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Abstract

This technical report summarizes the research progress on "Distributed Data Base
Management for Real-Time BMD Applications” during the past year. The major goal of the
research is to develop algorithms to reduce task response time and increase fault tolerance of the
system. The research areas include: module allocation and scheduling for distributed systems,
fault tolerant distributed database for both tightly coupled and loosely coupled systems, and

knowledge based distributed database systems.
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INTRODUCTION AND SUMMARY

During the past year, we have concentrated our efforts in the following areas of distribut-
ed systems: module allocation and scheduling for distributed systems, fault tolerance for distri-
buted database systems for both tightly-coupled and loosely-coupled systems, and knowledge

based distributed database systems.
1. MODULE ALLOCATION AND SCHEDULING FOR DISTRIBUTED SYSTEMS

Module allocation and scheduling are two key issues that effect system performance in
distributed systems. Response time is intimately related with module allocation strategy and
processing scheduling policy. Therefore, we shall use response time as a perfonnanée measure

in our investigation.
1.1 Module Replication and Assignment for Real Time Systems

An analytic model is developed to estimate the task response time of distributed systems.
The model considers such factors as interprocessor communications, module precedence rela-
tionship, module scheduling, interconnection network delay, and assignment of modules and
files to computers. A heuristic algorithm for module assignment is developed to iteratively
search for module assignments which provide shorter task response times. Assigning replicated
modules may reduce task response time. Therefore, the algorithm also considers module repli-
cations. Using the sum of task response time and penalty delay for the violations of specified
thread response time requirements as the objective function, an "optimal" module multiplicity
and module allocation can be determined by the proposed algorithm. The detailed model and al-

gorithm are presented in Chapter 2.

Our study revealed that the task response times for a given module assignment (with re-

plications) generated by the algorithm compare closely with that of the simulation. A series of



experiments is also performed to characterize the behavior of the algorithm.
1.2 Scheduling Policies for Real-Time Distributed Processing Systems

Module scheduling and processing consist of two types of overhead, fixed and incremen-
tal. A new scheduling algorithm called Batch Service with Time-out (BST) is proposed. This
new scheduling algorithm processes the invocations of a module in batch thus reducing the fixed
scheduling overhead. Therefore, it is particularly suitable for those applications that require re-
peated module invocations and have high fixed scheduling overhead. An analytical model is
developed in Chapter 3 which provides response time estimate. The analytical results compare
very closely with that of simulations. In addition, the performance comparison between the BST

and FCFS algorithms are given for systems operating under varied environments.
2. FAULT TOLERANT DATABASES

The survivability of distributed systems can be improved with multiple copies of files.
When an update is performed on a copy, the update should be written on all other file copies. If
the computer that is handling the update fails during the update process, all the copies may not
be updated, resulting in mutual inconsistency. We have proposed low cost (that is, short
response time) techniques for maintaining mutual consistency among replicated file copies dur-

ing update failures for both the tightly-coupled and loosely-coupled systems.
2.1 Fault-Tolerant File Updates for Tightly-Coupled Systems

For tightly-coupled systems, we have proposed the fault-tolerant locking protocol (FTL)
that maintains mutual and internal consistency for updating replicated file copies in the event of
computer and/or shared memory failures. The FTL protocol was implemented on the SDC
multi-microcomputer testbed and a set of experiments was conducted to assess the performance

of the FTL protocol. The testbed experiment results reveal that the FTL protocol increases the



CPU utilization by about 20%, and the port-to-port time constraints are met for a typical threat
scenario. The testbed results confirm that the FTL protocol is feasible for BM/C? systems.
Further, a computer failure can be effectively recovered by the FTL protocol. We have also
developed an analytical model to characterize the behavior of FTL and estimate the lock retry
period effect on FTL throughput. The detailed model is presented in Chapter 4. Our results in-
dicate that the performance of the FTL is a function of lock conflict and memory conflict which
in turn depend on the record size, number of records in the system, probability of record refer-
ence and system architecture (in terms of numbéf of processors and basic structure and number
of memory modules). G. Barnett of SDC at Huntsville is currently performing experiments on
FTL with the CMS 2 crossbar switch system. We are working closely with him to validate our

analytical model and predictions.
2.2 Fault-Tolerant File Updates for Loosely-Coupled Systems

When an update is performed at a site, this update should be delivered to those sites that
have a replicated file. All file copies should be identical. This is referred to as mutual consisten-
cy. File copies may, however, differ temporarily during update propagation. If a site fails during
an update broadcast, only a part of the file copies may be updated, resulting in mutual incon-

sistency.

Posting a file update in a system is known as a commit; which implies that the posted up-
date will not be backed out. The site that broadcasts an update to other sites is known as the

coordinator and the receiving sites of the update are the parricipants.

Two-phase commit is a well known method which ensures mutual consistency among file
copies in case of failures. It is also called a blocking commit because when a coordinator site
fails during an update broadcast, other sites are blocked from using the file copies until the failed

coordinator recovers and completes the unfinished commit work. The cost of two-phase commit
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is too high and is not suitable for real time applications. Therefore, we have proposed a low cost
resilient commit protocol that is non-blocking and tolerant to multiple failures [2]. We have stu-
died how to incorporate this commit protocol into existing concurrency control techniques such

as EWP [3] and PSL [4] as well as the procedure for site recovery.

A simulation model is presented in Chapter 5 for studying the behavior of this resilient
commit protocol and to estimate the response time for the commit protocols. We plan to study
such key factors as network protocols, queuing and service delays due to CPU execution require-
ments, and interrupt and message processings. We plan to use this mode! to study the suitability

of applying this resilient commit protocol to the SDI BM/C? environment.
3. KNOWLEDGE BASED DISTRIBUTED DATABASE SYSTEMS
3.1 Optimal Query Processing with Semantic Reasoning

Query processing is a key consideration in database management systems. For real-time
systems query response time is usually used as a system performance measure. Many ap-
proaches have been proposed to improve the performance of query processing. Most of them are
based on "syntactic" considerations; that is, the original query expression is transformed into a
set of algebraically equivalent forms and the lowest cost query processing strategy among this

set of expressions is selected as the optimal query processing policy.

In order to speed up query processing in the SDI BM/C? environment, new knowledge
representations are needed for representing and organizing the vast amount of data. An alterna-
tive approach (Chapter 6) is to use the domain knowledge to transform the given query into a
semantically equivalent but more efficient form for processing. This is known as Semantic
Query Optimization. We are in the process of implementing a Semantic Query Processor (SQP)
on top of a relational database. The rule based knowledge will be represented in PROLOG. The

model can be used to develop a methodology for acquiring and incorporating useful knowledge
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in Semantic Query Optimization and to study the query response time improvement from
different types of knowledge. Initially we shall test out the concept via a relational naval data-

base, and eventually apply the concept to the SDC SDI Battle Management database.
3.2 Multiple Agent Problem Solving for Distributed Systems

In a distributed system such as Distributed Processing Systems or Distributed Database
Systems, most problem solving involves multi-agents (computers). A typical multi-agent prob-
lem solving system consists of a collection of agents, each with such various skills as sensing,
communication, planning and acting. The group as a whole has a set of assigned tasks or a glo-
bal goal. There are three main steps for problem solving in a multi-agent environment. The first
step is to decompose the global goal into subgoals and assign them to appropriate agents. Each
agent then designs its own plan to accomplish its assigned subgoals. Further negotiation is often
required among these subgoals to accomplish the global goal. The final step is to carry out the
global plan,

Contract Net protocol [5] provides a way to decompose the global goal into subgoals and
assign them to appropriate agents and assuming that these subgoals are assigned to the set of
agents are independent. However, subgoals usually are interdependent. The dependency of the
subgoals among agents prevents each agent from devising its own plan. There are two types of
inter-dependency among agents: cooperation and conflict. The goal in multi-agent planning
with inter-dependent subgoals is to minimize conflict and maximize cooperation among agents.
An agent has to devise its own plan while at the same time incorporating the plans of other
agents into it. The problem becomes even more complex when the inter-dependency between
two agents, A and B, is so strong that A cannot proceed without knowing B’s plan first and vice
versa. Thus, thus we reach a deadlock situation. We propose to use a two phase algorithm to
generate a plan for a multi-agent environment to resolve such situations (see Chapter 7). In the

first phase, each agent generates its own individual plan to accomplish its own subgoal without



considering subgoals from other agents. In the second phase, the agents compare and modify
their plans with each other to avoid conflict and improve cooperation. We repeat the second

phase process until the global requirements are satisfied.

Multi-agent problem solving can be applied to a variety of applications such as view in-
tegration for distributed database systems and Battle Management in SDI environment. The da-
tabase at each platform may have a different view of the object. Multi-agent problem solving
may be used for integrating the view of an object at different platforms into a single integrated
view. We may also view each platform as an agent, based on the intergrated input scenario, bat-
tle requirements, and available resources, multi-agent problem solving technique may be used to
solve for the BM strategy. We plan to use the SDC SDI BM/C? database to experiment various

integration techniques and study their cost/performance tradeoffs.
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MODULE REPLICATION AND ASSIGNMENT
FOR REAL-TIME DISTRIBUTED PROCESSING SYSTEMS

1. INTRODUCTION

Computer systems with real-time applications (e.g., process control and space defense)
have many functions that must finish within a specified time period if the systems are to perform
properly. Distributed processing is a cost-effective technique for meeting these performance re-
quirements while providing such features as incremental system growth, potential for improved
system availability, and grace performance degradation in case of failures. In this chapter, we
consider a class of real-time distributed processing systems (RTDPS) in which there is a single

application task and where message passing is used for communication between processors.

The application task of a real-time system is often partitioned into a set of software
modules (or simply, modules). The assignment of those modules to processors affects system
response time, throughput and reliability. Several approaches for module assignment in distri-
buted processing systems have been proposed. These techniques include graph-theoretic,
mathematical programming, and heuristic approaches [CHU80). The key parameters considered
in these approaches are module execution times and communication times. The goal in module
assignment is to balance the processing load among the processors such that either the total sys-

tem time is minimized or computer loads are well balanced.

[STON77] and [RAQ79] use graph-theoretic algorithms which are tractable only for sys-
tems with two computers. Algorithms proposed in [MA82], [EFES21, [CHOUS82] and {SHENS85]
balance the workload on computers but neglect the impact of module precedence relationships.
Further, they assume that the application task is invoked only once. As a result, the queueing

effect from multiple invocations which is an important portion of the the response time is ig-



nored. Moreover, the interconnection network delay is not considered in the module assignment

methods.

Another important issue in sharing the processing workload among processors is to selec-
tively replicate modules on different processors according to the loading conditions. An invoca-
tion for a replicated module is routed to the appropriate module’s resident processors for execu-
tion. As a result, module replications may improve system load balancing, response time, sys-

tem reliability and availability.

The current module assignment algorithms neglect: repeated task invocations, queueing
effects, module precedence relationships, interconnection network delays, and module replica-

tions. The Algorithm proposed in this paper remedies these shortcomings.

Task response time ! in a RTDPS is the time from the invocation of an application task to
the completion of the task execution. Often the application task consists of several sequences of
modules which are referred to as threads. For some applications, the response times of individu-
al threads rather than the entire task, are of interest. Alternatively, task response time may be
defined as the sum of thread response times weighted by certain factors according to the applica-
tion requirements. Since task response time is an important performance measure for RTDPS,
minimizing the response time is the major goal of module assignment. Key factors (parameters)
that affect task response time include IPC, processor loading, module precedence relationships
and interconnection network delay. In a previous paper {CHU84b], a task response time model
was introduced which considers these key parameters. Here we shall use this analytic model for

estimating task response times to perform module assignment.

In this chapter, we shall describe the task response time model. Then a module assign-

ment algorithm based on the model is introduced. The algorithm considers both the module re-

! Mean task response time refers to the mean response time unless otherwise stated.
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plication and assignment simultaneously. Next, we present the algorithm validations by apply-
ing to a simple distributed system and a real-time distributed system for space defense applica-

tions. A series of experiments to characterize the behavior of the algorithm is also presented.
2. TASK RESPONSE TIME MODEL

The application task in a RTDPS is partitioned into a set of modules. The logical struc-
ture and precedence relationships among the modules may be represented by a task control-flow
graph, as shown in Figure 1. The task is repeatedly invoked in accordance with the application
requirements. After a module completes its execution, it sends messages to enable (invoke) its
succeeding module(s) as indicated in the task control-flow graph. In addition, when a module
finishes its execution, it may send messages to update shared data files. Such message ex-
changes among modules are referred to as intermodule communication (IMC) [CHU84a). The
overhead for communication among modules that reside on the same computer is usually small.
If, however, messages are sent between modules that reside on different computers, the messages
are called interprocessor communication (IPC). TPC requires extra processing such as communi-
cation protocol and management of the distributed data files. IPC also incurs interconnection

network delay. Therefore IPC has a more significant impact on system performance than IMC.

Simulation techniques may be used to estimate the response time for RTDPS, but such
approaches are time-consuming and expensive. Queueing networks [BASK75, HEIDS82,
LAZO84] are commonly used to model distributed processing systems. In such models, com-
puters are represented as servers, modules’ invocations as customers, and task invocations
correspond to external arrivals. Customers are routed for service in accordance with the task
control-flow graph and the module assignment. In distributed systems, a module may enable
more than one module (referred to as an and-fork in the control-flow graph). Alternatively, a
module may have several immediate predecessor modules which must complete their executions

before the succeeding module can be executed (referred to as an and-join). When a control-flow
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graph consists of these forks and joins, the routing scheme in the queueing network model be-
comes inadequate to represent the logical relationships among modules. Thus, the system can-
not be represented by a tractable queueing network model. Therefore, we have introduced a new

model to estimate the task response time.

Since a task may be repeatedly invoked and modules are enabled in accordance with the
sequence indicated in the control-flow graph, task response time consists of module waiting
times, module execution times and precedence waiting times. Module waiting time is the time
from a module invocation arrival to the start of its execution on a computer. This waiting time is
the time spent waiting for module executions and IPC processings. Module execution time is the
sum of a module’s execution time and its output IPC (processing) time. Module response time,
on the other hand, refers to the sum of a module’s waiting time and its execution time. The pre-
cedence waiting time is the intermodule synchronization delay resulting from the precedence re-
lationships among modules. Our task response time model consists of two sub-models: the
module response time model and the weighted control-flow graph model. The first sub-model

computes the module response times, while the latter considers the precedence waiting times.
2.1 Module Response Time Model

For a given module assignment, this model is used to compute module response times on
each computer. Module response time includes waiting (queueing) time and module execution
time. If a module needs to send messages to other computers, the output IPC time is included as
a part of the module execution time. These IPC’s are transmitted over the interconnection net-
work, and eventually arrive at their destinations. On the destination computers these input IPC’s
can be viewed as a special module which also contends for processing. Based on the module as-
signment and IMC among modules, IPC times can be obtained. Let module execution times be
characterized by probability distribution functions. Then each computer can be modeled as a

queueing system with its resident modules (customers of different types) of specified service dis-
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tributions. Based on the module assignment, the logical structures among modules and task invo-
cation rate, the invocation rate of each module on the computer can be determined. In queueing
terminology, module invocations are customer arrivals. If several modules on the same comput-

er are invoked simultaneously, this forms a bulk module invocation.

In our model, we assume that 1) module invocation arrivals (single or bulk) are indepen-
dent of each other, and 2) module invocation arrival times are exponentially distributed. Under
these assumptions, each computer becomes an independent queueing system. To illustrate the
concept, let us determine the modules’ response times on a computer that uses first-come-first-

serve (FCFS) scheduling policy ! for module executions.

Consider a computer that has 4 distinct module invocations (single or bulk invocations).
Let the arrival rate for the i** module invocation be A; and the Laplace Transform (L.T.) of the
service requirement be Y; (s) for i=1,2,...h. One of these & module invocations (say the c™
represents all the input IPC on the computer. Then A and Y, (s) become the arrival rate and L.T.
of processing time for the input I[PC. For the i ** invocation of a set S; of distinct module(s), the

corresponding service requirement is Y; ()= 11 X}‘ (s), where X;- (s) is the L.T. of the service
Je8i

time of module j. In case the i** invocation just invokes a single module, S; has one element.

Based on the assumptions 1 and 2, this queueing system is an extension of the regular

h
FCFS M/G/1 queue with total arrival rate A= ¥, A;. The L.T. of service time for each invocation
i=1
h

k' *
arrival is Y*(s)= Y —f Y; (s). For the M/G/1 queue, the first two momeants of the module invo-
i=1

cation waiting time the period from the invocation arrival to the start of its first module execu-

tion, are:

! The model can also be applied to other module scheduling policies by using the corresponding queueing delay
equations.
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Where:

y? = n** moment of service time for i** module invocation,

ho_
p = server utilization = ¥ A;y!,
i=1

w = average module invocation waiting time.

From Eqgs.(1) and (2), we obtain the variance of module invocation waiting time:

h
Zl‘)-)?- h A — 2
o2 =wl - (@) =2y + - Zhi
P 2(1 - p) 3)

During a bulk invocation, a set of modules are invoked at the same time. The operating
system schedules these modules for executions based on the resource requirements, Let the exe-
cution sequence for the bulk invocation be ji ,j2 ,... fk-1 » J& » Jk+1 ».... The response time (a
random variable) for module j; is

k-1
i) =w+ Y x(i) +x()
i=1 4)

where:
w = module invocation waiting time (independent of module invocations as FCFS is
used),
x(j;) = execution time for module Jj; .

Note that the first two terms on the right side of Eq.(4) correspond to the module waiting time
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for module j,. The average response time 7(j;) for module j, can be calculated from the ex-
pected values of Eq.(4). Thus, we have
— k —
TG =w+ 3 x(ji)
i=1 (5)
Since w, x(j;) and x(ji) are independent random variables, the variance, 0',2(jk), of the
response time for module ji is the sum of variances of each component in Eq.(4). Hence,

k
2, 2 2,.
;) =0y + X, 0x(i)
i=1

(6)

where o‘%(j,-) is the variance of execution time for module j; and Gi is given in Eq.(3). For the

case of a single-module invocation, there will be only one module in the execution sequence.

Our previous experiments show that because of the random and asynchronous operations
on computers, the assumptions used in the task response time model are acceptable and generate

accurate module response time estimations L

2.2 Weighted Control-Flow Graph Model

The next step in computing task response time is to consider precedence waiting times.
Our general approach is to classify the types of precedence relationships and to show how pre-
cedence waiting can be computed by mapping the mean and variance of module response times
(computed by the module response time model) onto the control-flow graph as arc weights (Fig-
ure 2), The response time for module i is assigned as the weight for all arcs emerging from
module i in the control-flow graph. If module i has executed and enables module j (on a
different computer), the module enablement message is transmitted via the interconnection net-

work, Assuming the network delay is independent of module response times, the mean and vari-

! In case the independent module invocation assumption gencrate results that are not accurate enough, a model that
considers dependent invocation arrivals may be uscd to estimatc the modules’ response times [CHU84bj.
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ance of network delay 2 can be added to the weight of the arc from module i to j. The task

response time can be estimated from this weighted control-flow graph model.

There are four common types of control-flow subgraphs: sequential thread, and-fork to
and-join, or-fork to or-join, and loop that are based on the logical structures and precedence rela-
tionships among modules (Figures 3 to 6). A task control-flow graph may contain a set of sub-
graphs which are a combination of these basic logical relationships among modules. Each of
these subgraphs can be reduced to a single node graph. Successive graph reductions yield the es-

timation of response time for the complete task.
2.2.1 Sequential Thread Subgraph

The sequential thread subgraph (Figure 3) is a sequence of modules connected in series
where each module (except the last) has a single successor. Modules execute in the sequence in-
dicated by the thread. Assuming that module response times, represented by the arc weights, are
random variables, the total response time of the sequence thread is the sum of the arc weights of

all modules in the thread.
2.2.2 And-Fork to And-Join Subgraph

This subgraph begins from a module which simultaneously enables several succeeding
modules (an and-fork) and ends at a module which is enabled only when all of its preceding
modules have completed their executions (an and-join), as shown in Figure 4. This subgraph
may correspond to the case in which the modules assigned to different computers require con-
current processing. Since sequential threads can be reduced to a single node as mentioned above,
the and-fork to and-join subgraph can be aggregated into several nodes, V;, with response time y;

for i=1,2,..n (Figure 4). Because of the and-join function, the response time of the subgraph is

2 Network delays among any pair of computers may be dilferent depending upon the characteristics of the
interconnection network.
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the maximum of y;’s.

