; Afl:n, 1:m)
input: loc(ai)) =m(i-1)+(j-1), 1Sisn, 1Sj<m

output: loc(a;)) =m(i-1)3+(j-1), 1si<n-1, 1<j€m
Similarly, for higher-order arrays.

Distribute-Left:
distl: <s, A[1:n]>

Distribute-left replicates n times the first argument s. Below, sizeof(s)

is the number of memory celis used by object s.

53

input: loc(a;) = sizeof (s)+(i-1), 1<i<n
output: loc(a;) = (i—1+ixsizeof (s}, 1<i<n
loc(s)™ = (k~1)+{k—1)xsizeof (s), 1<*k<n

Note the notation *£ to indicate that we have replication of object s.

If 5 itself is a vector:
distl: <S{1:m], A[1:n]>
input: loc(sjy=(i-1), 1<i<m
loca)y=m+(i-1), 1<izn
output; loc(s))® =mk=13+(i-1), 1Si<m, 1<*k<n

loc(a))=(i-1yim, 1<5i<n

The extension to higher-order arrays is straightforward. Distribute-
right (distr) behaves similarly; only the second element is the one to be repli-

cated.
Transpose:

trans: A{1:n, 1:m]
input: loc(a;j) =m(i—-1+(-1), 1<isn, 1Sjsm

output: loc(a;)) =(i-1)+n(j-1), 1<isn 1<j<m

trans: <A {l:n],A;[1:n], .- - ,Ap[lin]>
input: loc(ay)=(@-1), 1<i<n

loclay)=n+(i-1), 1<i<n

loc(ay,) =(m=Dn+i-1), 1<i<n

54

output: loc(ay;))=m(i-1), 1<i<n

loc(@zy)=1+m(i-1), 1<i<n

loc(am) = (m-1y+m(@i-1), 1<i<n

The other structural FP primitives — apndl, apndr, concat, pair and
split — do not move the atoms of the object; only the structure changes accord-
ing to the transformations of Section 2.1.2. Therefore, there exists no change
in the algebraic equations that describe the positions of regular structures

when any of these FP primitives are applied.

2.5 Conclusion

The technique described above, besides giving an algebraic formulation
for structural transformations in FP, allows a precise definition of the class of
programs amenable to manipulation in the structural domain. Furthermore, it
gives the foundations on which a compiler can be built. Indeed, the compiler
is the practical side of the algebra just described. The compiler, presented in
the next chapter, implements each of the basic relations described above; it
follows, step by step, the same derivations shown in the two examples in order

to generate an efficient run-time environment for FP programs.

55

CHAPTER 3
COMPILATION AND MEMORY MANAGEMENT

3.1 Manipulation of Algebraic Equations

In Chapter 2, an algebra for symbolic structural evaluation of FP pro-
grams was defined. In this chapter, we show how the algebra can be imple-
mented as a compiler for FP programs. The compiler gathers information on
the structure of the algorithm and of the input object, and solves the structural
primitives at compile time. Figure 3.1 shows an overall scheme of the

approach.

This approach will be clearly beneficial if the objects involved in the
computation are of regular nature, such as vectors and matrices. However,

general lists are also expected to take advantage of the method.

Below, we give an idea of how the compiler works by means of an
example. A more detailed discussion on some implementation issues is given
in the next section. The example used is the matrix multiplication program

(MM) presented in the previous chapter.

We assume the same linear memory model for storage of objects
presented in Section 2.4. The input object to the FP program is stored in the

memory beginning at location 0 and occupying consecutive locations. Note

56

INPUT OBJECT SCURCE
STRUCTURE FP PROGRAM

~

COMPILATION

ARCHITECTURE '
CHARACTERISTICS

N
/

ORJECT MEMORY
FP CODE ALLOCATION &
MANAGEMENT
MACHINE
EXECUTION

Figure 3.1 - Compilation: Proposed Approach for
Optimization of FP Programs
that the assumption of linear memory does not imply that the processor is
sequential or of the von Neumann type. For example, Mag6’s machine
[Mago80] is a full binary tree of processors where the memory can be con-
sidered to be linear (the leaves of the tree constitute the memory of the

machine).

Suppose the input object is a list with matrices A(n x m) and B(m x 1).
Note that the first four steps of the program have only structural primitives
(&&trans @ &distl @ distr @ [1, trans@2]). What this part does is to
manipulate and expand both matrices so they become three-dimensional
objects interleaved element by element in a form appropriate for all the multi-

plications to be done in just one step. For clarity, we rewrite MM by dividing

57

it in a structural part and a computational part:
{MM compute @ expand }
{compute &&(I+) @ &&&* }

{expand &&trans @ &dist! @ distr @ [1, trans@2] }

If we store A and B in the linear memory as described above, we can
identify any element of either matrix by the following algebraic equations

(Figure 3.2 illustrates the matrices’ elements positions for n=2, m=3, [=4):

loc(a;j) =m(i-1)Hj-1), 1si<n, 15/Sm (3.1a)

loc(bij) = nm+1(i-1)+(j-1), 1<i<m, 15j<l (3.1b)

After the first step of expand ([1, trans@2]), matrix A does not change
and matrix B is transposed; this new situation can be described by the equa-

tons:

loc(a;j) =m(i-1)+(j-1), 1<i<n, 1€jsm (3.2a)

loc(b;j) = nm+(i-1)+m(j-1), 1<i<m, 15j<] (3.2b)

The primitive distr broadcasts one copy of matrix B to the right of each

row of matrix A. The new positions are described by:

loc(aij) = (m+ml)(i-1)+(j-1), 1<i<n, 1Sj<m (3.3a)

loc(b) = m+(i ~1m(j~1+(m+mi)(k=1), 1SiSm, 1Sj<l, 1S*k<n (3.3b)

58

12 3 4

123

Lidga 8
A

Elements of A are inside a

Elements of B are inside a |[]

Initial positions:

L2 || e8¢ |E@ENE] (EEE 6 (Bl

After [1, trans@?2]:

Llz]s] e8¢ B0 | BEM@ & E

After distr:
o Il I 1] e o]
ol IR N B (8] jEa] 2] ea){ caf{]] jxa]] K3 {2 o
After &distl:
L s || OEE)] @
o K Il (2]) [| O R A |12 K] e
ol I | [l a0 | I I I | Al]
41s5]¢ 45 s |B B E

Figure 3.2 - MM Example for A(2 x 3) and B3 x 4)
(n=2, m=3, 1=4)

59

After &&trans:

After &&&* (new object C):

After & &(1+) (final object D):

Figure 3.2 (cont’d) - MM Example for A(2 x 3) and B(3x 4)

Note that these new equations reflect the following facts: a) each row of
A is separated by strides of (m+ml), i.e., the size of each line of A plus the
size of each copy of B; b) a new index k (from 1 to n, the number of lines of
A) represents the multiple copies of B; it is marked with a * to show that 1t
represents repetitions of the original object as was done in Section 2.4; ¢} the

first copy of matrix B now begins at location m, just after the first line of A,

The next step, &distl, broadcasts one copy of each line of A to each
line of each copy of B (transposed). The resulting structure has n lists of /

lists of 2 lists of m elements each and can be described by the following equa-

tions:

60

V(M) 2 |BY]] 2 (B]] | E)] 2) |

LB 2)] 3 || 2)2 |

<100 s |G| ¢ |B1)| +)] 5 (B s |09

<13 s |@)[s [0 ¢ @i 5 (B s |0

1[10]27] [2 [1z]30]| [3 T1a]33] [4 [16]36

a4 |2s5]s4|[5 [30]e0] [12]35]66]| [16]a0]72
38 [445056 | [83] 98 113]128

loc(a%) = 2mi (i —1y+(j=1}+2m (k=1), 1<i<n, 1SjSm, 1<¥ks< (3.42)

loc(b%;) = m+(i —1)+2m (j—1)+2ml (k-1), 1i<m, 1</ <l, 1<% <n (3.4b)

Finally, the last step of expand (&&trans) yields the following equa-

]

tions:

loc(aﬁ-)=2ml(i—1)+2(j—1)+2m(k—l), 1<isn, 1€j<m, 1<*k<l (3.52)

loc(bk) = 1421 #2m (j~1)+2ml (k-1), 1Si<m, 1Sj<l, 1s*k<n (3.5b)

Now the system must treat the computational part of the program, i.e.,
the function compute. The n3 multiplications (&&&*) are applied on the
atoms described by the set of equations 3.5 and generate a new object that we

call C and that has its positions described by the following equations:

loc(cijp) = mi(i =1F2(j -1)+(k~1), 1Si<n, 15j<], 1sksm (3.6)

The final step of the program takes the newly created object C and gen-
erates a new one, D, which is the final answer and occupies the positions

described by:

loc(d;;) = 1Gi=1)+(j-1), 1Si <n, 1</l (3.7)

After these transformations, a pseudo-code for the compiled MM pro-

gram would have the following text:

1. Transfer elements of A from positions
loc(a;j) = m{i-1)+(j—1), 1<i<n, 1<j<m

to positions

61

loc(a¥) = 2ml (i ~1+2(j~1)y+2m (k-1), 1i<n, 1<j<m, 1<k<]

2. Transfer elements of B from positions
loc(bij) = nm+1(i-1)Hj-1), 1<i<m, 15j<!
to positiéns

loc(b) = 142 =1 ¥ 2m (j=1)+2ml (k~1), 1Si Sm, 1<j<], 1<k<n

3. Multiply A*B generating result C in positions

loc(ci) = ml (i =1)+m (j~1)+(k-1), 15i<m, 1)<, 1Sk<n

4. Add (multiple-operand) generating result D in positions

loc(dij) = 1 =1)H(j-1), 1Si<n, 1)<

With a system that, given the initial FP program and the structure of its
input object, is able to make the transformations described by the set of equa-
tions from (3.1) to (3.7), without manipulating the real data, the following

immediate benefits would result:

a. unnecessary data replication is eliminated in the step {1, trans@2], as

discussed in Chapter 1;

b. data movement is minimized, since all the structural part of the pro-

gram, which was composed by four steps, is collapsed to one step;

c. the equations have information about the amount of replication of each
object; the compiler can restrain replication if the target machine is not

sufficiently concurrent for the input object. Note also that the algorithm

62

implies no sequencing whatsoever; this is now left to the compiler,

again in case of not sufficient parallelism;

d. the elimination of intermediate steps in the computation can reduce
significantly the cost of garbage collection in systems that use this tech-

nique to reclaim storage.

Note that the method does not eliminate data movement completely; it
simply brings together several steps of data movement and replication into a
single step; in the above example, all steps of expand are abstracted by the

transformation from equations (3.1) into equations (3.5).

It is clear that this approach needs structural information about the~
input object such as arrays dimensions. Although FP programs can be built
that work for general structures (in reality, the above MM works for any con-
formable matrices), the fact that the user has to supply information on struc-
ture and size is not necessarily bad or less general since the programmer
knows anyway what will be the kind of input object the function is expected to
act upon. Furthermore, this information will be needed by the machine sooner
or later; what we are proposing here is to have the information sooner and take

advantage of it to improve the overall performance of the system.

The next section discusses some implementation issues of the ideas

developed in this section for the case of an uniprocessor system.

63

3.2 Uniprocessor Implementation

3.2.1 General Structure of the System

A compiler was built to implement the algebraic transformations out-
lined in the previous section. It is written in the C Iprogramming language
[Kern78] and uses the programs Lex {Lesk75] and Yacc [John75] of the
Unixt operating system for the lexical and syntactical analysis of FP pro-
grams. It accepts as input FP programs together with the structural descrip-
tion of the input object. Figure 3.3 presents the overall structure of the com-
piler. The syntax is the same of Berkeley-FP as described in [Bade83], except
for the introduction of the description of objects’ structures. Basically, the
user has a shortened way to describe the structure of vectors and matrices. For
example, the way to describe a list consisting of two 10 X 10 matrices as input

to an FP function MM is to write MM: <A(10,10), B(10,10)>.

Figure 3.3 reveals that the compilation phases seem rather conven-
tional. This is indeed the case up to the syntactical analysis. As the parser
scans the input FP program, a syntax (program) tree representing the program
is built. Later, in the intermediate code generation phase, this tree is traversed
while code is being generated. It is the intermediate code generation phase
that truly differentiates this compiler from straight compilation; at this phase
structural transformations are done on the FP program using object descrip-

tors, as described in the following sections.

+ Unix is a trademark of AT&T

64

Structural
Description
of Object

Source
FP Program

LEXICAL
ANALYSIS

{Lex)

!

SYNTACTICAL
ANALYSIS
(Yacc)

Syntax Tree
of FP Program

Object
Descriptor

INTERMEDIATE
CODE
GENERATION

Set of
Algebraic
Equations

Intermediate
Code

FINAL
CODE
GENERATION

Object

Program

Figure 3.3 - Compiler Structure

65

3.2.2 Object Descriptors

The most important data structure of the compiler, which enables the
manipulation of the algebraic equations, is the object descriptor. At the
moment of the definition of the descriptors we must make fundamental
assumptions on the architecture of the underlying machine. This implementa-
tion, as mentioned in the previous section, assumes a linear memory of con-

tiguous cells each capable of storing one FP atom.

The motivations behind the existence of these data structures is based
on the observation that it is cheaper to manipulate descriptors of regular data
structures than the data themselves. For example, an array transposition might

be implemented by exchanging indexes in the array descriptor.

The descriptor (see Figure 3.4) keeps information such as: a) structure
of the object; b) lower and upper limits of data such as arrays and vectors; c)
lower and upper memory location of objects; d) strides between different por-
tions of the same object; €) indication of repetition of parts of objects; f) index
names. The initial descriptor is built by the compiler when it reads the input
structure of the object. At the intermediate code generation phase, the com-
piler executes the structural primitives on the descriptor, generating a new
descriptor that reflects the effect of the primitives. This phase is very much
like a symbolic execution; the difference is that the compiler needs only infor-
mation on the structure of the input object, not the object itself. This process
continues until all possible transformations are done, that is, it is possible to
have a partial transformation of the original program; when the compiler finds

an FP primitive or functional form that cannot be structurally solved, it

66

continues compilation but without making the structural transformations.

obj- obj- obj-

lower upper stride obj- index-

type mem- mem- mem- name pointcr pointcr next
lower upper stride
struct objnode {

int type; /* see below list of types */
int objlower; . * lower limit for arrays *f
int objupper; f* upper limit for arrays */
int objstride; /* stride between array elements */
int memlower; /* lower memory position allocated o array */
int memupper; /* upper memory position allocated to array */
int memstride; /* memory stride for array elements *f
struct valuenode *name; /* pointer to name of object */
struct objnode *objpointer; /* pointer to object description at lower level*/
struct indexnode *indexpointcr; /* pointer to list of indices of array object */ -
struct objnode *next; /* poinier to next object at same level */

b
type € { LIST, LEAF, PAIRED)

Figure 3.4 - Object Descriptor Nodes

The descriptor of an FP object, built when the description of the input
object is read by the syntactical analyzer, and manipulated afterwards by the
intermediate code generator, has the structure of a tree, linked by the
objpointer and next fields. Figure 3.5 illustrates the complete object descriptor

for two examples of FP input objects.

By traversing the object descriptor, it is possible to generate the alge-
braic equations that describe the positions of the elements of the object. The
object descriptor captures the structure of the object as well as the location of
its elements (fields objlower, objupper, objstride, memlower, memupper,

memstride).

67

.......

.......

.......

vig i

g | R

(a) < A4,7), B(7,9) >

.......

.......

iyt

(b) < X(10), Y(20) >

Figure 3.5 - Examples of Object Descriptors

68

3.2.3 Intermediate Code Generation

This phase solves the FP structural primitives with the restrictions out-
lined in Chapter 2 and translates the FP program when a non-structural primi-
tive is found. All functions inside a construction and all applications of an
apply-to-all are examined. The output of the compiler is the reduced FP pro-
gram along with object descriptors that can be reduced to algebraic equations

describing the positions of the atoms in the new objects.

The algorithm assumes that the FP program is in accordance with all
the restrictions described in Chapter 2. When a restriction is encountered,
translation continues but no more structural transformations are done. The
algorithm adopts a string reduction semantics; for each FP primitive a copy of .
the descriptor is passed to the algorithm that implements that primitive. In

other words, there is no sharing of descriptors.

