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The interconnection topology of a circuit does not, in general, correspond to
a planar graph. However by encompassing the routing of a circuit in the
specification, it is possible to obtain a planar characterization of the topology of a
circuit. The planar topology of a circuit is formally defined and the use of
specifications with planar topology for the layout of integrated circuits is examined.
An applicative language(FP) is used to obtain circuit specifications with planar to-
pology. The planar topology arises naturally out of the constructs used to specify the
behavior of the circui't. An efficient mapping from planar topology to geometry is
implemented. The problem of transforming the planar topology to minimize the in-
terconnection complexity is addressed by exploiting the structural information of the

specification as opposed to using only the planar topology.






VITA

August 4, 1957 Born, Uccle, Belgium

1978
16982

B.A. Mathematics, University of California, Los Angeles

M.S. Computer Science, University of California,
Los Angeles

PUBLICATIONS

M. Schlag, Y. Z. Liao and C. K. Wong, "An Algorithm for Optimal Two-
Dimensional Compaction of VLSI Layouts," Integration, the VLSI Journal,
Vol. 1 No. 2&3 (Oct. 1983) 179-209.

M. D. F. Schlag, L. S. Woo and C. K. Wong, "Maximizing Pin Alignment by
Pin Permutations," Integration, the VLSI Journal, Vol. 2 1984 pgs. 279-307 .

M. Schlag, F. Luccio, P. Maestrini, D. T. Lee and C. K. Wong, "A Visibility
Problem in VLSI Layout Compaction," Advances in Computing Research,
Vol, II, VLSI Theory 1984.

M. D. F. Schlag, E. I. Yoffa, P. S. Hauge, and C. K. Wong, "A Method for
Improving Cascode-Switch Macro Wirability,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol CAD-4
No.2 pgs. 150-155. April 1985.

D. Patel, M. Schlag, and M. Ercegovac, "vFP: An Environment for the
Multi-level Specification, Analysis, and Synthesis of Hardware Algorithms,”
Functional Programming Languages and Computer Architecture
Conference, Nancy, France, September 1985, Lecture Notes in Computer
Science, ed. J. Jouannaud pgs. 238-255, Springer- Verlag Berlin 1985.

Y. F. Wu, P. Widmayer, M. D. F. Schlag, and C. K. Wong, "Reculinear
Shortest Paths and Minimum Spanning Trees in the Presence of Rectilinear
Obstacles," to appear in IEEE Transactions on Computers.






CHAPTER 1

Introduction

The time and effort required to design an integrated circuit is the most
significant factor in its cost. The complete geometrical specification of an integrated
circuit is time consuming, error-prone and inefficient since parts must often be
redesigned due to uninformed decisions made at early stages. Computer scientists
have attempted to reduce this cost by providing ‘silicon compilers’ which produce
an integrated circuit from a behavioral specification as conventional compilers
produce machine code from a programming language [Joha79, Gajs85]. This
concept although attractive, results in integrated circuits with lower performance and
less efficient use of area. Unlike the generation of machine code in which the
location of code has little bearing on its performance, the geometrical properties of
an integrated circuit can affect its performance. The efficient use of area impacts
performance by permitting larger systems to be implemented as integrated circuits.
The generation of integrated circuits from behavioral descriptions without
considering nor providing any of the geometry of the design, seems to compromise

performance and efficient use of area.

There is a level of geometry which is flexible enough to encompass both
abstract representations of a design as well as its final layout, ‘planar topology.” In
this thesis, the use of behavioral specifications with planar topology for integrated
" circuits is examined and a system generating layouts of integrated circuits is

implemented. A functional language, FP [Back78], in which behavioral



specifications imply the planar topology of a circuit, is used as a specification
language for integrated circuits. Since only the planar topology of the specification is
fixed, its geometry is flexible and adapts, as the specificaton is refined from a high
level behavioral description to one comprising only circuit devices. This is contrary
to the notion of a silicon compiler, since designers are responsible for the geometric
implications of their specifications. However, since graphical feedback at varying
levels of abstraction can be provided efficiently, the geometric consequences of the
specification can be assessed during the synthesis of the design rather than after its

completion.

The use of a behavioral language as a specification of a circuit and its planar
topology will be described in the last section of this chapter. Before introducing this
approach, integrated circuits and the design process are described as well as the state

of the art in design tools and the problems associated with them.

1.1 Integrated Circuits

An integrated circuit is formed by overlapping various conducting materials
on different levels with insulating layers in between. In the Metal-Oxide-
Semiconductor (MOS) technology, the conducting materials consist of diffusion,
polysilicon and metal. A transistor is formed by bridging two diffusion regions with
polysilicon, providing the basic switching element for the implementadon of digital
circuits. Wires to interconnect these elements are formed by paths in layers. A wire
may change layer with a contact hole, which is a hole cut out of the insulatng layers
enabling the conducting layers to come into contact. These wires are not ideal

conductors since the electrical properties of the different materials introduce



resistance and capacitance. This provides a mechanism for realizing these devices.
However it also results in ‘parasitic effects,” unintended effects which affect the

behavior of the circuit.

An integrated circuit design consists of the masks used in the fabrication
process to generate the patterns of material on each layer. The masks are described
by a set of shapes in the plane, of different colors, which indicate the presence or
absence of certain layers within the region occupied by shape. This formulation of
the circuit is referred to as artwork or fixed geometry. Laying out an integrated
circuit consists of generating the necessary shapes to implement the circuit clements
and embedding them in a planar region according to design rules of the technology
being employed. Imperfections in the patterning of the materials on the wafer occur

- during the fabrication process. The design rules provide a degree of tolerance to the
limitations of the fabrication process, insuring that the artwork has a reasonable
chance of being realized by the fabrication process. Although design rules depend on
the particular technology, they generally consist of minimum width requirements
(which can be different for each layer), overlapping requirements and spacing
constraints between elements (which may depend on the types of elements

involved).

Advances in fabrication technology have made it possible to reduce the
minimum width and spacing requirements, thus accommodating larger systems as
integrated circuits. As a result the complexity of generating and analyzing these
designs has become a the major difficulty in the exploitation of Very Large Scale
Integration. The use of computers in the form of design tools has become essential

in managing the complexity of designing a VLSI circuit. The design process entails



going from a function describing the behavior of the circuit to an arrangement of
colored polygons in the plane (artwork). To use these tools the designer must
provide a description of the circuit at a level suitable for the particular tool. The
descriptions can be classified into the four levels given below. The first is the
highest level and the last is the lowest level, at which an integrated circuit can be

specified.

Functional description

| A functional description characterizes the behavior of a circuit. Examples of
functional descriptions are algorithms, temporal logic equatons or logic
diagrams. The functional descriptions can be at various levels of abstraction
and are not required to provide information to realize their behavior with
circuit elements (transistors, resistors, capacitors). The primidves of the
functional description must be realized by circuit elements and these must be
combined in 2 manner which realizes the behavior of the functional

description.

Circuit description
A circuit description is given in terms of wansistors, resistors, capacitors and
their interconnection. It differs from a functional description in that its
behavior is the result of the time dependent interaction of its components

forming electrical circuits.

Stck Diagram/Symbolic Layout
A symbolic layout is an abstraction of fixed geometmry in which symbols
corresponding to circuit elements, are embedded in the plane. These symbois

are expanded into the corresponding artwork for the circuit element and



positioned to meet the design rules. The relative positions between symbols

are preserved in the expansion and positioning of the artwork.

Fixed Geometry
This is the actual artwork. It contains the exact coordinates and dimensions

of the shapes of each layer.
These four levels of descriptions are illustrated in Figures 1.1, 1.2, 1.3 and 1.4 with a

Nand gate implemented in nmos.

Functional description

Inl [nz
Nand: /ny-Iny; = Out
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Figure 1.1 Functional Description of a Nand gate.

Circuit description

Out

Figure 1.2 Circuit Description of a Nand gate.



Stick Diagram/Symbolic Layout
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Figure 1.3 Stick Diagram of a Nand gate.

Fixed Geometry

Figure 1.4 Layout of 2 Nand gate.

The last level is the desired final format. Unfortunately, many of the
characterisics needed to accurately estimate the feasibility and performance of a
design are geometric and only manifest themselves in the lower two levels. As a
result, the design process usually requires several iterations, in which the

specification at a higher level must be modified to meet constraints at a lower level.

We classify systems of computer-aided design tools for integrated circuits
according to the level of specification at which the tools take over, that is, become
responsible for the correspondence of a description to its descripdons at the lower
levels. Verifying that a design does in fact meet its higher level specifications is an

essential aspect of the design process because of the time and cost of the design



cycle. Thus the higher the level at which the system takes over and insures
‘correctness’ with respect to the specification, the better. However, as we shall see in
the next section producing layouts of integrated circuits from high level
specifications with no geometry is computationally intensive and may require

compromising performance and efficient use of area.
1.2 Design Systems for Integrated Circuits

Design tools can be separated into two classes according to the level of
specification which they can accept. Low level tools operate on fixed geomerry or

symbolic layouts while high level tools accept circuit or functional descriptions.
Low Level Specifications

Specifying a circuit in terms of fixed geometry entails the use of a graphics
editor with which elements can be placed and positioned using keyboard commands
and/or a mouse. There is usvally a library available from which predesigned
elements can be retrieved and placed in the current design. Some systems such as
Magic [Oust83] provide additional layout aids such as ‘plowing,” and some form of
‘automatic routing.” The advantage of this type of system is that it gives the
designer complete control over the final layout. However it suffers from the

following drawbacks.

1. The objects handled have fixed shapes and sizes. They are not flexible in
adapting to the different interconnection, size and shape requirements of
various environments. Much of the work involved in making the pieces fit is
left to the designer. The same circuit element with a slightly different shape

or with different terminal positions is dealt with as a different object.



2. Since in this type of system the designer is dealing with shapes, the
correspondence between these shapes and the intended design must be
verified with the use of error detection toois such as design rule and electrical
rule checkers. Design rule and electmical rule checkers only check the

‘syntax’ of the layout and the error reports they generate must be scrutnized.

3. The quality of the layout is a function of the sidll of the designer and the time
and effort afforded to it. As the size of circuits increases, the complexity and

time involved will exceed the capacities of human designers.

4, The complexity of simulating a low-level specification is prohibitive and
requires the use of extractors to abstract the circuit from the artwork, in
essence reconstructing the specification at a higher level. Extraction is not
error free and cannot abstract functional specifications which must be

provided by the designer.

The second problem can be dealt with as in Magic, by providing an
incremental design rule checker which operates in parallel with the designer during
an editing session, checking each change in the layout for design rule violatons as it
is made. It is interesting to note that Magic has been made more efficient than its
predecessors by exploiting the fact that the set of shapes being manipulated is not

arbitrary, but corresponds to a circuit.

The first two problems associated with specifying layouts by fixed geomerry,
are alleviated by using symbolic layout specifications [Will78, Roge86]. With a
graphics editor, a designer positions symbols which are subsequently ‘expanded’ by

the system. Expanding a symbolic layout entails replacing symbols by their



corresponding fixed geometry and positioning them with respect to the other
expanded objects. Since the design rules are used as guides to position the objects,
the layout should automatically satisfied the design rules. This type of system can
benefit from ‘delayed binding’ [Lipt82]; the entire layout is described before any
part of the specification is transformed into a lower level of specification. This
allows the transformation to be more sophisticated, using global information to

determine the dimensions and exact positions of elements.

Once the elements have been expanded (their sizes and shapes have been
determined), positions are obtained by compaction. The goal of compaction is to
pack the artwork as tightly as possible to reduce the size of the layout. The size of
the layout is usually measured as the area of the smallest bounding box containing it.
Compaction is performed by satisfying a set of inequalities which represent
minimum distance and relative position constraints among pairs The success of
current compaction algorithms depends largely on the initial positioning of elements;
shifting an element upward or downward slightly before packing it horizontally
against other elements may produce a better result. Unfortunately two-dimensional
compaction in which elements are permitted this type of movement has been shown
to be NP-hard [Schl83]. Compaction usually consists of a sequence of one-

dimensional compactions, alternating between vertical and horizontal compaction.

Programming languages can also be used to specify fixed geometry or a
symbolic layout which would otherwise be generated with a graphics editor. Using a
procedural language such as ALI [Lipt82] or CHISEL (Karp83] the layout is
described by calls to procedures which generate the element, connect it, and position

it with respect to other elements the procedure is told about or generates itself. In



ALI the designer must specify relative position constraints explicitly. There is no
guarantee that the constraints specified by the designer are consistent. In CHISEL,
the objecis have fixed geometry and limited routing is provided. The advantage of a
language over the graphics editor is in its ability to handle parameterized
descriptions of circuits, generating elements repetitively, based on parameters
computed within the language. It is a powerful tool 10 automate the specification of 2
symbolic layout; however the designer is still forced to think in terms of the relagve
positions and dimensions of elements and their interconnection. Behavior must still

be inferred.

Symbolic layout tools do not resolve the third and fourth difficulties which
are the result of describing layouts by stucture alone. The design tme and
inefficiency involved in producing an integrated circuit by specifying it with
structure, as well as the complexity of verifying the design sdll remain. These
problems have motivated the interest in automatic layout tools and silicon compilers,

tools which start from a higher level specification.
High Level Design Tools

A system of tools is considered high-level when it generates the masks itself
based on a functional or circuit level description. These tools consist of automatic
layout tools and silicon compilers. Automatic layout tools take a description of the
circuit in terms of modules and nets and generate masks while silicon compilers
generate circuit elements and interconnections from a behavioral specification. The
behavioral specification can be in terms of switching logic expressions and/or a
register-transfer language. A silicon compiler may in fact use an automatic layout

systemn once it has determined the circuits elements and their interconnection.

10



Automatic place and route systems for custom [ayout accept as input a set of
circuit elements (modules) and their interconnections (signal nets). Modules are
geometric objects (usually rectangles) with labeled points on their boundaries (pins).
Nets are lists of pins which are to be connected. These can be generated either by a
silicon compiler or provided by the designer. The problem of layout is then the task
of embedding the hypergraph corresponding to the modules and nets into the grid
graph. Minimizing the area of the layout, even for planar graphs, is NP-hard
[Dole81]. Asymptotic lower and upper bounds are derived in [Leis80, Vali81] for
families of graphs, however these results do not offer practical approaches for

efficient layouts of irregular sized objects nor do they consider wire length.

Automatic layout is generally divided into two steps, placement aﬁd routing.
Two popular schemes for tackling placement are partitioning and clustering.
Partitioning is a divide-and-conquer strategy in which the circuit is divided into two
roughly equal parts with as few connections as possible between the two parts. The
two parts are then placed separately and then glued together. In clustering each
circuit element starts in a cluster consisting only of itself. Clusters with high affinity
for each other are placed together forming larger clusters. Once the placement is
obtained, a router is called on to interconnect the modules. Routing is divided into
two phases. In the first phase, wires are assigned to channels (areas left between the
modules); they are routed relative to the modules without fixing exact coordinates or
considering each other. An attempt is made to avoid congesting any particular
channel. Once this is done, each channel is routed, one-by-one taking into account

the routing in adjoining channels.

11



Unfortunately, most of the optimization problems associated with routing and
placement have been shown to be NP-hard [Sahn80, Dona&0], leaving only heuristic
algorithms as candidates for these jobs, making the tools slow and/or the results
inefficient and awkward. The problem arises because placement and routing are
tightly coupled. It is awkward to deal separately with routing and placement. By
considering layout to be the task of embedding of an arbitrary hypergraph in the grid
graph, small changes in the hypergraph may trigger large changes in the layout.
Because of the complexity in optimizing and balancing opposing criteria, obtaining
layouts by performing small random operations has been proposed. The scheme
known as Simulated Annealing (Kirk83], involves sclcctirfg at random, simple
operations whose effect on the layout can easily be computed and performing them if
they meet certain criteria. If only operations which improved the layout were
allowed, the algorithm would become blocked, unable to make any moves, possibly
in a sub-optimal local minimum. To avoid this problem, some operations which
increase the cost of the layout below a certain value are permitted. A set of
configurations is explored by first allowing moves which increase the cost within a
large range and then slowly decreasing this range, simulating the annealing process
and hopefully resulting in a near optimal layout. It has been observed {Kirk84] that
higher values and thus more dramatic moves are required for layouts of connection
graphs of actual circuits as opposed to randomly generated grapbs. This is artributed

to the hierarchical structure of circuits.

To facilitate the layout of circuits, structured design techniques such as gate
array, master slice, or standard cell layouts are used. In gate array and master slice,
the layout task consists of mapping circuit elements into predefined and positioned

structures. The placement algorithm attempts to minimize the routing needed to

12



interconnect these elements. These methods suffer in terms of performance because
of wire lengths and inefficient use of area. In standard cell layout, the design must be
constructed of ‘cells’ satisfying specified geometric and electrical rules. Because of
the homogeneity of the cells, an efficient placement can be obtained by arranging the
cells into row and columns; however they still must be routed. These techniques
avoid some of the optimization problems of custom layout by sacrificing some of the
geometric freedom available in VLSI. However the remaining optimization

problems of structured design techniques are no easier than those of custom layout.

To avoid the difficulty of routing and placement, languages for specifying
both behavior and structure have been proposed. These tools which are often
referred to as silicon compilers can be divided into two categories, those which map
behavioral components into pre-conceived physical components and layouts, and
those which process behavioral specifications augmented with structural

information.

1. Circuits corresponding to a set of architectural types such as registers or
Arithmetic Logic Units are generated for behavioral constructs in the
language. Logic expressions can be mapped into Programmable Logic
Arrays. These circuits are then mapped to a layout using an automatic place
and route system geared to the particular architectural types. The placement
algorithm contains rules governing the placement of particular types.
Examples of such a systems are MacPitts [Ance83], and CAPRI [Ance83].
In CAPRI which the behavioral specification is obtained from a register
transfer language, IRENE. This style of design relies heavily on past

experience for good templates for each architectural type. It is not suitabie

13



for experimenting with new algorithms and interconnection patterns since the

geomety of the layout is more the result of the tool than of the specification.

2. Relative positions of elements and interconnections are specified within cell
descriptions. Examples of such languages are ZEUS [Licb83] and Bristle
B'locks [Joha79]. In Bristle Blocks the layout is constructed of stretchable
cells which are connected by cell abutment. ZEUS is a procedural language
similar to ALI in which behavioral information is provided as well as relatve
positions. Although these languages offer a behavioral description, the
designer is still forced to think in terms of size and shapes and coanections.
These languages are in essence an augmentation of low-level specification

languages such as ALI and CHISEL with behavioral information.

In the next secton we will propose a design methodology based on a
functional language. The idea is not to impose geometry on a behavioral
specification, but rather exploit the geometry which is a consequence of the
behavioral specification. This is achieved by using a functional language, FP
[Back78], in which behavioral specifications of circuits imply the topological
organization of the components and their interconnection in the plane. This is the
level of geometry which can follow the design through the different design stages as
it is refined.

1.3 Proposed Method: Layout from a Topological Description

The layout methods described in the last section are either Combinatorial or
Constructive. Since most of the problems in placement and routing are probably

intractable, Combinatorial Methods rely on heuristics such as partitioning,

14



clustering, quadratic assignment and simulated annealing. The computational
requirements, varying quality of results, and the instability of these methods make

them unattractive for layout design.

In a Constructive Method, the layout is assembled by the designer using
either graphical tool or a description language. Examples of these include graphics
editors, symbolic layout tools and layout languages such as ALL The symbolic
layout tools and languages provide more flexibility than dealing direcdy with fixed
geometry, and the languages have the ability to capture patterns and symmetries in
the design. Unfortunately two-dimensional compaction is also probably intractable
and so the exact positions of objects in a graphically specified design determine the
final result. This is less of a problem with languages, since relative positions can be
as incomplete or complete as desired. However, connections are treated as any other
elements so the wiring is inflexible. Layout languages such as ALI provide the
means to capture the patterns and symmetries of the circuit and its layout. This is a
first step in incorporating the geometric implications of a circuit’s behavior into its

layout.

Many researchers have proposed applicative (functional) languages as
hardware description languages, precisely because they provide at once both a
behavioral and structural description of a circuit [Laht81, John84, Shee84, Pate85].
However a behavioral specification in the functional language, FP, provides not only
a circuit description but geometric information which should be exploited to obtain
its layout. The patterns and symmetries of the placement and routing can be
captured directly from the behavioral description, ‘Abstract layouts’ or layouts of

circuits will be obtained from the FP behavioral specifications. In the following

15



chapters the level of geometry which is implied by an FP specification, ‘planar
topology’ and the mapping of the FP specifications to layouts will be explored.
‘Abstract layouts’ and an actual layout produced by an implementation of this
mapping will be presented. The following is a brief overview of the contents of the

following chapters.

We will define the level of description of a layout offered by FP as the
‘planar topology’ of a circuit. This is formally defined and discussed in

Chapter 2.

We develop the mapping from FP expressions to the planar topology of a
circuit in Chapter 3. We also incorporate new constructs defined in (Pate85)
to describe sequential circuits into this mapping. The mapping is
implemented in such a way as to preserve the hierarchical representation of

the circuit afforded by the constructs of the FP expression.

In Chapter 4 we discuss the technique used for transforming the planar
topology of a circuit described in FP to a layout. The problem of minimizing
the area of a the layout of a circuit with a fixed planar topology is shown to
be NP-hard. A method for constructing the layout which exploits the
hierarchical representation of a circuit afforded by the FP specification is
implemented. This implementadon generates both ‘abstract layouts’ which

are similar to symbolic layouts and artwork.

In Chapter 5 we give several examples of FP specifications of circuits and

their corresponding ‘abstract layouts’ and/or layout.

The problem of altering the planar topology of a circuit to reduce its wiring

16



complexity is discussed in Chapter 6. We show that it is NP-complete and
provide a method based on the hierarchical structure afforded by an FP

specification.

As mentioned, the behavioral specification will provide the circuit and its
topological organization in the plane. Symbolic layouts tools and languages also
provide this level of description of the layout. The difference is that they do so by
providing an initial embedding or relative positions of objects which influences the
final layout as discussed. They also make no distinction between connections and
circuit devices, resulting in a loss of flexibility. In our case, the topological
organization in the plane will be the result of constructs which provide the planar
organization of sub-circuits and the routing between sub-circuits in the plane. This is
possible because the constructs in FP provide both the behavioral and structural
relations between sub-circuits. The final layout will be influenced by the constructs
used to describe the circuit. However, the algebraic nature of FP will permit us to
perform transformations on the specification which alter the constructs and the final
layout while preserving its ‘planar topology.’ By the ‘planar topology’ of a circuit,
we mean the set of layouts which can be transformed into one another by moving
circuit elements around in the plane and stretching connections without ever
breaking any connections or lifting wires or circuit elements out of the plane. These
transformations are operations which two-dimensional compaction would be

expected to perform, and in addition, local reorganization of the wires.

We begin in Chapter 2 by formalizing this notion of the ‘planar topology’ of
a circuit. We first discuss in Section 2.1 how to represent the planar topology of the

embedding of a graph using a result of Edmonds. Since circuits do not in general
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correspond to planar graphs, in Section 2.2 we capture the layout of a circuit as a
graph in which special nodes are used to hide the routing. This graph and its
embedding which we call a ‘planar circuit’ is said to represent the layout of the
circuit. Unfortunately this representation is not unique, and in addition
characterize the ‘planar topology’ of the layout, we must consider operations
involving local reorganization of the wiring. These operations on planar circuits
which form a group are given in Section 2.3. In Section 2.4, we define what it means
for a planar circuit to represent a layout and show that any two planar circuits
representing the same layout can be transformed into one another using these
operations. We argue that the set of layouts which can be obtained from one another
by moving circuit elements around and stretching connections as described above,
are represented by planar circuits which are also equivalent modulo these operations.
We can then define the ‘planar topology’ of a layout to be the set of layouts whose
planar circuits are equivalent modulo these operations (homeomorphic). In the
remainder of the chapter we provide a normal form for planar circuits and show that
under certain assumptions about the cost measure and layout procedure, this normal
form is optimal within a class of homeomorphic planar circuits. This normal form
which is called a maximal-indivisible planar circuit is defined in Secdon 2.3.
Sections 2.6 and 2.7 are devoted to showing the uniqueness (modulo one operation)
of the normal form within each class of homeomorphic planar circuits. The
uniqueness result can be found at the end of Section 2.7. In Section 2.8 the process
of transforming a planar circuit into a homeomorphic maximal-indivisible planar
circuit and the optimality of this planar circuit with respect to other homeomorphic

planar circuits is addressed.
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In Chapter 3, we map behavioral specifications written in FP, to planar
circuits. In Section 3.1 we briefly discuss FP and the properties which make it
attractive as a specification language. The full description of FP can be found in the
Appendix. Sections 3.2 and 3.3 discuss the correspondence between FP expressions
and circuits, and the limitations of describing circuits in FP. Before developing the
mapping to planar circuits in Section 3.5, we discuss the pruning of planar circuits to |
remove unnecessary structure, structure which cannot influence the behavior of the
circuit. After giving the mapping from FP expressions to planar circuits in Section
3.5, we consider the mapping of the constructs necessary for describing synchronous
sequential circuits in Section 3.6. Section 3.7 describes the implementation of the
mapping which preserves the hierarchical representation of the planar circuit
afforded by FP’s combining forms. In Section 3.8 operations are applied to this
hierarchical representation to transform the planar circuit into a homeomorphic

maximal-indivisible planar circuit.

In Chapter 4, the problem of mapping a planar circuit to a layout is discussed.
We show that as in the case of two-dimensional compaction, finding the layout of
minimal area is probably intractable. We provide a method for synthesizing the
layout of using the hierarchical description afforded by the FP specification. Thus the
behavioral description is exploited to provide this layout. We obtain an ‘abstract
layout’ for FP expressions in which wires have zero width and circuit elements are
boxes whose dimensions are in abstract units. We show how to transform these

‘abstract layouts’ into actual layouts, artwork.

Several examples of specifications and their ‘abstract layouts’ are given in

Chapter 5 to illustrate the features of using FP to describe circuits as well as the
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resulting layouts. The ability of the system to provide graphical feedback through
‘abstract layouts’ at varying levels of abstraction during the synthesis of the design is

illustrated in these examples.

Topological cost measures for planar circuits are discussed in Section 6.1 of
Chapter 6 and the operations which should be considered are discussed in Section
6.2. We show the intractability of optimizing planar circuits considering only small
operations in Section 6.3. In Section 6.4 we present a method for performing these

operations on planar circuits generated from FP expressions.

By using FP we have provided a system in which the ‘planar topology’ of the
layout is the direct result of its behavioral description. We have not avoided the
intractable problems of layout by specifying the ‘planar topology’ of the circuit,
however we have exploited the behavioral description to obtain reasonable layouts
quickly. As a result, the quality of the layouts obtained from FP expressions depend
on the specification. This is mitigated to some extent by the operations performed in
Section 3.8 and Section 6.4. However, the efficiency in producing graphical
feedback from a behavioral description allows the designer to evaluate design
decisions and experiment with alternatives during the synthesis. The flexibility of
specifying only the ‘planar topology’ of the layout, allows changes to be easily
accommodated. In addition, the algebraic nature of FP provides the mechanism for
transforming the specification to improve its layout while preserving its behavior.
The automatic application of transformations to improve the layout is a topic for

future research which depends on a well defined mapping from FP to layouts.
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CHAPTER 2
Planar Topology

In this chapter, the ‘planar topology’ of a circuit is defined. We will begin by
defining the planar topology of a graph and then extend this to circuits. In Section
2.1, a combinatorial representation of the planar topology of an embedding of a
graph is obtained using a result of Edmonds. Since circuits do not in general
correspond to planar graphs, in Section 2.2 the layout of a circuit is captured as a
graph with special nodes to hide the routing. This graph and its embedding, a ‘planar
circuit,’ represents the planar topology of a layout. Unfortunately this representation
is not unique, and in addition to characterize the ‘planar topology’ of the layout, we
must consider operations involving local reorganization of the wiring. These
operations on planar circuits which form a group, are given in Section 2.3. In Section
2.4, we discuss how a planar circuit represents a layout and show that any two planar
circuits representing the same layout can be transformed into one another using these
operations. The set of layouts which can be obtained from one another by moving
circuit elements around and stretching connections, have representations as planar
circuits which are equivalent modulo these operations. The ‘planar topology’ of a
layout can thus be defined as the set of layouts whose planar circuits are equivalent
modulo these operations (homeomorphic). In the remainder of the chapter we
provide a normal form for planar circuits and show that under certain assumptions
about the cost measure and layout procedure, this normal form is optimal within a

class of homeomorphic planar circuits. This normal form which is called a
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maximal-indivisible planar circuit is defined in Section 2.5. Sections 2.6 and 2.7 are
devoted to showing the uniqueness (modulo one operation) of the normal form
within each class of homeomorphic planar circuits. The uniqueness result can be
found at the end of Section 2.7. In Section 2.8 the process of transforming a planar
circuit into a homeomorphic maximal-indivisible planar circuit and the optimality of

this planar circuit with respect to other homeomorphic planar circuits is addressed.
2.1 Defining and Representing Planar Topology

The planar realization of the graph is, in simple terms, a drawing of the graph
on a surface 5o that no edges cross and each edge coincides only with the two
vertices it joins. More formally,

Definition 2.1

An embedding of a graph G=(V,E) in a space X, is a pair, (fv,fg) where

fv:V—X is a mapping of the vertices of G into points of X and a mapping of

the edges into paths in X, fg:E=([0,1]=X) associates with each edge of G a

homeomorphic image of the unit interval, fg(e)=e(r) satisfying the following

conditions.

a. Vertices are mapped to distinct points.

If fy(v) = fy(u) then v = u.

b. Edges do not intersect.

Forany 0 <t,s < 1if fg(e)(t)=fe(e")(s) then e=e’ and r=s.

c. Edges intersect only the two vertices they join at their ends.
fele)(t)=fy(v) if and only if e=(uw), and (v,1)=(u,0) or
(v,2) = (w, ).
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Definition 2.2
A planar realization of a graph is an embedding of the graph in the plane,
R2. A window of the embedding is a maximal set of points in the plane
which can be pairwise connected by a path not intersecting the embedding of
the graph. The external window is the window containing the point at infinity
(arbitrarily distant points from the graph).
Not all graphs have planar realizations; those that do are planar graphs. Thus when
we speak of the planar topology of a graph or an embedding of a graph in the plane it
is understood to be a planar graph. By the planar topology of 2 graph, we mean a
class of planar realizations which are equivalent modulo the operations of sliding
vertices and edges and stretching edges, i.e. transformations which preserve the
structural integrity of the graph without ever picking it up, out of the plane. A more
formal definition is provided below.
Definition 2.3
A homeomorphism, h, of a space X onto a space Y is a continuous bijective
mapping whose inverse is also continuous.
Definition 2.4
A homeomorphism, h, of an orientable surface with an orientable surface is
orientation-preserving if for each closed curve C, traversing C in the
clockwise direction corresponds to the traversal of A(C) in the clockwise
direction as well.
Definition 2.5
A topological transformation of an orientable surface is an orientation-

preserving homeomorphism of the surface with itself.
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Definition 2.6
Two planar realizations of a graph G, ¥ =(f, f¢) and Y =(fv.fg) are
topologically equivalent if there exists a topological transformation of plane,
h, such that h(fy(v)) =fv(v) for each vertex v and for each edge e, if
fe(e) =e(t) and f'g(e) = £'(r) then h(e(2)) = ().

It is clear that this defines an equivalence relation since topological
transformations include the identity mapping, are invertible, and composable. Thus
specifying a particular planar realization of a graph G is one way of specifying a
planar topology for G. However this definition does not provide a practical method
for determining if two embeddings are equivalent or for generating equivalent
embeddings. A combinatorial method for specifying a planar topology of a graph is
offered by a theorem of Edmonds.

Theorem 2.7 {Edmo60]

For any connected graph with an arbitrarily specified cyclic ordering of the edges to
each vertex, there exists a topologically unique embedding in an oriented closed
surface so that the clockwise edge orderings around each vertex are as specified and

so that the complement of the graph in the surface is a set of discs.

This theorem proved in [Youn63], guarantees that all embeddings of a graph
in the sphere are topologically equivalent if they have the same clockwise ordering
of edges around each vertex. The plane is not a closed surface but it is
homeomorphic to the sphere minus the north pole, the point that gets mapped to
infinity under stereographic projection. Thus we can place the topologically
equivalent embeddings of a graph in the plane into a one to one correspondence with

pairs consisting of a class of topologically equivalent embeddings in the sphere
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along with a specified disc of the embedding from which a point will be removed.
This yields the more useful specification of a planar topology for a connected graph
comprised of, the clockwise ordering of edges around each vertex and the traversal
of its external window in the clockwise direction. By traversal of the external-
window we mean the following. Select a vertex, v, which is on the external window.
Select any edge e = (v,u), which has the external window on its left when looking
away from v towards u, (the external window may be on the right as well). Traverse
e to reach the u. At u select the edge, €, immediately following e in the clockwise
ordering; ¢’ may be the same as e if u is of degree one. Proceed until you return to
the original vertex, v, and would next select the initial edge traversed, e. The
sequence of vertices visited corresponds to the external window traversed in
clockwise order. Figure 2.1 contains an embedding of a planar graph, and the
specification of this embedding by the clockwise ordering of edges around each
vertex and the clockwise traversal of its exterior window.

3 Clockwise Ordering of Edges

(1,4 (1,2)

2,3) 2.8 27 21

(3.2)

(4,6) (4,5) (4,1)

(5.8) (5,4) (5,6)

(6,7 (6,5) (6,4

(7.2) (7,8) (7.6)

(8,2) (8,5 (8,7)
External Window:1,4,6,7,2

00~ O N

Figure 2.1 The specification of the planar topology of a graph.

Before showing that planar topology can be specified in this manner,
consider how this definition differs from the usual graph theoretic one. The graph

25



theoretic definition of equivalent planar embeddings of a planar nonseparable graph
requires a one to one correspondence between the windows of the embeddings, (i.c.
topologically equivalent embeddings in the sphere without orientation). Our
definiion makes a distinction in the choice of the exterior window and orientation,

and allows us to consider separable graphs as well.

Theorem 2.8 Two planar realizations of a connected graph G=(V,E) have the same
clockwise cyclical ordering of edges around each vertex and the same clockwise

traversal of their external windows if and only if they are topologically equivalent.

Proof: If two planar realizations are topologically equivalent then it can be shown
that they have the same clockwise ordering of edges by noting that the topological
transformation of the plane which takes one embedding to the other must preserve a
closed curve around a vertex as well as its orientation. Clearly the traversal of the
external window must also be preserved along with its orientation. Now suppose
two planar realizations of G have the same cyclical ordering of edges around each
vertex and clockwise traversal of the external window. Consider their images under
stereographic projection into the sphere. The clockwise ordering of edges at each
vertex must also be the same in the sphere (although they are reversed with respect
to the plane). By Edmond’s theorem there is topological transformation 4, which
takes one embedding into the other in the sphere. Assume for the moment that this
homeomorphism preserves the north pole of the sphere. If we take the compositon
of this homeomorphism with stereographic projection from the plane to the sphere
first and then back onto the plane afterwards, we obtain the topological
transformation of the plane which topological equivalence requires. Now suppose

this horneomorphism does not preserve the north pole. Since both embeddings have
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the same cycle and orientation along the external face, the north pole lies within the
same disc of the two embeddings in the sphere. In particular their boundaries and
orientation are preserved by k. Then there is another homeomorphism, R which
preserves the boundary of this disc in the second embedding while mapping 4 (north
pole) into the north pole; it can be extended to a topological wransformation of the
sphere by defining it to be the identity on the rest of the sphere. The required
topological transformation can be obtained as before using the compositon of 4’ and
h in the place of A.
O
This definition offers a much more practical method for representing planar
topology since it suffices to specify a cyclical ordering of edges around each vertex
and its exterior face. It can be further simplified in cases where there is a vertex of

degree one on the exterior window.

Corollary 2.9 If two planar realizations of a graph G have the same clockwise
cyclical ordering of edges around each vertex and there is a vertex of degree one
which appears on the external window of both, then these two planar realizations are

topologically equivalent.

Proof: Simply begin the traversal of the external window described above at the
vertex of degree one. There is only one choice for the first edge and each subsequent
edge selected must be the same for both embeddings since the vertices have the
same clockwise cyclical ordering in both embeddings. Thus by the last theorem the
embeddings are topoldgically cquivalent since they have the same clockwise
traversal of their external windows,

O
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In order to encompass graphs which are not connected, we reswict the planar
realizations of a graph to those in which each component has a vertex adjacent to the
component of the plane containing infinity. A component is never embedded inside
a window of another. Clearly to extend the previous results it suffices to have the
same clockwise traversal of external windows for each component or to specify a
vertex of degree one on the external window for each component. However, we will

only be considering connected graphs.
2.2 Circuits with Planar Topology

In the last section, we discussed how to represent an embedding of a planar
graph. In this section we discuss how the layout of a circuit can be represented by
the embedding of a particular planar graph which will not only represent the
interconnection topology, but the actual routing of the interconnections as well. For

our purposes a circuit consists of the following.

1. A set of modules with specified points on their boundaries called pins. These

modules may sometimes be referred to as components or boxes.

2. A set of input/output pins which will be required to lie on the external
boundary of the layout.
3. A set of net-lists which partitions the set of all module pins and input/output

pins into disjoint sets of pins which are to be interconnécted.

Figure 2.2 contains a circuit and Figure 2.3, a layout for this circuit.

We make a distinction between two types of connectivity in a circuit,

connectivity by nets alone and connectivity through modules as well.
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Modules : Input/Qutput Pins :

P
b P13 M, P2e Net lists :
Dps PLs P11:P4,3.Ps,s P2,2:Pa7

Pz:,x P1.2:P1,4:Ps.6 P2.4,105
P1.3:P5.3.P23 P Pas
P1,5:Pa2 P1,4:D4,1,i03
P21:Ps.2 P3.5,P4,8,104
P2.2:Ps,1,i02,i06 P4,4.D5,4,101
P3,1.Pas

Figure 2.2

Definition 2.10
Two pins are net-connected if they belong to the same net-list.

Definition 2.11
Two pins, p and g are circuit-connected if there exists a sequence of pins,
pP1 ' Pn such that py =p, p, =q, and for each 1<i <n, p; and p;,; belong to

the same net-list or module.
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Figure 2.3

The layout of a circuit is an‘a.rrangcmcm of the modules and the input/output
pins of the circuit in the plane so that no two overlap, along with an implementation

of each net-list as a tree whose leaves are the pins which it must interconnect. The
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net-lists do not otherwise intersect the modules or input/output pins. The nets are
allowed to cross each other and themselves, but a distinction is made as to whether a
point is a branching or a crossing even if only one net is involved. The input/output
pins must be on the exterior; they must be accessible from the exterior by a path not
crossing any of the nets. In Section 2.4 we will also add the restriction that any
connected set of points in the plane such that two or more nets lic on each point is
contractible to a point after removing the interiors of the components and I/O pins.
This will be required in order to cover any such set of points by a region whose

boundary is a simple closed curve.

In general, circuits do not correspond to planar graphs (or hypergraphs) and
even if they do, it may desirable to lay them out in a non-planar fashion. To specify
the planar topology of a circuit with a planar graph, crossing and branching points
must be made explicit by incorporating nodes to represent them in the graph. These
nodes will be called R-nodes to distinguish them from the nodes corresponding to
the modules, B-nodes. Suppose we have a layout of a circuit; we would like to
define the planar topology of this circuit as the set of layouts of this circuit which
can be obtained from each other by the operations of sliding the modules and
input/output pins in the plane as well as stretching the nets and reshaping the nets in
a manner which always maintains the net-connectivity. To accomplish this, we
define a planar circuit to be an embedding of a planar graph which hides the
crossing and branch points of the nets of the layout inside R-nodes. Using the results
of the last section, the planar topology of the embedding can be specified by a
sequence of pins for each B and R-node, corresponding to the clockwise cyclical
ordering of edges around this node. In Section 2.4 we show how to represent the

planar topology of the layout of a circuit as a planar circuit. Operations on these
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planar circuits will be introduced in the next section, to simulate the actions of nets
sliding around and being reshaped as well as to provide an equivalence among the
planar circuits which represent the same layout. The planar topology of a layout will
then be defined as the equivalence class of planar circuits under these operations
which contains a planar circuit representing the layout. We begin by defining planar
circuits.
Definition 2.12
A planar circuit is a five-tuple A = (P,/0,B,R,W) where P is a set of pins, /0
is a sequence of pins, and B and R are sets of B and R-nodes respectively.

Each B and R-node is a sequence of pins, and W is a pairing of the elements

of P such that,
a Each pin appears exactly once in /O, B or R.
b. The set of pins of each R-node, u ={u; | i=1,...,m,} is partitioned

into disjoint subsets of size at least two, P, = (P, ; | j=1,....c,} such
that 1P, ;|>1 for 15j<c,. These partitions correspond to sets of pins

which are connected within the R-node.

c. The plane graph of A, G4 = ({O\UB(UR,E) where
E ={e, = (u,v)!| for each (u;,v;) in Wiy {(i0;,i0;41)| 1Si<n} ) ((ion,i01)}

is connected and can be embedded in the plane such that the
clockwise cyclical order of edges around each node agrees with the
sequence of pins of the corresponding B or R-node, and the clockwise

traversal of the exterior window corresponds to /0.
d. The net-connectivity graph, Gy = (P U(_UP..j)» Wi UW), where W
.j
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contains an edge from each pin of an R-node to the partition of the R-

node which contains the pin, ) {(4;,P,;)! 4; € P, ; }, is acyclic.
ueR
e. Every pin is circuit-connected to at least one /O pin. That is, if we add
edges between pins belonging to the same element of B to the net
connectivity graph,

U {(B;,bj)| foreach i=j whereb=by - - ba} ,
beB

then each pin is connected to at least one element of /0.
Figure 2.4 contains a layout of a circuit and a planar circuit representing it. R-nodes

will be represented by circles or ellipses while B-nodes are represented by boxes.

Figure 2.4 A layout and a planar circuit representing it.

According to the last section, the planar topology of the embedding of the
plane graph is specified uniquely by the cyclic ordering of the elements of B and R

and the traversal of the exterior window. The last three conditions are referred to as
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the embedding, acyclic nets and reachability conditions. Note that the reachability
condition implies the existence of at least one element in /O if P is non-empty and
the connectivity of the plane graph, since all /O pins are connected by edges in the
plane graph. Pins in /O are referred to as /O-nodes or [O-pins. In the sequence of
pins of a B-node or a R-node, since only the cyclic order is important, for case of
notation all subscripts are understood to be modulo the number of pins in the
sequence.

Definition 2.13

A rrivial node of a planar circuit is an R-node with two pins.

By definition the two pins of a trivial R-node must be in the same partition of the R-
node and hence, are connected inside the R-node. In Figure 2.4 the lower R-node is
a trivial R-node. Nodes can have seif-loops. A self-loop of a node forms a closed
curve with its node which divides the plane into two connected components. Since
the graph of a planar circuit is connected and its embedding in the plane is
topologically unique, the interior of a self-loop can be defined as the component of
the plane which does not contain the point at infinity. Thus we can refer to the
interior of a self-loop of a node.
Definition 2.14

A trivial seif-loop of an R-node is a self-loop whose interior does not contain

any other pins.

Definirion 2.15
An  isomorphism  of planar  circuits A=(P,IO.B,R,W) and
A’=(P’ 10’ ,B’,R’,W") is a bijection fp:P—P’ such that if we extend fp to
sequences of pins, by defining fp((21,...,da)) to be (Fp(@1), ..., felan)),
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then

a.  fpU0)=I0".
b. ue B,R if and only if fp(u)e B’,R’ respectively.

c. p,q €P are in the same partition of an element of R if and only if

fe(p) and fp(q) are in the same partition of an element of R’.

d. (p,q) €W if and only if (fp(2).fp(q)) eW".

An isomorphism of planar circuits is simply a renaming of the pins; it represents the
trivial form of equivalence. Isomorphic planar circuits will be referred to as being

the same.

2.3 Operations on Planar Circuits

Seven kinds of operations on planar circuits will be defined. Operations are
defined for a specific planar circuit and operate on a specific set of R-nodes of that
planar circuit. In the following sections, we will show that there is a unique
‘maximal’ planar circuit in each equivalence class modulo the last of these

operations, refoldings.

