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Computer based systems are becoming increasingly complex and expensive.
Some have life critical responsibilities. There is a need for extensive design prior to
embarking upon costly implementation phases. Many design tools and design tech-
niques have been proposed and some built. Those tools that have been built are gen-
erally constructed to stand alone. They are, at best, loosely integrated with other
tools. They share much commonality, notably the construction and manipulation of
models of the complex system under design and a high degree of interactivity. A
detailed study of areas of commonality guides the requirements definition of a
Computer-Aided Design Of Computer Systems, CADOCS, support nucleus. The
nucleus provides an integrated set of primitives. A specification language targeted to

the support nucleus allows description of the design model and human-model interac-
tion.

The current method of CADOCS system development is ad hoc. A new tool
is developed from scratch or a great deal of effort is expended to integrate disparate
tools into a system. It is the hypothesis of this dissertation that it is possible to define
a methodology, a specification language, and an automated support environment suit-
able to the systematic development and execution of CADQCS systems. The tools of
the UCLA SARA design system are selected as a test bed. The application of the
methodology to the reimplementation of SARA and the resulting SARA/IDEAS sys-
tem serves as an existence proof for the hypothesis.

The methodology is multi-phased and constructive. Following the methodol-
ogy produces a specification that is compiled into an implementation of the specified
CADOCS tool. All tools so constructed share many components, are cost-effectively
built, are self-describing, and execute efficiently.
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CHAPTER 1

Introduction
1.1 Motivation for the Research

The design of complex systems requires the combined talents and efforts of a
cohesive group of designers. They need to rapidly explore design alternatives, com-
municate their views and resuits to their colleagues, arrive at decisions by consensus,
and affect their decisions on the design. Computer Aided Design of Computer Sys-
tems, CADOCS, systems have been developed, for the most part, to satisfy the needs
of the individual computer system designer. A CADOCS system comprises one or
more software tools that allow the designer to create and exercise a model of the com-
puter system under design. The current process of CADOCS system development
produces nominally integrated systems that are difficult to use and that do not provide

the benefits that true integration should offer.

CADOCS systems frequently begin as a single modeling tool. The develop-
ment of the semantics of the model is ad hoc. Often, tool design proceeds based on
an inaccurate or incomplete understanding of the model that the tool is intended to
operate upon. As a requirements document, tool implementors are sometimes given a
previously written user manual or the task of developing such a manual. This
approach is intended to get the prospective tool user involved early in tool develop-
ment. Many user manuals focus on the syntax of the tool rather than on the underly-

ing semantic model. Tool syntax isn’t necessarily the appropriate basis for design.



The design of the tool proceeds according to some accepted software engineer-
ing methodology, top down design [Jack83] or structured design [Your79] for exam-
ple. Since tool development is time consuming, tools are often unintentionally
obsolete before implementation is complete. While new products offer interaction
devices with ever increasing sophistication, tool designers target to available devices
[Oust81, Jens83], i.e. specific alpha-numeric display devices and keyboard input.
Some tool designers incorporate general purpose graphic systems [Hanl79, Acqud2,

ISO81] or develop only those capabilities needed by their tool.

This a;d hoc approach shows ixp in other areas of CADOCS system implemen-
tation. Data base capabilities are often added on as an afterthought when the tool has
proved its usefulness and users wish to store and retrieve their models. A general
data base management system may be integrated by brute force or the host computer’s
file system may be used directly in lieu of a DBMS [Ciam76]. The data base provides
a data representation of the model and fails to capture the semantics of the model
[Hamm75]. Subsequent integration with another tool is almost obviated when the
data base management system has no way to represent the semantic relationships that

exist between two models.

Often, each tool provides its own interaction loop and input/output routines.
Each must provide environment niceties like aliasing, command completion, spelling
correction, command undo and redo, user help, prompting, menu generation, and
accommodation of different user styles. The investment in a sophisticated user inter-
face may far overshadow the cost of developing the single modeling capability and

thus not appear to be cost effective.



The source of these problems may be that the tool developers are interested in
the modeling capability and have an insufficient appreciation (budget or schedule) for
human interface issues, data base management, and for the amplification achieved

through integration of modeling tools.

The need to integrate CADOCS tools is inevitable and intense. Existing con-
struction techniques produce tools with inconsistent syntactic interfaces, inconsistent
use of DBMS, data bases without the semantic information necessary for integration,
inflexible top down designed components not amenable to reusability, and inadequate

multi-user support.

The complete integration of CADOCS tools to support collaborative design
requires tools to present a consistent syntax and a common multi-user support
environment, and a common data base that captures inter- and intra-model relation-

ships.

Innovative design models and modeling tools have been, and continue to be,
applied in the early phases of complex digital system definition [Estr78, Hill79,
Alfo74, Boeh81]. In order for new modeling capabilities to achieve high payoff they
must be inexpensively developed, be integrated with existing design environments, be
understandable, and have high quality interfaces. A specification language to describe
the proposed design model and the human-model interaction occurring in such sys-
tems, and a specification system capable of interpolating and analyzing that language
should markedly improve the requirements analysis and design stages of tool develop-

ment.



1.2 Background

Two representative CADOCS systems in use in industry and one representa-
tive CADOCS system from academia are compared and contrasted in this section.
The focus of the survey will be on the historical development of the systems, buta

discussion of functionality is also provided for perspective.
1.2.1 ISDF - Integrated Software Development Facility

The Integrated Software Development Facility, ISDF [Worl80, Wallg1], isa
CADOCS system synthesized from a collection of separately developed tools. ISDF
is an evolving system in use at Hughes Aircraft Company. The component tools
comprising ISDF are distributed across a variety of computer hosts including an
AMDAHL 470, and a DEC PDP 11/70. It supports the development of real time

software for embedded systems throughout the entire software life cycle [Hugh80].
Requirements Validation.

The customer’s requirements must first be translated into a formal language,
User Requirements Language, URL. URL is based on the Problem Statement
Language [Tiec74], PSL, developed at the University of Michigan. URLisa
language which provides the capability to describe a proposed system in a syntacti-
cally analyzable form. It is used in an interactive, computer-aided environment, and
only fundamental information about the system needs to be stated in URL. The pro-
posed system is described in terms of objects, properties, property values, and rela-
tionships. The language contains a number of types of objects and relationships

which permit the following aspects of system requirements to be described:

system input/output flow,



system structure,

data structure,

data derivation,

system size and volume,
system dynamics,
system properties,

project management.

This URL description is stored in a-data base that is accessible by the other

components of ISDF.

Computer Aided Requirements Analysis, CARA., is based on both PSL and the
Problem Statement Analyzer [Tiec74], PSA, which was also developed at the Univer-
sity of Michigan. Both PSL and PSA are results of an on-going project, Information
Systém Design and Optimization System, ISDOS [Tiec74]. CARA is a software
package which provides the ability to record URL system descriptions in a data base,
to make modifications to that data base, to perform analysis, and produce various

reports.

DAS/OFD [Will77] is the Operational Function Diagram Subsystem of the
Design Analysis System. This software package interfaces with CARA, and provides
not only an interactive interface, which facilitates the input of CARA data, but also
provides a design analysis capability through the use of a general function model.
The system definitions, OFDs, which describe major system functions, decisions, and
interfaces, are input through a graphics interface. The general function model then
automatically translates user inputs into an interactively controlled simulation of sys-

tem operation providing performance and timing feedback. If the results indicate that



operational requirements have not been met, changes to specifications can be made

and the specifications re-analyzed.
Design Verification

The Automated Interactive Design and Evaluation System [Jens83], AIDES, is
a software tool developed at Hughes Aircraft Company. AIDES is an extension of the
Structure Chart Graphics [Alli77], SCG, system also developed at Hughes. SCG pro-
vides an interactive graphics interface for automating design documentation stan-

dards..

AIDES is an interactive system which: collects design information, presents
the design to the user in the form of structure charts and reports, answers questions
about the design (goodness, testability, resource utilization, responsibility, etc.), and
produces documentation for the customer. With guidance from the user, AIDES does
some software design, tells the user how to test the system, tells the user the order in
which to make the tests, tells the user the complexity of each test, and predicts the
relative reliability of the software system. AIDES supports not only structured
design, but also other software design techniques. AIDES collects and analyzes the

software design structure or software architecture.

The Design Quality Metrics system [Haye81a, Haye81b], DQM, is an interac-
tive, structured, design quality measurement tool. The system helps provide an
independent and unbiased quantitative evaluation of the quality of a structure chart,
where “‘quality’’ means adherence to structured design guidelines which tend to
minimize problems during coding, testing, intergration, and maintenance. As such,
DQM is a tool which can predict error-prone areas of a software design. Several

metrics have been devised to determine system complexity and inter-modular cou-



pling, and have been validated against program €rrors experienced during program

development.

The Distributed Data Processing Model [Will78, Jone81], DDPM, is a discrete
event simulation model developed at Hughes that allows accurate, timely and inex-
pensive evaluation of distributed computer system design alternatives, (i.c., it is possi-
ble to evaluate such tradeoff alternatives as hardware selection, functional allocation
to devices, operating system, and data base management system). DDPM embodies
functions common to most systems and has been designed so as to be reconfigurable
by specification of unique system variables. Typical outputs inc}ude device utiliza-
tion, queue statistics, transaction occurrence and response times, and summary

software execution results.
Reliable Program Production.

The Programmer’s Workbench [Dolo76, Mash76a, Mash76b, Bian76], PWB,
is a software package developed at Bell Laboratories. It is based on Bell Labora-
tories’ UNIX time-sharing system, and runs on a DEC PDP 11/45, 11/70, or VAX
11/780. It provides a set of tools for software development. Remote Job Entry, RJE,
provides for the submission and retrieval of jobs from an IBM or Amdahl host system
(i.e. systems using HASP [IBM73] or JES2 [IBM75] interfaces), thus making possi-
ble the separation of development and execution environments. A Source Code Con-
trol System [Bona77], SCCS, provides facilities for controlling changes to files of text
(e.g. source code, documentation). All versions of a file of text can be stored,
updated, recorded, and retrieved, with updating privileges controlled. A Make Sys-
tem [Feld78] allows the specification of a dependency graph to automate the regenera-
tion of a system of many interdependent modules (e.g. if changes are made to a

module, affected modules will automatically be recompiled upon compilation of the



modified module).

The Complexity Path Analyzer [Stic77, Worl80], CPA, is a software tool
developed at Hughes to run under PWB. It supports analysis of both the static and
dynamic qualities of coded routines. CPA inputs syntactically correct code and pro-
duces both an instrumented source program (embedded with probes) and data which

can be used to analyze the static characteristics of the code.

Auto-Test is another area under research and development at Hughes. Unfor-
tunately, there are not yet enough software tools available which could ease the prob-
lems encountered during verification and validation testing. Much work remains in

this area.
ISDF Critique

ISDF comprises a powerful set of analytic tools. The individual tools are writ-
ten in dialects of FORTRAN, PASCAL, C, and BAL (IBM assembly language).
Because of the method and level of integration, it fails to achieve the amplification

that true integration could provide.

The ISDF user perceives no integration at the user interface front end. Each
tool has its own user interface tightly integrated into the tool. This lack of con-
sistency is mitigated by the fact that each phase of development, requirements, design,
code, etc., are performed by different persons. Those tools having graphics interfaces
have graphics software written specifically for that tool and targeted to specific
display devices. There is no accommodation for other than keyboard input. None

have integral help facilities.



Only marginal integration is perceived at the data base back end. Those tools
that claim a data base generally use extended text file formats provided by the host
computer’s operating system. Integration of the various tools is attempted through
the integration of their data bases into a common distributed data base. In some
cases, the individual data bases are integrated by developing integrating software that

is capable of handling the file formats of the various tools.

After all of the effort required to integrate the constituent tools, ISDF is in no
better condition to accept the integration of yet another tool than before the integra-
tion. The construction of the system is not designed to insure that software com-
ponents can be re-used and shared by other tools. In fact, the system is not designed
at all; the individual tools are. There is no kernel that offers general services to all
tools. Each tool supplies its own interactive loop, each its own graphics, each its own
data base management system, etc. The only concession to designer collaboration is
that the tools are re-entrant thus allowing simultaneous execution, and that the data |

base is protected from interfering access.

After presenting the design and integration plan of the ISDF system to Barry
Boehm in 1980, he replied ‘‘On [the proposal], my main advice is to be careful not to
attempt to build a ‘do-everything’ tool box which is loosely integrated from large
existing packages like CARA. We [TRW] tried this in 1975, and ended up with an
inefficient, hard-to-use kludge'’ (emphasis added).

1.2.2 SARA - Systems ARchitect‘s Apprentice

The SARA system has been designed at UCLA and implemented in PL/1 on
the MULTICS system at MIT. SARA supports the design of complex concurrent

digital systems. Both hardware and software design are supported. It provides tools



for the structural and the behavioral modeling of systems. Chapter 8 provides a

detailed description of SARA and so only cursory characterization is given here.

SARA is composed of several tools that support digital computer system
design from requirements definition to functional interpretation. Separate tools are
provided for requirements definition, structural modeling, and behavioral modeling in
the control, data, and interpretation domains. A building block library is defined to
hold reusable components. It includes extensive on line documentation and an inter-

face definition capability which supports integral help.
SARA Critique

SARA is a CADOCS system designed with extension considered. The inter-
face specification subsystem anticipates and accommodates the inclusion of as-of-yet
unknown tools. A detailed set of instructions are provided for a designer to define the
user interface of a new tool. It provides a common and uniform interface to all tools

as well as a uniform means of built-in help. The interface is textual only.

The Building Block Library provides a data base of previously verified
models. The structure models and behavior models are defined textually and stored as
text files. Although the building block library provides a SARA methodology specific

data base, there is no general purpose data base.

A United Kingdom Task Force Study [Jack81] commented ““All of the SARA
tools are written with a common command syntax, giving a particularly user-friendly
uniformity to the whole system. There are giobal help facilities and documentation,
which all component tools use, despite their having been developed by individual
research students, and the current state of development can be determined by display-

ing the SARA tree — the structured hierarchy of SARA tools. All tools are interactive,

10



but as yet there are no graphical facilities.”’
1.2.3 BIG CAESAR

The Big Caesar project [Katz83] attempts to integrate two apparently compati-
ble VLSI design tools into a VLSI design environment. The first tool, Caesar
{Oust81], is an interactive editor for VLSI layout. The second tool, the MIT Design
Rule Checker [Bake80], DRC, is a design-rule/electrical-rule checker and switch
simulator. Caesar outputs Caltech Intermediate Form [Mead80], CIF, as a description
of the integrated circuit layout. Caesar, like many other VLSI layout tools, carries no
information about desi.gn rules. A separate tool is required to perform design rule
checking. DRC inputs CIF circuit descriptions, thus making it a logical candidate for

integration with Caesar.

The original Caesar system allows a designer to interactively layout the
geometry of an integrated circuit. Caesar was coded to interact specifically with an
AED 512 graphics terminal [AED80]. Codc dealt specifically with the fact that the
terminal had 8 bit planes for color graphics, each layer of the chip is mapped onto a

bit plane for display (not all AED terminals have all 8 planes of memory).

Katz [Katz83] states that ““The MIT design-rule checker works by converting
a CIF description of a design into a rasterized image, based on a lambda grid. Tem-
plates are passed over the rasterization to check for violations; the display advanced
by one lambda position, and the process is repeated. The checker reports the coordi-

nates of the error.”’

CAESAR Critique
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The integration of these tools uncovered several problems. Rehosting Caesar
into an environment including an AED 512 with only 6 bit planes lead the research
group to replace the AED 512 with a Chromatics - 7900. Modifying the interaction
software to accommodate the new display device was a major activity. The previ-

ously advertised modeless interface was altered so that the user could invoke DRC.

Caesar does not support all CIF primitives, wires for example. The CIF out-
put by Caesar was not entirely compatible with DRC. Integrating software was writ-
ten so that DRC’s error coordinates were not displayed as text, but were mapped back

onto the display screen maintained by Caesar.

The integration of Caesar and DRC into a tool set called Big Caesar resulted in
an environment stronger and richer than one containing just the two independent
tools. Since neither tool was planned with later integration in mind, their merger
resulted in a significant recoding activity. The user interface appears integrated
because one tool has been made subservient to the other. The user interface integra-
tion was simplified by the fact that DRC was not designed as an interactive tool itself.
Had it been, either one tool’s interface would have to have been recoded to match the

other, or the incompatible interfaces would have existed side by side.

No mention was made of error recovery, integral help, or any other user inter-
face amenities. Data base management of designs was mentioned in passing and is
clearly not a significant aspect of Big Caesar’s design. Terminal independence was an

add-on.
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1.2.4 Summary

Many significant CADOCS systems exist today. Their designs and implemen-
tations have been evolutionary rather than planned. The result is cumbersome,
difficult to use, expensive to build, and inconsistent design environments that fail to

satisfy the needs of the design community.

Many claim to be integrated but an adequate definition of integration is lack-
ing. Such a definition must include a consistent user interface provided by a common
interaction handler, a consistent internal representation of models provided by a com-
mon near term memory manager, a consistent storage representation of models pro-
vided by a common long term memory manager, a consistent model of interactive

execution provided by a common execution environment.

In addition to what is included in the common, tool independent portion of the
CADOQCS system, the definition must specify what is nor included in the common
portion. The variety of physical devices that must be accommodated and tool or

methodology specific concepts must be excluded.

A test for extensibility of the CADOCS system must accompany the definition
of integrated CADOCS systems. In other words, can another tool be added to the sys-

tem without altering the common components previously identified?

Current systems support multi-user design by providing re-entrant code and by

preventing concurrent write access to the shared design data base.

A successful, integrated CADOCS system must support design collaboration
not only by prohibiting interference, but also by inhibiting duplication, by promoting

the sharing of, review of, and consultation over, designs.
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The previous requirements are imposed on CADOCS environments, regardless
of the design space that they support. A separate definition of integrated CADOCS
should be provided that is design space specific. This portion of the definition should
focus on the tools’ ability to support the entire life cycle of the design space. For

example:

requirements,
structure,
behavior,
analysis,
simulation,
verification,

ancillary/support functions (documentation, etc).

1.3 Related Research Areas

There has been a large amount of diverse research conducted to improve the
quality of design systems and of interactive systems. In general these projects have
addressed a single aspect of the CADOCS construction and integration problem.
Brought together, the results and techniques from these supporting areas can contri-
bute a great deal to the solution of the problem at hand. Mechanisms for human-
machine interaction are significant to interactive system design. Literature in this
area concems the tactile and visual responses of the user and the physical and logical
interaction devices offered by the system. Familiar device examples include the
mouse, keyboard, screen, and tablet. The physical device inventory requirements and
user actions vary between batch and interactive systems and between systems present-

ing textual and graphic interfaces. These varying requirements must all be
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considered. Computer graphics are discussed alone or as an element of human-

machine interaction.

Although human-machine interaction is an important and obvious area for
consideration by the CADOCS implementor, the CADOCS user requires a less physi-
cal view. An appropriate framework for discussion is the user’s interaction with the

design model under construction [Lill81], the human-model interaction.

A CADOCS system must provide an environment conducive to human prob-
lem solving. Work from the cognitive sciences can be applied to assure that the sys-

tem supports problem solving rather than impedes it.

A method, that will lead the designer of a new CADOCS tool from original
concept through to implementation, needs to be proposed. The method must be con-
structive, each step leaving the designer with a clearer picture of the new tool and
closer to impleméntation. The field of Software Engineering offers insight into effec-
tive design methods. Arguments can be made for very high level specification
languages [Balz83, Jaco83] and against them [Parn79]. Such a specification language
may be provided that allows the designer to record a history of design decisions. The
field of formal languages can contribute to the formulation and analysis of a

specification language.

An Automated Support Environment, ASE, should provide an analytical capa-
bility to provide feedback to the designer at each step of CADOCS tool specification.
The ASE must provide the capability to automatically generate significant portions of
the CADOCS tool software. The ASE provides an integrated set of primitive func-
tions that can be exploited by the designer of a new CADOCS tool. Considering the

Uses Relation [Parn79] and practicing Information Hiding {Brit81] can contribute
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towards the goal of reusability and abstract specification. Software Engineering has
produced a great deal of literature about Design Environments [Solo84], particularly

in relation to the ADA programming language [Fair80, DoD80].
1.4 Research Hypotheses

The primary hypothesis of this dissertation is that effective methods can be
prescribed for specification, design, and construction of an environment for the design
of complex systems. In order to test this hypothesis, it is necessary and sufficient to

test the following list of secondary hypotheses.

1. A set of procedures can be defined to support the separation of user interface

design from modeling software {see Chapter 4}.

2. A meta-language can be defined to express the conceptual model, syntax,
semantics, and physical characterization of human-model interfaces for
CADOCS systems. The meta-language can be computer processed by

efficient means {see Chapters 4,5,6}.

3. A set of tools can be defined to analyze several important aspects of interface

specification such as completeness and consistency {see Chapter 4,5,6}.

4. CADOCS tools have requirements for common resources. Those resources
can be identified and codified into a kernel or nucleus support system sharable

by any CADOCS tool {see Chapter 7}.

5. The method and support system can accommodate the addition of new tools

into an environment of existing tools {see Chapter 9}.

6. A CADOCS system constructed around this method will achieve a substan-
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tially higher level of integration than that achieved by present CADOCS sys-

tems {see Chapter 9}.

The SARA/IDEAS system currently under development will be a test bed for
these hypotheses.

1.5 Dissertation Organization

After motivating the research and defining the problem a survey of related
research is given in Chapter 2. The mear of the dissertation is in Chapters 3-7 where
appropriate languages, tools, and procedures for specification of interaction in
computer-aided design is described and exercised in one or more sample problems.
The first two chapters will be devoted to describing the problems and issues in
defining CADOCS systems, necessary attributes to be specified, and past and current
research in specification and CADOCS construction techniques. Chapter 8 provides a
review of SARA related research. Although specific conclusions and suggestions for
further research are included in each of chapters 4, 5, 6, and 7, the dissertation con-

cludes with a higher level discussion of the implications of the research.
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CHAPTER 2
Related Research

Two types of related research are considered in this chapter, related research
projects and related research areas. The former deal directly with the construction and
composition of state of the art design environments. The latter offer results applicable

to this problem domain but focus on only a single aspect of the problem.
2.1 Related Research Projects
2.1.1 PALLADIO

The PALLADIO [Brow83] system provides an integrated circuit design
environment. The research project focuses on the need for integrated circuit design
tools as opposed to self contained and isolated design aids. In addition to searching
for the appropriate system features, PALLADIO researchers study the circuit design

process and the suitability of tools and methodologies for that process.

The current implementation is written in INTERLISP-D running on a Xerox
1100. Interlisp-D augments Interlisp with bitmap graphics, among other things.
Further power is added to the programming environment by LOOPS (Lisp Object-
Oriented Programming System).