Computing the response time for this subgraph requires the knowledge of the probability
distribution functions for y;’s, which is rather complicated. In this study, we shall emphasize the
average task response time, which can usually be determined by the first two moments of
module response time. Therefore, these moments are derived from the module response time
model. They can be approximated by either Erlangian or hyper-exponential distribution func-
tions [SAUES81]. according to the coefficients of variation of y;’s. Assuming that y;’s are in-
dependent, the joint distribution function for y;’s can be computed. Thus, the mean and variance

of the response time for the subgraph can be obtained.
2.2.3 Or-Fork to Or-Join Subgraph

This type of the subgraph consists of an or-fork and an or-join as depicted in Figure 5. At
the or-fork, the module enables one of its succeeding modules. At the or-join, the succeeding
module can be enabled by any one of its preceding modules. This type of subgraph facilitates
the system to process one of several threads based on certain selection criteria. The branching
probability of each thread’s execution can be measured or estimated from the IMC data. The
response time for the subgraph is the sum of the thread response times weighted by their invoca-

tion probabilities.
2.2.4 Loop Subgraph

Loops are often contained in a task control-flow graph for repeatedly processing a set of
modules for a task invocation. A loop may contain any of the aforementioned subgraphs. After
aggregating these subgraphs, a loop may be represented by a single cyclic node graph, as shown
in Figure 6. The arc weight is the response time of executing a single loop. The response time of
the loop subgraph can be computed from the average number of times that the loop is executed

multiplied by the time required to execute a single loop.
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Simulation experiments have been conducted to validate the task response time model.
Our results reveal that the model yields accurate task response time estimations for different
module assignments with non-exponential module invocation rates under various loading en-

vironments.

3. AN ALGORITHM FOR MODULE ASSIGNMENT WITH MODULE REPLICA-
TIONS

In a distributed system replicating a module on several processors instead of allocating
each module to only one processor, provides sharing of the workload among processors. Each
invocation for these replicated modules is routed to and executed on one of their resident proces-
sors; a special algorithm is required to route the invocations to the appropriate computers. The
routing algorithm assumes that it does not cause system bottleneck. A simple strategy is to route

invocations for a replicated module to its resident processors in a round-robin fashion.

The replication and assignment of modules to computers in a distributed system is re-
ferred to as the replicated module assignment problem (RMAP). A RMAP consists of two key
problems: determining the optimal module multiplicities (i.e., number of copies for each
module), and allocating those module copies to computers such that system performance
specifications can be satisfied. Since both module multiplicities and assignment of module
copies to computers affect system performance, the problems are considered jointly. For simpli-

city, we refer to the replication and assignment of modules to computers as module assignment.

The response time requirements for specific threads of an application task are usually
specified by users. Module replications provide us with more flexibility in system design. The
key question is which modules require replications, and how many copies of them are needed to

minimize task response time and satisfy the thread response time specifications as well.
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3.1 Assumptions

Let us make the following assumptions for the RTDPS:

1. There is no memory space constraint at any processor.

2, Data files are stored at a processor where its resident modules read and/or update the
files.

3. The scheduling discipline for module executions (e.g., first-come first-serve, head-of-line
priorities) at each processor is given.

4. All processors in the system are identical. Thus, the execution time for each module is
the same.

5. The network delay is independent of module assignment. Under this assumption,

although different module assignments may generate different volume of IPC traffic in
the network, we assume the network has sufficient bandwidth and the delay remains un-
changed.

Assumptions 4 and 5 can be relaxed by adjusting the modules’ execution times according to the

processing speed and the interconnection network delay for each module assignment.
3.2 A New Objective Function

To search for optimal module assignment, we need to establish an objective criterion
(function). The RMAP for RTDPS has two objectives: (1) to minimize task response time, and
(2) to satisfy response time specifications for the threads. We shall combine these into a single

objective function as follows.

T, (A)= T(A) if all thread response time requirements are met
BRI T(A)+aTa(A)  otherwise )
where:
T(A) = task response time for module assignment A,
Tp4(A) = a positive-valued penalty delay function for module assignment A,
a = a positive scaling constant to account for the impact of violating thread response

time requirements.
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This new objective function is the sum of task response time, T, and the possible penalty delay,
aT,q. Both T and T,,; depend on module assignment. For a given module assignment, the penal-
ty delay may be added to the objective function to "penalize" violations of thread response time
requirements. Cleax;ly, if the penalty delay scaling constant @ is chosen such that al,; is
sufficiently large when compared with T, T,p; will yield too large of an increase when some
threads violate their response time specifications. Any algorithm for the RMAP searches for a
module assignment with the minimum value of T,p;. The algorithm implicitly avoids those solu-

tions which yield unsatisfactory thread response times.
Let us define the following system parameters:

n = total number of processors in the system,

m = total number of modules in the application task,

G = the control-flow graph of the application task;

X(i) = average execution time for module i;

G,% (i) = variance of execution time for module i;

X =[x(i)} = avector of all average module execution times, i € [1,m];

0‘2(x) = [0',2lc (i)] = a vector of all variances of module execution times, i € [1,m];

D, = average network delay;

0‘2,,_., = variance of network delay;

A = task invocation rate.

Upon the completion of a module execution, a module may communicate with other modules.
The processing time required for sending a message from module i to module j is referred to as
IMC time for the module pair. If the communicating modules are allocated on two different pro-
cessors, then extra processing overhead is required on both the transmitting and receiving com-
puters. The processing time for the IPC (interprocessor communication) at each processor is

equal to the IMC time plus the protocol processing overhead. Let us define the following:
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1.(i,J) = average IMC time for the IMC from module i to j;
62(i, ) = variance of IMC time for the IMC from module i to j;
T. =[7.(i,/)] = average IMC time matrix, i,j € [1,m];
o2(c) = [Gg(i,j)] = variance of IMC time matrix, i,j € [1,m].
The module assignment matrix A = [A; J,-] is an indicating function such that

Ay { L if module ] resides on processor i, i &[L,n), j € [Lm]

0 otherwise

Given these parameters, the task response time for a module assignment A can be computed by
the task response time model. ! Let us use a function F to denote the task response time model.
Then, the task response time of the distributed system for module assignment A can be expressed

as

TA)=F[ G, A, X, 6*(x), Tz, 6%(C), Dpets O pets Ay m, 1.

3.3 Penalty Delay Function

Assume a task consists of £ distinct threads. Let #;(A) be the average response time for
thread i for module assignment A, and R; be the average response time requirement for thread i,
The response time overrun of thread i for module assignment A is defined as
diA) = ti(A)=Ri  thread i violates response time requirement

((A) =
otherwise

where i €[1,k]. We can express the thread response time overruns for all threads for module as-
signment A as a vector D(A) = [d(A),d2(A), - - - di(A)]. For a given module assignment A, if
the response time specification for thread { is violated; that is, £;(A) > R;, then d;(A) represents

the discrepancy between that thread’s response time and its requirement. Let w; be the required

! Based on the means and variances, the distribution [unctions for these paramelers arg approximated by Erlangian
or hyper-exponential distributions. Higher order moments of these parameters used in the model can be computed
from the parameter distributions.
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average module waiting time for each module in thread { which consists of n; modules (denoted
as a set S;), then
Ri- X%
— JES;

g 8)
where X; = mean execution time for module j. We can express the required mean module wait-
ing times for all the threads as a vector Wy = [w, w3, - - - w]. For a given R;, the numerator in
Eq.(8) is the maximum allowable sum of waiting times for all modules of thread i. Thus, w;
represents the required average waiting time for each module in the thread i. The smaller the

value of w; is, the faster response the thread i requires from the processor.

To provide an efficient search for good module assignments, we define the penalty delay
function, T,4, as a function of D(A) and Wp. Let us discuss the desirable properties of

Tpa(D(A),Wp).
Property 1:

The penalty delay increases as a thread response time overrun increases; that is

Tpa(D(A),Wg)isan increasing function of ;(A) forall i e [1,k].
Property 2:

The penalty delay is inversely related to the required mean module waiting times for all
threads. That is, if two threads have the same thread response time overrun, then the thread with

the stricter response time requirement (i.e., with a smaller w; ) yields a higher penalty delay.

Based on these properties of the penalty delay function, the objective function, Tppj, in
Eq.(7) can help us to search for module assignments that reduce the thread response time over-
runs. The search process attempts to first satisfy those threads that have stricter response time

requirements, Therefore, we define the penalty delay function according to these properties as

11-18



follows:

k
Toa(D(A),WR) =% [; di(A)
i=1 9

max{ wi, Wo,..., w
where [; = W — 2 2 foralli e[1,k].
w;

Note that Eq.(9) satisfies Property 1. If w; > wj, then I; < /;. Thus Property 2 holds. By the
definition of d;(A)’s, T,4(D(A),Wp) is equal to zero if all thread response time requirements are

satisfied. Substituting Eq.(9) into (7), we obtain the objective function for the RMAP as

k
Topj(A)=TA)+a ¥ [; d;(A).

i=l (10)
Given a module assignment for the distributed system, each computer processes a set of
assigned modules. Based on the task invocation rate and the routing algorithm for replicated
module invocations, the module invocation rates at each computer can be determined. From
other system parameters, the task response time and thread response times can be computed by

the task response time model. The penalty delay function can be calculated from the thread

response times and their requirements,
3.4 Search Algorithm for the RMAP

The RMAP for the distributed system is to find module assignment A such that the objec-

tive function is minimized; that is,

To minimize Top; (A)=T(A)+a Tpu(D(A),Wp)

k
= F(G,A,X,62(x),T;,62(C ), Dot O g oty n) + @ Y1 di(A) b
i=1

I1-19



n
with constraints 1< ¥YA;<n forallje[lm]
i=1

The constraint inequalities * indicate that each module must be allocated to at least one processor

or may be replicated onto as many as all processors in the system.

The application task for the RTDPS requires repeated task invocations and the tasks also
consist of various logical and precedence relations among modules. Therefore, the module as-
signment problem is more complicated than the multiprocessor scheduling problems [GARE79]
which have been proved to be NP-complete. The common methods of tackling such combina-
torial optimization problems include approximation algorithms, probabilistic algorithms,
branch-and-bound and local search techniques [PAPA82]. However, due to the complexity and
characteristics of the RMAP, we propose an algorithm that searches for the sub-optimal solu-

tions and then selects the solution from this set of local optimals.
The RMAP algorithm consists of three major components:
1) Module Relocations from Longest-Wait Processor to Shortest-Wait Processor

For a given module assignment, let the processor in the system that has the longest wait-
ing (queueing) time, and the one with the shortest waiting (queueing) time be denoted by LWP
and SWP respectively. To reduce T,p;, modules may be relocated, one at a time, from the LWP
to the SWP (without changing module multiplicities) until no further improvement can be made

by such module relocation.

2) Further Module Replications on SWP

'To increase system reliability the lower bounds of the incqualitics may be changed to force modules to be
replicated on more than one processor. The upper bounds may be smaller than # which may be dependent on the
application requirements,
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After module relocations from the LWP to the SWP have reached a local optimum, the
algorithm attempts to balance the processing workload by further replicating certain modules
onto the SWP, In case certain thread response time requirements are violated, the candidates for
further replications on the SWP are the modules of those threads that violate their response time
requirements. If all thread response time specifications are satisfied, those modules currently
residing on the LWP become the candidates for further replication onto the SWP. After one of
these candidate modules is replicated onto the SWP, the processor loading will be altered and
some modules may require relocation from the new LWP to SWP to minimize Topj. If Top; is
improved by these replications, the module replication on the SWP that yields the minimum Topj
is finalized. Note that T,,; may not always be improved by these module replications on the

SWP because it may increase IPC and/or violate of thread response time requirements.
3) Module Deletions from LWP

If further module replication on the SWP does not improve T, the algorithm deletes
certain modules from the LWP. This is because deleting modules may reduce IPC in the system
and/or deleting some replicated modules of threads with less stringent response time require-
ments may improve T,,;. The algorithm also takes a greedy step to finalize a module deletion

from the LWP that yields the lowest T,;.

The RMAP Algorithm is given in the following:
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REPLICATED MODULE ASSIGNMENT ALGORITHM
1. Determine initial module multiplicities (see Sec.3.5 for details), or use the module multiplici-

ties of the previous local optimal assignment as initial module multiplicities for this itera-
tion.

2. Generate a random module assignment 4, based on these multiplicities.

3. Relocate module(s) from LWP to SWP without changing module multiplicities until reaching
a local optimal assignment:

3.1 Based on the invariant parameters, G, X, o(x), T,, o2(¢), Do, 0‘2,,,,,, A, mand n,
compute the assignment dependent parameters for assignment A, (including IPC
arrival rate and processing time for each processor).

3.2 Compute the processor utilization on each computer for assignment A,. If any
computer(s) is saturated (i.e., its utilization 2 100%), stop; otherwise continue,

3.3 Invoke the task response time model:
3.3.1 Compute T,4j(A,) for assignment A, and

3.3.2 Identify the computers with the longest and shortest average module wait-
ing times (Denote them as LWP(A4,) and SWP(A,) respectively).

3.4 Let S; be the set of modules residing on LWP (A,) but not residing on SWP (4,).
For each module j € Sy, perform

3.4.1 Temporarily relocate module j from LWP (4,) to SWP (4,) and form a new
assignment A i

3.4.2 Compute the assignment dependent parameters and processor utilization
factors for assignment A; (As Steps 3.1 and 3.2 do);

3.43 If any computer(s) is saturated, set Top;(A;) = o; otherwise, invoke task
response time model to compute and record Topj(Aj), LWP(A;) and
SWP(A)) (As Step 3.3 does).
3.5 If there exists Tpp;(A;) < Tpi(A,) for any €S, tested in Step 3.4, then perform

3.5.1 Set A,=A; Topj(Ao) =Topi(Aj),  LWP(A,)=LWP(A)) and
SWP(A,) = SWP!’ (A}) wherc Topj(A; J) mm { Topj(As) }. (Fmallzc the sin-

gle module relocation from LWP to SWP -- A greedy step!)
3.5.2 Goto Step 3.4.

3.6 Otherwise, continue Step 4. (Reach a local optimum with respect to module reloca-
tion)

4. Compute thread response time overrun d;(A,) for all threads i where i €[1,k] and identify
LWP (A,) and SWP (A,) for assignment A,,.
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5. If there exists d;(A,) > 0 for any i € [1,k], then let Sg be the set of modules of all threads
where d;(A,) > O for all i € [1,£] (Some thread response time requirements violated);
Otherwise, let Sp be the set of modules residing on LWP (A,). (All thread response time
requirements satisfied)

6. For each module j € Sp not residing on SWP(A,), perform:

6.1 Temporarily replicate module j onto SWP (4,) and form a new assignment A it

6.2 Compute T,y;(A;) and relocate modules from LWP(A;) to SWP(A;) until reaching a
local optimal assignment 4;,. (As Step 3 does)

7. If there exists Typj(A,) < Topj(A,) for any j € Sg from Step 6, then

7.1 SetA, =Aj,, Topi(Ao) =Topi(Ajy), LWP(A,) = LWP(Aj,), and SWP(A,) =SWP(A,)
where Tppi(45) =miSn{ obj{Ain) }i (To finalize a single module replication on
1 ESp

SWP)
7.2 Go to Step 4.

8. Otherwise, let Sy, be the set of modules residing on LWP(A,). For each module j € S; which
has more than one copy, perform

8.1 Temporarily delete module j from LWP(A,) and form a new assignment A ;;
8.2 Perform Step 6.2 to obtain the local optimal assignment A jor
9. If there exists Tpp;(A},) < Topj(A,) for any j € Sy, from Step 8, then

9.1 SetA, =Ajo, Topj(As) =Topi(Ajo), LWP(A,) = LWP(A,), and SWP(4,) =SWP(Aj,)
where Topi(Ajs) =_miSn{ TL obj{Ais) §; (To finalize a single module deledon from
L ENy,

LWP)
9.2 Go to Step 4.
10. Otherwise, Stop. (Reach the final local optimal assighment A,)

3.5 Initial Module Multiplicities

During the execution of the algorithm, module multiplicities are changed due to the
module replications and deletions from searching for better assignments. Further, to provide a

good module assignment for a given distributed system, the algorithm is re-iterated with a
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number of randomly selected assignments.! The final sub-optimal solution is chosen to be the
local optimal assignment that yields the lowest T,,;. In addition, to explore different assign-
ments with the same module multiplicities, the module multiplicities of a local optimal solution
are used to gcneraté the next random module assignment (Step 1 in the RMAP Algorithm).
However, the algorithm should start with a set of feasible initial module multiplicities. There-

fore, the initial module multiplicities should be properly determined.

There are many ways to select the initial module multiplicities. The basic requirement is
that the processing requirement for each module copy does not saturate a processor; that is, the
processor utilization from each module copy, which is the product of the invocation rate and the
mean execution time of the module copy, on each processor should be less than its capacity.
Further, it is desirable to select the initial module multiplicities so that the processing workload
can be easily balanced among the processors. Based on these considerations, the following pro-

cedure is devised to determine the initial module multiplicities for the RMAP Algorithm:

1. Assume the system has m distinct modules. Based on the invocation rate and the mean exe-

cution time for module i, compute its processor utilization, p;, forall i € [1,m].

m
2. Compute the mean processor utilization from to a module, pyy = 3, p;/m.
i=1

3. Compute the initial multiplicity o; for module i fori e [1,m]:

3.1 o; = —E—‘-— N
Pum
Pi . Pi
32 If o 1 then reset o; as the smallest integer such that o <1
i i

Note that o; should be less than the total number of processors in the system. Although the ini-

! A similar technique was used by [LIN65] for the traveling salesman problem.
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tial module multiplicities determined by the above procedure may not provide satisfactory thread
response times at the beginning, they are subsequently modified during the search for the module

assignment that minimizes 7;.
4. PERFORMANCE OF THE ALGORITHM

In order to validate the RMAP algorithm, we shall use the algorithm to generate sub-
optimal assignments for a set of simple distributed systems. We shall compare the algorithm’s
optimal module assignments (with optimal module multiplicities) with those determined by an
exhaustive search over all possible solutions. The first system consists of three identical proces-
sors and its task has three modules, all of them have constant processing times as shown in Fig-
ure 7(a). For simplicity, we assume there is no IMC among modules and no IPC among proces-
sors. Since there is no IPC, (to avoid the trivial solution of replicating each module on all pro-
cessors), we assumed that M, cannot be replicated, and resides on only one of the processors.
However, M| and M3 can be freely replicated and allocated on all processors. The optimal
module assignment for this system, as shown in Figure 7(b), is obtained by exhaustive search
which balances the workload at each processor. Each invocation requires two units of process-
ing at each processor. Since the task has 2 single sequential thread, the thread response time is

equivalent to the task response time.