Merges

Any two R-nodes which are connected by one or more wires can be merged along
those wires. Figure 2.5 contains an example of a merge. A merge of u =uy, ..., uUn
and V=Vi,...,Vn is specified by M u,v,i,j,h) where
1<i<n, 1Sj<m, 1<h<min(n,m) and (4;4x,Vjrn-c) €W for 1sk<h. The result of
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Figure 2.5 A merge of two R-nodes.

the merge is 2 new planar circuit which is obtained by removing u and v and adding

the node z,
Vish+lsenVi=lillish+ls <+ 1 Mi-1  for h<min(n,m)
2= VjshelrosVj-t for h=n<m
Ui shsls+ o+ s Uizl forh=m<n

as well as removing the wires, (Ujsk,Vj+a—k) for 0Sk<h. These wires are said to be
subsumed by z since the connectivity they represent will be represented internaily,
by the partitions of z. The partitions of z are obtained from those of u and v by
merging the partitions containing ;4 and v;j.4-x for each 1<k <h and then removing
these pins. Note that the case A=n=m has been omitted; this case will never occur
since by assumption the planar circuit’s piane graph is connected and has at least one

[0-node, if P is non-empty.

M (u,v,i,j, h) takes (P,/10,B,R,W) to (P’,10,B,R’,W") where

P’ = P={uj | 1Sk<h)} = (vjop | 15k Sh}
R’ =R - {u,v)\ Uiz}

W =W = {(UissVjsn-e)| 15k Sh]
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A merge is complete if the set of wires it subsumes, is a maximal set of wires: if
neither (W;.;,vj4p+1) DOT (Vj-1,U4i4n+1) are elements of W. The significant
characteristic of a complete merge is that it does not produce any new trivial self-

loops.

Clean Divides

Cleanly dividing an R-node results in two new R-nodes with no wires between them
such that the net-connectivity is maintained. This operation is only possible when the
sequence of pins of an R-node can be divided so that no partition is represent on both
sides of the division. Determining whether an R-node can be cleanly divided will be

discussed in a Section 2.8. Figure 2.6 contains an example of a clean divide.

8 1 8
7 7
2 6 —
3 3

Figure 2.6 A clean divide of an R-node.

Formally suppose there is an R-node, z =z4,...,z, such that there exists 1</<m
and 1<k <m-1 such that no partition of z contains a pin from both zj,...,2;.4 and

Zishels - - - 5 Zj=y- Then C (z,j,h) takes (P,/0,B,R,W) to (P,I0,B,R’,W) where
R =R {uv}-(z}

and ¥ =2;,...,2w and v =244, ...,2j-1. Note that the reachability condition
of planar circuits insures that the clean divide will not disconnect the plane graph of
the planar circuit. This condition insures that each pin is circuit-connected to an IO-

node and since all of the /O-nodes are connected in the plane graph, the plane graph
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cannot become disconnected since the net-connectivity of the planar circuit is

maintained.

Glues

Gluing two R-nodes is similar to merging but no wires are subsumed. It is the only
operation whose applicability depends not only on the nodes it is applied to, but the
planar circuit they sit in. In order to glue two R-nodes, they must be on the same
window of the plane graph of the planar circuit. Since the only nodes on the exterior
are JO-nodes there are never any glues along the external window. A glue is more

easily defined as the inverse of a clean divide.

G (u,v.i.k) wkes (P,{10,B,R,W) to (P,[0,B,R",W) if there exists C(z,j,h) which takes
(P,JOBRW) w (PJOBRW) such that z=2y,.,2m and and

U=Ujy. .. Uiy =ZjsovsZjsh andv=vg, ..., Vg =Zithelr e r2j-1-

Unclean Divides
Unlike clean divides, an unclean divide must create some new wires berween the
two nodes it creates in order to maintain the net-connectivity of the planar circuit. It

is more easily defined as the inverse of a merge.

An unclean divide U (z.k,1) takes (P,/O,B,R,W) to (P, JO,B,R",W’) if there exists
M (u,v,i, j, k) which takes (P’,/O,B,R’,W") to (P,I0,B,R,W) where

I=Z1,...,2m
and

Zkals - - - 1 2kl SVjwhelr oo Vil for O<ism
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Zhplals - - 22k = Uiphely -+ Uizl for O=<l<m

Insertions

A trivial node can be inserted along any wire of the planar circuit. This operation
will be used to remove trivial self-loops, by inserting a trivial node on the self-loop
and then merging this trivial node with the node to which the self-loop belonged.

Figure 2.7 contains an example of an insertion.

Figure 2.7 The insertion of a trivial R-node.
If w=(p,q) € W then I (w) takes (P,/O,B,R,W) to (P’,IO0,B,R',\W"),

P'=Pfp'\q]
R =R Uu)
where u is a new trivial node with pins p’ and ¢” and,

W =W ilp.p).q.9)-{(p.q)}

No nodes are introduced on the external face of the plane graph since the edges

which connect the /O-nodes in the plane graph are not wires.

Removals

Any trivial node can be rémovcd, leaving behind a wire. If z is a trivial node R (z)
takes (P,JO,B,R,W) to (P’,I0,B,R’,W") if there exists /(w) taking (P’,/O0,B,R’,W")
to (P,JO,B.R,W).
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Refoldings

A refolding of a node is in fact two operations, a divide (clean or unclean) of a node
followed by a merge of the two nodes created by the divide. If the divide is clean
then the original node must have had some self-loops since otherwise no merge
could take place. A refolding can be the identity operation if the merge takes place
along exactly those wires created by the divide. If the divide is unclean then the
inverse of a refolding is a refolding; otherwise it is an unclean divide followed by a
glue. The reason for considering refoldings as single operations rather than as the

composite of two operations will be explained in Section 2.5.

It is clear that these seven operations prcs:erve the net-connectivity of the
circuit represented by the planar circuit and do not introduce any new nets.
Applying one of these operations to a planar circuit uniquely defines a planar circuit.
If A is a planar circuit and s is an operation on A, then (4,s) is the planar circuit
obtained by applying s to A. If we have a sequence of operatons § =5, ...,5, and
planar circuits Ay, . ..,An4; such that A;, = (A;,s;) for 1Si<n, then we use (A1,5)
to represent A,,;. The operations defined above characterize the noton of
topological equivalence among planar circuits. They form a group since the inverse
of an operation is also an operation (or two in the case of refoldings).

Definition 2.16
Two planar circuits, A and A’, are homeomorphic if there exists a sequence of

operations $ such that A is isomorphic to (4",5).

Homeomorphic planar circuits form 'equivaiencc classes.



2.4 Representation of Layouts by Planar Circuits

This section defines the relatdon between layouts and planar circuits. We
define what it means for a planar circuit to cover a layout and show that any two
planar circuits which cover the same layout are homeomorphic. We also discuss how

the operations on planar circuits correspond to changes in the layout.

We define the layout of a circuit as follows. The layout of a circuit is an
assignment of coordinates in the plane to the modules and an implementation of the

nets as trees such that,

1. Modules do not touch or overlap.
2. I/O pins do not touch nor overlap with each other and the modules.
3. Each net coincides with the modules and the I/O pins in exactly the set of

points which correspond to the pins in its net-list.

4, Each connected set of points onto which more than one net has been mapped
is contractible to a point in the space obtained by removing the interiors of

the modules from the plane.

Suppose we have a layout of a circuit. We can cover that layout with a planar
circuit as follows. Assign nodes of type 10 and B to the elements representing the
inputs/outputs and modules. Select a set of disjoint simple closed curves which do
not intersect any of the inputs/outputs or modules and such that each crossing and
branching point of the nets is inside one of these curves. These will be the R-nodes.
One way of doing this is by drawing a sufficiently small circle around each crossing

and/or branching; in the case where nets cross at more than one point the circles are

41



joined together. This particular representation is called the ‘primitive representation’
since the R-nodes are as small as possible. Each connection of a net to an input,
output and module is assigned a pin as well as each intersection of a net with the
curve of an R-node. The pins of the R and B-nodes are ordered by clockwise
traversal of the curves and modules respectively. Clearly the intersection of the nets
with the curves and their exteriors correspond to disjoint simple paths whose
endpoints are the pins. We assign a wire to each such path by giving its pins. The
partitions of the R-nodes are based on the connectivity of the nets only within the R-
node; that is, two pins belonging to the same net but not joined by a branch inside an
R-node are not in the same partition. The planar circuit obtained in this manner is
said to cover the layout. It is always possible to obtain such a covering; the fourth
requirement of a layout guarantees that the curves corresponding to R-nodes can be

found. Figure 2.8 contains a layout and its primitive representation.

I

B3

R R

- ;

| B, B,

Figure 2.8 A layout of a circuit and its primitive representation.

There is more than one planar circuit which covers a layout. Figures 2.4 and

2.8 contain two different planar circuits covering the same layout. However, it can
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be shown that if two planar circuits cover the same layout then they are
homeomorphic. This is achieved by showing that any representation of a layout by a
planar circuit can be transformed into the primitive representation by applying the

operations described in the last section.

Proposition 2.17 Two planar circuits which cover the same layout are

homeomorphic.

Proof: Suppose A, =(P,,/0,,B,,R,,W,) is the primitive representation and
A =(P,I0,B,R,W) is any other representation of the same layout. Clearly thereisa
one-to-one correspondence between elements of /0, and /O, and, B, and B; we must
show how we can transform the R-nodes of A into those of A, by operations. A node
of R, u corresponds to a simple closed curve. If there are no crossing or branching
points of the layout inside this curve then A, does not have any R-nodes
corresponding to u. By repeatedly performing clean divides on u untl only trivial
nodes remain and then removing them we can transform A into a planar circuit
which covers the layout in the same manner except without the R-node, u. Repeating
this for each R-node of A which does not contain any crossings or branchings we
obtain a planar circuit, A" which is homeomorphic to A such that each of its R-nodes
contains at least one branching and crossing. Since homeomorphism is an

equivalence relation it suffices to show that A" and A, are homeomorphic.

Since A, is the primitive representation, we can assume that each R-node of
A’ contains the R-nodes of A which cover the crossing and branch points inside it.
Suppose an R-node, u, of A" contains exactly one R-node of A,, u,. There are no
crossing or branch points in the difference of their interiors. If u, has a trivial self-

loop which is interior to u then it can be removed by performing an insertion on it
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and merging it into u,. Note that if 4, has any self-loops which are interior to u then
at least one must be trivial. By removing these trivial self-loops, u, will evenwally
have no self-loops which are interior to u. In this case, the sequence of pins around
u and u, correspond to the same wires; u and u, are the same up to relabeling of the

pins.

Suppose now that the R-node of A’, 4, contains more than one R-node of 4,.
We can reduce this case to the previous case as follows. Take any two of these R-
nodes of A, which share a window inside u and glue them together. This is the same
as drawing a curve around them which is still inside 4 and does not entirely contain
any path. If there is no such pair which can be glued together, then there are one or
more wires separating them. In this case insert trivial nodes on these wires, glue
these trivial nodes together and then glue this node to both of the R-nodes. The
number of R-nodes is reduced by one and hence, by repeatedly performing these
glues, we will end up with one R-node inside of u. By repeating this process for
each R-node of A’ we will eventually transform A, into A”. It follows that A’, A, and
A are homeomorphic. Thus any two planar circuits covering the same layout are
homeomorphic to the primitive representation and hence to each other.
c
The operations which are defined on planar circuits not only allow us to
associate the planar circuits which cover the same layout, but also provide the means
to model the structural changes in the layout which occur as modules and nets are
moved around and stretched while stll remaining in the plane. We examine how
structural changes in the layout can be simulated by operations on the planar circuits

which cover them.



A wire meets another wire. We introduce trivial nodes on each wire and then glue

=1 >

Figure 2.10 Two wires meet.

the nodes together.

A wire meets a branch/crossing. In this case we introduce a trivial node and then

again glue the two nodes together.
IK-X > & X
Figure 2.11 A wire meets a branch/crossing.

A self-loop disappears. This is accomplished in the representation by introducing a

trivial node on the loop and then merging with it.

G S S

Figure 2.12 A self-loop disappears.

Several branchicrossings meet. This can be accomplished by merges. Clearly the
order of the merges is unimportant since this operation can be hidden within an R-

node; this is equivalent to changing the representation of the layout.
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Figure 2.13 Several branch/crossings meet.

Since the changes to the layout allowed by the planar movement of the modules and
nets can be simulated by operations on the planar circuits covering the layout, the
planar topology of the layout will be defined as follows.
Definition 2.18

The planar topology of a layout is the class of homeomorphic planar circuits

which contains its coverings.

2.5 Unique Representation of Planar Topology

As we have seen the representation of a layout as a planar circuit is not
unique. To select the best layout with a given planar topology, we would need to
consider all planar circuits in its class of homeomorphic planar circuits. The number
of homeomorphic planar circuits is in general too large to make this pracdcal.
However if we limit the planar circuits by requiring their R-nodes to have certain
properties, we can show that the planar circuits within each class of homeomorphic
planar circuits possessing these properties are isomorphic modulo refoldings. This
gives us a one-to-one correspondence between the R-nodes of these planar circuits.
In Section 2.8 we will show that a planar circuit possessing these propertes is

optimal within its class of planar circuits given some assumptions about the layout



procedure. These properties provide a normal form for planar circuits.
Definition 2.19
An R-node is indivisible if it cannot be cleanly divided even after refoldings.

Definition 220
An R-node is maximal if it does not have a wire connected to another R-

node, is not trivial and does not have any trivial self-loops.

Definition 2.21
A planar circuit is maximal, indivisible, maximal-indivisible if all its R-nodes

are maximal, indivisible, maximal and indivisible respectively.

We will show that any two homeomorphic maximal-indivisible planar circuits can
be transformed into each other by refoldings. The proof will consist of showing that
in transforming a planar circuit into a maximal-indivisible one, unclean divides and
glues are not necessary and the remaining operations can be reamranged in a
particular order. In this section we show for each sequence of operations without
glues and unclean divides there is another sequence resulting in the same planar
circuit in which all merges occur before any clean divide. In Section 2.6 we will
show we can obtain an equivalent sequence without the last unclean divide. We will
do the same for glues in Section 2.7. We will have shown that a planar circuit which
is homeomorphic to a maximal-indivisible planar circuit, can be transformed to it by
a sequence in a particular form (Theorem 2.48). From this result, we will show that
two homeomorphic maximal-indivisible planar circuits can be transformed to one

another using only refoldings (Theorem 2.49).

47



The uniqueness can only be up to refoldings since an R-node can never
completely surround a B-node of the planar circuit; if it were to do so then the
information as to relative position of the wires internal to the R-node with respect to
B-node would be lost. Figure 2.13 contains a layout which can be covered by either
the planar circuit in Figure 2.14 or Figure 2.15.

10y

®

109 M 04

OO?

®

i0g ios

©O®

Figure 2.13
The following notation will be used. We associate with each operation, s, a

symbol ¢(s), according to its type. The symbols are,

M for a merge I for an insertion of a wrivial node
G for a glue R for a removal of a trivial node

C for aclean divide Re for a refolding of 2 node

U for an unclean divide Rec for a refolding of a node whose

divide is clean

n
For any sequence of operations, S = {5; }1 let £(SY=1t(s,) " 1(sn). If Lis a subset
i=
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of £* where T is the alphabet of symbols (M, G, C, U, I, R, Re, Rec }, then a

n
sequence S = {S5; }1 e L, if t(S)eL.If § and S’ are two sequences, the sequence of
= -

operations consisting of S followed by S’ is the concatenation of § with §” and is

denoted by SS".
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As discussed, the uniqueness of maximal-indivisible planar circuits will be
proven by showing that a sequence leading to 2 maximal-indivisible planar circuit
can be altered to remove the last operation which is a glue or unclean divide. This
will be shown in the next two sections. It is necessary first to show that a sequence
consisting of the other types of operations can be rearranged so that all merges occur

before clean divides and refoldings.

Lemma 2.22: A refolding operation which produces a trivial node can be replaced

by a sequence of insertions and merges t0 obtain the same planar circuit.

Figure 2.17 Replacing a refolding into a trivial node by Insertion and Merges

Proof: Suppose we have a refolding which is applied to a node u of a planar circuit
and results in a trivial node v. This refolding consists of a divide followed by a
merge. Suppose 4 and uj are the two nodes produced by the divide. The upper
portion of Figure 2.17 depicts this situation. The dashed line between u; and uj
exists if the divide of u is unclean. Since merging u, and u3 produces a trivial node,
these two nodes must both have all but one pin connected to each other. The wires
subsumed in the merge must have existed as tivial self-loops of u or have been
created by the divide. Thus « must have exactly two pins connected to other node(s)

and possibly some trivial self-loops. If u is trivial then the refolding is the identity

50



operation and can be omitted. Otherwise the pins of # consist exactly of the two that
will belong to v and pins belonging to trivial self-loops. By removing these self-
loops, we can also obtain v. This can be accomplished by inserting trivial nodes
along these self-loops and then merging them with . In Figure 2.17 u has two loops
and hence two insertions and two merges are required.

a
We can thus assume with out loss of generality that refoldings do not produce trivial
nodes. In the following lemma we show that a clean divide can either be moved past
the next merge in the sequence or combines with it to form a clean refolding, if there

are only insertions and removals between the clean divide and the merge.

Lemma 223: Given (A4,5) with Se CU+R)'M, there exists
S’ € (U+R+M)’ (A+C+Rec)(+R)’, such that (4,5) = (4,5").

Proof: We establish this lemma by induction on the length of §, 2.

Basis: (#=2). In this case, 5, is the clean divide of node z into nodes u and v and 5,
is a merge. There are three cases to consider depending on whether the nodes
generated by the s, are part of the merge, 5;. If 55 is a merge of two other nodes ¢
and p then clearly (A,5157) = (A,5251) so §' =s,5, satisfies the lemma. Suppose
that s, merges & with a node, p, which is not v to get Z’. In this case merging z and p
along the same pins and then cleanly dividing the result into z* and v also takes A
into (A,S) and satisfies the lemma. The last case to consider is if s, merges 4 and v.
This can only happen if u and v have wires in common which means they were
originally self-loops of z. -In this case 5,5, constitute a clean refolding of z. If the
result of 5, is a trivial node, then we replace 552 by insertions and merges as

described in the previous lemma.
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Induction: (r >2). Suppose we have shown the result for all sequences of length less
than n>2. Since a trivial node has only one partition, it cannot be cleanly divided.
Let 5, be the first insertion of a trivial node. Then k >1 and if s, inserts a trivial node
on wire w which is not generated by any of the removals of trivial nodes 55 * - * 51
then s; can be moved ahead of 5, a.nd the induction hypothesis can be applied to
$1s- s sSka1sSk4ls- - + 5o 1O Obtain §”. 555" is then the required scqucncé. Suppose
on the other hand, that there is a removal of a trivial node, s;, which generates w by
removing the node x. In this case we can drop both s; and s, since removing and
then inserting a trivial node along the same wire produces the same planar circuit.
We obtain a sequence of length n—2 to which the induction hypothesis can be

applied.

<@ Re) M(pq)

Figure 2.18

This leaves the case in which there are no insertions in S, S € C(R)'M. If
one of the removals is of a trivial node not created by s, then it can be moved to the
front of the sequence and the induction hypothesis can be applied to the subsequence
starting at the second operation to get the desired sequence. So we assume that the at
most two removals between 5, and s, are of nodes created by s . Consider swapping
these removals with s,. If this can be done, then we can again apply the induction
hypothesis to a shorter sequence. The only obstacle to this swap is if the removal
creates one of the wires subsumed in the merge s,. So the situaton, as illustrated in

Figure 2.18, is reduced to the following: 5 cleanly divides z into two nodes 4 and v
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of which at least one is trivial, say 4. The removal of node u generates a wire which
is subsumed in the merge of p and q. It is also possible that node v is trivial, possibly
gets removed and possibly generates a wire subsumed by the merge, although this is
not the case depicted in Figure 2.18. We can achieve the same effect by merging p
with z and merging the result with g and then cleanly dividing this node to obtain v if
necessary; we obtain a sequence satisfying the lemma.

a
We now show that a refolding can be moved past insertions and removals followed

by a merge.

Lemma 224 Given (4,5) with Se&Re(+R)'M there  exists
S’e I+R +M)‘(Re +A)({ +R)‘ such that (4,5)=(4,5").

Proof: The proof proceeds by induction on the length of the sequence.

Basis: (n=2). 5, is the refolding of node z which is achieved by dividing z into nodes
u and v and then merging them along a different set of wires then the one possibly
created by the divide, resulting in 2. 53 is a merge. If 5, is a merge of two nodes, ¢
and p, neither of which is z, then the sequence (A,5157) =(A,5251) and 5" =525,
satisfies the lemma. So assume 5, merges z’ with another node p to get . If the
pins along which 2’ is merged with p are adjacent pins either belonging only to u or
only to v, then we can substitute a merge of z with p along these pins followed by a
refolding, for S. If this is not the case the situation is somewhat more difficult: the
refolding consists of a divide 5, ; of z into 4 and v followed by a merge 5, of 4 and
v such that before this mefgc some of the pins along which 2" and p are merged are
from u and some are from v or they are not adjacent. We have one of the two

situations depicted in Figure 2.19. The dashed lines indicate that in the first case u
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may or may not have wires connected to p. If so then these are the wires along which

it is merged to p.

OIc:OMNOS ¢
Figure 2.19
Suppose first that these dashed lines do in fact exist as wires. Then in both cases u
and p are connected by wires which will be subsumed by the merge of p and 2. In
cither case, merging p and u along the subset of the subsumed wires that they share
and then merging the result with v along the remaining wires to be subsumed results
in the same node as 5,5, would produce. Thus we have replaced 5157 by
511 M (u,p,...)M (up,v,...). Now consider swapping the first two operations in this
sequence. Clearly the same thing can be accomplished by first merging z with p and
then dividing it into up and v. We thus obtain M (z,p,...)U (up,v)M (up,v...) € MRe
which satisfies the lemma. Note that if the divide of the refolding was originally
clean then it will remain so. If the new refolding results in a trivial node we replace

it by insertons and merges.

If the dashed lines do not exist, then u shares all of its wires with v. The
refolding of z must either be the identty or removes wivial self-loops of z. In the
former case we can drop the refolding while in the latter case we replace it by

insertions and merges.

Induction: (n >2). Suppose we have shown the result for all sequences of length less
than n. If 5, for 1<i <n is the removal of a trivial node then either it can be moved

ahead of s or it cancels some s; for 1<j <k which is the insertion of a wrivial node.
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In the former case, the induction hypothesis can be used on 5153 -- -5, to get a
sequence S’ such that 5, 5" satisfies the lemma. In the latter case applying induction to
the sequence obtained by omitting s, and s; gives a sequence which also satisfies the
lemma. It is not possible for a refolding to result in a trivial node by assumption.
Suppose now S € Re (/)" M; there are no removals. If any insertion is of a trivial
node on a wire not created by 54 then it can be moved to the front of the sequence
and the induction hypothesis can be applied to the subsequence starting at the second
operation yielding the desired sequence. Similarly if the insertion does not create a
node involved in the merge, s,, then it can be moved to the end of the sequence and
induction applied to the subsequence preceding it. Suppose the insertion is involved
in the merge. Merging a node with a trivial node along one wire is equivalent to
removing it and hence we can simply omit the insertion and merge to obtain the
desired sequence. The remaining case consists of a refolding which creates a trivial
seif-loop on which a trivial node is inserted and then merged along both of its wires
to remove this trivial self-loop. In this case the divide of the refolding can be altered
so that the trivial self-loop is not created and then the insertion and merge can be
omitted.

O
By applying the previous two lemmas we can now move a merge ahead of all clean

divides and refoldings.

Corollary 2.25: Given (A,S) with S (Re+C+/+R)'M, there exists
§’ e ([+R+M)’(Re+C +H +R)", having no more refoldings and clean divides than §
such that (4,5) = (4,5).

Proof: This is by induction on the number of refoldings and clean divides in the
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sequence. If there are none, the original sequence satisfies the corollary. So assume
the lemma is true for sequences with less than (k>0) of these two types of
operations. Consider the last such operation. If it is a clean divide apply Lemma
223 and if it is a refolding apply Lemma 2.24. A sequence in
(Re +C ++R)" (I+R+M)" (Re +C+)\)(I+R)’ is obtained such that the first component
has one less refolding or clean divide. We can then apply the induction hypothesis
repeatedly to move the merges one by one ahead of the refoldings and clean divides.
This is possible since application of the induction hypothesis does not increase the
number of refoldings and clean divides.

d
Corollary 226 Given (A,S) with SeRe(l +R +M)' there  exists
S’ e +R+M)" (Re +M)(I +R)’ such that (4,5)=(4,5).

Proof: The argument is the same as for the previous corollary with the added
observation that when there are no clean divides in the original sequence, none are
ever introduced in the process of transforming the sequence, and hence the final
sequence can not contain any.

a

The goal of this section is the following.

Corollary 2.27: Given (A,S) with §e& (Re+/+R+M+C)", there exists
S’ e (I+R+M)" (Re +I+R+C)" such that (4,5) =(4,5").

Proof: This corollary is obtained by induction on the number of merges. If there are
no merges then the corollary is satisfied by the original sequence, so assume that it is
true for sequences with less than n >0 merges. Suppose the sequence has n merges,

the first of which is 5s.. Apply the previous corollary to s * * - ¢ tO get §1Spin
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which each clean divide and refolding occurs after all the merges. Suppose s, is the
last merge. Then we can apply induction to 5"y, * * * S’ mSc+1 * * * Sy since it has n—1
merges. The corollary is then satisfied by appending this new sequence to 5°y - - - §'),.

.|
Before tackling the glues and unclean divides, we show that insertions are not

necessary at the end of a sequence leading to a maximal-indivisible planar circuit.

Lemma 2.28 Given (A,S5) which is maximal-indivisible with S € /(C +Re+R)"
there exists a proper subsequence of S, S’, such that §' e (C+R+Re)" such that

(A4,8)=(A,5")

Proof: Consider what happens to the trivial node, u, created by 5,€ /. u has two
pins, u; and u; which are connected by wires, either to two other nodes or to one
node (if u was inserted on a self-loop). Let us call a node, belonging to one of the
planar circuits defined by the sequence of operations, a descendant of u if it is
created by an operation performed on 4 or one of its descendants. Clean divides,
refoldings and removals of trivial nodes are all operations which are applied to
individual nodes and whose applicability depends only on the properties of the node
and in the case of refoldings, the existence of its self-loops. Suppose we consider
the result of all of these operations performed on u and its descendants. The
operations performed on the other nodes can all be carried out independenty of the
operations on descendants of u with one exception, a refolding whose merge is along
a wire which is created by removing a descendant of u. In this case, 4 and its
descendants must have been removed leaving only the wire behind. Until such a
refolding is encountered, operations on descendants of # are independent of

operations on other nodes. We can consider them as occurring within a region which
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originally contained only 4 and out of which only the two wires connected to u

emerge.

If there is such a refolding in S, then all of the operations on x and its
descendants occur before this refolding and result in one wire; the last operation on a
descendant of u is a removal of a trivial node along this wire. In this case we can
omit s, and all of the operations on u and its descendants. If there is no such
refolding, then consider the final planar circuit. There are exactly two wires (or
maybe two ends of the same wire) emerging from the region and these two wires are
connected inside the region. Thus there can be at most one node inside the region
since it must be maximal and the graph is connected. It has exactly two pins which
connect it to other nodes outside the region. Any other pins would belong to self-
loops and these would have to be trivial self-loops. Since the node is maximal it
cannot have trivial self-loops and so it must have only two pins. But since a trivial
node is not maximal there can be no node. Thus again, the last operation performed
on a descendant of u must be a removal of a trivial node leaving behind the wire
emerging from the region. By omittdng the insertion and all operations on
descendants of u we obtain a subsequence of S which results in the same maximal-
indivisible planar circuit.

a
2.6 Removing Unclean Divides

In this section we show how a sequence resulting in a maximal-indivisible
planar circuit which consists of an unclean divide followed only by merges, clean
divides, insertions, removals and refoldings, can be replaced by a sequence with no

glues nor unclean divides. An unclean divide which a creates trivial node can be
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replaced by an insertion of a trivial node if only one new pin is created, or a
refolding followed by an insertion if the trivial node contains two new pins. We will
assume that an unclean divide of a node generates two non-trivial nodes and will

show that this remains the case as the sequence is altered.

We first show that an unclean divide can be moved past a merge if there are
only insertions and removals in between. The unclean divide may disappear or

combine with the merge to form a refolding.

Lemma 229 Given (A,S) with Se UJ+R)'M  there  exists
S’ € (I+R)" (Re +MU +U +M*+\)(I +R)" such that (4,5)=(4,5".

Proof: The proof proceeds by induction on the length of the sequence .

Basis: (n=2). In this case 5, is the unclean divide of node z into nodes u and v and
s, is a merge. If 55 is a merge of two nodes neither of which is u or v, then the
sequence (4,5152) =(A,5751) so §"=s,5; satisfies the claim. Suppose that s,
merges u with a node p=v to get z'. In this case it is clear that merging z and p along
the same pins and then dividing the result into z’ and v also takes A into (A,S) and
satisfies the claim. Figure 2.19 illustrates this case. s is the unclean divide U (z) and
5, is the merge M (u,p). Neither z’ nor v can be wivial nodes so this new unclean
divide satisfies the requirements. The last case to consider occurs if 5, merges « and
v. This either results in the original node z in which case we can omit both 5y and 5,
from the sequence, or 5,53 constitute a refolding which also satisfies the lemma. If

this refolding creates a trivial node then replace it by insertions and merges.

Induction: (n >2). Suppose we have shown the result for all sequences of length less

than n. If 5, 1<k <n is the removal of a wivial node then either it can be moved
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Figure 2.19

ahead of 5, or it cancels some s; which is the insertion of a mivial node, for 1</ <k.
In the former case, the induction hypothesis can be used On 51~ Sk-15k+1 " " Sn
applied to (4,s,) to get a sequence S’ such that 5,S” satisfies the lemma. In the latter
case applying induction to the subsequence obtained by omirting s, and s; gives a

sequence which also satisfies the lemma.

Suppose now that there are no removals; S € U (/)" M. If there is an insertion
on a wire not created by 5 then it can be moved to the front of the sequence and the
inducton hypothesis can be applied to the subsequeﬁcc starting at the second
operation to get the desired sequence. Similarly if the insertion does not create a
node involved in the merge s,, then it can be moved to the end of the sequence and
induction applied to the subsequence without it. So we assume that the at most two
insertions between s, and s, are on wire(s) created by s; and are involved in the
merge s,. If there arc two of these insertions, then the two rivial nodes are merged
and the two insertions and merge can be replaced by a single insertion since the

result of the merge is also a trivial node along the same wire. If there is one



insertion, then the trivial node produced must be merged with either u or v; the
insertion and merge cancel each other and can be dropped to obtain the desired
sequence.

a
By applying this lemma repeatedly, an unclean divide can be moved past a sequence

of merges, insertions and removals.

Corollary 230 Given (A,5) with SeUd +R+M)"  there exists
$’ e (I+R+M)' (Re +U+\)( +R)" such that (4,5)=(4,5").

Proof: The proof is by induction on the number of merges in S. If S has no merges,
then it sadsfies the requirements. So assume the corollary has been shown for
sequences with less than n >0 merges and § =5, - - - 5,, has n merges. Suppose s¢ is
the first merge in the sequence. Applying Lemma 2.29 to 5, - - - 5, gives a sequence
S'=5'y & € T+R) (Re+MU+U+M*+0)(I +R)" . If §’ has no unclean divides or
refoldings in it, then S's,4y - - * 5, satisfies the corollary. Otherwise suppose 57 is an
unclean divide. Note that in this case S e ((+R) (MU+U)YI+R)'. Thus
S S Skel " Sm 18 in UU+R+M)" and has n~1 merges. Applying the
inductive hypothesis to this sequence gives $” and then s"l < 5’187 satsfies the
corollary. If 54 is a refolding then applying Corollary 2.26 10 5" * * * S’ m'Sk+1 ** " Sm
also gives a sequence S” such that s”; - - - "4 S satisfies the corollary.

a
We now show that we can remove the last unclean divide if there are no merges or

glues succeeding it and the sequence results in a maximal-indivisible planar circuit.

Lemma 2.31 Given (A,S) which is a maximal-indivisible planar circuit with

S € (U+M)(C++Re +R)" then either Se (R+C +Re)’ or there exists
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§’ e (R+C+Re)" such that (A,5)=(A,S") and such that the length of § is less than the

length of S and has no more refoldings than S.

Proof: If S e (C+/+Re+R)" then by applying Lemma 2.28 repeatedly, we can
remove operations to obtain a subsequence of S, S"e (R+C+Re)’ such that
(A,5)=(A,5"). So we need only consider the case where S € U(C+/ +Re+R)'. To
facilitate the proof we relax the requircment that an unclean divide not create trivial
nodes. By pushing the unclean divide to the end of the sequence it may be
transformed so that it generates a trivial node. Since the final sequence will not have
any unclean divides, relaxing this assumption has no effect on other results. No

result which depended on this assumption is used in the proof.

The proof is by induction on #, the length of §. If n=1 then we are done since
an unclean divide would create two non-maximal nodes. Suppose we have shown
the lemma for all sequences of length less than n>1. If S contains an insertion of a
trivial node then apply the Lemma 2.28 to the subsequence beginning with the last
insertion and obtain a proper subsequence which can replace it in §. Applying
induction to this new shorter sequence gives us the desired sequence. So assume
S e U(C+Re+R)" and hence s; uncleanly divides z into nodes u and v and
consider 5. If it is an operation on a node other than u or v then it can be swapped
with 5, and induction can be applied on 5,53 * - - 5, to obtain the desired sequence.
Otherwise there are three cases to consider, corresponding to whether 5 is a clean

divide, a refolding or a removal of a trivial node.

The case in which 5 is a clean divide is considered first. Suppose s cleanly
divides u into u; and u such that u contains all the new pins created by the

unclean divide. Figure 2.20 illustrates this case. s, is the unclean divide U(z) and
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54 is the clean divide, C (u) of « which results in 4, and u,. The sequence 5,5, can
be replaced by a clean divide of z into &, and 2’ followed by an unclean divide of z’
into u, and v. This is possible since u; cannot be surrounded by wires created by
the unclean divide s;. Applying induction to the subsequence starting with the

unclean divide gives the desired sequence.

@ B © ©
lC @) lC(u):sz
7 Uz
® @y

Figure 2.20
Suppose now that the clean divide, s,, divides u so that both 1 and u, have some
of the pins which were created by the unclean divide 5, as in Figure 2.21. 5, is the
unclean divide U (z) and 5, is the clean divide, C (u) of u which results in #; and
u,. In this case we can replace 55, by two unclean divides, of z into 4, and z and
then of z’ into u, and v. The order of the unclean divide must be determined if one of
the nodes is surrounded by the other two as is the case in Figure 2.21 if the dashed
line exists. We have s’ls’553 v -5, taking A to (A,5) n U 2(C+Re+R)". Applying
induction on 5553 - - 5, gives $” of length less than n-1 taking (4,5")) to (4,5) in

(C+Re+R)". Then applying induction to 5", 5’ gives S” & (C+Re+R)" of length less
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than n—1 taking A to (A,S) which satisfies the lemma.

Suppose now that s7 is a refolding of u which divides it into u; and u, and
then merges u and u to obtain «”. This is the sequence of operations corresponding
to the topmost and rightmost operations in Figure 2.22. Ignoring the merge for the
" moment, the two divides in this path, divide z into 4y, u and v. The same result can
be achieved by first dividing z into 4, and z’ and then uncleanly dividing 7’ into uy
and v. Care must be taken to select 4 so that it is not surrounded by the other two
nodes. This sequence corresponds to the operations performed by moving
downward, then right and then downward again in Figure 2.22. Now consider the
merge of u; and u2. As argued previously, we can exchange the unclean divide of 2’
and this merge with a merge of 2’ and 4 to form z” and then an unclean divide of 2’
into ¥’ and v. This corresponds 'to the leftmost and bottommost sequence of
operations in Figure 2.22. Note that the two lefimost operations form a refolding of z

into z”*. We thus obtain a refolding followed by an unclean divide which can replace



5157. We apply induction on the sequence starting with the unclean divide to get the
sequence required by the lemma.

Re(2) '0 Ulz
(“)

Figure 2.22

The remaining case to consider is when s is the removal of . In this case 5,
creates the trivial node u. There are two ways in which an unclean divide can create
a trivial node, either by creating a trivial node on an existing wire or by generating

two new pins and two new wires. In the first case, we can replace the divide by an
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insertion and apply Lemma 2.28 to obtain the final sequence. The other case is more
complicated since the unclean divide is in fact creating a new wivial self-loop- and
inserting a node on it Thus the effect of 5,5, is of adding a trivial self-loop to z.
Consider this trivial self-loop. It will remain a trivial seif-loop as long as there is no
clean divide or refolding whose divide cuts between the two pins of the loop. Since
the final planar circuit'is maximal one of these two events must occur. In the latter
case, 5154 can be dropped from the sequence and the missing loop can be created
with the divide of the refolding to obtain a sequence satsfying the lemma. In the
former case, we can also drop s;S2; but in this case to create the loop we must
replace the clean divide by an unclean divide. However we can then apply induction
to the sequence starting with the unclean divide to get a sequence satisfying the
lemma as well.

a
By combining Lemma 2.31 and Corollaries 2.27 and 2.30, the last unclean divide of

a sequence leading to a maximal-indivisible planar circuit can be removed.

Corollary 2.32 Given (A,S) which is a maximal-indivisible planar circuit with
Se U(C+[+Re+R +M)" then there exists §'e (/+R +M) (R +C+Re)’ such that
(A4,5)=(A,5).

Proof: Using  Corollary  2.27, we first tansform §  into
' e UJ+R+M)" (Re+ +R+C)" such that (4,5)=(A,S"). Then apply Corollary 2.30
to obtain S” € ([+R+M) (Re+U +\)(Re+ +R+C)" such that (A4,5)=(A,5"). If
$” e (I+R+M)" (R+C+Re)’ then S” satisfies the corollary. Otherwise by applying
Lemma 2.31 to the subsequence starting with the first unclean divide or insertion

after the merges, gives S & (/+R+M)’ (R+C+Re)" such that (4,5)=(A,5").
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O
Repeated application of this corollary gives the desired result of this section,
allowing us to remove the last unclean divide from a sequence leading to a

maximal-indivisible planar circuit.

Corollary 2.33 Given (A4,S5) which is a maximal-indivisible planar circuit with
Se (U+C+ +Re+R+M)" then there exists §’ € ([+R+M)* (R+C+Re)" such that
(A4,5)=(A,5").

2.7 Removing Glues

Our final task is to get rid of the glues. We will first show that a glue can be
moved past merges and then clean divides. We then face the difficult task of moving
it past refoldings. To accomplish this we need to separate refoldings into differents
types of refoldings. Intuitively, the result of a glue is a node which is divisible and
should cancel with a clean divide. However, refoldings of the glued node may
tangle up the self-loops of the node so badly that it is no longer possible to divide the
node with just one clean divide. We will introduce a special kind of refolding, a
tangling whose only effect is to permute the order of a set of adjacent self-loops of a
node. We will then be able to obtain a sequence in which only tangles, clean divides
and removals follow the glues. We can then show that the effects of the tangles

cancel, permitting the glued node to be cleanly divided.

To move a glue past a sequence of merges, clean divides, insertions and
removals, we first rearrange the sequence so that all merges occur before any clean
divides and refoldings. This is necessary since moving a glue past a clean divide

may result in two glues (of smaller size) but moving a glue past a merge may
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increase its size. We first move a glue past a merge.

Lemma 2.34: Given (A,S) where S € G(/+R+M)", there exists S'=5"; 5y,

such that (A,5)s(A,S) and §* € (/ +R +M)" (G+)).

Proof: The proof proceeds by induction on n, the length of the sequence.

If (n=1), then § € G and S = 5" satisfies the lemma so assume that the lemma is ue
for all sequences of length less than 2 >1. Suppose 5; is G (u,v,i,)) which creates
the node z. Consider s,. If it is the removal of a trivial node, then it can be
exchanged with s, since z is not trivial. Applying the induction hypothesis to
§153 ** Sm gives a sequence s5'| - - - 5’ such that 525"y - - - 'y satisfies the lemma.
If 5, is the insertion of a trivial node, then the same is true since a gluc does not
remove any wires. The last case to consider is when 5, is a merge. If this merge
does not involve z, then again we can exchange s, and 53, and apply induction o
obtain a sequence satisfying the lemma. So assume s is the merge, M (z,p.i,/,h).
All of z’s pins were originally «’s and v's, z =4y, ...,4,V1,...,V;. Suppose first
that the wires which are subsumed by the merge, include only pins which were
originally part of u. This case is depicted in Figure 2.23 where s, is the glue of u and
v, G (u,v) producing z, and 54 is the merge of z with p, W (p,z). In this case we can
replace 5,5, by the merge M (u,p,a,j,h) which results in node 2’ and a glue
G(Z',v,b,j). Applying induction to G(Z,v,b,j)s3 s, gives the sequence

51+ 5, and then M (u,p.a,j,h)s"y - - - 5" satisfies the lemma.

The same argument can be made if z;, ...,z .4 includes only pins which
were originally v's. If the pins involved in the merge were originally both from u and
v as in Figure 2.24, then we can replace 515, Dy two merges as follows. We first

merge p with which ever of the nodes, u or v does not have pin z; and then we merge
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lM (u,p) : M(Z,P)—Sz
@ G(Z'v) o
Figure 2.23

the result with the other. In this way we can handle the case in which one of the two
nodes is surrounded by p and the other as is the case for v in Figure 2.24. We obtain

a sequence without a glue which satisfies the lemma.

M (v,p) M (z,p)=s2
- .
Figure 2.24

O
Corollary 2.35 Given (4,5) with S=s5;- 5,6 GU+R)", then
(A,52 * ' ' Sa51)=(A,S).

Proof: This is observed by noting that in the proof of Lemma 2.34, s was merely
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swapped with removals or insertions of trivial nodes to get s’y * * * -

a

To get a glue past a clean divide we will need to perform induction on the size of the
glue as well as the length of the sequence, since moving a glue past a clean divide
may require replacing the glue by two glues. We definc the size of a glue as,

|G (4,v,i,j}| =m + n where m and n are the number of pins in u and v respectively.

Lemma 2.36 Given (A.S) with Se GU+R+C)", there exists a sequence of
operations, §’ € (/+R +C Y'G®, such that (4,5)=(A,S).

Proof: This lemma is proved by induction on the size of the glue. The minimal size
of a glue is four since the minimal size of an R-node is two. Assume 51 =G (4, V.4, )
which creates the node z.

Basis: Suppose |5, ! =4. The argument in this case proceeds by induction on n, the
length of the sequence. If n=1 then we are done since s itself satisfies the lemma.
Assume we have shown this case for sequences of length less than n>1, If 53 is the
removal or insertion of a trivial node, then we can swap it with 5, by the last
corollary and apply induction. Suppose 53 is a clean divide. If 5, does not divide z,
then again we can swap it and apply induction, so assume s divides z. Since
|5y} =4, u and v are both trivial. Since s is a clean divide, it divides z along its
partitions and since the partitions of z correspond to & and v, 5 divides z back into u

and v. Thus (4,53 * - - 5,)=(A.5) and 53 - - - 5, satisfies the lemma.

Induction; Assume we have shown the lemma to be true when the size of the glue is
less than L and that |5, | = L>4. Again we proceed by induction on a the length of
the sequence. The lemma is trivially satsfied for n=1 so assume it is true for

sequences of length less than n>1. If 5, is the insertion or removal of the tivial
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node we can apply induction on 7 to get the desired sequence after swapping s and
5. Similarly if 54 is the clean divide of any other R-node than z. So suppose s,
divides z into p and ¢q. If p and ¢ are u and v then clearly we can drop 5,5, and
§3 5, satisfies the lemma, so assume not. Since z is obtained from a glue of u
and v, and z can be cleanly divided into p and g, its sequence of pins consists of u’s

and v's
Z=U ol Ve s Vi,

and also consists of the pins which will become p’s and ¢’s,
Z=P1rersPmpGs - vdmyr

with m, + m, = m, + m,. Suppose that v properly contains all the pins in ¢. This also
means that p properly contains all the pins in u. This case is illustrated in Figure
2.25. We we can replace 5153 by 3’15’2. where 5'; is a clean divide of v into g and p’,
the intersection of v and p, and s; is the glue of u and p’ resulting in p. 15’y I <L so
we can apply induction to §'353 * '+ 5, and to obtain §’ e (I+R +C)'G" and then

s'1 5’ satisfies the lemma.