PALLADIO offers a fixed, menu driven user interface with an interactive
graphics editors. A design library is mentioned, but an integrated data base is not. A

general, event-driven simulator is provided that is capable of executing general circuit
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behavior. Further research is being conducted to integrate expert-system aids into the
PALLADIO environment. It is asserted that the expert-system can provide further

automation in the effort of taking an abstract specification into a physical one.

The researchers conclude that the design process is only partially structured

and multi-level.
2.1.2 GANDALF

Project Goals

The goal of the GANDALF Research Project [Habe79] is to create an environ-
ment for the collaborative development of large programs written in the Ada

language.

*“The GANDALF environment consists of three major components which
together provide an integrated set of development support tools. The three com-

ponents are

- a collection of Incremental Program Construction and Generation Tools,
- a collection of System Version Description and Generation Tools, and

- a collection of Project Management Tools.”’

The Incremental Program Construction tool, IPC, is composed of a text editor,
a compiler, and a dynamic debugger. No consideration of programming collaboration
is given in the IPC. The syntax of Ada is central to all tools in the IPC. The mode of
interaction is highly structured, i.e., each editing command takes a syntactically
correct Ada program into another syntactically correct Ada program. Because of the

tight coupling between tools within the IPC, it is easy to shift between editing source
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programs and interactive debugging. In fact, source programs can be corrected during

debug.

The System Version Description, SVD, portion of GANDALF uses the visible
parts of Ada packages to describe the encapsulation or modularization of system
design into system components. The interface specification of a system component
provides sufficient information to potential users of that component without providing
internal implementation or representation details. SVD enforces adherence to these
specifications much like the IPC enforces adherence to Ada syntax. This capability
eases the burden usually felt at system integration time when interface errors are tradi-

tionally found.

GANDALF’s Project Management component inhibits the unauthorized
interaction of programmers collaborating in a project. Modification of system com-
ponents is restricted to specific users and a change history is automatically main-

tained.
Project Philosophy

‘“The GANDALF project favors a distinct view on how a group of programmers

should collaborate on a software development project. This view holds that

- programmers share information about system design and project state, but hide

implementation details from one another;

- a software development project in which several programmers collaborate is
not merely a matter of programming, but also a matier of organization and

management.
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““The Ada language strongly supports this view by clearly separating the visi-
ble part of a package or task from its body. The visible part reflects the design of a

system component; its body is its implementation.”

The interface to GANDALF is dictated by the syntax of the Ada language.
Some consideration is given to collaboration, but more to the prevention of interfer-
ence. Mention of a data base is not specifically made, but an extended file system

provides some of those capabilities.

2.1.3 COPE

COPE {Arch81a, Arch81b] is an integrated package of software providing an
environment for cooperative program development. A full screen, syntax-directed
editor, interactive execution supervisor, and a multi-purpose file system comprise the
COPE system. COPE provides a specific textual user interface rather than a mechan-
ism defining arbitrary interfaces. There is no indication that extension of the environ-
ment is planned for. Since syntax-directed editors are discussed elsewhere, only the

interactive execution supervisor and file system are discussed here.

A series of interaction commands, some mapped to specific keys and invoked
explicitly, others invoked implicitly, characterize the interactive execution supervisor.
The interaction commands are undo, redo, execute, resume, enter, submit, and

quit.

The interactive execution supervisor insures that each state changing com-
mand is recorded in the command log. A special window is provided on the COPE
screen that shows the last command issued, i.e., the last command entered in the com-
mand log. Special function keys are provided for undo and redo capabilities. undo

returns the system to its state prior to the last command invocation. Many commands
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can be undone, each being moved from the executed portion of the log to the pending
execution portion. The redo command moves a command from the pending execution

portion of the log to the executed portion after re-executing it.

The COPE designers chose not to record all commands in the Jog. Cursor
motion commands are examples of those excluded from the log process. The criteria

for exclusion is that direct, easy to use inverses exist.

COPE provides for both the editing of and the execution of programs. The
execute and resume commands take the system from the editing mode into program
execution mode. Both commands are explicitly invoked, but have no function key
provided. Editing commands and execution commands are treated uniformly with
respect to the log file. Thus, COPE’s undo and redo facilities are consistent

throughout.

Log file entries are the result of the enter and submit commands. Both com-
mands are invoked implicitly. Simple character operations (insert, delete, replace) are
entered into the log and more substantial operations, (execute, resume, quit) are

submitted to the log.

The quit command, unlike the others, returns control to the host operating sys-
tem. It is interesting to note that when the user re-activates COPE, the previous quit
command is simply undone, returning the user to exactly the same state as before the

quit command.

The file system is interesting to us here only in that it provides a common
mechanism for storing the user’s source program and for capturing the state change

information including log file.
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No treatment is given the data base aspects of the system. Extension of the
system to include another tool requires additional programming of the user interface
but the services of the interactive execution supervisor are available without addi-

tional cost.
214 USE

The User Software Engineering Methodology, USE, is described by Wasser-
man [Wass82, Wass84a] as a systematic means of constructing interactive informa-
tion systems. The method is supported by a software tool set, the Unified Support

Environment.

The method recognizes the importance of the user interface in interactive
information systems, and supports user involvement early in the requirements
analysis phase. Rather than a top-down design, USE produces an outside-in design.
This method of specification separates the external interaction dialogue from the tran-
sactions on internal data representation. A major advantage of this technique is that
many different interfaces can be developed to suit the needs of a specific user without

altering the set of semantic operations or underlying data base schema.

Wasserman [Wass84b] provides the following list of goals for an interactive

information system development method.

. functionality - The method should cover the entire development process, sup-
porting creation of a working system that achieves a predefined set of require-

ments.

. reliability - The method should support the creation of reliable systems, so that

users are not inconvenienced by system crashes, loss of data, or lack of availa-
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bility.

. usability - The method should help the developer to assure, as early as possi-

ble, that the resulting system will be easy to learn and easy to use.

. evolvability - The method should encourage documentation and system struc-
turing so that the resulting system is easily modifiable and able to accommo-

date changes in hardware operating environments and user needs.

. user involvement - The method should involve users effectively in the develop-

ment process, particularly in its early stages.

. automated support - The method should be supported by automated tools that
improve the productivity of software developers using the method; this
requirement implies the availability of both a general set of automated aids

and a method-specific set.

. reusability - The method should be reusable for a large class of projects and
the design products from a given application should be reusable on similar

future projects.

Finally, he states that USE, like other effective methods, prescribes a well-
defined set of phases beginning with specification and analysis and terminating with a

validated operational system.
2.1.5 DEMETER

Carnegie-Mellon University researchers have recently initiated the DEMETER
project. It has many goals in common with this research, but no results have yet been

published.
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2.2 Related Research Areas

Researchers in the specific fields of software engineering, human-computer
interaction, data base management, and formal language theory offer partial solutions
that contribute to an understanding of the design and construction of highly interactive

software systems.
2.2.1 Software Engineering

This dissertation defines a system that supports a broad user community and
variety of CADOCS tools. The software engineering community offers several

design techniques that offer useful suggestions.
2.2.1.1 Uses Relation

Parnas [Parn79] describes an approach to software design intended to result in
systems that can be tailored to fit the needs of a broad variety of users. He identifies
the Uses Relation that can be used to guide the design process towards that goal. The

points most worthy of emphasis are described in the following paragraphs.

The requirements phase must consider subsets and extensions to the product
under development. By identifying useful subsets of end user capabilities, flexibility
becomes a design consideration rather than an afterthought. This approach not only
produces a family of products that meets the needs of a wide variety of customers, but

also provides a fail-safe way of handling schedule slippage.

The author defines the difference between software generality and software
flexibility, ‘‘Software can be considered general if it can be used, withour change, in
a variety of situations. Software can be considered flexible, if it is easily changed to

be used in a variety of situations.”” He further states that there appears to be an
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inevitable run-time cost associated with a system exhibiting generality. By incurring
a significant design-time cost designers can achieve flexible systems without incurring
significant run-time cost. The extra design cost can be recouped if and when changes

are required.

A prime goal of Parnas’ methodology is the identification of the unit of change
within a software system. Conventional programming techniques consider a module
to be the unit of change, and define a module to be a subroutine that calls other sub-
routines. However, if one wants the modules to include all programs that must be
designed together and changed together, then, one will usually include many small
subprograms in a single module. The unit of change is not a single callable subpro-
gram. The emphasis on subsets and extensions distinguishes Parnas’ work from that

of others who focus on hierarchically structured designs.

Finally, Parnas suggests that designing for subsets and extensions can reduce
the need for support software such as separate SYSGEN programs, system
specification languages, and special-purpose compilers. The price of the convenience
features offered by such languages is often a compiler and run-time package distinctly

larger than the system being built.
2.2.1.2 Information Hiding

One design concept from software engineering is information hiding [Brit81].
Put simply, information hiding produces an implementation that allows only con-
trolled access to important data structures. Rather than making public the organiza-
tion of data, a set of routines are made public that manipulate and access the data
structure. The next section on object-oriented design describes in detail one variant of

information hiding.
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2.21.3 Object-Oriented Design — Smalltaik-80

In the early 1970s, at the Xerox Palo Alto Research Center, the Learning
Research Group embarked upon the ambitious Smalltalk project. The proposed pro-
ject had as its goal the design, test, and implementation of abstract notions conceived
within the human mind and represented in computer hardware. The interface was to
be natural and should require a minimum of translation from human thought to the
computer representation of that thought. The Smalltalk project exemplifies object
oriented systems and provides a vocabulary for further discourse. Fortunately,

members of this groilp have published widely [Gold83, Gold84, Kras83].

Smalitalk-80 is an integrated programming environment. In addition to a pro-
gramming language and an interactive graphics system it provides functions normally
associated with an operating system. These functions include memory management, a

file system, processor scheduling, display handling, and compilation.

The entire Smalltalk system is modeled on a form of object-oriented program-
ming. At the highest level the user’s interaction with the system can be viewed as an
interaction between two super-objects, the User and Smalitalk. Delving deeper into
Smalltalk reveals a multitude of smaller object types that serve a variety of roles. All
data in Smalltalk are objects. Each object type can be further classified into more spe-
cialized subtypes. It is the communication and interaction between the various objects

of the system that determine the functionality of Smalltalk.

The vocabulary of Smalltalk is quite small. The most important concepts are

classes, objects, methods, and messages.

Objects, Methods, Classes, and Instances
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In the Smalltalk programming language, the primary unit of data organization
is the object. Everything in the system is represented and manipulated as an object.
An object is a data structure consisting of local private memory and a set of opera-
tions, called methods, to manipulate information stored in the private memory or per-
form actions based on that information. The only way to access the private memory
of an object is through the methods defined for that object. An object is similar to the
concept of an abstract data type in other programming languages. For example, a

stack abstract data type can be described in Smalltalk as an object consisting of:
Private Memory, the items on the stack.

Operations (Methods) on the private memory.
Push, Pop, Top, Height, Full, Empty.

Other examples of objects include numbers, character strings, queues, rectan-
gles, file directories, compilers, text editors, and programs. A class is a description of
a set of objects of the same type. The individual objects described by a class are its

instances.
Messages

Smalltalk is a world of communicating objects. The methods of an object are
its interface with the other objects in the system. The medium of communication
between objects is the message. Whenever an object A (the sender) wants to get
another object B (the receiver) to do something, A sends B a message which is inter-
preted by B’s message interface. The message initiates execution of one of B's
methods which calculates a response, and B then returns this response to the sender.

This is the primary way of making things happen in Smalltalk.
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Subclasses, Superclasses, and Inheritance

Another important concept of object-oriented programming in Smalltalk is the
subclass. A subclass is a class of objects possessing all the variables and methods of
some other class, called its superclass, except for certain explicitly stated additions

that extend or override the variables and methods of the superclass.

A simple analogy to the subclass can be found in traditional dictionary
definitions of English words. For example, a man can be defined as a male adult
human. A father can be defined as 2 man who has one or more children. The class
father is a subclass of the class man, and the class man is a superclass of the class
father. Notice that father is defined in terms of man but is more specialized. In order
for an object to be a father it must not only be a man but it must also have one or
more children. All fathers are men but not all men are fathers. A subclass is thus a

proper subset of its superclass.

Another idea important to subclasses is inheritance. A subclass is said to
inherit all the attributes of its superclass. A father possesses all the attributes of a
man, with some additional attributes not required of the man class. A Smalltalk sub-
class inherits all the variables and methods of its superclass but it also adds new vari-
ables and methods in its implementation description, or it may override a method of
its superclass with a new definition. Inheritance is transitive. If class B is a super-
class of class C and class A is a superclass of B then, by the definition of inheritance

class, C inherits the attributes of class A is well as those of class B.

Swmmary
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Smalltalk is an interactive programming environment with a graphical inter-
face. Designing a Smalltalk program requires an implementation of each of the
program’s objects including a visualization of that object. To support the desired
graphical interaction, Smalltalk expects a high-resolution graphical display screen and

pointing device such as a mouse.

The Smalltalk environment provides many facilities often found in conven-
tional operating systems, including: memory management, file system, graphical input
and output device handling, debugger, performance monitor, compilation and decom-

pilation.
2.2.2 Human-Computer Interaction

Human-computer interaction in early interactive software is characterized by
textual command-response systems. The human user uses an alphanumeric keyboard
to enter commands and the computer system gives a textual response on an
alphanumeric display device. Current interactive operating systems still rely on tex-

tual command-response for human-computer interaction.

The textual command-response approach is dictated in part by the expense and
paucity of devices to support graphical interaction and in part by the scarce special-
ized knowledge required to implement graphical interaction software. Advances in
technology have provided economical physical devices to support graphical interac-
tion and standardized software packages have been developed that allow the cost of

graphical interaction software to be amortized across many applications.

Two well known software standards are the CORE graphic standard [Fole31,
Acqu82, Hanl79] and the Graphic Kernel Standard, GKS [ISO81], A graphic package

implementing either standard contains algorithms and data structures to support
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graphical interaction and it defines a set of procedure call interfaces that comprise the
implementation’s interface to the using application program. The graphical represen-
tation of an object is maintained by the graphical package and the application program
must maintain the semantic representation separately. This separation requires the
application program to maintain bi-directional linkages between the two representa-

tions.

Foley and Van Dam [Fole82] describe human-computer interaction as a
sequence of abstractions. The highest level of abstraction is the interaction task that
the user carries out by using a logical device. A logical device is a software imple-
mentation that allows the user to carry out a specific interaction task on a specific phy-
sical device. The abstraction sequence is extended and integrated into the results of

this work as described in Chapter 6.
2.2.3 Human Problem Solving

The Psychology of Human-Computer Interaction presents a Model Human
User, MHU, that describes the physiological and psychological aspects of the

human-computer interface [Newe72].

The MHU is characterized as a system and a set of principles of operation.
The system is composed of three subsystems: the Perceptual System, the Motor Sys-
tem, and the Cognitive System. Each of the subsystems is characterized as a processor
and a set of memories that comprise a memory hierarchy. The most important charac-
teristics of the memories are:

K = storage capacity measure in items,

8 = decay time of an item,
K = primary encoding technique, {physical, symbolic, semantic}.
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Processors are characterized by
T = cycle time
which includes memory access time.

The perceptual processor has the entire human sensory system as input, but

relies almost exclusively on the eyes.

The motor processor is responsible for arm-hand-finger and eye-head move-
ments. These movements are made in response to the symbolic information encoded

in working memory and are dictated by the cognitive system.

In the simplest of tasks the cognitive system passes control from the percep-
tual system to the motor system with a minimum of involvement. However, the com-
plex task of design requires the cognitive processor to intercede in support of learn-

ing, retrieval of information, and problem solving.

The most important principle from the Model Human User’s principles of

operation is the Problem Space Principle.

““The rational activity in which people engage to solve a problem can be described in

terms of

1. a set of states of knowledge,

2. operators for changing one state into another,

3. constraints on applying operators, and

4. control knowledge for deciding which operators to apply next.”
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The cognitive model [Mill79, Gaun82] offers additional insight into human

knowledge, communication, and thinking.
2.2.4 Computer Aided Communication - FORUM

Researchers at the Institute of the Future were interested in improving the pro-
cess of structured expert interaction [Vall75, Vall77, Joha78], but expanded their
domain to include the more general topic of computer-based group communication

with experts representing but one segment of the user community.

Before developing the FORUM system as a test bed, a series of conferencing
case histories were studied and five styles of computer conferencing were identified:
(1) the notepad, (2) the seminar, (3) the assembly, (4) the encounter, and (5) the ques-

tHionnaire.

Having identified the fundamental styles of computer conferencing, the group
focused on elements of group communication, such as individual and group charac-
teristics, skills, and attitudes, characteristics of the medium, and communication tasks

to be performed.

FORUM tracks the content of discussions, allowing the roles of different par-
ticipants to be studied. At least three distinct roles are identified, the provoker, the
synthesizer, the conference leader, anci the conference facilitator. The provoker
seems to push the discussion forward into new areas of thought, while the synthesizer
ties the loose strands together. The conference facilitator is characterized by partici-
pation in a large number of private communications with individuals. Many of these
messages are attempts to acclimate the correspondent with computer conferencing and
to conflict resolution. The conference leader sets the tone of the conference and con-

trols it with a style ranging from democratic to authoritarian. The leader is
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characterized by a high degree of public messages.

After monitoring several real-world conferences conducted using FORUM, the
authors express optimism about some aspects of computer conferencing and skepti-
cism about others. The topics of the conferences include international crisis manage-

ment, mineral wealth forecasting, astronomical data resource sharing.

Many of the performance characteristics presented are based on keyboard
input and character display output devices. Positive conclusions include: faster rate of
information exchange compared to face-to-face conferences, user satisfaction not
determined by previous typing or computer skills, and user participation on a more
equal footing compared to face to face conferences. Another significant conclusion is
that the conference style is strongly determined by the conference leader as in face to
face conferences; the long term impact on the using organization can not yet be deter-

mined.
2.2.5 Data Base Management

Landis [Land86, Land83], in a companion dissertation, discusses at length the
requirements of a data base for an automated design system. She identifies relational
data base technology as the most supportive of those requirements. The requirements
that distinguish a design data base from the conventional data base found in business
applications include the unpredictable length of fields within records, the granularity

of data base access, and the data base transaction unit.

Other researchers are drawing the same conclusions and have proposed
changes to existing relational data base systems to allow them to support CAD sys-

tems.
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2.25.1 SYSTEMR-IBM

System R is a relational data base management system developed by IBM
Research Labs in San Jose, California. Continued research includes the modification
of System R to improve its ability to handle design data [Astr76]. The extensions
focus on four major areas of concern: the handling of complex design objects, the
support of conversational transactions, the data base — data structure interface, and the

management of data items of unlimited or unpredictable length.

The ability to handle complex objects often found in the design environment is
enhanced by allowing a designer to declare and specify structural relationships among
semantically related data. Such complex objects might be the representation of a
VLSI chip with its functions, components, pins, etc. In order to handle conversational
design transactions, the capability to provide protection and sharing of a complex
object was added. Other modifications provide an object oriented interface which
allows a data structure to be synthesized from one or more complex objects. System
R’s facilities for managing design data are being modified to enhance performance on

updates and to support items of variable length.

These extensions to System R have allowed work to proceed in the manage-
ment of data for a large internal design system. This modified System R can be used

to support design at all levels.
2.25.2 INGRES - UC Berkeley

Researchers at the University of California, Berkeley have been experimenting
with implementation of a CAD application with INGRES, a relational data base
management system [Held75a, McDo74, Held75b, Ston76]. Their work has identified

four features which need to be added to INGRES in order to more fully support CAD
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applications. These features include facilities for the support of ragged relations, sup-

port of transitive closure, access by spatial location, and unique identifiers.

Ragged relations are needed to allow for repeating fields within a relation.
Often in the design process the need for multiple values associated with an attribute
arises and is best represented in relations as repeating fields. The approach to support
ragged relations is to allow for ordered relations and then allow the relations to be
nested. Transitive closure support is necessary in order to exploit the hierarchical
nature of design, such as that which occurs in the expansion of subcells within a cell.
Access by spatial location further integrates the geometric aspects of design along
with its textual aspects. In order to truly integrate a data base, unique identifiers are

deemed necessary for all data base objects.

These enhancements to INGRES, the researchers claim, allow for a data base
management system which would be easy to use and which would perform at accept-
able levels. INGRES could be used to provide data management support at both high
and low levels of design.

2,26 Syntactic and Semantic Specification

There are several well known methods of language definition techniques that
are sufficiently powerful to describe the interface syntax of interactive systems. A
desirable property of a language definition technique is the ability to automatically
generate a recognizer, or parser, from the language definition. Much formal work has
been done by researchers in the formal language area. Space and time efficient algo-
rithms and language representation are well known and understood. Lewis, Rosen-
krantz, and Stearns [Lewi76] provide a thorough discussion of current techniques in

this area.
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Another necessary property is the ability to associate semantic operations with

recognized sentential forms or sentence fragments. A successful technique would

thus allow:

1. syntactic definition

2. semantic definition

3. generation of space and time efficient parser that implements the syntax and

semantics of the specified language
We will later impose further requirements on the technique we choose.
2.2,6.1 Natural Language

Perhaps all systems are first described in natural language. Natural languages
are far more powerful and flexible than any artificial languages that have been intro-
duced. However, this flexibility prevents us from parsing the language by space and

time efficient techniques.
2.2.6.2 BNF and Knuthian Semantics

Knuth provided some early discussion of left to right parsing techniques
[Knut65] and subsequently adding semantic actions to the parsing techniques
[Knut68]. The ability to parse programs written in these languages stems from some
severe restrictions imposed on the language’s grammar. These restrictions were

refined in later work on LR grammars.
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2.2.6.3 LR(k) and S-attributes

The LR family has several members and a great deal of formalism and tech-
niques that do meet requirements so far identified. Grammars of the LR(0) class
[Aho72, Aho73] and SLR(1) [Reme71] can be recognized by a technique known as
SHIFT-REDUCE processing. SHIFT-REDUCE processors strike an effective
compromise between table storage requirements and speed of processing. They also
have a property that makes them able to provide meaningful error messages and to
recover from errors. Both LR(0) and SLR(1) grammars are properly covered by
LR(1) grammars. A thorough discussion of the space and time performance charac-
teristics of SHIFT-REDUCE parsing is found in [Aho72, Aho73].

Fenchel [Fenc78] uses SLR grammars to parse interactive user input and to

provide automatic syntactic help.

LR(1) is more general than LR(0) and SLR(1). It represents a broader class of
“languages, but requires considerably more processing power. LR(k), where k is
greater than one, is even more general, but in a practical sense provides no additional

power over LR(1).

LAILR(1), as shown in YACC [John75, John78], provides almost all of the

generality of LR(1) with far less processing requirements.