The algorithms that compile each FP primitive begin by checking the
consistency of the input object structure. This checking phase implements the
semantics of the structural bottom, A, as was defined in Chapter 2. Therefore,
errors such as binary numeric functions — +, —, *, etc. — applied to structures

not equal to a list of two atoms are caught here.

Each algorithms is logically divided into a few number of cases that
reflect the definitions of the structural transformations of Chapter 2. For
example, the primitive last has two cases: the first for generic sequences and
the second for homogeneous sequences. The final portion of each algorithm

catches the violation of restrictions: if an object is structurally correct but did

69

not fall in the previous cases, the primitive cannot be solved by the compiler

and is passed unsolved to the execution phase.

Figure 3.6 shows the evolution of the descriptor during the compilation
of the matrix multiplication program. Since various nodes of type LIST often
have undefined or null fields we use a more compact picture to represent
object descriptors in Figure 3.6, as opposed to the full representation of Figure
3.5. Also note that the algebraic equations are not part of the descriptors, but

are extracted from the descriptors by traversing them.

The final result of the intermediate code generation phase for an FP
program is a sequence of pseudo-commands with associated descriptors. In
the matrix multiplication example, the descriptors depicted in Figure 3.6 (a),
(e), (f) and (g) are kept as part of the intermediate code. The pseudo-code for

the compiled MM program has the text that was presented in Section 3.1.

That pseudo-code can be easily translated to a real uniprocessor assem-
bler code by using the equivalent of for loops; all the information necessary to

implement the loops is contained in the equations.

3.3 Other Realization Aspects

Compilation offers a wide variety of opportunities for code optimiza-
tion of conventional languages [Aho86]. Many of the optimization techniques

used in compiler construction for procedural languages can also be used in the

70

ia

Ja

i

Ja

iq,

(c) After distr

Figure 3.6 - Intermediate Code Generation for MM

o
y .
0 =0

. { .) - y . loc(a;j)=m (i-1+(j-1), 1€i<n
1:n:1 ig|lt:m:1 ,
............................]_Sjgm

m 1

Y — loc (bijy=nm+l (i =1+ 1), 1<i<m
1:mi1 Jel1:4:1 ,
............................ 1$1S[

1 Pl
(a) Initial Object
o
¥
o)

, y - , , { , loc(a;jy=m (i—-1)+(j-1), 1<i<n
1:mn:1 jgll:l:1 .
............................ isj<m

: m m -
I A . - <<
T i Tmi oc (b;j)=nm+(i-1)+m(j-1), 1<i<m
............................ 1</l
1 1
(b) After [1, trans @ 2]
*kB
loc(a;jy=(m+ml)(i-1)y+(j-1), lsisn
o] -0 1€j<m
¥ b
ial 1:m: gl 1:1:
JA U /n U 7loc(bfj)=m+(i—1)+m(j—1) 1<i<m
+ (m+mi)(k-1), 1<l
, . 1<%k <n
gy 1:m:

in, *kg[1 n i 1
‘omi
- loc(a)=2ml (i-1)+(j-1) 1<ign
. — + 2m(k-1), 1€j<m
Yearjp| 1101 1<k <l
Sl im
! >0 loc (b%)=m+Gi~12m (j-1) 1<i<m
. . \ .) : y : +2mik-1), 1sj<l
JAll:om: 1 ig|1:m:1
R IETTSIRET I CEPR 1£*k<n
L R
(d) After &distl
o]
¢
ia, *kpj 1 : n 1
""""" 2 " . . ,
- loc (a,-j)=2ml (i '-1)+2(j -1) 1<ign
. —1 +2m(k—1), 1<j<m
“kasJp 111 1<*k <]
Ci L iom
— loc(b5)=1+2(i ~1)+2m(j-1) 1si<m
Jar ig| 1l :m: 1
2 + 2mi(k-1), 1<j<l
MEUS 1<*k <n
Y
Q e
(e) After &&trans

Figure 3.6 (cont’d) - Intermediate Code Generation for MM

72

iclftinm:1
N CEREE lac(c,'jk)=ml(i-l)-!-m(j—l)-f—(k—l), 1€isn
fey i tilh 1<j<l
m
: 1<k <m
kell:m: 1
() After & &&*
o
¥
ip|1 Il 1
. loc(d,‘j)=l(i—l)+(j—l), 1<€i<n
) —— 1</ <!
Jol1id:1
......... 1

(g) After &&(!+) (Final Object)

Figure 3.6 (cont’d) - Intermediate Code Generation for MM

context of functional languages. For éxample, Pendergrast and Ryder
[Pend86] describe a globally optimizing compiler for FP where the following
classical optimizations were implemented: local common subexpression elimi-
nation with copy propagation; global common subexpression elimination; and

global dead store elimination.

73

The symbolic structural transformations implemented by the compiler
described in the previous section also reveal the space-time characteristics of
the FP program and this information is used to manage the memory space at
run-time. In fact, at the end of compilation we know the amount of memory
needed by the program for its entire duration. Using this information, the
operating system can emit cornmands to allocate and deallocate space at run-
time. These memory management instructions eliminate the need for garbage

collection for the class of programs that can be completely solved structurally.

The same space analysis extracted by the compiler can help in the
management of memory hierarchies. Since the compilation treats homogene-
ous sequences — vectors, matrices, etc. — as contiguous aggregates of data,
better use can be made of prepaging schemes and cache memories. This may
not be true when homogeneous sequences are treated as general lists, which is
the case of the existing interpreters for FP. Contiguous allocation of memory
preserves locality when we are dealing with arrays; if arrays are implemented

as lists each element can be anywhere in memory.

QOur system assumes a linear memory as model. But other models of
memory can also benefit from the approach. In the case of interleaved
memories, which is a common technique used to increase the bandwidth of
memory systems, little modification is needed, since interleaved memories

still are linear.

Another aspect where compilation can be of help is in the scheduling of
the computation. In the uniprocessor case, the parallel specification given by

an FP program must be sequentialized. Note that this process is much easier

74

than the inverse, where, for example, a FORTRAN sequential specification
must be parallelized. But it is in the case of concurrent systems that this prob-
lem is more interesting. By compiling the FP program, we can construct the
data flow graph of the computation. This graph has nodes representing tasks
and arcs representing precedence relationships between tasks. Note that it is
much easier to construct such graphs when one is dealing with functional
languages, because the precedence relationships can be directly extracted from
the text of the program. This is not true for procedural languages: the pres-
ence of side-effects entails a complicated analysis to determine the precedence
graph. Given the data flow graph, scheduling techniques can be applied to
allocate the resources in the concurrent system, Examples of work on schedul-
ing techniques in data-flow graphs for multiprocessors can be found in,

[Gaud83, Gaud85, Ravi86, Ravi86a].

75

CHAPTER 4

EVALUATION OF THE COMPILATION APPROACH
FOR UNIPROCESSORS

In this chapter we investigate the effects of the structural transforma-
tion techniques at compile time on a conventional uniprocessor model. The
main motivation for the use of code improving transformation techniques is to
relieve the programmer from worrying about performance considerations so
that he can concentrate on writing clear code. However, besides preserving
the meaning of the programs, the transformations must speed up program exe-
cution by a measurable amount. We compare the approach described in the
previous chapter with the conventional mode of implementation for FP,
namely, interpretation. We show that, for the class of programs characterized
in Chapter 2, the structural transformation techniques result in less data repli-

cation and less data movement.
4.1 Assumptions and Comparison Measures

We are interested in the comparison between two approaches: the tradi-
tional interpreted mode of execution of FP programs versus the compilation
mode proposed in this work. We assume that both the compiler and the inter-
preter run in a conventional von Neumann architecture as depicted in Figure

4.1. The following list describes the assumptions that are made with respect

76

Bus
Processor 5 Memory

Figure 4.1 - Traditional Uniprocessor

to the machine and the implementation of the interpreter:

non-interleaved linear memory;

register-to-register architecture, i.e., all machine operations expect

operands to be located in processor registers;
one-word-at-a-time transfer between processor and memory;

one memory word capable of storing any atom (integer, real, character,

etc.);

string reduction execution mode, which implies that distinct copies of

actual objects are generated for each function application;

one of the comparison measures that will be made, the memory require-
ment, defined below, assumes an unlimited amount of memory, that is,
we éssume that there is no reuse of storage during execution. We want
this assumption in order to eliminate the overhead cost of virtual
memory management and garbage collection. Actual implementations
of FP interpreters must provide some sort of garbage collection that is
called upon exhaustion of available space. By assuming unlimited
memory, garbage collection becomes unnecessary. Therefore, this

assumption places the implementation of the interpreter under a best-

77

case behavior.

A major motivation in this work has been to minimize the necessity for
data movement and data replication in the evaluation of FP programs, and
therefore to minimize memory accessing. We will use two comparison meas-
ures in order to assess the data movement and data replication that occurs in

each approach, compiled and interpreted.
Memory Requirements:

In terms of the uniprocessor model, data replication can be measured
by the amount of storage for data utilized during the execution lifetime of the
program. We will use the amount of data memory required for the execution
of an FP program, without reuse of storage, as one of the measures of com-
parison between the two approaches. Therefore, we define M ;,;; as the amount
of data memory required for the execution of an FP program in the interpreted

case. We denote M{m for the memory requirements of FP function f.

Since the compilation requires the specification of the structure and size
of the input object, a fair comparison with an interpreter (which does not
require such information) will require a recompilation for each execution of a
program. Thus, we divide the memory requirements for the compiled case -
M omp — in two parts: M is the memory requirements for the compilation
phase and M, is the memory requirements for the execution phase. The com-
pilation process has been shown to resemble a symbolic execution of the FP
program; as such it utilizes and manipulates descriptors for the input and inter-

mediate objects. Each node of the descriptors occupies 10 words, and the cost

78

of the compilation phase — M, — will be measured in terms of the number of

words required for the descriptors.

In order to observe the ratio between M ;,; and M opmp, We also define

M int

Ry=——
M comp (4.1)

Bus Traffic:

We examine the bus traffic in order to measure the data movement
required by a program. This can be done by counting the number of loads and
stores generated by the program. The rationale is that a fetch requires an item
in the memory to be moved from memory to a register in the processor; a store‘
requires a movement in the inverse direction; both require use of the bus. Note
that those FP functions that are strictly data movement translate into simple
assignment statements of the form A := B or MOVE A B where MOVE is a
memory-to-memory transfer. Since we have assumed a register-to-register
architecture, this memory-to-memory transfer translates into a LOAD fol-
lowed by a STORE. The use of cache memories and/or register files in the
processor obviously decreases the bus traffic. However, we do not take into
account these effects here, since this decrease would be felt both by the

interpretation approach and the compilation approach.

Most, or all, interpreters for FP in uniprocessors use general lists to
represent the objects. This means that even regular structures such as vectors
and matrices are represented in linked lists. Therefore, data movement for

these structures translates into pointer manipulation at the machine level. The

79

inadequacies of this method of manipulation for regular structures is well-
known and has been discussed before in this work as well as elsewhere. To
make the comparison easier, we will assume that FP interpreters, upon recog-
nizing a regular object, will represent it using descriptors, thus using index
arithmetic instead of pointer manipulation to access its elements, This assump-
tion puts existing interpreters under a better perspective that they really are,
and facilitates comparisons because our compiler uses directories to describe

and manipulate regular structures.

We denote BTy, the bus traffic for the interpreted case and BT,y the
bus traffic for the compiled case. Again, we divide BT,y in two com-
ponents: BTy is the bus traffic for the compilation phase and BT, is the bus
traffic for the execution phase. Finally, we define the ratio Rpr:

BT p,

Rpr =
BT comp (4.2)

In the following sections we examine some characteristic FP programs
under the measurements defined above. Section 4.2 examines the well-known
Matrix Multiplication program — it is a typical representative of an arithmetic
intensive problem. Section 4.3 treats another vector processing problem, but
with an additional characteristic: the Fast-Fourier Transform is a recursive
program. Section 4.4 looks into purely structural programs; some descriptions
of interconnection patterns are studied. Finally, Section 4.5 examines an asso-
ciative searching problem, which has the characteristic of not being numeric

intensive,

80

4.2 Matrix Multiplication

We now study in detail a comparison between interpretation and com-
pilation for the familiar example of Matrix Multiplication (assume input is of

the form <A(n,m), B(m,1)>):

(MM &&(!+) @ &&&* @ &&trans @ &distl @ distr @ [1, trans@2] }

Interpretation Costs for MM

1. Memory Requirements (Table 4.1): Before the beginning of the exe-
cution, the data occupies nm+m! words of memory. The first step [1,.
trans@2] requires the replication of the first argument (which requires nm.
words more), the replication of the second argument (mi words more) and
finally the transposition of the second argument (again m! words more). Note
that we have to sum up all these contributions, since the string reduction
semantics of the interpreter does not allow for reuse of parts of the object. So

far, we have used 2nm+3mi words of memory.

Step Words
Initial nm+ml
[1, trans@2] nm+2m{
distr nm+nmi
&distl 2nml
| &&trans 2nmi
&&&* nm!
L&(ty) nl |
Total 3nm +3mi +nl +6nmi

Table 4.1 - Memory Requirements, Interpretation of MM

8l

The next step (distr) creates a new object that requires nm-+nml words.
&distl creates a new object occupying 2nmi words of memory. &&trans also
requires 2nmi new words. After the execution of all multiplications (& &&*)
the result will require nml words. Finally, the summation reduction (&&(!+))
will generate the final answer which requires n/ words. Therefore, the direct
interpretation of MM requires 3nm+3m!+6nmi+nl words. For square matrices,

for which n=m=l, this quantity reduces to

MMM = 6n3 + Tn? (4.3)

2. Bus Traffic (Table 4.2): The first step ([1, trans@2]) requires nm
fetches and nm stores for the replication of the first argument; ml! fetches and
ml stores for the replication of the second argument; and ml/ fetches and m/
stores for the transposition, distr requires nm+ml fetches and nm+nml stores,
which reflects the replication of the elements of matrix B. &distl requires
nm+nml fetches and 2nml stores. &&trans requires 2nml fetches and 2nml
stores. The multiplications, & & &*, require 2nmi fetches for the operands and
nml stores for the results. Finally, &&(!+) requires nml fetches and nl stores

for the result.

Step Fetches Stores Fetches+Stores |
| [1. trans@21 nm+2ml nm+2ml 2nm+4Ami
| distr nm+mi nm+nmi 2nm+ml+nm!
&distl nm+ami 2nmi nm+3nmi
& &trans 2nmi 2nmi 4nmi
&&&* 2nmi nmi 3nmi
& &(+) aml_ nl nml+nl
| Totals Inm+3ml+6nml | 2nm+2mi+ni+6nml | Snm+Smi+nl+12nm!

Table 4.2 - Bus Traffic, Interpretation of MM

82

We can easily see, by comparing Table 4.1 with the column Stores of
Table 4.2, that the number of words required is equal to the number of stores

issued, except for the initial space required by the input object.

For square matrices (n=m=[) the total amount of Fetches+Stores

reduces to

BTYM =12n3 + 11a2 (4.4)

Compilation Costs for MM

1. Memory requirements for compilation (Table 4.3): The descriptor
for the input object <A(n,m), B(m,])> requires 7 nodes or 70 words. The com--
pilation of the selector 1 generates a descriptor requiring 2 nodes (20 words);-
the same happens for the compilation of the selector 2. The compilation of
trans inside the construction requires another 20 words. Table 4.3 lists the
requirements for the rest of the compilation. It is important to note that the

values in Table 4.3 are the same, independent of the size of the input matrices.