© @ = T

C(v)=5" C(z)=s4

@ G(u,e')=s'1 @ @
@
Figure 2.25

The remaining case occurs when none of the nodes are contained in any other; that
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is, z is partitioned into four non-empty sets of pins by pairwise intersecting « and v
with p and q as in Figure 2.26. In this case, we replace 5,53 by first cleanly dividing
4 and v into their p and g components and then gluing these components together.
We have (A,5)==(A,S") where §’'=5"15,5"35'453 * "~ Say §1,5'2 are clean divides

and 5'3,5"4 are glues.

@ @ G (u,v)=s,

Cw)Cv)=s"15, C(z)=s,
@G(vg,vq)G(up;uq) @ @
Figure 2.26
Since Is’3l+ls4i =15, =L, we can apply the inducton hypothesis to

((A,515"25"3), 5483 - Sa) to get " e (T+R +O) (G where s is the first glue (if
there is no glue let ¢ be the length of S + 1). Then apply the induction hypothesis to
((A,515"2), 5351 - s"e) o ger ST el+R+C y'(G)'. The sequence
§15°28"'5" . - - - 5"y~ satisfies the lemma.

a
In order to move the glues past refoldings we need to examine the refoldings more
carefully. A refolding is complete if its merge is complete. The symbol Re ., will be

used to represent the complete refoldings.

Lemma 2.37 Given (4,S) which is maximal-indivisible with § € (R+C +Re)", there
exists $"'e (R+C +Re )" such that (A,5)=(A,5") with the length of S’ not greater thaﬁ
the length of S.
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Proof: The proof proceeds by induction on the length of S, n. If =1 then clearly
S € (R+C+Re,)’ since an incomplete merge would leave a non-maximal node: a
node with trivial self-loops. So assume that the lemma holds for all sequences of
length less than n>1. We can apply induction to the sequence starting with 52 to
obtain §’ € (R+C+Re.)" such that (4,5)=(A,5,5") and the length of §’ is at most
n-1. If 5, € (R+C+Re.)" then 5,5’ satisfies the lemma, so suppose 5, € Re—Re..
§1's merge is an incomplete merge which results in a node z with one or more trivial
self-loops. Consider the sequence 5,5’. If the operations in §” do not involve z, then
we can place s, at the end of the sequence and this leads to a contradiction. z is not
trivial so s’} can not be its removal. We shall show how we can alter 5, 5" so that it is

not longer and the first operation is a complete refolding.

Consider what happens to the trivial self-loops created by ;. They must
disappear before the end of the sequence. They are clearly not affected by a removal
of a trivial node, a clean divide which does not cut across them or a refolding whose
divide does not cut across them. Hence there must be a refolding or clean divide in

S’ which cuts across these self-loops.

Consider the operation which cuts across the innermost self-loop. If it is a
refolding, we replace this refolding’s division so that it creates these loops and
modify s, so that it subsumes these loops in its merge. Note that the existence or
absence of these loops does not affect the other operations in the sequence, other
than possibly affecting the compieteness of some refoldings. If this is the case we
apply the induction hypothesis to restore the completeness of these refoldings
without lengthening the sequence. If the operation is a clean divide then we can also

drop the loop by replacing the clean divide by an unclean one which generates the
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seIfQIoops. Note that this unclean divide does not create a trivial node. In this case
we apply Lemma 2.31 to the subsequence beginning with the unclean divide, to get
shorter sequence to which we can apply induction. By repeating this process we can
obtain a sequence in which 5, s merge becomes complete.

‘ a
Lemma 2.38 Given (A,S) which is maximal-indivisible with § € (Re+C YR® tﬁcre
exists §’ € Re"C"R” such that (4,5)=(4,5") and 1S1 = |§°I.

Proof: The proof proceeds by induction on the length of the sequence, n. If n=1
then § itself satisfies the requirement. So assume the lemma is true for sequences of
length less than n>1. By applying the lemma to 53 -*s, We can assume that
S e (Re+C)Re"C’R".If Sisnotin Re"C R" then 5, must be a clean divide and 5
a refolding. So assume node z is cleanly divided into « and v by s, and then u is
refolded by s into 4’ as in Figure 2.27. The refolding divides u into p and ¢ and then
merges them along the solid line. Since z is cleanly divided into 4 and v, its sequence
of pins comprises those of ¥ and v, z = u;....... UV "' V. Assume without loss of
generality that pin u, will become part of ¢, thus the pins of u which will become
part of p are u; * - - u, for A<m. We will replace 5,52 as follows. First perform a
divide of z into p and Z=y|.ylpecUmVy Vil Wjey 0T
7 =Y . Yillney ' UmVy - Vi if j=1 where y; + - -y, are the new pins created by
possible created by the divide of u. Now perform a merge of p and 7" along the same
pins as the merge of s7. At this point we have 2 =u'y - - u’gvy - * - v which can be
cleanly divided into u” and v. A sequence of length n in ReCRe*C'R" is obtained.
To obtain the required sequence, it suffices to apply induction to the subsequence

starting with second operation.

a
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lU(z) orC(2) 1U(u) or C(u)
S
Re(2) C@ : Re (u)=s,
iM :5) lM @)

Figure 2.27

These last two lemmas can be combined to organize a sequence of refoldings, clean

divides arid removals so that all refoldings are complete and occur before any clean

divides and removals, when the sequence leads to a maximal-indivisible planar

circuit.

Corollary 2.39 Given (A,S5) which is maximal-indivisible with S e (Re+C+R)',
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there
exists S’ € (M+I)"'Re.C"R" such that (4,5)=(4,5).

Proof: Consider a removal which occurs in the sequence before a refolding or clean
divide. If there are no refoldings whose merge depends on the wire created by the
removal, then we can move it to the end of the sequence since it can jump over these
refoldings, any clean divide and other removals. So assume this is not the case.
Since the removal is needed in order to perform a refolding, the trivial node sitson a
self-loop of the node to be refolded. In this case we replace the removal by a merge.
By repeating this for each removal, a sequence in (M +Re +C)'R® is obtained. The
merges can be moved to the front of the sequence using Lemmas 2.23 and 2.24. In
either case no removals are introduced so we obtain a sequence in
I+M) (T+Re+C)'R’. Applying Lemma 228 to the part of the sequence in
(I+Re+C)'R” we obtain a subsequence in (Re+C) R " to which Lemma 2.38 can be
applied. We now have replaced S by a sequence in (/ +M)'Re’C"R". We need only
make the refoldings complete. In the proof of Lemma 2.37, the process of
mransforming the refoldings into complete refoldings involves transforming either
another refolding or a clean divide into an unclean one. In Lemma 2.31, an unclean
divide followed by clean divides and removals was replaced by only clean divides
and removals. Removals can always moved behind clean divides. Thus the process
of transforming the refoldings into complete ones will maintain the refoldings ahead
of the clean divides followed by the removalis.

’ a
The last and most difficult step in removing a glue from a sequence leading to a

maximal-indivisible planar circuit, is to move it past refoldings. We will show that a
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glue can be moved past a set of refoldings, leaving behind refoldings of the original
nodes followed by unclean divides, gluings and a special type of refolding which
serves to entangle the self-loops. We cannot move the glues past all of the refoldings
since the unclean divide of a refolding can be arbitrary, generating and interleaving
partitions unnecessarily. However, we can show that these refoldings must cancel
each other out and that the gluings and clean divides must also cancel each other out
if the final planar circuit is maximal-indivisible. This special type of refolding is
called a tangling.

Definition 2.40
A tangling is a complete refolding whose effect is only to permute the order

of a set of adjacent non-trivial self-loops.

X y

AN

Figure 2.28

Figure 2.28 contains a tangling. Since a tangling can only affect a set of adjacent
self-loops of a node; it does not affect any pins which are connected to other nodes
and it does not create nor remove partitions. The symbol T will be used to represent

tanglings. Before we can attack glues we need to prove a few things about tanglings
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and refoldings.

Definition 2.41
A divide of a node u is orderly, if any clean diﬁdc that was applicable to u
can be performed by two clean divides on the two nodes created by the
divide.

In an orderly unclcan divide, the new pins along the cut do not entangle any

partition, That is if the node could be separated cleanly, thcn the same will be true

after the unclean divide. All clean divides are orderly.

Definition 2.42

An orderly refolding is a refolding whose divide is orderly.
Re, will be used to represent orderly refoldings. Re, .. represents an orderly complete
refolding. We will decompose arbitrary complete refoidings into orderly complete
refoldings followed by tanglings. The size of the tangling is the number of self-loops

it tangles.

Lemma 2.43 Given (A,5) with S € TRe,.", there exists 5’ € Re,. T~ such that
(A,5)=(A,5).

Proof: We will show that we can move a tangle past an orderly complete refolding,
obtaining one or two orderly complete refoldings followed by at most two tangles
such that the combined sizes of the new tangle(s) is no more than the size of the
original tangle. The lemma will then follow by induction on the number refoldings

and the size of the tanglings.
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If the tangling and refolding are of different nodes we can interchange them;
we need only consider the case where the refolding is applied to the node resuiting
from the tangling. Suppose we have a tangling s; of a node u resulting in u’
followed by a refolding 54 of «’ resulting in «”. Since a tangling does not introduce
new or remove any partitions along the self-loops it is clear that the unclean divide
of the refolding can not depend on any partitions added or removed by the tangling,.
The argument can be divided into four cases according to the location of the tangled

self-loops on u’ with respect to the divide and merge of the refolding.

Suppose first that the tangled self-loops remain on only one of the nodes of
the divide. Then we can perform the tangling on only that node after the divide
instead of before. Likewise, we can also perform the tangling after the merge. We
can thus perform the same tangling after the refolding. In the second case, the divide
cuts across all of the self-loops. If the refolding merges along the loops involved in
the tangling, then we can skip the tangling all together since the effect of the tangling
is destroyed by the merge of the refolding. If the merge is along some other set of
self-loops, the order of the tangled self-loops is irrelevant to the refolding; the tangle
can be performed after the refolding. Again in this case the refolding and the

tangling can be swapped.

The remaining two cases occur when the divide of the refolding, s, cuts
across only a portion of the tangled self-loops. In this case, the merge may introduce
pins in between the self-loops making it impossible to perform the tangling after the
refolding. In this case we first transform the refolding so that it cuts across all of the
tangled self-loops. This is achieved as in Figure 2.29, by moving the divide over

untl it cuts ail of the self-loops as indicated by the two dotted lines. This means that
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the divide is now certainly unclean and creates wires for these self-loops as shown in
Figure 2.29. The difference between these last two cases is in the loops subsumed by
the merge of the refolding. The merge of s, either merges along the tangled set of

loops or along some other set of loops as depicted by the two results of the merge

M ('y,u’y) in Figure 2.29.
l U@ orCu) @( 8@
lU(u’) lM 'y,u'2)

@m‘

Figure 2.29

Consider first the case in which the merge of 5, was along the tangled self-
loops that it cut. Since the refolding was complete, its merge was along all of the
loops cut by the original divide. We simply change the merge so that it now also
subsumes the additional loops cut by the new divide. This is depicted by the merge
M (u”y,u”) in Figure 2.30 The new wires created by the new divide are left behind
to take their place. This new merge along with the new divide form a refolding
which is complete and orderly. Now consider the tangling. In this case the tangling
only affects the order of the self-loops. The tangling of the seif-loops which are
subsumed by the merge is unnecessary since they will disappear and there order is

irrelevant to the merge. The tangling on them can be omitted, but we must apply it to
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the new self-loops which remain after the merge to take their place., Thus we can
perform the unclean divide and refolding on u and then apply a tangling on these
self-loops. The divide of u can be made orderly since the order chosen for the new
wires is unimportant; the tangling will alter this order to put the self-loops in their
final required order. The completeness of the merge follows from the completeness
of the original merge. We obtain a complete orderly refolding of u followed by a
tangling of smaller size. This corresponds to the left arrow and bottom two arrows in

Figure 2.30.

Figure 2.30

The final case occurs when the merge is not along the tangled self-loops. This
is more complicated as shown in Figure 2.31. Essentially we perform the same

merge on 4”; and u”’; as M (&’y,u’y). Unfortunately, this does not result in u”. We
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Figure 2.31

need to free the self-loops that have been hooked into u”;. This is accomplished with
a clean divide followed by a complete merge which combine to form a refolding.
Now consider the tangling. We can perform the same unclean divide and merge on u
as on i’. The only difference is in' the order of the self-loops. We then perform a
refolding similar to the one performed on w” to get u” with the exception that the

divide might not be clean since some of the wires which are not hooked may be
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entangled with those that are. We thus perform an orderly unclean divide followed
by a complete merge to unhook and separate these wires. Finally we may need to
perform at most two tangles on these two sets of self-loops in order to arrange them
in their final order in «”. Note that this is only necessary if the original refolding was
of size greater than two; the sum of the sizes of these two tanglings is the size of the
original. Figure 2.31 depicts the case in which the merge of s, was along a set of
self-loops above u’y and u’y. The other case is symmetric and can be dealt with in

the same manner.

In each of the four cases, a tangling followed by a complete orderly refolding
has been replaced by a sequence of at most two orderly complete refoldings
followed by at most two tanglings such that the sum of the sizes of these tanglings is
no greater than the size of the original tangling. Induction on the size of the tangling
is used to finish the proof. If the size is two, then the case in which two tanglings are
generated can not occur and we can move the tangling past the refoldings leaving '
behind complete orderly divides until the tangling either disappears or reaches the
end of the sequence. Now assume the lemma is true for all tangles of size less than
n>2, In this case we can move the tangle over the refoldings. Either it will
disappear, split into two smaller tangles or end up at the end of the sequence. If it
splits into two tangles then the induction hypothesis can be used since the two new
tangles will be of smaller size.

a
A sequence of complete refoldings can now be divided into a sequence of complete

orderly refoldings followed by tanglings.

Corollary 2.44 Given (4,5) with S & Re.”, there exists 5" e Re,, T" such that
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(4,5)%(A,S).

Proof: The proof is by induction on the number of unorderly refoldings. If there are
none the corollary is satisfied by S. Otherwise take the last one. By reordering the
| pins created by the divide of the refolding, we can make this divide orderly. Since
the refolding is complete, after the merge the new wires created by the divide will
form a set of adjacent non-trivial self-loops. We can then apply a tangling to these to
put them in the same order as the original refolding had them. Thus we can replace
this refolding by a complcté orderly refolding followed by a tangling. The previous
lemma is applied to move the tangling to the end of the sequence. This procedure
can be repeated until a sequence with only orderly complete refoldings followed by
tanglings is obtained.

g
The result of a glue is a divisible node, and hence must be cleanly divided in a
sequence leading to 2 maximal-indivisible planar circuit. It would seem that a glue
should cancel with a clean divide in such a sequence. However, this can be

complicated by intervening tanglings.

Lemma 2.45 Given (4,S) which is maximal-indivisible with § € G'T°C'R’, there
exists S’ € (I+M+Re+C+R)" such that (4,5)=(4,5".

‘Proof: A tangling can move past a glue or another tangling which is not applied to
the node it produces, hence by regrouping the operations in the sequence, it is
sufficient to consider the case in which the glues construct one node, to which all the
tanglings are all applied. We will assume that the original nodes can not be cleanly
divided since otherwise we could simply add clean divides and glues to the front of

the sequence and apply the lemma to the subsequence beginning with the glues,
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restoring the clean divides to the result. We can assume that tanglings operate on a
maximal set of adjacent seif-loops and combine those that operate on the same set
into one tangling which permutes the initial order of the set of self-loops into its final
order after all of the tanglings. Thus we will assume that the tangles operate on

disjoint sets of wires, that is, there is at most one tangling for each set of self-loops.

The proof proceeds by induction on the number of tanglings, so suppose
Se G'T*C*R" has n tanglings. If there are no tanglings (1=0) then by applying
Lemma 2.36 we obtain a sequence in (/+R +C)'G". Since each node in (4,5) is
indivisible there can be no glues and since each node is maximal each insertion must
cancel out some removal. Thus we obtain a sequence in (C+R " which satisfies the

lemma.

So we assume that a sequence in (/+M +Re+C+R)" can be obtained for
sequences with less than n >0 tanglings. The glues all form one node; they can be
rearranged so that the nodes are glued together in any order. Since the tanglings are

all disjoint, they also can be performed in any order.

Consider a tangling. If the loops it tangles belong to only one of the nodes
before the gluings then we could perform the tangling on this node before any of the .'
glues. We can then apply induction on the remaining sequence since it has one
fewer tangling. Remember that a tangling is also a refolding so the resulting

sequence obtained by tagging the tangle back on the front satisfies the lemma.

Now suppose that the loops involved in the tangling are wires that connect
two of the nodes to be glued. In this case we can also simulate the tangling by an

unclean divide and a merge before any of the gluings. By applying the induction
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hypothesis to the remaining sequence we obtain a sequence in

UM +M +Re+C +R)". Applying Corollary 2.32 gives the required sequence.

The next case to consider is when a tangle applies to a sci of self-loops which
belong to one node on one side but to more than one node on the other end of the
loops. Figure 2.32 illustrates how this can happen. In this case we rearrange the
glues so that the nodes which are at the other end of the loops are glued first and then
we replace the tangling by an unclean divide and a merge which achieves the
tahgling before the rest of the glues. This can also be achieved by merges along the
self-loops and then an unclean divide as in the operations along the left and bottom
arrows in Figure 2.32. A sequence in M UG T C*R” with one less tangling is
obtained. Applying induction and then removing the unclean divide gives the

required sequence.

Figure 2.32

The last case to consider is complicated. We will show that it cannot occur. If
we have any tangles of the previous types, we already know that we can remove

them from  the sequence obtaining a new sequence in
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(U+M+I+Re+R+C)'G'T*C"R” with less tangles. Only the case in which none of
the tangles fall in the previous categories needs to be considered. We decompose
this remaining type of tangle into an orthogonal tangle and the previous kinds of
| tangles. An orthogonal tangle is one which applies to a set of sclf-loops belonging to
nodes 4y - - - 4 on one side and nodes v, - - - v; on the other end such that all loops
are between u; and vi_;,1. In addition, the tangling preserves the order of the self-

loops belonging to the same nodes, and we allow ug=v .

A tangling can be decomposed into an orthogonal tangle and the previous
kinds of tangles. The latter can be performed by operations in (U +M +/ +R +Re +C)°
before any of the gluings, so we need only consider the case in which all tangles are
orthogonal. We still have at most one of these tanglings applied to each set of self-
loops. We will show that orthogonal tangles followed by clean divides and removals
cannot lead to a maximal-indivisible planar circuit. This is intuitive, since

orthogonal tangles are intertwining the components of divisible nodes.

Consider all of the pins belonging to loops which are tangled and which
change position with respect to some other loop as a result of the tangle. Some loops
even though they are part of the tangle do not change position with respect to the
other loops. Since the nets are acyclic, therc must be a node which has a pin
connected internally to one of these loops, which is itself not part of such a loop.
Suppose 4; is this node and suppose we apply the tangling of u; first. Thus »; is
involved in the tangle with nodes, ui -+ u. It is tangled up with one of its
neighbors say u;,; and caﬁ no longer be cleanly separated from u;,, after the tangle.
No other tangle applied can undo the tangling since u; has a pin which is not

involved in any tangle and the only way to untangle ; and u;,, would be to apply a
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tangle to the same wires again. This tangle is depicted in Figure 2.33. The dotted
lines indicate the separation between the glued nodes and the dashed lines are the
internal connections. The node y; is in between the leftmost pair of dotted lines. The
self-loop of u; is internally connected to another pin which shares a wire with a pin

of another node. The wires connecting the other pins may or may not be self-loops.

Figure 2.33

After the tangle, u; and u;,; are part of a non-mrivial node 4, which cannot be
cleanly divided but is divisible, since we could divide it back after untangling the
self-loops. Consider what happens to these tangled seif-loops at the end of the
sequence. These tangled wires of u; and 4;,; cannot be self-loops at the end of the
sequence, since a tangling is a refolding and we could cleanly divide the node into u;
and another node after untangling the loops. This is not possible if all nodes of the
final planar circuit are indivisible. The wires cannot end up connecting two R-nodes
since then this would result in a non-maximal R-node. Hence the only possibility is
that the wires end up connected to a B, or /O-node. We will show that this cannot be
the case; each wire remains connected, possibly through some other R-nodes, to two

R-nodes which cannot become trivial.

Consider the glued nodes at the other end of these tangled wires, they
correspond t0 Ve-;+1 and vi_;. The first tangle also tangled them. Thus we obtain

two non-trivial divisible nodes which cannot be cleanly divided which are connected
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by a pair of wires after the first tangle. If there was only one tangle or no other tangle
applied to these nodes, we would be done. Thus there must be some tangling applied
to vy * * * v which untangles these, however it tangles zy - - - z;. Thus i; and u; . are
still connected to a non-trivial node, z, through v. Repeating the argument for z gives
the same result: either no more tangles are applied, or u; and u;,; become connected
to another non-trivial node, possibly through many other nodes. Hence after all the
tangles, we will still have u = uy - - - ug, non-trivial, divisible, and connected to
another non-trivial divisible node which cannot be cleanly divided. Since this would
imply the existence of a non-maximal node, we cannot have any orthogonal
tanglings.

a
It remains only to move glues past complete orderly refoldings in order to remove

them altogether from a sequence leading to a maximal-indivisible planar circuit.

Lemma 2.46 Given (4,5) with S € G"Re,.,", there exists §’' e (U+M+Re,,)'G"
such that (4,5)=(4,5").

Proof: This is by induction on the number of refoldings. Obviously if there are none
then the original sequence satisfies the lemma. So assurne the lemma is true for all
sequences with less than n >0 refoldings. Consider the first refolding and the
composite node resulting from the glues, z. If the refolding is limited to one node
then clearly it can be performed before any of the glues. Consider the divide of the
refoiding. It can be simulated with many divides of the nodes since it is an orderly
divide. Then we can glue ail of the nodes back together. Now consider the merge. By
using Lemma 2.34 we can also move the glues past the merges. In either case we

obtain a sequence in §’' € (U+M+Re) G"Re,," with one fewer refolding after the
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gluings. Applying induction gives the result.
a

We now can combine these results to remove the last glue in a sequence without

unclean divides, which results in a maximal-indivisible planar circuit.

Lemma  2.47 ‘ Given (A,S) which is maximal-indivisible  with
Se GU+R+M+Re+C)’ there exists S'e ([+R+M+Re+C)" such that
(A,5)=(A,5").

Proof: First rearrange the sequence so that it is in the form
GU+R+M) [+R+Re+C)" by applying Corollary 225 to the subsequence
beginning just after the glue. By applying Lemma 2.34 two this sequence we can
obtain a sequence in ([ +R+M)’ (G+A)[+R+Re+C)". If there is no glue we have
the required sequence. Otherwise apply the Lemma 2.28 to remove the insertons;
the sequence is now in (/+R +M)"G(R+Re+C)". By Corollary 2.39 we can further
rearrange the subsequence after the glue, so that the sequence is in
(J+R+M)' GM+D"Re.C R". Reapplying Lemma 2.34 gives
(J+R+M)" (G+A\)ReiC R". Again if there is no glue we are done otherwise apply
Corollary 2.44 to separate the refoldings into orderly complete refoldings followed
by tanglings. We now have a sequence in (/+R +M)' GRe,."T'C*R”. Applying
Lemma 2.46 gives a sequence in ([+R +M)"(U+M+Re)"G"T'C'R". And applying
Lemma 2.45 gives a sequence in (U+ +M+Re+C+R)". The remaining problem is
to remove the unclean divides. This is accomplished by Corollary 2.33 which gives a
sequence in (/+R +M)" (R+C+Re)".

a

Combining the results of this section and Section 2.6 gives us the desired format for
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sequences resulting in maximal-indivisible planar circuits.

Theorem 248 Given (A,S) which is maximal-indivisible there exists

§’e U+R+M)"Re,"C R’ such that (4,5)=(A,S).

Proof: First transform § so that it has no glues or unclean divides. This is
accomplished by looking at the last operation which is either a glue or unclean
divide. If it is a glue, apply the Corollary 2.47 to remove it. If it is an unclean divide,
then Corollary 2.33 can be applied to remove it. So we have a sequence in
(I+R+M+C +Re)". Corollary 2.25 allows us to transform it into a sequence in
(I +R +M)" (I +R +Re+C)" and from there Lemma 2.28 can be applied to get it into
(I +R+M)* (R +Re +C)". Corollary 2.39 applied to the second part gives the required
sequence in (+R+M)'Re.C R".

(|
Using the preceding theorem, we can show that homeomorphic maximal-indivisible
planar circuits can be transformed into one another by sequences consisting only of

refoldings.

Theorem 2.49 If A and A" are maximal-indivisible homeomorphic planar circuits,

there exists S € Re,” such that (4,5)=A".

Proof: Since A and A’ are homeomorphic, there exists a sequence of operations, §’
such that (4,5)=A". Applying the preceding theorem, we can transform S’ so that it
is in J+R+M)"Re.'C"R*. Now consider the first merge in the sequence. A is
maximal so none of its R-hodes share wires with other R-nodes. A merge in S” must
be with one or between two trivial nodes created by a previous insertion S’. Since A

is maximal, none of its nodes have trivial self-loops; any merge involving a trivial
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node is a merge along a single wire., Clearly we can drop the merge and the
insertions from §°. So assume there are no merges in §” and consider a removal of a
trivial node before the refoldings. None of the nodes of A are trivial so it must cancel
out some insertion of a tivial node. By dropping these insertions and removals we
transform 5’ so that it is in /*Re,."C"R". A mivial node cannot be refolded by a
complete refolding to obtain anything but a trivial node. Such a refolding can be
dropped from the sequence since it produces an isomorphic planar circuit. Since A’
has no trivial nodes any insertions must then cancel out with removals and so these
can be dropped from the sequence as well. 5 is now in Re,"C'R’. There cannot be
a clean divide in $’ since this would imply that some node of A was not indivisible.
If there is a removal then some node of A was not maximal. Hence we must obtain
S’e Re.”.

8
In the next section we show how to transform a planar circuit into a homeomorphic

planar circuit and discuss the optimality of a maximal-indivisible planar circuit.
2.8 Best Planar Topology

In the previous sections, homeomorphic maximal-indivisible planar circuits
were shown to be unique modulo refolding operations. We define this to be the
normal form for our planar circuits and discuss how this normal form can be

obtained and used; the following questions are addressed:
How can we tell if a planar circuit is maximal-indivisible ?
How do we transform a planar circuit into a maximal-indivisible one ?

Why should a planar circuit be maximal-indivisible ?
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To determine whether a planar circuit is maximal-indivisible we must
determine if its R-nodes are maximal and indivisible. Determining whether an R-
node is maximal consists of determining whether it shares a wire with another R-
node, whether it is trivial and whether it has a trivial self-loop. These can all be
determined by inspection and in the event that the R-node is not maximal,
operation(s) can be applied to the planar circuit either to merge the adjacent R-nodes,
to remove trivial R-nodes or to subsume trivial self-loops. Determining whether an
R-node is indivisible is more complicated since the definition of divisibility permits
the application of refoldings to the R-node before the clean divide is performed.
Fortunately, by using results from the previous section we can devise a simpler
check for the divisibility of an R-node. The next lemma will show that we need only

consider tanglings in determining if an R-node is divisible.

Lemma 2.50 If A is 2 maximal planar circuit and S € Re " C is a sequence which is

applicable to A, there exists §’ € T"C which can be applied to A.

Proof: Suppose we have a planar circuit A and a sequence of operations, § € Re 'c
which can be applied to A. If there are no refoldings, then we are done since § is in
T*C. So assume there is at least one refolding. Let 5; be the first refolding in S
whose divide is clean, 5; =s; 5;, €CM. Then § =5 --- 5,15, is a sequence in
Re'C in which all the refoldings have unclean divides. Hence it suffices to consider

only the case in which all refoldings have unclean divides.

Since the inverse of a refolding with an unclean divide is also a refolding,
S-1 € GRe". We can assume that the refoldings are complete since the R-nodes of
A are maximal; any trivial loops produced would disappear in a later refolding so we

can change the refoldings so that they are complete. By applying Corollary 2.44 we
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can divide the refoldings into orderly compiete refoldings and tanglings. Lemma
2.46 can then be applied to obtain a sequence §” e (U+M +Reo+)GT' such that
(A,5S71)=(A,SS)mA. Note that S§' is applicable tw© A and
sl e T*C(U+M+Re)*. The subsequence of $”.; which is in T"C satisfies the
lemma.

a
Thus an R-node is divisible if and only if it can be cleanly divided after applying a
sequence in T*. This means that in determining whether an R-node is divisible, it is

sufficient simply to consider any possible permutation of adjacent self-loops.

If an R-node has no trivial self-loops than either it can be cleanly divided or it
is indivisible since there is no complete tangling which can be performed other than
the identity operation. To check if an R-node, , is divisible, it is sufficient to check
for each pair of adjacent pins i;,4;,; whether it is possible to cleanly divide the node
between these two pins. That is whether there exists two other pins , u;,u4;+1 such
that no partition of u is represented in both of the subsequences, Uiy, . . ., 4; and
Wj+1s -« - 4. This can be determined by traversing the sequence of pins starting at
u;,; and keeping track of the partitions represented in the subsequence so far. This
procedure is then repeated for each pair of pins uy,4;.; resultng in an algorithm

quadratic in the number of pins.

If a node can be cleanly divided such that the cut does not separate adjacent
self-loops, then it is clear that the order of the self-loops does not affect this clean
divide. Thus we can still use the procedure above for searching for cuts not between
pins of adjacent self-loops. In fact, we can extend it to cases where only one side of

the cut is between self-loops as follows.
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Suppose that we are looking for a cut between u; and 4;4; and we come to
pins 4;, . .. ,u;. which belong to adjacent self-loops. It is sufficient to determine
whether there is any order which will complete the partitions represented so far in
Uiy, .- Uj-1. If SO we can order the loops so that these occur first in the sequence
to obtain a clean divide. The last case to consider is when the cut is between pins of
adjacent self-loops on both ends. So suppose we are considering a cut which is
between pins u;, . . . , Ui4m and U;,..,4; . and assume first that two sets of pins do not
belong to the same self-loops. A cut whose ends fall in these two sets of pins, will
divide the rest of the pins into two subsequences, S =u;4 "% and
S =Ujspm * + * u;. If there is any partition which is represented in both of these sets of

pins than no such cut is possible.

First assume that the two sets of pins u; - - Ujym and ;- U4 do not
belong to the same set of self-loops: they are not connected by self-loops. Since the
other ends of the self-loops are all in one of these two sets as well, there order is
unimportant; we are free to rearrange &; * * * Wi+m and u; - * * u;, in whatever order is
convenient. In this case a clean divide is possible since we can add the pins
Wi+ " Uiym and u; - W, to either Sy or S according to which partition they
belong to. The remaining pins belong to partitions which consist only of pins from
Ui Wism and u; - - uje. These pins can all be added to §,. Thus we divide
U; * * * U; o iNtO two subsequences: the subsequence of pins belonging to partitions of
S, and the remaining subsequence. We perform a tangle so that ;- Ujm is
ordered with the subsequence of S, followed by the other subsequence. We do the
same for u;---u;. only reversing the order of the subsequences so that the

sequence of pins corresponding to S is after the other.
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The tanglings that are performed in this case are called untanglings since
they reorder the pins according to their connections to two disjoint sets of partitions
without affecting the relative order of the pins which belong to the same partiton.
No additional interactions among the partitions are introduced by this type of
tangling. The case in which the clean divide cuts through the both ends of a set of
self-loops can not occur in a planar circuit; it would disconnect the planar circuit,

and imply that the original planar circuit did not satisfy the reachability conditon.

Thus to transform a planar circuit into a maximal-indivisible one, we perform
operations in the following order, at each stage removing any trivial nodes that are

created,
1. Remove trivial nodes.
2. Merge adjacent R-nodes.

3. Remove any trivial self-loops by inserting trivial nodes on them and then

merging them into the node.

4, Examine each node with the procedure described above to determine whether

it is indivisible and perform the necessary untanglings and clean divides.

The reason for obtaining a maximal-indivisible planar circuit is an issue
which is related to the implementation of the procedure which will produce the
layout from a planar circuit. If we have a procedure which transforms a planar circuit
into a layout how will the parﬁcular choice of planar circuit from among
homeomorphic ones to which we apply the procedure affect the layout? The

underlying assumption is that such a procedure produces a layout which is
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represented by, covered by, the given planar circuit. We make some assumptions on
the cost functions which measure the layout and the procedures which produce the

layout.

Assumption 1:

The cost function over the layout is an additive function of the components, B-nodes,
and the implementations of R-nodes. Thus we can measure the cost of the layout
obtained from a planar circuit A =(P,/0,B,R,W) by

cAy= ¥ C+ X cu)
x€ B —nodes ueR —-nodes

where C(x) is the cost associated with B-node x and c(u) is the cost of

implementing R-node u.

Assumption 2:

If u and v are two adjacent R-nodes then ¢ (u) +c (v) 2¢ (M (4,v)) .

Assumption 3:

If z is an R-node which can be cleanly divided into « and v then ¢ (2) 2 ¢ (u) + ¢ (v).

Assumption 4:

If u is an R-node and T is an untangling of u as described above then ¢ (u) 2 ¢ (T (u)).

Assumption 5:

If u is a trivial R-node then ¢ (u) =0.

At the topological level these are natural assumptions to make since the cost
functions measure topological characteristics such as number of crossings required.

At the geometrical level these assumptions imply that the procedures which generate

97



the layout implicidy examine the operations of gluing and uncleanly dividing nodes.
Such an assumption is also quite natural since the procedure which transforms
topology to geometry cannot be decomposed; it must consider the geometric
interactions of neighboring sections of the layout. It is easier for the layout
procedure to determine how to “glue” adjacent sections of the layout and to
decompose R-nodes by uncleanly dividing them rather than to have to deal with
non-maximal or divisible R-nodes. In the later, case the layout procedure would
most likely perform operations which are in effect equivalent to performing merges
and clean divides. We would like to be able to say that the costs of ail
homeomorphic maximal-indivisible planar circuits are the same but this requires an
additional assumption. The problem is that even though a node is maximal-
indivisible, performing tanglings on its self-loops can affect its internal wiring
complexity. If we assume that the layout procedure is allowed to order the adjacent
self-loops as it sees fit, then the costs of homeomorphic maximal-indivisible planar
circuits are the same. Thus we assume that if « is a maximal-indivisible R-node and

Re. is a complete refolding of it, then
c(Re. (u)) =c(u).

Under this assumption it is immediate from Theorem 2.49 that homeomorphic
maximal-indivisible planar circuits have the same cost. Thus we can show the

following.

Lemma 2.51 If A is a planar circuit and A’ is a homeomorphic maximal-indivisible
planar circuit and then under the abévc assumptions ¢ (A)<c (A).
Proof: The proof is by induction on the number of operations in a sequence taking A

t0 A’. We first transform A into a maximal-indivisible planar circuit A” by applying
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the procedure described in this section. We apply merges, insertions, removals, clean
divides and untanglings. By the assumptions, each one of these operations does not
increase the cost of the planar circuit it is applied to. Hence c(4”")<c(A). By
Theorem 2.49, there is a sequence of complete refoldings taking A” to A”. Since by
assumption applying complete refoldings to maximal-indivisible R-nodes does not
change their cost, we have ¢ (A”)=c (A”) and ¢ (A")<c (A).

a

Summary

We have introduced planar circuits and shown that the concept of the ‘planar
topology’ corresponds to an equivalence class of planar circuits under
transformations which simulate local reorganization of wires. We have provided a
normal form for planar circuits and shown its uniqucncss within its equivalence class
of planar circuits modulo the refolding operation. Under certain assumptions about
the layout procedure we have shown that this normal form is optimal within respect

to equivalent planar circuits.
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CHAPTER 3
Mapping FP to Planar Circuits

In this chapter, we map behavioral specifications written in a functional
language, FP, to planar circuits; a mapping is developed between these applicative
programs and planar circuits. In Section 3.1 we briefly discuss FP and the properties
which make it atrractive as a specification language. Sections 3.2 and 3.3 discuss the
correspondence berween FP expressions and circuits, and the limitations of
describing circuits in FP. Before developing the mapping to planar circuits, we
discuss in Section 3.4, the pruning of planar circuits to remove unnecessary
structure, that is, structure which cannot influence the behavior of the circuit. After
describing the mapping from FP expressions to planar circuits in Section 3.5, we
consider the mapping of the constructs necessary for describing synchronous
sequential circuits in Secton 3.6. Section 3.7 describes the implementation of the
mapping which preserves the hierarchical representation of the planar circuit
afforded by FP’s combining forms. In Section 3.8 operations are applied to this
hierarchical representation to transform the planar circuit into a homeomorphic

maximal-indivisible planar circuit.
3.1 FP and its Salient Features

The FP language, as described in [Back78], consists of objects, primitive
functions, and functional forms. FP objects are atoms (alphanumeric strings) and

sequences of objects. Special significance is attached to the atom 1 which is termed
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"bottom" or undefined. If an object contains this atom it is said to be equivalent to it.
FP functions are mappings of objects to objects. Combining forms map functions or
objects to functions. Computations in FP are invoked by the applicaton of a
function to an object. Computations (functions) in FP are defined by constructing
new functions from existing ones using the combining forms. The appendix contains
a formal description of FP, including the lists of primitives and combining forms of

the version of FP used in this thesis.

Below is an FP program (function) which computes the exclusive-or of two
booleans using the nand operator.

Nand @ &Nand @ [[1,2],[2,3]] @ [1,Nand,2]
The ‘@’ symbol represents the composition of functions from right to left. The ‘&’
symbol represents the Apply-to-All combining form which applies a function (in
this case the Nand) to each object in its input sequence and collects the outputs in a
sequence. The ‘[’,]’ represents the Construct combining form which applies each
function enclosed between the brackets to the input, and collects the outputs in a
sequence. Nand is the primitive function which computes the nand of two booleans
in an input object, <b,b4>. The functions, 1, 2 and 3 are selector functions. The
function n for any positive integer, n, selects the n'® object in a sequence starting
from the left. This program is composition of four functions, [1,Nand,2],
[11,2),[2,3]1], &Nand and Nand. When this program is applied to the input object
<0, 1>, the first of these four functions is applied to it.

[1,Nand,2]: <1,0>
This results in the sequence

< 1: <1,0>, Nand: <1,0>, 2:<1,0>>.

Each of the functions in the list above are FP primitives which are applied to their
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objects resulting in the following object.
<1,1,0>
The next of the four functions is applied to this object,
[(1,25,02,3]]: <1,1,0>
which gives
< [1,2): <1,1,0>, [2,3]: <1,1,0>>,
< <1:<1,1,0>, 2:<1,1,05>, < 2: <1,1,0>, 3:<1,1,0>>>,
<<1,1>,<1,0>>.
We then apply &Nand to this object,
&Nand: <<1,1>,<1,0>>
< Nand: <1,1>, Nand: <1,0>>
obtaining,
<0,1>.
The last function, Nand, is applied giving the final output object, 1.
Nand: <0,1>
l

Since there are no variables in FP, a function locates and identifies its
arguments by their positions within its input object. This allows the definidon of
functions to be generic, independent of the size of their arguments. For example, a

function which adds two bit vectors of any size can be defined.

Combining forms, such as Compose and Construct, specify precedences and
parallelism among functions. Various algorithmic smuctures can also be made
explicit by the use of a special form, although the same structure could be specified

otherwise. The use of these forms allows these algorithmic structures to be
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recognized and exploited. The combining forms can be used not only to specify the
connectivity of the computation graph but its planar embedding; each combining

form implies a planar organization of the computation graph of its subfunctions.

A computation can be viewed as consisting of two types of activities:
directing data movement and affecting changes in value. In FP the delineation
between these two types of activities is often explicit. This delineation is useful in

the extraction of structural information from an FP function.

The only bindings in FP are those of functions to function names and these
do not change during the application of a function. These bindings can be assigned
by the user to establish a hierarchy within an FP function. This hierarchy can be
exploited to make the extraction of structure more efficient. As will be discussed, the
extraction process itself must be functional in order to exploit this hierarchy. This
correspondence between behavioral and structural hierarchy is also expected to

facilitate the simulation of the circuit.

Finally, the algebraic properties of FP offer the possibility of transforming an
algorithm by applying algebraic identities to its FP specification. These
transformations would affect the structure of a function without altering its input-

output behavior and hence could be used to improve the algorithm.
3.2 Describing Circuits in FP

The concept of state does not exist within an FP program. Whatever
information is needed for a computation must appear in the input of the function
performing the computation. The result of a computation is otherwise independent of

its environment. When a function is invoked (applied) it is evaluated and only its
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output is retained. There is no other history of the execution of the function. These
cxecuﬁpn semantics make FP inappropriate for describing circuits in terms of low
level circuit elements (i.e., transistors, resistors, capacitors) since the behavior of a
circuit is the result of the time-dependent continuous interaction of these types of
components. FP is appropriate for describing circuits whose behavior is the result of
discrete interactions of elements which themselves have a behavior which can be
described functionally (as a mapping of input values to output values). These
elements are represented as boxes; the correspondence between these boxes and

circuit elements must be established by the designer.

Since there are no states in FP, a sequential circuit could be described by a
function which passes its statc as an argument back to itself. Unfortunately this
mechanism for describing sequential circuits presents the difficult task of
determining whether the invocation of a function generates a new circuit or
corresponds to an already implemented circuit for that function. In addition, it must
be determined whether sequences are mapped into space or time. To avoid this
difficult task, it is assumed that each invocation of a function corresponds to a new
circuit. Feedback will be the result of the application of a form. Work along these
lines has been described in [Shee84, Mesh84,Pate85]). The method we will use
[Pate85], describes sequential circuits as the folding of combinational circuits, using
the same structure to perform a computation in time rather than space. We will first
consider the mapping from FP to combinational circuits and then extend this

mapping by folding the circuit.
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3.3 The Structural Implications of FP

The type of structure which must be captured from FP functions is ‘boxes
and wires;’ FP functions should be representable as boxes with input and output
wires. As illustrated ih Figure 2.1, the FP combining forms interconnect and
instantiate functions yielding planar graphs with functions as nodes along with their
embeddings. The Construct also generates an R-node, but otherwise we can obtain
a planar circuit which has B and R-nodes corresponding to FP primitive functions.
Note that the conditional form does not appear in this figure; it will be discussed

later.

a) Compose f,@f,@..@f

Input Objec _/f\ L - \Output Object

b) Construct  {fi.f2.....fal

Input Object
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c) Constant %OBJ
Output Object

d) Apply to All  &f

InputObject < It ' [2v e

o0

Output Object =< 0, , 05, --

e) Right Insert !f

InputObject=< Iy Iz g oe- sl 9 Lot s Iy, >

Qutput Object
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f) Seq seq(f)

Input Object=< 1, , T2y -+ slaa » Ia » fu>
f
f
f
f
\ Y i
<0, 03 4 O3y -++ ,0, » 0,>=Output Object

Figure 3.1. The structures of the FP combining forms

For the forms (Apply-to-All, Right Insert, Seq), the structure also depends
on the object it is invoked with. To implement the connections represented by the
arcs of the computation graph, the structure of the objects which will traverse an arc
must be known. The amount of “stucture” which can be extracted from an FP
function without knowing its input is very limited. On the other hand the swucture
of an FP expression (a function applied to a specific object) can be completely
determined. Clearly the structure of a function can not be extracted for each possible
input object. Since the inputs to a circuit have some predefined structure, a more
reasonable approach is to extract the structure of an FP function for some class of

inputs over which it is invariant. A carry-propagate adder can be defined generically
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(for any size inputs) in FP, but to obtain its structure the size of the input must be

specified.

Two objects are said to be structurally equivalent if one can be obtained from
the other by merely applying a substitution of labels. This need not be a consistent
substitution; different labels can be substituted for various occurrences of the same
label. A symbolic object is sufficient to represent a structural equivalence class of
objects. No label is repeated in the symbolic object chosen as the representative,

" simply as a means of ensuring that only structural information is represented. The

following are examples of equivalent symbolic objects.