The LR family is discussed thoroughly in [Weth81]. When semantics are

added to LR grammars they are termed S-attributed grammars.
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2.2.6.4 LL(k) and L-attributes

The LL family is less expressive than LR and approximately as expressive as
SLR [Beat82], that is, LR can generate languages that LL is unable to express. LL
grammars can be parsed efficiently in terms of space and time. They can provide
excellent error messages and error recovery. They possess the property of incremen-
tality; a new grammar rule can be added without reanalyzing the entire grammar.
They also possess an interesting property that we may exploit, prescience. At any
point in the parse, the parser has available to it all inherited and synthesized attributes
with which to guide the parse. In general, this property allows LL to perform transla-
tions impossible in LR. In particular, the parser knows precisely which token to
expect next, and we may wish to exploit that knowledge when we have multiple input

devices and must enable the correct device.

The parsing technique is simple and efficient. When semantics are added to

LL grammars they are termed L-attributed grammars.
2.2.6.5 Integral Help

Interactive tool users bring with them varying degrees of sophistication in gen-
eral computer use and varying degrees of familiarity with a specific tool. A tool
system’s ability to cope with error prone users by detecting and reporting errors can
contribute to its usability. Self documenting systems, those that provide on-line syn-
tactic and semantic help, are far easier to learn and use than those that don’t offer such
facilities. Fenchel’s work is representative of the class of self-describing systems

[Fenc82].
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Fenchel [Fenc78, Fenc80] offers a structured technique that guarantees con-
sistent and accurate syntactic assistance and provides a framework for integral seman-
tic assistance. The technique requires the specification of the language with which a
user interacts with the system as an integral part of system design and implementa-
tion. The language is processed to produce a parser as well as on-line assistance

information, error messages and hard copy user manuals.
Requirements for such help systems include:

1. assistance describing the structure and meaning of their commands and direc-

tions for their overall use.

2. consistent availability of assistance,
3. accurate information and reasonable cost for developing and maintaining
assistance information.
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CHAPTER 3

The Design Methodology and System Organization

This chapter provides a description of the Constructive Design Method, CDM,
to be followed during the conceptualization, design, and construction of CADOCS
tools. The method is four-phased. Each phase is supported by a language and a
language analyzer. The system of language analyzers is described. Input, output, and

processing requirements are given for each language analyzer.
3.1 Introduction

This dissertation defines a method that carries the designer of a new tool from
the conceptual definition of that tool through to its actual implementation. A method
should be easy to follow and attractive to use without assuming that the tool designer
intends to use a system, such as IDEAS, that fully or partially automates the design
process. If the designer does intend to use such a system, application of the method
should provide the designer an appreciable assist in tool construction by offering gui-
dance in describing the tool, by automatically building major portions of the tool, and

by providing design feedback.

Many tool developers use general purpose methods to define CADOCS tools.
Structured design is an example of such a general purpose software method. The
method described here is specifically for CADOCS systems and is considered to be
within the CADOCS system. The method is constructive, that is, its use leads the

designer to a better understanding of the modeling capability being proposed.
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Frequently, user manuals are developed first and used in customer/client dis-
cussions. This focuses the designer’s and the user’s attention on the syntax of the
modeling tool rather that on its semantics. CDM specifies the semantics first and
separately. The user-manual-first approach prematurely commits the designer to a
single user interface. The interface specified in the user manual may make or break
the system. This points out a strong need to decouple a tool’s syntax from its seman-
tics, and to provide for separate design and review of each. The constructive design

method provides for that partitioning.

Many tools are designed assuming that a specific device or set of devices will
provide the means for tool interaction. The method separates physical device con-
siderations from semantic and syntactic considerations. The design process is obvi-
ously more complex if a tool designer must consider all of these issues at once, and,
in fact, a single designer may not be qualified in all of these specialized areas. It may
be advantageous to have the modeling capability definer and members of the user
community develop the tool’s concept, to have a specialists in human factors and user
interfaces focus on that portion, to have graphics programmers develop device
handlers, and to have applications programmers develop the body of the semantic rou-

tines (operations).

The method is four-phased and will be outlined in the remainder of this
chapter. The method and languages to support each phase will be described in detail

in a later chapter as will the execution environment for CADOCS systems.
3.2 Imprecise Goals of the Method and Kernel

The following list of high level goals is imposed on the tool development

method and underlying support kernel.
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1. Support strong partitioning of user interface issues from tool modeling issues.

2. Automatically provide a consistent, friendly user interface directly from the

tool’s specification.
3. Provide a high degree of device independence.

4, Provide a large body of reusable software that is common to CADOCS tools.

5. Automatically generate as much code as practical.
6. Adhering to the method should produce a better tool more easily than not fol-
lowing it.

7. Method should be constructive. It should lead to a better understanding of the

new tool during specification instead of later during coding.
3.3 The Design Method

The method is multilevel and object-oriented. The four phases of CADOCS
tool design method are the conceptual, grammatical, logical device and physical dev-

ice phases.

The conceptual phase supports a designer in the creation of a new modeling
capability from its initial conceptualization to its complete semantic definition.
Modeling objects, their inter-relationships, and the operations performed upon them

are all identified in this phase.

The grammatical phase supports complete syntactic definition of a tool. Prim-
itive grammatical elements, words (terminals), are identified. Terminals can be

ordered and collected into phrases and sentences (non-terminals). The tool designer
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will associate each sentence with a semantic operation defined in the previous phase.
The run-time environment must support the recognition of sentences and an invoca-

tion of the specified operation.

The logical device phase focuses the designer’s attention on the logical dev-
ices and logical interaction tasks required to support interaction. A handful of logical
devices (e.g., selector, valuator, pick, text) have been identified by Foley and VanDam
[Fole82]. Software implementations of these logical devices are developed for avail-
able physical devices (e.g., specific mice, tablets, keyboards). These logical device
drivers are maintained in a special library. This phase is primarily concemned with the

mapping of words from the previous phase onto logical devices from the library.

Finally, the physical device phase focuses the designer’s attention on the phy-
sical device inventory available to support interaction. Logical devices and tasks are
assigned to physical devices. Several other aspects of the physical environment may

also be dealt with in this phase.
3.3.1 The Conceptual Phase

The first step is the identification of objects that the user of the tool must be
familiar with. These are the objects that the user will create and manipulate during
use of the CADOCS tool. The relationships that must hold between objects must also

be defined. Lastly, the operations upon objects are specified.

Objects emanate from the tool and from the support environment provided for
the tool. Those that are derived from the functional specification of the tool must be
identified and developed by the tool designer. They are those objects that are
specifically part of the tool or set of tools under development. Other objects are

present across a broad spectrum of CADOCS tools. A display screen is such a



general purpose object. The reason we distinguish between tool specific objects and
environment objects is that we wish to provide help to the tool designer in building
reusable environment objects. We can provide higher level support for those objects

that recur in CADOCS environments than we can for tool specific objects.

A most important object that recurs across tools is the CADOCS data base. It
is included as an environment object because of its frequency of appearance and the
complexity of its effective use. We have tentatively selected a relational data base
and have integrated it into the kernel as well as into the tool design method. Applying
the method via the higher level constructs provided in the specification language

relieves the tool designer of the task of constructing a special purpose data base.

Operations come in several varieties. Validation operations are pure boolean
functions. These operations determine legitimacy of proposed operations on the col-
lected objects but can have no side effect on those objects. Query operations extract
certain information from the underlying collection of objects, and have no side effect.
Transformation operations are those that alter the objects that they operate on. A

complete list with definitions will be developed in the next chapter.

The specification of objects, relations, and operations are performed only at
the user level to facilitate customer/client review. This approach can be likened to
that of the use of Abstract Data Types, ADTs. The Ada programming language sup-

ports this design principle through Ada package specifications parts.

At this point, the tool implementation team may split into groups. One group
can begin further specification and implementation of the operations previously

defined. Another group may concentrate on user interface issues.
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3.3.2 Grammatical Expression of Dialogue

The tool designer is concerned with the tool’s user interface during the gram-
matical phase having defined the tool’s semantics in the previous phase. Preliminary
research has identified only a portion of the requirements for this phase of the method.
The obvious requirements include the syntax of the tool user’s inputs, the tool’s
semantic response to inputs, and the form of presentation of modeling objects pro-
duced during tool use. Since display screen layout and menu presentation are

significant aspects of user dialogue, they must also be considered during this phase.
3.3.3 Logical Device Level Considerations

The logical device phase focuses the tool designer’s attention on the low-level
aspects of the tool’s user interface. None of the previous phases have specified the
characteristics of any specific device. Each primitive notion identified in the previous
phase must come from some physical input device and be displayed on some physical
output device. This phase buffers the designer from the specifics of physical devices

with the more general interface characteristics of logical devices.

An example of a common logical device is the pick device. A user interface
that requires its user to pick a modeling object from those displayed on a screen or
one of the menu alternatives presented would find a logical pick device a natural and
powerful aid. The method allows the tool designer to bind words from the previous

phase to logical devices offered by this phase.
3.3.4 Physical Device Level

The physical device phase allows the tool designer to specify the physical dev-

ice inventory of interaction devices that are available to support the tool’s user inter-
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face. A remaining step is to bind logical devices to physical devices.
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3.4 Overview of the System Organization

Each step of the methodology is supported by a specification language,
language translator(s), and analyzer(s). The following observations serve as rationale

for this approach.

1. Each design decision reached should be documented.
2. Documented decisions require a vehicle for review.
3. Once a phase is specified, some level of confidence must be achieved before

attention is shifted to the next phase.

4, A subset of the decisions made in one phase are useful as input to subsequent
phases.
5. Many of the decisions made must eventually find their way into implemented

software. This migration into code should be supported by code generation or

by verification of specification against implemented code.

The specification languages are defined to directly support the methodology
outlined in this chapter. The following sections identify the inputs and outputs of the
specification language processor for each phase. A complete description will be given
for each language (input requirements for the language compilers) in the chapter
devoted to that phase of the methodology. All output languages will be similarly

defined for each phase. These serve as interface specifications for the various phases.
Separate languages are provided for:

a. Tool Conceptualization
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b. Dialogue Description
c. Logical Device Description

d. Physical Device Description

Figure 3.1 shows the data flow aspects of system generation.
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Figure 3.1: System Generation Data Flow
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3.4.1 Conceptual Language and Support Software

The description fed into this facility must be sufficiently rich to compute an
Entity Relation Diagram, ERD, of the tool. The facility must also compute other data
structures or procedures that are not part of ERDs yet are essential to our goal of gen-
erating a complete data base management component. The original ERD and these
augmentations comprise an Augmented Entity Relation Diagram. Figure 3.2

represents the data flow aspects of this portion of System Generation.

Augmented
ERD

Semantic OReQO Class
Definition Compiler Definitions

Operation
Specifications

Figure 3.2: OReO Compiler
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PROCESSING

1. Semantic operation specifications are essentially copied from input to output
unscathed.
2. Generate class definitions and methods sufficient to describe in-memory

models that the tool will construct and manipulate at run-time.

3. Generate class definitions and methods sufficient to describe data base models

that the too! will construct and manipulate at run-time.

INPUTS
1. objects seen by the modeling tool’s end user,
2. relations
a. internal relations - those rciations existing between objects defined
within a single modeling tool,
b. external relations - those relations existing between objects not defined
in a single modeling tool,
3. operations
a. transformation operations
b. functional (query) operations
c. pre-transformation validation operations
d. time-invariant validation operations
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OUTPUTS

1. semantic operation specifications,
2. in-memory descriptions and manipulations of modeling objects,
3. database descriptions and manipulations of modeling objects,

4. augmented ERD
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3.4.2 Dialogue Language and Support Software

This phase primarily involves the ordering of input tokens. Sentences of the
user interface are defined at this point using a BNF-like meta-language. Operations to
be performed upon recognition of sentences are also identified. Input validation
operations are intersperscdlwithin the sentences. Error recovery steps to be taken

upon bad input are also specified.

The meta-language is L-attributed. The dialogue specification as well as the
operation interface specifications from the previous phase is input to the interaction
compiler. This compiler is responsible for assuring adherence to the LL(1) restric-
tion, and for assuring that only previously defined operations are invoked. It is hoped
that certain metrics can be computed by this compiler that measure the quality or con-
sistency of the interface. In addition to interface feedback reports, this compiler will
produce some representation of the grammar that is suitable for driving the user’s
interaction with the tool. The form must also be suitable for providing integral help,
generation of menus, error recovery, and a host of other capabilities not yet defined.
Currently, the Augmented Transition Network [Wood70], ATN, provides the frame-
work for this output. A final output of this compiler is a list of terminal symbols
found in the language. These symbols can be regarded as undefined external refer-
ences that we expect to resolve in a later phase. Figure 3.3 shows the data flow

aspects of this portion of System Generation.
PROCESSING
1. Insure LI(1) property.

2. Insure that only legal operations are associated with sentences.
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Operation ATN

Specifications Graph
Grammar
Compiler
Grammar Token
Definition List

Figure 3.3: Grammar Compiler

3. Insure that operations are called with appropriate number and type of argu-
ments.

4, Construct graph representation of grammar.

INPUTS

1. grammar specification

2. operation interface specifications

OUTPUTS

1. extémal form of the tool’s grammar in a form that can be subsequently read
and traversed.

2. list of grammar’s terminal symbols
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3.4.3 Device Languages and Support Software

The lexical and physical device phases are characterized by a device compiler.
The input specifications of this compiler define the lexical device and physical device
languages. Another input to this compiler is a list of terminal symbols produced by
the interaction compiler. With these inputs and access to the logical device library,
the compiler is responsible for producing an input/output handler for the executing

tool. Figure 3.4 shows the data flow aspects of this portion of System Generation.

Token
List

Lexical
Definition

Physical

Definition Device I/0
Compiler T Handler

Interaction
Tasks

Device
Drivers

Shapes

Figure 3.4 Device Compiler
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PROCESSING

i. Translate inputs into requests to the system librarian for DDL support.
2. Translate inputs into requests to the system librarian for DISL support.
3. Translate inputs into requests to the system librarian for LDL support.
INPUTS

1. lexical definition of the tool,

a. binding of grammatical input tokens to interaction tasks,
b. binding of grammatical output tokens to shapes,
2. physical device requirements of the tool,
a. physical device inventory,
b. binding of interaction tasks to physical devices,

c. binding of shapes to physical display devices,

3. interaction tasks, software implementations of a logical interaction for a
specific physical device,
4, device drivers,

5. graphical shape definitions,

OUTPUTS

1. software implementation of the required I/O handler.

57



3.4.4 Entity Relation Diagram

The ER diagram can be used as input to a separate tool responsible for aug-
menting the run-time data base management system. It is anticipated that the infor-
mation typically specified separately in a data description language, DDL,andina
data manipulation language, DML, can be automatically extracted by the OReO com-
piler. This descriptive activity is typically performed by a data base administrator,

DBA, as a separate design activity and requires specialized expertise.

The DB compiler is the processor within OReO which is responsible for the
coupling of the tool and the data base management facilities. Figure 3.5 shows the

data flow aspects of this portion of this of System Generation.

Data Base
Declaration
Entity Relation Data Base
Diagram Compiler
Data Base
Manipulations

Figure 3.5: Data Base Compiler

The tool’s physical, as well as the logical, data base must be declared includ-

ing relationships with external entities.
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PROCESSING

1. Traverse the augmented ERD to identify types of entities, relationships and

properties.
2. Map entities, relationships and properties into the RM/T data model.

3. Map the RM/T model into relations supported by underlying relational
DBMS.

4, Map the constraints, options list, defined unit and defined methods into cata-

logs and procedures supported by the DB Kernel.
" INPUTS

1. The ERD (Entity-Relationship Diagram) consisting of defined entities:

a. properties of entities
b. relationships between entities
c. roles entities assume
d. entity origin
2. The ERD augments consisting of:
a. type constraints on entities,
b. value constraints on entities,
c. structural constaints on entities,
d. procedural constraints on entities,
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e. unit definition

f. options list

QUTPUTS

1. DB declaration of catalogs which define the RM/T model,

2. DB declaration of catalogs which define the external links, and

3. DB methods which augment the T methods provided by the DB Kernel.
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3.4.5 Auxiliary Support

The integration facility is a collection of software that takes the several results
from the phase-specific tools and brings them together into an executable program
equivalent to the tool specification. It is in a position to perform other ancillary

duties.

The tool developer is responsible for fleshing out the operation specifications
identified in the conceptual phase. A consistency checker may be required to guaran-
tee agreement between the semantic operation’s specification and implementation.

Other analyzers may be identified that either support verification or interface analysis.

Logical
Devices

Device

Dependent

Data Base
Kernel

Shape
Library

System
Librarian

Interaction
Kernel

Data Base
Kernels

Interaction
Kernels

Figure 3.6: Integration Facility

61



PROCESSING

1. Verify the consistency of operation specification and implementation.

2. Construct an executable product from the constituent fragments and determi-

nation of completeness.

INPUTS
1. data base management inputs
a. static (run-time invariant) declaration of the tool’s data base,
b. methods that can be applied to the data base at run-time,
c. kernel (tool independent) data base software.
2. syntactic and semantic inputs
a. interface specifications of user available operations,
b. implementations of those specifications,
c. parse table or its logical equivalent.
3. miscellaneous inputs
a. an implementation of the tool invariant interaction kernel,

b. a tool dependent and device dependent I/O handler.

OUTPUT

1. executable CADQCS system tailored to some hardware environment.
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3.4.6 System Librarian

The System Librarian will also be part of the RUN-TIME environment com-
ponent. It will also be accessible as a stand-alone processor. The focus here is on the
role it plays during Sysgen. It is essentially a data base management system that
manages libraries of data structures and procedures that are used in the construction of

CADOCS systems.

The librarian will accept requests to search the various libraries under its con-
trol, requests to install new library entries, requests to query properties of the library
entries. The librarian will also perform processing normally associated with version

control.

Inputs to the System Librarian are in the form of requésts submitted by other
components of the SYSGEN environment. The run-time environment may also sub-

mit requests.

The managed libraries are also inputs to the librarian. The libraries are

currently (very subject to change)

1. the Logical Device Library (contains sets of logical input routines, in each set
is an implementation of each interaction task, there is one set per physical

input device),

2. the Device Independent Shape Library (contains routines to draw shapes or
icons, these routines are implemented as calls upon routines that draw general-

ized graphics routines and are thus device independent),

3. the Device Dependent Library (contains sets of output routines, one routine

per generalized graphics primitive comprises the set, one set per physical
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display device),
4, the Data Base Kemnel Library, and
5. the Interaction Kernel Library.

The System Librarian will normally output source or object level descriptions
of data structures and procedures in response to requests. It will respond with

directory-like information for appropriate queries.
3.5 Summary

A separate chapter of the dissertation is devoted to the detailed exposition of
each phase of the method. The associated specification languages, translators, and
analyzers will be described in the appropriate chapter. The translators each require
certain primitive run-time support if we are to provide auto code generation. This
run-time support, the target machine, is developed and defined in the chapter on the

system kernel.

A later chapter will give one or more design examples that demonstrate ail
phases of the method. Examples will show definition of the first tool in the system

and the later inclusion and integration of another cooperating tool.



CHAPTER 4

Conceptual Definition Phase

Chapter 3 introduced the four phases of tool definition, concept, syntax, logi-
cal device, and physical device level definition. This chapter is a complete discussion
of the concept definition phase. The design methodology relevant to this phase is
made more concrete by applying it to the description of a simple tool, the Influence

Diagram Editor.

After describing the fundamental characteristics of the influence diagram, each
step within the concept definition phase is applied and specification fragments given.
Later, the entire specification language is given along with the complete concept

specification of the Influence Diagram Editor.

During the conceptual definition phase the tool designer initially focuses atten-
tion on object identification, then on the relationships that exist between objects, and

finally on the operations performable on the objects.

65



4.1 Influence Diagrams

Influence diagrams have been shown to be useful in a variety of guises. They
appear to be used first to model continuous systems such as the growth patterns in a
large urban center [Forr61, Forr69]. Later they reappear in the form of cognitive

maps as exemplified by [Bonh76].

Influence diagrams describe the ways in which concepts influence each other.
The standard diagram includes text strings, sometimes individually enclosed in a cir-
cle or an ellipse, that represent concepts. Typical concepts from Forrester’s Urban
Dynamics, for example, are population, industrial base, number of homes, and per-
ceived quality of living. Perception of 2 high quality of living in an urban area tends
to cause an influx of new arrivals from rural and other urban areas. The perceived
quality of living is in direct proportion to the rate of population growth. More than
just positive or negative correlation is captured in an influence diagram. Cause and
effect are also of interest. A change in the perceived quality of living causes a like
change in the rate of population growth. The cause and effect and the correlation are
represented by the influences. Influences are directed, labeled arcs between concepts.
The arrow on an influence points to the affected concept. The labels *‘+’’ and *‘-*’
are used to signify positive and negative correlation influences respectively. Forrester
attempts more precision by attaching some mathematical function to the influence to

represent the weight of the influence.

Figure 4.1 is a small influence diagram taken from the urban dynamics

domain.

Coyle has applied influence diagrams to military analysis. He adds time

delays and non-correlated influences, but attempts no mathematical expression of the
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Figure 4.1: Forrester‘s Influence Diagram

influence. Figure 4.2 is a simple influence diagram taken from Coyle [Coyl81].

Influence diagrams have been called cognitive maps when used to represent
the belief systems of high-level policy makers. The influence diagram begins at the
top with policy alternatives (concepts) and ends at the bottom with some abstract util-
ity concept that represents the well-being of the policy domain. Immediately above
the utility concepts are abstract components that comprise the utility concept. In

between the policy choices and the utility concept are the cognitive concepts of the
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Figure 4.2: Coyle‘s Influence Diagram
policy maker or of the society. Each concept influences, or operates in relation to,
other concepts in the diagram. No attempt is made to weight the influences in a cog-

nitive map.

The cognitive map has been adapted for use in strategic planning by Worley
[Worl85]. The plus and minus symbols have been replaced by shaded circles. Solid
circles are used to indicate a positive correlation, half filled circles indicate a negative

correlation, and non-filled circles indicate no correlation at all. Research shows that
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strategists confuse plus with increase and minus with decrease instead of with positive
and negative correlation. Cognitive maps represent a lack of correlation between con-
cepts by showing no influence. Strategists often explicitly express that no correlation

exists between certain concepts. Hence, the addition of non-filled circles to make

non-correlations explicit.

Figure 4.3 shows such a cognitive map. The top center concept of the map
represents a Soviet policy alternative, the invasion of Europe. A war in South West
Asia (SWA) is believed to increase the likelyhood of a Soviet invasion of Europe.
The Soviet decision maker believes that invasion of Europe will not lead to intercon-
tinental (IC), nuclear exchanges. The utility concept that represents the decision
maker’s objective is an easy gain of territory in Europe. That utility concept is refined
into three other cognitive concepts, a short war, a conventional (non-nuclear) war, and
a narrow war involving only West Germany, Denmark, and possibly the Benelux

countries.
4.2 Object Identification Step

First we identify objects that the user must be aware of. These objects are
viewed and manipulated through tool use. The end user of the Influence Diagram
Editor (IDE) can view the tool as an object with which to interact. The end user will
also recognize some other objects within the tool. First on our list is to describe those

objects that the end user sees and eventually manipulates via the user interface.