Step Words
Initial 70
[1, trans@2] 60
distr 60
& distl 60
& &trans 5Q
&&&* 40
S&('+) 20
Total 370

Table 4.3 - Memory Requirements, Compilation of MM

83

Table 4.4 presents the bus traffic costs for the compilation phase of

MM.

| Step | Fetches | Stores | Fetches+Stores
[1, trans@2] 70 60 130

| distr 60 60 120
&distl 60 60 120
& &trans 60 50 110
&&&* 50 40 90

| &&{1+) 40 30 70

| Totals 340 300 640

Table 4.4 - Bus Traffic, Compilation of MM

Execution Costs for Compiled MM

We recall from Chapter 3 that the pseudo-code for the compiled MM
program has four steps: the first and second collapse all data movement that
rearranges the matrices in one operation; the third does all multiplications in
parailel and the fourth does the summation reductions. As noted in Chapter 3,
the pseudo-code is then translated to a real uniprocessor assembler code.
Table 4.5 displays the memory requirements for the execution of the compiled

program; Table 4.6 displays the results for the bus traffic.

| Words |
Initia) nm+mi
1 2nml
2 nml
3 nf
Total | nm+mi+nl+3nml

Table 4.5 - Memory Requirements, Execution of Compiled MM

84

Step Fetches Stores Fetches+Stores |

1 nm +mi 2nmi nm+mi+2nmi
2 2nml nmi 3nmi
3 nml nl nltnml |

Totals | nm+mi+3nml | ni+3nml | nm-+mi+ni+6nml

Table 4.6 - Bus Traffic, Execution of Compiled MM

For the square matrices case (n=m={), the memory requirements total

reduces to
M’:%p =3n3 +30% +370 (4.5)

where the constant 370 refers to the cost of compilation. The total bus traffic

reduces to
BT%%, =6n3 +3n? +640 (4.6)_

where, again, the constant 640 refers the the bus traffic during compilation.

Finally, we compare the results:

RMM _ M:‘;{F _ 6n3 +7n2
T MMM T 3,34 3224370 4
comp (4.7)
RM%{= BT%?‘ - 12n3+ 11"2
517 BTMM " 613 + 3n% + 640 (4.8)

By examining relations (4.7) and (4.8), we can see that, for n very big, the
interpretation approach utilizes twice as much memory than the compilation
approach; and that the bus traffic in the interpretation case is also twice as

bigger than in the compilation case.

&5

By comparing the results for memory requirements and bus traffic
obtained in this section, we can see that they differ only by a constant factor,
being of the same order of magnitude. More precisely, we can see that the
number of stores that contributes to the bus traffic is equal to the memory
requirements, except for the initial space required by the input object. This
happens because we assumed no reuse of storage and we also assumed that

operands for all machine operations must be in processors registers.
4.3 Fast-Fourier Transform

We now examine the performance of the fftstages program of Section
2.3.2 [Schl84]. The distinctive property of fftstages is that it is recursive and,
as such, presents interesting characteristics when compiled. Because of this
we want to concentrate only on fftstages; we assume that the function W is a
machine primitive with a fixed execution cost (in fact, the analysis of W is

trivial and do not affect the results).

First, we note that the function Bfly is strictly composed of structural
primitives (it is also non-recursive) and, after compilation, it is translated in

the following single-step transformation:

- Transfer elements of input object (which is of the form

<ai, as, ***, ay>, where N = 2"), from positions
loc(ag))=i-1, 1<isN

to positions

86

-1
l'__zﬂ—l
i+27-12)
i-1

“

loc(a;) = <

The cost of compiling Bfly in terms of memory requirements is shown

on Table 4.7. The results for the bus

i=1,3,--,2"1-1
P=20"141, 2013, -, 20
i=2,4,---,2"1

i=2"42, 200, 20

traffic are in Table 4.8. Note that the cost
is the same independent of the number of points in the input object. This is

true for any structural-only non-recursive function.

- Siep 1 Words |
Initial 20

| pair 30
split 70
&trans 110

| concat 90
[trans@[1,3], trans@{2.41] 90

_concat 70
Total 480

Table 4.7 - Bfly: Memory Requirements for Compilation

| Step Fetches | Stores | Ferches+Stores |
pair 20 30 50
split 30 70 100
 &trans 70 110 180
concat 110 90 200
| [trans@[1,3].trans@[2.41] 90 - 90 180
t 90 70 160
Totals 410 460 870

Table 4.8 - Bfly: Bus Tralffic for Compilation

87

Also note that the condition that ends the recursion of the fftstages pro-
gram (= @ [length, %2]) can be solved at compile time, since it is based only
on structural information. This enables the compiler to completely unfold the

recursion.

The interesting characteristic of the compiled code for fTtstages is that
its size depends on the size of the input object. This is because the compila-
tion, being equivalent to symbolic execution, unfolds the original recursive
code. This means, for example, that the size of the compiled code for a 32-
point FFT will be greater than the size for a 16-point FFT because the number
of recursive calls in the 32-point case is greater. Now we analyze carefully the

compilation of fftstages in order to clarify its behavior.

Suppose we are compiling a 4-point FFT, which could be considered
our basis case. The compilation costs in terms of memory requirements are as

follows:
- initially, we need 20 words (2 nodes) to represent the input object;
- the compilation of Bfly requires 480 words as shown in Table 4.7;

- we assume that the cost of compiling &W is null, since we have

assumed that W is a machine primitive.

- next, concat needs 50 more words; after that we have another Bfly
that requires another 480 words; the following functions concat and split

require 50 and 70 words more respectively;

88

- now comes the recursive call to fftstages; in this case both halves of
the input object to the recursion have length equal to 2; this means that

& fftstages reduces to & W, which has compilation cost zero;

- finally, a concat is executed as the last function of the first call to
fftstages costing 50 words more. Table 4.9 summarizes the counting we have
just done. The analysis for bus traffic is similar and the results are shown in

Table 4.10.

Step Words |
Initial 20
split@concat@BfAy@ 1130
concat@&W@Bfly
&W 0
|_concat 30|
| Total 1200

Table 4.9 - fitstages, 4 points: Memory Requirements for Compilation

Step. Fetches | Stores | Ferches+Stores |
split@concat@Bfly@ 20 1130 1150
concat@ &W@Bfly
&W 1130 0 1130

|_concat 0 30 30
Total 1150 1180 2330

Table 4.10 - fftstages, 4 points: Bus Traffic for Compilation

If we go on to analyze an 8-point FFT, we can observe that its cost can

be divided in:

- initial cost: 20 words

89

- cost of split@concat@ Bfly@concat@ & W@Bfly: 1 130 words

- to assess the cost of the recursion &fTtstages, we observe that each
half of the input object is a 4-point object; therefore the cost of this compila-
tion is twice the cost of compiling a 4-point FFT which was shown to be 1200

words.
- finally, the cost of the last concat is 50 words.

We can see that, in general, the cost for a N-point FFT (N=2") is:

cost[N -point] = cost[initial] +
cost [split@concat@Bfly@concat@& W@Bfly] +

2 X cost[N/2-point] +

cost[concat]

or

cost[N-point] = 1200 + 2 X cost[N/2-point].

The solution for this recurrence is:
cost[N-point] = 1200 x ")f,zzf . n22
i=0

or

MY = cost[N-point] = 12002""-1), n2. (4.9)

90

Similarly, the result for the bus wraffic is:

BT{! = cost[N-point] = 118021 -1), n22. (4.10)

The same line of reasoning can be used to assess the cost of executing a
compiled N-point fftstages. We begin, again, by analyzing our basis case, the
4-point FFT. Initially, N memory positions are required to store the input
object. Since Bfly is completely solved at compile time, it will require only N
positions more at execution time. Then comes &W which requires N new
positions for the result. The compilation also collapses in only one step at
execution time the composition split@concat@ Bfly@concat; this step also
requires N positions more. Finally, for the 4-point case, &W requires N posi--
tions more. Note that the final concat was solved at compile time and reduces
to no operation at execution time. Table 4.11 summarizes the counts for the

memory requirements; Table 4.12 presents the results for bus traffic.

Words

Initial N
BAy N
&W N
split@concat@ N
Bfly@concat

&W N
Total 5N

Table 4.11 - fftstages, 4 points: Memory Requirements for Execution

91

_Step Feiches | Stores | Fetches+Stores |
Bfly N N 2N
&W N N 2N
split@concat@ N N 2N
Bfly@concat
W N N 2N
Total aN 4N 8N

Table 4.12 - fftstages, 4 points: Bus Traffic for Execution

We can see now that the memory requirements for a N-point FFT can

be described by

cost{N-point] = cost[initial] +
cost [Bfly] +
cost [&W] +
cost [split@concat@Bfly@concat] +

2 X cost[N/2-point]

or
ME = cost[N-point] = SN + 2 X cost[N/2-point]
The solution for this recurrence is:
n=2 .
MG = cost[N-point] =5N x T 2, n22
i=0
or
Mt = cost[N-point] = SN2 1-1), n22. (4.11)

92

For the bus traffic we have:

BT = cost[N-point] = 8N(2""1-1), n22. (4.12)

To complete the evaluation we study the cost of direct interpretation for
the FFT program. Tables 4.13 and 4.14 give the results for the basis case, the
4-point FFT.

Step Words |
Initial N
Bfly N
&W N
split@concat@ 10N
Bfly@concat
&W N
|_concat N
Total 21N

Table 4.13 - fitstages, 4 points: Memory Requirements for Interpretation

Step Fetches | Stores | Fetches+Stores |

Bfly N N 8N
&W IN N 8N
split@concat@ N 10NV 1IN
Bflv@conecat

&W 1ON N 1IN

L concat N N 2N

Total 20N 20N 40N

Table 4.14 - fitstages, 4 points: Bus Traffic for Interpretation

The memory requirements for the interpretation of a N-point FFT is

given by:

93

Mg,‘, = cost[N-point] = 21N + 2 X cost[N/2-point]

which has the following solution:

ME, = cost[N-point] = 2IN2"1-1), n>2. (4.13)
The bus traffic for the interpretation is given by:
BTH, = cost[N-point] = 40N (2" 1-1), n>2, (4.14)

By examining equations (4.9), (4.11) and (4.13), we can see that

n-1_
lim R} = lim ANE 1)y,
noe e 120027 1-1) + SNQ™I-1)

This result tells that the interpretation approach requires 4.2 times more
memory than the compilation approach for N very large. Table 4.15 gives the
real values for equations (4.9), (4.11) and (4.13) for the first few values of N.

We can see that it is best to interpret up to a 64-point FFT; from then on the

compilation approach requires less memory.

Compilation Execution Interpretation

nol N acip00@r1-ny | B=svrl-n) | cmaiNeriony | AYE | CHA+E)
2 4 1200 20 84 120 | 007
3 8 3600 120 504 3720 | 014
4| 16 8400 560 . 2352 8960 | 026
5| 32 18000 1120 10080 19120 | 0.53
6| 64 37200 9920 41664 420 | 088
7| 128 75600 40320 169344 115920 | 146
8 | 256 152400 162560 682752 114960 | 2.17
9| s12 306000 652800 2741760 958800 | 2.86

10 | 1024 613200 2616320 10988544 3220520 | 3.40

Table 4.15 - fitstages: Comparison for Memory Requirements

94

Similarly, from equations (4.10), (4.12) and (4.14), we have for the bus
traffic:

n—-1_
lim Ry = lim 4ON@T_-1) —— =50
300 n-s 118027 1-1) + 8N (2" 1-1)

4.4 Interconnection Patterns

This section analyzes the bus traffic and the memory requirements for
some useful interconnection patterns which have the following FP descrip-

tions:

{shuffle concat @ trans @ split)

{unshuffle concat @ trans @ pair)

{butterfly concat @ concat @ &trans @ &split @ trans @ pair}

{bitreversal (=@/[length, %2] -> id;
concat @ trans @ &bitreversal @ split) }

The resuits are summarized in Tables 4.16 and 4.17.

shuffle 6N 2N +2§0 :

3.0
unshuffle 6N 2N +210 3.0
butterfly 12N 2N+770 6.0
1.6

bitreversal | 4N*=2N | 2.5N“—4N

Table 4.16 - Bus Tralffic for Interconnection Patterns

95

ogram M M coma Ry |
shuffle 4N 2N +140 2.0
unshuffle aN 2N+130 2.0
butterfly N 2N +420 3.5
bitreversal | 2.5N%=4N | 2N*2N | 125

Table 4.17 - Memory Requirements for Interconnection Patterns

In the tables, N is the number of elements of the input object, which
must be a power of two. In the last columns we give the limit values of Ry
and Rpr for N large. The distinctive characteristic of these programs is that
they are completely composed of structural primitives, being well-suited for
the transformations presented in Chapter 3. The function bitreversal is recur-
sive and is analyzed in the same way of the Fast-Fourier Transform of last
section. As can be seen by the results in both tables all these functions are
significantly improved by the compilation approach in terms of memory usage

and traffic in the bus.
4.5 Associative Searching

Now we analyze a problem taken from [Will81]. We study the
RANGE program, which is an example of associative search problem. Asso-
ciative searches, or secondary key retrievals, involve a query of some file or
data base which is a collection of records or points. Most commonly, a file is
organized so that queries based on specific values of a particular key (the pri-
mary key) can be processed efficiently. When a query is based on one or more
keys other than the primary key, the search process is called associative. We
assume that the data to be searched comprises n records or points, and that

each record has k attributes or keys.

96

In some of the associative searching problems the query on the file can
be answered by combining the answers to the query asked of each subset of an
arbitrary partition of the file. For example, the question of whether a particu-
lar point is in a file is a decomposable problem. The file can be partitioned in
any number of disjoint subsets, each one examined independently to deter-
mine if the query point is in that subset, and the results ORed together to pro-
duce the result. These problems are called decomposable; the RANGE prob-

lem examined below falls in this category.

In the RANGE problem, also called “region search”, the input consists

of n k-dimensional points in a file F and a £-dimensional pair of query bounds

(inf, sup):
F ={p1,p2, "-*,pa} whereeachp;=(x1, X2, ", Xit)-
query bounds: Q={q1, g2, ', qi} whereg;={(inf;, sup;).

The output is the set of indices of the file points which have all keys greater

than or equal to bound inf and less than or equal to bound sup, that is:
all { such that infy £x;1 Ssupy, infy £x;9 Ssupa, -, infy € Xig S supy.

Range queries are useful in statistics because they can be employed to
determine density estimations, empirical cumulative distributions, and empiri-
cal probability contents of hyperrectangles. Range searching is also utilized in

geographic data bases. An FP program for RANGE is given in Figure 4.2.

97

Range Query

input: query bounds & n k-dimensional point file

: <<query bounds><file points>>

output: <indices of file points within query bounds>

Example: Find ail records with 1<=keyl<=5, 3<=key2<=4, l<=key3<=4:
RANGE: <<<1 53<3 4><1 d53<<]1 1 1553 4><2 4 I>o> ==> <2 3>

{RANGE index @ [% T, &rangetest @ distl]}
{rangetest !and @ &inclusion @ trans)

{inclusion and @ [<=@ 1, >=@2] @ disu}

index: <xi <xI ... xn>> retums <il i2 ... ik> such that

for all ij, I<=j<=k xi = xij

example: index: <3<1243356733>>=<459 10>

index: «3<12435>=<4>
index: <3<24680>=<>

(index concat @ & (=@2 -> [1]; % <>) @
trans @ {iota@length@2, disd] }

Figure 4.2 - Associative Searching: Range Query

The program first distributes, distl, the k range specifications to each
file point and then transpose, trans, each query/file point pair so that the i th
key range and the { th dimensional value are paired. After all this data replica-
tion and movement, the inclusion test, &inclusion, is applied to all kn pairs to
determine which keys lie within the specified range. The result of the test is a
sequence of n sequences, each containing k T -or F values. In order to find
which points satisfy all k range specifications each sequence is and’ed ('and),
producing n T or F values. Finally, the function index produces the list of
indices of those points that satisfy the query. The result is the empty sequence

if there are no matches.

98

Note that the compiler can eliminate a great amount of data replication
and movement in the earlier stages of the program. The structural transforma-
tions made by the compiler have to stop when the function index is encoun-
tered, because it has a conditional that depend on the value of the input object.
However, by that point, almost the entire program has been already

transformed.

The following results are obtained for the me'mory requirements of the

RANGE problem:
Momp = 8nk+2k+n+471
My = 14nk+2k+n+1

14nk+2k+n+1
8nk+2k+n+471

Ry =

Since in general k<n, Ry approaches 1.75 for large values of n. This
means that the interpreted execution of RANGE uses 75% more memory than

the compiled version.