<<<a,<h>>,c ,<d,e>> , >

<<<This , <is>>, a , <sym, bolic>>, object>

By using symbolic objects, the computation graph of an FP function can be
derived. The symbolic output object generated by the FP combining forms can be
determined from the symbolic outputs of their sub-functions and each node can be
replaced by the structure of its corresponding function undl only nodes
corresponding to primitives remain. The resulting graph is the computation graph of
the function. The replacement of nodes by the structure of their associated functions
can be monitored to obtain a hierarchical representation of the computation graph.
Even though the nodes corresponding to computational primitives could be drawn as
boxes, this graph is still far from a ‘layout’ since the arcs transport arbitrary objects

and the routing primitives are represented as nodes.

The symbolic objects associated with the arcs in the computation graph must

be mapped into space (wires) and time. Each atom can be considered as a signal
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which is representable on a wire in a unit of time. For other objects, a decision must
be made as to whether sequences are mapped into time or space. The simplest
decision is to always map into space; every atom of an object gets its own wire.
However this may not be possible for some functions (e.g. iota), and may not be
desirable for others. Initially we will map every atom to a separate wire.* This
decision limits the class of circuits which can be described to the combinational
circuits. However we will describe sequential circuits by folding combinational

circuits.

The unit of information represented by an atom can be arbitrary; it reflects
the level of abstraction desired in the representation of an FP expression. For
example in a decoder each atom would most likely be a bit, while in an FFT each
atom could represent a complex number. Once the level of representation of the
atoms is fixed, the FP primitives of an FP expression can be classified into one of the

following two categories.

Computational Primitives
These functions have the potential to generate atoms which are not atoms of
the input object and/or their effect is determined by the value of input atoms

(such as a comparator).

Routing Primitives
These functions never create new atoms and their effect is independent of

the value of their input atoms. They merely rearrange the atoms within an

*There is a problem with <> since it can be considered to be both an atom and a
sequence. The latter interpretation is chosen, and should be kept in mind while
writing FP functions since otherwise the FP function may not have an "extractable
structure.”

109



FP object, possibly leaving some out and replicating others.

Routing Primitives can be executed on symbolic objects. Computational
Primitives cannot and must be represented as black boxes; their output is a symbolic
object with new labels. Computational primitives whose symbolic output object can
not be determined from a symbolic input object can not be used. Note the absence
of the function, iota, defined in Backus’ original FP which generates the sequence of
integers, <1,2,...,n>, when it is applied to the positive integer n. Computational
primitives are the primitive components of the layout, while routing primitives yield
connectivity between intermediate input and output objects. The Nand in the
example in Section 3.1 would fall into the first category, while the selector functons,
1, 2 and 3, would be considered routing primitives. Examples of other FP routing

primitives include trans, distl and reverse.

The use of the Conditional must be restricted in order to extract the smucture

of an FP function. Two types of condidonals are permitted.

1. The first type acts as a switch; its output is either that of f or g, depending on
the value of p. In this case the value of p depends on the particular atoms in
its input object; p can take on different values for equivalent symbolic
objects. Whenever this type is used, (p—f;g), f and g must produce
structurally equivalent output objects for any symbolic input object they
might receive. This type of conditional would yield the structure depicted in
Figure 3.2. The function Switch should be provided by the designer
depending on the logic required to perform the selection. However, 2

primitive called Switch is provided whose behavioral description is given by
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the FP function, (1—2;3) and is represented as a box in the layout.

2. The second type of conditional is interpreted as structural control. The
predicate must be based purely on structure (e.g. atom, null, =@[length,%3],
etc.). The value of the predicate can be determined from the symbolic input
object; it is independent of the value of the input atoms. In this case, the
structure generated by (p—f:g) applied to an object is the structure of one of
the two functions (f or g) applied to the object, depending on the value
obtained from applying p to the object.

Input Object

Output Object
Figure 3.2 Realization of a Non-structural Conditional

Each invocation of a function results in a new implementation; all recursions are
completely unfolded. Each recursion must be terminated by a structural predicate, a
conditional of the second type, since otherwise we would obtain a circuit with the
correct number of recursions for only the particular input values it is exercised on.
With these restrictions, only acyclic computation graphs can be described; only
combinational circuits can be generated from combinational primitives. The addition

of new forms to describe sequential circuits is discussed in a later section.
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3.4 Pruning Planar Circuits

In the next sections we will describe the mapping from FP expressions to
planar circuits. Unfortunately, the FP routing primitives may generate dead-end pins,
that is, pins which are not connected to any other pin in an R-node. In addition, the
reachability condition, which required every pin to be circuit-connected to an /O-pin,
may not be satisfied by the circuits generated from FP expressions, even though their
plane graphs may be connected. These dead-end pins will be removed as well as
components which are not circuit-connected to any input or output, to obtain a
planar circuit. In the process, we can also remove pins which are not needed by the
B-node to which they belong. We first address this pruning of planar circuits. We
define a weaker form of planar circuit in which the partitions of its R-nodes may now
contain only one pin, the plane graph, G, is not necessarily connected and the
reachability condition is omitted.

Definition 3.1

A weak planar circuit is a five-tuple A = (P,JO,B,R,W) where P is a set of

pins, /O is a sequence of pins, and B and R are sets of B and R-nodes

respectively. Each B and R-node is a sequence of pins, and W is a pairing of

the elements of P such that,
a2 Each pin of P appears exactly once in /O, B or R.

b. The set of pins of each R-node, u ={u; | i=1,...m,} is parttoned
into non-empty disjoint subsets, P, ={P,; | j=1,...c,} such that

1P, ;121 for 15/ <c,.

c. The component of the plane graph G, = {0\ B\ _R,E) where
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E ={e, =(u,v)! for each (4;,v;) in W} {(i0;,i0;41)) 1Si<n} ) ((ion.i01)},

which contains the /O-pins can be embedded in the plane such that
the clockwise cyclical order of edges around each node agrees with
the sequence of pins of the corresponding B or R-node, and the

clockwise traversal of the exterior window corresponds to /0.

d. The net connectivity graph, Gy = (P\U(UP )W UW), where W
w

contains an edge from each pin of an R-node to the partition of the R-

node which contains the pin, (4;,Py,), is acyclic.

Definition 32
A dead-end pin of a weak planar circuit is a pin of an R-node whose partition

contains no other pins (has size one).

A weak planar circuit differs from a planar circuit in that dead-pins are allowed, the
plane graph may not be connected and the reachability condition is not satisfied.
Note that all of the /O-pins are in the same component of the plane graph since they
are connected together by edges which form a path linking them. Thus other
components of the plane graph do not contain any I0-pins and can hence not be
circuit-connected to any of the /O-pins. We will discard these components, since any
B-node or R-node which does not have a pin which is circuit-connected to an /O-pin

can not influence the behavior of the circuit.

To obtain a planar circuit from a weak planar circuit, we must remove each
dead-end pin, the wire attached to it, and the pin at the other end of this wire. This

may create another dead-end pin or we may end up removing a pin of a B-node. If
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this occurs some of the input pins of the B-nodes may no longer be required and we
may wish to remove these pins, or the entire B-node if it no longer has any pins
which are needed. In order to determine which of the pins of a B-node are needed,
we assume that the pins of each B-node can be classified as either inputs or outputs

of the B-node, and if a B-node has m inputs and » outputs, then we have a mapping,
f3: {01} = {0, )7,

which maps vectors of length n to vectors of length m in which a 1 in the i** position
indicates that a pin is not required. We also assume that this mapping is monotonic
in the sense that if additional output pins are determined not to be required then no

unneeded input pin can become needed. That is,
for V,U  {0,1)%, ifV < U then f3(V) < f3(U),

where "<" is the partial order defined by component-wise comparisons. This will be
the case for the B-nodes of planar circuits resulting from FP expressions since each

B-node will corresponds to an FP primidve.

We also strengthen the reachability condition for planar circuits. In the
original definition of planar circuits in Section 2.2, no distinction was made as to
whether a particular /O-pin was an input or cutput of the circuit. In additon to the
requirements of this definition, we now assume that each /O-pin is labeled as either
an input or output pin. We will refer to /O-pins labeled as input and output pins, as /
and O-pins respectively. We then replace the reachability condition of planar circuits
by the following stronger condition,

Every pin is circuit-connected to at least one O-pin.

Thus we require that each pin have some path to at least one output /O-pin. Note

that this reachability requirement has no bearing on our definition of weak planar
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circuits since they have no reachability requirements at all. We need to mark the

weak planar circuit in order to determine which pins should be removed.

Definition 3.3
A marking of a weak planar circuit A=(P,JO,B,R,W), is a mapping of P,
M : P—{0,1}, such that for each wire, (p.q) € W, M (p)=M (q).
If M (p)=1 then p is said to be marked, and otherwise unmarked.

A pair (A, M) where M is a marking of A is a marked weak planar circuit.
We can define a partial ordering on the markings of a weak planar circuit as follows,

Definition 3 .4
If M and M’ are markings of a weak planar circuit, A, then M2M’ if for every
pinp of A, M'(p)=1 = M (p)=1.

Definition 3.5
An unmarked pin is markable, if it belongs to one of the two following

groups.

1. The pin belongs to a partition of an R-node in which all but one of the
pins are marked. Note that pins of partitions of size one are always

markable.

2. The pin is an input pin of a B-node which is not required to compute
the currently unmarked output pins of the B-node.
Definition 3.6 '
A marking of a weak planar circuit which does not have any markable pins,

is maximal.
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If 2 marked weak planar circuit has a markable pin, then we can derive
another marking by marking the pin and the pin at the other end of its wire. This
operation can only be carried out a finite number of times since we must eventually
run out of pins to mark. Note that the derived marking is strictly greater than the
original marking since it has two additional marked pins. By repeatedly applying
this operation, we must eventually derive a maximal marking of the weak planar

circuit.

Lemma 3.7 If M; and M5 are both maximal markings derived from a marked weak
planar (A, M) then M =M.

Proof : The proof consists of the application of the Finite Church-Rosser Theorem
[Newm42]. We simply need to show that the process of marking operations is finite
and Church-Rosser, that is, if there are two operations which can be applied to the
same marking then there are other operations which can be applied to these markings
to transform them to the same marking. This is easily shown by observing that a pin
which is markable, is either marked or still markable after a marking operaton. If
M, and M, are markings of A derived from M by marking p; and p, respectively,
then either M| = M, or we can mark p; in M and p; in M to obtain in both cases
M’. The Church-Rosser Theorem then tells us that for any two markings M, M3,
derived from a marking M, there exists a marking M, which can be derived from M
and M. [t follows that if M| and M are both maximal, we must have M, =M.
a
If we have a marked weak pianar circuit, we can then prune it by removing

all of the marked pins.
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Deﬁriition 38
The pruning of a marked weak planar circuit (4,M), is the weak planar
circuit obtained by omitting marked pins, and then removing any other pins,
which cannot reach at least one O-pin. Any nodes and wires whose pins have

all been removed are also removed.

We must argue that pruning a marked weak planar circuit does in fact result
in a planar circuit. The embedding and acyclic net conditions are inherited from the
weak planar circuit; removal of pins, nodes and wires do not affect these properties.
The remaining property, the reachability condition holds by construction since we
have defined the pruning so that only pins which are connected to some O-pin are
retained. If there are no markable pins, there will be no partitions of size one in the
pruned weak planar circuit. Hence the pruning of a maximally marked weak planar

circuit is a planar circuit.

To obtain a planar circuit from a weak planar circuit A, it is sufficient to
compute the maximal marking of (A,Mp) where My(p)=0 for all p. However we
provide the designer with the added feature of being able to discard some of the
output pins of the planar circuit. This feature can be exploited to simplify the
specification. An example in Chapter 5 in which it will prove useful will be
presented. Thus we will consider planar circuits obtained by pruning the maximal

marking of the weak planar circuit with an output marking.

Definition 3.9
A marking M of A is an output marking, if M (p)=1 implies that p is an O-pin

or is connected by a wire to an O-pin.
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The weak planar circuits generated from FP expressions, will have additional
properties which allow the computation of their maximal markings to be
decomposed by the combining forms of the FP function. These weak planar circuits
will have the property that we can label the pins of R-nodes as inputs and outputs as

well as those of the B-nodes such that the following properties.

Definition 3.10
A weak planar circuit is directable if the pins of its R-nodes and B-nodes can
be labeled as inputs or outputs of the nodes, Rj, Rou, Bin and Bou
respectively, such that,

1. Wires connect only pins which are labeled R;,, B;, or O-pins to pins

which are labeled Ry, B,y or I-pins.
2, Each partition of an R-node contains exactly one pin labeled R;,.

This leads to the following useful result about the markings of the directable weak

planar circuits.

Lemma 3.11 If M,, is an output marking of a directable weak planar circuit A, and
M is a marking derived from from (4,M ), then ail markable pins of (4,M) must be

input pins of B or R-nodes.

Proof: The markable pins by definition are either input pins of B-nodes or pins
belonging to partitions of R-nodes with only one unmarked pin. Thus it is sufficient
to show that the last unmarked pin of each partition of an R-node must be an input
pin of that R-node. This is established by showing that this property is true of the

original marking and is preserved by the marking operation. Consider the original
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marking, M, . The only pins marked in M, are some O-pins and pins connected to
these marked O-pins. Since the wires from O-pins to R-node pins can not involve
input pins of R-nodes, and each partition of an R-node has at least one input pin, this
marking can not result in any partitions where the last unmarked ﬁin is an output pin.
Suppose now that the lemma holds for the original marking, Mo=M,, and for the
markings Mg, . .., M, where for 0Si<n, M; is obtained from M;_; by a marking
operation. Suppose that M, is obtained by marking a markable pin of M,. The
markable pin of M,, p is by assumption the input of a B or R-node. The pin
connected to the other end of its wire, ¢, must be either the output pin of a B or R-
node or an /-pin. In the case where g is the output of a B-node or an /-pin, it is clear
that the only pins in M’ which can become markable are the inputs of B-node and
hence M,,, satisfies the lemma. The case in which g is the output of an R-node
requires closer examination. Since p is unmarked, ¢ must also be unmarked.
Consider the partition to which g belongs. Suppose the input pin of this partition is
marked. It could never have been previously markable since ¢ is unmarked, and
hence it must have become marked in some M; as a result of marking the pin at the
other end of its wire. But this pin would be the output of an R or B-node or an /-pin
and none of these types of pins are markable pins or correspond to p. Thus in fact the
input pin of ¢’s partition must be unmarked and hence marking ¢ cannot create a
markable output pin of an R-node.

a
We can now proceed with the mapping of FP expressions to weak planar circuits

using the results of this section to map these weak planar circuits to planar circuits.
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3.5 The Planar Circuit of an FP expression

The mapping is divided into two steps. We first map ¢ach FP expression to a
weak planar circuit and then prune the maximally marked weak planar circuit
derived from this weak planar circuit with some output marking to obtain a planar
circuit. Remember that an FP expression is an FP function along with an FP object;
it will be represented by f ;x. Note that this is not the same as f «x which denotes the
FP object obtained from the application of f to x. We use the trivial output marking

M by default. The mapping is defined by
m(.f .vvay.) = ‘Y(c(.f ;-x)'Mp.)i

where ¢ takes an FP expression to a weak planar circuit and Y maps a marked weak
planar circuit to the planar circuit obtained by pruning the maximal marking derived
from it. The function o is defined for each of the FP primitives and then extended to
other FP functions by defining it in terms of each combining form. We first describe
0. The weak planar circuits which will be generated will have their sequence of /O-
pins arranged so that all of the /-pins occur before the O-pins; the inputs and outputs

are not interleaved in the weak planar circuits generated by ©.

If x is an FP object we define the function p(x) to be the sequence of atoms
that x comprises in order from left to right; p(x) is @ if x=<>, p{x) is x if x is an
atom and otherwise p(x) is the flattening of x which is obtained by removing all of
the brackets from x except the outermost pair. Remember that <> is not considered
to be an atom. If x contains no atoms, then p(x)=.

If fx= 1 then we define o(f x)= L. Hence in the following we assume that
f:#L
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Primitive FP functions
As described earlier the primitive functions of FP can be classified as either
computational or routing once they are applied to a particular object. If fis a

primitive FP function then we define o(f ix) as follows.

If f :x is computational, then o(f ix) = (P,/0,B,D,W) where P, /0, B and W are as

follows.
P={i1,...,i,,,01,...,om,xl,...,xn,);l,...,ym},
I0=i{  i0n " 01,
B={xy  Xs¥mn Y1}

and

W ={(;.x;)| 1jsn) ) ((0j.y))) 1SjSm}.

where lp(x) =n, Ip(fx)l=m and n+m>0. I n+m=0 then
o(f x) = Py = (D,2,90,D,D), the empty planar circuit. See Figure 3.3a.

Iffixisa rbuting primitive, we replace x by the symbolic object symb (x) which is
obtained by replacing each atom of x by a unique new atom. We let y = f :symb (x)
which is defined. By definition, since f;x is a routing primitive, all of the atoms

which occur in y also occur in symb (x).
If p(x)=D then p(y)=D and then o(f x) = P @, the empty planar circuit.

Otherwise p(symb (x)) is xy - * - X, for n>0 and p(Y) is Y1 - * * ¥m for m20. In this
case, o(f ix) = (P,I0,D,R,W) where P, 10, R and W are as follows:
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Pafil,...sigsOfser-10mXlseessXnsY1s---1Ymhs

[0 =iy iyopm " 01 »

R=(xy " Xp¥m "' "Y1}

where the partitions of this R-node consist of one partition for each atom of symb (x)

along with all of the atoms of y which correspond to it,
foriSisn, P;={x)Ulyj\y/=xi}

and
W = (x| 18j$n) U {(0j:y)) 1SjSm).

It is clear that this also forms a planar circuit unless thére is an atom of symb (x)
which does not appear in y. In this case, the input pin corresponding to this atom
forms a partition of size one and o(f ;x) is a weak planar circuit. Note that no two
atoms of synib (x) are in the same partition. This observation will be used to show
the acyclic nets condition of the final weak planar circuit. Figure 3.3b contains the

weak planar circuit defined by a computational primitive.

Figure 3.3 a) A computational primitive b) A routing primitive

122



To extend G to other FP functions we must define o in terms of each
combining form of FP. The following properties of ¢ will be established by

structural induction.

1. If fux is defined, then o(f;x) is a weak planar circuit with
[0 =i, "-i,01 " 0n where the length of p(x) is n and the length of p(f x)

is m.
2. off ix) = P g if and only if p(x) = p(f x) = ©.

3. The sequence of /O-pins is the concatenation of the subsequence consisting
of I-pins and the subsequence consisting of O-pins. These subsequences will

be referred to as / and O respectively.

4, In the net connectivity graph of 6(f ;x), Gy, no two [-pins are connected.
These properties clearly hold for the weak planar circuits defined by the FP
primitives and we shall show them to be true for the weak planar circuits defined by
the combining forms. The following notation is introduced.

Given a set of pins S, let W (S) denote the wires which contain a pin belonging to S,

W(S)={(x,y)eW!| xeSoryeS }.

Composition f=f,@/-1@ ' @f
If n=1 then we define o(f ;x) = 6(f1x). Ifn>1, let

A=0(f-1@ ' - @f1:x)=(P,10,B,R,W)

and
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A" = 0(fnilfn1@ - - - @f 1)) = (P"JO", B ,R", W").

Both of these planar circuits are defined since f :x is defined. If p(x) =9 and
p(f x) =, then let o(f ;x) = Pg. Otherwise, o(f x) = (P”,/0”,B”,R”,W") where

P’=P_P' -I'-0

B”=B_B , R'=RUR , 10"=I"0"
where [ = and 0" = 0’ and,

W =w W -W(0) =W (05 m-i+1)! 1SiSm]
wherem = 1I'| = |0!.

Figure 3.4 illustrates how the two planar circuits, A and A” are combined to obtain

o(f x).

Figure 3.4

Clearly the component of plane graph containing the /O-pins can be embedded
respecting the orderings of its B and R-nodes. The acyclicity of its nets is obtained
from the observation that both A and A’ have acyclic connectivity graphs and hence a

cycle in 6(f ;x)’s net connectivity graph can occur only if there are two /-pins of A’
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which are connected. This is not the case, by induction. We must also argue that the
same property holds for 6(f ;x), no two /-pins of o(f ;x) are connected. If two such
[-pins exist then either they are connected in A or there must exist two /-pins of A’

which are connected in A’. Neither of these cases is possible by induction.

Construct f=[f1,....f A

fix is defined for each 1<i<n since fux is defined  Let
o(f;;x) = A; = (P;,10;,B;,R;,W;). Suppose p(x)=X; ‘"X, and let i;; be the jh
input of A;, and O, denote the subsequence of O-pins of A;. If p(x)= and
p(f x) =D, then let o(f ;x) = Pg. Otherwise, o(f ;x) = (P,I0,B,R,W) where,

P=UPi U {X1seesXmd D fi1seoim)
i=1

10=i1 '--i,,,O,.O,,_l "'01

n
B=B;, R=yUR Ulu}

i=l i=1

where up =% " * Xmimn i 1nbmn-1 a1 E20dim T L

and is partitioned into P, ; = \U(ij e} \f{x;] for 1sjsm.
k=1

Finally,

n

i=1

Figure 3.5 illustrates the construction of o(f;x) from the planar circuits of the

o(fix)'s. We create a new R-node, up to distribute the object x to each of the planar
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Figure 3.5

circuits defined by the f;;x’s. The original input pins of these planar circuits become

part of the R-node up and new /-pins are created and connected to the input pins of
up. The requirements of a weak planar circuit are clearly met in this case as well as
the inducton properties. No two /-pins can be connected since the A;'s remain

disconnected except for the distibution of their inputs through up.

Constant  f=%0bject

The constant combining form is in effect a parameterized FP primitive. This
form is treated as a computational primitive. We define o(%Object:x) =o(f x)
where f :x is treated as a computational primitive such that f .x = Object. As is the

case with computational primitives, p(x)=Q and p(%Objectx)=D, then
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o(%Objectx)=Pg.

Apply-to-All  &f

Since &f x # 1, we must have x = <xy,...,x,> for m20.

If m=0 then 6(&fix)=Pg

If m >0, then f wx; is defined for 1<i <m. Let A; = o(fix;) = (P;,10;,B;,R;,W)). Let [;
and O; denote the subsequences of /-pins and O-pins of A;, respectively.

If px)=@ and p(fx)=Q, then let of x)=Pg. Otherwise,
o(&f x) =(P,10,B,R,W)

n
P=P; ,

i=1
10 =11]2 '--I,,,O,,,O,,,_l 01

n n n
B=B; , R=UR and W= W,
i=1 i=1 i=1

Figure 3.6 illustrates the construction of 6(&f ;x) from the planar circuits of the

o(fix;)’s.

Figure 3.6

The embedding of the /O component of the plane graph as well as the acyclic nets
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condition is assured since the weak planar circuits it comprises satisfy these
conditions. The property that no two /-pins are connected c¢learly holds since, no
new wires are introduced and two /-pins of the same A; are not connected by

assumption.

Right Insert !f

Suppose x = <Xy, ...,X,>. If x were an atom !f :x would not be defined.

If n=0 then we define o(!f x)=Pg.

If n=1 then we define o(!f x) = 6(/d;x ) where Id is the identity function.

If n=2 then we define o(!f ix) = a(fx).

For n >2 we define o(!f ;x) as follows. Let
A=0(f<xq,...,X,>)=(P,10,B,R,W)

and

A = 0(f 1<x1,(If 1<Xq, - . . . XaD)) = (P IO B’ R, W").

Both of these planar circuits are defined since f ix is. If p(x) =@ and p(f x) =0,
then let o(f ;x)=Pg. Otherwise let y =!f:<xy,...,x,>, let I'; be the first
Ip(x1)| inputs of A’ and let [, be the other m=Ip(y)l inputs. Then
o(!f x)=(P”,10”,B”,R”,W") where

P'=P P ~I';-0 ,

10" =1"10" , B"=B_B’ , R =R_K’

andif [y =iy - 'y O =20m """ 01,
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W” =W UW =W(0) -W'{I"y)

U (@0’ F1shsSm : (0).0m-+1)EW and @'t,i'5)e W ]

In Figure 3.7 A and A’ are combined to form the planar cireuit, o(!f 1x).

Figure 3.7

We remove the O-pins pins of A and the corresponding /-pins of A’ and splice the

wires connecting these pins together. The embedding of the /O component of the
plane graph of this weak planar circuit is clear. The acyclic nets condition is assured
since there is a cycle in the net connectivity graph of o(!f ;x) if and only if there is
one in either A or A’, or there are two [-pins of A’ which are connected. Neither of
these cases can occur, The property that two [-pins of o(!f ix) are not connected is
based on the observation that this would require either A or A” to have two connected

{-pins.
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Seq seq(f)

Suppose x = <Xy, ... ,Xy>. If x were an atom seq (f )=x would not be defined.
If n=0 then we define c(segq (f)x) =P g.

If n=1 then we define o(seq (f );x) = 6(/d;x ) where Id is the identity function.
If n=2 then we define o(seq (f)ix) = o(f:x).

For n >2 we define 6(seq (f );x) as follows. Let

A =o(seq(f),<x2,...,X,>)=(P,10,B,R,W)
and

A’ =0o(f;<x,,y1>) =P I0" B R \W),

where y = <y(,...,¥p-1> =5€q(f)i<x3,...,X,>. Both of these planar circuits
are defined since f x is. If p(x) =@ and p(f x) =D, then let 6(f :x) =P 5. Let ',
be the first 1p(x;)! [-pins of A’, let I’; be the other m = Ip(y1)| inputs, and let Oy
be the m outputs of A corresponding to y; and O the other outputs.

Then o(seq (f)ix) = (P”.[0”,B”,R”,W") where

P”=PUP'—I'2-01 R

10" =110,0" , B”=B_B , R"=R_R’
andif['2 -“-i'l v i‘m,01 =0m 01,

W = W W -W(0 ) -W'(I")

U {(P;-P’t)l ah: I<h<m ’ (ijam—hﬂ)ew and (P’k’i’h)ew'}

In Figure 3.8 A and A’ are combined to form the planar circuit, o(seq (f):x). This is
similar to the Right Insert except that we remove only the last m outputs pins of A

and the corresponding inputs pins of A’ and splice the wires connecting these pins.
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Figure 3.8

The embedding of the /O component of the plane graph, and acyclic nets conditons

of this weak planar circuit are assured in the same manner as for the Right Insert.

Conditional (p-—f;2)

As discussed in the Section 3.3, we require the predicate of a conditional to depend
only on the structure of the input object. Thus if p:symb (x) is undefined then o(f ;x)
is also undefined. Otherwise o((p—f:gkx)=0(fix) if px =T, and o(g:x)

otherwise. This is the onlyrcase in which f :x might be defined and o(f ;x) might not.
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This completes the definition of . As an example Figure 3.9 contains the

weak planar circuit of the FP function presented in Section 3.1.

Figure 3.9 The weak planar circuit of Nand @ &Nand @ [[1,2],{2,3]] @ [1,Nand,2]

We now consider the computation of ¥ which prunes the weak planar circuit

generated by & using an output marking. In order, to compute Y we assume that for

each B-node we have a mapping,
fg: {0,1}" = (0, 1}™,

Remember that we assumed that fz was provided with each B-node to indicate
which inputs could be discarded given the set of outputs required. We impose the
additional requirement that if none of the output pins are required, then none of the
input pins are required, fB(l")=l-’". The B-nodes which the result from the
application of %Object, do not need their inputs to determine the output; we can

always remove their input pins. The other B-nodes correspond to FP primitives, it
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suffices to associate such a mapping with each FP primitive. We decompose the
computation of « over the FP expression in much the same manner as G, obtaining
the marking of the weak planar graph of each combining form by first computing the
markings of the weak planar graphs of its subfunctions. In fact it will suffice to
obtain the markings of the /O-pins of the weak planar circuits of the sub-functions in
order to compute the marking of the weak planar circuit of a combining form. This
gives a more efficient method of computing ® since we can avoid generating the
structures of g which y would remove.
Definition 3.12
A marking of an FP object x, is an FP object, p(x), such that if x is an atom
then M(x)e{1,0} and otherwise x=<Xj,...,Xn> for m20 and
1) = <Pxy), - ..o hm)>.
The interpretation of u(x) is that it replaces each atom of an FP object by 1or0
indicating whether the pin corresponding to the atom is marked or unmarked,
respectively. Let M., denote the output marking in which the O-pins
corresponding to marked atoms in W(f :x) are marked. We will use the notation

o(f x,i(f x)) instead of @(f ;x,M s .yy) for the sake of brevity.

The properties of the directable weak planar circuits generated by & will be
exploited to realize the decomposition of w. As discussed in the Section 3.4, we
classify the pins of each R-node as inputs and outputs. This can be accomplished
since each R-node is generated either as a result of an FP routing primitive or as the
up of a Construct. If we have an R-node generated by the application of the routing
primitive, f .x, then we consider the pins corresponding to symb (x) as the inputs and
those corresponding to f :symb (x) as the outputs. In the latter case, when the R-node

corresponds to up, we consider the pins which are connected to /-pins to be the
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inputs and the remaining pins, the original inputs of the weak planar circuits of the
subfunctions, to be the outputs. We can then establish the two properties required of
directable weak planar circuits for the weak planar circuits generated by @, by
observing that they hold for the FP primitives and are preserved by the combining
forms. We can then decompose the computation of the maximal marking of o(f x)
since Lemma 3.11 is guarantees that the output pins of B and R-nodes can only

become marked as a result of marking the pin they are connected to by a wire.

We will show that in addition, the maximal markings of the weak planar
circuits generated by o from an arbitrary output marking have the unmarked
reachability property which requires the existence for each unmarked pin, of a path
consisting only of unmarked pins to some unmarked O-pin. This property simplifies
the pruning, since after removing the marked pins each pin is still connected to some
O-pin and hence no other pins, wires and nodes need be removed to assure the sqong
reachability of the planar circuit. Note that this property implies that all of the pins

of a weak planar circuit are marked if it has no unmarked O-pins.

Composition f=/f,@fn-1@ " @1

If n=1, o(f ix) = 6(f1:x) and ©(f ;x, B(f x)) = @(f1:x, f(f{ x)). Otherwise o(f x) is
constructed from A,y = 0(f,-1@ * '+ @f1:%) and Ap = 0(fri(fa-1 @ - @f 1 X))
The wires in between A, and A,_; are from the inputs of B or R-nodes or O-pins of
A, to the outputs of B or R-nodes or /-pins of A,_;; by Lemma 3.11 no pin of A, can
become markable as a result of marking a pin of A,_;. Hence we can determine the
maximal marking of A, first, and-usc the markings of its inputs pins to obtain a
marking for W(f,— @ * - - @f1:x) which can be used to mark the output pins of Apy.
By connecting the outputs of O(f,_1@ * ' * @f1:%. }{fr-1@ * * * @f ) to the inputs
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of O(fa;(faa1@ * - - @F1 ), K(f X)) &(f ix, L(f X)) is obtained. In the case in which
A, had no I-pins and consequently A,_; had no O-pins, all of A,_; becomes marked.
If A, and A,_; both have the property that each unmarked pin is connected to some

unmarked O-pin, then so will @(f x, u(f x)).

Construct [fy,...,fa]

In this case 6(f ;x) is constructed from the S(f;;x)’s by joining their inputs at an R-
node, up. Since the original pins of the o(fi;x)'s become output pins of up, they are
never markable. Thus we can determine the markings of the o(f;;x)’s and then use
the markings of their input pins to mark up. Inthis case, f:x =<yy,...,¥s> and so
we compute @(f ;x,lu(f x)) by first computing for 1<i<n, o(f;x, 0(fioyi)). The
markings of their /-pins, gives us n markings of x, y;(x). These markings are used to
mark the node up. We mark any input pin of up and also the corresponding /-pin if
and only if the atom corresponding to it in each u;(x) is marked. If each
o(f;:x,1(f2y;)) has the property that an unmarked pin has an unmarked path to an
unmarked O-pin then, clearly o(f .x,l(f x)) will have this property as well since an
unmarked /-pin is connected to an unmarked input pin of up which must be

connected to an unmarked pin which was an /-pin of some w(f;:x,L(f;:y:))-

Constant  %Object

The constant combining form results in a planar circuit consisting of a B-
node. The output of the constant combining form is the same object regardless of its
input object (unless this is 1. Hence we can discard its inputs without affecting its

outputs. This B-node has the property that all of its input pins are markable
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regardless of the marking of its outputs. Thus the maximally marked weak planar
circuit of (0(%Object x),M) for any marking has no unmarked /-pins. It trivially

satisfies the reachability property.

Apply-to-All  &f

If m=0 then 6(&f.x) = P and the same is true of &(f ix, u(f x)). If m >0, 6(&fx)
is constructed from the o(fx;)’s. In this construction no wires or nodes are added.
The maximal marking of ((&f3x),H(&f x)) corresponds to the maximal markings
of the (o(fix;).u(fx;))’s. We can consguct (&fix,u(&f x)) from the
(fix;, )W(f x;))’s in the same manner as we consgucted o(&f:x) from the 6(fix;)’s.
If each o(fix;,1(f ix;)) has the reachability property then &(&f ix,u(&f x)) will

have it,

Right Insert !f

X=<€X1y... X0

For n=0 we have 6(!f ;x) = Pz so o(!f ;x, u(!f x)) must be P 5 as well.

For n=1 we have o(!f x) = o(/d;x) and so &(!f x, u(!f x)) = w(ld x|, 1(ld x1)).
For n=2 we have o('f ix) = o(f;x) and so @(!f ;x, u(}f X)) = o(f ;x, u(f x)).

For n>2 we o(fx) was constructed from A =0(!f;<x2,...,%,>) and
A’ = O(f;<x 1, (If:<x3, . . . ,X.>)) by connecting the outputs of A to left inputs of A”.
As in the case of Composition, we can obtain the maximal marking of A” first since
none of the pins of A which could be markable are connected to pins of A”. Hence we
obtain aXf;<xy,(If:<X3, ..., %>}, H(}f :x)) and use the markings of its inputs pins

as the marking for y = !f :<xs,...,X,>). This corresponds to the markings of the
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Q-pins of o(!lf :<x3, ... ,X,>). Thus we can construct o{!fi<xy, .. . Xp2 XUl X))
from o(f;<x1,(1fi<x2, ... . Xo>)H(If X)) and @(lf ;<x2,...,%,>) 1)) in the
same manner as we constructed o(!f ;x). If both of these planar circuits have the

reachability property, then so will a{!f;<x1, ..., %, >) H(1f x)).

Seq  seq(f)

The argument for the w(seq (f );x) is the same as the argument for o(!f x).

Conditional (p-—fg2)
If it is defined, o(p —f;g:x) is either o(fx) or o(g:x). In the former case,

©(p - f ;g:x) is @(f ;x) while in the latter, (g ;x).

It remains to define ® on the FP primitives. We first compute ¢ and then find
the maximal marking derived from M (s ). By our assumption that fa(IM=1" we
know that the reachability property is satisfied if f ;x is a computational primitive. It
is also satisfied in the case of routing primitives, since the only pins which would not
be connected to some O-pin would be in a partition in which all other pins would be

‘marked. Thus we generate o(f :x), and define (f ix, u(f x)) to be the planar circuit
obtained from the maximal marking of (6(f x),M s x)) by removing the marked
pins. Note that this may result in Pg. The planar circuit generated in this case

clearly satisfies the reachability property.

This completes the definition of the mapping from FP expressions to planar
circuits which are combinational. Before extending the mapping to sequential

circuits in the next section, we present in Figure 3.10 the planar circuit generated
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from the FP function presented as an example in Section 3.1. The dashed lines are

wires which along with their pins have been removed.

Figure 3.10 The planar circuit of Nand @ &Nand @ ([1,2],{2,3]] @ [1,Nand,2]

3.6 Sequential Circuits

We have shown how .to map FP expressions to planar circuits which are
combinational circuits; we can implement FP functions in space. In this secdon we
extend the mapping in order to describe sequential circuits in FP. The extensions are
from [Pate85]. Intuitdvely, using FP to describe sequential ¢circuits does not seem
appropriate since there is no concept of state in FP. However if we view the decision
of whether to implement a particular computation in space or time as an
implementation decision rather than an algorithmic one, FP seems highly
appropriate since we can describe a computation without committing ourselves to

either a space or time implementation. The description of the computation is
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independent of the time/space implementation decision.

We have shown that all FP expressions under restrictions previously
described, have a space .irnplementation. In mapping these FP expressions to
combinational circuits, we mapped each atom to a separate wire. For sequential
circuits, we must map several FP expressions to the same structure. To obtain
sequential circuits, we implement the combining forms, Apply-to-All, Right Insert,
and Seq in time rather than space. Not all instances of these combining forms can be
folded from space into time; the weak planar circuits from which-they are
constructed must be isomorphic. From the construction of o, it follows that if each
computational primitive f has the property that o(f ix) =o(f;y) for structurally
equivalent FP objects, x and y, then this property holds for any FP function. This is
the case for FP primitives. Thus if x and y are structurally equivalent,
o(f x) = o(f ;y). Figures 3.11, 3.12 and 3.13 illustrate the folding of the Apply-to-
All, Right Insert, and Seq combining forms, respectively. Note that the connections

in these figures may correspond to several wires.

In order to fold these combining forms we must first pass their input objects
which are implemented in space, through a converter which implements their
sequence of input objects in time rather than space. In the case of Apply-to-All and
Seq we must convert the sequence of output objects back into a space sequence. The
new FP primitives, SOPI (Serial Out Parallel In), POSI (Parallel Out Serial In),

illustrated in Figure 3.14 perform these conversions.

We must discuss timing in order to assure the correct operation of the circuit.
In FP, the application of a function to an object is an atomic event. With the

introduction of SOPI and POSI, this is no longer the case. This poses a problem in
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Apply-to-All  &f

Input Object =< 7; ,

000 =

Iy
Qutput Object =< 0, , 03,

Figure 3.11 The folding of Apply-to-All

Right Insert  !f

<ly , I, «-- dna v lasy I >

Iy
/, n-1
_—_— Cf Register
[
f
f) Y
Qutput Object
Qutput Object

Figure 3.12 The folding of Right Insert

140



Seq seq(f)

Input Object=< 1y , In, ... Jaz  dn1 s In>

Register]

r 4

f ]
f )
0, 0,
\

i |
<01 R 02 ' 03' !On_l. 0,,>=Output0bjcct

Figure 3.13 The folding of Seq

X1 Xy
X
b 3
SOPI Xn
X1 POSI
| T

Figure 3.14 The space/time converters SOPI and POSI
synchronizing computations which are occurring in parallel, in separate sub-
functions of a Construct or an Apply-to-All for example. In order to maintain the
synchronization, we introduce the delay primitives, D and D! which delay the
signals by one clock pulse and advance the signals by one clock pulse respectively.
Each object has a clock pulse associated with it and the output of the application of a
function to that clock pulse has the same cloc.k pulse associated with it. In this sense

each FP function remains combinational. In order to maintain these timing
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semantics, when we introduce a SOPI, POSI pair we also add a D! to restore the
atomicity of the computation. Of course, we can not implement D™!; instead we
transform it undl it sits at the end of the FP specification where it indicates the
number of clock delays required by the function. In the process of pulling the D™1’s
out, we insert D’s on parallel branches. The folding of combinational
implementations is accomplished by a set of ransformations. The transformations,
introduced in [Pate85], modify the FP specification by introducing new functons
and then replacing the combining forms Apply-to-All, Right Insert, and Seq by

their sequential equivalents.

&f=D'@ POSI@ &Tf @ SOPI
if=D1@ !Tf @ apndr @ [SOPI @ tr, last]

seq(f)aD'@ apndl @ [1, POSI @ tl] @ seq”(f) @ apndr @ [SOPI @ tlr, last]

The functional behavior of these new primitives is equivalent to the /d primitve, and
the sequential versions of the combining forms are the same as their combinational
versions. These new FP primitives and combining forms only differ under w, the
mapping to planar circuits. The intent is not that these forms be used by the designer,
but rather that they result from transformations applied to the FP functions. In this
manner we obtain a superset of FP, in which each function can be mapped to FP by
replacing these new primitives by /d and the combining forms by their original

forms.

o can be easily extended to interpret of the sequential versions of the
combining forms, but their interpretation by @ is more complicated. This is because

by folding a combining form, we are performing the computations of one function
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applied to a set of input objects using the same physical structure. In the space
implementation we generated a separate weak planar circuit for each input and
marked these separately according to the markings of their respective outputs. For a
time implementation we must mark the weak planar circuit of the function applied to
only one input, such that it represents the union of the planar circuits that would
result from the application of the function to each input object. We provide their

mappings under o directly.

Each of the new FP primitives, SOPI, POSI, D for a one clock pulse delay
and D! for a one clock pulse inverse delay, is interpreted as /d in terms of behavior.
However their interpretation in terms of structure is different. They are interpreted

by w as follows.

SOPI

SOPI converts a space sequence to a time sequence. It assumes that its input is of
the form, X = <Xy, ...,X,> in which each x; is structuraily equivalent. If this is not
the case then w(SOPI:x,W(SOPI x)) is undefined. Since SOP/x =x, we have
HISOPI :x) = Pow (X) = <How (X s . - - s How(Xa)>. Tt is also assumed that all of x;’s
except for x; have all of their atoms marked. A B-node will be generated for SOPI
if there is at least one unmarked atom in o (X 1). Rin(X) iS <Hia(x1)s - - - s Hin(Xa)>
where each |;,(x;) has a marked atom if and only if the corresponding atom in each
How(x1) is also marked. / and O-pins are generated for each unmarked input and

output pin of the B-node and connected by wires to these.
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POSI
As with SOPI, &(POSI ix, W(POSI :x)) is defined only if x = <xq,...,X,> in which
each x; is structurally equivalent. POSI converts a time implementation of a

sequence back into a space implementation.

H(POSI X) = Pous (X) = <Uoue (X 1), - - - s How(Xa)>.

A B-node will be generated for POSI if there is at least one unmarked atom in
Bous (). Pin(X) iS <Hpp(X)s .+ . Hin(xa)> where each p,(x1) has a marked atomn if
and only if the corresponding atom in each W, (x;) is also marked and Hi,(x;) for
1<i<n has all of its atoms marked. As in the case of SOPI, a planar circuit with one

B-node labeled POSI is generated.

The sequential versions of the combining forms are also dealt with differently
by @. In each case w will generate one copy of o(f :x) and in the case of Right
Insert and Seq the output will be fed back into some of the inputs through a
Register. Computing ® in this case is more involved, since a pin should be marked
only if each application of the function does not require it. We introduce the notion
of products of markings to handle this case. If we have two markings M, M, of a
weak planar circuit A, then we define MM’ to be the marking in which
M-M’(p) = M (p)M’(p); a pin is marked if and only if it is marked in both M and M".
In the same manner, if we have structurally equivalent objects xy,...,x, and
markings of each, W;,...Mn,, we define the product of these markings to be the
marking in which an atom is marked if and only if all of the corresponding atoms of
in the markings of {;, . . . , i, are marked. This gives us the following rather strange

identity.
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M SM-M,if and only if M SM, and M S M,

We can then show the following,

Lemma 3.13 If M and M’ are maximal markings of a weak planar circuit, A, then
MM’ is also a maximal marking.
Proof: If there is a markable pin in M-M’ then it must be unmarked in either M or
M’: assume it is unmarked in M without loss of generality. If it is markable in MM’
because it is the only unmarked pin in its partition then all other pins in this partition
are marked in M-M’ and hence they must be marked in M as well. If it is markable
because it belongs to a B-node whose output markings indicate that it can be marked,
then these output pins of this B-node must also be marked in M. Thus if a pin is
markable in M-M’ it must be markable in either M or M". It follows that if both M
and M’ are maximal markings, have no markable pins, then MM’ must also be
maximal.

a
If u(y) is a marking of the output pins of A, then let M%, denote the marking in
which the output pins of A corresponding to the atoms marked in . are marked. Let

M, denote the maximal marking derived from M 0“. We then have the following.

Lemma 3.14 If g and p’ are markings of the output pins of a weak planar circuit, 4,
then M "My =M.