The object identification step section of the specification yields a collection of
single object identification paragraphs separated by blank lines. The elements of an
object paragraph are the topic sentence, a population sentence, and optionally some

descriptive text sentences. The topic sentence provides the object’s name and possi-
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Figure 4.3: Worley ‘s Influence Diagram
bly a synonym. The population sentence indicates the number of this type of object
that exists when the tool is initiated and the number of objects that may occur
throughout tool use. The object identification paragraph may also include some arbi-

trary text that is useful to the end user and to the tool implementor.
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The objects that comprise an influence diagram are the influence diagram itself
and concepts. Typically, an end user needs to know things like: Is there some fixed
number of influence diagrams throughout IDE use? How many concepts are there
after a complete IDE use session? How many concepts are there upon initiating an
IDE dialogue? In addition to providing answers to those questions, the tool designer
may give synonyms for the objects’ names. Synonyms may be introduced for a
variety of reasons, but primarily to provide the plural name. Having both a singular
and plural object name allows the tool specification to read more naturally, but is oth-
erwise unnecessary. The tool designer may also provide descriptive text that is useful

to the tool implementor and that is retained as semantic help for the end user.

The object definition for the influence diagram and the concepts are provided

below as example.

The object Influence Diagram.

The influenceDiagram is an object. Initially, there are none; later, there
is 1. Initially, the end user will not be provided with an empty influence
diagram. It is the user's responsibility to create it. Only one influence
diagram at a time will be allowed during Influence Diagram Editor use.

The object Concept.

A concept (concepts) is an object. Initially, there are none; later, there
may be many. Concepts may represent real-world events, human
beliefs, or rather vague, non-quantifiable goals. Concepts influence
each other.
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4.3 Relation Identification Step

Identifying objects is a useful, easy first step, but hardly sufficient to describe
a tool to an end user or to a tool implementor. The objects so far defined enter into
relationships with each other. Our next step is to define these relationships. Chen
[Chen76] and others have shown that a description of these relationships provide a
highly lucid view of any enterprise. The Entity Relation Diagram, ERD, has been
applied widely in the field of database management. We enter this step with goals of
refining our understanding of the tool under construction and of providing the end
user, tool implementor, and database management system implementor with a rich

semantic understanding of the tool.
4.3.1 Relation Types

Objects enter into relationships with other objects. There are three types of
relationships possible. The differences between types are important but the means of
discription for each type is uniform. The type of relation is inferred from the descrip-
tion and relies on recognizing the type of nouns used in the description.

<aNoun> : <anObject>
| <anAttribute>

<anObject> : <aSimpleObject>
1 <anAggregatingObject>

<anAttribute> : <aPrimitiveType>

The first type of relation is that which objects enter into with primitive types,
called attributes. An example of this type of relation is the one that exists between a
concept and its name.

A concept has a name.
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Concept is a simple object but name is an attribute. This type of relation is specified
as:
<propertyRelationSentence>: ' _
<article> <anObject> <possessiveVerb> <article> <anAttribute>
The next section will discuss attributes more fully. Primitives are system defined

types like string and integer.

A second type of relation exists between objects and what are called aggregat-
ing objects. The influence diagram is an aggregating object and it enters into an
aggregating relationship with concepts. The influence diagram is an example of an
aggregating object.

The influence diagram has concepts.

This type of relation is specified as:

<aggregateRelationSentence>:
<articie> <anObject> <possessiveVerb> <article> <anObject>

A third and most common kind of relation is that which objects enter into with
other objects. An example of this type of relation is the one that exists between con-
cepts.

Concepts influence concepts.

This type of relation has a name, in this case, influence is the relation’s name. The
syntax of this relation type’s specification is more complicated and the reader should

refer to section 4.10 for a full description.
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4.3.2 Relation Specification

Like object identification, we use a paragraph to describe each relation. Each
paragraph has a topic sentence and optionally a body of sentences. Each sentence is
roughly of the form

<santence> : <subject> <verb phrase> <object>.

The <subject> of the topic sentence is the relation being described in the paragraph.

The <subject> is the implicit antecedant of the word “‘it’’ in the body of the para-

graph.

The most simple i'clation paragraph is the single topic sentence describing the
relation between an object and its single attribute or the relation between an aggregat-
ing object and an object.

A concept has a name.

The influence diagram has a name.

A more complicated paragraph begins with a topic sentence that introduces a
relation and any attributes that it has, and then specifies the objects entering into the
relation.

An influence has a proportionality. A concept influences many (m) con-
cepts, and a concept is influenced by many (n) concepts.

Relationships, particularly when discussed in the context of database manage-
ment, are one-to-one, one-to-many, or many-to-many. The ‘‘one’’ can often be
inferred from a sentence by the article preceding the <subject> or <object>. The
indefinite articles ‘‘a’’ and ‘‘an’’ and the definite article ‘‘the’’ imply a one-to-n rela-

tion. The word "‘many” preceding an <object> or <subject> implies the obvious.
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Since there may be many relationships in a single tool, and many of them may be
one-to-many, it will be difficult to keep them straight and a symbolic name for the
individual ‘‘many’’s may help. For the ERD that is shown later and the database
management system that follows, it is often convenient to have a symbol that
represents the cardinality of the relationship. One-to-one, one-to-many, and many-
to-many relations are depicted on an ERD as 1:1, 1:m, and m:n respectively. The
relation specification language allows for a variety of unnecessary words in the verb

phrase, “‘has’’, ‘““may have’’, and ‘‘must have’’. They are all parsed as equivalent

and are supported only to make the final specification read more naturally.

The influenceDiagram has a name and has many (m) concepts.
A concept has a name.
An influence has a proportionality. A causal concept influences many

(j) affect concepts, and an affect concept is-influenced-by many (k)
causal concepts.

The first paragraph defines two relations. The <subject> of the topic sentence
is the influence diagram. It enters into a one-to-one relation with the <object> of the
first clause, an attribute of type name. The <subject> of the second clause is inferred
to be the <subject> of the topic sentence. The influence diagram enters into a one-to-
many (1:m) relation with the <object> of the second clause, the object concept. The
second paragraph defines a one-to-one relation between the object concept and the
attribute name. The third paragraph defines a relation, influence, that has a propor-
tionality attribute. Notice that the single relation, influence, is bi-directional. A con-
cept enters into an influence relation with another concept, but either concept may
play the active role of influencing the other or the passive role of being influenced by

the other. It may be apparent at this point that relations are a type of object. They can
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have attributes, are visible in the user interface, and can be manipulated (named,
deleted, moved, etc.). This discussion continues in the operation identification sec-

tion.
4.3.3 Relation Specification Conclusions

The types of relations that can be described with the specification language are
quite complex. The concerned reader should study the complete language definition
in section 4.10. The use of the 1:1, 1:n, m:n notation is made clear in section 4.6.3.
The results of processing the relation specification include an augmented ERD for the
database management system implementor (see section 4.6.3) and generated software

for use by the system and tool implementor (see section 4.6.1).
4.4 Attribute Identification Step

As discussed above, some nouns are too primitive to be considered objects.
Those objects are called attributes. The tool designer may have difficulty in deciding
where to draw the line between simple objects and attributes, just as it is a difficult
task in object-oriented design or programming to decide when to abandon the object-
oriented paradigm. This is a choice left to the tool designer and one that may undergo

refinement as the tool specification evolves.

To the conceptual definition compiler, the fact that an <object> is an attribute
rather than an object can be inferred by observing that all objects have been identified
in the object identification step and therefore anything appearing as an <object> in the
relation identification step that was not previously identified as an object must be an
attribute. An <object> found in the relation identification step but not introduced as
an object in the object identification step could simply be the result of the tool

designer’s spelling error. Rather than having the compiler make such inferences we
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chose to require the tool designer to explicitly identify objects and attributes.

The tool-building system provides possibly machine dependent definitions of
base types such as string and integer. The tool designer may define new base types

aggregated from previously defined base types. Enumerated types are also supported.

The attributes found in the Influence Diagram Editor specification are shown

following.

A proportionality is one of [not,direct,inverse].
A name is a string.

4.5 Operation Identification Step

There are many types of operations that an end user may be conceptually
aware of and that the tool definer must support. The categories of operations are

transformation, query, pre-transformation validation, and time-invariant validation.
4.5.1 Transformation Operations

Transformation operations are perhaps the most obvious to the end user.
Their chief characteristic is that they operate by side effect, that is, they cause state
change. An example from a common text editor is the operation to delete a line.

deleteLine(lineNumber:in integer; f: in out file)

After invoking this operation, the user expects the file to be different. By providing
the operation with the line number to delete and the file from which it is to be deleted,

the operation will provide an altered file.
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The transformation operation to specifications needed for the editor are

defined similarly.

to Make!nfluenceDiagram() returns influenceDiagram
- A new, empty influence diagram will be created.
--- Only one influence diagram may exist at any time.
--- Returns Nil if it fails for any reason.
--- or a new influenceDiagram if it succeeds.
to MakeConcept() returns concept
--- A new, unnamed, disconnected concept will be created.
--- Returns Nil if it fails for any reason.
--- or a new concept if it succeeds.
to Makelnfluence() returns influence
--- A new, unnamed, disconnected influence will be created.
--- Returns Nil if it fails for any reason.
--- or a new influencs if it succeeds.
to InfluenceDiagramNameSet(ID: in out influenceDiagram; N: in name)
--- Returns Nii if it fails for any reason.
--- If it succeeds, the name of | will be set to N and
-~ the updated 1D will be returned.
to ConceptNameSet(C: in out concept; N: in name)
--- Returns Nil if it fails for any reason.
--- If it succeeds, the name of C will be set to N and
--- the updated C will be returned.
to AddConceptTolnfluenceDiagram
(ID: In out influenceDiagram; C: In concept)
--- Returns Nil if it fails for any reason.
--- If it succeeds, C will be added to the collection of
--- concepts contained in 1D, the updated ID will be returned.
to AddinfluenceToConcepts
(causeC,affectC: in out concept; |: in out influence)
--- Raeturns Nil if it fails for any reason.
--- Both concepts must exist, not already influence each other,
--- and | must exist.
- |f it succeeds, | will be added to the concepts and returned.
to Proportioninfuence(l: In out influence; P: in proportion)
--- Returns Nil if it fails for any reason.
--- | must exist. P must be a legitimate value.
--- If it succeeds, P will be added to | and ! will be returned.
to RemoveConceptFrominfluenceDiagram
(ID: in out influenceDiagram; C: in concept)
--- Returns Nil if it fails for any reason.
--- ID must exist. C must exist.
--- If it succeeds, C will be removed from the collection of
--- concepts contained in ID, the updated ID will be returned.
to RemovelinfluenceFromConcept
(affectC,causeC: in out concept; |: in out influence)
--- Returns Nil if it fails for any reason.
--- The concepts must exist. | must exist and connect the concepts

78



--- as indicated. If it succeeds, | will be disconnected from

--- the concepts, and the updated influence will be returned.
Lest the reader be left with the feeling that typing these operation names is an onerous
task to put upon the end user, remember that we are not describing the syntax of the
interface yet, just the concepts, the semantics. The syntax to remove an influence
from a concept might be

rm -C c42 -1i13

or a pick of the influence followed by a menu pick of the remove operation. Regard-
less, the semantics are the same, and in fact the command interpreter could invoke the

same semantic routines when it recognizes either syntax.

In the relation identification section, it was observed that relations are a special
type of object. The astute reader may have noticed that the transformation operations
included operations on objects, €.g., concept as well as operations on relations, ¢.g.,

influence.
4.5.2 Query Operations

Query operations differ from transformation operations mainly in that they
have no side effect. They do not cause state change. They are pure function. Often
they are invoked by the user to extract information, e.g., ‘‘On what line number is the

cursor?’’ or ‘“What is the name of the pointed to concept?”’

An appropriate set of query operations QO for the editor are given below.

go conceptName(C: in concept) returns name
--- Returns Nil if it fails for any reason,
--- or the name of C if it succeeds.
qo idName(ID: in InfluenceDiagram) returns name
--- Returns Nil if it fails for any reason,
--- or the name of ID if it succeeds.
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4.5.3 Pre-transformation Validation Operations

Early in the research, it was felt that the user should be warned of or be
prevented from invoking transformation operations that would cause a state change
into an illegal or undesireable state. In addition, it was felt that the end user should be
warned as soon as possible about erroneous input. These goals lead to the decision to
use LL(1) grammar for the syntax phase and for the inclusion of pre-transformation
validation operations. LL(1) allows for the detection of errors at the earliest possible
moment and allows for the cailing of semantic action routines immediately following
recognition of the first input token. Thus, a grammar rule might have the following
form.

LHS : token1 {semantic1()} token2 {semantic2()} {semantic3()}

 In the trivial case, semantic1() might be a pre-transformation operation that checks the
legality of tokenl. Semantic2() might be a pre-transformation operation that checks
the validity of token2 given the context of the current command and the context of
tokenl. Semantic3() might be a transformation operation that should not be called
unless all possible checks have been performed. The details of how to prevent the
call of semantic3() in the face of semantic1() or semantic2() failure is presented in a

later chapter.

Later in the research, it was decided that a good undo mechanism would
reduce the need for protecting the transformation operations. If an error was made,

the end user may easily roll the state of the system back to the prior state.

Design tools may operate in a structured or a non-structured mode. In a struc-
tured mode, every state entered is a legal one and the system will prevent all opera-

tions that will cause a transition into an illegal state. An experienced user will often
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know of a short cut through a few illegal states that will eventually lead to a legal
state. That path through uncharted territory may require far fewer steps than the path
taken in the structured mode. In order to allow non-structured mode the pre-
validation operations must be disabled when leaving structured mode and re-enabled
when structured mode is re-entered. Since these types of operations need to be recog-
nized by the tool-building system so that they may be enabled and disabled, they are
identified separately in the specification. How to guarantee that the system is back in
a legal state after a period in non-structured mode interaction is discussed in the fol-

lowing section covering time-invariant validation operations.

The following routines are typical of pre-transformation validation ptvo rou-
tines. Each ptvo returns an object or Nil.
ptvo ExistsInfluenceDiagram()
--- Retumns the Influence Diagram if it exists, Nil otherwise.
ptvo ExistsConcept(N: in name)
--- Returns the named concept if it exists, Nil otherwise.
ptvo Existsinfluence(affectC,causeC: in concept)

--- Returns the influence connecting causeC and affectC
--- if it exists, Nil otherwise.

4.5.4 Time-Invariant Validation Operations

Merely protecting against transitions into illegal model states is not enough.
Due to a design oversight or to an excursion through non-structured mode, an illegal
model state may be reached. It will be necessary to validate the legality of a model.
A particularly important time to validate is when a design model is about to be stored

in the design database.

The following set of routines may be sufficient to validate an influence
diagram. Each time-invariant validation operation tivo returns an object or Nil.

tivo ValidiD(ID: in influenceDiagram)
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--- Returns ID if it is a valid one, Nil otherwise.
..- A valid diagram is one that passes the following predicates.
tivo ExistsOriginConcept(ID: in influenceDiagram)
--- Returns Nil if there is not at least one concept with
--- no cause influence, otherwise it returns a list of those
--- concepts with no cause influence.
tivo ExistsFinalConcept(ID: in influenceDiagram)
--- Returns Nil if there is not at least one concept with
--- no affect influence, otherwise it returns a list of those
- conceﬁts with no affect influence.
tivo NoOrphanConcepts(ID: in influenceDiagram)
--- Returns Nil if there is no concept without a cause influence
--- and without an affect influence, otherwise it returns
--- a list of those concepts failing the test.
tivo NoDanglingInfluences(ID: in influenceDiagram})
--- Returns Nil if there is no influence without a cause concept
--- and without an affect concept, otherwise it returns
--- a list of those influences failing the test.
tivo UnnamedConcepts(ID: in influenceDiagram)
--- Each concept must have a name.
--- Returns Nil if there is no concept without a name, otherwise
--- it returns a list of unnamed concepts.
tivo Unnamedinfiuence(ID: in influenceDiagram)
--- Each influence must have a name.
--- Returns Nil if there is no influence without a name, otherwise
--- it returns a list of unnamed influences.

4.5.5 Trade-offs

It may not be immediately clear which set of operations are appropriate. Some
designers prefer to identify the most primitive operations possible and then to build
higher level operations out of them. If the operations are too primitive and are visible
to the user, the interface semantics may be excessively complex. If the operations are
too high level there is the risk of being unable to accomodate a variety of tool syn-

taxes, and the set of operations may be redundant to some degree.

For example, the tool designer may specify separate routines to add an
influence to an affect concept and to add an influence to a cause concept.

to AddInfluenceToCauseConcept(C: in out concept; [: in out influence)
to AddInfluence ToAffectConcept(C: in out concept; 1: in out influence)
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The code for each would be simpler than the code for a single routine to add an
influence to an affect and an influence concel‘)t. By specifying many small routines,
there is less risk of miscommunication with the tool implementor. However, the two
routine implementations will leave the model in a dangling state between their invoca-
tions. The wrong choice of transformation operations will complicate the user inter-
face semantics as well as the pre-transformation validation operations. The question
to ask is ‘“What operations make sense to an end user?”’ and not ‘“What operations
make sense to a programmer?’’ A balance must be struck. The following one routine
solution seems a reasonable compromise. Rather than specifying two operations, one
is given, and the tool designer minimizes miscommunication with the tool implemen-
tor by using clear comments.
to AddinfluenceToConcepts

(causeC,affectC: in out concept; I: in out influence)

--- The influence, 1, must exist.

--- | must have neither causing nor affecting concepts.

--- Each concept, causeC and affectC, must exist.
Whatever the choice, the tool designer must resist the temptation to over-specify the
implementation and concentrate on the user interface semantics. The tool implemen-
tor must be able to decompose the operations in a way that allows for sharing and

efficiency.
4.6 Conceptual Phase Compiler Qutputs

Having discussed the conceptual specification of a sample tool, it is appropri-
ate to turn our attention to the outputs of this phase’s compiler. For completeness, the
reader may wish to examine sections 4.10 and 4.11 where the complete syntax of the
concept language and the complete IDE concept specification is given, respectively.
Figure 4.4 is a simple data flow diagram of the OReO (Object, Relation, Operation)

compiler.
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Figure 4.4: OReO Compiler

The first output of the compiler are the class definitions which incorporate the
information extracted from the object and relation specification. They include the
necessary data structures to represent an object, its attributes, and its relations with

other objects. Routines to manipulate the relationships are also included.

The second output is the operation specification. This contains a specification
of every operation identified in the operation step. Both the first and second outputs
are provided to the tool implementor. The tool implementor must implement the

specified operations by using the software provided from the class definitions.

The third output is an augmented Entity Relation Diagram, ERD, that is
passed to an automated database management system compiler. This output is

derived from the outputs of the object, attribute, and relation steps.
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4.6.1 Class Definitions

Code can be generated directly from the various specification fragments ina
rather obvious fashion. The prototype implementation of the SARA-UIMS is in the T
language, a dialect of LISP. The following examples are in T. The objects for both

influences and concepts are shown, but the object for the influence diagram is not.

Each T object is of the form
(define (MakeObjectName)
private part
&shared part;

This specification actually describes a class of objects. In order to make a new
instance of this type of object, the function MakeObjectName is invoked. Each
instance thus created will have its own copy of the private part but will share the con-
tents of the shared part with all other objects of this class. In the following examples
the components of the private part are instance variables and are specified as follow-
ing.

(let (instance variable 1 definition)
(mstance variable 2 definition)

The shared part is composed of methods.
(object nil
method 1
method 2

géﬂable method 1
settable method 2

('b}'?dicate method 1)

The instance variables cannot be examined or set without going through one of the

methods in the shared part. Methods are of several types,
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1. simple methods that return a value, typically the value of an instance variable,

2. settable methods that typically set the value of one or more instance variables

and perhaps return a value,

3. and predicate methods that typically return a boolean value.

Most of the T object is generated directly from the specification in an obvious way.
However, every object of every type has some instance variables and shared routines
that are not generated from their specifications. For example, each object has an

instance variable to hold its graphics display data.

A T object is generated for each relation and each object identified in the con-
ceptual definition phase. The T object that represents the influence relation and the
concept object are shown following with their generating specification fragments

preceding.
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An influence has a prtéoor_tionality. A causal concept influences many
(j) affect concepts, ana an affect concept is-influenced-by many (k)
causal concepts.

(define (Makelnfluence)

(let ((causalconcept-miv (MakeMiv "causal concept of influence™))
affectconcept-miv (MakeMiv "affect concept of inﬂuence“);
proportionality-miv (MakeMiv "proportionality of influence” )
semanticHelp-miv "An influence has a proportionality.

A concept influences many %) concepts,
and a concept is influenced by many (k) concepts.”)
(graphics-miv (MakeMiv "graphics of influence”)))
(object nil
((draw self logicalDevice)

causalconcept self) (cv causaiconcept-miv))
affectconcept self) (cv affectconcept-miv))
graphics self} (cv ?raphics-miv))
proportionality self) (cv proportionality-miv))
semanticHelp self)
(present semanticHelp-miv logicalDevice))
({(setter causalconcept) self val)
(set {cv causalconcept-miv) vali))
(((setter proportionality) self val)
(set (cv proportionality-miv) val))
(({setter affectconcept) self val)
(set (cv affectconcept-miv) val))
(((setter graphics) self val)
(set écv graphics-miv) val))
ﬁhas raphics? self) {not {null? graphics-miv}))
influence? self} t))})

Figure 4.5: Influence Class Definition
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A concept has a name.

An influence has a proportionality. A causal concept influences many
(j) affect concepts, and an affect concept is-influenced-by many (k)
causal concepts.

A concept (concepts) is an object. Initially, there are none; later, there
may be many. Concepts may represent real-world events, human

beliefs, or rather vague, non-quantifiable goals. Concepts influence
each other.

(define (MakeConcept)

(let ({(name-miv (MakeMiv "name of concept”))
causalinfluences-miv (MakeMiv "causal influences of concept”))
affectinfluences-miv (MakeMiv "affect influences of concept”))
graphics-miv (MakeMiv "graphics of concept”)) ’
semanticHelp-miv "The concept (concepts);

initially there are none, later there may be many.
Concepts may reprasent real-world events, human
beliefs, or rather vague, non-quantifiable goals.
A concept may have many {j) causal influences.
A concept may have many (k) affect influences.
A concept has a name.")
(container-miv (MakeMiv "container of concept™)}))
(object nil
((draw self logicaiDevice)

name self) {cv name-miv))
causalinfluences self) (cv causalinfluences-miv))
container self) (cv container-miv))
affectinfluences seif) (cv affectinfluences-miv))
raphics self) {cv graphics-miv))
?setter name) self val) (set (cv name-miv) val))
setter affectinfluences) self val)
(set (cv affectinfluences-miv) val))
(((setter causalinfluences) self val
(set (cv causalinfluences-miv) val))
(setter graphics) self val) (set (cv graphics-miv) val))
hasGraphics? seif) (not (null? graphics-mivy)))
concept? self) t))))

Figure 4.6: Concept Class Definition
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The OReO compiler generates substantial portions of T code from the concept
specification. Each object and each relation in the specification has a corresponding T
object generated from it. The OReO compiler is responsible for generating the

appropriate instance variables and methods for each T object.