To apply the RMAP algorithm, we set the task invocation rate, A =0.4, a = 10, and the
thread response time requirement to be 30 seconds. The procedure given in Section 3.5 is used
to determine the initial module multiplicities: initially both M| and M, have a single copy while
M3 has two copies. The RMAP algorithm is then re-iterated with 50 random initial module as-
signments. Due to the possible processor saturation of the random initial assignment, 13 sub-
optimal assignments are generated in the algorithm run. All these assignments can satisfy the
thread response time of 30 seconds. More importantly, all these 13 feasible solutions turn out to

be identical to the optimal module assignment by the exhaustive search! If we choose a = 1000
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and/or set the thread response time requirement to be 15 seconds, similar results have been
achieved. We repeat the experiment for A = 0.2. M3 no longer saturates a processor in this case;
all modules have a single copy initially. Since the processor load is light for this case, each
iteration of the algorithm with a random initial assignment is able to generate the optimal solu-

tion. The task (thread) response times for the optimal assignment are given in Figure 7(c).
5. ALGORITHM APPLICATION: THE SENTRY SYSTEM

Next, we shall apply the RMAP Algorithm to a real-time distributed system, the Sentry
System [TITABS5] that processes radar signals for space defense applications. We shall first
describe the characteristics of the Sentry System. Then we present the behavior of the RMAP
algorithm obtained from a series of experiments. Simulation results reveal that the module allo-

cation and replication generated by the proposed model meet the specified task response time.
5.1 The Characteristics of the Sentry System

The Sentry System is a loosely coupled distributed system which consists of six proces-
sors interconnected by a high-speed bus. The application task is comprised of 12 modules and its
control-flow graph is given in Figure 8. Three of these modules, M 13, My, and M ,, are period-
ically enabled by the system, while the rest of them are invoked according to the arrivals of radar
return signals. When a return signal arrives, M is invoked. When M, completes its execution,
it is branched to process a particular thread in accordance with the type of the return signal re-
ceived. The names of various threads are given in Figure 8. The response time for a thread is
defined as the time from the arrival of a return signal at the system (i.e., M is invoked) until the
message sent by the last module of the thread to M |y is processed by the resident processor of
M 1. Based on the thread response time and loading requirements, modules (except My) are
selectively replicated on several processors. In addition, since M, performs functions that are

not directly related to the rest of the modules, it is not allocated to any of these six processors.
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To consider the response times of those modules (i.e., M 15 and M ;,) which do not belong to any
thread, the task response time for the system is defined as the weighted sum of the average

module/thread response times; that is,

12 ), 12 3 12
T=% o it X o Xp 8ij Dner (i, )
i=1 ™Mot i=1 tot ]=1

where:
A; = invocation rate for M;,
Agor = total invocation rate for all modules,
T; = mean response time for M; (averaged over the response times for all copies when M;
has replicated copies).
pij = probability that M; enables M;,

5 { 1 if M; enables M; that resides on a remote processor
ij =

0 otherwise

D,:(i,j) = average network delay of sending messages from M; to M e

The data flow of shared file access is presented in Figure 9. Each ellipse represents a
data file. An arc pointing from a module to a file indicates a file-update, while one pointing from
a file to a module designates a file-read. An arc with double arrows means that the module will

both read and update to the file during the module execution.

The Sentry System has an operating system for module scheduling and IPC processing.
Invocations for a replicated module are routed to and executed on one of its resident processors
in a round-robin manner. Module execution times include the scheduling overheads and file ac-
cess times, and are assumed to be deterministic. Module execution times and invocation rates
are shown in Table 1. Modules communicate with other modules by sharing common data files
and/or direct message exchanges. The processing time for the IMC from M; to M; is referred to

as IMC time (/MC;;) for the module pair. The IMC times for various module pairs are presented
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Invocation Exec. + Read Write Total
Modules Rates Scheduling | File/Time | File/Time || Exec.
(No. of Time Time
Invocations/ms)
1 1.58 138 RCF/5 - 206
CNF/63
2 0.57 199 - CNF/98 297
3 0.1695 1144 - - 1144
4 0.1695 286 KOF/66 ODF/149 639
KOF/139
5 0.6795 1049 ODF/64 KOF/138 1400
ODF/149
6 0.0075 355 KOF/66 OTF/149 570
7 0.1015 1406 OTF/64 OTF/149 1752
KOF/133
8 0.0595 1286 PDF/97 - 1383
9 0.0595 081 - PDF/215 1196
10 02 660 RIF/16 RIF/94 770
11 0.01 1137 RIF/26 RIF/84 1247
12 0.2 269 CNF/102 - 371

Note: All times are in micro-second.

Table 1 Module Execution, File Access Times and Invocation Rates
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in Table 2. If the communicating module pair is located on distinct computers, the IMC be-
comes IPC which requires processing on both the transmitting and the receiving processor. The
processing time for the IPC is called IPC time (IPC;;). In the Sentry System, the IPC times on
transmitting and rccéiving processors are different. IPC;; =80 Wsec for the transmitting proces-
sor and the IPC;; = IMC;; for the receiving processor. The interconnection network delay is the
bus delay in the Sentry System. This delay depends on the message length, and ranges from
0.165 to 0.2 msec.

5.2 Characteristics of the RMAP Algorithm

To study the characteristics of the RMAP algorithm, we experiment with it under such
different environments as varied thread response time requirements, initial module multiplicities
and penalty delay scaling constant. Four selected sets of thread response time requirements,
R4, Rp, Rc and Rp, are used as shown in Table 3. Among these requirements, R4 is the least
stringent, Rp is the strictest one, and Rp and R lie between those of R4 and Rp. Two different
sets of initial module multiplicities, o,y and ¢z (Table 4) are used in the experiments. o, is gen-
erated in accordance with the procedure in Section 3.5. All modules except M5 in og consist of
only a single copy. Since the processor utilization for M s is 95%, M 5 is initially duplicated into
two copies to avoid saturating a processor. Three penalty delay scaling constants, 1, 10, and

1000, are used in the experiments.

We have 11 experiments, each of which uses a different combination of thread response
time requirements, initial module multiplicities and penalty scaling constants. Experiments #1
through #9 use o4 as initial module multiplicities, while Experiments #10 and #11 use ag. The
scaling constant for Experiment #1 is 1. Experiments #2 to #5 and #10 use 10, while Experi-
ments #6 to #9 and #11 use 1000 as the scaling constant. In each experiment, the RMAP algo-
rithm is iterated with a prespecified number of random initial module assignments (500 or 1000).

For each initial assignment, the algorithm generates a sub-optimal assignment. Based on the
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Sending Receiving | Fixed IMC
Modules Modules Times (us)
1 2 61
1 3 61
1 5 61
1 7 61
1 8 61
2 10 54
3 4 77
4 10 54
5 6 77
5 10 54
6 10 54
7 10 54

"8 9 54

9 10 54

10 RADAR 127
|

Note: All other module pairs not listed here have zero IMC time.

Table 2. IMC Times for Various Module Pairs
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4@\%0:4% Sets of Requirements
%y S ey
OEX
a_ e,
36 oy OE‘ Q
Ny Rp Ry Re Ry
0Ss 2.5 1.8 1.75 1.7
ov ll 7.0 6.6 6.55 6.5
TI 4.0 3.2 3.15 3.1
i
oT 4.5 4.0 3.95 3.9
CD 5.5 5.0 4.95 4.9
- N

Table 3. Selected Sets of Thread Response Time Requirements
for the Sentry System
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Initial Multiplicities

Modules o a

A B

1 2 1
2 1 1
3 1 1
4 1 1
5 5 2
6 1 1
7 1 1
8. 1 1
9 1 1
10 1 1
11 1 1
12 1 1

Table 4. Two Sets of Initial Module Multiplicites for
the Sentry System
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'.".

thread response time requirements, only certain local optimal assignments can satisfy the
specifications. The final module assignment is selected from this set of local optimums that
yields the minimum T,p;. The experiment specifications, thread response times, and Top;j of the
final module assignment generated from these experiments are presented in Table 5. The

corresponding module assignments are shown in Table 6.

Since Rp is the most stringent thread response time requirement, no module assignment
is generated (Experiments #5 and #9) to meet the thread response time requirements, even using
1000 randomly selected initial module assignments. The number of module assignments tested
and CPU time used to obtain the final module assignment varies from one experiment to another.
They ranged from 19,100 to 45,000 module assignments with various module multplicities.
And, the CPU times required for these experiments range from 1.48 to 3.48 hours on a VAX

11/780 machine as shown in Table 5. Further, we also observe the following characteristics of

the algorithm:
(1) Effect of T,,; on the stringent thread response time requirements

From Experiments #2 to #4 and #6 to #8, we note that Topj is higher! for the cases with
stricter thread response time requirements. The modules in a thread with a strict response time
requirements should be allocated to lightly loaded processors in order to avoid violating the
stringent thread response time specifications. Modules with less stringent response time require-
ments may be allocated to the more heavily loaded processors. This restricts the freedom of the
search algorithm for module relocations, replications, and/or deletions. However, if the thrcac}s

have less stringent response time requirements, the algorithm has more flexibility in searching

~ for alternative assignments. Thus, the final selected module assignments may yield a lower Top;-

(2) Penalty delay scaling constant

"The decrease of T,s; from Experiment #3 to #4 is because Experiment #4 is iterated with 1000 instzad of 500
random initial assignments as for Experiment #3,
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Table 6 Final Module Assignments Generated for the 11 Experiments
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For threads that do not require strict response time requirements, the scaling constant
does not have much affect on module assignment. However, for stringent thread response time
requirements, selection of the scaling constant is critical. Experiment #1 uses a very small scal-
ing constant (a = 1). Note that the TI thread in the Experiment violates its response time require-
ment, yet the algorithm is not able to detect this violation. This is because the scaling constant,
a, is so small that the final sub-optimal assignment yields the minimum T,; in spite of slight
violations of TI thread’s response time requirement. Meanwhile, there exist many assignments
which can meet the specifications as indicated in Experiments #3 and #7. Therefore, the penalty
scaling constant should be chosen sufficiently large so that the assignment that violates the
response time specifications can be reflected in T,p;. The scaling constant should be selected
such that T,; for the final assignment, which meets the thread response time requirements, is
less than that of other assignment which has one or more threads violating their response time
specifications. For example, T for the Sentry System is about one msec and thread response
times are a few times larger than T. Experiment results indicate that using a scaling constant
equal to or greater than 10 (one order of magnitude greater than T) is large enough to detect
thread response time violations. Therefore, all our experiments (except for Experiment #1) use
10 or 1000 as the scaling constant. Similar results were also obtained by using a = 50, The ex-
perimental results reveal that the algorithm is insensitive to the selections of the penalty delay

scaling constant as long as it is larger than a certain threshold value (e.g., 10 x T').
(3) Insensitivity of the initial module multiplicities

Experiments #3, #7, #10 and #11 have the same thread response time requirements, Rp.
Experiments #3 and #7 use o4 as initial multiplicities whereas Experiments #10 and #11 use o
as initial multiplicities. We note the response times for the assignments generated in Experi-
ments #10 and #11 are similar to those of #3 and #7. This indicates that the RMAP algorithm is

insensitive to the initial module multiplicities provided that no single module copy for the initial
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multiplicities can saturate a processor.
5.3 Validation of the RMAP Results via Simulations

To assess thé performance of the module assignments generated by the RMAP algorithm,
we use simulation to obtain the thread response times for the assignments from Experiments #2,
#3 and #4, and compare them with the analytical predictions. Qur model assumes that arrival
processes are Poisson processes. However, the interarrival times of radar return signals (i.e.,
task/thread invocations) for the Sentry System are not exponentially distributed. The thread in-
vocation rates (referred to as the non-Poisson case in the following) are time variant as shown in
Figure 10. In particular, the invocation rates for OT and OD threads are highly variable with
time. To evaluate the response time performance of the assignments, both Poisson and non-
Poisson thread invocations are simulated, as shown in Table 7. It is interesting to observe that
the simulated response times for both Poisson and non-Poisson radar signal return cases are
similar to the analytical predictions. The response times for the Poisson signal arrivals match
more closely with analytical predictions than those of the non-Poisson case, especially for OT an
OD threads. When the task invocation arrival processes differ significantly from a Poisson pro-
cess, the module assignment generated by the RMAP algorithm may produce high deviation
from the response time predictions (see the OD thread in Experiment #2 in Table 7). The system
designers, therefore, should analyze the task invocation arrival patterns and make appropriate
calibrations. In general, however, if the task invocation rates are fairly constant in the time
period of interest, the RMAP algorithm with Poisson invocations should generate module assign-

ments that satisfy the required thread response times.
6. CONCLUSIONS

An analytic model based on the module response time model and task control-flow graph

has been introduced for estimating task and thread response times for loosely coupled distributed
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NO. OF INVOCATIONS DURING LAST 100 MSEC

180

150.
L

120.

TT

0s

Figure 10 Thread Invocation Rates for the Sentry System
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systems. The model considers such factors as IPC, module precedence relationships, module
scheduling, interconnection network delay, and assignment of the modules and files to comput-
ers. Based on this analytic model, we have developed a new search algorithm for module as-
signment for distributed systems. This algorithm uses the sum of task response time and penalty

delay as the objective function, and optimizes it over all possible module assignments.

To improve load balancing and response time, certain modules may be replicated and
processed on several computers. The algorithm iteratively searches for module assignments with
appropriate module multiplicities which yield lower task response time yet satisfy the thread
response time requirements. The search process is terminated if the objective function cannot be
improved further. The search process is repeated with a prespecified number of random initial
assignments. The final module assignment is then selected (based on the value of T,;) from this

set of feasible local optimal assignments.

The RMAP algorithm has been validated by applying it to a simple distributed system
and a real-time distributed system for space defense applications. For simple distributed sys-
tems, with a very small number of initial module assignments, the local optimal assignment gen-
erated by the algorithm is equal to the optimal module assignment because of exponential
growth in computation requirements. For complex systems, it is not feasible to generate the glo-
bal optimal assignment by exhaustive search. Therefore, a series of experiments were performed
to characterize the behavior of the algorithm. The experiments indicate that the final module as-
signment is rather insensitive to initial module multiplicities. The algorithm is quite robust over
a wide range of the penalty delay scaling constants, Our experiments show that the proposed
search algorithm is able to generate module assignments that yield satisfactory task response
time yet meet the set of thread response time specifications. To assess the response time perfor-
mance of the module assignments generated by the algorithm for the real-time distributed sys-

tem, simulations have been performed for Poisson and non-Poisson task invocation cases.
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Although the analytic model is based on Poisson arrivals, the simulation results reveal that the
model in many instances can be used for approximating non-Poisson arrival cases. Few cases of
deviation are noted where the input are significantly different from Poisson input arrivals. In
these cases, simulaﬁon should be used to examine their response time performance. However,
using the RMAP algorithm can greatly reduce the time needed to search for feasible module as-
signments, which is otherwise prohibitive. Therefore, the proposed algorithm is a valuable tool

for module assignment with replication for distributed processing systems.
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CHAPTER III

MODULE SCHEDULING POLICIES IN
REAL-TIME DISTRIBUTED PROCESSING SYSTEMS



MODULE SCHEDULING POLICIES IN
REAL-TIME DISTRIBUTED PROCESSING SYSTEMS

1 Introduction: A New Scheduling Algorithm - Batch Service with Time-out

In real-time processing systems, a task is divided into software modules. Since the task
is repeatedly invoked, the modules are repeatedly invoked as well. Each processor in the distri-

buted processing system handles repeated invocations of a set of modules.

Whenever a processor schedules a module invocation for processing, scheduling over-
heads are incurred. When the processor repeatedly executes invocations of a set of modules, the

initialization overheads would be incurred for each invocation.

The scheduling overhead consists of process initialization and database access overheads.
Among invocations of the same module, we expect locality in file and memory references, and a
similar pattern in process initialization. Taking advantage of these properties, scheduling over-
heads can be reduced by processing invocations of a frequently invoked module in a batch.
Since excessive delay can be incurred in waiting for the batch to be formed, a time-out mechan-
ism should be used. The group of invocations of a module will be serviced when either a certain
predetermined time-out period has been exceeded, or that the module invocations reach the
specified batch size, whichever occurs first. This new scheduling algorithm is called Batch Ser-

vice with Time-out {BST).

We shall compare the scheduling overhead improvement of the batch service with time-
out (BST) scheduling algorithm with that of the individual invocation scheduling algorithm (e.g.,

first-come first-served).
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2 Characteristics of BST

Let the initialization time for an single invocation of a given module be D and the aver-

age service requirement be X. Then the total processing requirement of a single invocation,

y=D+X.
(1)

The total processing time requirement for processing m invocations (if individually invoked and

processed) of the same module is

my = m(D + X). 2

In order to analyze batch scheduling algorithm, the scheduling overhead needs to be further
decomposed into two components: fixed and incremental. Fixed scheduling overhead is the por-
tion of initialization overhead that is repeated for each invocation of a given module. For exam-
ple, the process for the initial set up of a processor to execute an invocation of a module is likely
to be the same. In this case, fixed scheduling overhead is that portion of initialization overhead
which can be shared among processors if several invocations of the same module are batched

and executed as a single unit.

Incremental scheduling overhead, on the other hand, is the portion of initialization over-
head incurred by each invocation. A good example is the memory and file references performed
during the execution of module invocations. Hence, incremental scheduling overhead is not

affected by the BST scheduling algorithm.

Therefore, the batch scheduling overhead of m processes, D', is the sum of the fixed
scheduling overhead, Dy, (independent of batch size) and the incremental overhead, Dy, that

results from the scheduling of more than one invocation at a time. Hence,
D’'=F+mV.
(3)

The total processing requirement of a batch of m invocations is
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Y =mX'+D".
4

The overhead improvement of batch service over individual invocation scheduling can be ob-
tained from Eqgs. (2) and (4).
Ay =my - Y = (mD-D’) + mX-X")
®)

When m invocations are batched and processed together, due to the locality of data and
file references, the batch service time, X’, and scheduling overhead, D', should be much less than
if the invocations are processed individually, That is, 0 £ X’<X and D <D’ <mD. Thus, we
expect an improvement in response time from batch services with time out. However, the mag-

nitude of overhead improvement depends on the relationship between D, D’, F and V.

Since D'=F+mV

then D'(m=1)=F+V for m=1.

D’(m=1) may not equal D since two different scheduling algorithms may have different

scheduling procedures. For example, D’(m=1) and D are related by a factor k:

D’(m=1) =kD
(6)

The relationship between D’ in terms of D and the ratio % is shown in figure 1. In the

figure, D'(m=1) = kD is plotted for k = 0.9, 1.0, 1.1 versus the ratio -i:\{-

A small value of % indicates a large portion of scheduling overhead results from fixed

overhead. On the other hand, a large value of % indicates that only a small portion of the

scheduling overhead results from fixed overhead. Hence, there is more potential overhead im-

. . Vo . .
provement in the region of small ) ratio values. In the figure, the potential overhead improve-

. . . . \
ment is the difference between a curve and the line D’ = mD. Notice that the gap closes up as ¥
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gets larger. Also, the larger the m (m = 2,4 in this case), the gap which indicates potential over-
head improvement becomes wider. That means more overhead improvement can be made by
batching more invocations of modules with larger fixed scheduling overhead. However, the
response time imprévement of BST scheduling algorithm depends not only on overhead im-
provement, but also on the delay incurred in forming a batch of module invocations. Both fac-

tors must be considered in the analytical model of the scheduling algorithm.
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Scheduling overhead of BST algorithm, D’ (in multiples of D)

Figure1  The Relation Between Batching Scheduling Overhead and
Ratio of the Overhead Components
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3 Analytical Model
3.1 Task Response Time Model

A task response time model has been developed for loosely coupled real-time distributed
processing systems with FCFS scheduling algorithm [CHU84]. The model has been validated
by simulations and yields good response time estimates for several real systems. This model is

extended to analyze the BST scheduling algorithm for such systems.

The task response time model consists of two submodels: the module response time
model and the weighted control flow graph model. The first submodel computes the module

response times, while the latter considers the precedence waiting times.

For a given module assignment, each processor will execute a fixed set of modules. The
response time of a module is the time from its invocation to the completion of its execution.
Thus, module response time includes waiting (queueing) time and module processing time.
Based on the module assignment and IMC’s among modules, IPC times can be obtained and in-
cluded as part of the module response time. Hence, each processor can be modeled as a single
server queueing system that have several modules (customers of different types) with specified
service distributions [BASK75]. The invocation rate of each module can be obtained from the

task invocation rate and the control flow graph.