Proof: Clearly M Ou 2 Mou.,_g. Hence M|, > M- since the set of markable pins in
M OM‘: is a subset of the markable pins of M Ou and we can maintain this property in
the derivations of their respective maximal markings by marking the only pins which
are markable in the the former. Hence M|, 2M ., and the same is true for p’,

M, 2M .. We then have M-M ;- 2 M, by the identity.
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To show M "M SM . we consider the derivation of M,,..,. We show that
a pin p of A which becomes markable in this derivation must be marked in M, "M ..
We rely on the observation in the preceding lemma that if M"<M then any markable
pin of M’ is either markable or marked in M. If M is maximal then the maximal
marking derived from M’ cannot be greater than M, since each markable pin must
already be marked in M and hence marking it gives a new marking which is no
greater than M. We have MO, <M, and MO, <sM°,. This gives
M_Owr SMy and Mow' S M which implies that MOW; SM M. Using the
observation, we then have M,,» SM M.

a

Time Apply-to-All  &7f
The assumption made here is that the input x = <xy,...,X,> armives as a time
sequence on a set of wires. The x;’s are structuraily equivalent. In this case, we
implement f ;x; only once since &Tf will be accomplished sequentially in time
rather than in parailel in space. We generate o(f ;x;) for some i and then we must
determine a marking sufficient for each f .x;. By the previous lemma we know that
| n
IT Musay = M u =
Thus we define w(& Tf;x, p(x)) 1o be ax(f Xl (f X)) where
. n
MG x) =Eu(f x;)-
The choice of x; is arbitrary and docs not matter since the x;’s are assumed to be

structurally equivalent.
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Time Right Insert  !7f

The assumption in this case is that x = <xi, ..., X, for n>2, the x;’s for 1<i <n are
structurally equivalent and x, is structurally equivalent to each y; = !f i<x;, ..., x,>
which is the structure of the intermediate results as well as the final output. The
structure generated in this case is essentially that of o(f ;<x,,y2>. See Figure 3.12.
We connect the O-pins of 6(f ;<x;,y2> to an R-node which duplicates each output.
One copy of the outputs is connected to new O-pins and the other copy is connect
the inputs of a B-node which corresponds to a register. The output of this register is
connected to the I-pins of o(f;<x;,y2> which correspond to y;. [-pins
corresponding to x, are also connected to this register; they provide the register with
its initial value. To calculate a(!f ;x, L(!f :x)) we must first determine the maximal
markings (6(f ;<x; Yi+1>, 1)) By 1) = u(!f ix) and u(y;) for 1<i<n corresponds to
the markings of the inputs in the maximal marking My, ). Let In (M) denote the

markings of these inputs for a marking M. The desired marking would then be

il

n
_l'I1 My = M[Tuo)-
i=

This would require obtaining each u(y;). A more efficient method of computing this
marking is to take the product of each In (M) with | and repeat n-1 times or until
the markings converge, no new inputs become unmarked. We let u; =p(!f ) and

define Wiy =In(M, )p;. We need to show that My, =M[] ). This is

iml

k
accomplished by showing that , = [T k(y;). This is true by definition for k=1. If

i=1

we assume it is true for k then we can show it to be true for k+1 as follows. Since
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k
He = H ""’(yl')'

i=l

Hier =In My, Uy,

N k
=In(Mque) - TTHOD,
il i=1

k k
=In([TMup) - TTHOD,
i=l

i=1

k k
=TTin(Mpy,) - TTROD:
i=1

i=1

k+1 k
= [T v« [Tu0is
i=2 i=l
k+1
= £Il HQi)
If for k <n, Pg = Hi4 then W = W,. Although there must be k for which this occurs
since WgSHe-;, it may not occur for k<n. This will occur when the length of the
object to which the sequential version of !f is applied, is not sufficient to completely
exercise all of the structure of f. We choose to define the structure of !f in such a
manner that will accommodate any number of iterations rather than the number
specified by the actual input object. The reasons for this are twofold. First we may
wish to remove the SOPI preceding the Right Insert in the specification in order to
operate on a stream of objects. Defining ® in this way allows us to do this. Secondly,
in extracting the planar circuit, différent sequential portions may require a different

size of input in order to exercise them. By defining, @ in this manner, we are not

required to use the maximum of the sizes. Thus we define cn(!Tf;.x, u(lf x)) to be
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o(f ;X 1; M) Where k is such that jtg = ey .

TimeSeq  seq’(f)

The assumption in this case is that x = <Xj,...,Xa>, the x;’s for 1<Si<n are
structurally equivalent, and x, is structurally equivalent to cach y; where
LYirZis e ZIn-1 > =56 (f )Xy o o X for 1<i<n. In addition, the z's are
assumned to be structurally equivalent. The structure generated in this case is that of
o(f ;<x;,¥i+1 >. The conswruction is similar to that of the sequential version of the
Right Insert except that the R-node connected to the outputs duplicates only the
outputs corresponding to y; and connects only these to the register. See Figure 3.13.
To compute @((seq (f }ix, L((seq (f }:x)) we must determine the maximal markings of
cach application of f, (o(f 1<X; Yi o1 >sH(<¥i,2;>)). The marking of the outputs of
O(seq (£ )x) iS J(KY 1,2 100 Znot >) = W((seq (f)ix) and p(y;e1) for 1Si<n is the
marking of the inputs corresponding to y;.t in the maximal marking M y(<y,.2>)- Let
In(M) denote the markings of the inputs for a marking M. The desired marking
would then be

n-1

I-{ MH»(<)':-1i>) = MI:I p<yinzi>)

i= i)

As in the case of the Right Insert we compute this marking more efficiently by
taking the product of each In(M,) with p and repeating n—1 times or until the
markings converge. We let uj =(y;) and define Wiy =InM y, uzy> Hi- We
need to show that

n=-1

Ry
M"-L--l-nzn-l:’ = MTT <p@ihmlzd>e

i=l i=l

k
This is accomplished by showing that pe =TT u(y;). This is'true by definition for

i=1
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k=1. If we assume it is true for k£ then we can show it to be true for k+1 as follows.

k
Since He = H ’J'(yi)v

i=1

Heer =In (M oy, u0)> Y He,

=In (M-:nu(y,).u(z.)zv) l'IIJ-O'. ),

inl

k
- =In(M1<ponuz>)  TIROD
il i=l

‘lﬂ(HM <y )z Hl-l(.)’.)-

i=l
k k
= TTIn M cuiyyaay>) * TTHOWD,
i=1 i=]
k=1

=In (M <uy)uieo>) Hfﬂ M <uiypptz>) HPO’-

i=1

= U(Yka1) - I'[In (M cpiy)iz)>) HP-O%

i=l

k+l
= Hln M <y, l.l-(2|)>) Hu@l

i=l

k+1
< T1row,
i=1

To show the other inequality we use the fact that if p and W’ are markings of the

outputs of a weak planar circuit such that u<p’, then M, SM, - and so

k
In(M,) SIn(M). Thus since R(ze) 2 [T w(z:) we have,

i=]
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\ k
Mes1 =InM < Tugome>) - TTROD,
i=l

iml

iul ink

] k k
2n (M<np_(,‘.)_r[p_(g‘)>) - [TROD,
i=l
N k
2 In(anp.(y‘.).'_L(zl.)>) ) Hu@:)-
inl i=1
k k
2 In(TIM cuncy>) TG0,
i=1 i=]

k k
2 [n M cpyonzy>) - TIRON,
i=1

i=1

k+1 k

2 [TROW) - [IHOD,
i=2 i=1
k+1

2 [THOD).

i=l
* - k
This gives the desired result, tgy = [J1O:). Unlike the case of the Right Insert,
i=l
Wi = Py for k <n does not imply that J, = W, for i >0. This is because there may

be new unmarked atom’s in the z;’s for i >k which have not been used yet. We
n-1

extend the definition of p; for k=2n by defining Q.= [Ju(z), and
i=1

Biet =M oy, 5) Wi for k2n—1. If Py = Uy for m2n then clearly My = Hmsi

for i20. However we can hope to obtain a convergence before n by using 1, in the

definiion of p instead of M(z¢). As before we let 1._11 =y, and we define

:'.54.]_ =In(M <, p,>). Then we can show that ﬁ,' Su; and if By = fms1 for m>n then

E.- 2 Wy for all i. Clearly L_lk < pi for k=1, We can show that it holds for k+1 by
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assuming it is true for k.

Ek-l;l =In (M<E..u.,>) ) Ek
Sin (M<u..p.,>) *Hi
SInM <y iz ) Bk

= Hi+1

The proof of I; 2 Ry is also realized by induction. Clearly it is true for k=1 and if

we assume it is true for %,

Ek+l =In(M <;,.p.,>) ' ak
2InM ey p,>) Hm

=Hm+t =Hm
If ;I;, = E,,.,.; then clearly }._I.k = ﬁh.,- for any { >0. Then we have
M SHmSHy 3 i
which forces
Hm = ;k-
We define w(seq(f)ix, u(seq (f)x)) to be the planar circuit obtained from the

marking M, .

This completes the mapping from FP to planar circuits. Examples will be

given in Chapter 5.

152



3.7 Implementation of @

In the implementation of @, we retain the structural information provided by
the FP combining forms. We instantiate the planar circuits corresponding to the FP
primitives and use the combining forms to put together these planar circuits. The
planar circuit of an FP expression is specified recursively in terms of the combining
forms. We preserve this representation rather than flattening it to a planar circuit to
retain the structural information provided by the combining forms. This information
will be exploited in mapping the planar circuit to a layout and improving its wiring

complexity.

Unfortunately the computation of ¢ proceeds in the direction of input to
output since the FP objects generated by sub-functions of a Compose, Right Insert
or Seq must be determined in order to evaluate the next sub-function, while the
computation of markings is performed in the reverse direction. This requires us to
retain the intermediate objects in order to perform the marking. We implement ® by
first determining the input and output objects of the sub-functions and then their
markings. This information is stored as a tree which comresponds to the

decomposition of the FP expression in terms of its combining forms.

The decomposition of ® and & in terms of the combining forms suggests a
tree structure in which we identify each combining form with a node whose children
are the sub-functions of the combining form. We construct a tree which corresponds
to the computation graph of the FP expression. We define t(f ix, B(f x)) to be a tree
in which we store in the root, x the input, f ix the output, B(f :x) the marking of the
output and p(x), the marking of the input implied by p(f x). Figure 3.15 depicts a

typical node. The sub-trees and the label attached to the root are determined as
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/ label Fux
\Q chitdren | U

4 \
’ see A

Figure 3.15 A node in the computation tree.

follows.

If £ is an FP primitive then t©(f ;x, R(f x)) consists of a single node with no sub-trees

which is labeled f.

If f=£.@ - - - @f, then t(f ix, u(f :x)) consists of a node labeled ‘@’ with the trees
(fii¥i-1,H)) for 1<i<n, where y; =f,@ - @f1x, in left to right order as its
children.

If f=(f1,...,[a) then T(f ix, u(f x)) consists of a node labeled ‘{,]’ with the trees
T(f;:x, W(f;x)) for 1<i <n, as its children in left to right order.

If f = %Object then we treat f as a computational primitive. T(f X, W(f x)) consists

of a single node with no sub-trees which is labeled %Ob ject.

U&f x, M&Sf X)) for x =<xq,...,X,>, consists of a node labeled ‘&’ with the
trees ©(f ix;, W(f ix;)) for 1<i<n, as its children in left to right order.

2(1f x, u(!f X)) for x = <xy,...,X,> and n>2, consists of a node labeled " with

the trees T(f;<x;,y;>,K(f :<x;,y;>)) as children in left to right order where
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¥ =1 1<Xis1s - - s Xa> foOr 1Si <n. If n=2 then t(!f ix, u(If x)) = (f x, k(f x))

1(seq (f )ix, u(seq (f)x)) for x = <xy,...,x,> for n>2 consists of a node labeled
‘seq’ with the trees t(f ;<x;,yi> K(f:<x;,y;>)) as children in left to right order
where y; is the first object in the sequence seq (f ):<Xi41,. .. .Xa> for 1Si<n. If n=2

then t(seq (f )ix, (seq (f ):x)) = ©(f x, u(f x))

@ is a recursive procedure implemented on the tree. The B and R-nodes of
the planar circuit are the leaves of the computation graph corresponding to
computational and routing primitives respectively. In addition an R-node is
generated for each Construct. Connections between these nodes are specified by
the combining forms. An FP expression specifies a particular planar circuit. To
obtain a homeomorphic maximal-indivisible planar circuit we need to merge
adjacent R-nodes and separate them into indivisible R-nodes. Some of these
operations can in fact be performed directly on the computation tree of an FP
expression using identities to transform the FP expression, grouping together routing
primitives. These will be discussed in the next section. As an example the
computation tree of the example given in Section 3.1 is provided in Figure 3.16. The

nodes are labeled with only their respective combining form or primitive function.

The specification can consist of a single FP function consisting only of the FP
primitives or several functions defined in terms of one another. In this manner, the
FP specification can impose a hierarchy on the design corresponding to the functions
of the specification. We may wish to preserve the boundaries between these
functions. In the implementation of T when a new function, f ;x, is encountered, we
have two choices. We either leave a node labeled f and then a special link to the tree

defined by fix or we use 7(f;x) directly. The former case prevents us from
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Figure 3.16 The computation tree of Nand @ &Nand @ [{1,2],[2,3]] @ [1,Nand,2]

performing the rearrangements described in the next section across the boundaries of
this function, however since it preserves the boundary of this function we can choose
to represent this function as a component, a B-node. The choice of which method is
appropriate for each function defined in the specification depends on the intent of the
designer. The ability to indicate which method to employ for each of the FP
functions defined in the specification is provided. The default is the latter method in

which the boundary of the defined function is not retained.

3.8 Planar Topology of FP Expressions

In the previous sections we have mapped FP expressions to planar circuits. In
Chapter 4, we will show how to obtain a layout from these planar circuits. If we
wish to consider an FP expression as specifying the planar topology of a layout
rather than a particular planar circuit, we must consider the class of homeomorphic

planar circuits to which the planar circuit belongs. The layout procedure may be

156



sensitive to the particular planar éircuit chosen from a class of homeomorphic planar
circuits. As discussed in Section 2.8, if the layout procedure satisfies certain
properties, then it is sufficient to consider a maximal-indivisible planar circuit. In
this section we show how the Computation Tree of an FP expression can be
rearranged to achieve much of the merging of adjacent R-nodes. In general, we will
not be able to rearrange it so that only maximal R-nodes are generated, but enough

so that the layout procedure can easily consider maximal-indivisible R-nodes.

Each R and B-node of a planar circuit corresponds to an FP primitive with the
exception of the R-node, up generated for each instance of the combining form,
Construct. Connections, wires, between these nodes are realized by the Compbse,
Construct, Right Insert and Seq combining forms. We will rearrange the
computation tree of an FP expression so that the sub-trees of each node will either
consist of only R-nodes or will correspond to a planar circuit in which none of the /
or O pins are connected to R-nodes: the inputs and outputs are connected to
components or run through. If there are no B-nodes within a tree, then the entire tree
can be implemented as one R-node. We achieve the merging of adjacent R-nodes by
grouping together adjacent R-nodes within a sub-tree and then implementing the
sub-tree as a single R-node. Clean divides are considered during the layout of these
R-nodes. The rearrangements are based on FP identities which will be given. We
change the definition of w so that it does not generate an R-node for Id,; it simply

generates wires connecting inputs to outputs.

We first extract the R-node up, generated for each Construct combining
form. This is achieved by inroducing a new combining form called Projection. It is

denoted by {h1,...,h,} and is equivalent to [1, @1, . .. ,ha@n). It differs from the
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Construct combining form in that instead of applying each 4; to the input object, &;
is applied only to x; where x is assumed to be of the form <x,,...,x,>. If x is not
of this form then {Ay,...,h.)x is undefined (1). We then have the following

identity for FP functions,

[h1@81. - ha@8a) = (ks h) @81, - - 1 2a] B <AI@IED), . - -, hn(ga (D).

o and w of {h,, ..., h,} are constructed from ¢ and @ of the FP expressions A;;x; in
the same manner as ¢ and ® of &4 are constructed from the A;x;’s. {h(,...,h )} is
represented in the computation tree as a node labeled ‘{,})’ with the sub-irees

corresponding to A;;x;’s in left to right order as its children.

We accomplish the merging of R-nodes by rearmanging the tree of an FP
expression to collect adjacent routing nodes within a sub-tree. If a sub-tree does not
contain any B-nodes then we can enclose it by itself within a simply connected
region of the plane with only its input and output wires emerging from this region.
Since there are no B-nodes within this region we can consider this region to form an
R-node. This has the same effect as if we had combined all of the sub-tree’s R-nodes

using merges and glues.

If [g1,...,8a] does not contain any B-nodes then we can irﬁplemcnt it as
one R-node as described. By replacing f by f@/d, we can write [f1,....f,] as
{f1,....f4@I[Id,...,Id]. The sub-tree corresponding to {/d, . ..,[d] can then be

implemented as a single R-node which is the same as the R-node up generated for

[flv “ e vfn]-

Once we isolate the routing node up generated for the Construct by

rewriting the form as above, then adjacent R-nodes in the planar circuit are a result
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of only the Compose, Right Insert and Seq combining forms. The operations

which are performed on the tree correspond to the following FP identities.

HL1@(2@f3) = (f1@f2)@f3 (3.15)

The associativity of the Compose combining form allows us to group routing
functions within one sub-tree. If we have the function, f; @f2@f3@f4 where f2,f3
are routing functions and f,.fs are not, then we will rewrite this function as
f1@(f2@f1)@f4- This will generate the tree on the right in Figure 3.17 instead of
the tree on the left. We can then consider the merging the R-nodes corresponding to

f2 and f3 by implementing the sub-tree containing both of them as one R-node.

O O
FOOE @& (o) &

) @)

Figure 3.17 Rearranging the tree to group R-nodes together.

(R @81 - ha@8n] 3 (A1, A J@(21. - - - . 8nl. (3.16)

As mentioned previously this identity will permit us to separate out the R-node up of

a Construct. In practice the g;’s will consist only of routing functions.

(R @g1. .- hn@8a} = (h1. ... B @(81, . .- 180} (3.17

Identity 3.17 allows us to pull routing functions out of the end of a ‘{,}’. Each of
these identities rearrangcs.thc computation tree of an FP expression. Note that these
rearrangements have no effect on the planar circuit generated by @ since the

connectivity and the embedding of the planar circuit is preserved. However if we
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modify @ so that it generates an R-node for each tree which does not contain any B-
nodes, then these rearrangements have effects equivalent to applying a sequence of
operations to the planar circuit derived from the original tree. Hence these
operations do not alter the planar topology but do bring us closer to a maximal-

indivisible representative of this planar topology.

Using the associativity of the Compose we can flatten ‘@’ nodes.
Definition 3.18
A node of a computation tree is flattened if it is not a ‘@’ or does not have
any children which are ‘@’s. A computation tree is flartened if all of its
nodes are.
We can flatten an ‘@’ node of a computation tree by first flattening its children. If it
has an ‘@’ node as a child, then we simply replace this child by its list of children in
“the list of children of the parent ‘@’ node. This operation is depicted in Figure 3.18.

Figure 3.18 Flattening an ‘@’ node.

Applying this procedure to the ‘@' nodes from the leaves up will flatten a

computation tree.

160



Definition 3.19

A computation tree is a routing tree if all of its leaves are R-nodes.
We first restrict ourselves to case in which there are no Right Inserts and Seq -
combining forms and incorporate them afterwards. In this case we define a normal
form for the computation tree of an FP expression as follows. In the notation we
associate a computation tree with its FP expression.

Definition 320
1. Every computational FP primitive is in normal form.

2. f1@ *** @fuix is in normal form if each f; is cither 2 flattened
routing tree or it is in normal form and not an ‘@’ node. In addidon,
neither f nor f, is a routing tree and for any 1<i <n cither f; or fisr 18

not a routing tree.

3. {fis - fu}i<X1s - - . ,Xo> is in normal form if each f;;x; is Id or is in
normal form.

4, &f :<X1, . .. ,Xp> is in normal form if each f ix; is Id or is in normal
form.

A computation tree without Right Inserts and Seqs can be put into normal form by
the following recursive procedure. We define a procedure, I1 which by applying the
identities transforms a computation tree into a computation tree corresponding to
bRaN @f® where b® and fR are flattened routing trees and fY is either Id oris in
normal form. If fy is /d then we require that f% be /d as well. We will define IT in
terms of the leaves of the computation tree and then the combining forms ‘@’, ‘L),

‘(,}* and ‘&." II does not alter the leaves of the computation tree since each node is
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either a routing primitive which is a flattened routing tree or a computational
primitive which is already in normal form by definition. We simply set the other

functions to /d. It remains only to define I1 for each of the combining forms.

f1@ - @fa

We apply I to each of the sub-trees, f;, to obtain. 5% ;@j’v ,-@f” ;- We create a new
list of children for this ‘@’ node by replacing each f; by the list of children of I1(f;).
We remove any /d’s from this list. If any of the fN ;'s are ‘@’ nodes we replace them
by their list of children. We now have a list of children for the ‘@’ node which
meets the requirement that each of its children is either a flattened routing tree oris a
tree in normal form which is not an ‘@’ node. We still might have adjacent routing
trees. To fix this we take cach consecutive sequence routing tees, fj, ..., fj. and
replace these children by the flattening of f;@ - - - @fj+x- We now have a list of
children f'1,...,f’, in which there are no adjacent routing trees. If n=1 then f*; is
either a flattened routing tree or it is in normal form and not an ‘@’ node. We add
Id’s in order to provide the form required by I1. If n>1 there is at least one child
which is not a routing tree. We let b% = %, if f’; is a routing tree and bR =14
otherwise. We let fR =f’, if f’, is a routing tree and fR = Id otherwise. Note that
this covers the case n=2. If n=2 then we let ¥ be f’; or f*, which ever is not the
routing tree. Finally if n>2, we let /¥ = f°,@, ..., @f"; where f’; is the first child
which is not a routing tree and f”; is the last child which is not a routing tree. In any

case we have

reffert =7\@ - @f»

{Fro-- 2 tnl
We apply IT to each f; to obtain 5%,@7";@fR;. Using the identity 3.17 we can
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replace this tree by

VLTV V- V7 PO LA T Y LT

Since each b®; is a flattened routing tree or /4, bR = {bRI. ...,bR.} is a flattened
routing ree. Similarly for fR = {2, ....fRJ. Since each £~ is in normal form or
is Id, f¥=(hy,....hs} is in normal form. Then bR@fY@f® is the required

function.

UI! e ’fu]
Again we apply IT to each f; to obtain bR.@fY @fR;. Using the identities 3.16 and

3.17 we can replace this node by

(bR, rg@if, .. A delh, .. Rl

Since each b®; is a flattened routing tree or /d, bR = {bRI, ....bR.} is a flanened
routing tree. Similarly forfR ={ff.... ,fR,._}. Since each fN; is in normal form or
is Id, f¥={(hy,... hy} is in normal form. Then b*@fY@f® is the required

function.
&f <X ... Xg>
We deal with & by replacing it using the following identity.
&f <Xy W Xg> S {f1,. WS XD
in which f; = ffor 1<i <n. We can then deal with it as we would with *{,}".
Hence we can apply IT to any computation tree without Right Insert and Seq to
transform it into normal form. We perform one last operation on the tree in order to

maximize the parallelism. If there is an ‘@’ node which has two adjacent children

which are *(,}’s, we combine them using
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(hi,.... 0} @181, ....8:) 3 {h1@2), ... . h,@8A).

Clearly if h; is in normal form and g; is in normal form then A;@g; can be put in
normal form. Then if we change ® so that it generates one R-node for a routing tree,
instead of cvaluadng the FP expression corresponding to the routing tree, two R-
nodes will be adjacent if and only if they correspond to nodes f and f* which occur
as f@{g1,--..8.J@f where one of the g;’s is /d. Thus each maximal R-node
corresponds either to some routing sub-tree in the computation tree or to a set of
routing sub-trees under a ‘@° which are separated by nested *{,}s, one of which has
an /d as a sub-tree. Only the latter, can have self-loops and these must correspond to

an additional /d within the nested ‘{,}'s.

Unfortunately this property does not extend readily to trees containing Right
Inserts and Seqs. We could replace each Right Insert and Seq by appropriate
structure consisting of ‘@’s and ‘{,)’s to obtain a normal form for the tree which
then corresponds to an equivalent Maximal-Indivisible planar circuit. Unfortunately,
these transformations would lose the stuctural information provided by the presence
of these forms. If they have only routing nodes in their sub-trees then they can be
dealt with as one R-node. Only the case in which they have B-nodes in their sub-
rees needs to be considered. We define a less strict form for ‘@’ nodes in which the
first function applied is permitted to be a routing tree.

Definition 321
f ix is in Pseudo-normal form if it is in normal form or itis /1@ ' - - @f, for
n22 which satisfies all of the requirements of normal form except that f, is a

routing wee.

We relaxed the requirement of & that all of its sub-trees correspond to the same
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function f by replacing it by ‘(,)’. We will also relax this requirement for the Right
Insert and Seq. Note that @ and @ do not require that the sub-functions be the same.
Definition 322

A wee with ‘I as its root is in normal form if each

1<%, fis1:<Xis1 s + - - 1Xa> IS in pseudo-normal form.

To place an ‘!" tree in normal form we start with the rightmost child,
fre1:<Xn—1,%a>. We apply IT to it to obtain bR@fN @fF or just bR, We then move
bR 1o the sub-tree to the left by replacing f of the child just to the left by
f@[1,6%@?2) and leaving behind f¥ @fF or Id. We thus proceed through the list of
children from right to left until we arrive at the last child. We apply IT to it as well
but in this case we move the b® function outside the Right Insert. We obtain then

bR @f where fis a routing tree with an ! as the root in in normal form.

The Seq is somewhat more complicated to deal with since it not only might
need an R-node to merge inputs, but one to separate its outputs as well. We proceed
in somewhat the same manner as for the Right Insert except that we leave behind a
particular routing node whose purpose is to separate the outputs of each child into y;
and z;, those that are fed to the child on the left and those that are outputs of the Seq
respectively.

Definition 3.23
A fork routing tree is a routing tree whose output object is <yj,y2> such that

both p(y) and p(y,) are subsequences of p(x) where x is the input object.

Definition 324
A tree whose root is a Seq is in normal form if each f;<x;,i> is in normal

form or its is in the form fy@f1@ * - @f,@fr Where /1@ *~ @f»@/
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where is in pseudo-normal form and fy is a fork routing tree.

We place a ‘seq’ in normal form by traversing its list of children from right to left
We apply IT to a child f ;<x;,y;> to obtain b%,@f",@fR; or just bA,. In either case
we replace 5%, by [b1,@1,62:@2]@bF; where b¥; is a fork routing tree. We then
move b!; to the child to the left if there is one and out of the ‘seq’ otherwise. b2, is
moved out of the ‘seq’. We thus leave behind either b7; or 57;:@fY;@fR;. We

obtain
(bl,b2,,b%,, ... ,b%,_ })@seq

where the ‘seq’ is in normal form. Note that its children may no longer correspond to

the same function.

The sequential versions of Apply-to-All, Right Insert and Seq will resuit in
planar circuits which are constructed from the planar circuit of the function they are
applied to. We define the normal form of these combining forms in terms of the
normal form of this function. Unlike the combinational versions of these forms, the
planar circuits obtained by applying ¢ to their sub-functions must be the same.
Hence the normal forms of their sub-trees will also be the same. For the sequential

version of Apply-to-All we require the sub-trees to be in normal form.

Definition 325

&Tf :x is in normal form if each £ ;x; is in normal form.

Since the normal forms of the children of an ‘&7’ will be the same we only need to
apply I to one sub-tree. We apply ITto fix; to obtain reff@ fR . We then replace
&Trby &ToR@& T @& TFR. We remove any & T1d's.
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For the sequential versions of Right Insert and Seq, we apply T1 only to the leftmost
child. We do not change the other sub-trees since @ will only use the leftmost sub-

tree in either case.

The R-nodes in the planar cir_cuit generated from a tree in normal form are
not necessarily maximal. The layout procedure might need to decompose maximal
R-nodes in order to implement them anyway. A maximal-indivisible planar circuit
may in fact have only one R-node. Making R-nodes maximal would result in the loss
of their initial decomposition. On the other hand implementing adjacent R-nodes
instead of merging them may be inefficient. This can occur if the order of the wires
connecting the two R-nodes results in ynnecessary crossings or if branchings can be
delayed resulting in fewer wires. However we can detect these inefficiencies and
alter the R-nodes involved. This will be discussed when we consider the
optimization of the planar topology. Hence we compromise by performing the
merges described in this section which do not destroy the structure implied by the

combining forms.
Summary

In this chapter, we have defined the mapping from FP expressions to planar
circuits. In order to define this mapping we introduced weak planar circuits which
are planar circuits with some of the connectivity conditions relaxed. In order to
obtain a planar circuit we ‘pruned’ these weak planar circuits. We then defined the
mapping from FP expressions to planar circuits by first obtaining a weak planar
circuit and then pruning it to obtain a planar circuit. We exploited the fact that the
weak planar circuits defined by FP expressions are directable to efficiently compute

the planar circuit, avoiding the generation of structures which will be pruned. We
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extended this mapping to sequential circuits. The implementation of this mapping
generates a computation tree which preserves the hierarchical representation of the
FP expression in terms of its combining form. The computation tree was rearranged
by transformations corresponding to FP identities in an attempt to obtain a planar

circuit with maximal R-nodes.
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CHAPTER 4

Mapping Planar Topology to Layouts

To obtain a layout or a visual representation of a planar circuit, it must be
mapped to geometry; coordinates must be assigned to its elements. Although the
space of layouts to be considered in this mapping has been greatly reduced by
restricting the layouts to only those which the planar circuit represents, the problem
is still not an easy one. In fact, we will show that minimizing the area is NP-hard in
Section 4.2. However, the planar circuits which we are mapping to layouts are not
arbitrary, they originate from FP expressions and their computation wees provide
them with a hierarchical representation in terms of combining forms. We will exploit
this structure in order to obtain a layout efficiently. Hence the quality of the layout
will depend on how well this hierarchical representation captures the layout. We will
obtain ‘abstract layouts’ for the planar circuits and then transform these into actual
layouts. In Section 4.1 we discuss the details of layout and define an ‘abstract layout’
to be a layout of a circuit on a grid with wires of zero width, and in which all
coordinates and dimensions are in grid units. This format will permit graphical
feedback of the geometric consequences of decisions early in the synthesis of the
design. In Section 4.3, we will first map the ‘boxes and wires’ of the planar circuit
to horizontal cross-sections. In Section 4.4 these cross-sections are stacked vertically
and horizontal compaction is performed to resolve constraints between the
boundaries of these cross-sections to obtain the ‘abstract layout.” Transforming these

‘abstract layouts’ into actual layouts is discussed in Section 4.5. We first discuss the
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details of layout.

4.1 Layouts of Planar Circuits

Suppose we are given a planar circuit and wish to find a layout which is
covered by the planar circuit. In Section 2.3 we defined a layout as follows. The
layout of a circuit is an assignment of coordinates in the plane to the modules and an

implementation of the nets as trees such that the following hold.

1. Modules do not touch or overlap.
2. I/O pins do not touch nor overlap with each other and the modules.
3. Each net coincides with the modules and the /O pins in exactly the set of

points which correspond to the pins in its net-list.

4. Each connected set of points onto which more than one net has been mapped
is contractible to a point in the space obtained by removing the interiors of

the modules from the plane,

This description is an abstract one designed to capture ail layouts at a
topological level. In practice, there are limitations on the geometry of layouts.
Layouts are constructed in terms of /ambda units which represent the smallest unit of
resolution the fabrication process can reasonably assure. They primarily consist only
of rectilinear objects since this greatly reduces the complexity of the design tools
needed to handle and operate on the layout without significantly impacting the
design. We have placed no limit on the number of nets which can lie on top of each

other. However there are actually only a small number of layers on which to
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implement the circuit and there are restrictions on which layers can overlap. To
complicate matters even further, the layers may have different costs associated with
them due to different electrical propertics and different resolutions in fabricaton.
Contacts are used to interconnect layers and these also have a cost associated with
them since a contact between two layers precludes the use of any of the layers in
between in the vicinity of the contact. All of these factors are dependent on the
fabrication technology. A planar circuit is independent of such considerations, while
a layout is not. In mapping a planar circuit to a layout the rules and costs of the

fabrication technology must be considered.

Many decisions about the layout can not be readily made without geometric
information. Hence we provide both an abstract representation of the layout and the
means to realize this abstract representation as a layout. This permits the geometry
available at the current stage in the design process to be represented without making
all of the decisions about the layout. The abstract representation which will be
referred to as the abstract layout or sketch, is also independent of technology. In the
abstract representation, we impose a grid on the plane and require all coordinates of
the specification of a layout to fall on the grid points. All dimensions are in terms of
grid units. The boundaries of components and the path segments of wires are
required to fall on the grid lines. /O-pins occupy onec grid point each. One
coordinate is sufficient to specify the position of /O-pins, while two coordinates are

necessary for the B-nodes since the orientation must also be specified.

To complete the layout we must implement the nets so that the resulting
layout is covered by the planar circuit. In the abstract layout since we have no notion

of layers we limit the crossovers by allowing at most two wires to intersect at 2 grid
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Figure 4.1 The mapping of a layout on the grid

point and requiring this intersection to be between perpendicular wires. To specify
implementation of the each net, we specify the location of the branch points of the
nets and paths along the grid lines to interconnect the branch points and the pins

belonging to the net. In order to realize the sketch as a layout, we will need to
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specify the layers on which the path segments are situated and any contacts that are
necessary to connect path segments to other path segments and/or pins which are on
other layers. The spacing between clements can then be adjusted. The size of the
layout is defined to be the area of the smallest rectangle enclosing it. All pins,
components and wires must be contained in the rectangle. /O-pins may sit on the

boundary of this rectangle although this is not required.

Figure 4.1 shows a mapping of the layout of Figure 2.3 in Chapter 2. Notice
that the modules are now all rectangles and the wires are either horizontal or

vertical.

4.2 The Complexity of Mapping Planar Circuits to Layouts

In this section we show that attempting to find a layout of minimal size for a
planar circuit, even at the abstract level and without R-nodes, is probably intractable
(unless P=NP). The problem of finding an optimal layout for a planar circuit can be

stated as:

Given a planar circuit A =(P,/O,B,R,W) and an integer X is there an abstract

layout of size K or less which is covered by the planar circuit ?

We assume the description of the abstract layout is given by two coordinates for
each B-nodes and the coordinates of the path segments and branch points which
implement the nets. There is no bound on the size of the description of the abstract
layout in this format since the paths can be arbitrarily complicated, venturing
arbitrarily far from the components. However, any layout of size X or less will have

a description which is bounded by K-1P1, since K is the maximum number of grid
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points which can be occupied and the maximum number of objects which can be
mapped to the same coordinate is bounded by the maximum number of pins in an
R-node or 2 if there are no R-nodes. To specify the coordinates of the /O and B-
nodes and the branch points of the nets requires at most O (logK:|P1) space.
However the size of the description can still be exponential with respect to the size
of the input, since we use O (logK) space to represent X, and the abstract layout

could have a path which consists of O (X)) line segments.

Lemma 4.1 The problem of deciding whether there is a layout of size X of a planar

circuit, A=(P,10,B,3,W), is NP-hard.
Proof: We reduce the NP-complete problem 3-Partition [Gare79] to it.

3-Partition
Instance: (4,8,5) where A is a set of 3m clements , BeZ*, and s is a

mapping, s:A—Z"* which associates a size with each element of A such that

B/d4<s(a)<B/2forany aeA and Y s(a)=mB.

aeA

Question: Is there a partition of A into m disjoint subsets, A,42,....4m,

such that forany 1si<m, 3 s(@)=8?
ac A
Construction: We will assume without loss of generality that m is odd. Otherwise
we can add three more elements of size B -2 -2 [B/4), |B/4]+ 1 and |B/4] +1
to make m odd without affecting the existence of a solution either way. Given an
instance of 3-Partition, (4,B,5) we construct the following planar circuit

A=(P,I0,B,J,W) where,
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3m

P= {uo,ul,ug.u3,u4.u5,u5,u1,ug.ug,i,o} JU (t,di,Pi,qi}
i=l1

10 = {i,0)
and
B = {b1,b2,b3.b4] Ufbs, 1a;€ A}

where by, by, b3 and b are pictured in Figure 4.2. and b, is pictured in Figure 4.3. |

Uo
A
_ x+24y -
3y -1 by
’ .
Uy Iy 12 .ee E3m-1 f3m Uz
U7 di dz°°"° dim-1 d3m ug
_ x+24y
3y-1 b,
ug
Us U4
12y o B 12y
-2 b3 2y-2 ba
us Ug

Figure 4.2 The blocks b1, b2, b3 and by

W consists of four wires joining b, b4, b3 and b4 in a ring, two wires

connecting b, and b, to the two JO pins, and 6m wires joining each b,, to by and

ba,
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Pi

1 s(a)
by,
4m?B
Y
qi
Figure 4.3 The block b,,

W= [(ul,u3),(u2,u4).(us,u7).(u6.ug)} U {(uﬂyi)’(osuQ)}

U ((p) 1 18iS3m )\ ((di,qid | 1Si<3m).

Figure 4.4 shows the embedding of this planar circuit.

P

b,
[______] 1 “se lﬂ]

b! b¢| bq bl bag.... bﬁg- bt
—— T ————
ba
Figure 4.4

To finish the construction we must provide the exact dimensions of ail of the B-
nodes. The dimensions of by, b4, b3 and by were given in terms of x and y, so it

remains to specify xand y. We let

_ 4m3B+3mi+dm+1
2

and x =B+3m+l,
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Remember that we assumed 7 to be odd. To complete the construction we must

provide, K, the size of the layout desired,
K = (x+24y)(8y) = 8xy+192y2.
In order to prove the lemma we must show that there is a layout of this planar circuit
of size K or less if and only if there is a solution to the 3-Partition problem.
We show first how a partition of A into A1,A3,...,An,, such that for any

1<i<m, Y s(a) =8 yields a layout of this planar circuit of size K or less. We

acA;

arrange the blocks by, b2, b3, and by, as in Figure 4.5.

x+24y
f— B
! 11
by
b 2 x by 8y
T x‘ [ X3 T
0,0
b2
s f
Figure 4.5

~ This leaves us an area of size x by 2y in which to place the remaining components,
the b,,"s. Assume the origin is at the lower left corner of this area as shown by the X
in Figure 4.5. The b, ’s will be place in rows of three corresponding to the partitions.
In between the rows of blocks, 3m horizontal grid lines will be used to route the
wires. We divide up this x by 2y box into horizontal strips alternating in height
between 3m+1 and 4m?2B as shown in Figure 4.6. The blocks corresponding to A;

will be placed in the i™ strip of size 4m®B counting from the bottom with the
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orientation in Figure 4.3, that is, with pin p; on the top edge. The x-coordinates of

the b,,’s are determined as follows. Assume first that each A; is ordered by
increasing index, A; = {a,,d,.a,,} such that u<v<w. Then three blocks, b,,, b,, and
b, are placed in the j* row of size 4m2B in left to right order leaving u, v=u, w—v
and 3m-w+1 space in between. The coordinates of the upper left comers of the
blocks  are, (4, j(4m2B+3m+1)),  (v+s(a), j(4m?B+3m+1))  and

(w+s (a,)+s(a,) , j(4m28+3m+1)) respectively.

X
2253 SR
4m?B| e——Ap
L5 SR
2y 4m?B| «—A;
<053 SR
4miB| —— A,
I <50 R
Figure 4.6

We have v-1 vertical tracks free to the left of 4, , v—u—1 vertical wacks between
bs, and b, , w=v—1 vertical tracks between b,, and b, and 3m-w tracks to the
right of b, . Notice that the number of vertical tracks in between the blocks
accommodates exactly the number of blocks between 1 and u~1, u+1 and v~1, v+l
and w—1, and w+1 and 3m, respectively. We route the wires from top to bottom
starting with the leftmost (r),p1) and proceeding with (¢,,4y) and then routing

(t2.p2). Each (#;,p;) must pass to the right of all blocks b, for j<iandto the left of

178



the remaining. If we always use the leftmost available vertical track in between rows
of blocks this will be achieved since exactly the humbcrs of vertical tracks necessary
have been left in between the blocks in each row. When we reach the row containing
b,, we use a horizontal track to connect to p; and then start the wire (g;,4d;) from g;.
We use at most one horizontal track in between row of blocks to route this wire. If
the wire must travel to the right we use the lowest available track and otherwise the
highest. We proceed in this manner routing (z;,p;) and (g;,d;) for 1<i <3m. We can
never run out of horizontal tracks since there are 3m available in between each row

of blocks and there are exactly 3m wires routed in between each row of blocks.

We now argue that a layout of size X or less provides a solution to the
partition problem. We first show that the arrangement of the four main blocks in
Figure 4.5 is the only one which can meet the size constraint. Since the sizeof b is
already x+24y this is a lower bound on one of the dimensions of the layout. Assume
without loss of génerality that this is the horizontal dimension. We consider the
arrangements of the other blocks with respect to by. If b3 is not placed so that its

longest dimension is also horizontal then we have an area of at least
(x+24y)(3y —1+1+x+24y) = (x+24y)(x +27y) > 8y(x+24y) = K.

Thus both by and b; must have their longest dimension in the horizontal direction.
If either b4 or b4 have their longest dimension in the vertical direction, then we have

an area of
(x+24y)12y > 8y(x+24y) =K.

Thus all four blocks must be placed so that their longest dimensions are horizontal.
We can thus refer to the horizontal and vertical dimensions of the layout and blocks,

as their widths and heights respectively. We next consider the relative positions of
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these four blocks. We say that two blocks overlap horizontally (vertically) if their
projections onto the x-axis (y-axis) overiap. If two blocks overiap horizontally, then
the height of the layout is bounded from below By the sum of the heights of the
blocks plus 1. If they don’t overlap horizontally, then the width of the layout is
bounded by the sum of the widths of the blocks plus one. We first argue that b, and
b, must have some horizontal overiap. Suppose b, and b; have no horizontal
overlap. Then the width of the layout is already 2(x+24y)+1. Consider the position
of b3 in this case. If it is above either &, or b, this gives a height of 5y and the size
bound K is exceeded. So both b3 and b4 cannot overlap horizontally with either 5;

or by. If b3 and b4 have no horizontal overlap, this gives an area of

(12y+12y+2(x+24y))(3y —1+1) = 6y (x +36y)
= 6yx+216y?

> 8yx+192y? > K,
since y >x. If on the other hand they overlap horizontally, we have
(12y+2(x+24y))(2y =2+2y =2+1+1+1) = (8y =1)(x +30y) > 8y (x+24y) =K.

Thus b, and b, must have some horizontal overlap. Again consider b3. If it does not

have any horizontal overlap with either b, or b,, then we have an area of at least
(12y+x+24y)(3y =143y =1+2) = 6y (x+36y) > K.

The same argument holds for b4, thus both b3 and b4 must overlap horizontally
with both b, and b,. This gives a height of at least 8y which is the maximum since
the width is at least x+24y. Thus the layout must fit into the box which is 8y by
x+24y. There are essentially two configurations, either b3 and b4 are sandwiched in

between by and b, or they are on top of both. The latter can be eliminated because
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additional tracks on the sides of the layout would be needed to connect the u pins
and there is no more room for tracks horizontally. The layout in Figure 4.5, is the
only possible arrangement of the blocks which mects the size bound K. The
remaining blocks must then be in the x by 2y rectangle left in the middle by these
four blocks. We argue that they must be arranged in rows which correspond to
partitions. We show first that each block must be placed so that its pins are on the top
and bomom sides. If not then there is a block of widh 4m?B. But
x = B+3m+1 < 4m2B if B21 and m21. Thus each block must have its pins on the
top and bottom. We now show how the arrangement of the blocks corresponds to a

partition. The following procedure is used to obtain the partitions.

Assume all blocks are initially unmarked and repeat the following procedure until no

more blocks remain.

1. Create a new partition. Select the unmarked block which has a minimal y-
coordinate (all blocks are of the same height), mark it and adad it as the first
member of the new partition. Associate the lower y-coordinate of this block

with this partition.

2. Examine the remaining unmarked blocks. Add any blocks to the current
partiton whose lower y-coordinate is no greater than 4m*B plus the

coordinate of the current partition. Mark any blocks added.
3. Repeat steps 1 and 2 until all blocks are marked.