Chapter 7 gives a full discussion of do, undo, and redo. However, the success-
ful execution of do/undo/redo relies on the disciplined generation of T objects.
Methods that alter the value of instance variables must be generated in a way that

allows previous values of instance variables to be recalled.

The OReO compiler generates T objects according to the following rules.
Instance variable names all end in *‘-miv’’. Miv is an acronym for Monitored
Instance Variable. Mivs are data structures that contain a history of values rather than

just a current value.
OBJECTS

A specified object is one that is specified in the object idenﬁﬁéation section.
1. Each specified object shall have a T object.

2. The name of an object’s T object shall be the concatenation of ‘‘Make’’ and

the string comprising the <subject> of the sentence introducing the object.

3. A semantic help instance variable, semanticHelp-miv, shall be generated and

given a string value that is equivalent to the object identification paragraph.

4. Instance variables shall be generated from a relation identification sentence
having a specified object as its <subject>. There shall be one instance variable

generated for each <object> of such sentences. The instance variable name
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10.

11.

shall be a concatenation of the attribute’s name and “‘-miv’’.

Relation identification sentences having a specified object as <subject> shall

be concatenated onto the object’s semantic help instance variable.

Any relation identification paragraph that contains an independent clause hav-
ing a specified object as its <subject> or <object> shall cause the generation of
an instance variable. The instance variable’s name shall be the concatenation

2

of the object’s modifier, the relation name (<verb>), and “-miv’’.

Each object that is the <object> of a relation sentence having an aggregating
object as the <subject> shall have an instance variable, container-miv, gen-

erated.

An extraction method shall be generated for each instance variable. The name
of the method shall be the same as the name of the instance variable without
the ‘“-miv’’. The method shall accept a single object as an argument and shall

return the current value of the corresponding instance variable.

A setter method shall be generated for each instance variable. The name of the
method shall be the same as the extraction method for the instance variable.
The method shall accept both an object and a new value for the instance vari-
able as arguments. The method shall set the current value of the instance vari-

able to the second argument and shall return the updated object.

A predicate method shall be generated for each object. Its name shall be the
concatenation of the object name and ‘*?”’. The predicate shall return a true

value if its argment is an object of this type.

Each object shall have generated methods that are required by SARA-UIMS.

90



These methods shall include, but not be limited to, a method to draw the object

on a particular logical device and a method to provide semantic help.
RELATIONS

A specified relation is one that is introduced in the relation identification sec-

tion.
1. Each specified relation shall have a T object.

2. “The name of a relation’s T object shall be the concatenation of ‘‘Make’’ and

the string comprising the <subject> of the sentence introducing the relation.

3. A semantic help instance variable, semanticHelp-miv, shall be generated and

given a string value that is equivalent to the relation identification paragraph.

4, Instance variables shall be generated from a relation identification topic sen-
tence having a specified relation as its <subject>. There shall be one instance
variable generated for each <object> of such sentences. The instance variable

name shall be a concatenation of the attribute’s name and ‘‘-miv’’.

5. Any relation identification paragraph that contains an independent clause hav-
ing a specified object as its <subject> or <object> shall cause the generation of
an instance variable. The instance variable’s name shall be the concatenation

of the object’s modifier, the object’s name, and *‘“-miv’’.

6. An extraction method shall be generated for each instance variable. The name
of the method shall be the same as the instance variable with the string -
miv’’ removed. The method shall accept a single relation as an argument and

shall return the current value of the corresponding instance variable.
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7. A setter method shall be generated for each instance variable. The name of the
method shall be the same as the extraction method for the instance variable.
The method shall accept both a relation and a new value for the instance vari-

able as arguments. The method shall set the current value of the instance vari

able to the second argument and shall return the updated relation.

8. A predicate method shall be generated for each relation. Its name shall be the
concatenation of the relation name and ““?”’. The predicate shall return a true

value if its argment is an object of this type.

9. Each relation shall have generated methods that are required by SARA-UIMS.
These methods shall include, but not be limited to, a method to draw the rela-

tion on a particular logical device and a method to provide semantic help.
4.6.2 Operation Specification Qutput

This section describes the OReO compiler’s output that is generated from the
analysis of the operation section. This output is provided to the implementor as a
template. The implementor is responsible for fleshing out the routine in accordance
with its specification. The output could be identical to the input. However, it is pos-
sible to transform the operation specification into an executable stub in the implemen-

tation language, T.

Rather than describe the transformation process in algorithmic detail, simple,
descriptive examples are provided. An example is provided for each of the operation
types. Three minus signs (-) introduce a comment in the operation specification
language. A semicolon introduces a comment in the T language. Comments ter-

minate at the next end-of-line in both languages.
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Transformation Operation

to ConceptNameSet(C: In out concept; N: in name)
--- Returns Nil if it fails for any reason,
--- or Cif it succeeds.

(define ConceptNameSet C N) ;;; a transformation operation
.:: C is a concept which is both input and output.
;N is a name which is input.
.+» Returns Nil if it fails for any reason,
i or Gif it succeeds.

Query Operation

qo Name(ID: in InfluenceDiagram; N: out name)
--- Returns Nil if it fails for any reason,
--- orthe N if it succeeds.

(define IDName ID N) ;;; a query operation
;+; ID is an InfluenceDiagram which is input.
.»» N is 2 name which is output.
.;; Returns Nil if it fails for any reason,
5 or N if it succeeds.

Pre-transformation Validation Operation

--- Returns True if affectC influences cause
--- or Nil otherwise.

ptvo Existsinfluence{affectC,causeC: in concegt)

(define Existsinfluence affectC causeC)
;;; a pre-transformation validation operation
;»; affectC is a concept which is input.
. causeC is a concept which is input.
-+ Returns True if affectC influences causeC,
.. or Nil otherwise.

Time-invariant Validation Operation

tivo NoOrphanConcepts(ID: in influenceDiagram)
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--- Returns True if there is no concept without a cause influence
--- and without an affect influence, otherwise it returns
--- a list of those concepts failing the test.

(define NoOrphanConcepts ID) ;;; time-invariant validation operation
., ID is an influenceDiagram which is input.
-+ Returns True if there is no concept without a cause influence
.+ and without an affect influence, otherwise it returns
.+; a list of those concepts failing the test.

4.6.3 Augmented ERD Output

The final output of the OReO compiler is the ERD corresponding to the
specification. Relations are shown as diamonds, objects as rectangles, and attributes
as ellipses. In the language of data base management, objects are entities, attributes
are properties, and relations are relations. The unusual nature of the aggregating
objéct, Influence Diagram, is clear by its containment of entities and by its lack of
explicit connectivity. The lines connecting the entities and relations are labeled with
the role played by the entity in the relation. The cardinality of the relation is shown
by the lower case letters adjacent to the entity and the role connector. In the
specification, the roles were j:1 and 1:k. When considered together by the database
management system, they are folded together to form j:k. This is of interest only to
the database management system. The interested reader is refered to Landis

[Land86].
4.7 Vis-a-Vis IFIP WG 2.7 Reference Model

The IFIP WG 2.7 Reference Model [Beec85] provides a common vocabulary
for discussing user interfaces and a reference point from which to compare implemen-
tations. Like the work presented in this dissertation, the reference model proposes a

sequence of steps that take the reader and writer from concept towards
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Figure 4.5: Entity Relation Diagram of Influence Diagram
implementation of the interface under discussion. Unlike the reference model, this
work continues well into the implementation phase assuring that the final implementa-

tion coincides with its specification.

The steps of the reference model are roughly as follows.

For each object in the proposed user interface :
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1. List the functional requirements of the object.

2. Use natural language to describe the object and its operations.
3. Objects and operations are described in subset of Affirm.

4. Complex semantics are optionally described in natura! language.
5. Interfaces to operations are optionally described in VDM.

Implicit in the reference model is the initial step of identifying the objects visi-
ble at the user interface. Since one of the goals of this work is the analysis of the
specification and fabrication of the specified interface, steps 2 and 4 of the reference
model are supported by a language more rigorous than natural language and by a

compiler for that language.

For purposes of comparison, the SARA-UI model is presented below.

Until a satisfactory description is obtained:
1. Identify all objects in the system.
2. Specify every relationship that exists between objects.
3. Specity all operations on objects.
a. transformation operations,
b. query operations,
c. pre-transformation validation operations,
d. time-invariant validation operations.

Each step has a formal language and language analyzer. The Until loop is
supported by compiling the description and receiving information about the con-
sistency of object use and operation application on objects. This support is not only
provided within this and each other phase, but also between phases as they are succes-
sively integrated. Although the support software can offer assurances that the
description is a valid one, the human tool designer has the final say in deciding when
a satisfactory description is reached. The tool designer is able to take this
specification to the potential end user population for review [Berr83]. This important

source of feed back should not be ignored.

96



~ We cannot ignore the possible complexity of semantic operations and objects
and the power of natural language. Each step, 1-3, allows optional natural language

text to be provided along with each formal specification.
4.8 Vis-a-Vis Ada Packages

Ada packages have been used for design and for client review in much the
same way the operation specifications are used here. Our operation specification
language is very Ada-like. In fact, in the design phase of SARA/IDEAS we used Ada
packages. They allow us to perform data abstraction and detailed design before
beginning implementation. This procedure is described by Berry and Bemry [Berr83].

Compiling the packages allowed us to verify the interface consistency of our design.

As implementation began in T the implementors were repeatedly faced with
Ada’s incompatibility with T in defining certain operations. For example, function
names in T can contain a *‘?”’ and many predicate functions end in *‘?”’. Ada does
not allow the **?”’ character in procedure names. The T language allows a variable

number of arguments while Ada demands a fixed number.

All members of the group agreed that if the implementation language were
Ada or an Algol-like language, Ada package specifications would be an excellent
operation specification language, but given a LISP-like language for implementation,

Ada packages were cumbersome.
4.9 Summary and Possible Improvements

It has been shown that the user interface semantics can be described in a
natural way and that significant code generation is possible from the description. The

semantic descriptions can be retained to be offered as help to the end user.
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A companion dissertation [Land86] describes how the generated software and
augmented Entity Relation Diagram can be input to a database compiler, resulting in
even greater software generation and further integration of a new tool with the design

environment.

The specification language has been developed sufficiently to allow descrip-
tion of design tools without much tolerance for free flowing natural language text.
Although it is not implied that a full natural language interface should be provided, a

great deal more freedom in sentence structure could easily be added.

Early in the research the relations were binary and quite simple, yet were
sufficient to describe many of those relations found in design tools. The ability to
describe ternary and more complex relations with near natural language was still an
open research issue and was actively being researched [Chen83]. The paragraph

structure introduced here allows for the description of extremely complex relations.

Design tools have been built using both structured and non-structured modes
of operation. Each mode has strong proponents and opponents. The SARA tool-
building system does not take the position of insisting on either mode of interaction.
Rather, the mechanisms are provide to support each. The desire to provide mechan-
isms for support is pervasive in the SARA-UIMS. The enabling and disabling of
pre-transformation validation operations is a good example of providing the mechan-

isms to support both modes without insisting on either.

With a good do/undo/redo facility, there is less need for pre-transformation
validation operations. The recommendations from the next chapter on syntax

specification concerning the choice of LL(1) grammars discuss this further.
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4.10 The Concept Definition Language

The conceptual definition language and associated language processor is called
the OReO language and OReO compiler, respectively. The name OReO brings atten-
tion to the importance of Objects, Relations, and Operations in this phase. Here is the

YACC specification of the OReO language.

%:{
#include "globals.h”

I*ii*i**tit**t***i*iii**i*i*ﬁ*t*ﬂ****t****l*ﬁ****i*ii***ii***

* +++ Concept Parser +++
*

*

*

ti****ﬁ***iii**it********i**ii***titt**ﬁ*i***it*****ﬁ*ti*i**/

%o}
%union

int integer;

char *string;

b

/" Statement Key Words */

%token <unused> AN

%token <unused> A

%token <unused> THE
%token <unused> AND
%token <unused> BUT
%token <unused> OR

%token <unused> NOR
%token <unused> OBJECT
%token <unused> RELATION
%token <unused> ATTRIBUTE
o%6token <unused> OPERATICON
o%token <unused> IDENTIFICATION
o%token <unused> INITIALLY
%token <unused> LATER
%token <unused> THERE
%token <unused> IS

%token <unused> HAS
%token <unused> HAVE
9%token <unused> ARE
%token <unused> SHALL
%token <unused> MAY
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%token <unused>
%token <unused>
%token <unused>
%token <unused>
%token <unused>
%token <unused:>
%token <unused>
%token <unused>
%token <unused>
%token <unused>
%token <unused>
%token <unused>
%token <unused>
%token <unused>
%token <unused>
%token <unused>

MUST

BE

FROM

ONE

OF
INTEGERTYPE
CHARACTERTYPE
FLOATTYPE
STRINGTYPE
TO

QO

PTVO

TIVO

IN

ouT
RETURNS

/*: Brackets */
%token <unused> LPAREN
%token <unused> RPAREN
%token <unused> LBRACE
%token <unused> RBRACE

/*: Separators */

%token <unused> PERIOD

%token <unused> COLON

%token <unused> SEMICOLON

%token <unused> COMMA

%token <unused> PARAGRAPHSEPARATOR
I*: Types */

%token <unused> INTEGER

%token <unused> LINGUISTICINTEGER

%token <unused> WORD

%start semanticDescription

%%

semanticDescription : objectSection

relationSection

attributeSection
operationSection

/* OBJECT SECTION */

objectSection : objectSectionPreamble objects

objectSectionPreamble : OBJECT IDENTIFICATION PERIOD
PARAGRAPHSEPARATOR

obiects : object
| objects object
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object : objectintroSentence populationSentence optionalDescriptive Text
PARAGRAPHSEPARATOR

objectintroSentence : Subject optionalSynonym 1S AN OBJECT PERIOD

populationSentence : objInitPart SEMICOLON objLaterPart PERIOD

optionalSynonym : /* empty */
| parenedWord

objlnitPart : INITIALLY COMMA stateOfBeingPhrase quantity
objLaterPart : LATER COMMA stateOfBeingPhrase quantity
optionalDescriptiveText : {TextMode(RandomText);}

objectName : name
/* RELATION SECTION */

relationSection : relationSectionPreamble relations
relationSectionPreamble : RELATION IDENTIFICATION PERIOD
PARAGRAPHSEPARATOR
relations : relation -
| relations reiation
relation : relationParagraph PARAGRAPHSEPARATOR
relationParagraph : TopicSentence
| TopicSentence roleSentences
roleSentences : roleSentence
| roleSentences roleSentence
roleSentence : independentClause COMMA
IogicalConjunctive IndependentClause PERIOD
TopicSentence : Subject IS article RELATION PERIOD
| SimpleSentence
SimpleSentenceWithCompoundObject
CompoundSentence
SimpleSentence : IndependentClause PERIOD
SimpleSentenceWithCompoundObject :
Subject VerbPhrase NounPhraseList PERIOD
CompoundSentence : IndependentClause logicalConjunctive
VerbPhrase Object PERIOD
i IndependentClause COMMA DependentClauses PERIOD
IndependentCiause : Subject VerbPhrase Object
DependentClauses : DependentClause
| DependentClauses COMMA
logicalConjunctive DependentClause
DependentClause : VerbPhrase Object
NounPhraselist : NounPhrase
| NounPhraseList COMMA NounPhrase
NounPhrase : article Noun
Noun : attribute
| simpleObject
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| aggregatingObject
simpleObject : name
aggregatingObject : name
relationName : name
roleName : name

Subject : NounPhrase
Object : article Noun
| LINGUISTICINTEGER optionalSynonym Noun

VerbPhrase : IS
possessiveVerb
roleName

/* ATTRIBUTE SECTION */

attributeSection : attributeSectionPreamble attributes
attribute SectionPreamble : ATTRIBUTE IDENTIFICATION PERIOD
PARAGRAPHSEPARATOR
attributes : attribute
| attributes attribute
attribute : attributeSentence
| attributeSentence PARAGRAPHSEPARATOR

attributeSentence : article attributeName 1S domain PERIOD
domain : article primitiveType

article set

FROM set

ONE OF set
attributeName : name

/* OPERATION SECTION */

operationSection : operationSectionPreamble operations
operationSectionPreamble : OPERATION IDENTIFICATION PERIOD
PARAGRAPHSEPARATOR {TextMode(Oper);}
operations : operation
| operations operation

operation : transformationOperation

| queryOperation

preTransformationValidationOperation

timelnvariantValidationOperation
operationName : name

transformationOperation :

TO operationName argumentSpecification
que%Operation :

QO operationName argumentSpecification RETURNS Noun
pre TransformationValidationOperation :
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~ PTVO operationName argumentSpecification
timelnvariantValidationOperation :
TIVO operationName argumentSpecification

argumentSpecification : LPAREN optionalArgSpecs RPAREN
optionalArgSpecs : /* empty */
| argSpecs

argSpecs : argSpec

| argSpecs SEMICOLON argSpec
argSpec : formalArgs COLON argSide
formalArgs :formalAr%

formalArgs COMMA formalArg

formalArg : name
argSide : type

IN type

ou e

IN QUT type

QUT IN type
type : objectName
relationName
attributeName
aggregatingObject

/* COMMON NON-TERMINALS */

stateOfBeingPhrase : THERE beingVerb
| beingVerb article
beingVerb : 1S
ARE
MAY BE
MUST BE
SHALL BE

possessiveVerb : HAS
MAY HAVE
MUST HAVE
SHALL HAVE

quantity : article | LINGUISTICINTEGER | INTEGER

parenedWord : LPAREN name RPAREN
set : LBRACE namelList RBRACE
namedList : name

| nameList COMMA name

name : WORD
words : WORD
| words WORD
primitiveType : INTEGERTYPE
| CHARACTERTYPE
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FLOATTYPE

STRINGTYPE
article : A| AN | THE
L?g}caIConjunctive :AND | BUT | OR | NOR
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4.11 The Influence Diagram Editor Specification

Object Identification.

The influenceDiagram is an object. Initially, there are none;
later, there is 1. Initially, the end user will not be provided with an
emf)ty influence diagram. It is the user's responsibility to create it.
Only one influence diagram at a time will be allowed during influence
Diagram Editor use.

A concept (concepts) is an object. Initially, there are none; later,
there may be many. Concepts may represent real-world events,
human beliefs, or rather vague, non-quantifiable goals. Concepts
influence each other.

Relation Identification.
The influenceDiagram has a name and has many (m) concepts.
A concept has a name.

An influence has a proportionality. A causal concept influences many
(i) affect concepts, and an affect concept is-influenced-by many (k)
causal concepts.

Attribute Identification.

A proportionality is one of [not,direct,inverse].
A name is a string.

Operation Identification.

to MakelnfluenceDiagram() returns influenceDiagram
--- A new, empty influence diagram will be created.
--- Only one influence diagram may exist at any time.
--- Returns Nil if it fails for any reason.
--- or a new influenceDiagram if it succeeds.
to MakeConcept() returns concept
--- A new, unnamed, disconnected concept will be created.
--- Returmns Nil if it fails for any reason.
--- or a new concept if it succeeds.
to Makelnfluence() returns influence
--- A new, unnamed, disconnected influence will be created.
--- Returns Nil if it fails for any reason.
--- or a new influence if it succeeds.
to InfluenceDiagramNameSet(ID: in out influenceDiagram; N: in name)
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--- Returns Nil if it fails for any reason.

- If it succeeds, the name of | will be set to N and

--- the updated ID will be returned.
to ConceptNameSet(C: in out concept; N: in name)

--- Returns Nil if it fails for any reason.

--- If it succeeds, the name of C will be set to N and

--- the updated C will be returned.
to AddConceptTolnfluenceDiagram

(ID: in out influenceDiagram; C: in concept)

--- Returns Nil if it fails for any reason.

--- If it succeeds, C will be added to the collection of

--- concepts contained in 1D, the updated ID will be returned.
to AddinfluenceToConcepts

(causeC,affectC: in out concept; I: in out influence)

--- Returns Nil if it fails for any reason.

-—- Both concepts must exist, not already influence each other,

--- and | must exist.

--- If it succeeds, | will be added to the concepts and returned.
to Proportioninfuence(l: in out influence; P: in proportion)

--- Returns Nil if it fails for any reason.

--- | must exist. P must be a legitimate value.

--- If it succeeds, P will be added to | and 1 will be returned.
to RemoveConceptFrominfluenceDiagram

(ID: in out influenceDiagram; C: in concept)

--- Returns Nil if it fails for any reason.

--- ID must exist. C must exist.

-—- 1If it succeeds, C will be removed from the collection of

--- concepts contained in 1D, the updated 1D will be returned.
to RemovelinfluenceFromConcept

(affectC,causeC: In out concept; I: in out influence)

--- Returns Nil if it fails for any reason.

--- The concepts must exist. | must exist and connect the concepts

--- as indicated. If it succeeds, | will be disconnected from

--- the concepts, and the updated influence will be returned.

qo conceptName(C: In concept) returns name
--- Returns Nil if it fails for any reason,
--- or the name of C if it succeeds.
qo idName(ID: in InfluenceDiagram) returns name
--- Returns Nil if it fails for any reason,
--- or the name of ID if it succeeds.

ptvo ExistsinfluenceDiagram()

--- Retumns the Influence Diagram if it exists, Nil otherwise.
ptvo ExistsConcept(N: in name)

--- Returns the named concept if it exists, Nil otherwise.
ptvo Existsinfluence(affectC,causeC: in concept)

--- Returns the influence connecting causeC and affectC
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--- if it exists, Nil otherwise.

tivo ValidID(ID: In influenceDiagram)
--- Returns 1D if it is a valid one, Nil otherwise.
--- A valid diagram is one that passes the following predicates.
tivo ExistsOri?\ilnConcept(lD: In influenceDiagram)
--- Returns Nil if there is not at least one concept with
--- no cause influence, otherwise it returns a list of those
--- concepts with no cause influence.
tivo ExistsFinalConcept(ID: in influenceDiagram)
--- Returns Nil if there is not at least one concept with
--- no affect influence, otherwise it returns a list of those
--- concepts with no affect influence.
tivo NoOrphanConcepts(ID: in influenceDiagram)
- Returns Nil if there is no concept without a cause influence
--- and without an affect influence, otherwise it returns
--- a list of those concepts failing the test.
tivo NoDanglingInfluences(ID: in influenceDiag ram)
--- Returns Nil if there is no influence without a cause concept
--- and without an affect concept, otherwise it returns
--- a list of those influences failing the test.
tivo UnnamedConcepts(ID: in influenceDiagram)
--- Each concept must have a name.
--- Returns Nil if there is no concept without a name, otherwise
--- it returns a list of unnamed concepts.
tivo Unnamedinfluence(ID: In influenceDiagram)
--- Each influence must have a name.
--- Retumns Nil if there is no influence without a name, otherwise
--- it returns a list of unnamed influences.
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CHAPTER 5
The Syntax Definition Phase

This chapter expands upon the notions initially presented in Chapter 3 and
continues with the detailed exposition begun in Chapter 4. Fragments of the Influence
Diagram Editor syntax specification are presented and refined to begin the discussion.
Syntax rules defined in this phase are associated with semantic operations defined in
the previous phase. In addition to the tool-specific operations, certain pre-defined sys-
tem operations are introduced. The entire syntax specification language is given, and

finally, the requirements of the syntax specification compiler are given.