The model assumes that 1) the module invocation arrival processes are independent of
each other, 2) module invocation interarrival times are exponentially distributed, 3) FCES
scheduling policy for module invocation processing, 4) constant initialization cost. Based on
these assumptions, each single server queueing system (processor) is an extension of the regular
FCFS M/G/1 queue. Thus the mean and variance of module response times can be estimated

[LAVES3].
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The other component of task response time is precedence waiting time. Precedence wait-
ing time is the intermodule synchronization delay resulting from the precedence relationships
among modules. The model considers the precedence waiting times by mapping the mean and
variance of the module response times onto the control flow graph as arc weights (figure 1).
Since the interconnection network delay is independent of module response times, the mean and

variance of network delay can be added to the arc weights.

According to the logical structures and precedence relationships among modules, there
are different types of control flow subgraphs. Each of these subgraphs can be reduced to a single

node graph. Such successive graph reduction yields the estimation of the task response time.

3.2 Model Extensions

In order to enhance the task response time model to represent BST scheduling algorithm,
we need to add analytical representation of the batching and time-out mechanism. In addition,
we need to further subdivide module processing time into module scheduling time and module
execution time. We must be able to derive from the model the module response time as a func-
tion of maximum batch size, M, time-out constant, T,, module invocation rate, module schedul-

ing overheads and module execution requirement.

Since the precedence relationship among task modules is not affected by the new
scheduling algorithm, the precedence waiting times remain unchanged. However, the new
module response times are different under BST scheduling algorithm. Task response time esti-
mate can be obtained by mapping these new estimates of module response time to the control

flow graph moedel.

The new module response time model is shown in figure 2. The server in the model

represents one of the processors in the distributed processing system. The processor (server)
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consists of two parts: scheduling and execution. The scheduling part of the processor is used to
model the overhead, D’, which is a function of F,V and m. While the execution part represents
the module execution requirement, X’. In the model, there is a processor queue and a set of
batch queues. The éet of batch queues, numbered from 1 to k, models the batching of invoca-

tions of the k modules that are assigned to the processor.

The module invocations of the i module, A;, consist of external invocations A;” and
internal invocations, A;". The external invocations are generated from other processors in the
system. The internal invocations are generated from modules residing in the same processor,
which will be generated from the feedback loop. Invocations of i™ module arrive and queue at

the i® batch queue.

The queues are serviced either when the queue size reaches a pre-determined maximum
batch size for that module; or when the time elapsed since the first module invocation in the
queue exceeds the time-out constant. If the first condition is true, the processor will serve M in-
vocations, Otherwise, the processor will serve all the module invocations in the queue which
will be less than M, the maximum batch size. Different modules (queues)} may have different
maximum queue size or time-out constants. The selection of M and T, for different modules

depends on the corresponding module invocation rate and module response time requirements.

The batches of module invocations departing from the batch queues are routed to the pro-
cessor queue. Each batch of module invocations will be processed as a single unit by the proces-
sor. They are serviced in FCFS order. A; represents the arrival rate of batches of invocations of

the i® module to the processor queue.

In the task response time model, module response time is the sum of module waiting time
and module processing time. While module processing time in this case is extended to include

both the module scheduling and execution time, the module waiting time can be further subdi-
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vided into module waiting time at processor queue. All the components of module response
time are represented in figure 2. Because of the complexity of the queueing system model, an
exact closed form aﬁalytical solution can not be obtained. Therefore, we shall impose certain as-
sumptions to simplify the queueing system representation to make it mathematically tractable.
This allows us to conveniently derive an approximate analytical solution for estimating the mean
and variance of module response times for all modules. These results are then used to construct

a weighted control flow graph for the estimation of task response time.
3.3 Components Of Module Response Time

In our new module response time model for the BST scheduling algorithm, module
response time consists of four components. For the i module, these components are 1) waiting
time at batch queue with time-out, (Wg;); 2) waiting time at processor queue, (Wp;); 3) schedul-

ing time, (D;); 4) execution time, (X%).

The module response time of the i™ module, T;, can be expressed as the sum of the four

components:
Ti = WBi + Wpi + D'i + X’i_ (7)
Since these components are independent of each other, mean module response time for module i
is the sum of the mean value of each component.
E[Ti) = E[Wg;] + E[Wpi] + E[D’] + E[X'}] @®)
wherei= 1,2, ...., k for the k modules assigned to the processor. Thus we need to calculate the
mean of each component. In addition, the construction of weighted control flow graph requires

not only the mean but also the variance of the module response time. The variance of the

module response time can be expressed as

Var[T;] = Var[Wg;] + Var[Wp] + Var[D'i] + Var[X’i] ©)
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fori=1,2,.... k.

We shall use the following equality to obtain the variances :

Var[Y] = E[Y?] - (E[Y))® (10)

where Y is a random variable and E[Yz] denotes the second moment.

3.4 Waiting Time At Batch Queue With Time-out

For each module, invocations arrive and queue at the corresponding batch queue with
time-out. The arrival processes of module invocations to the batch queues are non-Poisson.
However, for mathematical tractability, we assume Poisson arrival processes in order to estimate

the mean and second moment of waiting time,

In this section, we present the analytical result of invocation waiting time at a batch
queue with time-out and Poisson arrival. Because we assume Poisson arrival processes, the
result can apply to all batch queues in our model independently. Hence, the subscript i that has
been used to index different modules will be dropped. We shall use our results to analytically

approximate the waiting time of batch queue with non-Poisson arrival process.
List of notations :

M : Maximum batch size

T, : Time-out constant

Ap : Arrival rate to batch queue ( assumed Poisson )

Wpg : Waiting time at batch queue

E[Wg] : Expected waiting time at batch queue

E[Wg2] : Second moment of waiting time at batch queue
Sg : Batch size

E[Sg] : Expected batch size
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ng : number of module invocations in the queue as seen by an arrival

3.4.1 Estimation of Mean Waiting Time at Batch Queue

Mean waiting time at batch queue with time-out can be expressed as the sum of two con-
ditioned expected waiting times weighted with corresponding probabilities. The expected wait-

ing time is conditioned on whether the queue is empty or nonempty as seen by an arrival.
E[Wpg] = E[Wg | ng=0]P[ng=0] + E[Wg | ng>0]P[ng>0] an

Case I : ng =0, arrival sees an empty batch queue (figure 3.3):

(a) E[Wp Ing=0]

When an arrival sees an empty queue, it means that it is the first arrival to the
queue. Its waiting time depends on whether a batch of maximum size is formed (figure
3.3a) or if the time-out constant is reached before that occurs. If a batch of maximum
size is formed, the arrival has to wait for the time that it takes for (M-1) invocations to ar-
rive; if time-out is exceeded (figure 3.3b), the arrival has to wait the whole time-out inter-
val, The time interval required to collect multiple arrivals from a Poisson process can be

calculated with the Erlangian probability density function [CHAUS83].

T,

E[Wg Ing=0] = _[ t P[t < time of (M—1) invocation arrivals < t+dt]
=0

+ J T, P[t <time of (M—1) invocation arrivals < t+dt]
=T,

To ApgnM-2 ety TT Ag g™ ot

B STV My ¢ &
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agMt o 2 ApMIT, T -

M-1 st o M-2 —Ast
-— t dt + ——— t dt
. { ¢ T Ty .,I ©

. - _1y M-1 T k
LTV VS AaTo)” -,

M=2 (AgT,) T
AR AR

+T, 3
e S ‘S k!

(12)
(b) Plng =0]

Since only the first invocation of a batch could arrive to find an empty batch
queue, then,

1
Plng =0]= ——
[ng =0] EISp] a2)

M M-1
where E[Sgl= Y nP[Sg=n]=M P[Sg=M] + ¥ n P[Sg=n]
n=0 n=0

. . . . = (pTo)* i,
i) P{Sg = M] =P[ at least M~1 invocations arrive in T, 1 = ¥, _—k'_ e
k=M-1 :

_MZ-:? (A To)* T

= K

ii) P[Sg=n] = P[ n-1 invocations arrive in T, ] for n=1,2, -+ ,M-1

_ (kBTo)n-l —AgT,
T (n-1)!

Hence

M-2 lBTok AT, M-1 (ABTo)n_l -2 T,
ESpl=MI1-F = e "I+ 20—y ©
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M-2 M-2
= M[1- Z (lB o) —lBTo]_i_ Z(k+1) (A B o)
k=0 k=0
M-2
“M-3 (Mk-1) B Te) A B o) T
k=0
From (3.7), we have :
Plng=0] = [M- (M-k-1) & Bk To)t
k=0 :

-A'BTO

(14)

-1
—lBTn

(14)

Case I : ng > 0, arrival sees a non-empty batch queue (figure 3.4):

(2) E[Wp Ing>0]

The expected waiting time in this case depends upon :

- the number of invocations in the queue, which indicates how many arrival are needed in

order to form a batch of maximum size;

- the time of the latest arrival, which indicates the maximum time interval allowed.

-1 Ta
E[WB | ng >0]

n=1y=0
t = the instant the latest invocation arrives.
E[Wg | ng=n,y< t <y+dy]

the queue upon arrival at

M
=3 j E[Wjg | ng=n,y< t <y+dy]P[ng=n,y< t <y-+dy Ing>0]

(15)

= mean waiting time given an invocation sees n invocations in

y<t <y+dy.

When an invocation arrives at the instant y and finds n already in the queue, it

must wait for either M-n-1 invocations to arrive to form a batch of maximum size (figure

3.4a), or the maximum delay T,—y if time-out is exceeded (figure 3.4b).

E[Wg Ing=n,y<t <y+dy]
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To-y
= J t P[t < time of (M—n-1) invoation arrivals < t+dt}

=0
M- | 4
+ [ (To=y)P[t < time of (M~n~-1) invocation arrivals < t+dt]
t= oY
Ty = o
= yt A (g™ e a [ T, A0 e etdt
2o (M-n=2)! =Ty (M—n-2)!

- Mosh) | Men-l) M DT gy, 1
- AR A =0 k!

1 M2 [Ag(To-y)]**! JERL
AB o ki3.11)

When an invocation arrives at the instant y to find n already the queue, it becomes the

(n+1)'® arrival to the queue in time interval y. Accordingly, the probability is equivalent

to that of having exactly n+1 arrivals in time interval y.

P[y< time of n invocation arrivals <y+dy]

Ply< t <y+dy,ng=nIng>0] = C

Ag(Agy)™! Mgy
(n=1)!
C

where C is the normalization constant and :

M=1"* A (A y)™

1
-A
C= S e
2 e

By substituting results of (3.11) and (3.12) into (3.10), we get:

1 M=l (M=n—1) (M-n—1) ™! AgTo*¥ _
E[Wging>0] = < P ( 2 ) _{ lg ) Eo Bk' e oo
& & "k
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M-n-DRgT)™ o™ Mt k1
- A To Y s
(n—1)! E’O (A5 To) EO k=t (n+)

A To)" 1 Toe T Mon-2 et X1 (et
Ap T, )k D
et & BT I nen ! @

(b)P[(ng >0]
The corresponding probability of an arrival finding a non-empty queue is simply

the complement of the probability that an invocation arrives at empty queue (case I-(b)).
P[ng>0]=1-P[ng =0]

The expression for E[Wg] could be obtained by substituting the results of cases I and II
into equation (1). The resulting equation expresses expected waiting time at the batch queue
with time-out in terms of the three parameters of the batch queue : arrival rate, maximum batch

size, and time-out constant.

3.4.2 Estimation of Second Moment of Waiting Time at Batch Queue

In many real time situations where certain time constraints must be met, we need infor-
mation about the variation among waiting times at batch queue in addition to the average value.
Therefore, we need to estimate the second moment of the waiting time in order to obtain the
variance. The same approach could be used to estimate the second moment of waiting time at

batch queue. We start with the following expression similar to (1) :
E[Wg?2] = E[Wg? |ng=0]P[ng=0] + E[Wg? | ng>0]P[ng>0] (16)

Casel:ng=0
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T,

E[Wp2Ing=0] = [ ¢ P[t < time of (M~1) invocation arrivals < t+dt]
L=0

F

+ | T,? P[t < time of (M~1) invocation arrivals < t+d1]
t=T,

_MM-1) _ MM-D) M T

M2 (AgT,) -
- =V ' fTR2S ( B'o)e AsT,
Ap ABY =0 K = K (3.15)

CaseIll:ng >0

M-1 T, . .
E[Wg2ing>0]= ¥, [ E[Wp?Ing=n,y<i<y+dy]P[ng=n,y< i <y+dylng>0]

n=1y=0 (3.16)
with

To"'y

E[W32 Ing=n,y<tSy+dy] = j 2 P[t < time of (M—n—1) invoation arrivals < t+df]
t=0

+ | (To-y)*Plt < time of (M-n~1) invocation arrivals < t+dt]
t‘=Tu_—y

_ MemMon-l) | (Mem)(M-n-1) Mo Pa(To-yI _3,Tep
) Ap? A’ = K

L1 M-n-2 [Ag (T, -y)]¥*2 e PeTo-y)

A8 k=0 kt 3.17)

Substituting (3.17) into (3.16) and simplying, we have :

1 M=l (M-n)(M-n-1) (M-n)(M-n-1) =1 ApTo* .1,
E[W321n3>0]=3 E[( n;fzn )4 n)l(zn )Z 7 ¢ T
=1 B B k=0 '

III-16



(M-n)(M-n—-1)(Ag To)" 2T, 2e "> Mon Tk o D
(D! Z WToY X G
(?LBTo)“Toze"m" M-n-2 K2 (k) (kH1)(=1Y
AgT, P ;
aot & M1 L e (3.18)

The expression for second moment of waiting time at batch queue could be obtained by

substituting expressions (3.15) and (3.18) into (3.14).

3.4.3 Batch Queue Simulations

In order to check the validity of our analytical result, we have performed a set of simula-
tions. The simulations are performed using a queueing network based simulation package
PAWS. A queue with batching and time-out mechanism is simulated. The customer arrival pro-
cess to the queue is specified to be Poisson with an average rate of 10 customer arrivals per
simulation unit time (A =0.1). Simulations are performed with different sets of values for max-
imum batch size and time-out constant, Statistics on waiting time and batch size leaving the
queue are collected from 20,000+ customers in each simulation. The results from both the simu-
lations and our analysis are summarized in table 3.1. The analytical results are very close to the

simulation results. Thus, our analysis is validated by the simulations.

3.5 Estimation Of Module Scheduling Time

Due to the random nature of module invocation arrival processes and the time-out
mechanism, the batch size of invocations leaving the batch queue varies. Since batching does
not begin until the arrival of the first module invocation, batch size takes on non-zero values.
While the maximum batch size determines the maximum number of invocations a batch can

have.
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The scheduling time for a batch of size m (of module i) is given by,

D’;(Spi=m) =F; + mV; (17)

. F, + mV;
The average scheduling time for this batch is simply ‘—m—' Thus, the mean schedul-

ing time for module i is the sum of average scheduling times of all possible batch sizes and each

weighted with the corresponding probability of such a batch size occurring.

M; F; + Vi P[S i=
b= 3 it mVOPISy=m]
m=1 m (18)

From the analysis of batch queue with time-out, the probability of the occurrence of

batch size m is given by

M2 Qr: T K L
P[Sgi=Mi]=1- 3 OniTo) ¢ tuTa for m=M;

k=0 k! (19)

?L T . m—1 _
(Agi Toi) e AaiToi for m=1,2,...,M;—-1

P[Sg;=m] =
[Spi=m] — 20

3.6 Estimation Of Mean Waiting Time At Processor Queue

Consider the model in figure 3.2. Batches of invocations of the k modules are assigned to
the processor queue for processing. By viewing each batch of invocation as a job to the proces-
sor, we have a single server queueing system with multiple job classes with general arrival
processes. The number of job classes is equal to k, the number of modules assigned to the pro-
cessor for processing. We further assume that the job arrival process for each job class is an in-
dependent Poisson arrival process. The problem is reduced to a multiple job classes M/G/1
queueing system [BASK75]. The Pollaczek-Khinchin formula for the mean and variance of
waiting time for M/G/1 queue [KLEI76] can be used to estimate the mean and variance of wait-

ing time at the processor queue in the model.
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X%p

E[Wp]=—————
2(1-AXp) 21)

AX3p

Var[Wp] = (E[Wp])? + ———
3(1-AXp) (22)

where A is the average total arrival rate to the processor queue; Xp, X?%p, and X3p are the mean,

second and third moments of the service time of the processor.

Average total arrival rate, A, is equal to the sum of the average arrival of each indepen-
dent Poisson arrival. In the model, the average arrival rate to the processor queue is equal to the

average departure rate of batches from the batch queue.

i=1 23)

The three moments of the processor service time can be obtained from the transform of
the service time distribution, B (s). For a multiple job class queueing system, service time dis-
tribution can be obtained by summing the transform of service time distribution of each job

class, weighted by the ratio of its job arrival rate to the total job arrival rate.

k A
B'(s) = ):—AJ—Y*i(s)
ey (24)

where Y*i(s) is the transform of the processing time distribution for batched invocation of

meodule 1.

As we have indicated, the transform of processing time distribution is made up of
scheduling and execution time distributions. Both of which vary according to the batch size.
Since we assume that the execution time distributions of modules in the task are given a priori,
the batched invocations of the transform of processing time distribution for batched invocations

of module i is
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Y'is) = % [ ™0 X" () IP{Sp;=m]
l m=1 l (25)
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INVOCATION ARRIVAL RATE, A, = 0.1

SIMULATION RESULTS ||  ANALYTICAL SOL.
To || Elsg] | EMNgl || Elsg) | Elw]
30 | 1.9 4,897 || 1.9 | 4.895
30 | 3.32 12,97 || 3.33 12.87
60 || 4.80 19.30 || 4.78 19.29
4o | 4.23 17,59 || 4.26 17,57
90 | 7.60 3374 || 7.6 33,62
70 || 7.00 31,61 || 7.00 31,43
60 || 6.49 29,34 || 6,49 29,51

Table 1 Comparation of Analytical and Simulation Results

on Batch Queue with Time-out and Poisson atrival Process.




4 Model Applications
4.1 Task Scheduling for Distributed Systems

Consider the sample task control flow graph shown in figure 3.1. The task is a example
of a real-time application job on a distributed system. It consists of fifteen modules governed by
a precedence relationship represented by the control flow graph. The task is processed on a three
processor loosely coupled distributed system. We shall apply the model to two examples using
the same control flow graph but different module assignment, module execution times and over-
heads. In both examples, we assume constant scheduling overhead and exponentially distributed

execution times.

The module execution times, overhead, and module assignment used in our first example
is shown in table 4.1. Total overhead is fixed at 20% of processing time for all modules. Fixed
and variable overhead each take up 50% of the total overhead. This module assignment yields a

fairly balanced load for the distributed system.

"We apply the analytical model to this example to estimate the task response time under
both BST and FCFS scheduling algorithms. The response time estimates are obtained for
different maximum batch sizes and time-out constants of the module batch queues. The task is
repeatedly invoked with Poisson arrival process. The validity of the analytical model is checked

by comparing with results from PAWS simulations.

The comparison of the analytical and simulation results is shown in figure 4.1. Our
analytical results agree with simulations to within 15% in most cases with the exception of very
high invocation rates. Our simulation results agree closely with the behavior of BST algorithm
in this example, despite the fact that the independent Poisson process assumption for module in-
vocation is not appropriate for high invocation rates due to the fact that module invocations oc-

cur at different processors which introduces extra randomness, our
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The two algorithms’ utilization of bottleneck processor is compared in figure 4.2. Under
this module assignment, the bottleneck processor is CPU 2. The figure shows the utilization of
this processor under different invocation rate. For both algorithms, the resulting graphs are

straight lines. The slope of these lines is the weighted mean processing load to the processor:
M o7 =
2 Xi+DY)
i

where
)_(Ti is the mean module i execution time;
f)Ti is the mean module i overhead;
A; is the mean module i invocation rate;

A is the sum of invocation rate of modules assigned to the bottleneck processor.