In this manner we obtain a partition Ay, . . . , A¢. We will argue that k must in fact be
m and the sum of the sizes of each partition must be B. This will be based on the

following property of the partitions.
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1. If ¢ (A;) denotes the coordinate of A;, then ¢ {(A;) + 4M 1B < c(Ais)-

2. Any two blocks in the same partition have no horizontal overlap.

The first property is clear by construction. The second property is observed by noting
that if two blocks have a horizontal overlap then their lower coordinates must differ
by ﬁlore than 4m2B. We first argue that k<m. Suppose so k>m. The upper

coordinate of the minimal block in Ay is at least

k(4m2B) 2 (m+1)(4m28) = 4m>B+4m*B > 4m>B+3m*+dm+1 =2y
for m=23 and B22. Thus k<m. Now consider each partiton. Since no two blocks
within a partition can have a horizontal overlap we must have

3 s(@)sx=3m+1+B.

aceA;

In addition to this, if there are & blocks in the A; then there are 3m—h other blocks
whose lower coordinate is either above and below the coordinate of A;. Note that ail
of the blocks of A; have a vertical overlap which is at a minimum of one point. Since
each block must connect both to by and b there must be at least 3m —h vertical grid
lines in between the blocks of A; which are used for these connections. In addition,
there is one unit of space in between the blocks. This gives us the following more
stringent bound,

Im=h+h+1+ Y s(a) Sx=3m+1+B whichimplies, 3 s(a)s<B.

acA; aeA;
Since the sum of all of the s(a)’s is mB and there are at most m partitions, we must

have k=mand Y s(a)=8 foreach 1<ism.
aeA;

To conclude that the problem of optimal layout of planar circuits is in fact NP-hard
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in the strong sense, it suffices to observe that the 3-Partition problem which was
reduced to it is NP-complete in the strong sense and that the construction given is
polynomial in m +logB. Note that the solution to the construction is also
polynomial in m + logB.
0
The planar circuit in the construction used to reduce 3-Partition could have
resulted from an FP expression. If we have primitives, f1.f2.f3 and f4 which
generate the boxes by, b3, by and by as well as a primitive f,, generating the box by,
for each 1<i<3m, then the FP function below could map to the planar circuit in the

construction.

fa @ [vafa,,---’fahvftt]@fl

4.3 Packing Planar Circuits into Cross-sections

In this section and the next, we present a mapping of planar circuits
generated from FP expressions to abstract layouts. In a later section we will discuss
how to transform these abstract layouts into actual layouts. The procedure detailed
in these sections is designed to produce a layout efficiently. It does not attempt to

optimize the layout.

The mapping consists of two steps. First the wires, branchings and crossings
necessary to implement the R-nodes are generated and packed vertically along with
the wires and components of the planar circuit. The result of the vertical packing is
a sequence of horizontal cross-sections. Each cross-section is a list in left to right

order of parts of boxes, wires, crossings and branchings which occupy the cross-
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section. To obtain the abstract layout, these cross-sections are stacked vertdcally
constraints are generated to make them "fit together” and horizontal compaction is
then performed. This will be discussed in the next section. In this section we

describe the mapping to sequences of cross-sections.

The computation tree defined by an FP expression as described in the last
chapter is mapped to sequences of cross-sections. A cross-section is a horizontal slab
of the lafout. Imagine drawing horizontal lines across the layout. If these lines are
sufficiently close so that each box hits at least two lines and every pair of horizontal
wire segments with different y-coordinates is separated by at least one line, then we
can order the "boxes and wires” which intersect this cross-section, in left to right
order. We will refer to the representation of the planar circuits by sequences of
cross-sections as the "intermediate form," IF. Instead of flattening the hierarchical
representation of the planar circuit provided by the combining forms and then
attempting to pack planar circuits into the intermediate form, we decompose the
packing in terms of the computation tree. Each leaf of the computation tree generates
a part of the planar circuit already packed into cross-sections and each combining
form packs the IF’s generated by its sub-trees. Some combining forms have
alternative methods of packing. At the moment the layout procedure does not itself
choose which method to use, but relies on the designer to label a combining form
when a method other than the default is desired. This type of hierarchical
representation could be imposed on any planar circuit and then used to obtain an
abstract layout. However, the quality of the layout will depend on how well this
hierarchy captures the layout. Wé first describe the intermediate form and then

discuss the mapping.
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Formally, the IF consists of FP objects of the following form,

<CS, CS; -+ CSp> for n20,

where each CS; is a cross-section. A cross-section is a list of FP objects each

corresponding to wires, branchings, crossings and parts of boxes.

CS;=<x| X3 ' Xn> where x; is one of the following.

Free wire
An atom other than $,*,+,%,¢.
Elements of this type are wires which traverse the cross section without being

crossed by any other wires.

Crossing

<* w * u, uy *- - up> such that each u; is an atom other than $,*,7, and at
least two of the &;’s belong to (+,7}.

This type of element represents the wire crossings and branchings necessary
for realizing the R-nodes of the planar circuit. The atom *w’ corresponds to
the wire which must cross and/or branch in this cross-section. A horizontal
wire is created and is connected to wires in the previous cross-section
corresponding to the atoms ’+’. For each ™ a new wire labeled 'w’ is created
and connected to the horizontal track. The other atoms are wires which

traverse this cross-section without connecting to the horizontal wire.

Box
<$ level #levels id label width $ i1iy -~ ix $ 0102 - 01 $ >

Elements of this type correspond to the parts of components which are to be
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Figure 4.7 Graphical interpretation of the three element types.
drawn as boxes. Boxes may occupy any number of cross-sections. This
format allows the specification of how many cross-sections a box will
occupy. The level is f, 1, i or b, indicating whether this is the first, last,
intermediate or both (when a box is wholly contuined within one) cross-
section which the box occupies; an element of this type is instantiated for
each cross-section in which it appears. The next three atoms are,
respectively, the number of cross-sections occupied by this box, a unique

identifier (which can be used to distinguish a box from others with the same
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label), and a label to be displayed with the box. The next clement is optional;
if it is present it is the width of the box. The $'s act as delimiters between
these atoms, the input atoms, iy,iz *** i, and the output atoms

01,02 "' Op-

The graphical interpretations of these three types of clements are illustrated in Figure

4.7.

The following IF is generated for the exclusive-or function implemented with
four Nand gates given in Section 3.1, mxor.
Nand @ &Nand @ [[1,2],[2,3]] @ [1,Nand,2}; <a,b>

((a b)

((*a*+"")*b*+"7)
(aabb)

@@ f2G6Nand $ab3$G73)Db)
(a@12G6Nand $ab$ G78)Db)
@a*G7T*+"7)Db)

(a G7 G7 b)

((3£2 G8 Nand $ a G7 $ G9 $) (§ f 2 G10 Nand $ G7 b $ Gl1l )

Egglé G8 Nand $a G7 $ G9 $) ($ 12 G10 Nand § G7 b $ Gl11 §))
11)

(($ £ 2 G12 Nand $ G9 G11 $ G13 §))

(312 G12 Nand $ G9 G11 § G13 §))

(G13)

)

Figure 4.8 illustrates how this FP object could be interpretated graphically. The

dashed lines separate the cross-sections.

We illustrate with examples the packing provided for each combining form
and the leaves of the computation tree. Each sub-tree returns a packing of its planar
circuit with the inputs on top and the outputs on the bottom. The packing performed

for each of the combining forms is essentially some combination of two basic
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Figure 4.8 The graphical interpretation of the IF for mxor.
packings: packing vertcally and packing horizontally. For example, for the
Compose we pack the sub-trees verticaily and for the Construct we pack the sub-

trees horizontally and then pack the R-node up on top.

Packing vertically is the simplest of the two operations; since each [Fis a
sequence of cross-sections which will be stacked vertically, we simply concatenate
the two sequences of cross-sections in order to stack one set on top of the other.
Packing horizontally is more complicated. We have two stacks of cross-sections
which we would like to pack horizontally, side by side. If the stacks are not of the

same height then we extend the shorter one by repeating a cross-section consisting
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only of the input wires of the sequence. We are in effect stretching the wires so that
both IF’s have the same height. Once the number of cross-sections in each sequence
(stack) is the same, we concatenate the cross-sections which are adjacent
horizontally. To accomplish this we step through the sequences taking one cross-
section from each sequence and concatenating this pair of cross-sections. We can

generalize this to accommodate more than two sequences at a time.

As discussed earlier a combining form may have more than one method of
packing the IF’s of its sub-trees; we will show two packings for the Seq combining

form.

The packing of the leaves of the computation tree which correspond to
computational primitives consist of cross-sections containing the box generated for
the computational primitive whose width and number of cross-sections can be
specified. Defaults are specified for FP primitives. In addition, any sub-tree
corresponding to a defined FP function can be represented as a box. Functions
generating packings for each of the FP routing primitives are provided. Each
function generates cross-sections consisting of crossings necessary to implement the
the routing primitive in qucstion. There is a general routing function which is used
for the up R-nodes required for the Construct combining form. This function is also
used to route arbitrary sub-trees which correspond to R-nodes (have only R-nodes as
leaves). As discussed in Section 3.8, the merging of R-nodes is acheived by
considering a routing sub-tree to be one R-node. This function begins first by
attempting to cleanly divide the R-node in question and then routes the resulting R-
nodes. Thus the clean divides necessary to obtain a maximal-indivisible planar

circuit are performed by this function.
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In the following, the IFs of several FP expressions are given. The angle
brackets ( '<’,’>") are replaced by parentheses. An additional cross-section at the top
and bottom are added; these cross-sections would not be part of the IF of these
expressions were they to appear as a sub-tree. They are added only to the IF of roots
of computation trees to provide a more visible set of inputs and outputs. The input
FP expression appears in bold type. New symbols which are generated are labeled
gN where N is the n* symbol generated. We begin with FP primitives.

These first two primitives are computational and generate boxes. The first cross-
section generated for a box is a cross-section in which the inputs appear as free

wires. This provides a gap between boxes.

andg; <1 1>

(Gl G2)
(G1 G2)

(G3)

(GS)

(3B 1G7TNOT23$G55G69))

(G6)
apndr is a routing primitive in which the relative positions of the atoms do not
change. In this case no routing is required so no cross-sections are generated. This is
equivalent to an R-node which can be completely divided into rivial nodes. This is

in agreement with our definition of a reasonable layout procedure since nothing is

generated for this type of R-node.
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apndr ; ((@abcde)f)
(G8 G9 G10 G11 G112 G13)
(G8 G9 G10 Gl11 GI12 G13)

Several cross-sections are generated for trans in order to realize the routing of this

R-node. Because the R-node corresponds to an FP routing primitive we use the

routing function associated with it.

trans ; <<xl x2 x3> <yl y2 y3> <zl 22 23>>

(G14 G15 G16 G17 G18 G19 G20 G21 G22)
(G14 G15 G16 G17 G18 (* G19 * + G20 G21 °) G22)
(G14 G15 G16 G17 (* G18 * + G20 ") G21 G19 G22)
(G14 G15 (* G16 * + G17 G20 G18 G21 °) G19 G22)
(G14 (* G15 * + G17 G20 ") G18 G21 G16 G19 G22)
(G14 G17 G20 G15 G18 G21 G16 G19 G22)

The following packings are the standard packings of the combining forms.
Alternate packings can be used. An alternate packing for the Seq combining form
will be given as well. A line which is indented is the continuation of a cross-section

from the previous line,

The packing of Compose is the vertical packing.
notg @ andg ; <1 0>

(G23 G24)

(G23 G24)

(3 F 2 G28 AND 3 $G23 G24 $ G25 %))
((5 L 2 G28 AND 3 $ G23 G24 $ G25 3))
(G25)

(($ B1G27 NOT 2 $ G25 § G26 %))
(G26))

191



Construct is one of the more complicated forms to pack. It must generate the
necessary cross-sections to implement the routing required by ‘its up R-node and
then pack this on top of the horizontal packing of its sub-trees.

[andg, org, norg, nandg] ; <1 0>

(G29 G30)
(G29 (* G30*+ """ "))
((* G29 * + ~ G30 " G30 " G30 ") G30)
(G29 G30 G29 G30 G29 G30 G29 G30)
(($ F 2 G35 AND 3 $:G29 G30 $ G31 §)
($ F2G36 OR 3% G29 G30 $ G32 9)
(5 F2 G37 NOR 3 $ G29 G30 § G33 )
($ F 2 G38 NAND 3 § G29 G30 $ G34 %))
(3 L 2 G35 AND 3 $ G29 G30 $ G31 3)
(L 2G360R 3$G29 G305 G329
(L 2G37NOR3$G29G305G33 %)
(3 L 2 G38 NAND 3 $ G29 G30 $ G34 §))
(G31 G32 G33 G34)

The constant form generates a box with no inputs and whose outputs are a
symbolic representation of the object it is applied to.

% <new object> <anything>

9
((3 B1 G4l "NEW" 2835 G39 %)

(8 B 1| G42 "OBJECT" 2 $ $ G40 %))
(G39 G40))

Apply-to-All is simply the horizontal packing of its sub-trees. The

combining form introduced in Section 3.8, Projection, is handled in the same

manner.
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& andg ; <<1 1> <1 0> <0 1> <0 0>>

(G42 G43 G44 G45 G46 G47 G48 G49)

(G42 G43 G44 G45 G46 G47 G48 G49)

((3 F2 G54 AND 3 § G42 G43 $ G50 §)
(3 F 2 G55 AND 3 $ G44 G45 $ G51 $)
(8 F 2 G56 AND 3 $ G46 G47 $ G52 §)
($ F2 G57 AND 3 § G48 G49 § G533 §))

(3L2GS4 AND338G42G43$8G50 )
(3L 2GS5 AND 3 $ G44 G45 $ G51 §)
(5 L 2 G56 AND 3 $ G46 G47 $ G52 §)
(3 L 2 G57 AND 3 $ G48 G49 § G53 $)

(G50 G51 G52 G53)

The Right Insert combining form packs each subtree horizontally with the
list of inputs of the sub-trees to its left. It then packs these vertically with the
leftmost on top.

‘andg;<111111>

(G58 G59 G60 G61 G62 G63)
(G58 G59 G60 G61 G62 G63)

(G58 G59 G60 G61 (3 F 2 G73 AND 3 § G62 G63 $ Gb64 §))
(G58 G59 G60 G61 (3 L 2 G73 AND 3 § G62 G63 $ G64 3))
(G58 G359 G60 G61 G64)

(G58 G59 G60 ($ F 2 G72 AND 3 § G61 G64 $ G65 $))
(G58 G59 G60 (5 L 2 G72 AND 3 § G61 G64 $ G65 3))
(G58 G59 G60 G65)

(G58 G59 ($ F 2 G71 AND 3 $ G60 G65 $ G66 3))

(G58 G59 (8 L 2 G71 AND 3 $ G60 G65 $ G66 $))

(G58 G359 G66)

(G58 (3 F 2 G70 AND 3 $ G59 G66 $ G67 $))

(G58 (3 L 2 G70 AND 3 $ G59 G66 $ G67 %))

(G358 G67)

(($ F 2 G69 AND 3 $ G58 G67 $ G68 $))

(($ L 2 G69 AND 3 $ G58 G67 $ G68 $))

(G68)

Seq can be packed'in a similar manner as the Right Insert except that each

subtree must also be packed horizontally with the list of outputs of sub-trees to its
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right.
seq(hadd) ;<0101010>

(G70 G71 G72 G73)
(G70 G71 G72 G73)
(G70 G71 (3 F 3 G82 HADD 4 $ G72 G73 § G74 G75 %))
(G70 G71 (3 1 3 G82 HADD 4 $ G72 G73 $ G74 G75 3))
(G70 G71 (3 L 3 G82 HADD 4 $ G72 G73 $ G74 G75 %))
(G70 G71 G74 G73)
(G70 ($ F 3 G81 HADD 4 $ G71 G74 $ G76 G77 $) G75)
(G70 ($ 1 3 G81 HADD 4 $ G71 G74 § G76 G77 $) G75)
(G70 (3 L 3 G81 HADD 4 $ G71 G74 $ G76 G77 §) G73)
(G70 G76 G77 G73)
((3 F 3 G80 HADD 4 $ G70 G76 $ G78 G79 $) G77 G75)
(($ T 3 G80 HADD 4 $ G70 G76 $ G78 G79 §) G77 G73)
((3 L 3 G80 HADD 4 $ G70 G76 $ G78 G79 §) G77 G75)
(G78 G79 G77 G75)

This packing is vertical; the sub-trees are packed one on top of the other and the
wires are extended to the top and bottom most cross-sections. Another packing of the
Seq for the same FP expression is given below. In this packing, the sub-trees are
packed horizontally and the wires which connect the sub-trees are routed back up in
between the sub-trees.

(G83 G84 G85 G86)

(G83 (* G89 * ~ *) G84 (* G87 * " ) G85 G86)

(($ F 3 G93 HADD $ G83 G89 $ G92 GS1 $) G89
($ F 3 G94 HADD $ G84 G87 $ G89 G90 $) G&7
(S F 3 G95 HADD $ G85 G86 $ G87 G88 3))

(($ 13 G93 HADD $ G83 G89 $§ G92 GS1 §) G89
($ 13 G94 HADD $ G84 G87 § G89 G90 $) G87
($ 13 G95 HADD $ G85 G86 $ G87 G88 $))

(($ L 3 G93 HADD $ G83 G89 $ G92 G91 §) G89
($ L 3 G94 HADD $ G84 G87 $ G89 G90 $) G87
(3 L 3 G95 HADD $ G85 D $ G87 G838 3))

(G92 G91 (* G89 * + +) G90 (* G87 * + +) G88)

(G92 G91 G9S0 G88)

As discussed earlier, conditionals are evaluated and only the branch selected is

retained.
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(atom — notg; nandg) ; <1 0>

(G95 G96)

(G95 G96)

(3 F 2 G98 NAND 3 $ G95 G96 $ G957 %))
(($9L 2 G98 NAND 3 $ G95 G96 $ G97 %))
(G97)

(atorn — notg; nandg) ; 1
(G99)
(G99)

(($ B 1 G101 NOT 2 $ G100 $ G99 %))
(G100)

The last example illustrates the difference between the packing obtained by
interpreting a routing sub-tree, using the packings of its leaves and combining forms,
rather than considering the sub-tree as one R-node and using the general packing
function. The first [F is the one obtained by interpreting the computation tree while
the second is obtained by applying the general routing function to the root of the
sub-tree, which is equivalent to packing the maximal-indivisible circuit in this case.
The advantage of laying out a maximal-indivisible planar circuit is clearly seen in
this example since the former IF uses six cross-sections while the latter uses only
three.

[dist!@(1,[2,3]],distl@(3,{5,4,6]),trans@[{9,71,(8,6]]] ; <abcdefghi>

(G8 G9 G10 G11 G12 G13 G14 G135 Gl16)

(G8 G9 G10 G11 G2 (* GI13 * + " *) Gi4 GI5 Gl6)

(G8 G9 (* G10 * + ~ ) Gl1 G12 G13 G13 G14 G15 G16)

(G8 G9 G10 G10 G11 G12 G13 G13 Gl4 (* G15 * + G16 7))

(G8 G9 G10 G10 G11 G12 G13 (* G13 * + G14 G16 ") G1))

(G8 G9 G10 G10 (* G11 * + G12 ") G13 (* Gl4 * + G16 )

(*GI3*+Gl57)
(* G8 * +~ G9 “) GI0O (* G10 * + ~ G12 * G11 ") GI13 G16

(* Gl14 * + G15 7) G13)
(G8 G9 G8 G10 G10 G12 G10 G11 G10 G13 G16 G15 Gi4 G13)
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(G7 G8 G9 G10 G11 G12 G13 G14 G135)
(G7 G8 G9 G10 G11 G12 G13 (* Gl4 * + GI15 7))
(G7 G8 G9 (* G10 * + G11 ) G12 (* G13 * + G15 G14 7))
(*G7*+"G8")
*G9*+""Gll “Gl0 ")
(* G12 * + “ G15 G14 G13 7))
(G7 G8 G7 G9 G9 G11 G9 G10 G9 G12 G15 G14 G13 Gl2)

The mapping from the computation wee to IF is implemented in T. The [F

can be written in a file to be retained.

4.4 Mapping Sequences of Cross-sections to Abstract Layouts

The final step necessary to obtain the sketch is to assign coordinates to
clements of the IF: the wires, crossings, branchings and boxes. Elements can be
assigned the vertical coordinates of their cross-sections, but obtaining horizontal
coordinates is more involved since conflicts with elements in adjoining cross-
sections must be resolved. Each element has a geometrical interpretation within its
cross-section (as illustrated in Figure 4.7). To position the elements, spacing
constraints berween adjacent elements in a cross-section and possibly elements in the
cross-sections immediately above and below, must be respected. To find horizontal
positions, the [F is examined cross-section by cross-section to build a horizontal
constraint graph encompassing these spacing constraints. Horizontal positions can

then be obtained from this graph.

In a horizontal constraint graph two nodes are connected by a directed edge
reflecting a constraint between these two nodes. An edge of length d from node ny

to node n, corresponds to the constraint expressed by the inequality,
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p1+dsps

where p; and p, are the positions (coordinates) of n; and n, respectvely. If d is
non-negative then hg must be to the right of n; by at least d. If d is negative then n,
cannot be to the right of 7, by more than -d. The horizontal constraint graph reflects
the interactions among these inequalities and provides a convenient data structure for

resolving them.

The constraint graph is constructed by traversing each cross-section. Spacing
constraints are generated for each element with the elements to its left and in the
cross-section above. The type and number of constraints depends on the elements
involved and is detailed below. Nodes in this graph will correspond to vertical line
segments or boxes. For each node, the list of its outgoing edges, its indegree, its
vertical coordinates and its connections to other nodes is recorded. For boxes, the
width, rightmost output and input are also recorded. As each cross-section is
traversed, the list of nodes connecting to elements in the next cross-section is
maintained. This list will be simultaneously traversed with the next cross-section to

establish connections between elements in these two adjacent cross-sections.

Free Wires
A free wire can have a horizontal jog in the cross-section since it is not
crossed. The node for this wire in the cross-section above is extended
halfway down into the current cross-section and then a new node is created
for this wire. This new node is not directly constrained to the previous one,
enabling this wire to jog eithér to the right or left. Constraints with nodes to

the right and left in this cross-section will determine the direction of this jog.
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Crossings: <* w* uy uz,..., p>

Boxes

For a crossing the list of u;’s is traversed. Each u; which isnota '+’ or a '
corresponds to a wire segment which traverses this cross-section and cannot
have a vertical jog since it is being crossed. (It is assumed that both u; and
u, are either '+’ or ') The node in the previous cross-section
corresponding to this wire is extended down through this cross-section. For
each '’ encountered, a new node is created which corresponds to a segment
extending from the middle of the cross-section downward. For the '+, its
node in the previous cross-section is extended halfway into this cross-section.
Connections between the new nodes and the node corresponding to '+’ are

recorded with these nodes.

A single node is used to represent a box. If this is the first level of this box
then a new node is generated. The nodes in the cross-section above
corresponding to its inputs are not extended. The position of a box is its

leftmost edge. The width of the box is set to,
1 + max{# inputs, # outputs}.

For an intermediate or the last level, the node in the previous cross-section
corresponding to this box is extended down through the cross-section. For the
last level new nodes are created for each of the outputs. These nodes
correspond to vertical segments of length zero which sit at the bottom of the
cross-section. (These nodes will be extended down when the next cross-
section is processed). The rightmost input and output nodes of the box are

recorded.
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Figure 4.9 illustrates the general scheme for generating constraints, There are
three possible constraints to be generated when node n4 is processed (n4 may be the

same as n13).

Figure 4.9 Constraints generated when node n4 is processed.

Constraints are unit distance unless a box is involved. Constraints of length
one are generated between a box and its leftmost input and output, however spacing
constraints between a box and other nodes use one plus the width of the box as the
distance. The constraints that have been mentioned so far, all have positive distances
and result in an acyclic graph. Negative constraints are needed to preserve the width
of the boxes. The inputs and outputs of a box can be no further right from the box
node than its width minus one. The length of these edges is one minus the width of
the box. Figure 4.10 shows the constraints between a box node and its input and
output nodes. Figure 4.11 contains the elements of the graph for the example in

Figure 4.8 and Figure 4.12, its constraint graph.

To facilitate the following discussion, an additional node, designated as the
root, with an edge of length zero to every other node, is added to the graph. In an
acyclic constraint graph, the unique optimal solution to the constraints is obtained by

assigning to each node n, the length of a longest root to n path, as its position relative
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Figure 4.11 Elements for example of Figure 4.8.
to the root’s. This solution is optdmal in that no other set of positions satisfying the
inequalities can assign a smaller position to any node. In [Liao83], it is shown that
this result can be extended to an arbitrary digraph as long as the digraph does not
contain a positive cycle. This is a natural restriction since a positive cycle
corresponds to an inconsistency in the inequalities. In this case the conswaints

involved need to be adjusted to make the graph consistent.
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Figure 4.12 Constraint graph for example of Figure 4.8.

In an acyclic constraint graph, longest paths can be obtained by traversing the
graph respecting the inherent partial ordering of the nodes. (The nodes can be
ordered so that no edge connects a node with one that precedes it in the order.)
When a node is visited, its outgoing edges are examined to determine if their
inequalities are satisfied aﬁd if necessary, the positions of the nodes at the other end

of these edges are adjusted to satisfy the constraints.
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pa & max{pa. P1 +d} 4.2)

In the algorithm proposed by Liao aﬁd Wong the negative edges (back edges) are
treated separately. Since the only edges of length zero are from the root, and the
graph has no positive cycles, the subgraph induced by the non-negatve edges is
acyclic. The positions of the nodes obtained in this subgraph are obtained and then
the back edges are examined. If a back edge is not satisfied, then the position of the
node is adjusted as in (4.2). The acyclic subgraph is traversed again updating
positions as in (4.2). This procedure is repeated undl all the back edges are satisfied.
After repeating this process 1 +# of back edges times, if the back edges are not all

satisfied, then the graph is inconsistent.

This algorithm is appropriate when the graph is consistent. Unfortunately not
all graphs generated from IF’s of FP expressions are consistent. Figure 4.13 contains
an example in which the [F produces a constraint graph with a positive cycle. The
problem occurs because the vertcal packing leaves one horizontal track between
boxes A.B,C.D and E, and this is not enough to bring the four wires into alignment

for box E.

E

Figure 4.13 A situation corresponding to an inconsistent Constraint Graph.
This situation can be resolved either by widening the boxes (in this case box E) or
adding more horizontal tracks. The former solution is used since it does not require

changing the IF and the inconsistency may disappear when actual sizes of objects are
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used to obtain a ‘real layout,” as will be discussed in the next section. The positions
obtained f_rom traversing an inconsistent constraint graph are in general distorted .
since they are the result of traversing positivé cycles several times. A heuristic
algorithm is used which attempts to identify inconsistencies early and adjust the
sizes of boxes. Once the boxes have been widened sufficiently to make the constraint
graph consistent, the algorithm of Liao and Wong is applied to it. As in the
algorithm of Liao and Wong, the acyclic subgraph induced by the positive edges is
traversed repeatly and the back edges are adjusted in between each traversal.
However not all the back edges are respected. The algorithm examines the back
edges in the order imposed on them by their destination nodes. The first back edge
which is not satisfied and was not previously adjusted is recorded and its destination
node is adjusted as in (4.2). If this back edge is again not satisfied after subsequent
traversals, the algorithm widens the box so that the back edge would be satisfied by
the current positions of its inputs and outputs. The graph must eventually become
consistent since eventually all back edges will be made more negative, and the

positive edges remain fixed in value.

When the graph becomes consistent, the 'algorithm of Liao and Wong is then
applied to it. The algorithm which resolves the inconsistencies is heuristic in that it
guesses which box should be widened based on the partial ordering. It does not
always identify the correct box to be widened; it may widen boxes unnecessarily. To
mitigate this effect, after applying Liao and Wong’s algorithm to the constraint graph
that it has made consistent, the program inspects the boxes to determine if any of the

widened boxes can be shrunk.
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This heuristic algorithm does not guaraniee the optimal solution when the
graph is consistent, but it deals with inconsistent constraint graphs, yielding a
reasonable though not perfect solution. To obtain the optimal solution when the
graph is consistent, Liao and Wong’s algorithm is attempted first and the heuristic

algorithm is resorted to only when the graph is found to be inconsistent.
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I | [ | | I ]

Figure 4.14 Before straightening the wires.

By using the constraint graph to obtain positions, the wires and boxes are
pushed to the left as much as possible. Although this minimizes the area, it has the
undesirable effect of routing the wires with unnecessary detours and bends. To
remove this effect, the wires are sorted from right to left, and each is puiled back to
the right to straighten it out as much as possible. An examples of the routing before
and after ‘straightening’ the wires are given in Figures 4.14 and 4.15. Any boxes
which were widened are inspected again after straightening the wires to determine if

they can now be shrunk back to their original sizes.
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Figure 4.15 After straightening the wires.

Figure 4.16 Abstract layout obtained for example of Figure 4.8
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To continue the example, Figure 4.16 is the abstract layout generated for the

example of Section 3.1, mxor.

To complete this section, we show the abstract skeiches corresponding to the

IF’s generated in the Section 4.3.

andg; <1 1>

Gl G2

AND

G3

notg ; 1
GS

G6

apndr;(@abcde)l)

G3 G9 Gi10 G111 Gl12 GI13

|

G8 G9 GI10 Gl1 Gi12 GI13
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trans ; <<x1 x2 x3> <yl y2 y3> <z1 22 23>>

'G14 G15G16 G17 G18 G19 G20 G21 G22
| | L )
Gl4 G17 G20 G15 G18 G21 G16 G19 G22
notg @ andg ; <1 0>
G23G24
||
AND
NOT
G26

[andg, org, norg, nandgj ; <1 0>

G29 G30
AND OR NOR | |NAND
G31 G32 G33 G34
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% <new object> <anything>

NEW OBJECT

G39 G40

& andg ; <<1 1> <1 0> <0 1> <0 0>>

G42 G43 G44 G45 G46 G47 G48 G49
| [ | | | ||
AND AND AND AND

GSO Gs1 G52 GS3

landg;<111111>

GS8G59G60G61  G62G63
||

AND
—_ |

AND
— |

AND
— |

AND
—
AND

G638
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seq(hadd) ;<0101010>

G70G71 G72G73

HADD

The second packing of seq.

G83

—

HADD

G78G79 G77G75

HADD

G85G86

HADD

G92G91

I

G90
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(atom — notg; nandg) ; <1 0>

G95 GI6

||
NAND
|

G97

(atom — notg; nandg) ; 1

G99

[ NOT |

|

G100

[distt@[1,[2,3]],disti@(3,(5,4,6]),trans@{[9,71,(8,6]]] ; <abcdefghi>

G8 G9 G10 G11 G12 G13 G14 G15 G16

|
L

| |

G8 G9 G8 Gi0 Gio G12 G160 G11 G10 G13 Gl6 G185 G14 G13
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G7 G8 G9 Gl10 GIi G12 G13 Gl14 GI15

|

G7 G8 G7 G9 G9 GI11 G9 Gl10 GY Gi2 G15 Gl4 G13 GI12

Abstract layouts of more interesting functions will be given in the next

chapter.

4.5 Transforming Abstract Layouts into Layouts

Ideally, a symbolic layout tool could take over the layout once the wires have
been assigned layers. However since no such tool was available we generated fixed
geometry directly from the IF. To transform an abstract layout to a layout, the layers
on which the wires will be implemented must be selected and the layouts of the
boxes must be specified and incorporated. The selection of layers to use for routing
depends on how the power and ground wires will be organized and the number and
characteristics of the layers available. Only two layers are required to implement the
wires in the manner in which the R-nodes are implemented in the IF; all wires can be
on one layer except for the horizontal wires generated for crossings. The method of
packing the R-nodes should be varied according to the number of layers which are
available. Rather than selecting the layers, we generate the wires on two abstract

layers and the designer can decide which two layers to use.
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In addition to the assignment of wires to layers, we must know the
dimensions of the boxes and the constraints on where the inputs and outputs of boxes
must be placed. The inputs and outputs must occur on the same layer used for
wiring. Once we have all of this information, we can determine the exact dimensions |
of the elements of the IF and the minimum spacing required between them. The
height of each vertcal cross-section can be determined and the horizontal

compaction can be performed using real values rather than the abstract ones.
Determining Heights of Cross-sections

In processing the IF to build the horizontal constraint graph, we determine the

minimum height of each cross-section according to the elements it contains.

1. A box whose height is m lambdas and which occupies # cross-sections in all,

requires each of the cross-sections it occupies to be at least |— lambdas.
n

2. Cross-sections containing crossings are required to be large enough to

accommodate a contact and the distance between it and a wire.

3. Cross-sections in which jogs occur are required to be at jeast the width of a
wire plus the minimum distance between wires.

Once the minimum height of each cross-section is determined, the vertical

coordinates are assigned to the cross-sections by summing the heights of all of the

previous Cross-sections. This cannot be done until after all of the horizontal

compaction and straightening of wires is completed since it is necessary t0 know

whether there is a jog in a cross-section. The coordinate of each cross-section is then

used as the y-coordinate of the objects contained in it. Since boxes may not occupy
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the entirety of the cross-sections allocated to them, their output wires are stretched

upwards to meet the actual boundary of the box.

The horizontal coordinates of elements are determined by compaction using
real distances for the edges rather than abstract units. The position of outputs and
inputs along the bottom and tops of boxes are specified by the minimum distance
required between them as well as the ends of the boxes for the first and last in each

case.

We will illustrate the process of transforming an abstract layout into a layout
with the FP function implementing the exclusive-or which was introduced in Section
3.1 as an example whose abstract layout was given in Figure 4.16. We choose to
implement it in nmos and hence we must design a Nand gate in nmos and provide its
layout. Figure 4.17 contains the circuit diagram of an nmos Nand gate and Figures

4.18 and 4.19 contain two layouts of this circuit.

o}
=
ta

[nl

o

1
=

Out

Figure 4.17 The schematic of the nmos Nand gate

Figure 4.18 A Nand gate in nmos
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Figure 4.19 Another Nand gate in nmos

Notice that these two implementations both have the inputs on top and outputs at the
bottom as required. The output in each case is the polysilicon rectangle used to form
the enhancement transistor. We choose to implement the wires in polysilicon. Since
there are no cross-overs in this example the second layer used for crossings is not
used; we do not need to select a layer for routing the crossings. This is essentially all
of the decisions that are necessary for this example. It remains only to provide this
information to the IF compactor. This information is provided in a file. The
following is the file describing the layout with the first Nand gate.

Vertical interwire dist: 2

Horizontal interwire dist: 2

Vertical wire width: 2

Horizontal wire width: 2

Contact size: 0

Contact horizontal wire distance: 0

Contact vertical wire distance: 0

Number of box types: 1

Box name : Nand

Width : 31

Height: 6
Inoudist: 2047 -1520-1

214



The ‘Inoutlist’ is the spacing required between the left edge of the box and the
leftmost input followed by the spacing required between subsequent pairs of inputs,
and then the space required between the rightmost input and the right edge of the
box. A -1 acts as the delimiter and then same information is provided for the
outputs. Notice that in this case the spacing required for the outputs does not sum up
to the width of the box, providing the allowing the output to connect to the box

anywhere within a range. The description of the second Nand gate is:

Vertical interwire dist: 2
Horizontal interwire dist: 2
Vertical wire width: 2

Horizontal wire width: 2

Contact size: 2

Contact horizontal wire distance: 0
Contact vertical wire distance: 0
Number of box types: 1

Box name : Nand
Width : 16

Height: 11

Inoudist: 745-152-1

Figure 4.20 The layout of mxor using the first Nand gate
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When the IF compactor is invoked with the IF corresponding to this function and

these two files, the layouts in Figures 4.20 and 4.21 are generated.

Figure 4.21 The layout of mxor using the second Nand gate

To complete the layout we must connect the power and ground contacts of

the boxes. Figures 4.22 and 4.23 show the completed layouts.
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Figure 4.22 The completed layout of mxor using the first Nand gate

Figure 4.23 The completed layout of mxor using the second Nand gate
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The layout of a more interesting function will be given in Chapter 5.
Summary

In this chapter, we have obtained ‘abstract layouts” and actual layouts of the
planar circuits resulting from FP expressions. Abstract layouts were defined to be
layouts in which wires have zero width and the circuit clcnicn:s are mapped to the
grid such that all difncnsions and coordinates are in grid units, and the sides of
components and path segments of wires fall on grid lines. We showed - that the
problem of minimizing the area of a layout of a planar circuit is NP-hard. We
provided a method for obtaining abstract layouts of planar circuits resulting from FP
expressions. This method relied on the computation tree of an FP expression, using
each combining form to combine the layouts of its sub-functions. The method
consisted of packing circuit elements into horizontal cross-sections and then
resolving constraints between these cross-sections by performing horizontal
compaction. In Section 4.5 the transformation of ‘abstract layouts’ into actual

layouts was described.
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CHAPTER 5

Examples

In this chapter, examples of FP spec'iﬁcations and their sketches are presented
to illustrate the correspondence between programming style in FP and resulting
sketches. All of the sketches and layouts presented in this chapter were produced
directly from the FP specifications, by tools written to implement of the methods
described in Chapters 3 anﬁ 4. The specifications are the input to an FP interpreter
which constructs the computation tree of the FP expression and generates the [F
which is then passed to the compactor. The compactor produces an abstract sketch
on a graphics terminal or on a laser writer; the layout is produced in the format
accepted by the graphics editor, Magic {Oust83]. The FP interpreter is written in T
[Rees83] and the compactor is written in C (Kem78]. These tools were developed

and operate on a DEC VAX 11/750 under the UNIX operating system.

The performance of the heuristic compaction algorithm is most clearly
visible in the FFT Section 4.5. One of the examples has been transformed to 2
layout. The actual FP specifications will be given. To distinguish functions defined
in the specification from FP primitives, the former will start with an upper case
letter. FP primitives and their definitions can be found in the Appendix. Lines

beginning with #’s are comments.
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5.1 Decoders

The decoder was one of the first circuits to be described in FP and has
suffered numerous examinations since. A decoder accepts a bit vector of length n
and generates a bit vector of length 2% in which the ** bit is set if and only if i is the
binary number represented by in_put vector. The original FP specification written by

Lahti[La81] is:

(Decode !DecStage@ &OneDecode )
(OneDecode [notg,id]}
[DecStage &andg@concat@ &distl@distr}

The function Decode first obtains the complements of the inputs and then inserts the
function DecStage from the right, consuming one variable and its complement at

each stage.

*2 X X0
N 14} \N{)
— !
DecStage
| N
DecStage
HEEREEN

do d; d; d3 dg ds dg d'r

Figure 5.1 Decoder with DecStage as a primitive.

The input to DecStage is
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«x; x;><dg dy *+* dpy> where m=2""),
and the output is
<fofi *** fima> wherefor O<j<m=1, fi=xjd; and fj.a=x;d;.
This is accomplished by transforming the input object into,
<.;,'-d0><£'d1> <x_,-d,,_1><x,- do><x;d1> '+ <X Ap 1>

and applying andg to each pair in this list. Figure 5.1 is the sketch resulting from
this algorithm with DecStage represented as a component, while in Figure 5.2 the

definition of DecStage is evaluated.

X3 X X9

Nat] | [Not] E}E

And And And And

And And And And And And And And

do d dy dy d, ds dg ds

Figure 5.2 Decoder with andg and notg as primitives.

The compaction algorithm pushes the boxes to the left. In this case the notg's are

pulled unnecessarily to the left. Space would be saved by pushing them back to the
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Xo X1 X2

And And And And

And And And And And And And And

dy dg d's dg d; dz dl do

Figure 5.3 The flipped IF of Figure 5.2
right. The format of the intermediate form can easily be reversed (i.e., flipped to
obtain the mirror image) allowing the compaction to be performed in the other
direction (to the right). Figure 5.3 is the sketch obtain by flipping the intermediate

form of the sketch in Figure 5.2.

Laht’s description of a decoder is a recursive switching function definidon
based on the primitives andg and notg. Figures 5.4 and 5.5 contain the sketches of
decoders whase specifications are in terms of lower level primitives. These designs
correspond to those of [Mead80]. Their FP definitions are more complicated than
Laht’s.

# Nor-decoder ##HHHHHHHEHEHHHEHHRS

(NorDecode &PU@ Repeat@[1,split@2]@Setup}

{Repeat (null@ 1 —>concat@2;Repeat@Stage)}
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XX, X3

BTEFTTRLE

i i g L=
(] Ler] (o] G Cenl ] (] o]

i
01
[?tJﬁ@JFHIFmﬂIFthWIFHIFﬂﬂ

Cr] ] () Cer) o]
ﬁﬁ@#@nw

doy dy dy da da ds

Figure 5.4 Nor Decoder

XgX) X3

ﬁ@%mrmmﬁ@-—
I'I'Tll =] L“ll‘:\

rr] [rr] (el (] G ) (o]

oy

l_‘
[ !

5] (o] (] (1] (o] (o] (0] (0]

TPDJIPDHPDHPDHPDH

SEEE B @

dy dg ds ds d3  dy

-
}—

o]

Figure 5.5 Nand Decoder
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{Stage [tlr@ 1,concat@ & (split@ &PT)@ Odistl
@[Inv@lasi@ 1 ,Edisti@[lasi@1,2]1]}

# Nand-decoder #HHSHHHEFHHHHR
(NandDecode &PU@RepeatPD@ Stage@(1,split@2]@Setup}
{RepeatPD (null@1—concat@2;RepeatPD@StagePD)}

{StagePD [tir@ 1,concat@ &(split@ &PD)@Odistl
@[Inv@lasi@ 1, Edistl@[last@1,2]1]}

# Functions used by both decoders i HHHEHHE

(Edist! 1@[concat@&[1@2,disti@[1.2@2]]@disti@[1,pair@2]]}
[Qdistl 1@[concat@ &[disti@[1,1@2),2@2]@distl@[1,pair@2]]}
(Setup [id,&GR@Expand@/(id,[ti@[id]]]]}

{Expand (eql@{length@1,%0]—2;Expand@[tl@ ! ,concat@(2,2]]}
{PT org@(notg@1.2])

{PD andg@[notg@1.2]}

{PU id}

{Inv notg}

{GR %0)

PT __{[ PD [: ou | 222

]

Figure 5.6 The primitives, Pass Transistor, Pull Down, and Pull Up
This specification is in terms of non-functional primitives, (i.e. pass transistors,

pullups and pulldowns) which are pictured in Figure 5.6. With the knowledge of how
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these elements are intended to function in this circuit (their direction of flow), they
can be represented by FP functions. Of course, the designer is responsible for

insuring that these elements do in fact correspond to their FP definitions in practice.

5.2 Carry-Save Arr#y Multiplier

The following is an FP specification of a carry-save array multiplier. The
specification is generic in that it will multiply any two bit vectors of length greater
than 3. The algorithm consists of stages, each of which consumes one bit of the
multiplier and performs a row-reduction using full adders on the column sums of the
preceding stages and the multiplicand ‘anded’ by a bit of the multiplier. The output
after these stages, consists of two bits per column for the n leftmost columns and a
single bit for the m -1 rightmost columns; a carry-propagate adder is applied to these
columns to obtain the final sum.

# Carry Save Array Muldplier

# multiplier muitiplicand
#iNpUL <Yy Yl oo Y2 Y12 Kp Xnoy - X2 X1 >>form>3 and n>2.

# Output <Sp4pn Smen-1 - 52 512

# EEE L L L 2L ] the function L EE L

{Mulit FinalAdd@Csmult}
{Csmult CkStage@Stage3@Stage2@Stagel}

{Stagel [tIr@1,concat@&[1,andg]@ pair@concat
@{[1@2],concai@disti@[last@1,1l@2],{last@11]}}

{Stage2 [1,concat@((1,[andg]]@ 1@2,concat@&[1,{andg@(1,2],311@2@2],3]
@[1,[1@2,&[2@2,1,1@2]@2@2),3]
@@ 1,[[1@2,1as1@ 1], distl@[last@ 1, pair@tr@11@2]1, last@2]]}
(Stage3 Regroup@Csavel@Setup}

#icheck for last stage and repeat NormalStage
{CkStage (eql@[length@1,% 1]—LastStage,CkS tage@NormalStage) }
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Figure 5.7 The sketch of the function Mult with the functions HA*,
FA*, and FA** represented as components.