The notation used for the syntax definition language should be familiar to any
reader who has been exposed to formal language theory or to tools like Yet Another
Compiler-Compiler, YACC [John75, John78].
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5.1 Vocabulary and Introductory Discussion

Weaver [Weav68] offers the following definition of grammar and the distinc-
tion between grammar and syntax. ‘‘Grammar may be defined as the science which
describes the elements of language and the principles by which they are combined to
form units of meaning. In some older studies of language, a distinction was often
drawn between grammar and syntax. By this distinction, grammar was limited to the
classification of elements and syntax to the rules which explain how they function
together.”’ In this dissertation the words grammar and syntax are used interchange-

ably.

Unfortunately for computer scientists, classification of a word (element) might
be made based on the word’s meaning, function, form, or some combination thereof.
The state-of-the-art in efficient language processing insists that classification be
unambiguous and be determined independently of the word’s context. A limited
amount of context sensitivity is available through the joint efforts of the lexical

analyzer and parser.

Several other terms are used in the following discussion that deserve mention
before proceeding. The terms terminal and terminal symbol are used to signify an
indivisible unit in the language. Words and punctuation marks are examples of termi-
nal symbols to an analyzer of natural language. The terms non-terminal and non-
terminal symbol are used to describe an ordered collection of terminal symbols and/or
non-terminal symbols. A sentence or a noun phrase is an example of a non-terminal
to an analyzer of natural language. When the difference between terminals and non-

terminals is unimportant they will collectively be called rokens.
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During the syntax definition stage we are primarily concerned with the order
of inputs, not how the input is to take place. A location may be input by moving a
mouse until the cursor is on a desirable location and pushing a button. Alternatively,
it may be input by a user typing (x,y) screen coordinates on a keyboard. We are con-
cerned here with the ordering of tokens not interaction method or interaction device.

Such logical or lexical considerations are the topic of the next chapter.

After specifying the syntax of all user commands, the syntax definer will
attach semantic routines to them. The previous chapter introduced a variety of types
of semantic operations that are available to the end user through the user interface,
transformation, query, pre-transformation validation, and time-invariant validation
operations. The syntax definer will select certain of those semantic operations to be
invoked upon recognition of a syntactically correct command. The word action will

be used when the type of semantic operation is unimportant.

A YACC specification has three sections separated by double percent signs.
TERMINAL SYMBOLS

cyﬂo/o

SYNTAX RULES

%%

USER DEFINED ACTIONS

The first section introduces the terminal symbols in the language that a
separate lexical analyzer is expected to recognize and pass to the parser. The second
section contains a description of the syntax rules to be recognized by the parser and
calls to the actions to be made upon rule recognition. The third and final section con-
tains actions written by the YACC user. These action routines implement the seman-

tics of the language being defined.
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YACC recognizes only two types of non-terminals, the single, distinguished
non-terminal, or start state, and the remainder of the non-terminals. Whether used as
an interpreter or as a compiler, the parser produced by YACC parses an entire senten-
tial form derived from the distinguished non-terminal. If a programmer intends to
build a compiler then the YACC specification will typically define a sentential form to.
be an entire computer program. The resultant YACC produced parser expects the
input, up to the end-of-file marker, to be a sentential form. However, if the goal is to
build an interpreter, then, typically, the YACC specification will define each legal
statement or command to be a sentential form. The resultant YACC produced parser
expects the entire input, up to the end-of-line marker (carriage return), to be a senten-

tial form.

Rather than one sentential form, we wish to identify and parse many sentential
forms that collectively comprise a dialogue. In a system with keyboard input, typi-
cally, each command is parsed separately, but no parsing is done until the carriage
return is entered. In our system we wish to prompt, parse, error check, and offer help,
as each token is input. In other words, we demand a great deal more interactivity than

conventional compilers and interpreters afford.

Recall that an early defined requirement is that transformation operations are
called only after all inputs are validated. In addition, the user view of a dialogue is
that it consists of a sequence of command-response pairs. Because the parser needs to
know when a transformation operation is legitimately placed and because the user
gives special recognition to commands, the system provides three types of non-
terminals. The distinguished non-terminal is a non-terminal associated with the tool
system dialogue. A tool’s dialogue is composed of commands and responses. A

unique non-terminal is associated with each command. These non-terminals are
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called sentence non-terminals. The other non-terminals are provided for reasons of

abstraction and sharing.

Identification of the commands comprising a tool dialogue also happens to be
a useful and convenient starting point in defining the Influence Diagram Editor tool

syntax.
5.2 Syntax Specification

A SARA-TBS syntax specification has five sections. The five sections begin

with %dialogue, %sentences, %rules, %terminals, and %shapes respectively.

%dialogue

DISTINGUISHED NON-TERMINAL

%sentences

el\iOh:-TERMINALS CORRESPONDING TO SENTENCES
orules

SYNTAX RULES

%terminals

INPUT TERMINAL SYMBOL GROUPING

%shapes

OUTPUT SYNTAX OF TERMINAL SYMBOLS

Unlike YACC, the terminal symbol section comes last and plays a somewhat
different role. The function of the lexical analyzer is provided by the logical device
layer described in the next chapter. Also, there is no user-defined action section in the
SARA-TBS syntax specification. The conceptual definition phase produces the

specifications of the user-defined actions.

A first cut of the influence diagram editor syntax specification is given as fol-
lows.

%dialogue

ideDialogue

%sentences

initiIDCmd

addConceptCmd  delConceptCmd
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addinfluenceCmd dellnfluenceCmd

redoCmd undoCmd
structuredModeCmd unStructuredModeCmd
quitCmd

%rules

ideDialogue : initDesignCmd Command * quitCmd ;
initiDCmd : influenceDiagramName ;

Command : sysCommand
| ideCommand

sysCommand : undoCmd
| redoCmd

ideCommand : addConceptCmd
delConceptCmd
addinfluenceCmd
delinfluenceCmd
structuredModeCmd
unStructuredModeCmd

Each rule is composed of a left hand side, a colon, a right hand side, and a ter-
minating semicolon. The left hand side is a single non-terminal that serves as a short-
hand for the right hand side. The right hand side is either simple or compound. A
simple right hand side is a sequence of tokens possibly including a star, *“*”’, or plus,
‘“+’’ meta character. The star implies that the previous token may be repeated zero
or more times while the plus indicates one or more instances of the preceding token.
A compound right hand side is simply a series of two or more simple right hand sides

separated by an or, *‘|"’, meta character.

The single rule

aCommand : command1 | command2

is equivalent to the following pair of rules.
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aCommand : command1
aCommand : command?2

The next step in syntax specification is to expand each sentence non-terminal
into an ordered sequence of terminal symbols and/or non-terminal symbols. The
addConceptCmd might be specified verb-first.

addConceptCmd : addConcept centerPoint cName

This rule means that the token associated with the add concept command is followed
by a token containing the screen location of the new concept which in turn is followed

by the new concept’s name.

The delete concept command might be specified in a verb-first fashion as

delConceptCmd : delConcept cPick

or object-first as

delConceptCmd : cPick + delConcept

which yields a more flexible command. The first variation says that the user is to pro-
vide an indication of the operation to be performed, delete concept, and is to pick the
object it is to be performed upon, a concept. The second variation allows a user to
pick one or more objects and terminate the list of objects by an indication of which
operation is to be performed. It is a matter of taste as to whether verb-first or object-
first is preferable, but it is a matter of fact that the parser can offer much more mean-
ingful help if the verb-first variation is used. The context provided by the introduc-

tory verb allows the semantic help offered to the end user to be more direct.

A tool with purely keyboard input has the advantage that each command is ter-

minated by a carriage return. A system with graphics input or mixed graphics and
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keyboard input similarly needs to unambiguously determine when a complete com-

mand has been entered.

Object-first, verb-last commands accommodate this need easily. The lone
verb in the command serves as verb and as command terminator. However, as noted

previously, prompting and helping may be less definite.

Verb-first, object-last commands offer much better prompting and helping.
However, end-of-command must be recognized unambiguously. End of command
recognition is accomplished by sentence identification and by rule definition. Verb-
first rules of the form

command : verb object *

do not give the command language interpreter the ability to detect end-of-command,
EOC, until the verb of the following command is entered. Such rules are prohibited
by the compiler and the syntax definer must provide an explicit terminator for the
rule. For example,

command : verb object * EOC

where EOC is a token defined elsewhere. Current systems with a verb-first style and
graphics input implement EOC as an out of bounds mouse click. For example, the
end user might select a verb by a mouse click while the cursor is over a menu item
and select many objects by repeatedly positioning the cursor over a desired object and
clicking the mouse. The sequence is terminated by a mouse click when the cursor is
positioned on an incompatible object or perhaps when the cursor is positioned out of

the current window.
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5.3 Augmenting Syntax with Semantic Actions

After all rules have been specified, the tool designer is ready to add calls to
action routines. Recall that transformation operations can only be placed at the end of
a sentence. The addConceptCmd might initially be augmented as follows.

addConceptCmd : addConcept cName centerPoint

set C (MakeConcept))
ConceptNameSet C $2)

set (graphlcs C) $3)
AddConceptTolnfluenceDiagram ID C)

Although this first cut is not totally correct, it captures the designer’s intent
well enough to proceed. The simplified T code specifies that a new concept, C, is
created; its name is set to the value of the cName token, $2; its graphics part is given
the value of the centerPoint token, $3, which might be the center point; and the new
concept will be added to the influence diagram, ID, which at this point is assumed to

be a global variable.

A more robust implementation might include validation operations embedded
within the sentence rather than just a transformation operation at the end of the sen-

tence.

addConceptCmd : addConcept
cName {(dt(eq? (ExistsConcept($2)) nil})}
centerPoint

set C (MakeConcept))
ConceptNameSet C $2)

set (8raphacs C) $3)
AddConceptTolnfluenceDiagram ID C)

The ExistsConcept ptvo will pass or fail. If it fails, the discard token system
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operation, dt(), will cause the previous token to be discarded and the parser will con-
tinue as if the discarded token had not been input. A related system operation, ds(),

discards all portions of the current sentence being input.

The full power of the implementation language is available between the
braces, {}, so that arbitrarily complex expressions can be tested for the dt() and ds()
operations and so that user defined operations can be called conditionally or repeat-

edly.
5.4 Grouping Terminal Symbols

The next section of the syntax specification is the %terminals section. It argu-
ably belongs in the logical device specification, but is included here because its inclu-
sion allows the grammar compiler to pass a minimum of information to the next
phase, the device compiler. It also allows the compiler to check that each token is
either a terminal or a non-terminal. If a token appears on the left hand side of a rule,
then it is a non-terminal. If a token is identified in the %terminals section, then itis a
terminal symbol that is directly input by the end user. The appearance of a token in
the grammar that is not identified as either a non-terminal or a terminal signifies an
error in the grammar. The process of grouping terminal symbols comes late in syntax
specification because it requires the syntax definer to shift from thinking about purely

syntactic issues into thinking about lexical issues.

Eventually, all terminal symbols will be input through some logical device and
ultimately through a physical device. For uniformity, it is desirable that similar termi-

nal symbols be prompted for, and be input in a similar fashion.
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Terminal symbols, i.e., those that did not appear as the left hand side of a rule,
are associated with similar terminals. Such associations, or bindings, are specified by
a binding rule. A binding rule has a left hand side, a colon, and a right hand side.
The left hand side is a single word and the right hand side is a simple list of terminal
symbols.

%terminals

verbs :

structuredMode unstructuredMode
addConcept delConcept
addinfluence delinfluence

quit

points :
centerPoint

entities : ]
concept influence influenceDiagram

strings :
conceptName influenceProportion influenceDiagramName

The verb-first style of syntax that has been used in this chapter has produced a
%rules section with a verb-like token as the first symbol on the right hand side of each
sentence. Each verb may be prompted for by ‘‘enter verb’’ requiring the end user to
respond via a keyboard or verbs may be prompted for by displaying 2 menu requiring
the end user to select one choice by a mouse click. In any case, it is reasonable that

all verbs will be input in the same fashion.

A more complete discussion of the use of the information extracted from the

%terminals section is presented in the following chapter.
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5.5 Output Terminal Symbols

The last section is the %icons section. Like the %terminals section, the
%icons section could be placed in the logical device specification. The %terminals
section groups tokens and identifies them as input terminal symbols. The %icons sec-
tion assigns a display shape to each object that will be displayed on a logical output
device. The %icons and %terminals sections collectively represent a shift from input

syntax to lexical input and lexical output.

The assignment of shapes to terminal symbols is used to extract drawing rou-
tines from system libraries. The words appearing on the left hand side of assignment
rules are not limited to geometric shapes such as circles and rectangles. The only
requirement is that the system libraries contain support software for the display and
selection of the shape indicated on the left hand side of the rule. A menu is an obvi-
ous candidate for such library support.

%icons

rectangle : influenceDiagram ;
circle : concept ;

polyline : infiluence ;
text : conceptName influenceProportion influenceDiagramName ;

5.6 Aggregating Tool Syntaxes

Before proceeding with the influence diagram editor syntax specification,
recall that the influence diagram editor is anticipated to be just one tool amongst many
in a system of tools. We might consider the entire system to be a separate tool with a
syntax composed of sub-dialogues. That top level tool could have its syntax
specification as following.

%dialogue

topLevelToolDialogue
%sentences
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undoCmd

redoCmd

quitCmd

flowChartEditorCmd

ideCmd

%rules

topLevelToolDialogue : Command * quitCmd ;

Command : flowChantEditorCmd flowChartEditorDialogue
ideCmd ideDialogue
undoCmd {(undo)}
redoCmd {(redo}}

It should be clear at this point that the non-terminal introduced in the %dialogue sec-
tion of the influence diagram editor is only a relatively distinguished non-terminal. It

appears to be just another non-terminal to the top-level tool.

Each sub-dialogue such as ideDialogue forms an encapsulation of the name
space of that tool’s dialogue. Only the %dialogue non-terminal is known outside of
that encapsulation. This prevents conflicts between the names of non-terminals in dif-
ferent tools. To support sharing of common non-terminals, undoCmd and redoCmd
for example, the parser will first look within a sub-dialogue for a non-terminal and
will look upward to the containing dialogues for unfound non-terminals. In order to
guide the name resolution algorithm, the %dialogue section also allows statements of
the following form.

%dialogue
ideDialogue is a sub-dialogue of topLevelToolDialogue

5.7 Influence Diagram Editor Syntax

This section contains a complete, possible syntax specification for the
influence diagram editor.

%dialogue
ideDialogue is a sub-dialogue of topLevelToolDialogue
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%sentences
initiDCmd
addConceptCmd
delConceptCmd
addinfluenceCmd
delinfluenceCmd
structuredModeCmd
unStructuredModeCmd
quitCmd

%rules
ideDialogue : initDesignCmd Command * quitCmd ;

initiDCmd : influenceDiagramName

{Iset ID (MakelnfluenceDiagram))
.;; define ID to be global

(InfluenceDiagramNameSet 1D $1)
;. and set its name

Command : sysCommand
| ideCommand

sysCommand : undoCmd
| redoCmd

ideCommand : addConceptCmd
delConceptCmd
addinfluenceCmd
dellnfluenceCmd
structuredModeCmd
unStructuredModeCmd

structuredModeCmd : structuredMode

{
(cond ((ValidID ID) (ptvo enable))
(else (print invalid influence diagram}))

unStructuredModeCmd : unStructuredMode { (ptvo disable) }

addConceptCmd : addConcept cName clocation

(let ((C (MakelnfluenceDiagramy)))
(set C (MakeConcept))
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ConceptNameSet C $2)
set (graphics C) $3)
\ AddConceptTolnfluenceDiagram iD C))

delConceptCmd : delConcept cPick
{ (RemoveConceptFrominfluenceDiagram ID $2) }

addInfluenceCmd : addInfluence cPick iProportion cPick

(let ({1 (Makelnfluence)))
Proportioninfluence | $3)
AddInfluenceToConcept $2 $4)
Routelnfluence from $2 to $4))
;;operation not defined.

}

delinfluenceCmd : dellnfluence iPick

(RemovelnfluenceFromConcept
causalconcept $2)
affectconcept $2) $2)

(Discardinfluence $2) ;;;operation not defined.

}

quitCmd : quit ;

cPick : concept ;
iPick : influence ;
cLocation : centerPoint ;
cName : conceptName ;

%terminals

verbs ;
structuredMode unstructuredMode
addConcept delConcept
addinfluence delinfluence
quit ;

points :
centerPoint ;

entities :
concept influence influenceDiagram ;

strings :
conceptName influenceProportion influenceDiagramName ;
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%icons
rectangle : influenceDiagram ;
circle : concept ,

polyline : influence ; _ _
text : conceptName influenceProportion influenceDiagramName ;

During this phase of specification, the syntax definer is focusing on end user
input commands and on the tool’s response to those commands. While attempting to
describe this dialogue, the designer may become aware that certain operations are
required for the dialogue that were not included in the output from the conceptual

definition phase.

The actions RouteInfluence and DiscardInfluence were not part of the concep-
tual definition. Any omission or error detected in this phase is fed back into a

refinement of the first phase.
5.8 The Syntax Specification Compiler

The syntax definition phase logically falls between the semantic definition
phase and lexical (logical device and physical device) phase. The syntax or grammar
compiler accepts inputs from the compiler supporting the semantic definition phase

and produces outputs for use by the lexical phase.
Recall the diagrams of the respective compilers first presented in Chapter 3.

Operation specifications are provided as input so that the grammar compiler
can compare the specifications with their actual use in the %rules section. Successful
comparison implies that only defined operations are used, that all defined operations
are used, and that operations are invoked with the correct type and number of argu-

ments. A discussion of optional approaches is included in the conclusion section of
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this chapter.

The grammar definition input to the compiler has been thoroughly presented in

The remainder of this section is devoted to describing the two outputs of the

OReO
Compiler

Figure 5.1: OReO Compiler

Grammar
Compiler

Figure 5.2: Grammar Compiler

grammar compiler, the ATN graph and the token list.
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previous sections. The compiler is responsible for assuring the LL(1) property of the
input grammar. Again, the conclusion section of this chapter discusses alternatives

and relevant experience gained from construction of the prototype compiler.




5.8.1 Augmented Transition Network Qutput

In addition to carrying out the algorithms necessary to assure the LL(1) pro-
perty [Lewi76a], the grammar compiler is responsible for generating some common
form of the language that eventually guides the execution of the command-response
language interpreter. Several common forms were considered during the research
including parse tables, a collection of procedures that implement recursive descent
parsing, the original grammar reorganized into a LISP list structure, and finite state
transition networks. Not only did the selected common form have to be sufficient to
guide the interaction, it had to support syntactic and semantic help queries and to pro-

vide a linkage between syntax recognition and semantic action.

The augmented transition network, ATN [Wood70], was selected because it
best met all of those requirements and because the ATN representation is highly read-
able by humans. Woods states that, ‘‘If the transition network model were imple-
mented on a computer with a graphics facility for displaying the network, it would be

one of the most perspicuous (as well as powerful) grammar models available.”

In the power spectrum from context-free grammars [Lewi76b] to context-
sensitive grammars to transformational grammars [Chom63], Woods claims that the
transition network model has the full power of transformational grammars with exe-

cution costs only marginally greater than that for context free grammars.

The ATN, as Woods proposes it, has nodes which represent states and directed
arcs connecting the nodes. An ATN has a distinguished start state, a set of accept
states, and a set of intermediate states. If input is totally consumed while the execu-
tion mechanism is in one of the accept states then the input is a legal sentential form

in the language. Arcs are labeled with terminal or non-terminal symbols.
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If, for example, we wish to recognize simple noun phrases of the following
form

Rover

the big black dog

the dog

we can describe those phrases syntactically as follows.

nounPhrase : article adjective * noun
| properNoun

adjective

properNoun

Figure 5.3: Noun Phrase ATN

In the start state, NP, the input of an article causes the execution mechanism to
transition into state Q1, while the input of a proper noun causes an input into state Q2,

the only accept state in this graph.

The ATN has state variables called registers that are used to record any
relevant history. For example, when encountering the pronoun “‘it’’ it may be neces-

sary to recall the antecedent from earlier in the sentence or even from a preceding
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paragraph.
The arcs of the transition network are augmented by conditions and actions.

Unlike a finite state transition network, the transition from NP to Q1 is taken if
and only if the next input is an article and the arc’s augmenting condition is met.
Conditions can be as simple as #rue, the transition is guided by the next input only, or
can be more complex containing an arbitrarily complex logical expression with refer-

ences to registers.

Arcs are also augmented with actions. When a transition is taken, the action
attached to the associated transitional arc is executed. A common use of actions is to

compute and set registers.

Part of the top level tool dialogue is shown below and is used as the basis for

the ensuing exposition.

Command

quitCmd

Figure 5.4: Top Level Tool Dialogue ATN
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Rather than generating a single, large graph, the ATN for a dialogue is com-
posed of a collection of disjoint graphs, one per non-terminal including the dialogue
non-terminal. Outgoing arcs are augmented with a first register containing the termi-
nal symbols that can begin the arc’s non-terminal. LL(1) guarantees that any legal

input terminal will be an element of exactly one first set.

It is conceivable and perhaps desireable that instead of writing a linear
representation of the syntax of a tool, a tool with graphical interaction could be
offered to the syntax definer. This tool could allow the direct expression of ATNs in
a graphical form and perform the LL(1) analysis upon user request (invocation of a
ValidATN time-invariant validation operation). If it is true that ATN construction
could be supported by an interactive, graphical tool, then the conceptual definition
language presented in the last chapter should be suitable for describing the modified
ATN that is generated by the SARA-TBS grammar compiler.

Object Identification.

The ATN is an object. Initially, there are none; later, there is 1.
Initially, the end user wili not be provided with an empty ATN. Itis the
user's responsibility to create one for the dialogue non-terminal. Only
one ATN is constructed at a time.

A graph (graphs) is an object. Initially, there are none; later,
there may be many. There will be one graph for the dialogue non-
terminal, and there will be one graph for each remaining non-terminal
in tdhe dialogue. A graph is made up of nodes and transitions between
nodes.