Under the FCFS algorithm, this quantity is a constant and is independent of invocation
rate. It depends on the ratio of module invocation rates which is unchanged for the control flow
graph. With the BST algorithm, a straight line relationship indicates mean batch sizes remain
unchanged under different invocation rates. This results from defining time-out constants as a
constant factor of the reciprocal of the module invocation rate. For the low overhead in this ex-
ample, this set of module maximum batch sizes and time-out constants do not allow the BST al-

gorithm to yield substantial saving in utilization as shown in figure 4.2.

In the second example, the fixed overhead is increased to a significant portion of the pro-
cessing time for each module. The module execution times and overhead are specified in table
4.2a. The modules are assigned in such a way that CPU 2 is again the bottleneck processor. In
addition, the processing load handled by CPU 2 is significantly heavier than those handled by the
other two CPUs. The module assignment is given in table 4.2b. Note that the four most fre-
quently invoked modules are assigned to CPU 2. Hence, we want to batch invocations of these

four modules to lower the utilization and significantly reduce waiting time at the bottleneck pro-
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cessor. Furthermore, delay at the batch queue can be minimized by employing batching
mechanism only to these more frequently invoked modules of the task. Different batch sizes and

time-out constants are chosen.

The results are compared in figure 4.3. The bottleneck processor saturates at much lower
invocation rate under FCFS algorithm than in the previous example. With BST algorithm, the
processor can sustain a high task invocation rate. The larger the average batch sizes, the more
overhead can be saved, and the more the utilization can be reduced. In another word, the larger
the batch size, the higher is the task invocation rate that is needed to saturate the system. How-
ever, larger batch size results in more delay at low task invocation rates. In this example, time-
out constants of module batch queue are again expressed as a factor of the reciprocal of module
invocation rates. As in the previous example, this results in the linear increase of utilization with

task invocation rate shown in figure 4.4.

Figures 5 and 6 show that utilization of the bottleneck processor is reduced as task invo-
cation rate increases. The waiting time at batch queue decreases as the invocation rate is in-
creased. BST outperforms FCFS after a critical invocation rateis reached. This critical invoca-

tion rate increases with larger batch sizes.
4.2 Scheduling for Disk I/0

The second example applies the BST to a disk I/O processor. Since disk I/O access time
is often several order of magnitude larger than execution time, the BST algorithm can be applied
to substantially reduce disk 1/O overhead. The algorithm should yield lower response time for a

larger range of task invocation rates than in the previous example.

The model for this example has a central processor servicing jobs that require disk I/O
with little computation. In addition, there is a batch and a processor queue. Jobs arrive from a

single source and depart from the system upon being serviced. The system parameters are given
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as follows:

Fixed Disk I/O Access Overhead = 1
Variable Disk I/O Overhead = 0.01

Mean Job Execution Time = 0.001

The additional parameters that need to be specified are the M and T, of the batch queue.
The analytical model is applied to obtain the mean job response time. Comparisons are made
between FCES and BST algorithm with different M and T,. The comparisons are shown in

figures 4.5 and 4.6.

From figure 4.5, we can see that BST has two advantages over the FCFS algorithm. The
first advantage is the response time improvement for the high invocation rate, although FCFS
yields lower mean response time during low invocation rate. The second advantage is that the
BST algorithm enables the system to sustain heavier load and reach saturation at a substantially

higher invocation rate.

Notice in figure 4.6 that as both the maximum batch size and time-out constant increase,
the response time at low invocation rates increase while at high invocation rates it decreases. At
low invocation rates, larger maximum batch size and longer time-out would increase the waiting
time at batch queue. Thus mean response time increases for BST with larger M and T,. Howev-
er, the delay at batch queue is reduced as the average batch size increases under high invocation
rate. Both factors contribute to the response time improvement with the BST algorithm with

larger M and T,.
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Modules Mean Execution Time Fixed Overhead | Variable Overhead
(Execution time is
exponentially distributed) _
1,2,3,4,5 0.08 0.01 0.01
6,7,3,9,10 0.16 0.02 0.02
11,12,13,14,15 | 0.24 0.03 0.03

Table 2a Module Execution Times and Overheads For First Example.

CPU ! CPU2 CPU3
Ml: MS: M‘h M2s M4s MB: MS» M6s
Mo, M5, M3 | My, Mys Mg, M4

Table 2b Module Assignment For First Example,

Modules Mean Execution Time Fixed Overhead | Variable Overhead
(Execution time is
exponentially distributed)
1,2,3,4,5 0.03 0.06 0.01
6,7,8,9,10 0.06 0.12 0.02
11,12,13,14,15 | 0.09 0.18 0.03
Table 3a Module Execution Times and Overheads For Second Example.

CPU 1 CPU 2 CPU 3
M3s M4, MS’ MG’ Ml: MZ’ MIO’ Mll;
My, Mg, My Mg, M5 | My, M3

Table 3b Module Assignment For Second Example.
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MEAN TASK RESPONSE TIME

Figure 6 Comparison of Analytical and Simulation Resuits
(Distributed System Application Task Example of Table 1),
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(Distributed System Application Task Example of Table 1).

Figure 7 Utilization of Bottleneck Processor
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MEARN TASK RESPONSE TIME

Figure 8 Comparison of Analytical Results
(Distributed System Application Task Example of Table 2).
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Figure 9 Utilization of Bottleneck Processor

{Distributed System Application Task Example of Table 2).
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MEAN RESPONSE TIME

Figure 10 Comparison of FCFS and BST Algorithm for Disk I'O Example.
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2.0 2.5

Figure 11 Comparison of BST Algorithm with Different M and T, for Disk 'O Example.
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5 Conclusions And Future Work

A new schedpling algorithm that is based on Batch Service with Time-out (BST) is pro-
posed. An analytical model for this algorithm which provides reasonably good estimates of task
response time is developed. Comparing the performance of using BST with that of First Come
First Served (FCFS). we note that the amount of improvement of BST over FCFS algorithm
depends on the ratio of fixed overhead to incremental overhead and the level of system load. For
example, with a high fixed to incremental overhead and a heavy system load, such as disk I/O
access, BST performs significantly better than the FCFS algorithm. In addition to response time
improvement, the BST algorithm enables the system to sustain a heavier load and tolerate a sub-
stantially higher task invocation rate before it reaches saturation. This scheduling algorithm can

be applied in many application areas.

There are two areas where future work is needed. 1) For a given application task, op-
timal M and T, need to be determined for module batch queues in order to attain minimum
response time. This problem is complicated by the precedence relationships among modules and
the large number of parameters that affect task response time. 2) In this study, module invoca-
tion process is assumed to be Poisson. Since batching mechanism is used, the module invoca-
tions are grouped and processed together. Thus, bulk Poisson process would be a more accurate
module invocation representation. Carrying out the analysis with bulk Poisson process would

yield more accurate performance prediction.
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PERFORMANCE STUDY OF FAULT TOLERANT LOCKING
1. INTRODUCTION

In a tightly coupled distributed processing system, records are replicated and
stored in shared memory modules to provide fault tolerance. Data updates should be
applied to all copies to assure mutual consistency among them. If a failure occurs dur-
ing an update process, some file copies may have been updated while others have not,
resulting in mutual inconsistency. To recover from this type of failure, Fault Tolerant
Locking (FTL) is proposed [CHU86]. In this paper, an analytic model is developed to

study the effect of system parameters on FTL performance.

In this chapter we shall describe FTL operations, present a finite population
model and a method for estimating the lock grant rate, lock grant time and average
transaction response time for a given operating environment. Finally, numerical

results are used to show the effect of system parameters on FTL performance.

2. FTL OPERATIONS

To implement FTL in a tightly coupled system, shared records are replicated
in two shared memory modules as shown in Fig. 1. Thus, we obtain the primary copy
and the secondary copy. Each processor maintains a record status table (RST) in its
local memory to indicate the accessibility of the record copies. A lock word (LW) and
lock count (LC) are appended to each record copy. LW indicates whether the copy is
free (LW=0), locked (LW=1), being updated (LW=2) or failed (LW=3). The LC of a
record copy informs us whether any other processors have locked this copy during

two successive lock requests.
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Processor 1 Processor M

CPU CPU

RST S RST
LM LM

INTERCONNECTION ~ NET

LY Lc LW Le

Module 1 Module K

LM: Local Memory

X : Primary Copy

X': Secondary Copy

RST: Record Status Table

Fig. 1 Tightly Coupled System with FTL
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Before accessing a record copy, a processor first checks the RST to determine
if the copy is accessible. 1If it is, the processor reads the LW and determines the status
of the copy-_. If the copy is free, the processor will lock the copy by setting LW to 1
and then increasing the LC by 1. If this copy is "locked” or "update-initiated”, the pro-
cessor starts a fault detection procedure using a timeout method. Each processor has a
timeout counter which indicates how many times the processor tries to lock the copy.
In this procedure, the timeout counter is compared with timeout constant. The proces-
sor holding the copy is considered to have failed if a lock request is not granted before

- the timeout constant is exceeded. In addition, the processor checks the LC in this pro-
cedure. The purpose of doing so is to find out whether any other processor locks the
copy during two succesive lock trials. If the LC is changed, the processor resets the
timeout counter to prevent a false fault alarm. The processor then retries after a
prespecified period (retry period). If the LW indicates the record is "failed", the pro-

cessor records this information in its RST to avoid further access to this record.

After the record is locked, the processor copies the record from the primary
module into its local memory and performs the required execution. To update the
record, the processor sets the LW of both copies to "update-initiated” and perform the
update. After completing the updates on both copies, the processor releases the lock

on them and sets the LW to zero.
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3. THE MODEL
3.1 Model-Assumptions and Formulation
In our FTL model, we shall make the following assumptions:

1. There is no lock conflict on the secondary copy; that is, the lock request for the
secondary copy is always successful at the first attempt. Since the secondary
copy is released immediately after the primary copy is released, the possibility
that the primary copy be released while the secondary is still locked is

minimaj.

2. All records are of identical size and have an equal likelihood of being refer-

enced.
3. Memory requests are served in a FCFS order from memory request queues.
4, Although the actual aggregate lock requests for records are a non-Poisson pro-

cess, for tractibility of analysis, we assume they are generated from a poisson

process.

A finite population model is used to study the effect of retry period. The sys-
tem consists of M processors and K memory modules. The primary and secondary
copies of all records are evenly allocated on these memory modules. Assume that
each processor has only one buffer where one FTL transaction request can be stored.
An FTL transaction request is accepted by a processor only when the buffer is empty;
that is, no transaction request is in the processor. When an FTL transaction request is
accepted, the processor starts this transaction immediately. Thus, a processor can be

in one of the five possible states, shown in Fig. 2. A processor is in state I if there is
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no FTL transaction request. The time a processor remains in state I is defined as idle
time. When one FTL transaction request arrives, the processor enters state CS. Here
the processor checks its RST to determine if the primary copy is accessible. L, is the
state where processors issue requests to lock the primary copy. If a lock request is
blocked, the processor will enter lock retry state, R. In state R, the processor performs
the fault detection procedure and then waits for the completion of the retry period.
Then, the processor reenters state Ly. Assuming the lock request is granted, the pro-
cessor enters state H. In state H, the following operations are performed: lock the pri-
mary copy, issue lock request on the secondary copy, lock secondary copy, read the
primary copy, perform local execution, update both copies and finally, release the

locks on both copies.

Let us define the following system parameters:

N = total number of records in the system,
S=  record size,
t; =  average idle time,

tp = average retry period,

ty = average time to issue a lock request without memory conflict,

ty =  average time to lock a record copy without memory conflict,

tq = average time to release a lock without memory conflict,

t, = average time to read a copy, perform execution and update both copies without
memory conflict,

t, = average overhead to check the RST,

tlq = average time to perform processor failure detection,

t= memory cycle time.

Note that in the following analysis, we assume that the number of records, N, is at

V-6



least greater than the number of memory modules, K.
3.2 Average Delay for Each State

Due to memory conflicts, it may take more than one memory cycle to finish a
memory request. Let us define the access delay for shared memory system '-I-‘m as the
time from the initiation of a shared memory request to its completion. The average
delay due to memory conflict is equal to memory access delay minus memory cycle
time; that is, T, —t. The delay increase at each state due to memory conflict depends
on the number of shared memory accesses in that state. There are three types of in-
structions involving the shared memory access: read, update and modify data. Read
and update data require only one memory access while modify data requires two
memory accesses. One for reading the old value and another for writing the new
value back to memory. We calculate the number of shared memory accesses for each
operation to obtain the delay increase for each operation. The operations and their
corresponding instructions involving shared memory accesses and the delay intro-
duced by the operations that include memory conflicts are shown in Table 1 for each

State.

The delay of state I is equal to the idle time. The delay of state CS is the over-
head for determining the accessibility of the primary copy from the RST. Let T(x) be

the delay for state x and "T"(x) be the average value of T(x). Thus, we have

T(T) =t
(L

and
T(CS) =t, .

(2)
The delay for states R, L, and H can be obtained by adding the delay of all their
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LW, : LW of the primary copy
LW, : LW of the secondary copy
LC; : LC of the primary copy
LC, : LC of the sccondary copy

state operation instruction delay

I non-FTL operations | none t;

CS | determine the ac- | none t,
cessibility of the
primary copy

L, | Request for Lock- | check if LWpis O | tyH(Tpm~t)
ing the primary | ?
copy

R detection of proces- | check if LC, is tig+HT =)
sor failure changed ?
wait for retry | none tp
period

IV-8

Table 1. State Description and Delay for Each State




state operation instruction delay
lock the primary | set LW, to 1 and t4+3(T 1)
copy increment LG,
by 1
determine the ac- | check RST t
cessibility of the
secondary copy
request for lock- | check if LW, is 0 t-+H(Tn—1)
ing the secondary | ?
copy
lock the secon- | set LW by 1 and t1+3('f‘m—t)
dary copy increment LC; to
1
H read the primary | perform read in-

copy

struction on each
byte

perform local ex-
ecution

none

update the pri-

set LWp to 2 and

ty+(35+2)(T—t)

mary copy perform  update
instruction on
each byte
update the secon- | set LW, to 2 and
dary copy perform  update
instruction on
each byte
lock release for | reset LW, 100 tﬂ+('f‘m-t)
the primary copy
lock release for | reset LW to0 t,1+('-f‘m—t)

the secondary
copy

Table 1. (Cont.)
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operations in Table 1. We have,

and

where,

A
Tg :

T;:

T(R)=tep+tgg+ Tyt

| (3)
T( )=Tm—t+t r
b ' @
TH)=3S+11)(Ty - +1y
&)

ta =2+ 2ty + L+t 1ty .

Let us define the following parameters:
the rate per unit time that lock requests for the primary copy are granted.

the time from the initiation of a lock request to the granting of the lock for the
primary copy.

the time interval from the initiation of a lock request for a record to the release
of the lock in the secondary copy of that record.

T, and 'f‘, are the average values for T; and T;. We shall use A, 'f‘,, and T‘g as the

performance measures in our analysis.

3.3 Estimation of X, T, and T,

In our model (Fig. 2), the transaction response time refers to the time interval

from the processors’ entry to state CS until their departure from state H. The lock

grant rate is referred to as the rate that processors enter state H so A is the system

throughput. Let the cycle time be the time interval between two succesive entries of a

processor into state I. By applying Little’s result [LIT61], we find that the total

number of processors is equal to system throughput multiplied by the cycle time.

Thus, we have
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A.[ti'i-?r]:M.

(6)
T, can be expressed as a function of A yielding:
~_M
TR )
From Fig, 2, we have
T, =Ty +T(H). @®
Tg can be expressed in terms of T, from (8)
Tg=T;~T(H) . ©)

To estimate A, we consider the primary copy of each record as a resource
which goes through free and locked periods depending on whether or not the copy is
locked by a processor (Fig. 3). During one alternative free and locked period, only one
lock request is granted. Let 'fL and ’T‘F be the average length of the locked and the

free periods, respectively. By using the renewal theory [KLE75], we find that the lock

grant rate per record is — L —. Since it is assumed that all records are equally like-
TF +TL

ly to be referenced (assumption 2), we have

yN—
Te+TL (10)
According to the model, the average locked period for the primary copy is equal to the

average delay incurred at state H minus average delay to release the secondary copy.

Thus,

TL =TH) = [ tq + (T —1)]. 1
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Let A; be the aggregate lock request rate, Since we assume that all records
have an eqyal likelihood of being referenced, the lock request rate per record is El

Further, since aggregate lock requests are assumed to be generated from the poisson

process (assumption 4) we have

TF=L.

M (12)
N

The aggregate lock request rate A; is the rate that processors enter state L, If
we let -I\_/[(x) be the average number of processors in state x and apply Little’s result to

the Lp state, we have

ML)
1= e .
ty + Ty —t (13)

By substituting (13) into (12), we find:

T _ (t; + Ty = )N
M) (14)

Substituting (11) and (14) into (10), we have

A=M(Lp) N (N (ty + Tr =)+ M(Lp) [ TE) =t =T +11} " . (15)

Let us estimate Tp,. Let n, be the number of memory requests in the queue of
a memory module seen by an incoming memory request. Since memory requests are

served in a FCFS order (assumption 3), we have

Ty =(1+n0g)t. (16)

Let N, be the time average number of memory requests in the queue of one memory

module. By applying the state approximation method in [BAR81], we obtain,
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- = 1
Ny =Np(l-—).
M an

Memory requests are initiated by processors in states H, Ly, and R. Since all records
have an equal likelihood of being referenced and record copies are evenly' distributed

on all memory modules, the average number of memory requests in each memory
module equals % of the total average number of memory requests issued by proces-

sors. Therefore,

Nin == [ Ny (H) + Ny (Lp) + Ny (R) ]

L
K (18)
where,

ﬁm(x)=average number of memory requests in memory module queues issued

by processors in state x.

Substituting (17) and (18) into (16), we have

= 1 — — — 1

Ty =t+— (N +N,L(R)+N 1 =—3t.

m K( m (H)+ Ny (R) + N (L) X M)t (19)

Substituting (19) into (5), we obtain

= (3S+11), < =
TH)= -

= 1
[N (H) + N (Lp) + Ny (RYA = —) t] +4 .
- M7 (20)
A1 and A can be obtained by substituting (19) into (13) and (19) and (20) into (15).
v 1 N N I SR
A =MLyt + K (Nm(H) + N (R) + N (Lp))(1 M ] a1
and

[(38+10)M(L,)+N]
K

A=M(L,) N [ Nty + ML) tg - ML) ty +
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(N )+ N L) + N(R)) (1= 220 1)

(22)
Subsdtutiné (22) into (7), we have
_ _ — 38+ 10)M(L,)+N
Tr=_L{Nth.+M(Lp)td—M(Lp)tﬂ+ L¢ )Mdp) +N]
M(Ly)N K
(N )+ i (L) + N (R)) (1= ) t) =5
(23)

The average lock grant time Tg can be obtained by substituting (20) and (23) into (9).