{NormalStage Regroup@ Csave@ Setup)

{LastStage LastRegroup@LastCsave@Setup}
{Sewp [tlr@1,

([1@2.]ast@1],&[1@2.[1,2@2]|@disti@[last@1,pair@Ur@1@2]],
apndl@(last@2,31}}
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(Csave {1,concat@[[1,andg]@1,&0P2@2]@2,apndl@{Hadd@1,4]1@3]}

(Csavetl [1,concat@[[1,andg}@1,[OP1@ 1@2],&0P2@U@2]@2,
apndl@(Hadd@1,u}@3]}

{LastCsave [concat@[[andg@ 1], &LOP2@2]@2,apndi@[Hadd@1,d]@3]}

{LastRegroup concat@|pair@tir@apndi@{1,concat@tl)@1,
[apndl@([2@last@1,1@ 1@2),2pndl@[2@ 1@2,U@2]]]] }

{Regroup [1,apndr@(tr@2,[last@2,1@ 1@3]],
apndl@{2@1@3,1l@3]]@[1.Regp@2,3]}

(Regp (eql@[%2,length] —id;
concat@([1, [2 1@1@3]],Regp@concat@[[2@1@3,2@ 3], L@u@u])))

{FinalAdd concat@ {seq(CFA)@concat@[tlr,[[1],2]@ 1@1last],ti@]last} }
{CFA (eql@[%1,length@ 1]—Hadd@[1@1,2};FA))

#FA* = OP2 : <<a b> <y x>> — <<c x> s> where 2c +s = (a + b + yx)
(OP2 [[org@[1.1@2],3],2@2]

@[1@1,Hadd@{2@1.2],3

@[Hadd@1,andg@2.2@2]}

# HA* = OP1 : <<a> <y x>> — <<c x> s> where 2¢ + s = (a + yX)

{OP1 [[1@1.2].2@1]@[Hadd@[1@1,andg@2],2@2]}

#FA** =LOP2:<<ab><yx>>—=><cs>where2c+s=(a+b+yx)

(LOP2 [org@(1,1@2].2@2]@(1@ 1 H2dd@[2@1,2]]@[Hadd@1,andg@2])

#FA:<cab>c>—<cs>where2c+s=(a+b+¢)

{FA [orz@(1.1@2],2@2]@[1@1.H2dd@[2@1,2]]@[Hadd@1,2]}

#Hadd : <<ab> = <cs>where2c +s=(a+b)
{Hadd [andg,xorg]}

Figure 5.7 is the sketch obtained of the function Mult with the functions HA*, FA®*,

FA**, and Hadd represented as primitives. The sketches of the functions HA®,

FA®*, and FA** are given in Figure 5.8. Figure 5.9 contains a sketch of the same FP

expression with the functions HA®, FA* and FA** evaluated. The effect is to

‘splice’ their definitions into the sketch. Notice that the boundaries of the primitives

HA®*, FA* and FA** are not respected and their geometry is not always the same; it
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ab y X a vy X ab yx

Hadd And | 4
T — | Hadd | | And
And ——
Hadd T
— Hadd
! Hadd =1
Or “ \'__.F Or
i | ™
¢ XS ¢ Xs cs
FA®* HA®* FA®*

Figure 5.8 The functions HA*, FA* and FA**.

may adapt to its environment.

The FP specification of this algorithm is oncrof the most complicated. Each
of the first three stages, the last stage and the other stages have different
specifications since they are all slightly different. The difficulty in writing FP
functions is often in determining the exact structure of the object being passed from
one function to the next, particularly when functions are nested several times within
Constructs. The exact structure of the object being passed must be known in order
to write the FP function. It is useful to annotate FP specifications with the structures

expected and produced by its funcrions.
This design was realized as a layout. The first sketch in which the functions

HA®, FA*, and FA** are not expanded was selected, since the routing of power and
ground to the components in this case is straight forward. Power and ground are

connected to the components by two interleaved combs whose teeth run horizontally
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Figure 5.9 Mult with the functions HA*, FA*, FA** expanded.
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Figure 5.10 The layout of Mult
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Figure 5.11 The completed layout of Mult
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along the rows. Since power and ground run horizontally in metal, we use metal only
for the horizontal wires of crossings; the remaining wires are routed in polysilicon.
To obtain the layout in Figure 5.10, each of the primitives, And, FA*, FA**, FA,
HA®* and-Hadd were designed with their inputs and outputs in polysilicon. The
dimensions of these components and the exact locations of their inputs and outputs
were provided to fhc compactor in the format described in Section 4.5. The
compactor generated the positions of the components and the metal and polysilicon
routing and contacts for their interconnections. This layout, which is given in Figure
5.10, is obtained by including the layouts of the components at the coordinates given
by the compactor. To finish the layout the power and ground was added using a
graphics editor. In addition, the inputs and outputs were redirected from the top and

bottom respectively, to the sides. This final layout is in Figure 5.11.

5.3 Carry Chain Adder

The FP specification of a carry chain adder [Bren80] is considered. The
specification is generic in that it adds two bit vectors of length 2" for n>0. The input
consists of the 2" pairs of bits to be added with the leftmost pair, containing the least
significant bits, ((@1,61),(a2,62).(a3,03),....(a2,02))

For 1€igj<2",

r r

1 if a carry into column i 1 if adding columns i
would propagate as a through j causes a
P,j=4 camryoutofcolumnj and G;;=1 carry outof column j

0 otherwise ) 0 otherwise

The computation is performed by computing the carries for each column, G ; and
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then obtaining the sum bit using,
S,'=G 1.i-1 OPM for 1<i<2”, S;=P1'1 , and Szl+1=G 1,2* {5.1)

Py and G 1.; are computed for each i by using the following identities, implemented

by the function PG.

For iSj<h, Piy=PjPjun and P;p=(G;Pjn a}*+Gjsin
The initial P;; and G; ; are computed by the function PG1.

P =a;@b;, Gii=ab; .

The computation of P,; and G,; is achieved in two steps by the function

GetCarries. The following is the specification of GetCarries.

# input = ((a0,b0),(al,b1),(a2,b2),....(a2**n - 1,b2**n - 1))
{GetCarries SecondHalf@spliv@ 1@FirstHalf@ &PG1}

(FirstHalf (eql@{length,%1]—id;FirstHalf@&Stage 1@pair)}
{Stagel concat@[&D@1,&D@tr@2,[PG@(lasi@1,last@2]]]}

{SecondHalf (eql@(length,% 1]@ | —Done;SecondHalf@concat@
[split@&D@1,Stage2@t]@apndr@(concat@&(id,lastj@tr,last]) }

{Stage2 concat@&([apndr@[&D@U@ 1@2,PC@(1,125t@ 1@2]],&D@2@2]
@[1,5plit@2])@pair} |

{Did}

{Donc id}
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First GetCarries computes (P;;,G;;) by applying PGl to the two bits in each
column and then it applies FirstHalf. FirstHalf computes (Pi_241,;,Gi2t41,;) for
each column i=(2m+1)2* where m is an integer. This is accomplished by arranging
each column (i.e. its pair (P,G)) in a group of its own and then recursively applying
the function Stagel to pairs of groups until only a single group remains. Stagel
combines a pair of groups computing a new (P,G) for the last column of the second
group by applying PG to the last columns of the two groups; the pair of groups is
then concatenated to form one group. All other columns are unchanged; the function
D which is given the definition id is applied to them. When all columns are in a
single group GetCarries applies the function SecondHalf to compute the final
(P,G)’s. SecondHalf is also recursive, terminating when each column is in a group
by itself. At each step the final (P,G)'s of decreasing multiples of powers of 2 are
computed. Assume that in the previous step Py ; and G ; have been computed for
each column i=m2*. In the next step to compute the (P,G)’s of columns which are
multiples of 2*~!, it is necessary only to compute new (P,G)'s for columns
i=(2m+1)28"1 = m2*+2%-1 | the odd multiples of 2¢~!. The current (P,G) in column i
is (Pi_pt-t41.i»Gie141.0)- (P1.;,G1.;) can be obuined by applying PG to the current
(P,G) and (P nz,G 1 m2). Initially the columns are divided into two groups and
since FirstHalf computed the final (P,G)'s for powers of 2, the last column (a
multiple of 2*~!) has its final value. At each step SecondHalf duplicates the last
column from each group and then applies Stage2 after removing the first group.
Stage2 takes each group, splits it into two and computes new (P,G)’s for the last
column in the left group of each new pair using the duplicated column immediately

to the left of the group. The first group is then appended to the result of Stage2.
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Figure 5.12 The sketch of GetCarries with each (P,G) as a wire

Figure 5.12 is the sketch of GetCarries in which the pair (P,G) for each
column is represented by a single wire. This is accomplished by directing the
interpreter to draw PG1, PG and D as boxes and by giving PG1 and PG symbolic

definitions.

(define-symbolic PG1 input=(a b) output = (¢) )
(define-symbolic PG input=(a b) output =¢)
(drawbox PG1 label=PG1 ht=2)

(drawbox PG label=PG ht=2)

(drawbox D label=D ht=2)
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Figure 5.13 The sketch of GetCarries with PG and PG1 expanded

Figure 5.13 is the sketch of GetCarries with each wire corresponding to a bit
this time and with the specifications of the functions PG and PG1 ‘filled in.” The

specifications of PG1 and PG are,

{PG1 [[xorg,andg]]}
(PG [andg@[1@1,1@2),0rg@[andg@(2@1,1@2],2@2]]}
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By performing the operations on the computation tree described in Section
3.8 to merge connected routing regions, the routing can be improved. Figure 5.14 is

the result of these operations. Note that one less horizontal track is used in between

each stage.
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Figure 5.14 The sketch of maximal planar circuit of GetCarries

To compute the final sum we will need only the G;’s. The definition of Done
is changed to retain only the G of each column. Notice that the layout interpreter
generates only those wires and boxes which have paths to an output. The function

Done in the previous specification is be modified as follows.

{Done &{(2@1)}
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Figure 5.15 The pruning of the planar circuit of Figure 5.14
This gives the sketch in Figure 5.15. The specification of this functon is gready
simplified by having unnecessary swucture pruned away rather than having to

modify the specification to avoid generating it.

To obtain the final sum by (5.1) it is necessary to combine the first £ in each
column, P;; with the G of its left neighbor Gy ;.;. One way of doing this would be
to duplicate each P;; generated by PG, route them along the side and then merge
them back into the columns to compute the final sum as in Figure 5.16. The
additional area required for routing makes this an unatactive alternative. A better
design would be to route the P;; along with the (P,G) down its own column. This

extension is easily handled in FP by modifying the function PG so that it duplicates
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Figure 5.16 An inefficient design
its first argument if it receives only two arguments in a column and simply passes on

the extra argument otherwise. The specification is modified as follows.

{ Add concat@[[1],&xorg@pair@ tl@tlr,[last]]
@concar@apndl@ (1@ 1,&([1,3]@ 1)@11)@GetCarries )}

{PG 2pnd1@ (D@ 1@2,(null@t1@11@2—O0ldPG; OldPG@{1,1@2D)
@ (null@u@1@ 1 2id:[U@1,2]))

{OIdPG [andg@{1@1,1@2],0org@[andg@[2@1,1@2),2@2]]}
{Done id}

The function Add applies GetCarries and then handles the columns according to

(5.1) to obtain the final sum bits. Figure 5.17 is the sketch of Add.
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Figure 5.17 The sketch of Add
4.4 Tally

The tally circuit counts the number of 1’s in its input. The i ourput is 1 if
there are exactly i inputs which are 1. The definition is recursive; it computes the

tally of n-1 inputs and then considers the n* input, adding a 0 to either side of the
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previous result, according to the value of this a** input.
- # main function
{Tally (eql@[length,% 1]—One;More) }
{One [id,Invi@1}

(More &SEL@dist@[[Inv,id]@ 1 pair@concat
@([%0],concat@ &{id,id]@Tally@d,[%0]1]}

{SEL Wor@ &SW@trans}
{Wor org)
(SW andg)
{Inv notg}
a b ¢ d
L
—
Sw Sw
|
é
SEL

Figure 5.18 The function SEL.

As in the Decoder, a more compact placement can be obtained by compacting to the
right instead of the left. However, this problem disappears when the sketch of the
algorithm is obtained with lower level primitives in Figure 5.21. Again the

primitives SW and Wor can be represented by gates in the FP definition.
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Figure 5.19 Tally circuit with SEL as a primitive.
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Figure 5.20 The functions SW and Wor.
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4.5 FFT

This is an example of a higher level algorithm: an algorithm to compute a 2"
point FFT. It illustrates the ability to expcﬁment with the different algorithms at a
high level. Two algorithms are presented, one based on the Butterfly and Bit
Reversal permutations and the other based on the shuffie permutation [Park80].
Figures 5.22 and 5.23 are the sketches of the two algorithms with the permutations
represented by boxes. The two functions are written for any 2" point input.

:2" point FFT

# input ; (2" complex numbers)
M202,2223242526272829210211 212713 214 218)

# or 2" pairs of real numbers
#H((xoyo)(x1y1)Xx2y2)(x3y3)(xaya)(xsys)(xsys)x1y1}
#(IsJ’s)(xg)’g)(x 10Y 100X 11Y 100 127 12)(x 13¥ 13 )X 147 14 )(X 157 15))

# Tradmonal FFT Al gomhm Buttcrﬂws and th rcversa.l

(Fft Biov@FfiStages)

(FftStages (eql@[length,%2] — W ; &FftStages@split@concat
@Bfly@concat@&W@Bfly)}

{Bfly concat@{Shuffle@(1,3],Shuffle@(2,4]1@concar@ &trans@split@pair)
{Bitrv (eql@[length,%2]—>id; &Bitrv@trans@pair) )

# Shufﬂe Unshufﬂe Algorithm

(Fft (End—»Flatten; Fft@ VunShuffle@Stage))

{VunShuffie (Bottomn - UnShuffe ; Recons@ VunShuffle@concat)
(UnShuffie concat@ wrans@pair)

{Recons (Bottom—> split; &Recons))

{Stage (Bottom—> split@concat@ & W@ Shuffle@split;&Stage)}
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Figure 5.22 FFT with Butterfly and Bit-Reversal Permutations
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Figure 5.23 FFT with Shuffle Permutation
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(End (Bottom—>eql@{length,%1];End@1)}

# defined for complex numbers
(Bottom atom@ 1} ‘

# defined for real numbers
{Bottom atom@ 1@1}

(Flatten (Bottorn—> id; Flatten@concat)}
#it#HHH Definiton of W

{W [Cadd,Csub]@[1,Cmui@(2,ul]])

{u0 [u,u]}

{u %1}

{Cadd &+@Shuffle}

{Csub &-@Shuffle}

(Comul [-(@[*@[1@1,1@2),*@[2@1.2@2]],
+Here@{l@l2@2),*@2@1.1@2]]]}

{Shuffle trans}

The shuffle-unshuffle algorithm is more complicated and relies on the

function Bottom to identify an actual point. This function would have to change
depending on the representation level of the points, that is, whether an atom
corresponds to a complex number or a pair of real numbers for example. The
adjustment of Bottom is left to the programmer. Both algorithms for a 16-point FFT
are displayed in Figures 5.22 and 5.23. Each wire represents a compiex number and

the W is marked as a primitive as well as the permutations.

In Figure 5.24 each wire is also a complex number, but the permutations,

Bfly and Bitrv, are no longer primitives. Figure 5.25 contains the primitives for the
sketches in Figures 5.22 and 5.23. The primitive W is represented with complex

numbers as atoms. In Figure 5.26 each wire now represents a real number but the

246



IIL]HI II""\

Figure 5.24 FFT algorithm of Figure 5.22 with only Was a primigve.
number of points has been reduced to 8 in order to fit the sketch on one page. The
level of representation could be lowered even further until each wire corresponds to
a bit. The same FP code would be used but each time functions at a lower level
would be marked as primitives. By examining the sketches, it is apparent that the

routing area required to implement the FFT in this manner is prohibitve.

The performance of the compaction algorithm is most visible in this
example. The constraint graphs of Figures 5.22, 5.23 and 5.4 were inconsistent and
required adjustment. For Figures 5.22 and 5.23, the compaction went through two
phases. In the first phase, the boxes were enlarged to obtain a consistent constraint
graph, and then the wires were fixed. However, after pulling the wires back to the

right, it became possible to retract some of the boxes, so a second compaction was
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Figure 5.25 The primitives W, Bfly, Bitrv, Shuffle and UnShuffle.
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performed, (on a constraint graph which was now consistent). The sketch for Figure
524 is not as "nice”; the routing of the permutations forces this inefficient
placement. This problem is somewhat alleviated in Figure 5.26 since the lower level

primitives place less constraints on the routing.

Figure 5.26 8-point Butterfly-FFT algorithm with the primitive W expanded.
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5.6 Inner Product

This example from [Pate85] illustrates how to transform a space
implementation of an algorithm into a tme implementation by applying
transformations to the FP specification. The following FP function computes the
inner product of two vectors of numbers.

{IP *@&+@trans)

The algorithm consists of three steps. Nurnbers from the two vectors are first paired
by the function trans, each pair is then multiplied, and the results are added up.
Figure 5.27 shows the space implementation of this algorithm with two vectors of

length four. A wire here represents a number.

Xy X2 X3 X4 N1 Y2 ¥ Ya
I [1
T
+ + +* +
 —
l—' -
»
L...., 1
-
P
Figure 5.27 Inner Product.

Using the following space/time identities from Section 3.6 we can apply

transformations to IP to transform it to a sequential implementation.
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&faD™' @ POSI@ &7f @ SOPI

if=D"! @ 1f @ apndr @ [SOPI @ tir, last]

Using these identities on the Right Insert and Apply-to-All combining forms of IP

gives the function,

D1 @!T+ @apndr@(SOPI @ tlr, lastj@D™' @POSI@4& T* @SOPI@trans.

Xy X3 X3 X8 Y Y2 ¥»  Ya

[
r

Register

'y

Figure 5.28 Time implementation of the Inner Product.
Figure 5.28 contains the sketch of this function. In this sequential implementation,
all of the pairs are multiplied and accumulate in the POSI before any addition is
performed. To improve it we would like to to cancel the SOPI and POSI in the
center so that the additions can be performed as the results of the multiplier become
available. The problem is that not all of the outputs of the SOPI go to the POSI; one

is used to provide the initial value of the register of the Right Insert. As it is, the
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POSI and SOPI cannot be canceled in this description. However there are two ways
of altering the specification so that the SOPI and POSI cancel: by loading the
register with the identity element for the operation (in this case the muidplicative
identity) or by multiplying the first two pairs of numbers in parallel. These choices

correspond respectively, to the following two identities,
If2!f@ apndr @ [id, %)
where [ is the identity for fand
D! @ POSI@ &7f @ SOPI
=apndr @ [D~' @ POSI @ &7f @ SOPL @ tr, f @ last].
Applying these two identities gives,
D! @ T+ @ apndr @ [SOPI @ tr, last] @ apndr @ (id, %1]
@ D! @POSI@ &T* @ SOPI @ trans
and
D! @ "+ @ apndr @ [SOPI @ tr, last] @ apndr
@[D'@POSI@ &7* @ SOPI @ tr, * @ last] @ trans
Using the following identities,
POSI@ D! @ SOPIaSOPI@ D! @ POSI =id

f@Dlapl'@f for f=POSI SOPI

[tlr, last] @ apndr = apndr @ [ilr, last] &id

these ¢an be further reduced to,
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D!'@7+@ apndr @ fid, %11 @ &7* @ SOPI @ trans
and
D!'@!"+@ apndr @ [&T* @ SOPI @ tr, * @ last] @ trans.

We can perform one more optimization by noticing that we can pair the numbers

more easily in time rather than space. This is reflected by the following identity,
SOPI @ trans = trans @ & SOPI
and results in the two specifications,

D'@!"+@ apndr @ [id, %1] @ &7* @ trans @ &SOPI

and
D!'@T+@ apndr @ [&T* @ trans @ &(SOPI @ tn) , * @ &last].
Xy X3 X3 X4 Y1 ¥2)3)4 Xy XXy XeYr Y2 )Xy Y
SOPI SOPI
T . SOPI SoP1
E I [ !
I * &
| 1 | ] 1
+ Register + Register
|
p-! D!

P IP

Figure 5.29 Optimized time implementations of the Inner Product.
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The tradeoff between these two descriptions can be seen from Figure 5.29
which contains the sketches of both of these functions. The first requires an
additional cycle since its SOPI’s must process four inputs, while the second requires

three cycles but an additional multiplier as well.

5.7 Memory

In this example we give a high leve! description of a digital memory. We
start by describing what we would expect a memory to do. We want it to accept an
instruction consisting of a read/write flag, an address and a word to write in the
memory in the case the flag indicates a write, and the output should be the word
selected by the address in the case of a read. Since there is no state in FP, in order to
describe a memory we must construct a function which whose input also contains
the current state and which generates the next state in its output. We can then fold
the Seq of this function to provide the required feedback. We also cannot have
conditional input or output. Hence the input to this function memory consists of a
read/write flag, an address, a word and the current memory contents. The ourput
consists of an output word and the new memory contents. The specification is
generic allowing any address and word size.

# MemPFct : <<R/W <addr> <word>> <contents>>

# — <<new contents> <word>>

E input : <<flag < ag ... dp-1 > < b ... by >> memory object >

# where memory object is € wg ... wae_; > and w; is <by; ... bmi>

# .

(MemFct [trans@1,2]@ trans@&([t1,1}@seq(cell)@apndr@(id, %0))
@ &rans@dist!@(1@ 1,&distl@rans@ (2@ 1,trans@2]]
@[AddrDecode@1,2])

{AddrDecode [disti@(1,Decode@2],3]}
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Figure 5.30 The sketch of MemFct.

(Cell [org@[andg@[2@ 1@ 1,2@2@1],2],0rg@ [norg@1,andg@2]@distl
@[andg@1@1,[norz@2@2@1.1@2@1]]1}
The function Decode can be found in Section 5.1. Figure 5.30 shows the sketch
obtained from MemFct with n =2 and m =2. The description of the memory is
then obtained from the Seq of Memfct. We also provide the initial memory contents
using the Constant combining form and remove the final memory contents by

applying tl to the output.

{Memory ti@seq(MemFct)@apndr@ (id,%<<0,0>,<0,0>,<0,0>,<0,0>>}
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Figure 5.31 Space implementation of Memory.
Applying Memory (o a sequence consisting of three instructions forn =2 and m =2
gives the sketch in Figure 5.31. Here MemPFct is represented as a primitive. This is
the space implementation of Memory. To obtain the time implementation we apply

the transformation,
seq(f) =Dt @ apndl @ (1, POSI @ tl] @ seq” (f) @ apndr

@ [SOPI @ tir, last]
which gives,
{(Memory D~!@apndl@[1,POSI@t]@seq T(MemFct)@ apndr@ (SOPI@1lr, last]).

This gives the sketch in Figure 5.32 which is not quite what we had in mind. The
problem is that the feedback for the memory is at the level of MemFct instead of at
the Cell level. Fortunately, by applying transformations to Memory we can move

the outer Seq inside the inner Seq and to perform the feedback at the Cell level. The
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Figure 5.32 Time implementation of Memory.

outer seq becomes a Right Insert since the output of each cell corresponding to its
current value is no longer an output of MemFect; it is routed back by the internal
Seq.
(Memory D"'@POSI@ans@&(2)@2
@([1@2,&([1@2,& * (org)@trans@[t@Cell, 2@;]
@disd@([1,1@212@2])@apndr@|(2.(1,&([id.& . (%0)])
@rans@3]1@[& ' (1), rans@& ! (Decode@2),& T (3)]@SOPI)
{Cell seqT([org@[norg@l andg@2)
@disti@fandg@1@1,[notg@2, 2@1]] andg@(1@1@1,2]])
@apndr@{rans@([wans@1,1@2],%0] )
Figure 5.33 shows the sketch of this version of Memory with n=3 and m =4.
Figure 5.34 contains the new version of Cell which has the time implementation of
the Seq. Note that we have also transformed the specification to pull the

initialization constant to the Cell level. This is still a high level descripton of a

Memory; lower level primitives should be substituted into the cells.
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Figure 5.33 Optimized time implementation of Memory.
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Figure 5.34 The sketch of Cell.

Summary

Several examples have been presented in this chapter to illustrate the style of
specifying circuits in FP. Sketches and layouts were obtained directly from the FP
specifications given, using tools which were constructed to implement the methods
described in Chapters 3 and 4. The following advantages are illustrated with these

examples.

1. The ability to refine high level specifications to lower levels using varying

levels of abstraction.

2. The availability of graphical feedback during the refinement of the design,

allowing the geometric consequences of the design to be assessed.

3 The ability to transform the specifications, in particular to explore the time

and space tradeoffs.
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These features allow the designer to experiment rapidly with different alternatives,
pursuing to lower levels only those designs which prove themselves at higher levels.
However, this method of specifying circuits currently suffers from the following

limitations:

1. The current implementation of the mapping from planar circuits to layouts
requires inputs and outputs to be on the top and bottom of components,
respectively. This limitation excludes the horizontal flow of signals between
components, Extensions to encompass this type of flow should be

investigated.

2. FP specifications are not readily decipherable since the exact structure of
intermediate objects must often be deduced in order to interpret them.
However, it is this feature of using the structure of the objects to differentiate
between signals which allows the planar topology of the circuit to be

captured. Hence syntactic enhancements to the language should preserve this

property.
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CHAPTER 6
Improving Planar Topology

In this chapter, the problem of altering the planar topology to improve its
layout is examined. We first discuss measures for planar circuits and the
ransformations we will consider to improve them. After selecting a particular cost
measure, we consider the complexity of optimizing it and then present a method for
improving planar circuits represented by computation trees with respect to this

measure.

6.1 Measuring Planar Circuits

Unfortunately it is difficult to define an absolute cost measure for planar
circuits such as the size of the final layout, since the quality of the final layout can
depend largely on the method used in transforming the planar circuit to a layout
rather than on the planar circuit itself. Two different planar circuits capturing the
same circuit may both be optimal for different layout techniques. However, there are
some measures which are topological in nature and can be used to compare planar
circuits although there is no guarantee that their relative merits will manifest

themselves in the final layout.

These measures involve maximizing the ‘planarity’ of the circuit. The plane
graph of a planar circuit already provides a planar embedding. Thus measuring the

‘planarity’ of a planar circuit amounts to measuring the ‘planarity’ or ‘wiring
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complexity’ of its R-nodes. There are three measures of R-nodes which come to

mind.

1. Number of Crossings
The minimum number of crossings with which the R-node can be

implemented.

2. Number of Non-crossing Wires
The size of a maximum subset of pins of an R-node whose connections can
all be wired within the R-node without cross-overs. Note that we can always

include at least one pin from each partition.

The first measure minimizes the number of crossings without regard to the
number of contacts used. Whenever we have a crossing, we must route one of the
wires on a different layer. If we were forced to return the wire to the initial layer
immediately after the crossing then the number of crossings might be 2 good
measure since it would correspond to the number of contacts needed. However this
is not the case; once a wire is on another layer it should be able to cross wires on the
initial layer for no additional cost; it should only return to the initial layer after it

has crossed as many wires as required.

The second measure attempts to maximize the number of ‘easy connections’
and banish the remaining ones to other layers. By ‘easy connections’ we mean a set
of pins which can be connected without crossings. In this sense it more closely
approximates the final routing cost since once a connection is excluded from the set,
there is no cost associated with it with respect to the other wires. However this

means that there is no bound on the complexity of wiring the banished wires. The
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hope is that in maximizing the number of connections made on the initial layer, the

routing of the remaining wires will be rclativély simple.

A B A C g c B A

Y

Figure 6.1 The initial conﬁgui‘ation and optimal configurations with
respect to the two Cost measures.
Figure 6.1 illustrates the difference between the two cost measures. Suppose
we have the possibility of exchanging the connections of the pins labeled A, B and C
of the leftmost R-node in Figure 6.1. The middle R-node in Figure 6.1 is the optimal
arrangement if we want to minimize the number of crossings, while the rightmost

R-node is the arrangement with the maximum number of uncrossed wires.

Another criterion for the choice of a cost measure is its computational
requirements. We did not consider the number of contacts as a measure since
computing the minimum number of contacts required for routing an R-node whose
partitions all consist of two pins, has been shown to be NP-complete [Mare84]. This
measure also depends on implementation decisions such as the number of layers
available. Computing the minimum number of crossings in for an R-node with
partitions of size two is immediate. Finding a largest set of non-crossing wires in
this case can also be handled easily if the R-node is bipartite, while computing the

minimum number of crossings does not generalize as readily.
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Definition 6.1
An R-node, u =u, - - u,, is said to be bipartite, if there exist i and j such
that for each partition of , one of the sequences u; -~ - u;_; and u; * * - uj_
contains exactly one pin of the partition. This pin is called the source of the
partition. For partitions of size two, both sequences contain exactly one pin

of the partition and one of these pins is arbitrarily selected as the source.

Figure 6.2 A bipartite R-node

Figure 6.2 contains a bipartite R-node. In the R-node in Figure 6.2, the sequence of
pins is divided into 7,8,1,2 and 3,4,5,6. P has one pin in both subsequences, P3
has one pin in the second and P3 has one pin in the first. We first present a simple
algorithm to find the largest set of non-crossing pins of a bipartite R-node with
partitions of size two. We then discuss how to generalize this procedure to the case

of arbitrary sized partitions.

To obtain a maximal set of non-crossing pins of an R-node, we generate its
conflict graph which will have the partitions as nodes and edges between partitions
which do not conflict (partitions whose connections can be made without crossings).
Finding the largest non-crossing set of pins is then equivalent to finding a maximum

weight clique (a set of nodes in which each pair is joined by an edge) in this graph.
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Finding a maximum clique is in general NP-complete [Gare79]. However Even and
Pnueli [Even72] have shown that in the case of transitively orientable graphs it is
quite simple.
Definition 6.2
A transitively orientable graph is an undirected graph in which the nodes can
be numbered so that when the edges are oriented from low to high, the
resulting directed graph is acyclic and transitive (the existence of edges (v?ﬁ)

- _ -
and (u,w) implies the existence of the edge (v, w)).

We observe that in the case of bipartite R-nodes with partitions of size two, the
resulting graph is transitively orientable. This was first observed in [Gopa83]. The
numbering of the nodes is obtained by ordering the partitions according to the order
of their first pins within one of the two subsequences of the bipartite R-node. Then
for i <j <k it is clear that if P;, P; and P;, P are notin conflict, then P;, P, are not in
conflict. In the bipartite R-node in Figure 6.3, this order would be Py,P3,P3,P4is
the R-node were divided as shown and the subsequence 7,8,1,2 was used. The

conflict graph and its transitive orientation are shown in Figure 6.4.

P, ={75},Py=(84}),P3=(16},Ps=(23)

Figure 6.3 A bipartite R-node with partitions of size two.
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Figure 6.4 The transitively oriented conflict graph of the R-node in Figure 6.3.

Finding the maximum clique for transitively oriented weighted graphs is
simple. We compute for each node j the maximum clique to which it belongs in the
subgraph induced by the nodes 1,2,...,/. Let c(j) denote this value. Ther ¢ (j) is
computed as follows where w (/) denotes the weight of node .

1. c(l)=1

2. ¢ () = max(w (j)}+c (i)

(ij)

To see how this works, suppose we have computed ¢ (i) for each i <j. To compute
- ¢(j) it suffices to examine all the edges which enter j and the ¢ (i)’s of these nodes.
If there is an edge from & to j for k </ then adding j to any clique in which & is the
highest numbered node will result in another clique by the transitivity property. To
obtain the maximum clique we simply keep track for each j, of the incoming edge by
which it attains its value. After obtaining the c(j)’s for each node, the size of
maximum clique is the maximum of the c(/)'s over all of the nodes and the
corresponding clique can be enumerated by tracing backward over the saved edges
starting from a node with a maximal ¢ (). This gives an algorithm whose time and

space requirermnents are bounded by O (n?) for a graph of n nodes.
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Unfortunately, this algorithm does not extend to arbitrary R-nodes even when
all partitions consist of two pins. The crucial transitively orientable property no
longer holds. Figure 6.5 contains such an R-node and its conflict graph. Picking
either orientation for the edge from A to E in the conflict graph forces the other

orientations of the other edges and produces a directed graph which is not transitive.

Figure 6.5 An R-node whose conflict graph is not transitively orientable.

Fortunately, the R-nodes generated from FP expressions are bipartite. In
Chapter 3 we saw that the planar circuits resulting from FP expressions were
directable and the inputs and outputs of each R-node or sub-tree of the computation
tree were not interleaved. Hence dividing the sequences of of an R-node into inputs
and outputs gives the two required subsequences for bipartite R-nodes since each
partition has exactly one input pin. The more unrealistic of the two assumptions
needed to use Even and Pnueli’s algorithm is the constraint on the size of the
partitions. Although many partitions do in practice consist of two pins, there are
enough which do not to make it impractical to ignore them. We will generalize to
arbitrary sized partitions as follows. Suppose we have a bipartite R-node u whose
sequence is divided into two the subsequences required for a bipartite R-nodes and

we have a partition of u of size k+1 for k >1, whose source pin is ug. The other pins
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in this partition, u; ‘' u, are in the other subsequence. We replace ug by
Wox ' * " Ho,1 in W’s sequence in this order. We also replace the partition by the &
partitions,

{uo,i,u;} for 1<i<k.

We have simulated the original partition of k+1 pins by k partitions of two pins
each. We do this for each partition of size greater than two and then find the
maximum set of non-crossing pins. To obtain the maximum set of non-crossing pins

we proceed as follows.

1. We obtain the maximum set of non-crossing pins of this bipartite node with

partitions of size two.

2. For each pair {ug ;,u;} if only one of the two pins is in the maximum set of

non-crossing pins we include ug ; rather than y;.

3. We remove the ug ;s and restore ug.

Since the new pins, ug;’s, were all adjacent, if they were connected to their
respective 4;’s in the maximal set of non-crossing pins obtained in the first step, then
ug can be connected to these u;’s, which are the ones remaining in the final maximal
set of non-crossing pins. Note that this is not quite the same definition of cost since
connections between non-source pins are not counted in the final maximal set of

non-crossing pins. Only connections between pins and their source pins are counted.

We can find the maximum non-crossing set of pins under the above
restrictions. In Section 2.8, we argued that a maximal indivisible planar circuit was
optimal with respect to cost measures which satsfied certain assumptions. We

discuss these assumptions with respect to the maximum set of non-crossing pins as
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defined above. We define the cost of a node to be the number of pins which are not
part of the maximum non-crossing set.
Definition 6.3

The cost of an R-node, u, is ¢ {u) =lul -m (u) where m (1) is the number of

pins in 2 maximal non-crossing set of pins for u. The cost of a planar circuit

iscA)= 3 c)

€ R —nodes

We show how the following assumptions made about the cost functions in Section

2.8, are satisfied by this cost function.

Assumption 1:
The cost function over the layout is an additive function of the components, B-nodes,

and the implementations of R-nodes. It is defined by

cA)= Y CwW+ I cw

x€ B —nodes 4€ R -nodes

where C(x) is the cost associated with B-node x and c(u) is the cost of

implementing R-node u.

Assumption 2:

If u and v are two adjacent R-nodes then ¢ (1) +¢ (v) 2¢ (M (u,v)) .

Assumption 3:

If z is an R-node which can be cleanly divided into u and v then ¢ (2) 2 ¢ () + ¢ (v).

Assumption 4:

If u is an R-node and T is an untangling of u then ¢ (i) 2 ¢ (T (u)).
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Assumption 5:

If u is a trivial R-node then ¢ (u) =0.

Assumption 1 is satisfied by setting the cost of a B-node to be 0. Assuxﬁptions 3,4
and 5 are clearly satisfied for our cost function. Assumption 2 requires closer
examination. Suppose we have two R-nodes u4 and v connected by a set of n wires
whose pins are adjacent on both u and v. Suppose p and ¢ are maximal set of non-
crossing pins for 4 and v, respectively. We partition p and ¢ into p1, p2 and ¢4, 42
according to whether the pins belong to the set of n adjacent wires or not. Let w be
the node which results from the merging of u and v along the n wires. Then
lwl = lul + Ivi - 2na since exactly 2n pins will disappear as a result of the merge.
The set of pins pj\_yq, will be part of w and will not be in conflict within w. Hence
we have m(w)2!pI+liqg |. Since both p5 and g2 consis_t of no more than »n pins we

have,

curcW)=lul =mw)+ lvi =m(v)
=lul+lvi=(lpi!+ipal +1lg 1 +1get)
=lul+1lvli=(lpil+1g;D=(lpal +1gq21)
Stul+ vl =(pyt+1i1gy1)=2n
Slwl=(lpt+1g,1)
S lwi =m(w)

Sc(w)

These five assumptions are satisfied by this cost function. However, the last
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requirement mentioned in Section 2.8, is not in general true.
c(RE (u))=cu).

The problem is that a refolding can increase or decrease the number of wires and
hence pins as a result of its unclean divide and/or merge. Our planar circuits
however will not have R-nodes with self-loops. We specifically avoided merging the
R-nodes which would create nodes with self-loops, preferring to consider the
arrangement of the wires connecting the R-nodes separately rather than as self-loops
on one R-node. In this case, the optimization we are attempting to perform tries to
select the best refolding by examining the wires which would become the self-loops

of the maximal R-node.

In the next section we describe the transformations we will consider in order

to improve a planar circuit.
6.2 Transforming Planar Circuits

Before we can optimize a planar circuit, we must decide on the class of
planar circuits which we will consider as alternatives. At the most this class could
include any planar circuit which captures the same circuit as the given one.
Unfortunately this would require us to solve the general routing and placement
problem which we have avoided by restricting ourselves to a fixed planar topology.
As discussed earlier, routing and placement comprise many intractabie problcms;
Since we do not want to have to consider the general layout problem we will limit
ourselves to certain typeé of operations which preserve the characteristics of the

original planar circuit, while exploiting its symmetries.
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In Section 2.8, we argued that the layout procedure should consider
permuting the order of the self-loops of an R-node in order to reduce the internal
complexity of wiring the R-node. So at the least we should consider permuting the
order of adjacent self-loops. In addition, in Section 3.8 we did not perform all
merges possible and ended up with some non-maximal R-nodes. We must also
consider reordering these wires between R-nodes in order to guarantee that we do

not obtain a sub-optimal result by implementing non-maximal R-nodes.

Components often have pins which are equivalent, that is, perform the same
function when a subset of the inputs are interchanged. This is the case with all
commutative operators such as the boolean functions AND, OR, NAND, NOR and
XOR. Since many components are constructed from these elements they have
equivalent pins which could be interchanged to reduce the complexity of the
adjacent R-nodes. In addition to the symmetry between pins, we can also exploit the
symmetry provided by the representation of a planar circuit by the computation tree.
The combining forms Construct and Apply-to-All offer us the possibility of
reordering their subfunctions to reduce the wiring complexity of adjacent routing

trees.

Unfortunately, the problem of optimizing our cost function is sdll hard. In
the next section we show that it is NP-hard in the case in which we consider only the
operation of switching equivalent pins of components. This problem arises in layout
and is kﬁown as the pin alignment problem, {Schl84] and [Schi85]. However we
will be able to perform more powerful transformations to improve the ‘pin
alignment’ of planar circuits represented by computation tees by exploiting the

symmetries implied by the combining forms. We will consider the following
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transformations.

We ‘are given a planar circuit A = (P,/0,B,R,W) and for each B and R-node,
u=Uy U, aset of permutations of its pins, [T(u) = (m;] where each «; is a
permutation of the integers 1,2,...,n,. We require that [1(#) contain the identity
permutation. We say that &; is a legal permutation for u = uy - - * 4y, , if the pair of
pins u;,7;(u;) are connected by wires to the same B or R-node for each 1</ <n. Note
that the identity permutation is always legal since this is trivially true if u; = 7;(u;).
Definition 6.4

A legally derived planar circuit from (A,IT) for A =(P,I0,B,R,W), is a

planar circuit A" = (P,/0,B",R’,W) for which there exists a mapping fp:P —P

satisfying the following conditions.

a. The B and R-nodes of A’ consist of the B and R-nodes of A
respectively, under the mapping fp which extends to sequences of

pins as follows: fp(u) = (fp(uy) - - - folu ) foru=uy -+ - .

b. For each B or R-node u, fp(u) = m;(u) for some x; € [I(u). For R-

nodes, the partitions of fp(u) are those of u under the mapping fp.

c. The sequence of /O pins which forms the boundary is the same in A’

and A.
Note that we are simply permuting the pins of B and R-nodes along their boundaries.
The wires remain unchanged. The resulting embedding of the plane graph implied
by this circuit is the same. To see this it suffices to observe that if we ignore the
internals of the R-node and B-nodes, what is occurring is simply a relabeling of the

wires. The cyclical ordering of the edges of the nodes in the plane graph is preserved
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under this relabeling. If we have a hierarchical representation of the planar circuit,
such as the one afforded by a computation tree, then we can extend this type of
transformation to ones which alter the plane graph by considering sub-sections of the

planar circuit as B-nodes.

In the next section we show that optimizing our cost function for planar
circuits under only the transformations given above is NP-complete. Subsequently
we will present a method for improving planar circuits with respect to this measure
on planar circuits represented by computation trees, considering the additional

transformations afforded by this representation.

6.3 The Complexity of Pin Alignment in Planar Circuits

In this section, the problem of optimizing a planar circuit with respect to our
cost measure and using only a simple transformation is shown to be NP-complete.
Qur construction will result in a maximal indivisible planar circuit whose R-nodes
are all bipartite and have only partitions of size two. In addition we will allow any
permutation of R-nodes. Each B-node will have at most two possible permutations
including the identity. We first present the problem we will reduce to it, Planar

3SAT.

SAT

Given (X,C) where X is a set of variables, X={x,X2,....X.}, and C is a collection of
i=m .

clauses, C=\_c; each ¢; ={z},....2!' } is a clause of literals drawn from X (i.e. 2
i=m]

subset of size jiof X\_X), is there an assignment of values, true or false, to the
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variables such that each clause contains at least one literal with the value true?

3SAT
Given an instance of SAT such that each clause has at most three literals

(c; = (2},2%,22 ), is it satisfiable?

3SAT has been shown to be NP-complete as well as SAT. The problem which will

be used to show the NP-completeness of pin alignment problem is Planar 3SAT.

Planar 3SAT
Given an instance of 3SAT, (X,C), such that the following graph, denoted by
G (X,C) is planar, is (X, C) satisfiable?

G(X,C)=(V,E) where, V=X\_UC and E={(x;c;)|ifxec;orxec;}

Lichtenstein [Lich82] has shown Planar 3SAT to be NP-complete by reducing
3SAT to it. In his reduction, the graph of an arbitrary instance of 3SAT is mapped
into the plane and then modified by adding new clauses and variables to remove
crossings, thus providing an instance of Planar 3SAT and a planar realization of its
graph. In Lichtenstein’s construction, G (X,C) also contained edges to interconnect
the nodes corresponding to the variables in a simple closed path. These edges have
been omitted here from the definition of G (X,C) without loss of generality. To
facilitate the reduction, it will be assumed that the instance of Planar 3SAT also
comes with an embedding in the plane which is specified by the clockwise cyclical
ordering of the edges around each node and the outer boundary. This extension to
the definition of Planar 3SAT does not affect its NP-completeness since
Lichtenstein’s construction provides this information. The decision problem of pin

alignment in the case of planar circuits is as follows.
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Planar Circuit Pin Alignment

Given a planar circuit A whose R-nodes are bipartite and consist only of partidons of
two pins, a set of permutations for its B-nodes [T with at most two permutations per
B-node, and an integer X, is there a legaily derived planar circuit A” from A and 11

whose cost does not exceed K ?

The problem of planar circuit wire pin alignment will be shown to be NP-hard by

reducing Planar 3SAT wit.
Construction
Suppose X={x,x3,...,%x,) and C= {¢1,€2,...,Cm/ is an instance of Planar

3SAT. If a variable appears in both its complemented and uncomplemented form in
a clause then the clause can be removed since any assignment will satisfy it. If a
variable appears only in one form but more than on.cc, then remove all but one copy
from the clause. This can be repeated until all clauses have at most one literal
corresponding to any variable. A new version of Planar 3SAT is obtained which
has a solution if and only if the original had one and its graph is a subgraph of the
original’s so it can inherit its embedding from it. Hence it will be assumed that no
variable occurs twice within the same clause. In addition, we can assume that
G (X,C) does not have any isolated nodes since these would correspond to variables
which do not occur in any clause or empty clauses either of which can be removed

without affecting the existence of a solution.