For the bus traffic, we have the following results:
BT omp = 15nk+2k+n+831
BTy =270k +2k +n+1

Rer = 27nk+2k+n+1
BT = 5nk+2k+n+831

99

For k<n, Rgr approaches 1.80 for large values of n, which means that
the interpreted execution of RANGE has 80% more bus traffic than the com-

piled version.

4.6 Conclusion '

In this chapter we have analyzed the performance of a number of
representative FP programs with respect to their usage of memory and bus
traffic under the compilation techniques presented in Chapter 3. Analytical
results derived from a simple model of uniprocessor show that the structural
transformations done by the compiler do indeed decrease data replication and

data movement in the execution of FP programs.

Table 4.18 summarizes the memory requirements improvements for the
FP programs analyzed in this chapter. In the table, Ry shows the limit value

of Ry for very large input objects.

Program Ry

MM 2.0
ffistages 4.2 |
shuMe 2.0
unshuflle 2.0

buticrity 3.5
bitreversal | 1.25 |
RANGE 1.75

Table 4.18 - Summary of Memory Requirements Results

Finally, the summary of results for the bus traffic is shown in Table

4.19 — Rgr shows the limit value of Rgy for very large input objects.

100

Program Rpr

MM 2.0
{Ttstapes 5.0
shuflle 3.0
unshuflle 3.0

| butterfly 6.0
bitreversal 1.6
RANGE 1.8

Table 4.19 - Summary of Bus Traffic Results

101

CHAPTER 5
ISSUES IN PIPELINED AND MULTIPROCESSOR SYSTEMS

This chapter discusses compilation issues for pipelined and multipro-
cessor systems. We show that the ideas developed in the previous chapters are
also useful when the machine model is not an uniprocessor. The first section
deals with vector processing and pipelined computers, These still are von
Neumann architectures, but incorporating improved techniques to speed up the
execution of arithmetic-intensive, vector processing problems. Then, we dis-
cuss the use of compilation in the control of interconnection networks, a cru-
cial element for multiprocessor architectures. Finally, a string-reduction
architecture developed for the specific purpose of directly interpreting FP pro-
grams is examined; we show that this model also can take advantage of the

compilation techniques.

5.1 Vector Processing in FP

Vector processing machines — like the Cray-1 [Cray76] and the
CYBER-205 [Kasc79] — were specially designed to work more efficiently
with one-dimensional lists of data (vectors). These machines have been com-
mercially available for a decade now, and apart from some good vectorizing
compilers [Arno82], we have yet to see significant improvements in software

development systems for them. As pointed out in Chapter 1, these machines

102

run FORTRAN-coded programs — in order to obtain a significant speed-up
either the FORTRAN program must be compiled by a vectorizing compiler or

the user must hand-code (in assembler) the critical points of the program.

In this section, we try to show that functional languages can be an use-
ful tool to specify vector problems. We will see that the parallelism of vector
problems can be easily expressed in FP and the compilation techniques
presented in Chapter 3 can be used to generate efficient code for pipelined

machines.

We first observe that, in these machines, the operand specification part
of the instruction repertoire normally have several memory address fields: the
origin of the vector, the dimensionality; the number of elements per dimen-
sion; the data type of each element; the arrangement of elements in memory.
We recall from Chapter 3 that the object descriptors keep all this information

and therefore the full capability of the machine instructions can be exploited.

Vector processing applications have been historically written in FOR-
TRAN. However, it is clear that this language is not a good one to specify
parallel problems. Apart from the worst characteristic of being a sequential
language, FORTRAN presents some implementation properties that further
hinder the exploitation of parallelism. For example, FORTRAN has an impli-
cit ordering, column-wise, for the storing of matrices. It is not a good practice
to encode an ordering in the program. If no ordering is encoded the compiler
may choose the most efficient ordering for the target computer. Moreover,
should the target computer contain parallelism, then some or all of the opera-

tions may be performed concurrently.

103

Below a number of common vector processing operations are presented
and described in FP. Then we point out how the transformation approach
described in Chapter 3 is specially well-suited for vector processing. We also
present the FORTRAN code of some of the operations with the intent of
exposing the different approaches represented by the FORTRAN style and the
FP style of programming.

Unary Vector Operations:

&f X(lin)=<f xq,..., [Xp>,

where fis any unary operator (function).

Binary Vector Operations:

&f@trans: <X(1:mn), Y(1:n)> = <f :<x1, y1>, * '+, [1<, Ya>>,

where fis any binary operator (function). Binary operations can be extended
as follows to higher-ranking objects (arrays). For two-dimensional matrices

the FP description is:

&&f @ &trans @ trans

In general, for a k-dimensional array, we have:

&"f@ &*ltrans @ &' 2trans @ -+ @ &ftrans@trans

This pattern can be used also to implement common vector machine opera-

tions such as “vector compare on equal” - VCOMPEQ (X, Y, Z):

104

0 otherwise

2y {1 if X =Y ()

The FP implementation of this operation is simply &eq @ trans.

Recall from the previous chapter that M, is the amount of data
memory required for the execution of the FP program in the interpreted case;
M | is the memory requirement for the compilation phase; M is the memory
requirement for the execution phase of the compiled code; Mcomp is the sum

of M and M, and Ry =Mim"rMcomp-

The memory requirements of binary array operations is given by the
following equations, where k is the dimensionality of the array and n is the.
number of elements along each dimension (we assume that each dimension-
has the same number of elements because practical problems generally are in

accordance with this assumption).

My=2k%+5k+7
M2=5nk
M ine = 2k + 2)n*

_ 2k + 2)n*
M= Sk 42k + Sk + T

Note that, as expected, the memory requirements for the compiler (M)
depend only on the dimensionality of the input arrays and not on their size.
Since k < n, we can see that Ry, = O (k). Therefore, no real gains are obtained

for vectors (k=1), operations on matrices utilize twice as much memory when

105

interpreted and so on.

Selection from Array Objects
We distinguish four cases, following [Hock81]:

1. Selecting reduced rank objects: This corresponds to indexing in a
sequential language, with the difference that lower-rank objects may be
selected. For example, in a matrix we may want to select the whole matrix, a
column, a row or a single element. In FP, this selection is straightforward and
is mostly done by using selectors. Thus, given a two-dimensional NxM array

A, we may wish to select:

a. the whole matrix: id

b. the i row: selector i

c. the j* column: j @ trans or &j

d. the i, j element of the matrix: j @ i

2. Selecting range of values: Necessary to select sub-matrices or to
reduce the size of objects. For example, given an NxN matrix A, we may
wish to select the interior points of the matrix,—i.e., matrix A(2:N-1, 2:N-1).

The following FP program does the job for a 5x5 matrix, using selectors only:

{range [[2,3.4] @ 2,

Although very straightforward, this function generates excessive copying if

106

interpreted under a string-reduction semantics — the matrix would have to be
copied three times and then each selected row would be copied three times. By
compiling first, all this copying is avoided. The same problem can be solved
more efficiently by the following FP program, which does not rely on the

exclusive use of selectors:
{range &tlr@ &t @ tlr @ tl}

Note that this function is more in the spirit of FP, since it selects the
interior points of matrices of any size, and not only 5x5 as the previous pro-
gram. This function is more efficient, in the interpretation case, because only
one copy of the original matrix is necessary; subsequently, reduced-range.
copies are passed to each step of the composition. This function is also more.
efficient in the compilation case, since it generates a smaller descriptor for the
result object. The fundamental difference between the two versions is that the
first one generates 9 distinct sub-objects (2@2, 2@3, 2@4, 2@3, etc.), while
the second generates only one sub-object at each step of the composition. It
can be argued that the first version has more parallelism, but the parallelism is
gained at the expense of much more space. Also, the parallelism argument
loses strength if the program is compiled, because both versions are collapsed

into a single step.

Any arbitrary combination of range-reducing selections can be imple-
mented in FP by using a combination of selectors and/or structural functions
such as tl and tir. In any case, an interpreter will have to make several copies

of parts of the input array, whereas the compiler avoids all copying.

107

3. Selection using indirect addressing: The implementation of indirect
addressing in FP generally requires the use of the primitive pick, which can-
not be solved at compile time since it is data-dependent. As an example we
show the FP implementation of the gather instruction, which is one of the
machine instructions of the CDC Cyber 205. Gather can be described by the
following FORTRAN loop:

DO1I=1,N
1 Y(I) = X (INDEX(I))
One possible FP implementation is shown in Figure 5.1. Note the recursive

structure and the presence of the primitive pick.

input: <<index vector><data vector>>
output: <permutation of data vector cf. index vector>
we assume index vector is a permutation of (1:N)
E.g.: gather: <<246 13 5><15103017 12 11>>=<1017 111530 12>
{setup [1,[], 2]} # setup input obj: < <indices> <> <data> >
{f [l@l,
apndr @ [2, pick @ [1@1, 3]],
3]1)
{gat (null@1l->2;gat@) }

(gather gat @ setup}

Figure 5.1 - FP Implementation of gat her Instruction

Note that compilation avoids copying in the first step, setup. However
the above function cannot be completely solved by the methods described in
Chapter 3. But compilation still offers the opportunity of identifying the pat-

tern as a machine instruction, therefore generating efficient run-time code.

108

Some work on this area of pattern-matching has been referenced in Chapter 1.

4, Selection using boolean vectors: This operation, called compress, is
found as a primitive in APL and is also a machine instruction in the Cyber
205. Given a bit vector and a data vector it compresses the data vector for
corresponding entries in the bit vector that are equal to 1. One FP implemen-
tation in shown in Figure 5.2. Again, the conditional is data-dependent and not
solvable by the methods of Chapter 3, but pattern matching techniques are

also applicable here.

input: <<control bits vector><data vector>>
if bit-i is 1 then select data-i else don’t select
Example: compress: <<1001101><1234567>>=<1457>

{compress concat @ &(eq@(1,%1] -> [2]; %<>) @ trans}

Figure 5.2 - FP Implementation of compress Instruction
Linear Combination of Vectors

input: <<a, X(1:n) ><b, Y(1:n) >>

output: <ax;+by, axa+bys, -, ax,+by,>

where multiplication and addition stand for any binary operators:
&+ @ trans @ &&* @ &distl

Vectorsums

input: X(1:n)

output: x| +Xx2+ *°* +X,,

109

where addition also stands for functions such multiplication, max, min, etc.

This can be directly implemented by the insert functional form of FP.
Vector Innerproduct and Matrix Multiplication

We have already studied matrix multiplication (MM); inner product is part of
MM.:

{IP (+) @ &* @ trans }

Although the above list of common vector operations is quite represen-
tative, real life problems often present a varied mix of these patterns. To
investigate this aspect, we present FP implementations of some Lawrence

Livermore Loops in the next section.
Lawrence Livermore Kernels

The Livermore Loops Benchmarks have been used for over a decade to
gauge the performance of supercomputers (for example, [Riga84]) and of
FORTRAN optimizing compilers for supercomputers [Amo82]). They
comprise a series of FORTRAN kernels extracted from representative pro-
grams that are used in various U.S. national laboratories. In the following, we
use the FORTRAN description of the kernels as.they appear in {Riga84]). We
develop implementations of some of the kernels in FP. In order to better

characterize the kernels, we divided them in groups.

110

Group 1. Kemels 2 and 3

Both kernels are inner products; in kernel 2 it is camouflaged by being
unrolled into a sum of five partial products for each iteration of the loop. The

previous section showed the FP implementation for inner product.

Group 2: Kemels 1,7, 9, 10, 12

We present the FP description of kernel 7 in Figure 5.3. The other ker-
nels can be found in Appendix 3. The distinctive characteristic of these ker-
nels is that all iterations can be done in parallel. As can be seen by the FOR-
TRAN description, this may not be clear, at least for some of them. Also, not.
all compilers studied in [Arno82] are capable of uncovering the hidden paral-.
lelism of some of the kernels. A characteristic of the FP implementations is a
first step that aligns the operands for the subsequent operations. This align-
ment step is purely structural and requires substantial copying in an interpre-

tive implementation of FP.

All the FORTRAN vectorizers examined in [Armo82] can vectorize the
loop of Figure 5.3 — albeit using the complicated analysis that is required in
such cases: on the other hand, the FP program is already in a form that
exposes the maximum parallelism. Also, note that the FP program can be
applied to any vector size (greater than 7), while the FORTRAN program is

bound to vectors of size 120.

111

Kernel 7: Equation of State Excerpt
FORTRAN:

DOTM=1,120
X(M) = UM) + R* Z(M+R*Y(M)}+
+ 5 * (UM+3)+R*(UM+2)+R*UM+1))
7 + § * (UM+6) + R*(UM+5+R*U(M+4))))

FP: input cbject; < Y(1:120), Z(1:120), U(1:126) >
output object: X(1:120)

{(Ym 1) # select Y(1:120)
{Zm 2) # select Z(1:120)
{Um tr@tr@tr@r@uUr@dr@ 3§ #select U(1:120)
{Umplusl twr@ r@tr@ r@tr@u @3] #select U(2:121)
{Umplus2 r@Ur@tr@ wr@ d @ U @ 3) #select U(3:122)

{(Umplus3 dr@ir@ir@d @t @ @3] #selectU(4:123)
(Unplusd r@ir@l @d @u @u @3] #select U(5:124)
{Unplus5 r@d @d @t @tt @U @3] ¥select U(6:125)
(Unmplus6 1 @ @U @U @u @t @3] #select U(7:126)

align operands
{align [Ym, Zm, Um, Umplusl, Umplus2, Umplus3, Umplus4, Umplus5, Umplus6] }

Expression will be divided in three clusters -- c1, ¢2, ¢3 --

{3 *@5,+@1.*@R+@8,"@[R,7]111]}

2 +@6,*"@ R, +@[5*@[R,4]]1]1)

el +@B,*@R+@[2,*@[R,1]1]1]]}

(Xm +@ [cl,* @ [S,+@ [c2,c3]]] } # the whole expression iscl + S * (c2 + ¢3)
LOOP:

(LLL7 &Xm @ # execute all expressions

trans (@ # put elements for each expression together
align]} #create and align all copies

Figure 5.3 - Livermore Kernel No. 7

112

Group 3: Kemels §, 6, 11

These kernels are examples of first-order linear recurrences of the
form:

' xj=ajxj-1+d;, 18jsn (5.1)

This well-known formulation seems to be inherently sequential, however,
parallel formulations exist (for example, [Kuck78, Hock81]). First-order
linear recurrences occur very frequently in numerical calculations: solution of
linear equations by Gaussian methods, iterative methods in which a better
approximation to a solution is calculated from previous approximations, solu-

tion of ordinary differential equations.

There is an elegant way to implement this type of recurrence in FP
using tail-recursion as shown bellow for an input of the form < xg, A(1:n),

D(1:n) >:
{f (null@2 -> 1; f @ [apndr@]1, expression], tl@2, tI@3]) }
{expression + @ [*@[1@2, last@1], 1@3]}
This implementation is done using the following general pattern:
f p>g h@f@Kk) }

For this particular case, function h s absent, or could be considered to
be the FP function id. The implementation of Kernel 6, shown in Figure 5.4

(Kemnels 5 and 11 are in Appendix 3), was also done using this pattern.

113

Kernel 6: Tri-diagonal elimination, above diagonal
FORTRAN:

DO6J=3,999,3
1=1000-J+3
XM = X(0) - ZM*X(I+1)
X(-1) = X@-1) - ZA-1)*X(D
X(1-2) = X(1-2) - Z(1-2)*X(1-1)
6 CONTINUE

This loop can be rewritien as:

DO6J=1,999,1
I=1000-J+1
XM =X - ZM*X(I+1)
6 CONTINUE

FP: input object: < X(1:1001) Z(1:1000) >
output object: X(1:1000)
(setup [U@Ur@1, [last@1], U@2])
{recur (null@1 > 2;
recur @ [Ur@ 1, apndl@(expression, 2], tir@3])
}
{expression - @ (lasi@1, * @ [1@2, 1@3)] }

{LLLS6 recur @ setup}

Figure 5.4 - Livermore Kernel No. 6

This form has been considered by Backﬁs as an important one and is
treated in his original article in the Iteration Theorem. There, he shows a sim-
ple expansion for functions that follow the above pattern. The work by
Kieburtz and Shultis [Kieb81] also deals with this type of recursive functions,
They present a scheme for high-level program transformation based on pattern

matching which is directed towards transformation of tail-recursive functions

114

into iterative versions. They argue that execution of recursive functions is
inefficient in conventional processors and thus should be transformed to itera-

tive form. In particular, they show that the pattern

{f p>gf@k) }

can be evaluated iteratively as

{f g@ (while not@p k)}.