_ _ _ 3S+10)M(L,)+N
Tg=—_—M—{Nt1r+M(Lp)td—M(Lp)t,]+[( ) ML) ]

M(Lp)N K

(ﬁm(H)mmaq,)mm(R))(l—ﬁ)t}—q

1 .= - = 1
=(38+11) — [(Npy(H)+ Ny (L) + N (R) Y1 — =) t] -
K LP M t (24)

For our analysis, we solve ITIm(x), and ﬁ(x) via a set of nonlinear equations of

these variables. We shall now set up this set of nonlinear equations.
3.4 Nonlinear Equations for N, (x) and M(x)

Since the rate at which processors enter states H, T and CS equals the lock
grant rate, A, and the rate at which processors enter state R equals the lock contention
rate, Ay - A, we can obtain the following equations by applying Little’s result to each

state.
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AT(H) = M(H) 25)

AT(T)=M(T) (26)
(M —MTR)=M(R) @7
M T(Lp)=M(Lp) (28)
A T(CS) = M(CS) (29)

From Table 1, processors entering state H will issue (35+11) memory requests. The
rate at which processors enter state H is A. Therefore, the memory request rate issued
by processors in state H is A(3S+11). Applying Little’s result to memory requests in

memory queues issued by processors in state H, we can obtain the following equation:
A(3S+11)T,, =N, (H) (30)

Considering memory requests issued by processors in states R and L, and applying

Little’s result we find,
M =N Tm=Nan(R) (31)
M Tn =N (L) (32)

Since the total number of processors in the system is fixed, the sum of processors in

all states is equal to M. Hence,
M(H) + M(T) + M(CS) + M(L,) + M(R) =M (33)

Substituting (1)-(5) into (25)-(29) and (19)-(22) into (25)-(32), we can obtain non-

linear equations of ﬁ(x) and ﬁm(x).

[(38+10)M(L,)+N]
K

M(L) N (N1, + ML) tg —M@Lyp) ta+
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(N @)+ N (L) + N (R)) (1= 2 ) 1)

(3§+11)

X

_— —_ —_ 1 —_—
[ (N (H) + N (L) + Ny (R) (1= =) 1] +1g } -ME) =0
e M (34)

[(3S+10)M(L,)+N]
K

M@Lp)N (Nt + MLp) ta —M(Lp) o+

(ﬁma{)+§m<Lp)+ﬁm(R))(1—-ﬁ)tr‘ti—ﬁ(n=0

(35)
{M(Lp)[tw%mm(mﬁm(R>+Nm<Lp>)(1—ﬁ)tr‘
_ _ _ 3S+10)M(L,)+N
~F(L,) N (Nt + M(Lp) ta - M(Lp) ta+ = )K Ep)+ ]
(N )+ N L) + (R (1= )17
1 — = 1 -~
_N — —— — -
b+t + S D+ R R+ N1 N -MRI=0
X R 3 3 _
M(Lp)lti + 2 (N @)+ N (R)+ Ny (L)1 = 350
TR 1 .
T+ 2 (D + MR+ MLp))(1 = SN 1= ML) =0 -
_ - — 35+ 10)M(L,)+N
M(Lp) N ( Nty + MLy tg - ML) ta+ )K L)+
_— _— — 1 _1 —
(N (D) + N (L) + N (R)) (1= == ) 1171t = M(CS) =0
b M (38)
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[(35+10)M(L,)+N]
K

M(Lp) N { Nty + M(Lp) tg — M(Lp) ta+
(ﬁm(ﬁ)+ﬁm(Lp)+Nm(R>)<1—$)rrl

1 = — — 1 —
(3S+1D)[t+ —(NLH) + N R)+ N, (L)) (1 - =) t] =N, (H)=0
K L M (39)

{M(I.p)ftk+—fz<Nm(H>+ﬁm(R)+ﬁm(Lp))(1—%»}"‘

[(3S+10)M(L,)+N]
K

~M(L,)N (Nt +ﬁ(Lp) tq _M(Lp) ty+

(N (H) + N (L) + N (R)) (1 —ﬁ—- Yty

1= = — 1 =
[t+—(Npu(H) + Ny (R)+ Ny (Lp))(1 = =) 1] =N (R) =0
K b M ® (40)

ﬁ(Lp)[tk+%(Nm(H)+ﬁm(R)+§ma1,))(1 —ﬁ)trl

[t+ %(Nm(H)Jrﬁm(RHﬁm(Lp))( 1--ﬁ)t]—ﬁm(11,)=0 @1)
Since the system reaches its equilibrium state, the above set of nonlinear equations
provides exactly one solution for M(H), M(T), M(CS), M(R), N, (H), N (L,), and
Nn(R).
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4. DISCUSSION OF RESULTS

In this section, we use the results generated from the model to study the
behavior of the FTL. The overhead values used in our study are

t = 30.0

teg = 15.0

) =2.0

ty=2.0

tg =2.0 .

All time units are represented in memory cycle time.

To reduce memory conflict, the number of memory modules in the system, K,
is equal to the number of processors or equal to the number of records, whichever is

less; that is, K=min[M, N].

Lock grant rate is the amount of lock requests that the system can support for a
given operating environment. We study the lock grant rate, the transaction response
time and the lock grant time as a function of lock retry period for selected M and N.
Figure 4 presents the lock grant rate of selected M for N = 100. We note that the lock
grant rate is higher for larger values of M. Further, the lock grant rate is more sensi-
tive with retry period as M increases. This is because increasing retry period reduces
lock request rate. The reduction increases as the number of processors goes up. In-
creasing retry period also reduces the lock retry rate thus reducing the lock grant rate.
Due to the large number of records available in the system and the assumption that all
the records have an equal likelihood of being referenced, there is little lock conflict
thus, yielding low lock grant time (Figure 6). The lock grant rate for N = 10 is shown

in Figure 5. We note that lock grant rate is not very sensitive to M. This is mainly due
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to the small number of records available, Besides, since the number of records is
small, the records become the bottleneck. A high lock conflict rate causes the satura-
tion of the ;ystem. Therefore, the lock grant time increases as the number of proces-
sors increases (Figure 7). The curves for M = 48 and M = 32 in Figure 5 show some
degradation with small retry periods. This is mainly due to memory conflicts. High
lock conflict results in a large number of retries. Thus, a small retry period causes a
great deal of memory conflict. With small retry periods (M=48 and M=32), the lock
grant time decreases as retry period increases (Figure 7). In this case, increasing retry
period reduces the memory conflict and lock conflict. Therefore, lock grant time de-

creases as retry period increases with small retry periods.

Transaction response time is the sum of the lock grant time, the lock holding
time for the primary copy (including memory conflict delay) and the time used to
release the secondary copy. Figures 8 and 9 present the transaction response time as a
function of retry period for N=10 and N=100 respectively. Note that the curves are
similar to those in Figures 6 and 7. The difference between transaction response time
and lock grant time decreases as retry period increases due to the associated reduction

of memory conflict.

Figures 10 - 15 present the effect of the idle time on lock grant rate, lock grant
time and transaction response time for t; = 0, 1000, 2000, and M = 16 and 48. We
note that increasing the idle time reduces the lock request rate which in turn reduces
both memory and lock conflicts. The effect of the idle time on lock grant rate is shown
in Figures 10 and 11. Besides, as the idle time increases, lock grant time and response
time decreases. Since there are more lock conflicts with fewer records, the amount of
increase in lock grant rate is less sensitive to increasing idle time. Further, the reduc-

tion in lock grant time and lock response time are more sensitive with variation in idle
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time for the fewer records.
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5. CONCLUSION AND FUTURE RESEARCH

In this chapter, an analytic model for FTL has been proposed. This model is
used to study the behavior of FTL. Our study reveals that the number of processors,
number of records, idle time, and lock retry period are key parameters that influence
FTL performance. The amount of memory and lock conflicts depend on idle time, the
number oflprocessors and the number of shared records. Increasing the number of
processors, reducing the number of memory modules and/or shared records, or reduc-

ing the idle time results in an increase in memory and lock conflicts.

To obatain low lock grant time, the retry period should be as small as possible.
However, reducing the retry period increases memory conflicts and lock conflicts.

Thus, there is an optimal retry period for for FTL with a given operating environment.

The FTL protocol has been implemented on the Crossbar Multicomputer
Testbed at SDC Huntsville, AL. The testbed contains six processors connected to
twelve 32K byte memories by a crossbar switch network. Records are replicated on
shared memory modules. FTL protocol is used by processes for accessing records in
shared memory. The measurement results from these experiments will be compared
with results from our analysis to validate the assumptions and approximations used in
our model. More specifically, to compute the lock grant rate and the average transac-
tion response, we need the following parameter values from the testbed:

t: average time interval from the completion of one FTL transaction to the begin-
ning of the next FTL transaction,

tp: average retry period,

t: average time to issue a lock request without memory conflict,
1 average time to lock one copy without memory conflict,
ty: average time to release a lock for one copy,
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th: average time to read record, perform local execution and update record
without memory conflict,

t,: average time to check the RST,

td: average time to perform processor failure detection.

We plan to perform this validation jointly with SDC during the coming year.
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RESILIENT REAL-TIME DISTRIBUTED DATABASE MANAGEMENT
IN THE SDI ENVIRONMENT

1. INTRODUCTION

The Strategic Defense Initiative (SDI) environment poses several data management prob-
lems. We must maintain consistency amongst several files which are distributed over a network.
Different sites in the network may contain different files. Qur software must operate in real-
time. Although there are several protocols to maintain file consistency in a distributed database,
most of them are not real-time. In addition, our applications must continue operation despite
failures of one or more sites. This chapter presents the resilient Exclusive Writer Protocol
(EWP) [Chu 85] and Primary Site Lock Protocol (PSL) [Stonebraker 79], two proposed real-

time protocols for distributed data management. [An 85]

2. ENVIRONMENT

Figure 1 shows a set of six sites covering different sections of the sky. Some regions are
covered by more than one processor. In the corresponding logical environment (Figure 2), links
are drawn between those sites which share common areas. Thus, for site 1 to send a message to
site 5, the message must pass from 1 to 2, from 2 to 3, and from 3 to 5. Even if site 3 crashes,
we can still send the message via site 4. However, if site 2 crashes, then site 1 will be cut off
from the rest of the network and the message will be lost or stalled. This situation is called par-

titioning.

Any configuration of sites into a network is a composition of several simple
configurations. Figure 3 shows several different simple configurations. Initially, we can analyze
these simple configurations before tackling more difficult compositions. Notice the composite

network in Figure 3 is composed of a three node strongly connected section and a tree, attached



by aring. Alternatively, we could consider the strongly connected section to be a ring of size 3.

3. INITIAL ASSUMPTIONS

To make some initial calculations, we will first restrict the problem. Then, once we have
considered a simplified version, we can relax our restrictions. We assume that partitioning of the
network will not occur. After studying and solving the simplified problems, we will introduce

partitioning and propose solutions to the problems which arise.

We also assume that a message sent by a site will eventually be received by a destination
site as long as the destination is alive and that sites will either operate properly or crash. We will
never have a site which is sending information which is undetectably incorrect. These are

hardware tolerance assumptions.

4. PROTOCOL DESCRIPTIONS

For all protocols, all sites are numerically ordered. The lowest numbered site is the Pri-
mary Site or Exclusive Writer. Updates are sent out based on this ordering (lowest site first).
Different files can have different numberings, so that each file can have a different primary site.
To maintain a failure check, each site must send / AM UP messages. These messages will be
sent to all sites, or just neighbors (or some compromise) depending on communication and time
restrictions. If a site stops sending I_AM_UP messages it is assumed that site has failed

(crashed). When the primary site fails, the next lowest site takes over as the new primary site.

Figure 4 shows the instructions for the primary site under EWP. This site monitors in-
coming update-requests and sends the update out to all other sites which have a copy of the file
affected. In addition, the primary site must maintain a network directory to determine which

sites receive a copy of the update. This directory is adjusted as sites fail and recover.



Other sites process normally until a file must be updated. When that happens, they send
an update-request to the primary site. The request should include a sequence number specifying
the last update on this file at this site. The primary site can use this number to determine which

sites have fallen behind in updates and which updates must be discarded.

If the site is the lowest numbered "normal” site in the network, then it has the additional
task of monitoring the primary site in case of failure. If the primary site fails, then this site takes
over and must broadcast the most recent update to all other sites, in case the primary site failed
half way through a transmission. As a result, duplicate messages may be sent. These duplicates

can be discarded based on the sequence number.

Primary Site Locking is similar to EWP. The main difference is that the updating sites
request a lock from the primary site. Once the lock is granted, the updating site sends out all of
the updates. If a lock is not readily available, then the requesting site must either be denied the
lock or wait for the lock to be granted. In either case there is a synchronization delay and an ex-

tra set of messages must be passed to grant or reject the lock request.

To determine which update to accept under EWP or which lock to grant under PSL, se-
quence numbers are kept for each file. A sequence number starts at one and increments after
each update to the file. The sequence number is included in all update requests when they are
sent to the EW. The EW can then determine if the requested update was based on the most re-
cent version of the file or not. Perhaps the site has slipped off the network briefly and then re-
joined, missing an update in the interim. The EW can detect this and can resend the update from

the log backup.

The main advantage of these protocols is that they use very little inter-site communica-
tion. We expect communication to be our major cost in this application. We sacrifice some con-

sistency control when we reduce the number of messages; we can still have conflicting update



messages. However, this application will generate frequent writes to the database as objects are
tracked. Thus, even though we may have two sites updating the position of an object at the same
time, the updates will be almost the same. Soon, another update will occur which will overwrite

the previous updates with new information anyway.

If we want further data consistency, we can implement checking and voting algorithms

on top of EWP or PSL. These algorithms are not discussed here.

5. OVERHEAD ESTIMATIONS

Let us first consider the overhead of I AM_UP messages. Assuming files are replicated
on all sites, and the network is strongly connected, we have several important parameters.
* m = number of sites
* n. = number of I_AM_UP messages
* I. =size of _AM_UP messages
* n, = number of UPDATE messages
* I, = size of UPDATE messages
* n,. = number of REQUEST CONFLICT messages
* I, = size of REQUEST CONFLICT messages
* n, = number of RECOVERY messages
+ [, = size of RECOVERY messages

Based on these parameters, we find the following:
n=ne +ny + e +n,

m  if messages are sent to one neighboor
R = . ' .
©  |m? if messages are sent to all sites

Communication Cost = n.xl. + n,xl, + n,oxl,. + n,xi,



Assuming:
el.=1
* ignore recovery (n, =0)
by =l

* n.. = f (n,) since more updates mean more conflicts

Total Traffic in the two cases for _AM_UP is approximately:

m + (n,xm + m,.)xl,

m?+ (nyxm +m,.)xl,

This analysis means that if too many I_AM_UP messages are sent, the network will be-
come swamped with messages, while if too few messages are sent, we won’t recognize sites
which have failed fast enough. Figure 6 contains a qualitative analysis of our expected results.
The top three graphs show expected communication costs depending on how many sites receive
each I_AM_UP message. Notice that if all other sites receive the message, the quadratic nature

will cause communication costs to be prohibitive for a large number of sites.

The middle graph of Figure 6 presents a family of curves showing the expected recovery
time depending on the reliability of sites and the frequency of I_AM_UP messages. If reliability
is high, then I_AM_UP messages need not be sent frequently. However, if reliability is low, we
must send frequent I_AM_UP messages or risk waiting longer for a node which has failed. If

the I AM_UP frequency is too high, our network begins to get flooded with messages.

The bottom graph is a composite of the results from the top of the page and the middle
graph. On the left side, extra messages are sent to failed nodes; on the right, the network is
clogged. In between these undesirable areas, there is an optimal area which we will determine

using simulation techiniques.



6. CURRENT WORK

Currently, we are building a simulation for a distributed real-time system. The simula-
tion will be able to measure communication and computation costs along with the amount of
time spent waiting for other processes. The results of the simulation will rely on such key
parameters as number of sites, frequency of [_AM_UP, operation costs, frequency of update

messages, message size, and the reliability of individual sites in the network.

The simulation consists of several data structures. The first is a list of commands for
each site along with the associated costs. Specificially, there is an 'EW’ list and a 'Non-EW” list
of instructions. An ordered list of sites sorted by local time provides the next process to select.
That site then ’executes’ one step in the instruction list and is inserted into the site list with an

updated time. If a message is sent, then it is put into a queue at the correct site.

A flow-chart of the simulation is shown in Figure 5. The data is initialized, and all im-
portant parameters are read in from a data file. Then, one by one, processes are 'popped’ from
the ordered site list. Thus, the site with the smallest local time is found. The psuedo-instruction
for this site is found, along with its cost. The instruction is completed; messages are sent and
files are written’ as appropriate. Then, the new site time calculated, and the site is re-inserted
into the list in its new proper place. The simulation repeats this until one of the processes has a

local time which is greater than the specified end time.

We plan to use the simulation to verify our analytical results and charactarize the
behavior of the resilient protocol. We can then use the simulation to determine the frequency of
I_AM_UP messages, and the loading limitations of a given system. We can also use the simula-
tion to inject faults into the system and determine the resilience with respect to amount of

recovery time and number of simultaneous faults.



Using the results of this simulation, we can to determine the relationships between
different system parameters, providing us with insights on the behavior and feasibility of the pro-
posed protocols for operating in the SDI BM/C3 environment. We can then compare simulation

results with the expected results of Figure 6.

V-7



Physical Environment
Figure 1

Logical Environment
Figure 2




Figure 3
Possible Physical Configurations
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Figure 4
Instructions for Primary Site

1. When an Update Request arrives:
Check Sequence Number to determine acceptence
If the Update Request is accepted:
"Stamp" Update with Sequence Number
Send Update to all nodes with a copy of the file
Add Update to Log
Increment Sequence Number
If the Update Request is rejected:
Send "reject" to originating site

2. Maintain a current network directory
| AM_UP messages determine status at each site
| AM_UP contains current Sequence Number

3. If a site fails
Mark site as "down" in directory
Stop sending messages to that site

4. If a site returns after a failure

Send "back" message if there aren’t too many
Resume sending messages to that site
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Figure 5
Flowchart of Simulation
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Figure 6

Proposed Qualitative Analysis of Update Completion Time
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OPTIMAL QUERY PROCESSING WITH SEMANTIC REASONING

1 INTRODUCTION

With the advent of computer network technology, the reliable, efficient and economical
transfer of data among computers and terminals becomes feasible. Advances in this field provide
us with a technological foundation to implement distributed computing and distributed database
on a computer network. The need of geographically separate databases to process common in-
formation files has motivated their connection into a distributed database. Interconnecting the
remote databases together provides real-time retrieval, update, and distribution of large quanti-
ties of information in addition to the sharing of data files. Distributed database systems exhibit

tolerance to site failure and fault tolerance due to multiple copies of data files.

When organizing and planning a distributed database system, many problems need to be
addressed. These include file allocation policy, directory design and distribution, deadlock
avoidance, integrity and consistency in updating multiple copies of data files, optimal query pro-
cessing policy, reliability and recovery as well as privacy and security issues. In this chapter, we
shall consider the problem of query optimization. We shall investigate the applicability of the se-
mantic knowledge of the application domains to query processing in an effort to reduce query
response time. This technique is often referred as Semantic Query Optimization [HAMMBS0,

KING81, XU83, CHAK84, JARK 84a].

Conventional approaches to the query optimization problem use domain-independent
techniques to transfer the original query to a set of operation sequences. Optimization usually
involves the determination of the sequence of operations and sites for performing this set of

operations such that the operating cost (communication cost and processing cost) for processing
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a given query is minimized [CHUS82].

In contrast to conventional query optimization, semantic query processing uses
knowledge of application semantics to transform the original query into a semantically
equivalent one that is cheaper to process. The result is not an alternative processing strategy as in
conventional query processing, but rather a different query that is cheaper to process while still

yielding the same result as the original query because of the semantics of the application.

Since the domain knowledge varies from application to application and knowledge may
change as the state of the database changes, we propose a rule-based architecture to implement
the Semantic Query Processor (SQP). With this approach, new knowledge can be easily added
and out-of-date knowledge easily removed from the knowledge base at any point of time. The
SQP consists of two components: the inference engine and the knowledge base. The inference
engine integrates heuristics which are specified as sets of rules to guide the selection of
knowledge for semantic query transformation and these heuristics seldom change among
different domains. Knowledge in the knowledge base is expressed declaratively as rules and
facts to make the knowledge base modular and easy to change. Because knowledge and heuris-
tics are specified declaratively, both can be modified, added, and deleted without affecting the
operation of the system. This makes the system highly modular and extendable. Since the
heuristics guiding- the query transformation are implemented independent of a specific applica-
tion domain, the same set of optimization heuristics can be used for many application by inter-
changing the knowledge base describing different application domains. All of these factors

make a rule-based approach ideal for implementing SQP.