We have an embedding in tﬁc plane of G (X.C). To construct the instance of
PCPA we will replace each variable node and clause node by an R-node and some

B-nodes. In addition a B-node will be placed on each edge. These B-nodes will each
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have two permutations. The choice of which permutation to use for these B-nodes
will correspond to an assignment of a truth value to the literal represented by this
edge. The R-nodes and B-nodes which replace the variable and clause nodes of
G(X,C) will serve to enforce a consistent assignment of values to literais
corresponding to the same variable and will insure that at least one literal in each

clause is true.

Figure 6.6 The B-node and wires which replace an edge of G (X,C)

For each edge of G (X,C), e{, corresponding to a literal z{, we create four
wires, n; j, n; j, N; j and &;_j. We will also create a B-node as in Figure 6.6 which has
four pins, two on each side, each belonging to one of the four wires. The n,n wires
connect two of the pins 1o the R-node corresponding to the variable R-node, while
the N,I;l wires connect the other two pins to the clause R-node. Two permutations
will be allowed for this B-node, the identity and the one in which pins of n; ; and ;‘i-j -

exchange as well as those of N, ; and 1\},“]. Thus this B-node would either be
nij Nij Nijnij ot nj Ny Nijn;.

Figure 6.7 contains the other possible configuration for the 8-node.
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Figure 6.7 The alternate configuration for the B-node replacing an edge of G (X,C)

The configuration selected will correspond to an assignment to the literal.
The R-nodes for the variables and clause node will insure that all literals
corresponding to a given variable have the same assignment and that at least one

literal of each clause is satisfied.

Consider a node corresponding to a variable x. Let M, be
Max( {zitzi=x}, {zi1zi=X} ), and m, be Min( {zi1zi=x], {zf12i=X} ), the maximum
and minimum of the number of instances of uncomplemented and of complemented
literals corresponding to x among the clauses. By assumption, M, >0. We construct a
B-node and an R-node as shown in Figure 6.8. The wires arrive at the R-node in the
same cyclical order as the edges of the node x. In Figure 6.8 they are shown entering
from the right, in this clockwise order from top to bottom. The selection of the edge
which is first in the sequence is arbitrary, however if this node is on the boundary we
require that the cyclic order begin and end so that the exterior occurs before the first
and after the last edge in the sequence. This will put the B-node on the exterior in
this case and which will enable us to add an /O-node to it later, to ensure the

reachability condition.

Let us denote the pins which belong to the wires n; ; and n; j, as p; j and Pij-
They will each be connected to another pin ¢; ; and qi ;j which exits the R-node on
the left and is connected by a wire to the B-node in Figure 6.8. There will be only

one configuration for this B-node. If M,>m,, then below the last edge in this
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Figure 6.8 The R-node and B-node which replace a variable node of G (X,C).
sequence a new B-node with 2* (M,—my,) is added and connected to the R-node as in
Figure 6.9. In this case two extra pins where needed since there was one more x than
%. These pins insure that the number of literals corresponding to x and X are the
same. Finally we add two more B-nodes each with 2B pins at the top and the bottom
of the sequence where 8 = Max{M, |xe X}. We order the pins on the big B-node to
force a consistent truth assignment to the literals corresponding to x. We divide the g
pins into two groups corresponding to x and X. The 2* (Mz-my) are added to the

smaller of the two groups so that the two groups contain the same number of pins.

If the topmost literal is x then we place the pins in the group corresponding
to X's on top followed by the other group preserving the order in which they enter the
R-node within the group. If the topmost literal corresponds to x, we do the reverse.
The pins corresponding to the two sets of 2B pins are placed in between these two
groups so that they cross each other. See Figures 6.8 and 6.9. Within each group the
¢;.; pin is placed in the same order with respect to the q; j as the p; ; is with respect
to the ﬁ,-_ j Pin. As a result the two connections (g;;,pi ;) and (&;J,ﬁ,-.j) will not
conflict inside the R-node unless the pins p; ;, pi,; are interchanged as the result of

selecting the alternative configuration for the B-node to which they are connected by
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Figure 6.9 The additional pins and B-nodes added to the variable R-node.
n;, i E," it

Now consider a node corresponding to a clause ¢;. This node has one, two or
three edges in G (X,C). Figure 6.10 shows the three possible cases. Figure 6.10 also
contains the R-node and B-node that is generated in each case. Essentially an R-node
is generated with pins for each of the N,Aﬂf wires which belong to the clause. These
wires enter from the right as pictured and exit from the R-node in the opposite order.
Thus it is possible to connect at most one of the pair of wires within this R-node and
only if the alternate configuration for the 8-node on which these wires originate, is
selected. This is the configuration which is required to connect the corresponding nn

wires within the variable R-node.

In order to obtain a planar circuit, we must add /O-nodes and ensure that the
reachability property holds. It is clear that any connected component of G (X, C) has

pins which are connected through B-nodes to every other pin since the B-nodes of
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Figure 6.10 The R-node and B-node generated for a clause node of G(X,C).
the variable and clause nodes achieve this connectivity. To insure the reachability
property it suffices to add an /O-node on the boundary of each component. There is
at least one variable node on the boundary of each component. We add an /O-pin
connected to its B-node. Remember that the B-node would be on the exterior in this

case. Finally we list these /O-nodes in any order as the boundary.
To complete the construction, X must be specified.

K = Ez(:c.-t-l) + ¥ 6(B+My)

i=1 XEX

This number reflects the fact that at most 6(8+M;) pins of each variable R-node can

be wired without crossings and only one pair of wires can be connected without
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crossings within each clause R-node. Since all partitions are of size two we will refer
to them as wires. We say that a partition or wire is connected if both pins are
included in the maximum set of non-crossing pins. Note that the cost of an R-node in

this case is the number of unconnected wires.

Claim: The constructed instance of PCPA has a solution if and only if the instance
of Planar 3SAT has a solution.

Proof: Supbosc first that there is a solution to (X,C). This solution corresponds to a
solution for the PCPA instance as follows. Consider the wires, ni,j» i j» Ni,j and b.l,-. ;
which correspond to the literal z/. If this literal is true under the assignment to the
variables, then select the alternate confi gur;nion for the corresponding B-node so that
the wires N and N can be connected within their clause R-node. OQtherwise, if z{ is
false, leave the B-node in the original configuration in which the # and 2 wires are in

the proper order to be connected within their variable R-node.

Since the assignment satisfies the clauses, each clause must have at least one
pair of wires which can be connected. Now consider a variable node. Note that the
pins corresponding to the literals which are false are not in conflict with each other
within the R-node. We can connect them along with one of the two sets of 28 wires,
giving 6(M,+8) pins which can be connected without crossings. Hence we obtain a

legally derived planar circuit from A which has cost X.

Now suppose that there exists a solution to the PCPA instance. Clearly at
least 2(!¢; [—1) pins cannot be connected at each clause R-node, leaving at most one
two wires or 2(ic; [+1) pins which might be connected. Now consider the cost of a
variable R-node. It is not possible to connect both sets of 28 wires since they must

cross within the R-node, so at least 28 wires are not connected. If any of wires of
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the upper set of 28 wires are connected, then none of the wires which are in the
upper group of wires can be connected, so we already have 2(B+M;) wires which
are not connected. Similarly if any of the wires of the bottom 2B wires are
connected, then the 2(8+M,) wires corresponding to the the upper 28 pins and the
lower group of wires cannot be connected. The remaining case to consider is if both
sets of the 28 sct:s of wires are not connected. Since 4B22(B +M,), in all three cases
we end up with at least 2(B+M,) wires which cannot be connected. Summing over
all of the R-nodes, we have already reached the maximum number of wires which
cannot be connected in order to have a planar circuit with cost at least K. Even if
4B=4(B +M,), we cannot not afford not to connect any of the 48 wires since the
remaining wires would still have conflicts and could not all be connected. Thus each
variable R-node must have pins from one of the two sets of 28 wires and the hence
the 2M, pins of the wires which cross it cannot be connected. Note that we have
already excluded 2(B +M,) wires from being connected at each variable R-node. All
other pins besides these and the 2(l¢;1—1) unconnected wires at each clause node

must be connected in order to meet the upper bound, K

This solution to PCPA corresponds to an assignment satisfying (X,C) as
follows. Consider a variable, x. At least one literal corresponding to x exists (M >0).
Consider the two sets of 2M, wires connected and unconnected in the variable R-
node corresponding to x. The sets of uncomplemented and complemented literals are
contained in one or the other of these two sets; either all of the wires corresponding
to uncomplemented literals are connected or all of the wires corresponding to
complemented literals are connected, but never some from both sets. Assign a value
to x such that the set of literals corresponding to connected segments are false and

the set of literals corresponding to remaining pins are rue. Now consider a clause
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¢;. It must have at least one pair of wires V; ; and ﬂl,-. j corresponding to the literal zl
which are connected. Note that both N;; and z“\;’,-_ j can be connected only if the
alternate configuration for the B-node has been selected. Consider the variable R-
node for x which corresponds to the literal z{. The two pins corresponding to n; ; and
n; ; can be connected only if the original configuration of the B-nodes was selected.
Since this is not the case, at least one of these two wires is not connected. Both of
these wires belong to the same group of 2M, wires which are unconnected, which
means that they correspond to a literal which is true and the assignment given to the
variables satisfies the clause.
a
The NP-completeness of this problem follows from the observation that we
need only guess a set of permutations, generate the corresponding fp, and check

whether it results in a legally derived planar circuit of cost less than K.

6.4 Using Computation Trees to Improve Planar Circuits

In this section, we present a method for improving planar circuits with
respect to the transformations described in Section 6.2. In addition, we will consider
transformations which arise by considering a sub-tree whose root is either a {,} ora
& combining form, to be a B-node in which the pins can be permuted corresponding
to the reordering of the sub-trees. The technique involves representing the possibie
permutations for the sub-trees of -a node in the computation tree and resolving

adjacent sub-trees to reduce the cost of intervening R-nodes.
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We represent the set of possible permutations in a hierarchical fashion. The
allowed permutations are represented by a forest called a permuration forest,
~ imposed on the sequences of input and output connections. The leaves correspond to
the input and output connections. Each internal node is labeled either AR or F,
indicating that the order of its children can be permuted in any order, can only be
reversed or is fixed, respectively. The numbers of trees in the sequences of inputs
and outputs are the same, and they are paired by an imaginary connection. Figure
6.10 contains a permutation forest. The permutations allowed are those which can be
obtained by reordering the pairs of trees, permuting the order of the children of a
node labeled A and reversing the order of the children of a node labeled R. A
configuration which exercises every possible change in the example of Figure 6.10
is,

gqonpabcdemlikijigi fh
13 14 12 34 52 111 108 967

We assume that the permutations of the actual B-nodes of the planar circuit
can be represented in this manner as well. The permutation forest for a Projection
or Apply-to-All combining form is obtained by simply concatenating the
permutation forests of its children in left to night order. Connections between sub-
trees result from the Compose, Right Insert and Seq combining forms. We will
concentrate on the Compose. The Right Insert and Seq combining forms use the

same methods.

We must resolve the permutation forests of the sub-trees of a Compose and
generate its permutation forest. There are essentially three steps in the procedure.

We assume that a sub-tree whose root is a Compose is in normal form as described
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Figure 6.10 A permutation forest.

in Section 3.8.

1. Since the Compose tree is in normal form, no two routing sub-oees are
adjacent in its list of children. We first combine the permutation forests of
adjacent non-routing sub-trees. The procedure is called Simplematch and is
described below. We obtain a new permutation forest for the combined sub-
trees. We repeat this for every pair of adjacent non-routing trees until the list
of children consists of an alternating sequence of rouring and non-routing

sub-trees.

2. The first and last children of a Compose tree in normal form are non-routing
trees. We refer to these the rerminal sub-trees. For each permutation forest
of a non-routing non-terminal sub-tree, we select an order for its pairs of
trees. This procedure attempts to preserve the separation between wrees of
permutation forests that might be lost if they were combined first with their

neighbors. It is called Global-Align and also is described below.
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3. The last prdcedure is used to select a permutation from the permutation
forests which minimizes the cost of the routing sub-trees. Since the
Compose is in normal form, every routing sub-tree is bordered on either side
by two non-routing sub-trees. We need to select a configuration for these
two sub-trees which minimizes the cost of the R-node sandwiched in between
them. We must then combine and obtain a new permutation forest
representing the remaining possible configurations of the combined sub-trees.
This procedure is called Complexmatch.

We now describe the three procedures.
Simplematch

Suppose we have two adjacent non-routing sub-trees whose configurations
are represented by permutation forests. We will refer to the connections between
them as the internal connections and the remaining as external. The internal
connections between the two sub-trees can all be made without crossings in this
case. We traverse the list of internal connections until we reach a point in the list
which is in between trees in both permutation forests. Each time we reach such a
break point, we combine the trees on the sequences of external connections that have
accumulated since the last break. If there is more than one tree then we combine
them under a new node. We do this for both sets of external trees. The label for the
roots of the external trees are determined as follows. If it is already labeled A, it
remains that way. Otherwise, it is labeled F unless one of the sets of trees contained
only one tree and was labeled A or R internally. Figure 6.12 contains two
permutation forests and the permutation forest which is generated by Simplematch.

There is one break point in this case just after the third and second trees respectively
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Figure 6.12 Resolving two adjacent Permutadon Forests. |
in the top and bottom forests. The first three trees on the exterior half of the top
forest become sub-trees of a node labeled F as well as the first two trees of the
exterior half of the bottom forest. This is because the order of these tees can no

longer be permuted when the connections between the leaves of the corresponding
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interior trees are made. The remaining exterior trees in both forests retain the same

labeling for their roots.

b) Optimal Ordering of Trees

c) Final Ordering of Trees

Figure 6.13 Ordering the trees of Permutation Forests of a Compose.

Global-Align

In Global-Align we have an alternating sequence of permutation forests
connected through R-nodes. We wish to select the best ordering of the trees for each
permutation forest. We set up the following graph as in Figure 6.13a. The nodes
correspond to the trees of the permutation forests and the nodes of each forest are
arranged in a column. The forests are in left to right order corresponding to their
order in the list of children of the Compose. The edges connect trees in adjacent

columns and are weighted by the number of connections between the two trees. Nets
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which involve more than three trees are not counted in this weighting. For each
column we select the maximum set of edges such that each node has only one edge
and remove the other edges. This amounts to finding a maximum pairing. Each node
now has at most two edges, one on either side as in Figure 6.13a where the dotted
edge between B and D has been removed. If all but one of the columns could be
permuted then we could order the columns such that none of the edges cross as in
Figure 6.13b. However the two sets of trees at either end can not be permuted. Thus
we must find the smailest set of edges which can be removed to allow all but the
terminal columns to be ordered such that none of the edges cross. To accomplish
this, we use the same method as the one described in Section 6.1 for computing the
cost of a bipartite R-node with partitions of size two. We build a conflict graph with
each path which extends from the leftmost to the rightmost column as a node. The
edges in this conflict graph, are between paths which do not cross and the weights of
the nodes correspond to the cheapest edge on the path. We then find a maximum
clique and remove the cheapest edges of the paths (nodes) which are not part of this
clique. We can then order the columns so that the remaining edges do not cross. If
this order is not a total order, there is some freedom in arranging the paths. In this
case, any edges of the nodes of this path which were discarded before the pairing are
considered in decreasing order of weight. This gives us the ordering for each of the
internal permutation forests. In Figure 6.13c we removed the edge from C to F and

then restored the edge from B to D.
Complexmatch

After applying Global-Align we assume that the order of the permutation

forests is fixed. We will refer to them as permutation trees now since we could join
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them with a node labeled F. Complexmatch is more involved than Simplematch
since it must select permutations to minimize the intervening R-nodes. We try to
find the maximum set of non-crossing pins as described in Secton 6.1. The
procedure is a heuristic one which proceeds hierarchically. It starts from the top of
the permutation tree selecting an ordering for the children of both of the roots. The
method used depends on the pair of labels of the two roots. There are six different
cases, (FF), (F.A), (F.R), (R.R), (R,A) and (A,A). There is nothing to decide in
(E,F), (R,A) can be handled as (F,A) and (R,R) can be decided as (F,R). There are
only three real cases that need to be handled, (F,A), (A,A) and (F,R). (F,R) is the
easiest to solve. We simply try both ways, and pick the best one. The remaining

cases are (F,A) and (A,A).

The probiem reduces to the following. We have a bipartite graph whose two
sets of nodes are to be arranged along the top and bottom sides of a box. There are
edges between the nodes of differing weights, and our task is to select a subset of the
edges of maximum weight such that the nodes can be ordered along the top and
bottom sides of the box so that these edges do not cross. In one case both sets of
nodes can reordered arbitrarily, while in the other case one set has a fixed ordering.
We consider the former case first. We first observe that the subsets of edges for
which the nodes can be reordered to avoid crossings induce a particular type of
graph.

Definition 6.5

A spine is an undirected tree, in which each node has at most two neighbors

which have degree greater than one. The nodes which have two such

neighbors of degree greater than one, are called verrebrae.
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Figure 6.14 A tree which cannot be part of a spine.
It can be shown that a subgraph which can be arranged so that no two edges cross,
must be a spine or a collection of spines. This is both a necessary and sufficient
condition. To see this, suppose we have a node labeled 0, as in Figure 6.14, which
has three neighbors of degree greater than one labeled 1, 2 and 3. Assume without
loss of generality that node O sits on the top and nodes 1, 2 and 3 sit on the bottom
such that 2 is between 1 and 3. Since 2 has degree two it must be connected to
another node which must be placed in the top row. There is no way to do this
without crossing the edges from node O to nodes 1 and 3 or drawing the edge outside
the box. This means that the resulting subgraph can only consist of spines. Suppose
on the other hand that we have a collection of spines. We can place each spine
separately since they are not connected. The vertebrae of a spine form a path. We
call the path consisting of vertebrae and the two nodes at either end of degree greater
than one, the backbone of the spine. All other nodes of the spine are connected to a
node of the backbone. To arrange the spine so that none of its edges cross, it suffices
to place the backbone in an alternating ‘zig-zag’ fashion. Figure 6.15 contains a
spine and its arrangement. To obtain the arrangement we started with the end of the
backbone which is connected to node | and 2 and placed this node in the top row.
We then traversed the backbone, placing its nodes by alternating between the top
and bottom rows. The remaining all have degree one and are placed between their

vertebra’'s two neighbors on the backbone, or at the end if they are their edge is to
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one of the ends of a backbone.

Figure 6.15 The arrangement of a Spine.

Unfortunately, computing a maximum collection of spines for a graph can be
shown to be NP-complete. The problem is similar in nature to the longest path
problem, to which the Hamiltonian Path and Circuit problems can be reduced. The
construction given to reduce Vertex Cover to Hamiltonian Circuit in [Gare79] can
be easily modified to show that finding the maximum spine in a bipartite graph is
NP-hard. It is however easily computed when the graph is a tree. The approach we
take is to compute a maximum spanning tree for each connected component of the

graph and then obtain the maximum collection of spines from this spanning forest.
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Computing a maximum spine in a tree proceeds as follows. There are four

kinds of nodes in a collection of spines.

Vertebrae (V)

They have two neighbors with degree greater than 1.

Ends of Backbones (E)
These nodes have degree greater than one and have exactly one neighbor of

degree greater than one.

Leaves (L)

These are nodes of a spine with degree one.

Free (F)
These are nodes of degree 0, trivial spines.

On a wree, the maximum collection of spines can be computed recursively. We pick a
node arbitrarily to be the root of the tree and orient the edges to obtain a directed tree
rooted at this node. We can then refer to the parent and children of a node, as well as
the sub-tree rooted at a node. For each node, we compute the best collection of
spines within the sub-tree rooted at the node in each of the four roles. This is easily
computed from the same computation performed on its children. The value of the
best spine tree for a leaf of the tree is O since it is the trivial spine containing no
edges. Suppose we have a node « with children uy -+ * 4, and we have computed the
best spine collections for each of the sub-trees rooted at its children with each child
in each of the four roles. Let ¢; dcnéte thé weight of the edge connecting u to its { th

child, u;. We use the notation, ¢ («,T) to denote the value of a best collection of

spines in the sub-tree rooted at « in the role T. ¢ () is the maximum of the ¢ (i1, T)’s
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over the four roles. We compute the ¢ (,T)’s for each role T as follows.

Free
If u is a free node, then we select the best solution for each child and this is
the value of u as a free node.
[ ]
cu,F)= 3 clu)
k=1
Vertebra

If u is to be a Vertebra, then two of its children must be either Vertebrae or
Ends of Backbones. In addition, any of its children which are Free can
become leaves. Suppose u; and u; are the two children which would become

part of the backbone, then the cost of 4 as a Vertebra would be

¢ (u,V) = ¢; + max{c (u;,V).c (u;,E)} + e + max{c(u;,V),c (u;,E)}

n
+ Y max{c (U, F)reg,c (Ug)}.
hoy

We must select { and j to maximize this value. To do this we compute two

values for each u,, its contribution if it is selected as one of the two spine

nodes,

Am = €pm + MaxX(Cc (lm, V).C (Um, E)}
and its contribution otherwise,

b = rﬁax{c (1t F Y+€m, € (tim)}.

We must then select { and f to maximize,
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n

a;+a;+ z by.
k=1
ki, J

This is realized by selecting the i and j which maximize a,, - b,,. We record

i and j in order to reconstruct the spine if u is assigned this role.

End of Backbone

Leaf

In this case, one of u's children must be an End of Backbone, and will
become a Vertebra. The rest can either become leaves or remain in their best
state. We must select i to maximize,
n
c(u,E) =e; + max{cu;,V),c(u . E)} + T max{c (ug, F e, ¢ ()}

k=1
kmi

The child #; which maximizes this expression can be found in the same
manner as in the previous case. This information is also retained to
reconstruct the solution at the end. Technically we should require that at least
one child be picked up as a leaf in this case, however there is no harm in

considering u to be an End of Backbone instead of Leaf.

For u to become a leaf one of its children must be a Vertebra. In this case we

must select { to maximize,

n
cu.L)y=c(y,V)+e + ¥ max{c(ug.Fitec (1g)}.
k=1
kaf

In this manner, the maximum collection of spines for each role is computed

from the leaves upward. Once we have computed these four values for the root, the
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best collection of spines is extracted by assigning the root its best role, and
traversing the tree from root to leaves assigning the roles and collecting the edges
which will be part of the spines as follows, Suppose we have a node u to which we
have assigned a role. If it is a Free node, then to each of its children we assign a role
with maximum value. No edges are included. If u is a Vertebra, then two of its
children were recorded and we assign them either Vertebra or End of Backbonc
whichever is highest. We include the edges to both of these children. The remaining
children are assigned the role Free if ¢ (u;,F)+¢;>c(y;) and their best role
otherwise. In the former case, the edges to these children are included. If u is an End
of Backbone, then only one of its children is recorded and we assign it either the role
Vertebra or End of Backbone whichever is highest and include the edge to this child.
The remaining children are handled as in the case of the Vertebra. The last case is
when u is a Leaf, the recorded child is assigned the role of a Vertebra, its edge is

included and the remaining children are assigned their best roles.

The algorithm above gives the best collection of spines for a tree using time
and space linear in the size of the tree, however our graphs will not in general be
trees. Our approach was to find a maximum spanning tree and then apply the
algorithm to this tree. Unless the maximum spanning tree happens to be a spine
itself, we will end up with more than one spine. It may then be possible to add other
edges which were not part of the maximum spanning tree, to the spines. We do this

in a greedy manner, examining the remaining edges in order of decreasing value.

This leaves the case in which one side of the graph is fixed. In this case the
solution can not just be any set of spines since the order of the nodes on one side is

fixed. We solve this case by a greedy approach. We simply add edges in order of
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decreasing weight.

The overall strategy in Complexmatch is a backtracking approach. We
examine the first level of the trees on both side. We pretend that the connections are
directly between the nodes at this level and obtain the best ordering using one of the
methods described, depending on the labels of the roots. We then examine the sub-
rees of these nodes to see if in fact the connections which were assumed to be
possible can in fact be made. This is achieved by applying Compiexmatch again to
nodes at this lower level in the permutation trees. If the number of connections is
significantly less, we recompute the best solution at the level above using this value

as the number of connections possible between the nodes.

Once we are satisfied with the set of connections and we record the selected
configurations, and the procedure Simplematch is applied assuming only the
connections in the maximum set are made. This is necessary to obtain the
permutation forests representing the possible configurations of the external

connections of the Compose.

The approach described in this section is comprised of heuristics. However, it
provides the possibility of performing much more powerful transformations,
particularly those afforded by Global-Align, than would be possible without the

hierarchical representation.
Summary

The problem of improving the wiring complexity of a planar circuit has been
examined in this chapter. Cost measures for planar circuits and the operations to be

applied were discussed in Sections 6.1 and 6.2. The maximum number of non-
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crossing connections which can be made within an R-node was selected as the cost
measure, and operations which exchanged equivalent pins of circuit modules and
exploited symmetries in the computation tree were considered. The problem of
optimizing planar circuits by exchanging equivalent pins was shown to be NP-
complete in Section 6.3. A method based on the computation tree was presented in

Section 6.4.
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CHAPTER 7

Conclusion

In the preceding chapters, we have formally defined the notion of the planar
topology of layouts and implemented a mapping from behavioral specifications in a
functional language, of circuits and their planar topology to abstract and actual
layouts. Several examples of specifications and their layouts were presented. In
addition, the optimization of the planar topology of these specifications was
considered. In these sections we summarize the preceding chapters listing the

contributions, and discuss some topics for future research.

7.1 Summary

The use of FP as a specification foi- circuits and their layouts has been
investigated. The specification was assumed to provide the ‘planar topology’ of the
layout, i.c., the planar organization of the circuit components and their
interconnections. In using such a specification we have provided a constructive
method for layout from a behavioral description. Since only the ‘planar topology’ of
the layout is specified and the construction of the layout parallels the construction of
the circuit in the behavioral description, this method provides a larger degree of

geometric flexibility than other constructive methods.

The concept of the ‘planar topology’ of a layout was defined in Chapter 2.

By a result of Edmond’s it is sufficient to specify the cyclic ordering of edges around
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nodes and the exterior window to uniquely specify the topology of an embedding in
the plane of a graph. Circuits are not in general planar and are more often
hypergraphs than graphs. Hence to define the ‘planar topology’ of a layout we
introduced ‘planar circuits’, planér graphs which capture the branchings and
crossings of the layout inside nodes. The variety of planar circuits which can be
used‘to represent a layout and our desire to consider planar topology to be invariant
under the movement of objects in the plane, motivated the introduction of a group of
operations on planar circuits to simulate this movement and local reorganization of
the wiring. We defined the ‘planar topology’ of a layout to be the equivalence class
of planar circuits under these operations, containing the representatives of the layout.
By placing conditions on the nodes of the planar circuit which represent its routing,
we were able to define a normal form for planar circuits and show its uniqueness
within its equivalence class modulo one operation. This result is useful since thé
layout of a planar circuit in normal form is optimal with respect to the layouts of
planar circuits within its equivalence class, if the layout procedure satisfies certain

assumptions.

In Chapter 3 we developed a mapping from FP expressions to planar circuits.
Because unnecessary structure (circuit components and interconnections), can result
from the literal interpretation of FP as a circuit, the mapping was divided into two
steps. In the first phase, the literal interpretation of an FP expression resulted in a
weak planar circuit. A weak planar circuit is a planar circuit with some of the
connectivity requirements relaxed. We discussed the ‘pruning’ of weak planar
circuits to remove this unnecessary structure, We showed that the maximal pruning
of a planar circuit was unique and that under certain conditions (which are met by

the weak planar circuits resulting from FP expressions) this pruning can be
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performed given only the outputs which are required. This allowed us to decompose
the pruning in terms of the combining forms of the FP function, providing an
efficient method for directly computing the planar circuit of an FP expression,
generating only the structures which would survive the pruning. We then extended
this mapping to incorporate sequential circuits. This was accomplished by folding
the space implementations of the combining forms Apply-to-All, Right Insert and
Seq into time implementations using time-space transformations {Pate85). The
sequential versions of these combining forms use the same physical stucture to
perform the applications of their sub-function rather than creating a new structure for
each application. The pruning of the sequential versions of these forms was given.
The implementation of the mapping preserved the hierarchical structure afforded by
the FP combining forms, by representing the planar circuit with a computation tree.
In the last section we performed operations, corresponding to FP identities, on the

wree to transform the planar circuit into normal form.

In Chapter 4, we addressed the problem of obtaining layouts from planar
circuits. We defined an ‘abstract layout’ and showed that finding the ‘abstract layout’
with the smallest size was NP-hard. By exploiting the computation Tee we
synthesized a layout of planar circuits generated from FP expressions. In this
procedure, the boxes and wires of the planar circuit were packed into horizontal
cross-sections using the computation wee and then horizontal compaction was

performed. In the last section we showed how to obtain actual layouts as weil,

In Chapter 5, we presented several examples of FP specifications of circuits
and ‘abstract layouts’ and an actual layout obtained from an FP expression to

illustrate the features of using FP to describe circuits as well as the resulting layouts.
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The ability of the system to provide graphical feedback through ‘abstract layouts’ at
varying levels of abstraction during the synthesis of the design was demonstrated in
these examples. The geometric flexibility in specifying layouts by their “planar

topology’ was also apparent.

The problem of optimizing the planar topology of a layout by altering its
planar circuit was addressed in Chapter 6. Cost measures for planar circuits were
discussed and as well as the scope of the operations which should be considered. We
selected a simple cost measure and showed the problem of optimizing it by
switching equivalent pins alone (the simplest of the operations within the scope of
operations allowed), to be NP-complete. However by cxploiﬁng the representation
afforded by the FP expression (its computation tree), we provided a method to
improve the planar circuit permitting more global operations than would be possible

without such a representation.
We list the contributions of this thesis below.
1. A definition of the ‘planar topology’ of a layout in Section 2.4.

2, The proof of uniqueness (modulo refoldings) of a normal form for planar

circuits which is optimal within its class, in Sections 2.5, 2.6 and 2.7.

3. A mapping from FP to combinational and sequential circuits in Sections 3.4
3.5 and 3.6. An implementation of this mapping and the ransformations to

put the planar circuit into normal form in Sections 3.7 and 3.8.

4, The proof of the NP-hardness of obtaining a minimum size layout from a

planar circuit in Section 4.2.
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5. A method for synthesizing the layout of planar circuits generated from FP

expressions exploiting the computation tree in Sections 4.3, 4.4 and 4.5.

6. The implementation of these methods on DEC VAX 11/750; a system

producing both ‘abstract layouts’ and actual layouts from FP expressions.

7. The proof of the NP-completeness of maximizing the alignment of a planar

circuit by exchanging equivalent pins in Section 6.3,

8. A method for improving both the alignment of planar circuits by not only
exchanging equivalent pins, but by exploiting the symmetries represented by
the combining forms of the computation tree in Section 6.4.
With this work we hope to have provided a new method for obtaining layouts by
recognizing that behavioral specifications can provide valuable information about
the structure of the circuit and its embedding. By specifying the planar topology of
the circuit we did not avoid the intractable problems of layout. We have dealt with
these problems by exploiting the organization of the planar topology provided by the
behavioral specification, information which a combinatorial method would have to

discover.

7.2 Future Research

The topics for future research which come to mind fall into two categories,
enhancements to the current system design environment and new areas of research

that should be explored.

The following enhancements to the system producing layouts from FP expressions

should be considered.
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Routing of Power and Ground
The routing of power and ground could be incorporated within an FP
specification as in the Nor and Nand Decoders in the Section 4.1. However
this might be awkward in higher level algorithms and it is not always
desirable for the routing of power and ground to flow in the same direction as
the data. Automatic routing of power and ground possibly based on the

computation tree would remove the last step necessary to obtain the layout.

Two Dimensional Data Flow
The packing of the planar circuits described in Chapter 4 requires that the
inputs of each box enter from the top and that the outputs exit from the
bottom. A more two-dimensional approach would allow the inputs and
outputs to enter and exit form the sides as well. The layout of the horizontal
versions of the combining forms Right Insert and Seq would benefit and
new combining forms might also exploit this. An alternate form of the
Compose which folds itself like a snake to meet an aspect ratio as described

in [Leis80] is another possibility.

Context Sensitive Implementations of the R-nodes
The method which implements the R-nodes attempts to minimize the number
of horizontal tracks used without regard to the actual positions of the boxes
to which these wires are connected. As shown in Figure 7.1, this sometimes
leads to a ‘poor routing.” In the example in the Figure 7.1, the R-node has
one wire (the solid wire) which needs to cross four other wires. This R-node
was implemented with the minimum number of tracks by using one track to

route this wire across the other four. However in this case, because of other

305



routing, six tracks were available and the four wires ended up with horizontal
Jjogs to the left. The solid wire could have been routed straight down across
all four of them providing a ‘better routing.” It would be nice to predict such
occurrences. However, it seems difficult to do so without performing the
horizontal compaction. This problem could be alleviated by providing some
form of feedback to the procedure which implemented the R-node or by

doing some local optimizations on the wiring after the compaction.

.................

Figure 7.1
The following two areas of research are motivated by the results in this thesis.

Complexity Classes of Planar Circuits
The *chip complexity’ of an algorithm refers to the time and area required to
perform the computation in an integrated circuit. Typically a lower bound on
area is shown by counting the number of wires which must cross a particular
line drawn across the chip (Vuil83]. Hence the bound on the area is a result
of the wiring complexity. It may be possible to obtain tighter bounds using
planar circuits since the routing is completely characterized by the R-nodes.
In particular it may be interesting to explore the lower bounds in terms of the

size of R-nodes required to perform computations.
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Algebraic Transformations
One of the reasons for selecting FP as the specification language was its
algebraic nature which provides transformations preserving the behavior
while altering the structure of the FP function and accordingly, its layout.
Now that we have a mapping from FP to ‘planar topology’ it is possible to
assess the consequences of these transformations. We have exploited some of
the simpler transformations in the preceding chapters, however there may be
many more to discover and exploit. A transformation system should be
provided and the degree to which it can be automated to improve the layout
and satisfy constraints should explored. Incorporating the laws of boolean
algebra should provide even more powerful transformations at the switching

expression level.
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Appendix: Description of FP

Objects

The set of objects Q consists of the atoms and sequences <xp, X3, ..., x>
(where the x;€2). (Lisp users should note the similarity to the list stucture syntax,
just replace the parenthesis by angle brackets and commas by blanks. There are no
'quoted’ objects, i.e., "abc). The atoms uniquely determine the set of valid objects
‘and consist of the numbers (of the type found in FRANZ LISP [Fode80] ), quoted ascii
strings ("abcd™), and unquoted alphanumeric strings (abc3). There are three
predefined atoms, T and F, that correspond to the logical values 'true’ and ’false’,
and the undefined atom L , botom. Bottom denotes the value returned as the result
of an undefined operadon, ¢.g., division by zero. The empty sequence, <> is also an

atom. The following are examples of valid FP objects:

1 1.47 3838888888883
ab "CD" «l1,<2,3>>

<» T <d, <>>

There is one restriction on object construction: no object may contain the undefined
atom, such an object is itself undefined, e.g., <1,1> =1 This property is the so-

called bottom preserving property [(Back78].
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Application

This is the single FP operation and is designated by the colon (':"). For a
function ¢ and an object x, ¢:x is an application and its meaning is the object that
results from applying ¢ to x (i.e., evaluating ¢(x)). We say that ¢ is the operator and
that x is the operand. The following are examples of applications:

15 th<l,2,3>

+:<7.8> <2,3>

l:<abyc,d> = a 2:<ab,c,d> b

Functions

All functions () map objects into objects, moreover, they are serice: |
o:1l=1 voeF

To formally characterize the primitive functions, we use a modification of

McCarthy’s conditional expression: [McCa60)

This statement is interpreted as follows: return function e, if the predicate 'p,’ is
tue ,..., e, if 'p,’ is ttue. If none of the predicates are satisfied then defauit to

€q4+1. Itisassumed thatx, x;, y, ¥;, z;€ Q.
Selector Functions

For a nonzero integer W,

Hix=

X=<X1, X2, ..., k> A0S USk 5 xy;
X=<X1, X2y 000 s Xg> A-k5u<0—>xk+u+1;l
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The user should note that the function symbols 1,2,3,

the atoms 1,2,3,....

last : x =
X=<> = <> ;
X=<X1,X2,...
first:x=
X=<> =2 <>,
X=<X1,X2,...

y Xe> A k21 = xg; 1

L > A k2l —>x1;l

Tail Functions

tl:x =
X=<X|> = <>
X=X, X2p 0 v -

tir:x=
X=<X 1> 2 <>
X=<X1, X2,..

y Xg> Ak22 - <x3,...

L X Ak22 o <x,y ...

... are to be distinguished from

,xk>;.|.

y Xg=1> ;J.

Note: There is also a function front that is equivalent to tlr.

Distribute from left and right

distl : x =
X=<y, <>> = <>;
X=<Y, <21, 22,...
distr:x =
XZCLD, Y > = <>;
X=<<Y1, Y2, - -
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Identity
id:x=x
out . x=x

Out is similar to id. Like id it returns its argument as the result, unlike id it prints its

result on stdout — It is the only function with a side effect. QOut is intended to be used

for debugging only.
Append left and right
apndl : x =
X=<y, <>> = <y >;
X2V, K21, 22« e s g2 <N 21,2240+ v 5 L2 J.
apndr:x =
=L, 2> S <ZI>;
X=KKY 11 Y200 Y222 =2 <Y1, Y2+ - Y 22, .I.
Transpose
trans 1 x =

X=€C3,.,<>> = <5
X=X, X200 e s X2 =2 <Y1 o s Y2 .I.

where x; = <x; 1, .. ., Xim> AYj = <Xy jy ..., Xg >, 18ISk, 1Sj<m.
reverse 1 x =
xX=<> ;<>
X=Xy X2y ooy X2 > <Xjgy ..., X125 .L
Rotate Left and Right
rotl : x =
X=<> 3 <> x=<X > > <X 1>
XSCX], X2y 0oy Xp> AK22 = <X9, o0 Xk X125 l
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rotr.x =
X=<D> ~ <> Xx=<X 1> — <X >;

XZEX |, X2y vy XD AK22 = <X, Xyy oo X2y Xy >3 1
concat : x =
X=X L, .- s X1k --"qml'“-axmp)/\k: m, n p >0
-><:c11,...,x1k,x21,...,xz,.,...,x,,,l....,x,,,p>;l

Concatenate removes all occurrences of the null sequence:

concat : <<1,3>,<>,<2,4>,<>,<5>> = <1,3,2,4,5>

pair:x=
X=<X1, X2, ..., g> Ak>O Ak is even
= <KX, X220 0y Xy X > >

X=<X1, X2, ..., Xg> Ak>0 Ak is odd
= KX, K22, ..., <X DD,

split: x =
X=X > = <KX >,<>>;

X=X, X3, 0 .y > AkDS]
= <Xy X 212 X [2]elr - - 2 X2 .I.

Predicate (Test) Functions

atom : x =x egtoms — T;x#l - F; L

eql:x=x=<y,z> Ay=z 5 T;x=<y. 2> ayzz 5 F; 1

Also less than (<), greater than (>), greater than or equal (>=), less than or equal

(<=), not equal ("=);’=’ is a synonym for eql.

null xmx=<>->T,xeloF 1l
length :x =x = <x, x2,..., > =k, x=<> -0l
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Predicate operators, And, or, not, xor

and : <x,y > ax=T->y;x=F-—>F;l
or:<x,y>=x=F - y;x=T -7l
not:x=2x=T o F;x=F->T; 1

XOr:<x,y>=
x=TAy=T > F,x=FAy=F - F,
x=TAy=sF ST, x=FAy=sT>T, 1

Arithmetic/Logical

+:X =x=<y,2> AY,Z are numbers — y+z; 1
—:x FXx=<Y,Z> A Y,z are numbers —)y—z;l
* . x =x=<y,z> A ¥,z are numbers — yxz; 1
/:x :x=<y,2> A Y,z are numbers A z20 — y+z; |

Circuit Primitives
andg: <x,y>=
x=lAay=l > L;x=0Ay=0—-0;
x=1Ay=0—)0;x=0Ay=l.—>0;l
org:<x,y>=
x=1Aay=l o5 L x=0Ay=0-0;
=1Ay=0«->1;x=0/\y=1—>1;l
Xorg : <x,y > =
x=lAay=1 20, x=0Ay=0-0;
x=lAy=0 o L;x=0Ay=1o11
nandg: <x,y>=
x=1Ay=1 =0;x=0Ay=0-1;
x=l Ay=0 = L;x=0Ay=1 o 1;1
norg: <x,y> =
x=lAy=l 230, x=0Ay=0-1;
x=1Ay=0—)0;x=0Ay=1—>0;l
notg : x s x=1 —0x=0-1;1
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Library Routines

sin : x = x is a number — sin ) L

asin : x = x is a number A Ixi S 1 sin”!(x); 1
cos : x =x is a number — cos (x); 1

acos:x =xisanumbera Ixt £1 -ecos“l(x);l
exp : X =x is a number — % |,

log : x =x is a positive number — In (x); 1
mod : <x,y > aindy are numbers — x — yXx l?J .1

sqrt : x = x is a number — vx; 1

Combining Forms

Combining forms define new functions by operating on function and object
parameters of the form. The resultant expressions can be compared and contrasted
to the value-oriented expressions of traditional programming languages. The
distinction lies in the domain of the operators; combining forms manipulate

functions, while traditional operators manipulate values.

One combining form is Compose. For two functions ¢ and w the form

¢ @ W denotes their composition ¢ o

@ V) :xmd:(yx), V xeQ
The constant function takes an object parameter:

Dox :y sy=l—).|.;x, Vv xye
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The function %l always returns l.

In the following description of the combining forms, we assume that
é, ;. 9, 9;, T, and 1; are functions and that x, x;, y are objects.
Compose

(0 @ T)x = ¢:(1x)

Construct
(01, Onlx 2 <O12x, ..., Qpix >
Note that construction is also bottom-preserving, ¢.£.,

[+/):<3,0>=<3,1>=1

Apply-to-All
&tp:x=
X=<> =3<>,;
X=X, Xy ey Xe> = <OXy, ..., 0> L
Conditional
E->¢Dx=
Ex)=T = ¢x;

(Ex)=F = 1x; L

The reader should be aware of the distinction between functional
expressions, in the variant of McCarthy’s conditional expression, and the combining
form introduced here. In the former case the result is a value, while in the latter case

the result is a function. Unlike Backus’ FP, the conditional form must be enclosed in
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parenthesis, e.g.,
(isNegative -> - @ {%0,id] ; id)

Constant

%xymy=l>Llx VxeQ

This function retumns its object parameter as its resuit.

Right Insert

dx=
X=<> = epx;
X=<X|> => X1,
X=€X1, X2, ..., Xg> A k22 = di<xy, i<y,
e.g., +:<4,5,6>=15.

e x> 1

If ¢ has a right identity element e, then !$:<> = e e.g.,

'+:<>=0 and I* : <>=1

Currently, identity functions are defined for + (0), - (0), * (1), / (1), also for and

(1), or (0), xor (0). All other unit functions default to bottom ( 1 ).
Seq

seq(d) x =
X=<> - epx;
X=X 1> =X,
X=<X1,X2> = $i<x,X7>;
X=X, X2 0 e ey XD Ak>2—><y1,...,y,,>;l

where <2,,¥3,...,yx> =5eq () :1<x3, ..., %>
and <yi,y2> =9 :<xy,22>
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User Defined Functions

An FP definition is entered as follows:
{fn-name fn-form},

where fn-name is an ascii string consisting of letters, numbers and the underline
symbol, and fn-form is any valid combining form, including a single primidve or

defined function. For example, the functions

{factorial (zero?—=%1; *@I[id factorial@-@[id,%11])}

(zero? eql@[id, %01}

form a recursive definiion of the factorial function. Since FP systems are
applicative it is permissible to substitute the actual definition of a function for any

reference to it in a combining form: if f=1@2thenf:x=1@2:x, Vxe Q.

References to undefined functions bottom out:

f=x aleeQ,fF
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