A node (nodes) is an object. Initially, there are none; later, there
may be many. Nodes can be start states, intermediate states, or
accept states.

A token (tokens) is an object. Initially, there are none; later,
there may be many. Tokens are terminal or non-terminal symbols.
Terminal symbols are indivisible units in the language and are pro-
duced by the lexical level. Non-terminal symbois are divisible units in
the language and are produced by collecting and ordering terminals
and non-terminals.
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A graphCallStack (GCS) is an object. Initially, there is 1; later,
there is 1. An ATN will have one GCS. During parsing a non-terminal
may be encountered and something similar to a subroutine call (sub-
graph call) will be made to the graph associated with the non-terminai.
The GCS will support subgraph calls.

Relation Identification.
The ATN has a name, has a graphCallingStack, and has many graphs.
A graph has a name and has many nodes.
A node has a nodeType and has many transitions.
A token has a name and has a tokenType.

A transition has a token and has a firstRegister. A source node
transitions-to a destination node.

Attribute Identification.
A nodeType is one _of [start,intermediate,accept].
A tokenType is one of [terminal,non-terminal,unknown].
A name is a string.
A firstRegister is a list of tokens.
Operation identification.
--- Transformation QOperations.

to MakeATN() returns ATN
--- A new, empty ATN will be created.
--- Only one ATN may exist at any time.
--- Returns Nil if it fails for any reason.
--- If it succeeds, the new ATN will be returned.

to MakeGraph() returns graph
--- A new, unnamed, disconnected graph wili be created.
- It will contain an empty subgraph call stack.
--- Returns Nil if it fails for any reason.
- If it succeeds, the new graph will be returned.

to MakeNode() returns node
--- A new, empty, disconnected node will be created.
--- Returns Nil i it fails for any reason.
--- |f it succeeds, the new node will be returned.

to MakeToken() returns token
- A new, unnamed, token will be created.
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--- Returns Nil if it fails for any reason.
--- If it succeeds, the new token will be returned.

to MakeTransition() returns transition
--- A new, disconnected transition will be created.
--- Returns Nil if it fails for any reason.
- | it succeeds, the new transition will be returned.

to ATNNameSet {A: in out ATN; N: in name)
--- Returns Nil if it fails for any reason.
- If it succeeds, the name of A will be set to N and
--- the updated A will be returned.

to AddGraphToATN (G: in graph; A: in out ATN)
--- Returns Nil if it fails for any reason.
- If it succeeds, G will be added to the ATN and
--- the updated ATN will be returned.

to RemoveGraphFromATN (G: in graph; A: in out ATN)
--- Returns Nil if it fails for any reason.
- If it succeeds, G will be removed from the ATN and
--- the updated ATN will be returned.

to GraphNameSet (G: in out graph; N: in name)
--- Returns Nil if it fails for any reason.
--- If it succeeds, the name of G will be setto N and
--- the updated G will be returned.

to AddNodeToGraph (N: in node; G: in out graph)
--- Returns Nil if it fails for any reason.
--- If it succeeds, N will be added to the collection of |
--- nodes contained in G, the updated G will be returned.

to RemoveNodeFromGraph (N: in node; G: in out graph)
--- Returns Nil if it fails for any reason.
- I it succeeds, N will be removed from the coliection of
--- nodes contained in G, the updated G will be returned.

to NodeTypeSet (N: in out node; T: in nodeType)
--- Returns Nil if it fails for any reason.
--- If it succeeds, the node type of N will be setto T
--- and the updated N will be returned.

to AddTransitionToNodes (T: in out transition; sN,dN: in out node)
--- sN and dN are source and destination node, respectively.
--- Returns Nil if it fails for any reason.
-~ If it succeeds, T will be added to the collection of
--- transitions out of sN and into dN. The updated sN, dN,
--- and T will be returned.

to RemoveTransitionFromNodes (T: in out transition; sN,dN: in out node)
--- sN and dN are source and destination node, respectively.
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--- Returns Nil if it fails for any reason.

--- If it succeeds, T will be removed from the collection of

-—- transitions out of sN and into dN. The updated sN, dN, and T
--- wilt be returned.

to TransitionTokenSet (Tr: in out transition; Tok: in token)
--- Returns Nil if it fails for any reason.
- If it succeeds, Tok will be assigned to Tr and
--- the updated Tr will be returned.

to TransitionFirstRegisterSet (Tr: in out transition; FR: in firstRegister)
--- Returns Nil if it fails for any reason.
--- If it succeeds, FR will be assigned to Tr and
-— the updated Tr will be returned.

to PushGraphOnGCS (G: in graph; Ges: in out GCS)
--- Returns Nil if it fails for any reason.
- If it succeeds, G will become the top of the Ges and
--- the updated Gces will be returned.

to PopGraphFromGCS (G: out graph; Ges: in out GCS)
--- Returns Nil if it fails for any reason.
- |If it succeeds, the top element of Gcs will be removed and
--- and the top element of the Gcs wili be
--- assigned to G, the updated Ges will be returned.

to ForwardStateChange (A: in out ATN; N: in out node; T: in token)
--- Returns Nil it it fails for any reason.
--- T will be searced for in the first register of each of N's
--- transitions. The destination node of the matching transition
--- will become the new value of N. The oid value of N will be
--- pushed onto the GCS of A. Any actions associated with the
--- transition will be executed.

to BackwardStateChange (A: in out ATN; N: out node)
--- Returns Nil if it fails for any reason.
--- N will be set to the top element of A’'s GCS. The top of
--- A's GCS will be discarded.
--- transition will be executed.

--- Query Operations.

o ATNName(A: in node) returns name
--- Returns Nil if it fails for any reason,
--- or the name of A if it succeeds.

qo graphName(G: In graph) returns name
--- Returns Nil if it fails for any reason,
--- or the name of G if it succeeds.

qo tokenName(T: in token) returns name
--- Returns Nil if it fails for any reason,
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- orthe name of T if it succeeds.

qo TopOfGCS (Gces: in GCS) returns graph
--- Returns Nil if it fails for any reason.
--- If it succeeds, the top element of Ges will be returned

qo typeOfToken (T: in token) returns tokenType
--- Returns Nil if it fails for any reason.
- If it succeeds, the token type of T will be returned

qo sourceOfTransition (T: in transition) returns node
--- Returns Nil if it fails for any reason.
--- If it succeeds, the source node of T will be returned

qo destinationOfTransition (T: in transition) returns node
-— Returns Nil if it fails for any reason.
--- If it succeeds, the destination node of T will be returned

--- Pre-transformation Validation Operations.

ptvo ExistsATN()
--- Retumns the ATN if it exists, Nil otherwise.

ptvo ExistsGraph({N: in name)
--- Returns the named graph if it exists, Nil otherwise.

ptvo ExistsToken(N: in name)
--- Returns the named token if it exists, Nil otherwise.

ptvo TokeninFirst(T: in token; FR: firstRegister)
--- Returns TRUE if T is in FR, Nii otherwise.

--- Time Invariant Validation Operations.

tivo ValidATN(ATN: In ATN})
--- Returns ATN if it is a valid one, Nil otherwise.
--- A valid diagram is one that passes the following predicates.

tivo ExistsUniqueDialogueNode(ATN: in ATN)
- Returns the graph associated with the dialogue non-terminal,
--- Nil otherwise. There must be only one such graph.

tivo ExistsInfiniteGraphs(ATN: in ATN)
--- Returns Nil if there is no graph without at least one
--- accept node, otherwise it returns a list of those
--- graphs with no accept node.
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A complete discussion of how the command-response language interpreter

traverses and manipulates an ATN is given in chapter 7.
5.8.2 Token List Qutput

The grammar compiler collects, categorizes, and outputs the symbols that
appear in the syntax specification. The collection and categorization of symbols can
most easily be understood as a single pass over the syntax specification. Those tokens
found on the left hand side of a rule in the %rules section are categorized as local
non-terminals. Those tokens found on the right hand side of a rule in the %terminals
section are categorized as terminal symbols. Those tokens found on the right hand
side of a rule in the %rules section, but not categorized as terminal symbols or local
non-terminal symbols, are suspected of being external non-terminals. If the %dialo-
gue section specifies a parent dialogue then the token list for the parent dialogue is
searched for those suspected external non-terminals. If the search fails to produce a
match, or if the %dialogue section does not specify a parent dialogue, then the

remaining suspected external non-terminals are errors.
The token list is thus a partitioned list composed of four partitions.

The first partition is the dialogue non-terminal part, which contains the non-
terminal associated with the non-terminal specified in the %dialogue section of the
specification being compiled. This partition is the only partition visible to those
dialogues not claiming to be a sub-dialogue. In addition it is only visible to the parent

dialogue that is specified in the %dialogue section.

The second partition is the local non-terminal part. It contains a list of the
local non-terminals introduced in the current specification. This part is visible only to

those dialogues that claim this dialogue as parent.
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The third partition contains a list of terminal symbol bindings. This list is
itself composed of lists. Each binding rule produces one small list with the left hand
side of the binding rule as the first element and the elements of the right hand side of
the rule comprising the remainder of the list. The third partition, the terminal symbol
binding partition, is an unordered list of these smaller lists. This partition is only of

interest to the device compiler.

The fourth and final partition is the list of unresolved tokens. These tokens are

of interest to the syntax definer.

The token list was prototyped as a T object with an instance variable for each
partition and a method for inserting a new element in each partition. The insertion
methods guaranteed that only one instance of any token would be found in a partition.

Methods were also provided to print the entire token list or any single partition.

The list of symbols in the grammar will be computed and output for use by the

device compiler (see chapter 6).
5.9 Conclusions and Possible Improvements
5.9.1 Alternative Syntax Experiment

More than one syntax can be built using the same operations. This procedure
was followed to produce different syntaxes for the Structure Model Tool of SARA-
IDEAS, and in fact, was used to provide a single, uniform syntax for three different

implementations of the Structure Model Tool [Cai83].
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Figure 5.5: Device Compiler

Although Fenchel had great success with SLR(1), LL(1) was chosen early in

the research. An early goal of the prototype system was to support the wide variety of
graphical interactions devices available at UCLA. It was found that some devices that
supported both keyboard and mouse input could only enable one device at a time.
Since we wish to allow a syntax designer to propose any sequence of device use, we
need to know which device to enable, and we need to prompt for input if necessary.
We later found that device independence, an honorable goal, was too large a task for
our group. We continually found ourselves reducing sophisticated workstations to

terminal emulators in our struggle for device independence.
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The idea of syntactic prescience still permeated our work even after abandon-
ing complete device independence as a goal. We always need to know where we are
in the parse and where we are going. The need to unambiguously identify the end of a
sentence is handled easily with existing LL(1) parsing techniques. The increased
expressive power of the LR() family is desireable but had a significant drawback.
During LR() parsing, it is possible to not know which of several rules will eventually
be recognized. In fact, it may not be possible to detect which rule will be recognized
until the first token of the next rule is input. This is no restriction at all to compilers
of conventional programming languages since they typically needn’t respond to the
end user until the entire input program has been examined. It presents a severe prob-
lem if a variety of devices provide input, if a great deal of prompting is desired, or if

an interactive user is to be told immediately that the input is in error.

Still, LI(1) is restrictive. The underlying ATN structure is capable of sup-
porting any context free grammar and it may be desireable to relax the LL(1) restric-

tion a bit.

A strong advantage of LL(1) languages is their incremental compilation pro-
perty. A useful service of a command-response language interpreter is the ability for
the end user to define new commands that are, perhaps, just slight variations on exist-
ing commands or even a single command that represents an aggregation of several
system commands. Such user defined commands should be supported as any system
defined command, that is, integral help, prompting, menu generation, etc., should be

provided on all commands, not on just those defined by the system designer.

A nice property of LL(1) is that if a large syntax specification is L1(1) and if a
small syntax specification fragment is LL(1), then the two can be merged easily and

still be LL(1). Adding a new command to an LR(1) dialogue requires that the old

136



syntax and the syntax of the new command be merged and the entire syntax be recom-

piled.
5.9.3 Type Checking

The full implementation language is allowed within the action braces. The
untyped nature of T makes type checking difficult. It is possible to write a separate
processor to support type checking for lisp-like languages, but the idea is unpleasant

to most LISP programmers.

The easiest solution is to pass the generated program, composed of action rou-

tines and parser, on to the compiler of a typed implementation language.
59.4 Prompting and Menus

A primitive, yet very useful, menu generation facility is provided in the proto-
type implementation. A more sophisticated implementation would include a menu
description language that would allow the interface designer to specify any sort of
menu presentation. A default menu object, such as those found in state-of-the-art
workstations [Sun 84], could easily be provided for those interface designers that do

not wish to involve themselves at that level.
5.9.5 Imperative Sentences and Vocative Expressions

Most commands to computer systems can be categorized as imperative sen-
tences in the English language. That is, a directive is being issued to the subject of
the sentence and the subject is assumed to be the computer system. The sentence
““Do this.’” is equivalent to ‘‘You, do this.”” Another variation on the imperative sen-
tence begins with a vocative expression, for example, ‘‘Ralph, do this.”’ This variant

is used when the imperative sentence is addressed to someone who may not otherwise
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know that he or she is the recipient of the directive.

Recall that commands are part of a dialogue or a sub-dialogue and that each
dialogue forms a encapsulation of token names defined within. Experience with the
SARA-IDEAS system has shown that there is frequent need to issue a command to a
tool other than the one currently being used. The Graph Mode! of Behavior tool is
composed of several complementary tools and it is 2 common occurrence to wish to
make a change to a model while using one of those tools and needing to reflect that

change in another tool.

A useful construct to support in the command language is the vocative expres-
sion, such that the name of the external dialogue, followed by a comma, precedes the
command that is desired. It should be clear by this discussion that the current dialo-
gue is the assumed subjéct of all imperative sentences unless the imperative senfence
is preceded by a vocative expression. The same treatment is appropriate for interro-

gative sentences.
5.9.6 Simultaneous Input Sources

The SARA-UIMS supports input from a variety of devices but only one device
at a time. Very powerful graphics workstations currently on the market allow a user
to, for example, manipulate two potentiometers simultaneously in order to perform a
rotation of a display around two axes. A useful extension to this research is the treat-

ment of multiple, simultaneous input streams.
5.9.7 Multi-party Dialogues

Another useful extension is the treatment of multi-party dialogues. Multi-

party dialogues would allow a team of designers to interact with the design of a
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model.
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CHAPTER 6
The Logical and Physical Device Definition Phases

The device definition phases focus the tool developer’s attention on the low-
level aspects of the design tool’s user interface. Neither of the previous phases, con-
ceptual definition and syntax definition, specify the characteristics of any specific dev-
ice, and are thus totally device independent. Device definition is composed of logical
device definition and physical device definition, and deals exclusively with interaction
techniques and devices. The device definition phases conclude the four-phase

SARA-TBS method.

Each primitive notion (e.g., objects, terminal symbols) identified in the previ-
ous definition phases must come from some physical input device or must be
displayed on some physical output device. A logical device definition buffers the
developer from the specifics of physical devices with the more general interface
characteristics of logical devices. Finally, a physical device definition bridges the gap
between tool concept, syntax, logical interaction, and the physical devices with which

the user comes in direct contact.

The chapter begins with an introductory discussion of terminology and issues
involved at this level. Logical device definition and physical device definition are dis-
cussed separately. The device description of the influence diagram editor is given,
followed by a syntactic description of the device definition language. The chapter

concludes with a summary and suggestions for further work.

140



6.1 Introduction

The purpose of this section is to set the stage for the ensuing device descrip-
tion discussion. Relevant aspects from the conceptual definition phase and syntax
definition phase are recalled and placed in the context of device definition. A first
definition of interaction tasks, logical devices, and physical devices is presented and

subsequently refined in later sections.
6.1.1 Interaction Tasks

An end user who is acclimated to input by alphanumeric keyboard may con-
sider the fundamental input task to be depressing keys, or perhaps entering com-
mands. An end user that has access to a system rich in input/output devices sees a

variety of input tasks.

Input tasks at a higher level than the keystroke level are collectively known as
interaction tasks. Foley [Fole82a] has proposed five basic interaction tasks: locaring
a position or viewpoint on a screen; picking a displayed entity from a screen; valuar-
ing, providing a single value from the space of real numbers; keying, providing char-

acter string input; and selecting one element of a small set, as from a menu.
6.1.2 Logical Devices

Each interaction task is supported by a logical device. The interaction task to
logical device mapping is: locating - locator, picking - pick, valuating - valuator, key-

ing - keyboard, and selecting - selector.

Each logical device has a natural analogue in the physical domain. The logical
keyboard is naturally manifest as the common alphanumeric keyboard but could be

supported by a voice input system. The logical pick device has as its natural analogue
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the mouse or the pen and tablet. Mouse and tablet serve equally well as a physical
realization of the logical'iocator device. A potentiometer or a keyboard is an obvious
realization of the valuator. The programmed function key is the obvious analogue of
theﬁsclector although the mouse and tablet can easily support the selecting task assum-

- ing that menus are displayed.
6.1.3 Physical Devices

Physical devices come from a variety of manufacturers, come in a variety of
shapes, colors, costs, and sizes; and perform a variety of functions. One can be sure
that even if two devices perform the same function, they do it differently. Both claim
to do it better. Product specifications and trial-and-error are the final arbitrator of

‘what and how a product performs.

Care must be taken in discussing physical devices. Specifically, a distinction
must be made between a physical device and pieces of hardware packaged together.

A single hardware package may contain more than one physical device.

For example, three physical devices built into two separate physical containers
comprise an AED 512 station. The display device is contained in a single physical

container, but the keyboard and joystick are built into the same physical housing.

Another example is a typical Evans and Sutherland PS300 station. One large
display tube is provided as part of the PS300. The display screen can operate in either
text mode or in vector graphic mode alternately or simultaneously. This one physical
container thus supports two physical display devices. A separate glass tty is generally
situated to the side for periodic communication with a host computer. A single physi-
cal container holds a sophisticated alphanumeric keyboard and a banner display run-

ning across the top of the keyboard suitable for labeling the eight function keys below
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or for displaying general text. A separate package has six potentiometers, each with a
small display just above it suitable for labeling the potentiometer. The last physical

package is a tablet and pen.

For this PS300 station, there are six physical packages, display devices (2),
keyboards (2), tablet (1), and potentiometer box (1); and 27 physical devices, CRT
display devices (3), keyboards (2), tablet (1), potentiometers (6), banner display (1),

function buttons (8), and potentiometer label displays (6).
6.1.4 Libraries

A tool building system such as SARA-TBS, much like an operating system,
may exist in a variety of hardware environments. An operating system typically runs
on a set of like central processing units with a single instruction set. However, the
operating system may be required to manage an arbitrary amount of memory, an arbi-
trary number of mass storage devices, and a wide variéty of terminals and printers.
Operating systems manage this uncertainty by providing a large and diverse library of
device drivers and an operating system design that decouples the primary operating
system mechanisms from the organization and size of memory and input/output dev-

ices. SARA-TBS does the same.

Three libraries are part of the SARA-TBS library subsystem, the Device
Dependent Library, DDL, the Device Independent Shape Library, DISL, and the Log-
ical Device Library, LDL.

During tool execution, output takes place in three steps. The first step per-
formed by the interaction handler is a call on a routine to draw an object, like a con-
cept or an influence diagram. The graphics information is extracted from the object

and passed as parameters to a routine that draws an appropriate shape, like a circle or
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rectangle. Finally, the shape drawing routine makes the necessary calls on routines

to draw generalized graphics primitives, like lines and polygons. Generalized graph-

ics primitives are device dependent routines and are stored in the DDL. Shapes are

dependent on a standard interface to generalized graphic primitives, but are device «

independent. Shape drawing routines are stored in the DISL.

Input is made through logical device drivers which are software routines that
implement a logical device on a particular physical device. Logical device drivers are

stored in the LDL.
6.1L.5 Why the Introduction of Logical Devices?

Logical devices are software implementations of interaction tasks for a
specific physical device. These logical input devices and logical output screens pro-
vide an important degree of freedom. A user who needs a high degree of prompting
may wish to input tokens from the pick device while a more experienced user may
wish to input tokens from the text device. Thus, it should be possible to change the
binding of token groups from the %terminals section to different logical devices at

run-time.

When a new physical device enters the inventory, a new logical device may be
developed for it and stored in a library. This allows a tool system to accommodate a

new physical device with a minimum of disruption.

An example of how this degree of freedom might be exploited is the adapta-
tion of an interface to its user. The screen layout and physical device layout shown in
Figure 6.1 is clearly biased towards a right handed user. The menu display is shown
adjacent to the mouse. If a left handed user wished to move the mouse to the left side

of the display, looking at the mouse and looking at the menu choices requires eye
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movement from one extreme to the other. It may be quite costly to build a display
configuration for both left and right handers, but it is quite easily handled in SARA-
TBS. Tools only display to logical screens (as discussed in section 6.2). Affecting a
change to the logical screen to physical device mapping software (as discussed in sec-
tion 6.3) is all that is required in order to accommodate a left handed user. The tool’s

semantic routines need not be concerned with such details.

' TOoIScreén Menu

- Prompt

g T Koo \Moeuse

Figure 6.1: An Environment Alternative
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6.1.6 Run-time Scenario

The Interaction Handler, IH, presented in chapter 7, is guided by the four
phase description. It recognizes where it is in the dialogue by virtue of the ATN pro-
duced by the syntax definition phase. In order to continue the dialogue, the IF
requests the next token as specified by the ATN. Each token belongs to a group of
tokens as specified in the %terminals section of syntax specification. Each of those
groups is associated with a logical device, for example, a pick device. Each logical
device is, in turn, associated with a physical device, for example, the logical pick dev-

ice is associated with a physical mouse.

Similarly, each output token has a graphical representation, a shape or icon,
and will be displayed on some logical output screen, which, in turn, is implemented

on some physical display device.
6.2 Logical Device Definition Phase

The previous section provides a discussion of interaction tasks and of logical
and physical devices. This section concentrates on the specification of a tool’s logical
devices. Logical device definition buffers the developer from the specifics of physical
devices with the more general interface characteristics of logical devices as discussed

by Foley in [Fole82b].

First, the relevant portions of the previous syntax definition phase are recalled.
The language is given for associating terminal symbols and icons, from the syntax

phase, to logical input devices and to logical output devices, respectively.
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6.2.1 Interaction Tasks

Input interaction tasks supported in the logical definition phase include locat-
ing, picking, valuating, keying, and selecting. Output interaction tasks supported in
the logical definition phase include displaying and printing. Print can be viewed as a
special case of display.

interactionTasks : inputinteractionTasks
| outputinteractionTasks

inputinteractionTasks :
locating
picking
valuating
keying
selecting

outputinteractionTasks :
printing
| displaying

6.2.2 Logical Input

First, let us recall the relevant syntax specification fragment from the influence
diagram editor tool.
%terminals
verbs :
structuredMode unstructuredMode
addConcept delConcept
addinfluence delinfluence
quit ;

points :
centerPoint ;

entities :
concept influence influenceDiagram ;

strings :
conceptName influenceProportion influenceDiagramName ;
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The grammar compiler insured that all input terminal symbols were identified
as either verbs, points, entities, or strings. Logical definition binds these groupings to

a logical input device.