The same technique of pattern matching can be used to identify these
instances of first-order linear recurrences, and be applied to generate efficient
vector code for pipelined von Neumann machines. For example, in [Amo82].
the three kernels 5, 6 and 11 are left as scalar code by two of the optimizing.
compilers studied in the article. The other vectorizing compiler, KAP
[Wolf81], considered to be the state-of-the-art in compiler technology for
supercomputers, is able to recognize the first-order linear recurrence and to
generate a macro instruction, for which the CYBER 200 FORTRAN generates
a STACKLIB call, which implements such recurrences using the vector capa-
bilities of the machine. The point here is that it is not trivial (but it is possible,
as in the KAP case) to recognize this common pattern in languages such as
FORTRAN: on the other hand a simpler pattern matching mechanism is able
to identify the recurrence in the FP case. The compiler described in Chapter 3
does not implement any kind of pattern recognition, but compilation opens the
possibility of implementing these transformations and it can be incorporated

in FP systems as is shown in [Kieb81].

115

On the other hand, the recursion step of these linear recurrences is ter-
minated by a structural predicate, which can be solved at compile time since it
is in accordance with the restriction defined in Chapter 2 for the conditional

functional form.
Livermore Kernels Performance

Table 5.1 presents the memory requirements for the compilation and
interpretation of the Livermore Kemnels discussed above. In the table, # is the
size of the input vectors; the column Ry shows the limit value of Ry for very
large values of n; and the column 7., shows the smallest size of the input

object for which the value of My, turns smaller than the value of M ;.

| Kemel | M, M comp Rag | Nergs
1 27n+143 52+901 5.40 35
23 In+1 3n+81 1.00 | e
5 4n®+5n-3 | 1.5n°+176n+298 | 2.67 | 71
6 4n‘+2n 1.5a%+175n+210 | 2.67 | 71
7 53n+153 12n+1406 442 | 31
9 160n+28 53n+934 3.02 9
10 54n 2274200 2.45 7
11 3nt-n+2 n*+142n-50 300 | 72
12 5n 3n+110 1.67 | 56

Table 5.1 - Memory Requirements for Livermore Kernels

Table 5.2 presents the results for the bus traffic. As in Table 5.1, n is
the size of the input vectors; Rgy shows the limit value of Rgr for very large
values of n; and n.,,s; shows the smallest size of the input object for which the

value of BT;ymp turns smaller than the value of BT .

116

Kemel BT (o BT comp Rpr | Moo |
1 S50n+275 Sn+1671 10.00 32
2.3 6n+3 6n+163 1.00 o0
5 8n2+7n=7 | 3n°+348n+505 | 2.67 | 70
6 8n*+n 3n2+344n+350 | 267 | 70
7 98n+294 12n+2546 8.17 | 27
9 306n+49 92n+1781 3.33 9
10 86n 2274310 3.91 5
11 6n°—6n+4 | 2n°+282n-140 | 3.00 | 72
12 Tn 3n+160 233 | 40

Table 5.2 - Bus Traffic for Livermore Kernels

5.2 Control of Interconnection Networks

Concurrent processing depends on interconnection networks for com-
munication among processors and memory modules. Today, with the advent
of VLSI technology, it is possible to construct a concurrent processing system
by interconnecting hundreds of off-the-shelf processors and memory modules.
For our purposes, assume a parallel processing machine without shared

memory. Also, assume that the processing elements (PE’s) of this machine are

connected through a switching network as in Figure 5.5.

Figure 5.5 - Hardware Model of Parallel Processing Systems

FE| |PE

PE

PE

PE

INTERCONNECTION NETWORK

117

A generalized connection network (GCN) is a switching network with
N inputs and N outputs that can be set to pass any of the N N mappings of
inputs to outputs. If we restrict the mappings only to one-to-one mappings,
then N! such mappings are well-defined. A network that performs these N'!

mappings is called a permutation network.

Parker [Park80] showed that 3 passes through some shuffle/exchange-
type permutation networks are sufficient to generate any permutation, 2 passes
being necessary. Each pass through these networks takes O (logN) time. The
proper switch settings for any desired permutation pattern may be found in
O (NlogN) time [Waks68] on a serial computer. In 1978, Thompson [Thom78]
defined a GCN that uses less than 7.6NlogN contact pairs and has O (logN)
delay. The algorithm to set up the switches of this GCN also takes O (NlogN)

time on a serial computer.

One step in the problem of finding the setting of the switches of a
switching network can be formalized as a sequence of N integers, one for each
output vertex: ji, j2 , - -, jy where each ji =i iff output number £ is con-
nected to input number i (each output is connected to exactly one input). For
example, if N =4 a setting might be (3, 3, 4, 1): input 3 is connected to out-

puts 1 and 2, input 4 to output 3, and input 1 to output 4.

Using the transformation techniques of Chapter 3 more effective use of
interconnection networks can be achieved. This is because the sequence of
integers that characterize the switch setting of a network can be obtained
directly from the object descriptors of the compiler. Given the sequence, it is

necessary to calculate the switches settings; this can be done, statically, at

118

compile time. Also, sometimes it is better to have equations describing the
input-output mapping of the network, since a set of equations can better reveal
the structure of the interconnection pattern. Again, the set of equations can be
directly extracted from the object descriptors and the switch settings can be
calculated at compile time. Of course, the compile time will increase by an
amount proportional to the complexity of calculating the switch settings; how-

ever, no control penalty is paid at run time.

As an example, consider the function butterfly that was presented in

Section 4.4 and which is also part of the Fast Fourier function of Section 4.3:
{butterfly concat @ concat @ &trans @ &split @ trans @ pair)

The input object, which has the form <a, a3, - - -, ay>, where N =27, has

the following equation to represent the positions of its elements:

loc(a;)=i-1, 1<i<N (5.2)

After compilation, the final positions of the elements are represented by the

following set of equations:

-

i-1 i=1,3,---,2"1-1

loc(a;) = Ji=2"! P=2""140, 20143, -, 20
w212 =24, 20! (5.3)
i-1 i=2r"142, 20144, - 20

“

For N = 16, Equation 5.2 represents the following sequence:

{0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15}

119

and Equation 5.3 stands for the sequence bellow:
[0, 8,2,10,4,12,6,14,1,9,3,11,5,13,7, 15}

With the knowledge of these sequences at compile time, the switch set-
tings of the particular network utilized by the parallel processing system can

be calculated at compile time, saving time when the program is executed.

It is important to notice that a parallel system that incorporates a net-
work but directly interprets FP programs cannot utilize the full potential of the
network because it will use the network only to implement FP primitives that
require data movement: trans, distl, distr, etc. As a consequence, only simple
networks that are capable to realize the FP primitives are necessary at machine
level, resulting in not very powerful machines. The problem is that there is no
point in using more powerful networks to implement only simple FP primi-

tives; they would be under-utilized.

5.3 String Reduction Machines

In this section we point out how compilation of FP can be of use to
novel proposed architectures. We focus attention on the general class of string
reduction machines, specifically on the one proposed by G. Magé [Mago79].
In string reduction machines instructions are executed by a substitution pro-
cess, which locates reducible applications in the program text and replace
them by other expressions that have the same meaning, until a constant

expression representing the final object is reached.

120

Mag6’s machine was specifically designed to execute FP. It considers
FP as its machine language and automatically exploits the parallelism present
in FP programs. The machine is a small-grain multiprocessor consisting of a
large number of “cells”. It has the overall structure shown before in Figure
5.5. The PE’s in Mag6’s machine are called L-cells (for “leaf” cell) and the
interconnection network is a full binary tree, each node of the tree being
named a T-cell (for “tree” cell). In addition to the tree network, each L-cell is

connected with its two neighbors to form a linear array.

An FP machine program is a linear string of symbols that are mapped
into the vector of L-cells so that each L-cell holds one symbol of the FP pro-
gram, Some syntactical separators of FP are omitted, since cell boundaries
fulfill their purpose. Also, sequencing brackets are substituted by integers that

indicate the nesting level of the sequence.

The L-cells are microprogrammed to identify the reducible applications
(RA’s) and build sub-trees, linked by the T-cells, that become dedicated to the
reduction of that RA. The reduction of each application is handled by
microprograms that normally reside outside the machine and are brought on
demand. Once a microprogram is loaded in the registers of the L-cells, each
L-cell executes the necessary steps to make its contribution to the total reduc-

tion.

An important phase in each execution cycle of the machine is called
storage management. Storage management is necessary during computation
because FP programs can expand and shrink while being executed. For exam-

ple, the primitive dist! broadcasts one of its operands to the other and thus

121

needs more space than the original object. If there is not sufficient space in
adjacent cells, storage management must rearrange the program in order to

provide the needed cells.

It turns out that the acquisition of space during storage management
can be extremely expensive in Magd’s machine. This problem has received
considerable attention by Magd and co-workers as can be seen in
[Mago84, Will81, Stan81, Mago81]. For example, the article [Mago84]
analyzes the performance of some matrix algorithms on Magé’s machine.
Performance is predicted in terms of execution time of programs. The model
accounts for communication costs and storage management costs. Since the
cost of storage management depends on the initial layout of the program text
on the L-cells a lower bound and an upper bound are obtained. The lower
bound assumes a lucky initial layout of the program, i.e., whenever k symbols
are to be inserted between two adjacent symbols of the initial program text,
these two symbols are situated in L-cells with at least k empty cells in
between. The upper bound assumes that the initial program text is fully

compressed, and that the application is situated at one end of the L-array.

Five different implementations of the matrix multiplication program
(MM) are analyzed under the assumptions. MMI is our familiar MM
presented in Section 2.3.1. MM2 is a variant of MM1 with a new functional
form “apply-to-the-rightmost-element” (AR) so that [1, trans@2] can be sub-
stituted by AR trans. As mentioned in Chapter 1, this new form avoids
unnecessary copying, lessening the execution time. Both MM1 and MM2

(which are fully parallel), have O(n3) for upper bound and O(nz) for lower

122

bound in execution time. This shows that their performance is heavily depen-
dent on the initial layout of the program text. The reason is that to acquire

O (n3) storage cells in Magé’s machine, O (n3) time is required.

MM3 is an intermediate program between fully parallel and fully
sequential. It requires O (n?) space and has upper bound of O (n3) and lower
bound of O (nz) as MM1 and MM2. However, the coefficients for the polyno-
mials are much lower. MM4 is a variant of MM3 with more powerful primi-
tives, specially microprogrammed for this problem with both an upper bound
and lower bound of O(n?). Finally, MMS is a single machine primitive
microprogrammed to compute the product of the two matrices. This
microprogram utilizes temporary registers of the L-cells and the sequencing'
capability of the microprogramming language. Both the upper bound and the'
lower bound are O (n2) with lower coefficients than MM4. This bound seems

to be the best one can achieve using a tree network.

We can see that the difference between the upper bound and the lower
bound can be slight (as in MM5) or considerable (as in MM1 and MM2). This
indicates how sensitive execution time is to the initial distribution of the FP
symbols in the L-array. The authors conclude by saying that indiscriminate
copying (to gain maximum parallelism) can hurt the execution time and that
the aims of optimizing an implementation should be to minimize data move-

ment and storage management.

Mag6, in [Mago84a], argues that the efficient use of language-based
parallel computers is a programming problem and that either the user or an

optimizer must be responsible for constructing efficient programs. Both would

123

rely on high-level guidelines like “reduce copying” and “reduce storage
management” for improving the execution time. However, if the user has to
worry about this kind of guidelines he must know about machine implementa-
tion details, which may undermine the motivation to use very high-level
languages in the first place. No user is expected to be worried with the initial
layout of the program in the machine when developing the algorithmic solu-
tion for a problem. Furthermore, if the user has a language in which he can
specify the maximum parallelism that the problem presents, which is the case
of FP, we cannot expect him to try to decrease the parallelism of the imple-

mentation because too much parallelism may hurt,

On the other hand, the optimizer suggested by Magé is a worthwhile
goal to strive for. Such an optimizer for Magé’s machine can incorporate

many of the ideas developed in this work, as discussed below.

First, when an FP program is compiled as in Chapter 3, the memory
requirements for the execution will be known beforehand. This information
can be used to check whether the machine has sufficient L-cells to execute the
entire program or not. If not, the compiler can issue directions for scheduling
the execution of the program. Conversely, if the machine has L-cells in abun-
dance, the compiler can use the extra space to find a good initial layout for the
program. In fact, this problem is treated by Stanat and Magd [Stan81] for the
problem of finding the extra space during execution time. The same procedure
can be used to determine statically, at compile time, the initial layout of the

program.

124

Second, there is the problem of the utilization of the network. Note that
the tree network of Magd's machine implements only the communication pat-
terns present in the FP primitives. If one needs more sophisticated patterns of
data movement, one must re-microprogram the machine as was done in the
MMS5 implementation of the matrix multiplication program. At this point, the
question arises why the network in Magd’s machine is a tree network. One
early justification is that reducible applications in FP programs present a high
degree of locality and therefore a tree network is a good candidate. But the
fact that a tree is not sufficiently powerful was realized by Kellman [Kell83]
who presented a proposal to incorporate parallel sorting networks, like the
bitonic sorter of Batcher [Batc68] in a machine architecture similar to Magé’s.
machine. Kellman showed that indeed a more powerful network speeds up
the execution of programs. More recently, Plaisted [Plai85] refined the ideas
of Kellman and proposed a shuffie/exchange network for Magé’s machine. In
Plaisted’s work we note that, in order to fully utilize the power of the network,
one must depart from simple FP primitives and microprogram the machine to
realize the more elaborated data movement patterns. He then shows a
microprogrammed implementation of the matrix multiplication program that
runs in O (log2n), in contrast with the O(n?) obtained by the original machine
with the tree network. Here, we return to the aspect discussed in the last sec-
tion: there is no point in providing a powerful network if the machine is going
to interpret the basic FP primitives only. Again, the transformation techniques
presented in this work are of help here since the algebraic equations generated
by the compiler can be used to calculate the switch settings of the network at

compile time, thus exploiting the full capabilities of the network.

125

CHAPTER 6
CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

6.1 Conclusions

The applicative style of programming presents an alternative paradigm
for the specification of algorithms. Functional languages provide the program-
mer with a powerful high-level tool for the design of programs. They present
many advantages such as referential transparency, freedom from side-effects,
expandability and modularity. Also, the cleaner and concise semantics, based
on the mathematical concept of functions, allows for an easier verification of
the correctness of functional programs. Finally, implicit and explicit parallel-
ism are easily representable in functional languages. All these reasons make
functional languages a prime candidate for the basis of future generation com-

puter systems.

However, there are sources of inefficiency in the execution of func-
tional programs that are likely to interfere in performance irrespective of
machine implementation. These sources of inefﬁciency are related to exces-
sive data movement and excessive data copying that can occur in functional
programs as a result of the programming style. The dissertation began by
identifying these problems and then we worked on a new approach to improve

the efficiency in the execution of functional programs.

126

The dissertation showed how structural transformation techniques can
be applied at compile time in the context of functional programs. Although
functional language systems have traditionally been interpretive, we see no
reason why compilation cannot be applied to them. The freedom from side-
effects presented by functional languages is a big asset for the compiler
designer, resulting in a much simpler data-flow analysis of programs as com-
pared with the case of imperative programs. Furthermore, the powerful
mathematical properties of functional languages can be used — as they were in

this work — to further increase the scope of compilation.

The algebra of the language was used to develop an algebra of struc-
tural computations. This algebra is then used as the basis for the development -
of the compiler. In the compilation process, algebraic equations are used to
represent the structure and the location of FP objects in a given memory
organization. The manipulation of these algebraic equations allows the solu-
tion of some FP primitives at compile time; this process minimizes the amount
of data replication and data movement required by the original FP program.
The specific result is a more efficient run-time environment with respect to a

given architecture for FP programs.