In the sections that follow, we present an overview of the semantic query optimization, a
general architecture for the SQP system, examples of how the knowledge and transformation
techniques are specified and work in SQP, and finally, the development of SQP and future

research plans.
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2 SEMANTIC QUERY OPTIMIZATION

The goal of semantic query optimization is to transform the original query into a semant-
ically equivalent but more efficient form with the use of database application domain knowledge.
We provide an example that illustrates the necessity and effectiveness of semantic query optimi-

zation.
2.1 AN EXAMPLE OF SEMANTIC QUERY OPTIMIZATION

In the following discussion, we will take examples from a SHIP database management
system that monitors the movements of about 10,000 ships. Each ship visits about 20 ports per
year. A monthly data tape listing the ports visited by each ship is sent to the DBMS. Such a da-

tabase consists of two entities:

SHIP = (Ship_Id, Ship_Type, Draft, Registry)
PORT = (Port_Id, Port_Type, Depth, Country)

and one relationship
VISIT = (Ship_Id, Date, Port_Id, Reason),

Ship_Id is the key for the relation SHIP. Port_ID is the key for the relation PORT. Ship_id and
Date together provide the key for the relation VISIT. The Entity-Relationship conceptual model
of this database is shown in Figure 1. The SHIP and PORT relations contain some relatively
permanent characteristics such as a ship’s draft or a port’s channel depth, etc. The VISIT rela-
tion contains the list of ports visited by each ship in addition to other information. Suppose that
the database system uses a hierarchical implementation to reflect the way the data is received. In

this case, each ship has a pointer indicating a list of ports it has visited (Figure 2).
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The database supports diverse queries from various groups of users. Some classes of

queries can be answered rapidly. For example, consider the query:
Q1: "List the ports visited by ship X during the year 1980."

Pointers direct access to selected items in order to quicken the response time for these queries
(Figure 3). However, this database structure is not well suited to process queries such as the fol-

lowing:
Q2: "Determine the ship name and date of all visits to port A during the year 1980."

To answer this query, we need to access each of 10,000 ship records and check each of the 20
visits to find the ships that have visited port A. This is equal to 200,000 record retrievals (Figure
4).

Suppose the database administrator knows certain physical characteristics of port A that
limit the types of ships that can visit it. For example, port A has a shallow channel depth of 20
feet. The database administrator can transform the query to exploit this knowledge and avoid in-
specting every visit record. Instead of asking for all visits to port A, the user can ask for all
visits to port A by ships whose draft is less than 20 feet. Only when the ship’s draft is less than
20 feet, will the port records be scanned to answer the query. Adding the extra constraint re-
places a scan of 10,000 ships plus 200,000 visits with a scan of 10,000 ships plus a number of
visits which is far less than 200,000. If only five percent of the ships have draftslof less than 20
feet, then only about 10,000 visits need to be checked, which results in a significant reduction in
retrieval cost. We call this type of improvement knowledge-based query optimization or seman-

tic query optimization.
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2.2 SEMANTIC EQUIVALENCE OF QUERIES

Two queries are considered to be semantically equivalent if they result in the same
answer in any database instance that conforms to the semantic integrity constraints [HAMMY75].
Semantic equivalence is not the same as logical equivalence. Two queries are logically
equivalent if one can be transformed into the other by the application of standard logical
equivalences such as De Morgan’s Laws. Logically equivalent queries are obviously semanti-
cally equivalent, but semantically equivalent queries need not be logically equivalent. That is,
two semantically equivalent queries might yield different answers when posed to the database in

a state where some semantic integrity constraint is violated.

For example, suppose there is a semantic integrity constraint to the effect that a ship can
only visit a port with a channel depth greater than the ship’s draft. If the database conforms to

this condition, then the query:
Q2: "List the ship name and date of all visits to port A during 1980."
is semantically equivalent to the query:
Q2’: "List all visits to port A by ships whose draft is less than 20 during 1980,"

assurning port A has a channel depth of 20 feet. The answers will be the same because the en-
forcement of the semantic integrity constraint guarantees that there is no item in the database
that contradicts the aforementioned condition. However, if the constraint is violated, then these

two queries will produce different results,

Database semantic integrity is enforced by the independence of semantic eugivalence and
database state. Integrity checking ensures that every allowable state of the database is a valid in-
stance of the application. No database state can be reached with a violation of the semantic in-

tegrity. There is a violation of the semantic integrity if the database contains values that cannot
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be attained in the application. The semantic integrity constraint for the aforementioned example

can be stated as:

IC1: "For each pair of (ship, port) in the relation VISIT, ship’s draft must be less than or
equal to port’s depth."

2.3 SEMANTIC QUERY TRANSFORMATION

The general approach to the semantic query transformation is similar to the technique for
integrity checking which is implemented by adding constraints to the query expressions. The
principle of this approach is as follows: Let ¢y, ¢3, ..., ¢, be a set of domain knowledge
represented as integrity constraints satisfied by a database state. By a sequence of logical
transformations, the original query Q is translated into Q’ subject to ¢, ¢2, ..., ¢, such that Q’
yields lower processing cost than Q. The semantic query optimization problem is to determine

the setof ¢y, €3, ..., ¢, that yields the minimum query processing cost; that is,

C(@)= min C(QAc A *+* Acy)

i=1,..n

To illustrate this concept, suppose that we have a piece of knowledge of the form P(x) —
C(x), where the variable x ranges over some relation R and C(x) is some constraint on x. This
knowledge states that if the property of P(x) is satisfied, so is the property of C(x). Let’s suppose
query expression Q contains the term P(z) where the variable z ranges over the same relation as
the variable x. By using the technique of integrity checking by query modification proposed by
Stonebraker[STON75], we can transform Q into a semantically equivalent query expression Q"

which contains the conjunction:
P(z). A (P(z) = C(z)).

That is,
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Q' =Q@) A (P(2) = C(2).

However, by the logical equivalence
(AA(A—B)=(AAB)

we can replace this conjunction by the simpler conjunction,
P(z) A C(z)

that yields

Q"(2) = Q(z) A C(2).

The effect is to use the original query constraint P(z) to infer the new constraint C(z) by means
of query modification. By repeatedly applying this technique, we will derive an expression from
which no further constraints can be inferred. Let Q” be this final expression. The technique used
to infer new constraints is similar to the technique of mechanical theorem proving in Al

research. A thorough discussion of the transformation technique can be found in [CHAN73].
3 SEMANTIC QUERY PROCESSOR ARCHITECTURE

As we mentioned earlier, the SQP system consists of two parts: the knowledge base and
the inference engine. The knowledge base maintains the domain-dependent knowledge. The
inference engine contains the domain-independent heuristics that guide the query transformation.
All information that is specific to the application domain should be factored out of the transfor-

mation heuristics and maintained in the knowledge base.

Thus, we have proposed a rule-based architecture with a knowledge base and an infer-
ence engine to implement the Semantic Query Processor (SQP) (Figure 5). To make the

knowledge base modular and easy to change, knowledge about the application domain is ex-
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pressed declaratively as rules and facts in the knowledge base. Facts specify the characteristics

of the underlying database application, such as:
F1: "There are about 5% ships having draft less than 20 feet,"

from our previous example in Section 2. This piece of information is specified in Prolog form

and stored in the knowledge base as:

draft_statistics(10, 20, 0.05).
draft_statistics(20, 40, 0.25).
draft_statistics(40, 60, 0.35).
draft_statistics(60, 80, 0.40).

assuming that the drafts of ships range over 10 to 80 feet. This fact specifies the statistics of the
ships’ draft. The first value gives the lower bound, the second one the upper bound, and the last

value the statistics.

Rules specify the relationships between attributes and relations, which are sometimes re-
ferred as integrity constraints. The format of the rules is given as P(x) — Q(x) which states that
the property of P(x) implies the property of Q(x). In another words, the property of Q(x) can be

satisfied if the property of P(x) is satisfied. For example, in our previous example, the rule:

R1: "Ship A can visit port X only if the draft of ship A is less than the channel depth of
port X."

can be specified in Prolog form as:

visit(X, A) :-
ship(X, _, Draft, _),
port(A, _, Depth, _),



Draft < Depth.

In Prolog format, the string starting with a capital letter is a variable, so X, A, Draft and Depth
are all'variables and can be instantiated to any valid values. This piece of information is actually
one of the integrity constraints stating the relationship among visit, ship, and port relations, and
is useful for query transformation in the semantic query processing, as shown in our previous ex-

ample.

In SQP, the transformation heuristics are specified as a set of if-then rules. The if part
specifies the condition under which this rule can be used. The then part specifies the actions that

should accompany this rule. The format is as follows:

if condition

then action.

The condition is a predicate which is evaluated to be true or false depending on the state of the
database and the current query that is being processed. If the condition is satisfied, this rule will
be fired; that is, the action part of this rule will be executed. Because the action may satisfy the
conditions of some other rules, they may also be fired in response to the firing of this rule. This

process will continue until no further rules can be fired.

The success of semantic query processing depends on the development of efficient
heuristics for selecting the best of many possible transformations (adding a set of integrity con-
straints to the query). Omitting a constraint may result in a lost optimization, while including an
irrelevant one may increase execution time. We are currently developing the heuristics for

selecting the optimal set of constraints to optimize a query.

The conventional query processor (CQP) takes the given query as its input and generates

an output plan (a sequence of retrieval operations in the physical database). The SQP functions
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as a preprocessor that translates users’ queries into semantically equivalent forms by adding ad-
ditional constraints onto the original query expressions. The knowledge used to infer the addi-
tional constraints is represented in the same format as the integrity constraints in the data dic-
tionary. The conventional query optimizer then takes the output from the SQP and selects the

query processing policy that yields optimal performance.

The advantage of this approach to implementing the SQP is that new knowledge and
heuristics for query transformation can be relatively easily added to a working system. Since the
specifications of the domain knowledge and the transformation guiding heuristics are declara-
tive, both can be modified, added, and deleted without affecting the operation of the system. This
makes the system highly modular and extendable. Since the heuristics guiding the query
transformation are implemented independent of a specific application domain, the same set of
optimization heuristics can be used for many applicatons. All of these factors make a rule-

based approach ideal for implementing SQP.
4 A SHIP DATABASE EXAMPLE

In this section, we shall use the SHIP database as an example to illustrate how SQP
works in transforming the original query to a semantically equivalent yet efficient form. During
this discussion, we shall assume the original queries are specified in Prolog form. This restriction
is not necessary. We are using it for illustration only. For query languages like SQL or QUEL,
we can design a front-end translator and back-end translator that convert the -original query

language to Prolog form, used in SQP, and back again.

Let us consider the SHIP database from Section 2 again. For convenience, we rewrite

these three relations in Prolog form as follows:

ship( ship_id, ship_type, draft, registry ).
port( port_id, port_type, depth, country ).
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visit( ship_id, date, port_id, reason ).

Each clause defines the relation name and the associated attributes in each relation. The
»
definiton of the database schema is also stored as part of the knowledge base. To simplify our

discussion, we will assume the database systems used in this section are all relational.

For a query like:

Q2: "List the ship name, its type, and date of all visit to port Francisco during 1980,"
the corresponding query in QUEL is given as:

range of s is SHIP

range of v is VISIT

retrieve (v.ship_id, v.ship_type, v.date) where
s.ship_id = v.ship_id and

v.port_id = "francisco”.
One way to specify this query in Prolog is given below:

answer( Ship, Type, Date ) :-
ship( Ship, Type, _, ),

visit( Ship, Date, francisco, _).

The conventional query processor would perform an equal-join on ship and visit relations and
project the columns Ship, Type and Date. Nothing else can be done to improve the query except

consider the size of the two relations and perform the equal-join in a more efficient way.

Suppose the following information has been stored in the knowledge base which can be

used to augment the original query to yield a more efficient form.
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F1: draft_statistics( 10, 20, 0.05 ).
F2: draft_statistics( 20, 40, 0.45 ).
F3: draft_statistics( 40, 60, 0.40 ).
F4: draft_statistics( 60, 80, 0.10 ).

R1: visit(Ship, _, Port, _) :-
ship(Ship, _, Draft, ),
port(Port, _, Depth, ),
Draft < Depth.

In this section, we shall assume that the knowledge base is existent already. (The discussion of

development and maintenance of the knowledge base will be presented in the next section).

Let us consider the query Q2 again. This query contains two relations: ship and visit,
To evaluate this query, it inevitably has to perform the equal-join on these two relations. How-
ever, we can improve this query by restricting the size of the relations for performing the equal-
join. The only way to restrict the size of the relation is to introduce restriction on some attributes
of some relation before performing the equal-join. Thus, we have the following heuristic that

can be used to transform any given query to a more efficient form:
H1: Introducing selection

if R isarelation referred in Q and
A is an attribute in R and
A is restricted by some value v (A 0 v) and
# of tuples satisfying (A 0 v) is small

then add constraint (R.A 8 v) to Q.

That is, for a relation R in a given query expression Q, if there exists an attribute A in R which is
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restricted by some value v, the original query can be improved by adding the new constraint
"R.A 0 v" which is more efficient to evaluate yet semantically equivalent. The resulting query is

as follows:
Q=QARA0OV).

The condition of "# of tuples satisfying (A 0 v) is small" is included because the addition of
more constraints does not guarantee that query improvement. For example, if the number of tu-
ples satisfying the new constraint is approximately equal to the total number of tuples in the rela-
tion, adding further constraints will accomplish nothing but increasing the computation time to
check the redundant constraint. This example illustrates the importance of heuristics in choosing

the right constraints for query transformation.

Now consider the query Q2 that contains the relations ship and visit. By searching the
knowledge base, we find that rule R1 might be a promising candidate for query transformation.
Suppose rule R1 is applicable. We instantiate the variable of Port to the value "francisco".
Further suppose that the depth of the port Francisco is 20, known either by inference or by physi-
cally storage of this information in the knowledge base. This value is then used to restrict the
possible draft values of ship tuples. By checking with the knowledge base, we find that the
number of tuples satisfying this restriction is only 5% of the total number of tuples in the ship
relation. This meets the last condition of H1 that "# of tuples satisfying (A 0 v) is small”. Thus,

we add the constraint "Draft < 20" to Q2 and yield the following form:

Q2’ = answer( Ship, Type, Date ) :=
ship( Ship, Type, Draft, ),
visit( Ship, francisco, Date, _),

Draft < 20.
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This transformed query Q2’ will then be fed into the conventional query processor for
processing. The general approach to evaluating this query is to perform the selection on the ship
relation with the constraint "ship.Draft < 20" first, which will reduce the size of the ship relation

before doing the equal-join down to at most 5%.

Now suppose the following information has been added into the knowledge base either

by the database administors or the domain experts:

F5: index( ship, ship_type ).

F6: repair_facility( angeles, submarine ).

R2: visit(Ship, _, Port, repair) ;-
ship(Ship, Type, _, _),
port(Port, Type, _, ).

F$ specifies that ship_type is an index of the relation ship. F6 tells that port Angeles only has
the repair facility for submarines. R2 specifies that a ship can only be repaired at ports with

repair facilities for that type of ships.

If we are now interested in answering the query Q3: "List the ship and the date that the

ship has visited port Angeles for repairs.” The Prolog expression of this query is:

Q3: answer( Ship, Type, Date ) :-
Ship( Shlp, Tpr, _ )’

visit( Ship, Date, angeles, repair ).

Notice that both Q2 and Q3 have the same query expression, except that the constant value qual-
ifying the tuples of the relation visit has been changed from francisco to angeles, and "repair" is

added to give the reason for visit.
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Suppose accessing files by index is always faster than scanning the files. We can improve
the query by adding a constraint on a clustered indexed attribute of a relation in the query if one

can be found. Thus, we have the following;:
H2: Introducing index

if R isarelation referred in Q and
A is an indexed attribute in R and
A is restricted by some value v (A 8 v) and

then add constraint (R.A 6 v) to Q.

In the case of Q3, either H1 or H2 can be used to improve the query. H1 (Introducing
selection) can be applied to ransfer Q3 to Q3’ in the same manner as given before. However,
since we know port Angeles can only repair submarines, and ship’s Type is a clustered index of
the relation ship, by applying H2, we get an even better query, Q3". Since accessing files by in-

dex is usually faster than scanning the files, Q3" will save more block accesses than Q3 can do.

Q3" = answer( Ship, Type, Date } :=
ship( Ship, submarine, Draft, _),

visit( Ship, Date, angeles, repair).

The relation visit and the constant "repair” in Q3 indicate that Rule R2 might be
beneficial. Suppose this rule is selected, then Port in R2 will be instantiated to "angeles”, which
will then trigger F6 to be used. Since Rule R2 forces that the ship’s type must be the same as
the facility type of the port it visited, the ship’s type will then be instantiated to "submarine".
Since F5 states that ship’s type is a clustered index of the relation ship, all the conditions of the

heuristic H2 are satisfied and H2 is then applied to transform Q3 to Q3".
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When several transformation techniques can be used for query transformation, the one
which yields the lowest operating cost (computation and communication cost) or the best
response time will be selected. It may also be the case that several transformation heuristics will
be used in sequence to transform the given queries. In either case, the operating cost or the
response time will be used as a performance measure for selecting the heuristics to be used to

improve the queries.

In this section, we have shown how domain knowledge and transformation heuristics can
be used to transform original queries into equivalent but more efficient queries. In the next sec-
tion, we shall present methods for obtaining useful domain knowledge and for developing

transformation heuristics.
5 DEVELOPMENT OF SQP

At UCLA, we have a SHIP database which is a relational database and a SDI Battle
Management database which is in a flat file data format. We will carry out this research in two
phases. In the first phase, we plan to develop a methodology for knowledge acquisition and
representation. Next, we shall implement a Semantic Query Processor, with this knowledge
represented in Prolog, on top of the SHIP database and evaluate the performance improvement

derived from this knowledge.
5.1 Knowledge Acquisition and Representation

There are two categories of knowledge that are useful for semantic query optimization:
namely domain-related and system-related. The domain-related knowledge involves the data-
base application domain. It includes such information as the sizes of attributes, the sizes of the
relations, the distribution of the attribute values, and the inter- and intra-relationship among attri-
butes and relations. All the knowledge mentioned in previous sections falls in this category. For

example, facts F1 to F4, specifying the distribution of the draft values of ships, and rule R1
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specifying the relationship among ship and visit relations are all domain-related knowledge.

This type of knowledge comes from several sources. It can be specified by the user, ex-
tracted from semantics of the database schema definition, or induced from the current instance of
the database. For example, the statistics of the draft values of ships can be either given by the da-
tabase administrator or calculated with the use of the finite differencing technique[PAIG81] dur-
ing updating the ship relation. Every time there is an update, either adding/deleting tuples
into/from the relation or changing content of a tuple in the relation, the statistics can be incre-
mentally changed without recomputing from the entire database instance. Rule R1 is extracted

from semantics about the SHIP database which assures the integrity of the database.

The knowledge can also be induced from the current content of the database. Rule in-
duction techniques, such as ID3 and ACLS [BUNDS5], have been widely used in Al research to

model learning activity by inducing rules from a set of examples. Consider the following data-

base instance:
ship: ship_id ship_type draft
001 fishing_boat 20
002 oil_tanker 100
003 fishing_boat 15
004 oil_tanker 200

If we know there exists a relationship between the type of a ship and its draft, then by using the
rule induction technigues, we can induce the following relationship from the current database in-

stance:

if 10 < Draft < 20 then

ship_type is "fishing_boat".
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if 100 < Draft < 200 then
ship_type is "oil_tanker".

The reader should notice the difference between this rule and the integrity constraint stating the
relationship between the ship’s type and its draft. The integrity constraints state the semantics of
a database application domain and are seldom changed during the life time of the database. On
the other hand, what is specified by this rule is correct only at this database state and may no

longer be correct when the state changes.