An analysis of the compiler on a variety of programs showed that
indeed savings in data movement and data replication are obtained when FP
programs are compiled. The analysis also showed that the class of problems
that benefits most from the compilation approach is composed of programs

that manipulate regular data structures such as vectors and matrices.

127

The structural transformation techniques were also shown to be useful
when the machine model is not an uniprocessor. Some vector operations as
well as some actual vector problems were implemented in FP and the analysis
of their performance showed an improvement when the structural transforma-
tions were applied. Another aspect of multiprocessor machines that also can
take advantage of the techniques is the control of interconnection networks.
The algebraic equations that describe the positions of the FP objects can be
utilized as input specification for algorithms that calculate the switch settings
of these networks, thereby solving this problem at compile time. Finally,
Magé’s machine, a string-reduction architecture developed for the specific
purpose of executing FP programs, was examined, and we indicated how it

can take advantage of the structural transformation techniques.
In summary, this work has shown:

L. the development of an algebra of structural transformations for FP pro-
grams that is used as a basis for the implementation of compiler tech-

niques for the an FP system;

2 the description of a compiler for FP that utilizes algebraic equations to
represent the structure and the location of FP objects in a given
memory organization. The manipulatiori of these algebraic equations
allows the solution of some FP primitives at compile time; this process
minimizes the amount of data replication and data movement required
by the original FP program, resulting in an efficient run-time environ-

ment;

128

3. the identification of areas where the compilation of FP programs can
enhance the execution performance for pipelined computers, intercon-

nections networks and non-von Neumann architectures.
6.2 Suggestions for Future Research

This section identifies areas that need to be further explored to comple-

ment and add to the results achieved in this work.

The implementation of the structural transformations for FP in this
work was done using a string reduction semantics. The compiler described in
Chapter 3 uses the string reduction model and also the performance results of
Chapter 4 were based on a model that assumed string reduction. The same
transformation techniques should also be implemented in a graph reduct:ion-
model of execution for FP. Since graph reduction uses pointers to share partial
results, different methods for the manipulation of the object descriptors must
be used. The performance results of a graph reduction implementation are
also expected to be different because of possible additional savings in memory

requirements caused by the use of sharing.

One aspect that was neglected in this work was the problem of the syn-
tax of FP. A great number of users will find that the FP syntax used here is
cumbersome and does not expose the algorithms in a natural way. Some of
these weaknesses, such as the syntax of expressions, can be considered minor,
since there is no difficulty in changing the prefix notation used here to an infix
notation that is considered to be more readable for humans. In fact, the FP

interpreter presented in [Worl84] allows infix expressions.

129

Another syntactic aspect that deserves more work is the use of naming
in functional languages. Since FP does not provide any facility for naming
objects, they must be located by using selectors. This is the reason for the pro-
fusion of selectors in FP programs, as was determined in Section 2.2. When a
programmer implements an algorithm in FP, he must first lay out the input
object. Sub-objects are then referenced by position using selectors. The initial
layout is an arbitrary choice, but after it is defined, the programmer must care-
fully follow it. If he wants to change the layout after the program was written
he will have to change the selectors in the program. While some might argue
that there is nothing wrong with this approach, it certainly is inconvenient, and
some evidence suggests that it is as a major source of errors in the develop-
ment of FP programs. Some work has been done in this area; for example, the
interpreter cited above provides facility for the naming of input and output
objects. Note that when naming is introduced in FP, care must be taken to
preserve the semantics of the language. That is, by introducing naming one

should not use it as variable names are used in procedural languages.

Another point for further work is the integration of the ideas presented
in this work with ideas of other researchers that were described in Chapter 1.
This integration could be attempted in the development of a real, production-
style version of a compiler for FP or an FP-like language with the syntactic
improvements discussed in the previous paragraph. The implementation of
such a compiler should be attempted in conventional machines as well as is
vector processing machines. The existence of these compilers will make it
possible to compare their performance with today’s preferred way of describ-

ing algorithms for computers, namely, procedural languages. We think that

130

full acceptance of the applicative style of programming by the software
engineering community will occur only when such a production version of an

FP system is developed.

The research described here could also be extended to other functional
languages. Each proposed functional language has its own characteristics, and
individual studies must be done to determine how applicable are the ideas
presented here for each case. In particular, a good first candidate is the
language Nial (Nested Interactive Array Language), presented in [Jenk86].
Although Nial was designed to support several styles of programming, for
example, it has imperative constructs such as for, while, it encourages the
applicative style of programming rather than imperative programming.-
Recursion and function applications using functional primitives, called opera-'
tors in Nial, and functional forms, called transformers in Nial, are preferable
to imperative control mechanisms. In fact, functional-style programs in Nial
have a great similarity with FP programs. In Nial all data objects are treated
as nested arrays. Atomic data is viewed as self-nesting arrays with no axes.
Lists are arrays along one axis. It seems that the techniques developed in this
work fit nicely in Nial and an integration of both approaches deserves further

research.

131

[Abra70]
{Aho86]

[Amo82]

[Arvi82]

[Arvi78]

[Arvi80]

[Augu84]

[Back72]

[Back78]

REFERENCES

Abrams, P.S., An APL Machine, Ph.D. Dissertation, Stan-
ford University, Stanford, CA (January 1970).

Aho, A.V., R. Sethi, and J.D. Ullman, Compilers: Princi-
ples, Techniques and Tools, Addison-Wesley (1986).

Amold, C.N., ‘“‘Performance Evaluation of Three
Automatic Vectorizer Packages,”” Proceedings of the

1982 International Conference on Parallel Processing,
pp.235-242 (August 24-27, 1982).

Arvind and K.P. Gostelow, ‘‘The U-Interpreter,”’ [EEE
Computer 15(2), pp.42-49 (February 1982).

Arvind, K.P. Gostelow, and W. Plouffe, ‘‘An Asynchro-
nous Prc;{;ramming Language and Computing Machine,”’
Technical Report 114a, Department of Information and

Computer Science, University of California, Irvine
{December 1978).

Arvind and R.E. Thomas, ‘‘I-Structures: An Efficient Data
leg for Functional Languages,”” Technical Memo 178,

IT Laboratory for Computer Science , Cambridge,
Mass. (September 1980).

Augustsson, L., *‘A Compiler for Lazy ML,”” Conference
Record of the 1984 Symposium on LISP and Functional
Programming, pp.218-227 (August 6-8, 1984).

Backus, J., ‘‘Reduction Languages and Variable Free Pro-
gamming},” Research Report 1010, IBM Yorktown
eights, NY (April 7, 1972).

Backus, J., ‘‘Can Programming be Liberated from the von
Neumann Style? A tunctional SLer and Its Algebra of
Programs,”” Communications of the ACM 21(8), pp.613-
641 (August 1978).

132

[Bade83]

[Batc68]

[Bell84]

[Berk751

[Budd84]

(Burr77]

[(Burs77)

[Burs80]

[Cart85]

{Clar80]

[Cray76]

Baden, S.B., Berkeley FP User’s Manual, Rev. 4.1, Com-
uter Science Division, University of California, Berkeley
March 25, 1983).

Batcher, K.E., ‘‘Sorting Networks and Their Ag};lica-
Eilogngé’)’ Proceedings of the AFIPS SJCC 32, pp.307-314

Bellegarde, F., ‘‘Rewriting Systems on FP_Expressions
that Reduce the Number of Sequences They Yield,”
Conference Record of the 1984 Symposium on LISP and
Functional Programming, pp.63-73 (August 6-8, 1584).

Berkling, K.J., ‘‘Reduction Languages for Reduction
Machines,”’ Proceedings of the Second Annual Meeting of
g‘zorr{%%t;)r Architecture , pp.133-138, IEEE (January 20-

Budd, T.A., ‘““‘An APL Compiler for a Vector Processor,”
ACM Transactions on Programming Languages and Sys-
tems 6(3), pp.297-313 (July 1984). :

Burroughs-Corporation, ‘‘Burroughs Scientific Processor
- Implementation of Fortran,”” Burroughs Document
6139E (1977).

Burstal, R.M. and J. Darlington, *‘A Transformation Sys-
tem for Developing Recursive Pro%Tams," Journal of the
ACM 24(1), pp.44-67 (January 1977).

Burstall, R.M., D.B. MacQueen, and D.T. Sannella,
‘““HOPE: An Experimental Aﬂjlicativc Language,”” LISP
Conference Record, pp.136-143 (1980).

Cartwright, R., ‘‘Types as Intervals,”” Conference Record
of the Twelfth Annual Symfosium on Principles of Pro-
gramming Languages, pp.22-36 (January 14-16, 1955).

Clarke, T.J.W., P.1.S. Gladstone, C.D. MacLean, and A.C.
Norman, ““‘SKIM - The S, K, I Reduction Machine,”
ﬁrgogcgfdings of the LISP-80 Conference, pp.128-135

Cray-Corporation, ‘‘CRAY-1 Comguter System: Refer-

ence Manual,”’ Cray Research Publication 2240004
(1976).

133

[Dari81]

[Denn74]

[Denn80]

[Gaud82]

[Gaud85]

[Givig4]

[Guib78]

[Gurd85]

[Hock81]

[Hudag35]

[Isla81]

Darlington, J. and M. Reeve, ‘‘ALICE - A Multitprocessor
Reduction Machine for the Parallel Evaluation of Applica-
tive Languages,”” ACM Conference on Functional
Languages and Architectures, pp.65-75 (1981).

Dennis, J.D., ‘‘First Version of a Data Flow Procedure
Language,”” Lecture Notes in Computer Science 19,
pp.362-376, Springer-Verlag (1974).

Dennis, J.D., ‘‘Data Flow Supercomputers,”” [EEE Com-
puter 13(11), pp.48-56 (November 1980).

Gaudiot, J.-L.., On Program Decomposition and Partition-
ing in Data Flow Systems, Ph.D. Dissertation, Computer
Science Department, University of California, Los
Angeles, CA (December 1982).

Gaudiot, J.-L. and M.D. Ercegovac, ‘‘Performance
Evaluation of a Simulated Data-Flow Computer with
Low-Resolution Actors,”” Journal of Parallel and Distri-
buted Computing 2, pp.321-351 (1985).

Givler, J.S. and R.B. Kieburtz, ‘‘Schema Recognition for
Program Transformations,”” Conference Record of the
1984 Symposium on LISP and Functional Programming,
pp.74-84 (August 6-8, 1984).

Guibas, L.J. and D.K. Wyatt, ‘‘Compilation and Delayed
Evaluation in APL,”” Conference Record of the Fifth
Annual ACM Symposium on Principles of Programming
Languages, pp.1-8 (January 23-25, 1978).

Gurd, J.R., C.C. Kirkham, and I. Watson, ‘‘The Manches-
ter Prototgtfe Dataflow Computer,”” Communications of
the ACM 28(1) (January 1985).

Hockney, R.W. and C.R. Jesshope, Parallel Computers,
Adam Hilger Ltd, Bristol (1981).

Hudak, P. and A. Bloss, ‘‘The Aggregate Update Problem
in Functional Programmin ystems,”” Conference
Record of the 12th Annual ACM Symposium on Principles
% g’sr)ogramming Languages, pp.300-314 (January 14-16,

Islam, N., T.J. Myers, and P. Broome, ‘‘A Simple Optim-
izer for FP-like Languages,”’ Proceedings of the 1981
ACM Conference on Functional Programming Languages
agg)Computer Architecture, pp.33-39 (October 18-22,
1981).

134

[Iver62]

[Jenk86]

[John75]

[Kasc79]

[Kata84]

[Kell79]

[Kell83]

[Kern78]

{Kieb81]

{Kuck78]

Iverson, K.E., A Programming Language, John Wiley and
Sons, New York, NY (1962).

Jenkins, M.A., J.I. Gla;Fow, and C.D. McCrosky, *‘Pro-
amming Styles in Nial,”” /EEE Software 3(1), pp.46-55
January 1986).

Johnson, S.C., ““Yacc: Yet Another Compiler Compiler,”
Computing Science Technical Report No. 32, Bell
Laboratories, Murray Hill, NJ (1975).

Kascic, M.J. Jr., *‘Vector Processing on the CYBER
200,”” pp. 237-270 in Infotech State of the Art Report:
Supercomputers - Vol. 2, ed. C.R. Jesshope and R.W.
Hockney, Infotech Intl. Ltd. (1979).

Katayama, T., ‘“Type Inference and T)Ee Checking for
Functional Programming Languages - A Reduced Compu-
tation Approach,” Conj%rence Record of the 1984 Sympo-
sium on LISP and Functional Programming, pp.263-272
(August 6-8, 1984). -

Keller, R.M., G. Lindstrom, and S.S. Patil, *‘A Loosely-
Coupled Applicative Multiprocessing System,’’ Proceed-
ings of the AFIPS NCC 1979, pp.613-622, AFIPS Press,
Montvale, NJ (June 4-7, 1979).

Kellman, J.N., Parallel Execution of Functional Pro-
grams, M.Sc. Dissertation, Computer Science Depart-
1;19e8n§5 University of California, Los Angeles, CA (January

Kernighan, B.W. and D.M. Ritchie, The C Programming
f.ia;%u)age, Prentice-Hall, Inc., Englewood Cliffs, NJ

Kieburtz, R.B. and J. Shultis, ‘“Transformation of FP Pro-
gram Schemes,”” Proceedings of the 1981 ACM Confer-
ence on Functional Programming Lanéuages and Com-
puter Architecture, pp.41-48 (October 13-22, 1981).

Kuck, D., The Structure of Computers and Computations -
Volume I, John Wiley & Sons, Inc. (1978).

135

[Kuck81]

[Lesk75])

[(Mago84a]

[Mago79]

[Mago80]

[Mago81]

[Mago84]

[Mann75]

{Mann79]

[McCa60]

McGr79]

Kuck, D.J., R.H. Kuhn, D.A. Padua, B. Leasure, and M.
Wolfe, ‘‘Dependence Graphs and Compiler Optimiza-
tion,”’ Proceedings of the 8th ACM Symposium on the
Principles of Programming Languages, pp.207-218 (Janu-

ary 1981).

Lesk, M.E. and E. Schmidt, ‘‘Lex - A Lexical Analyzer
Generator,”’ Computing Science Technical Report No. 39,
Bell Laboratories, Murray Hill, NJ (October 1975).

Mago, G. and D. Middleton, ‘‘The FFP Machine - A Pro-
gress Report,”” Proceedings of the International Workshop
on High-Level Computer Architecture 84, pp.5.13-5.25
{(May 21-25, 1984).

Mago, G.A., ‘A Network of Microprocessors to Execute
Reduction Languages,’”’ International Journal of Com-
puter and Information Science 8(5, 6), pp.349-385, 435-
471 (1979). (in two parts).

Mago, G.A., *“‘A Cellular Computer Architecture for
Functional Programmin%," Proceedings of the COMP-
CON Fall 1980, pp.179-187 (1980).

Mago, G.A., ‘‘Copying Operands Versus Copying
Results: A Solution to the Problem of Large Operands in
FFP’s,”” Proceedings of the 1981 ACM Confgrence on
Functional Programming Languages and Computer
Architecture, pp.93-97 (October 18-22, 1981).

Mago, G.A., D.F, Stanat, and A, Koster, ‘‘Program Exe-
cution on a Cellular Comllautcr: Some Matrix Algo-
rithms,”’ Unpublished Draft (1984).

Manna, Z. and R. Waldinger, “Knowled%e and Reasonin
Hgl;gggram Sysnthesis,”’ Artificial Intelligence 6, p.17§

Manna, Z. and R. Waldinger, ‘‘Synthesis: Dreams => Pro-
rams,”’ [EEE Transactions on Software Engineering
E-5(4), pp.157-164 (July 1979).

McCarthy, J., ‘*‘Recursive Functions of Symbolic Expres-
sions and their Computation by Machine,”” Communica-
tions of the ACM 3(4), pp.184-195 (April 1960).

McGraw, JR., ‘“‘Data Flow Com utin?: Software
Development,” Proceedings of the IEEE International
Conference on Distributed Systems, pp.242-251 (1979).

136

(McGr83)

[Mint76]

[Mish85]

[Morr80]

[Padu80]

[Park80]

[Paul75]

[Pend86]

{Perr79]

[Pett84]

[Plai85]

McGraw, J.R., *‘SISAL - Streams and Iteration in a
Single-Assignment Language,”” Language Reference
Manual (version 1.0), Lawrence Livermore Laboratory ,
Livermore, CA (July 1983).

Minter, C.R., ‘A Machine Design for Efficient Implemen-
tation of APL,”’ Research Report 81, Yale Umversity,
New Haven, CT (1976).

Mishra, P. and U.S. Reddy, ‘‘Declaration-Free Type
Checking,” Conference Record of the Twelfth Annual
Syn;posium on Princéples ? Programming Languages,
pp.7-21 (January 14-16, 1985).

Morris, J.H., E. Schmidt, and P.L. Wadler, ‘*Experience
with an Applicative String Processing Language,”
Proceedings of the ACM Symposium on Principles of Pro-
gramming Languages, pp.32-46 (July 1980).

Padua, D.A., D.J. Kuck, and D.H. Lawrie, ‘*High-Speed
Multiprocessors and Compilation Techniques,”” [EEE
Transactions on Computers C-29(9), pp.763-776 (Sep-
tember 1980).)
Parker, D.S., “‘Notes on Shuffie/Exchange-Type Switch-
ing Networks,”” /EEE Transactions on Computers C-
29(3), pp.213-222 (March 1980).

Paul, G. and M.W. Wilson, ‘‘The Vectran Language: An
Experimental Language for Vector/Matrix Array Process-
ing,”” IBM Research Report 320-34 (1975).

Pendergrast, J.S. and B.G. Ryder, ““FPOPT: A Globall

Olgtimizin Compiler for FP,”” Technical Report DCS-
TR-175, Rutgers Universit}f, Department of Computer
Science, New Brunswick, NJ (March 1986).

Perrott, R.H., *‘A Language for Array and Vector Proces-
sors,”” ACM Transactions on Programming Languages
and Systems 1(2), pp.177-195 (October 1979).

Pettorossi, A., ‘‘A Powerful Strategy for Deriving
Efficient Programs by Transformation,”” Conference
Record of the 1984 Symposium on LISP and Functional
Programming, pp.273-281 (August 6-8, 1984).

Plaisted, D.A., ‘‘An Architecture for Fast Data Movement
in the FFP Machine,”’ Conference on Functional Pro-
gramming Languages and Computer Architecture,
pp.147-163, Lecture Notes in Computer Science N. 201,

137

[Ravi86a]

[Ravi86]

[Riga84]

[Rumb77]

[Sain84]

[Schi84]

[Stan81]

[Stev75]

[Syre77]

[Thom78]

Springer-Verlag (September 16-19, 19835).

Ravi, T.M., Partitioning and Allocation of Functional
Programs for Data Flow Processors, M.Sc. Thesis, Com-
puter Science De%artment, University of California, Los
Angeles (April 1986).

Ravi, TM. and M.D. Ercegovac, ‘‘Allocation for the
SANDAC Multiprocessor System,”” Technical Report No.,
CSD-860059, Computer Science Department, University
of California, Los Angeles, CA (February 1986).

Ri%anati, J.P. and P.B. Schneck, ‘‘Supercomputing,”
IEEE Computer 17(10), pp.97-113 (October 1984).

Rumbaugh, J.E., ‘“‘A Data Flow Multiprocessor,”” IEEE
Transactions on Computers C-26(2), pp.138-146 (Febru-

ary 1977).

Saint-James, E., ‘“‘Recursion is More Efficient than Itera-
tion,”’ Conference Record of the 1984 Symposium on LISP
clzrgugi41)¢ unctional Programming, pp.228-234 (August 6-8,

Schlag, M.D.F., ‘‘Extracting Geometry from FP for VLSI
Layout,”” Technical Report No. CSD-840043, Computer
Science Department, University of California, Los
Angeles (October 1984).

Stanat, D.F. and G.A. Mago, ‘‘Optimal Storage Manage-
ment in a Cellular Computer,”” Technical Report No. 81-
006, Department of Computer Science, University of
North Carolina at Chapel Hill (1981).

Stevens, K.G. Jr., *“CFD - A Fortran-like Language for
211137511)_LIAC-IV," SIGPLAN Notices 10(3), pp.72-80

Syre, J.C., D. Comte, and N. Hifdi, ‘‘Pipelining, Parallel-
ism and Asynchronism in the LAU System,’” Proceedings

of the 1977 International Conference on Parallel Process-
ing, pp.87-92 (August 1977).

Thompson, C.D., ‘‘Generalized Connection Networks for
Parallel Processor Intercommunication,”” /EEE Transac-
tlig_?g)an Computers C-27(12), pp.1119-1125 (December

138

{Trel82]

[Tum79]

{Turn81]

[Turn82]}

[Wadl81]

[Wadl84]

[Waks68]

[Wass82]

[Will81]

[Will82]

[Wolf81]

Treleaven, P.C., D.R. Brownbridge, and R.P. Hopkins,
“Data-Driven and Demand-Driven Computer Architec-
t1u9r832) ACM Computing Surveys 14(1), pp.93-143 (March

Turner, D.A., ‘“A New Implementation Technique for
Applicative Languages,” Software - Practice and Experi-
ence 9(1), pp.31-49 (January 1979).

Turner, D.A., ““The Semantic Elegance of Applicative
Languages,’” Proceedings of the 1981 ACM Conference
on Functional Programming Languages and Architec-
tures, pp.85-92 (October 18-22, 1981).

Turner, D.A., *‘Recursion Equations as a Programming
Language,”’ pp. 1-28 in Functional Programming and Its
Applications: An Advanced Course, Cambridge Univer-
sity, Cambridge, England (1982).

Wadler, P., ‘‘Applicative Style Programming, Program
Transformation, and List Operators,’grProceegings of the
1981 ACM Conference on Functional Programming
Il,gnzgzualggévgnd Computer Architecture, pp.25-32 (October

Wadler, P., “‘Listlessness is Better than Laziness,”
Conference Record of the 1984 Symposium on LISP and
Functional Programming, pp.43-52 (August 6-8, 1984).

Waksman, A., ‘A Permutation Network,”’ Journal of the
ACM 9(1), pp.159-163 (January 1968).

Wasserman, A.L and S. Gutz, ‘‘The Future of Program-
ming,”" Communications of the ACM 25(3), pp.196-206
(March 1982).

Williams, E.H. Ir., Analysis of FFP Programs for Parallel
Associative Searching, Ph.D. Dissertation, University of
North Carolina at Chapel Hill (1981).

Williams, J.H., *‘On the Development of the Algebra of
Functional Programs,”” ACM Transactions on Program-
Tégg)Languages and Systems 4(4), pp.733-757 (October

Wolfe, M. and B. Leasure, Understanding KAP Output
Listings, Kuck and Associates, Inc. (September 1981).

139

[Worl84] Worley, J., ““The UCLA T-FP User Manual,”’ , Internal
Memorandum, UCLA Computer Science Department,
Los Angeles, CA (June 1984).

140

APPENDIX 1
DESCRIPTION OF FP

Objects

The set of objects Q consists of the atoms and sequences
<X1,X72,..., x> (where x; € Q). (Lisp users should note the similarity to
the list structure syntax; just replace the parenthesis by angle brackets and
commas by blanks. There are no ’quoted’ objects, i.c., "abc). The atoms
uniquely determine the set of valid objects and consist of the numbers, quoted_
ascii strings ("abcd"), and unquoted alphanumeric strings (abc3). There are
three predefined atoms, T and F, that correspond to the logical values 'true’
and ’false’, and the undefined atom ?, bottom. Bottom denotes the value
returned as the result of an undefined operation, e.g., division by zero. The
empty sequence, <>, is also an atom. The following are examples of valid FP

objects:
? 1.47 3888888888888
ab "CD" <1,<2,3>>

<> T <a, <>>

There is one Testriction on object construction: no object may contain the

undefined atom, such an object is itself undefined, e.g., <1, ?>=?. This

141

property is the so-called "bottom preserving property”.

Application

This is the single FP operation and is designated by the colon (":"). For
a function ¢ and an object x, o:x is an application and its meaning is the
object that results from applying G to x (i.e., evaluating 6(x)). We say that ¢

is the operator and that x is the operand. The following are examples of

applications:
+:<7,8> = 15 tl:i<l,2,3> = <2,3>
1:<ab,c,d> = a 2:<cabecd> = b

Functions

All functions (F) map objects into objects, moreover, they are strict:

c:?=? VoeF

To formally characterize the primitive functions, we use a modification of

McCarthy’s conditional expressions [McCa60]:

P1—=¢€1, " \Pn—8En Epti

This statement is interpreted as follows: return function e if the predicate p
is true ,..., e, if p, is true. If none of the predicates are satisfied then

default to e,,;. Itis assumed thatx, x;, y, ¥;, z; € Q.

142

Selector Functions

For a nonzero integer [,

L:x=
X=<X1,X2,..., >N 0< sk =>xy;
X=X, X200 ey > A =k SP <0 Xpppsts ?

pick : <n,x>=
X=<X1,X2, ..., >N 0<n<k o>x,,

X=<X1,X2, 000, X%k> A =k S0 <0 = Xpipe1s ?

The user should note that the function symbols 1,2,3,... are to be dis- -

tinguished from the atoms 1,2,3,....

last : x =
X=<> <>

X=X, X2, ..., X2 N k21 > x5 2

first . x =
X=<> - <>

X=<X1, X2, ..., >N k2l = x; ?
Tail Functions

tl:x=
XxX=<xX1> <>

X=<X], X2, 00, SN K220 X2, .00, >3 ?

143

tlr:x =
X=<x1>—=<>;

X=€X], X2, ..., >N k22 <Xy, .00, X137
Note: There is also a function front that is equivalent to tIr.
Distribute from left and right

distl : x =
X=<y, <>> = <>

X =Y, €21, 20y e v ey 3> KNI, nny <NH>>T

distr: x =
X=<<>,y> = <>

X=CLY 1, Y20 ooy V22> = <Y 1,22,y <YppZ>>3 0
Identity
id:x=x
out:x=x

Out is similar to id. Like id it returns its argument as the result; unlike
id it prints its result on stdout. It is the only function with a side effect. Out is

intended to be used for debugging only.
Append left and right

apndl : x =

X=<y,<>> > <y>;

144

X=<Y, <21y 22,0 eey k2> D <Y Z1, 225+ -0 2> ?

apndr : x =
x=<<>,2> = <2 >

X=<CY 1, Y2 e e ey TEZZZ <Y1, Y20 v v s Yho 223 ?
Transpose

trans : x =
X=<<>,..,<3> = <>}
X=X, X2, eny Xg> > <Y1y oo s ¥m>s T
where x; = <Xj1, ..., Xip> N\ ¥j = <X .00 X,

1<i<k, 1<j<m.
Reverse

reverse : x =
X=<> 2<>

XTXY, X2y e nny Xg> = gy oo, X152
Rotate left and right

rotl ; x =
X=<> 2 <> X=<X1> = <X 1>

X=X, X2, 0y N> N K22 5 <X, 00, X, X132

rotr . x =
X=<> > X=<X > = <X >

X=X, X2 e ey K> A K22 > <X, X1, X2y X-1>3 7

145

Concatenate

concat 1 x =
X=Xy e e e s XUk SK2 s o o0 X2n > oo o s Xy ly e o e s Xpp> 2
ANk,m,np>0->

X1y s s Xls X21r 2+ s X215+ -5 Xmls o o v Xmp >, ?
Concatenate removes all occurrences of the null sequence, e.g.,
concat ;: <<1,3>,<>,<2,4>,<>,<5>> =<1,3,2,4,5>
Pair and Split

pair : x =
X=<X1,X2,..., Xe>N k>0A kiseven —
C<X1,X2>, .., X1 X225
X=<X1,X2,..., Xk>N k>0A kisodd —

<KX L,X2>, . 0., < >>; 7

split: x =
X=<X|> = <<X|>,<>>;
X=<X1,X2,..., Xp> A k>1 -

<Xy s X 2] >0 X [jy2lls - - o Xk >0 2
List of integers

jota:x =
x=0—> <>;

xeNt = <1,2,...,x>;?

146

Predicate (Test) Functions
atom:x=x¢€ atoms > T;x#? - F; ?
eq:x=x=<y,z>Ay=z 5 Tix=<yz>A y#z = F;?
Also less than (<), greater than (>), greater than or equal (>=), less than
or equal (<=), not equal ("=); = is a synonym for eq.
null : x=x=<>->T,x2? - F?
length:x=x=<x1,x2,..., %> =2 k;x=<>->0; ?

Arithmetic/Logical

-

+:x=x=<y,z2>A\ y,z are numbers — y+z,

-

—:x=x=<y,2> A\ y,z are numbers — y-z,

3

* . x =x=<y,z> A\ y,z are numbers — yxz;
[x=x=<y,z>A y,z ate numbers A z#0 = y+z;?
and : <x,y>=x=T->y;x=F->F;?
or:<x,y>=x=F-2y;x=T-T,?

XOr @ <X,y > =
x=TA y=T = F;x=F A y=F = F,
x=TA y=F > T;x=FA y=T>T;?

not: x=x=T—->F,x=F->T,?

147

Library Routines

sin : x = x is a number — sin(x); ?

asin : x =x is anumber A 1x! €1 — sin~!(x); ?
cos : x = x is a number — cos(x); ?

acos : x =x is anumber A Ixi €1 > cos 1 (x); ?
exp : X =x is a number — ¢%; ?

log : x = x is a positive number — In(x); ?

mod : <x,y>=x and y are numbers = x —y X [x/y];?

Functional Forms

Functional forms define new functions by operating on function and
object parameters of the form. The resultant expressions can be compared
and contrasted to the value-oriented expressions of traditional programming
languages. The distinction lies in the domain of the operators; functional

forms manipulate functions, while traditional operators manipulate values.

One functional form is composition. For two functions ¢ and W the

form ¢ @ denotes their composition:

G@y:x=d:(yx), V xeQ

The constant function takes an object parameter:

148

G%x:y=y=? - x, VxyeQ
The function %? always returns 2.
In the following description of the functional forms, we assume that
£, &, o, 0;, T, and T; are functions and that x, x;, y are objects.
Composition

(c@71):x=0:(T:x)

Construction
[61,...,0,}:x=<01:X,...,0,:X>
Note that construction is also bottom-preserving, e.g.,

[+,/]: <3,0> = <3,?7> =7

Conditional

E->01):x=
Ex)=T—oo0:x;

Ex)=F > 1:x;?

The reader should be aware of the distinction between functional
expressions, in the variant of McCarthy’s conditional expression, and the
functional form introduced here. In the former case the result is a value, while

in the latter case the result is a function. Unlike Backus’ FP, the conditional

149

form must be enclosed in parenthesis, e.g.,
(isNegative -> - @ [%0,id] ; id)

Constant

Dxy=y=2->2x, Vel

This function returns its object parameter as its result.

Right Insert

lox =
xX=<>—er:x;
X=<X1> 9 X1;
X=<X1,X2, ..., >N k225 0:<xy, lG:<x2, ..., xx>>; ?

e.g., 1+:<4,5,6> =15,
If o has aright identity element ¢y, then lg:<> = ef, €.g.,
+:<>=0and 1*: <> =1

Currently, identity functions are defined for + (0), - (0), * (1), / (1); also for

and (T), or (F), xor (F). All other unit functions default to bottom (?).
Tree Insert

|o:x=
X=<>2eéfri X,
XxX=<X1>—>X1,

X=<X1, X2, ..., >N k>l =

150

g:<|oi<xy, . WX n)>, | O <X el - - Xk>>5 7

e.g.,

| +:<4,5,6,7> = +:<+:<4,5>,+:<6,7>> =15
Tree insert uses the same identity functions as right insert.
Apply to All
&oix=
x=<> - <>}
X=<X], X2, ..., Xg> = <OX1|,..., O0>; ?
User Defined Functions
An FP definition is entered as follows:
{fn-name fn-form},

where fn-name is an ascii string consisting of letters, numbers and the under-
line symbol, and fn-form is any valid functional form, including a single prim-

itive or defined function. For example the function
{factorial '* @ iota}

is the non-recursive definition of the factorial function. Since FP systems are
applicative it is permissible to substitute the actual definition of a function for
any reference to it in a functional form: if f=1@2 then

fix=1@2:x, Vxe.