With the use of the rule-based approach to implement the Semantic Query Processor,
rules in the knowledge base may be modified, added or deleted as the state of the database
changes. Finite differencing techniques can also be used here to incrementally update the
knowledge base when changes to the content of the database occur with very little overhead ad-

ded to the database update processing.

Knowledge about the system may also play an important role in query optimization. For
example, in a distributed database environment, files may be replicated on several sites. The
query processor may select the sites with the lowest average load to evaluate the subqueries.
Knowledge about the average load of each machine as well as the speed of the access route can
be very useful in reducing the query time in a dynamic environment. The system-related
knowledge involves the physical structure of the database. Information such as the file organiza-
tion, distribution of the files, access method, available indexes, average load of each machine,
the level of communication link congestion, and the cost of each operation is all part of system-
related knowledge. This knowledge can be useful for improving query processing, and can be

easily added to or removed from the knowledge base dynamically.
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5.2 Current Status

We are currently developing a prototype SQP system. This prototype system will be im-
plemented in Prolog[CLOCS81] and all the knowledge (facts, rules, and heuristics) will be ex-
pressed in Prolog form. The input and output queries of the SQP system will also be expressed in
Prolog language. In the first stage, we will mainly focus on developing the methodology for
knowledge acquisition, and heuristics for query transformation as well as studying the issue of
the knowledge representation. Rule induction techniques will be used to automatically induce
useful knowledge from the database. The facts, rules, and transformation heuristics will be in-
tegrated as a Prolog program working as a pre-processor on top of the conventional query pro-
cessor. We plan to develop the heuristics to guide the selection of promising constraints for se-
mantic query transformation. The methodology for incrementally modifying the knowledge
base will also be developed. The performance improvement based on the number of block
accesses saved and the overhead added to the transaction processing will be measured and

analyzed to evaluate the cost/performance of this approach.
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MULTI-AGENT PLANNING

1, Introduction

A typical multi-agent problem solving system consists of a collection of agents, each
with various skills such as sensing, communication, planning and acting. The group as a whole
has a set of assigned tasks or a global goal. There are three main steps for problem solving in a
multi-agent environment. The first step is to decompose the global goal into subgoals and assign
them to appropriate agents. Each agent then designs its own plan to accomplish its assigned
subgoals. Further negotiation is often required among these agents to accomplish the global goal.

The final step is to carry out the global plan.

Contract Net protocol [DAV 81] provides a way to decompose the global goal into
subgoals and assign them to appropriate agents. If these subgoals are assumed to be independent,

then the agents can generate an individual plan for each subgoal as shown (Fig. 1):
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Goal

subgoal #1

plan #1

However, subgoals are usually not independent. The dependency of the subgoals among agents
prevents each agent from devising its own plan. We shall describe the interaction problem in the

following section and propose a two phase algorithm to iteratively generate a plan for multi-

agent planning.

subgoal #2

plan #2

Fig. 1 Individual plan for subgoals

2. Interaction in the Multi-Agent Environment

Interactions usually arise because of resource sharing in the multi-agent environment.

There are basically two types of interaction: cooperative and competitive. These will be dis-

cussed in the following sections.
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2.1, Cooperation Between Agents

In order to illustrate this interaction problem, let us consider the following example using
the "block world." Consider there are four blocks, red, blue, yellow and green, arranged as
shown in Fig 2. The goal here is to move the green blocks to floor F4, the yellow to F5, the blue
to F6 and the red to floor F There are two agents to do the jobs. Agent A is responsible for the

green and yellow blocks while agent B is responsible for the red and blue blocks.

I |
i
| |
! A B ;
I
S ®
y |
(i) i |
t G1 i
| 1
G1 Y1 ! B1 R1 Y1 I | B1 R1
| — |
Fe4 Fs | Fi F2 F3 1 Fs F7
1 I
1 |
GOAL INITIAL POSITION GOAL
POSITION POSITION

Fig 2 A block world example of cooperation

There are two possible plans to accomplish this goal:
PLANI

Agent A Agent B

move_on(G1, F4)
move_on(Y1, F5)

PLANII

Agent A
move_on(Y1, F5)

move_on(B1, F6)
wait_clear(G1)
move_on(R1, F7)

Agent B
move_on(B1, F6)
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move_on(G1, F4) move_on(R1, F7)

Plan II is better than plan I because agent B finishes its work in 2 steps rather than 3, The .
main point of this example is to illustrate how one agent can help the other agent without paying
extra cost (in our example, agent A can finish its job in two steps in either plan). In cases where
an agent has to pay in order to help the other agent, the objective is to develop a plan that minim-

izes the overall cost.
2.2. Competition Between Agents

The last example shows that it is possible for the agents to interact cooperatively to
benefit the overall goal. A situation with competitive interaction through resources will be illus-

trated in the following example.

This time we have two red, two green and one black blocks as shown in Fig 3. Agent A is
responsible for moving the two red blocks to F4, and agent B for moving the two green blocks to
F5. A block must reside directly or indirectly on one of the five floors. Notice that the blocks are

numbered for easy reference; the agents, however, only see the difference between red and green
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Fig 3 A block world example of competition

A possible plan (not an optimal one) is:

Agent A Agent B
move_on(R1, F4) move_on(B, R2)
wait_clear(G1) move_on{Gl, F5)
move_on(B, G2) wait_clear(R2)
move_on(R2, R1) move(B, F2)

move{G2, G1)

Notice is that the black block is moved back and forth by agents A and B. As a result, the
plans of both agents are slowed down. When the plan of one agent gets in the way of another

agent, we say a competition or conflict has developed.
3. A Two Phase Approach for Multi-Agent Planning

A major task for multi-agent problem solving is to integrate the plans of all agents in a
way that minimizes competition and maximizes cooperation. Difficulties arise when an agent

has to devise its own plan while at the same time incorporating the plans of the other agents into
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its own plan. The problem becomes even more complex when the inter-dependency between
two agents, A and B, is so strong that A cannot proceed without knowing B’s plan first and vice
versa. Thus, we reach a deadlock situation. In order to alleviate these difficulties, we use a two
phase algorithm similar to that used by Georgeff [GER 83] to generate plans for the multi-agent
environment. We assume that the global goal of the system has been decomposed into subgoals
and assigned to the appropriate agents. In the first phase, each agent generates its own individual
plan to accomplish its own subgoal without considering subgoals of others. In the second phase,
the agents compare and modify their plans with each other to minimize competition and maxim-
ize cooperation. We repeat the second phase until the global goal requirements are satisfied. The

detailed algorithm is as follows:

PHASE
Each agent does its own individual planning to accomplish its own goal as though no other

agents exist (i.e., plans will be produced independently by each agent in parallel).

PHASE II
1. Request the individual plan of another agent, X, who has a dependent subgoal
2. Compare the two plans:

a. Modify its own plan to eliminate instances of competition between the plans
b. Further modify its own plan to incorporate all possible cooperation

Send the revised plan to X

Wait for X to send in its latest plan

If X makes changes in its plan, then repeat steps 2-5, otherwise, done with X

A O S

Repeat steps 1-5 for all the other agents who have dependent subgoals
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This approach has the advantage that it is likely to achieve a high degree of parallel ac-
tions. The two phase algorithm starts by doing individual planning for every agent in parallel.
Only when it is impossible to have parallel action due to resource contention or other conflicts

are the parallel actions serialized. This parallelism is highly desirable in the multi-agent world.
4. Some Fundamental Problems in the Two Phase Approach

One problem that arises in this two phase approach, as in most systems with parallel ac-
tivities, is the problem of inconsistency. In the first phase of the algorithm, every agent does its
planning independently with no interference from other agents. However, in reality this is not
the case. The interference of agents on each other will create an inconsistent view of the world
when individual plans are merged in phase II. A condition or state assumed by an agent in accor-
dance with the initial state of the world during phase I planning may no longer be true due to the
actions of the other agents. For instance, a block "B" may be clear in the initial state of a given
world. If an agent "X" does not do anything to block "B", it will assume that block "B" maintains
the same position it did initially., Should agent "X" have to move block "B" later, it will plan to
do so without having to clear block "B" first. However, due to the actions of the other agents,
block B may not be clear any more by the time agent "X" wants to move it. In this case, extra
steps must be added to the plan of agent "X" to accommodate the change. This problem is due

to the parallel planning of multiple agents and we call it the consistent world problem.

Another problem associated with the multi-agent environment is the resource availability
problem. In the single-agent world, we can safely assume that all resources specified in the sys-
tem are available to the agent. However, in the multi-agent world, part of the resource may be
currently used or operated on by one agent and thus not available to other agents at that time.
This kind of resource contention where two agents both try to operate on a resource concurrently
is easy to detect, Nevertheless, there is the less obvious case of resource contention where a

resource not currently operated on by an agent is still needed by that agent and hence is not
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available to other agents. For example, agent "X" is building a three block tower with block A at
the top, block B in the middle and block C at the bottom. Let’s say X is now in the final step of
stacking A onto B. At this point in time, block B and C, which are not currently operated on by
X, are still needed by X in order to build a three block tower and hence are not available to other
agents. The system must somehow recognize these two types of resource contention and
represent them efficiently. Again, since phase I planning is basically single agent planning, these

resource availability problems must be addressed during phase II planning.
S. Implementation For the Two Phase Approach

The biggest potential problem in the two phase algorithm is with the process of "merg-
ing" individual plans to resolve interaction problems during the second phase. If not handled
properly, the merging process might very well redo all the planning that has already taken place.
If this is true, then there is no point in the agents going through the first phase of independent
planning in parallel. Therefore, in order for the two phase algorithm to work efficiently, the
phase I planner must provide enough information to the phase II planner for it to modify the ini-
tial plans. Otherwise, effort will be replicated by the phase II planner to figure out the objectives
of the phase I plans. Information needed by the phase II planner includes temporal relationships,

causal relationships and simultaneity. We shall go through the details in the following sections.
5.1. Knowledge and Data Representation

Some knowledge representation scheme must be used to represent the initial state of the
world (the initial state), the goals which need to be accomplished (the goal state), and the plans
generated to accomplish the goals. The initial state and the goal state are usually represented by

a set of state predicates. This is the approach used by our algorithm.
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There are two basic approaches for representing a plan. The state-based approach,
represents a plan by a sequence of set of state predicates. This approach indicates the efforts of
the actions carried out directly and indicates the actions to be carried out indirectly via the
differences between consequent sets of state predicates. The second approach, the behavior or
action approach, represents a plan by a sequence of actions. It indicates the actions to be carried
out directly and the effects of the actions carried out indirectly by either updating the state-based
description of the initial state of the world or by a distributed description of the change using add
and delete lists like those in the procedural net [SAC 77]. In both approaches, the scheme will
represent the actions, the effects of the actions and the temporal relationship of those actions.

These are the minimum requirements of a representation scheme.

In our research, we shall adopt the behavior based approach. More specifically, the pro-
cedural net is used to represent the plan generated. The procedural net contains several levels of
plan representation; each level more detailed than the previous one. A procedural net consists of
a partially ordered sequence of nodes that represent goals at some level of abstraction. Each
node in the procedural net is attached to its more detailed expansion in the next level; for exam-
ple, the node representing the abstract goal make coffee may be expanded to handful of more de-
tailed goals, such as grind coffee, boil water, put the coffee in a filter, pour the water through it.
The statement of the problem goal is the top level node, representing a plan at a very high level.
The top level node will be expanded repeatedly until a detailed plan is obtained. A procedural
net is headed by the planhead node. Parallel plans will be represented by means of the andsplit,

andjoin, orsplit and orjoin nodes.

The original procedural net scheme does not have a mechanism to represent the duration
of the operation. In order to make the procedural net more general and more suitable for our pur-
pose, a "time" field is added to every operator node to designate the time needed to accomplish

that operation.
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5.2. The Planning Algorithm

The backtracking approach, similar to that used in WARPLAN [WAR 74}, is one way to
plan. However, backtracking approaches are inadequate for our two phase algorithm because
they overconstrain a plan. A planner is said to overconstrain a plan if it commits itself arbitrarily
to orderings. For example, let M1, M2 and M3 represent three moves in a certain domain. (For
example, in the block world domain, M1 can be "clear block A", M2 can be "clear block B", M3
can be "move A on B".) Let us use the notation "==>" to represent the temporal relationship
between two actions. A backtracking planner may produce a plan like M1 ==> M2 ==> M3. (M1
followed by M2, followed by M3.) However, in some cases, the order in which M1 and M2 are
executed may not matter, that is, M2 ==> M1 ==> M3 may work just as well. However, this in-
formation is not provided by the backtracking planner. If we use the backtracking approach in
phase I of our algorithm, these overconstrained plans will present difficulties for the phase II
planner when modification is necessary. For example, in the aforementioned case, suppose the
plan M1 ==> M2 ==> M3 is given by Agent "X" as a feasible solution. However, another agent,
"Y", may find that the alternative plan M2 ==> M1 ==> M3 will fit better with its own plan.
However, since the plan is overconstrained, Agent "Y" will not know if the alternative plan is
acceptable for Agent "X". Therefore, agent "Y" must go through the reasoning process to deter-
mine whether the alternative plan is acceptable for agent "X". Notice that even agent "X" does
not know if the alternative plan is acceptable without further reasoning due to the termination of

most backtracking algorithms after the first feasible solution is found.

Another planning approach is the least commitment approach. Planners using this ap-
proach are said to underconstrain a developing plan by not committing to any orderings except
to avoid an interaction. For our research, we have implemented the least commitment approach.
The planning algorithm is very similar to that used in NOAH [SAC 77]. Here, the basic idea is

to repeatedly operate on the lowest level of the procedural net. Initially, a node is constructed for
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the goal the planner is given as its task. A set of domain dependent procedures is used to expand
this node. Once all the nodes in the current level have been expanded to produce a new level, the
critics check for interactions before another level of expansion is tried. We shall elaborate on the

ideas of node expansion and critics in the following sections.
5.2.1. Node Expansion

A rule-based system is used to develop the individual initial plan in phase I. A similar ap-
proach is used in STRIP [FIK 71] and WARPLAN [WAR 74]. For every effect the system
wants to achieve, there are actions and preconditions associated with it. Using the "block world"

as an example, the effect/action/precondition trio are as follows:

EFFECT ACTION PRECONDITION
on(U, floor) move(U, V, floor) clear(U} &
on(U, V) &
V /=floor
on(U, W) move(U, V, W) clear(U) &
clear(W) &
on(U, V) &
U/=w
clear(U) move(U, V, W) clear(U) &
clear(W) &

on(U, V) &
U/=W

5.2.2. Critics

Different critics are used in phase I and phase II of the two phase approach. For phase I,
there are three commonly used critics which are very similar to those used in the NOAH system.
The first one is the resolve precondition conflict critic. This critic examines conjunctive goals
that are to be achieved in parallel. If an action taken to achieve one goal removes a precondition
of an action in the other, the critic attempts to order the actions so that neither violates a precon-

dition of the other. The second critic, the eliminate redundant operation critic, fixes the problem
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where the same operation gets specified twice when it need only be done once. The third critic
is the use existing operation critic. Formal objects, essentially placeholders, are used whenever
there is not a clear choice of what value to give a variable. This critic will substitute a value

when a clear choice becomes possible at a lower level of planning.

The Phase II planner employs a different set of critics. While the phase I critics deal only
with individual plan, the phase II critics solve interplan interaction problems. Thus, phase II cri-
tics are more complicated and more involved than their phase I counterparts. We shall explain
these critics in detail. We shall use the term subplans to represent the current individual plans of
the agents.

(1) Resolve interplan precondition conflict critic

This critic addresses the consistent world problem mentioned in the previous sec-
tion. It examines the operators or goals in different parallel subplans. If an action taken to
achieve one goal in a subplan removes a precondition of an action in another subplan, the
critic attempts to order the actions so that neither violates a precondition of the other. If the
conflicts cannot be resolved by re-ordering or serializing the actions, then an extra action
sequence may need to be inserted into the plan. In the worst case, substitution of an alter-
native plan may be needed in order to resolve this conflict.

(2) Resolve competitive resource sharing critic

This critic checks for operators that are using a common resource. An example of
such a resource would be a block in the block world domain, or a runway in the air traffic
control domain. If two plans are using a common resource in a competitive or conflicting
way, this critic will try to resequence the actions or even change the plan in a way similar
to that of the above critic to eliminate the competition.

(3) Resolve cooperative resource sharing critic
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Sometimes two parallel subplans will perform the same operation on the same ob-
ject. This critic will reorder and alter the subplans so that only one agent performs the
operation while the other agent benefits from it. This critic will recognize operations with
formal objects or placeholders as potential resource sharing opportunities.

(4) Resolve resource deadlock critic

Deadlock occurs when two parallel subplans require resources which are currently
held by each other. For example, two vehicles (agents) moving toward each other in a sin-
gle lane road. When a deadlock situation is detected, this critic will force one of the agents
to give up its resource temporarily. This will usually mean inserting extra steps into the
subplan of that agent.

(5) Resolve irreplaceable resource critic

In most cases, we assume that the shared resources are imperishable. However,
sometimes a resource is consumable and irreplaceable. If two subplans require the same
irreplaceable resource, this critic will determine which subplan will get to use it and what
alternative arrangement will be made for the other subplan. This is basically a domain
dependent critic.

(6) Mutually beneficial planning critic

When a single agent interchanges the content of two registers, an intermediate step
is required. The equivalent problem in the block world of swapping two blocks requires
the placement of one block in a temporary location while the second block is moved into
place. However, if the job is handled by two agents that cooperate well, this intermediate
step is not necessary. The job can actually be accomplished by just one move from each
agent. The job of this critic is to recognize this potential for cooperation and simplify the

plans accordingly.
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6. A Block World Example

We shall illustrate the generation of cooperative plans by the two phase algorithm using
the example in Fig 2. In phase I, the agents work independently in parallel to come up with two
individual plans as shown in Fig 4a and Fig 4b. Then we enter the second phase of the algorithm.
At this point, agent A sends its plan to agent B. Agent B then checks the subplans to see if there
is any interaction between them by applying the various phase II critics. In this example, the
resolve cooperative resource sharing critic discovers that both agents try to move the block gl.
Further investigation reveals that the action "puton(gl,f4)" is parallel to another action in A’s
plan. Therefore, either action can be executed first. Agent B concludes that if it imposes the con-
straint that "puton(g1,f4)" of agent A be executed first, then it can eliminate its own step to move
gl. Agent A’s plan becomes that shown in Fig 5a. Since "puton(gl, Somewhere)" is the precon-
dition of the action "puton(rl, f7)" in agent B’s plan, agent B has to make sure that "puton(rl,
£7)" waits until the action "puton(gl,f4)" is executed by agent A. This is accomplished by rear-

ranging agent B’s plan as shown in Fig 6.

Final plan of agent A:

1. start
2.putglonf4
3.putyl onf5
4. end

Final plan of agent B:
1. start
2. put bl on f6

3. putrl on {7
4. end
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7. Applications of Multi-Agent Planning

Multi-agent planning is a general tool that has innumerable application possibilities in
distributed systems. One possible application is in the CAD/CAM area. Due to the large amount
of computing involved in a PC board layout software package, a main frame computer must be
used to run the software; otherwise the response time will be very slow. With the advent of VLSI
technology, one feasible way to meet the high computing power requirement is to use multiple
microprocessors to do the job. In this case, each processor will deal with a particular part of the
PC board layout. Obviously, the interconnection between one part of the PC boﬁrd and another
will create many interaction problems which must be solved by the system. Multi-agent plan-

* ning provides the means to accomplish this.

Another application area is the Strategic Defense Initiative (SDI) Battle Management
System. The SDI Battle Management System consists of a set of defense units (platforms), each
spatially separated. Interaction problems may arise due to the overlapping of coverage areas of
each of these defense units. Based on the input scenario, resource constraints (e.g., the current
launch loading of a defense unit), amount of resource available (e.g., interceptor missile), and hit
probability of an interception, multi-agent planning can provide the overall optimal strategic

plan for battle management.
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