151

References to undefined functions bottom out:

fix=? VxeQ, f¢F

152

APPENDIX 2
SYMBOLIC STRUCTURAL TRANSFORMATIONS FOR FP

In this appendix we describe the basic structural transformations
induced by each FP primitive. A summary of these transformations was
presented in Chapter 2. The transformations induced by the FP functional
forms are completely described in Chapter 2. In the description, the notation
f:s — t means that a FP function f applied to an object of structure s returns

an object of structure t.

Selectors: k: <5, 82, -, sp>and 1<k<n = 53 A
For homogeneous sequences:

k: <s "> and 1<k<n — s5%: A

last: <> = <>;
<51, 82, "', sp>and n2l =25, A
For homogeneous sequences:

last: <s!®> and n21 = s A

first: <> — <>;
<51, 82, ‘', sp>and n2l =5 A
For homogeneous sequences:

first: <s > and n21 = s L A

153

tl: <ED> = <>
<$1,82, ", > and n22 5 <53, 83, ", > A
For homogeneous sequences:

tl: <s "> and n22 — <s%¥1>: A

tlr: <> <>
<51,82, ", Spy>and n22 5 <51, 52, ***, Sp-1>1 A
For homogeneous sequences:

tlr: <s 1> and n22 = <51 I A

distl: <s, <> > = <>;
<s, <t > o <c<q, 15 5 A

Restriction: Second element is a homogeneous sequence,

distr: < <>, t> > <>;
<<sts 1> s <<t s A

Restriction: First element is a homogeneous sequence.
id: s

apnd!: <5, <>> 2 <L5>;
<8 <y, ty, L, L3> LS L,y k> A
For homogeneous sequences: '
<s, <tWs> 5 <y, 175 A
Special case:

<t, <ttilrss 5 < plintl 5. A

apndr: < <>, 8>~ <85>

154

< <851, 87, "ty Sp>, > =<5, 8, e, S A
For homogeneous sequences:

<<sts 1> <s oA

Special case:

<<slPs g5y <csintl 5o A

trans: < <>"> = <>, n21;

< <simslin gy coegbasim s n>1; A

Restriction: Homogeneous sequences.

reverse: <> > <>,

rotl:

rotr:

<sh>-o<s"> A

Restriction: Homogeneous sequence under Representation 1.

<> = <>
<st>o<s> A

Restriction: Homogeneous sequence under Representation 1.

<> o <>
<st>o<s"> A

Restriction: Homogeneous sequence under Representation 1.

concat:

LS Ly S US> s Smls T S>>, ko mon>0-
<811y Sl T Smls T S > A

concat removes all occurrences of the null sequence.

pair: <s">—<<s?>M2 5 A

155

Restrictions: Homogeneous sequence and n even.

1:n/2 ni2+1:n

split: <! > —» < <5 > <s >> A

Restrictions: Homogeneous sequence and » even.

atom: s — q.

eq: <s,1>—a

Moreover, if s#t, eq: <s, t >— F.

2

<, >, >z, <=, 1=t <a“> - a A
null: <>—> T, F
length: <$1, 82, ", S>>

<>=0;A
For homogeneous sequences:

length: <s'*> = n; A

2

o ¥/ <a“>-a A

2

and, or, xor: <a“> = a; A

not: a—>a Al

iota; a — <a>, where n>0, n integer; A
In general, n is indeterminate. However, iota can be solved if applied
to a (compile time) constant:
iota @ %3:x = <123>
iota @ length: <abc> = <12 3>

156

pick: <a, <s">> s
Restriction: Homogeneous sequences under Representation 1.

(Value of a is indeterminate).

157

APPENDIX 3

FP IMPLEMENTATION OF THE LAWRENCE
LIVERMORE LABORATORY KERNELS

In the next pages we show the FP implementation of 10 of the 14
Livermore Kernels as described in [Riga84]. For each kernel, the original
FORTRAN description is presented first, followed by the FP description. The

FP implementations expose the maximum parallelism present in each loop.

The kernels 4, 8, 13 and 14 are not shown because they contain indirect
addressing in the form of A (B(I)). The FP implementation of this type of
FORTRAN addressing, as was discussed in Chapter 5, implies use of the FP
primitive pick which is not solved by the compilation techniques described in

Chapter 3.

158

Kernel 1: 1-dimensional hydrodynamics excerpt
FORTRAN:
DO1K=1,400

XX) = Q+ Y(X) * R*Z(K+10) + S*Z(K+11}))
1 CONTINUE

FP: input object: < Y(1:k), Z(1:k+11) >
output object: X(1:k)

(Zkplus10 1@ HEUERIERUERI@RIARU@RUARUIERWU@2) # select Z(11:k+10)
(Zkplusll 1@ U@ U@ UEUEUERUARUEUARUIARU@2} # select Z(12:k+11)
{Yk 1} #select Y(1:k)

{R%]1) #constants

{S %1} # (arbitrary values are assigned here)

(Q%1}

(align [Yk, Zkplus10, Zkplus11] } # align operands

Xk +@Q*@I[1,+@*@[R,2,*@(S.311]11} # expression (Xk)

#LOOP:

{LLL1 &Xk@®@ #all atonce

trans @ # put operands together
align

Figure A3.1 - Livermore Kernel No. 1

159

Kernel 2: Unrolled Inner Product

DO2K=1,996,5
Q = Q + ZKY*X(K) + ZK+1)*X(K+1) + Z(K+2)*X(K+2)
+ Z(K+IP X (K+3) + Z(K+4)*X(K+4)
2 CONTINUE

Kernel 3: Inner Product
DO3K=1,1000

Q=Q+Z(K)*X(K)
3 CONTINUE

FP: Both kemels have the same FP implementation
input object: < Z(1:n), X{l:n) >
output object: Q

{LLL2 (4+)@ &* @ trans)

Figure A3.2 - Livermore Kernels Nos. 2 and 3

160

Kernel §: Tri-diagonal elimination, below diagonal
FORTRAN:

DO 5T =2,998,3
XM =ZM * (Y(D-X(I-1))
X(-1) = Z@+1) * (Y(I+1) - X(T)
X(1-2) = Z{A+2) * (Y(+2) - X([+1))
5 CONTINUE

this loop is equivalent to:
DO51=2,1000

X(D = Z(M * (YD - X(-1)
5 CONTINUE

FP: Input object: < <x1> Y(l:n) Z(1:n) >
Qutput object: X(2:n)

{setup [1, tI@2, @31}
{recur (null@2 -> 1;
recur @ [apndr@][1, expression], U@2, U@3])
}
{expression * @ (1@3, - @ (1@2, last@1]])

{LLL5 recur @ setup)

Figure A3.3 - Livermore Kernel No. 5 - First Version

161

Kernel 5: Tri-diagonal elimination, below diagonal (second version)
Kernel 5 can be rewriuen as:
FORTRAN:

DOS51=12, 1000
XM =Z(D*Y(D - ZH*X{I-1)
5 CONTINUE

In the above form we see that all Z(I)*Y(I) can be done in parallel
before the recurrence or:

DO 551=2,1000

WO =ZM*Y(D
55 CONTINUE
DO5I=2,1000

XM =w{) - ZI)*X(I-1)
5 CONTINUE

The FP description would be:
Input object: < <x1> Y(l:n) Z(1:n) >
Qutput object: X(2:n)
{phase! [1, # keep x1
&* @ trans @ [U@2, U@3], # generale W
@3] #keep2
}

(recur (nuli@2 -> 1;
recur @ [apndr@[1, expression], @2, ti@3])
}

{expression -@ [1@2,* @ [1@3, las@1]] }

{LLL5 recur @ phasel}

Figure A3.4 - Livermore Kernel No. 5 - Second Version

162

Kernel 6. Tri-diagonal elimination, above diagonal
FORTRAN:

DO6J=3,999,3
I=1000-J+3
XM= X(O) - ZAP*XI+1)
X(-1) = X(1-1) - Z(1-1)*X(D
X(1-2) = X(I-2) - Z(I-2)*X{I-1)
6 CONTINUE

This loop can be rewritten as:

DO6J=1,999,1
I=1000-J+1
XD = XD - ZD*X{1+1)
6 CONTINUE

FP: input object: < X(1:n+1) Z(1:n) >

output object X(1:n)
(setup [@Ur@1, [last@1], t@2}}
[recur (mull@1 > 2;

recur @ [Ur@1, apndl@[expression, 2], tr@3])

}
{expression - @ [lasi@1,* @ {1@2, 1@3]])
{LLL6 recur @ setup)

Figure A3.5 - Livermore Kernel No. 6

163

Kernel 7: Equation of State Excerpt
FORTRAN:

DOTM=1,120
X(M) = UM) + R* Z(MM+R*Y(M))+
+ S * (UM+IMR*(UM+2)+R*UM+1}))
7 + 8 * (UM+6) + R*(U(M+5)+R*U(M+4))))

FP: input object: < Y(1:n), Z(1:n), U(1:n+6) >
output object: X(1:n)

{Ym1) #select Y(1:n)

{Zm 2} # select Z(1:n)

{Um EUr@r@w@dr@ tir@ 3} #select U(l:n)
{Umplusl r@ r@ tr@Ur@ ur@u @3) # select U(2:m+1)
(Umplus2 tr@ r@ r @ Ur@d @u @ 3) #select UBin+2)

(Umplus3 r@uUr@ir@t @U @t @3] #select U{4:n+3)
(Umplusd tr@ r@t @i @u @t @3} #select US:n+4)
{Umpluss tr@d @ @u @u @u @3) #select U(6:n+5)
{(Umplus6 t @ @u @Uu @Uu @U @3] #select UT:n+6)

align operands
{align [Ym,Zm, Um, Umplusl, Umplus2, Umplus3, Umplus4, Umplus5, Umplus6 1 }

Expression will be divided in three clusters -- ¢1,¢2,¢3 --

{3 *@[5.+@%."@R,+@[8*@[R,7]1111]}

(2 +@6.*@R.+@[5.*@[R,4]]]]}

el +@B.*@R,+@[2,*@[R,1]]1]}

{(Xm +@[c],*@{S,+@ [c2,c3]]] } #the whole expressioniscl+ S * (c2 +¢3)
#LOOP:

{LLL7 & Xm @ # execute all expressions

trans @ # putelements for each expression together
align } #create and align all copies

Figure A3.6 - Livermore Kernel No. 7

164

Kernel 9: Integrate Predictors

DO9I=1,100
PX(1.I) = BM28 * PX(13,[) + BM27 * PX(12,]) + BM26 * PX(1L,D) +
BM25 * PX(10,]) + BM24 * PX(9,]) + BM23 * PX(8,]) +
BM22 * PX(7.I) +
CO * (PX(5.) + PX(6,]) + PX(3.D)
9 CONTINUE

FP: input object: < BM(22:28) PX(1:13, 1:100) >
output object: PX(1:100)
Note that row 1 is used to hold the output; rows 2 and 4 are not used
in the calculation of the loop. Thus, we begin by throwing away rows
1, 2 and 4 of the matrix PX.
Output will be a vector (comespond to row 1 of PX in the FORTRAN loop).

throw away unneeded rows of PX; align objects for expression calculation
(align [LU@UEUERUAR U@ U@2](3,56]@2])

output of align has two "elements”

part1 to be applied 10 the 1st "element”; calculate ail iterations

for the part of expression that uses PX(7,*) to PX(13,*)

(partl &(!+@ &*) @ trans @ &distl @ trans)

to be applied to the 2nd "element”; calculate all iterations
for the part of expression that uses PX(3,*), PX(5,*) and PX(6,*)

(par2 & (*@I[CO,id]) @ &('+) @ trans)
{CO %1} #constant CO

#LOOP:

{LLL9 &+ @

trans @
[pantl@1, par2@2] @

align

Figure A3.7 - Livermore Kernel No. 9

165

Kernel 18: Difference Predictors
FORTRAN:

DO 101=1, 100
AR = CX(5.)
BR = AR - PX(5.)
PX(5.]) = AR
CR = BR - PX(6.)
PX(6,]) = BR
AR =CR - PX(7.])
PX(7,) = CR
BR = AR - PX(8.])
PX(8,)) = AR
CR = BR - PX(9.1)
PX(,]) = BR
AR = CR - PX(10,)
PX(10.) = CR
BR = AR - PX(11,))
PX(11,]) = AR
CR = BR - PX(12.])
PX(12,)) = BR
PX(14,]) = CR - PX(13.D)

10 PX(13.) = CR

This loop can be rewritten as (all itcrations can be done in parallel):

DO 101=1,100
PX(14]) = CX(5.]) - PX(5.) - PX(6,]) - PX(7.]) - PX(8.])
- PX(9.]) - PX(10,1) - PX(11,]) - PX(12,1) - PX(13,)
PX(13,]) = CX(5,]) - PX(5.]) - PX(6.]) - PX(7.} - PX(8.))
-PX(9.,I) - PX(10,1) - PX(11.I) - PX(12.I)
PX(12,]) = CX(5.1) - PX(5.) - PX{6.]) - PX(7.]) - PX(3.])
- PX(9,D) - PX(10,1) - PX(11,])
PX(11,1) = CX(5.I}) - PX(5.) - PX(6,]) - PX(7.l) - PX(B.)
- PX(9,D) - PX(10.I)
PX(10,) = CX(5.I) - PX(5,]) - PX(6,]) - PX(7.]) - PX(8.D)
-PX(3.D .
PX(9,) = CX(5,D) - PX(5.]) - PX(6,]) - PX(7.]) -PX@&.D
PX(8.y =CX(5.]) - PX{5,]) - PX(6,]) - PX(7.))
PX(7.} =CX(5.]) - PX(5,]) - PX(6,})
PX(6,]) = CX(5,]) - PX(5.])
10 PX(5,]) =CX(5,D)

Figure A3.8 - Livermore Kernel No. 10

166

Kernel 10; Difference Predictors (continued)

FP: input object: < CX(1:n) PX(5:14, 1:n) >
output object: PX(3:14, 1:n)

prepare input object to be operated:
(align &apndl @ rans @ [1, trans@2] }
FP description of each expression of the loop (10 expressions):

{expr [1,
-@[1,2],
“@-@[1213],
@[-@(-@11.2],3].4).
@-@-@(-@(1.2],31,41.5],
@-@l-@l-@l-@[1.2].31,41,516],
@@-@-e-@-@[1,21,3].4],51,6],71,
-@-@-el-@-@-@[-@(1,21,31:41,51,61,71.81,
@l-e-e-e-@-@-@-@(1,2],314],5].6,71.81.9],
]-@[-@ [@-@-@-@[-@[-@(<@[1,21,31,41,5].61,71.8],9],10]
}

#LOOP:

[LLL10 trans @
&expr @
align

Figure A3.8 (cont’d) - Livermore Kernel No. 10

167

Kernel 11: First Sum (first order linear recurrence)
{sum scan of APL)

X(1) = Y(1)

DO 11K =2, 1000
X(K) = X(K-1) + Y(K)

11 CONTINUE

FP: input object: Y{(1:n)
output object: X(1:n)

{setup [[1], u]}
{recur (null@2 -> 1;
recur @ [apndr@[1, expression), 4@2])
}
{expression + @ [lasi@1, 1@2])

{LLL11 recur @ setup}

Figure A3.9 - Livermore Kernel No. 11

Kernel 12: First Difference (Vector subtraction)

DO12K=1,99
X(K) = Y(K+1) - Y(K)
12 CONTINUE

FP: input object: Y(1:n}
output ocbject: X(1:n-1)

(Yk i) (Ykplusl u}
{align [Ykplusl, YK])

{LLL12 &- @ trans @ align }

Figure A3.10 - Livermore Kernel No. 12

168