The logical definition begins with %logicallnputDevices and is composed of a
series of simple associations, or rules. Each association has a left hand side, a colon,
a right hand side, and a terminating semicolon. The left hand side is the name of one
of the predefined logical input devices, pick, locator, valuator, keyboard, or selector.

logicallnputDevice :

pick
locator
valuator

keyboard
selector

The right hand side is a sequence of one or more of the groupings from the
%terminals section of the syntax definition. The logical input associations for the
influence diagram editor are quite simple.

%logicallnputDevices

pick : entities ;
selector : verbs ;

locator : points ;
keyboard : strings ;

6.2.3 Logical Output

Next, let us recall the relevant specification fragment from the syntax
specification of the influence diagram editor tool.
%rules
cPick : concept ;
iPick : influence ;
cName : name ;

%icons
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rectangle : influenceDiagram ;

circle : concept ;

polyline : influence ;

text : conceptName influenceProportion influenceDiagramName ;

The syntax definition phase introduces a list of objects that are part of the out-
put syntax and provides a list of icons that are associated with those output tokens.
The output tokens are influenceDiagram, concept, and influence. All output tokens
were identified as either rectangles, circles or arcs. Logical definition binds the output

tokens to a logical output device.

The logical output device definition for the influence diagram editor is that
used for the SARA/IDEAS prototype.
%logicalOutputDevices
toolScreen : influenceDiagram concept influence ;

menuScreen : menu ;
promptScreen : text ;

The logical definition begins with %logicalOutputDevices and is composed of
a series of simple associations, or rules. Each association has a left hand side, a
colon, a right hand side, and a terminating semicolon. The left hand side is the name
of a logical output screen to be used by the tool. The right hand side is a sequence of
one or more of the output tokens that might be displayed on this screen. The output
tokens are taken from the %icons section of the syntax definition or are one of the

primitive types supported by SARA-TBS.
6.2.4 Logical/Physical Interface

Discussion of the logical device definition phase concludes with a list of phase
accomplishments and what remains to be done by the physical device definition

phase.
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All input tokens have been associated with a logical input device. A logical
input device is defined by three operations, a connector, a disconnector, and a getter.
These operations are roughly analogous to the operating system calls, open, close, and
read. The arguments to the three operations differ depending upon the logical device
being supported. The implementation of the logical device depends upon which phy-
sical device supports it. That determination is left to the physical device definition

phase.

All output tokens have been associated with a logical display device, or
screen. The icons or shapes that will be drawn on each screen have been identified.
A logical output device is defined by three operations, a connector, a disconnector,
and a putter. These operations are roughly analogous to the operating system calls,
open, close, and write (append). The arguments to the three operations differ depend-
ing upon the logical device being supported. The implementation of the logical dev-
ice depends upon which physical device supports it. The putter operation needs to
know how to display all of the shapes that could be drawn on the associated logical
screen. It is possible to define such drawing operations and store them in a device
independent shape library if an interface to a device dependent set of drawing routines
is defined in advance. At this stage of definition it is not known which physical
device’s set of device dependent drawing routines should be selected. That determi-

nation is left to the physical device definition phase.
6.3 Physical Device Definition Phase

Finally, the physical device definition phase focuses the developer’s attention
on the physical device inventory available to support interaction. Logical devices are
assigned to physical devices. The ability to compose one or more physical displays

into a single logical display, or dividing one physical display into several logical
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displays is also defined in this phase.
6.3.1 Physical Input

The physical input specification associates logical input devices to the physical
input device with which the end user will ultimately interact. Three associations are
sufficient for the influence diagram editor.

pick : apolioMouse;

selector : apolloMouse;

locator : apolloMouse;
keyboard : apolloKeyboard,;

Each association ends with a semicolon and has a left hand and a right hand
side separated by a colon. The left hand side must be a name of a logical input device
specified in the logical input device section. The right hand side is a name sufficiently

unique to select a library entry from the LDL.
6.3.2 Physical Output

Physical output is a bit more complex to describe than physical input. Two
separate phenomena must be dealt with; the partitioning or aggregating of physical
devices into displays (the displays section), and mapping logical screen names, intro-

duced in the logical output device section, onto displays (the screens section).
6.3.2.1 Display Surfaces

The displays section begins with %displays and contains rules. The rules are
more complex than in previous sections because they must be able to express a one-
to-one, one-to-many, or many-to-one correspondence between physical screens and
display surfaces. Typically, the left hand side introduces new names. Following a

colon, the right hand side contains a name of a physical display device. The device
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name is used to search a library of device descriptions. Library entries include device
height and width, device address granularity, device address translation functions, and

other characteristics.

The following simple fragment is from the SARA/IDEAS prototype imple-
mentation. It introduces the new name ‘‘displaySurface’’ and specifies a one-to-one
correspondence between that name and the physical output device description of
“‘apolloScreen”’.

%displays
displaySurface : apolioScreen ;

In general, a single display may be supported by a single physical display device, by a
part of a single display device or by a collection of physical display devices.

Rather than divide a single physical display device into several display sur-
faces, we sometimes wish to simulate a large screen display by composing many phy-
sical display devices into one large display surface. The following %displays
specification aggregates six physical display devices into one display surface.

%displays
displaySurface{ 0/3 : 1/3; 0/2 : 1/2 ] : sony /* s1 */
displaySurface[ 1/3 :2/3; 0/2: 1/2 ] : sony /* s2 */
displaySurfacef 2/3 : 3/3; 0/2 : 1/2] : sony /* s3 */
displaySurface| 0/3 : 1/3; 1/2 : 2/2 ] : sony /* s4 */
displaySurface| 1/3 : 2/3; 1/2 : 2/2 ] : sony /* s5*/
displaySurface[ 2/3 : 3/3; 1/2 : 2/2] : sony /* s6 */

The end result of the display section is a list of display surfaces which is carried for-

ward to the next section.
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6.3.2.2 Logical Screens on Display Surfaces

The screens section begins with %screens and contains rules. Each rule has a
left hand side, a colon, a right hand side, and a terminating semicolon. Each rule
defines what portion of a display is occupied by a logical screen. The left hand side is
the name of a logical tool screen introduced in the logical output definition. The right
hand side begins with a name introduced in the %displays section and is followed by
a two part expression. The expression is contained between brackets ([]) and the first
and second parts are separated by a semicolon. The first part of the expression
describes what portion, along the horizontal X axis, of the display surface is allocated
to the logical screen. The second part of the expression similarly describes the
assignment along the Y axis. Each expression has two parts separated by a colon.
The first part of an expression describes the starting point along the appropriate axis,
and the second part describes the ending point. Either floating point or common frac-

tions are allowed.

For example, in the SARA-IDEAS system, the screen of an APOLLO works-
tation is divided into three different logical screens. In our specification language,
this is expressed as

%screens

ToolScreen d:splaySurface[ 0.0:0.8;0.

,0.0:0.9]
MenuScreen : displaySurface[ 0.8 :1.0;0.0:1.0];
PromptScreen : displaySurface[ 0.0:0.8;0.9:1.0];

The physical screen is represented by coordinates from 0.0 to 1.0 and every logical

screen occupies a fraction of the physical screen by assigning it a fraction in the inter-

val 0.0 to 1.0.
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Combining the first %displays section with this %screens section yields

%displays
displaySurface : apolloScreen ;

%screens
ToolScreen dlsplaySurface[ 0.0:0.8;0.0:09],
MenuScreen : displaySurface[0.8:1.0;0.0:1.0];
PromptScreen : displaySurface[ 0.0 : 0.8;0.8:1.0];

and produces an APOLLO screen with the layout shown in Figure 6.2.
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Figure 6.2: Sample Screen Layout

Combining the second %displays section with this %screens section yields

%displays
sony1 sony2 sony3 sony4 sony5 sony6 : sony

displaySurfacef 0/3 : 1/3; 0/2 : 1/2 ] : sony1
displaySurface| 1/3 : 2/3; 0/2 : 1/2 ] : sony2
displaySurface[ 2/3 : 3/3; 0/2 : 1/2] : sony3
displaySurface{ 0/3 : 1/3; 1/2 : 2/2 | : sony4
displaySurface[ 1/3 : 2/3; 1/2 : 2/2 ] : sony5
displaySurface[ 2/3 : 3/3; 1/2 : 2/2 ] : sony6

%screens
ToolScreen dlsplaySurface[ 0.0:08;00:09],;
MenuScreen :displaySurface[0.8:1.0;0.0:1.0];
PromptScreen :displaySurface[ 0.0:0.8;09:1.0];

and produces a screen like the one shown in Figure 6.3.
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Figure 6.3: Many Physical Devices Comprising One Display Surface
6.4 Interaction Environment

Several other aspects of the physical environment may also be dealt with in
this phase. For example, the spatial arrangement of physical devices relative to the
user may be specified. Given the syntax of the command language, mapping of gram-
mar terminal symbols to logical devices, mapping of logical devices to physical dev-
ices, and the spatial arrangement of physical devices, we can statically or dynamically
measure the hand and eye motions required to conduct a dialogue. These measure-
ments may lead to a better understanding of what constitutes a good interface. Itis
not the intention here to describe what constitutes a good user interface, but it does
seem appropriate to provide a means by which user-interface experiments can be con-

ducted.
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The facilities described so far allow a tool developer to provide many different
interfaces by specifying different grammars and different combinations of logical and
physical devices. Given spatial arrangement and physical dimensions of physical
devices, it is possible to allow a tool developer to propose several interfaces and

easily gather experimental data on the use of the interfaces.

As mentioned previously, the library entries that describe a physical device
contain a variety of physical device characteristics including physical dimensions. If
the tool developer extends the physical device definition to include the geometry of

the interaction environment, useful interface measurements can be extracted.

What measurements might be taken? The amount of end user hand and eye
movement are obvious candidates, and are called racrile alternation, and visual alter-
nation respectively [Bles82]. Keystroke level errors [Card83] have been proposed as
a figure of merit for user-interfaces as well as appropriate gesture [Felds2], the
appropriateness of the human’s gesture for the interaction task. Each measurement is

discussed below.
6.4.1 Tactile Alternation

Input requires some physical action (including retinal monitoring, voice recog-
nition, and other exotic inputs) from the user. If we take the sentence to be the basic
unit of dialogue, then we might expect that a sentence that requires very little physical
movement from the user is preferred to a sentence that requires a great deal of move-
ment. Each sentence is a non-terminal but eventually expands to a finite sequence of
terminal symbols, each of which comes from a logical input device and subsequently
from a physical input device. The cost in hand movement can be computed from the

number of alternations from one logical or physical device to another. If each physi-
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cal device description in the library subsystem contains physical measurements, and
the relative positions of physical devices comprising the interaction environment are
knowr, it is possible to measure an alternation from one device to another in physical

distances.

Section 6.4.5 provides a simple mechanism to support the measurement of tac-
tile alternations. Given a map describing relative positions of devices we can extract
the physical hand movements a user must perform in order to navigate through a sam-
ple session. This measurement can be determined statically without executing the
system, in fact, without the system even being built. Only the specification need be
provided. A sample session can be a monitored session of an end user working at a
real problem on the final system or it can be a set of sentences selected from the
grammer. Sentences from the grammar can be selected at random, according to their
anticipated frequency of use, or according to actual frequency of use as reflected by

statistics gathered from a previous system.

Implementation and integration of the semantic operations can proceed in

parallel, or be postponed, while the interface is being evaluated.
6.4.2 Visual Alternation

Visual alternations are the result of the end user’s eye movement over the dev-
ice terrain. It is similar to tactile alternation, but measures the end user’s eye move-
ment over display devices rather than over input devices. An interface that requires a
great deal of eye movement between the menu screen and the tool screen may cause
eye strain or it may cause the end user to remain alert [Card83]. In either case, being
able to measure the visual alternations of an interface allows different interfaces to be

compared and evaluated.
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Section 6.4.5 describes a mechanism for supporting measurement of visual

alternations.
6.4.3 Keystroke Errors

The number of errors committed at the keystroke level [Card83] has been pro-
posed as a metric of user-interface quality. The research leading to the keystroke
model was conducted when the keyboard was the primary input device, but the under-
lying model is still applicable. The basic idea is that user errors ar¢ an indication of a
difficult or poor user-interface. The SARA-UIMS system operations, discard token,

dt(); and discard sentence, ds(); are easily augmented to capture this information.
6.4.4 Appropriate Gesture

Appropriate gesture [Feld82] is a user-interface measurement more recently
proposed. To make the notion clear, consider the situation where a human rearranges
items on a table and the analogous situation where a human rearranges icons on a

screen using a mouse.

If a human wishes to move an item from one place on a table to another, the
human gesture will be to grasp the item and hold on to it while moving the hand and
object to the desired place and then letting go of the item. If a human wishes to move
an icon from one place on a screen to another, one would expect the sequence of
events to be similar. However, the typical sequence is to move the hand holding the
mouse until the cursor is over the desired icon (analogous so far), push a butfon
(grasp) and then let go of the button (inappropriate gesture), move the hand and
mouse (move) to the desired location, then push the button again to indicate letting go
of the icon (another inappropriate gesture). A more appropriate gesture is to click the

mouse (grasp) and keep the button depressed (hold) until the cursor is positioned
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(move), and then let go of the button (release) to indicate letting go of the icon.

SARA-TBS offers no support for appropriate gesture measurement even

though it is an interesting concept.
6.4.5 Physical Interaction Environment Specification

The SARA-TBS prototype does not include the following extension to the
specification language. The current system supports only two-dimensional graphics,
but nothing in the implementation precludes the addition of a third dimension. With
three dimensional graphics, the following language would be replaced with a graphics

tool.

The language of PIC [Kern77] is the basis for what follows.
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The SARA-IDEAS interaction environment, represented in Figure 6.4, is
described below.

%environment

env is 46 wide, 40 high, 46 deep.

apolloScreen.f.l.c at (22.5,8,16);

apolloKeyboard.d.b.c at apolloScreen.d.f.c+(0,0,-5);

apolloMouse.d.l.c at apolloKeyboard.d.r.c+(6,0,0);

eye at apolloScreen.f.c+(0,6,-13);

lefthand at apolloKeyboard.f.c+(-2.5,.5,0);
righthand at lefthand+(5,0,0)
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right hand

left hand.

Figure 6.4: Interaction Environment

The following YACC syntax specification provides a possible, primitive
language for interaction environment definition. A separate lexical analyzer is
responsible for recognizing floating point numbers (FLOAT) and names (NAME).

%%

environmentDefiniton : '%environment’
OptionalConstantDefinitions
SpatialArrangement

OptionalConstantDefinitions : /* empty */

| ConstantDefinitions
ConstantDefinitions : ConstantDefinition

| ConstantDefinitions ConstantDefinition
ConstantDefinition : ConstantName '=’ Value ’;
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SpatialArrangement : EnvironmentDefinition DevicePlacement UserPlacement

EnvironmentDefinition :

‘env’ ‘is’ Width ’,” Height ', Depth OptionalVanishingPoint "’
OptionalVanishingPoint : /* empty */

| "'with’ ‘'vanishing’ ‘point’ Placement

DevicePlacement : OptionallySuffixedDeviceName Placement *;’

UserPlacement : EyePlacement HandPlacements
HandPlacements :
LeftHandPlacement RightHandPlacement
| RightHandPlacement LeftHandPlacement

EyePlacement : 'eye’ Placement
LeftHandPlacement : 'left’ 'hand’ Placement
RightHandPlacement : ‘right’ 'hand’ Placement

OpticnallySuffixedDeviceName
DeviceName
| DeviceName Suffixes

Placement : 'at’ Point3d

Suffixes : Suffix

| Suffixes Suffix
Suffix :
U left */
r/*right */
' fup Y
'd' /*down Y/
"/ front Y/
b’ /* back */
¢’ /* center */

Point3d :’('x",y ', 2’}
OptionallySuffixedDeviceName
Point3d PlusOrMinus Point3d

Width : x 'wide’
Height : y 'high’
Depth :z'deep’

X : coordinate
y : coordinate
Z : coordinate

coordinate : FloatExpression
Value : FloatExpression

FloatExpression : Float
| '(’ FloatExpression ')’
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| FloatExpression Operator FloatExpression
Float : NUMBER

DeviceName : NAME
ConstantName : NAME

Operator : '+ | =" | ™|
PlusOrMinus : '+ | '~
%%

6.5 Device Libraries

Three libraries are specified to meet the requirements of device independence,
reusability, and avoidance of a lowest-common-denominator approach. The three
libraries comprise the set of input/output libraries. They are: the device dependent
library, DDL, where software packages supporting low level graphic display are
stored; the device-independent shape library, DISL, where shape drawing routines are
stored; and the logical device library, LDL, where software packages supporting logi-

cal device interaction are stored.

The system librarian is represented in Figure 6.5 and accepts two kinds of
commands, search commands and install commands. As new input/output routines
are developed, they can be installed in the library. The device definition phase com-
piler makes search calls on the librarian to withdraw a specific routine or collection of

routines as specification analysis determines the need.
6.5.1 Device Dependent Library (DDL)

This library contains packages of functions and data that are sufficient to draw
generalized graphics primitives, GGPs, on a specific physical display device. DDL
entries are thus tool independent and device dependent. It was previously planned to

search this library for individual functions on an as-needed basis. The functions
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Figure 6.5: System Librarian

would have to be side-effect-free if they were to be treated separately. The current
organization draws a cooperating collection of functions and data from the DDL. As
an example of why pure functions were inadequate, consider the case of the current-
cursor-position. Almost all drawing functions alter the cursor position. This variable
needs to be defined, initialized, and shared. A partial list of functions follow.

drawPolygon listOfPoints)

drawPolyline listOfPoints)

drawCircle centerPoint radius)

drawSpline listOfPoints)
drawText text position font)

These functions should have no knowledge of higher level object data structur-
ing, e.g., all arguments should be extracted from the object CONCEPT before calling

draw(Circle.
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The T call to search the DDL is:

(search-dd| physical-device)
and the entire function/data package is returned.
6.5.2 Device-Independent Shape Library (DISL)

The Device-Independent Shape Library, DISL, contains routines that draw
shapes. An example of a shape is a rectangle as opposed to the higher level object
influence diagram or the lower level generalized graphic primitive, GGP, polygon.
This library will accumulate over time and its contents are only required to contain
sufficient definitions for the current tool system. Subsequent tool development should

be able to exploit library entries developed for previous tools.

These library entries are pure function and only those required by the current
tool are withdrawn from the library. These functions are device independent in that
they are defined in terms of GGPs bound together with the implementation program-
ming language, T.

(search-disl shape device-capability-category)

Shape is one of {circle, rectangle, hexagon, ...}. The complete list is deter-
mined by the tool under development. The parameter device-capability-category is

added to allow another level of flexibility.

The device-capability-category variable may take on values like primitive,
core, gks, etc. This allows for more than one implementation of a shape. As an
example, consider the capabilities of the GT101 or similar semi-dumb terminals.
They can not draw a circle but have some graphics capabilities. The GT101 can draw

horizontal and vertical lines and right angle corners. With these GGPs we can define
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a nice rectangle, a shape. A more powerful display device would implement this

much more effectively as a polygon.

The lowest-common-denominator, LCD, approach would suggest that we not
implement GGPs as polygons but as horizontal lines, vertical lines, and corners. We
wish to avoid that approach by aiming at a more sophisticated device. On the other
hand we do not wish to preclude the use of devices that a user may have at home.
The device-capability-category addresses that dilemma. Since CORE and GKS

already provide the facilities needed, their selection is also allowed.
6.5.3 Logical Device Library (LDL)

This library, unlike the previous two, deals with both input and output. The
library is searched by

(search-Id! logical-device physical-device . options)

A logical device is one of {locator, pick, valuator, keyboard, selector, display,
printer}. The search returns a software implementation, the logical device, of the

requested logical device type on the requested physical device.

The portion of the specification language dealing with physical device inven-
tory and layout allows the binding of physical devices in the inventory to the logical

device function they are to perform.

Each terminal symbol in the grammar is by definition an indivisible unit that
the user must provide as input. Associated with each of these is a gerzer function.
The interaction handler, IH, invokes the appropriate getter guided by the parse. The

following functions comprise the set of getters.

L. select-category
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2. select-verb

3. select-entity
4, get-point
5. get-value
6. get-string

Getters 1-3 may all be the same but certainly make a call on (xy->container

(get-point locator)). Thus, pick is implemented in terms of the locator.

The specification language allows binding of terminal symbols to one of
{category, verb, entity, point, value, string}. As the compiler encounters these bind-
ings it can store the type with the terminal symbol. Therefore, each terminal symbol

is an object of one of the above types and its getter is specified accordingly.
6.6 Influence Diagram Editor Device Description

This section contains the complete device definition for the influence diagram
editor. First the %terminals and %icons sections from the syntax phase are given, fol-
lowed by the logical device defintion and finally the physical device definition.

%terminals

verbs :

structuredMode unstructuredMode
addConcept delConcept
addinfluence dellnfluence

quit ;

points :
centerPoint ;

entities : _ _
concept influence influenceDiagram ;
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strings :
conceptName influenceProportion influenceDiagramName ;

%rules

cPick : concept ;
iPick : influence ;
cName : name ;

%icons

rectangle : influenceDiagram ;

circle : concept ;

polyline : influence ;

text : conceptName influenceProportion influenceDiagramName ;

--- logical definitions

%logicalinputDevices
pick : entities ;
selector : verbs ;
locator : points ;
keyboard : strings ;

%logicalOutputDevices
tooiScreen : influenceDiagram concept influence ;
menuScreen : menus ;
promptScreen : strings ;

--- physical definitions
%inputDevices
pick : apolloMouse ;
selector : apolloMouse ;
locator : apolloMouse ;
keyboard : apolloKeyboard ;

%displays
displaySurface : apolloScreen ;

%screens
toolScreen : displaySurface[ 0.0
menuScreen displaySurface& 0.
promptScreen : displaySurface[ 0.

(W)

:0.8;0.0
8:1.0;0.
0 0.

:0.9
.0 1
:0.8; 1

0:1.0];
9:10];
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6.7 Complete Device Description Languages

This section contains the YACC syntax specification of the device languages.
NAME is a terminal symbol that the lexical analyzer is expected to recognize after
consulting the symbol table. The lexical analyzer should be able to categorize a
NAME as being one previously identified as an icon, physical input device, physical
output device, display, or logical screen. FRACTION is either a decimal fraction D,
0.0 <= D <= 1.0, or a common fraction, C, 0/1 <= C <= 1/1. FRACTIONS are also
recognized by the lexical analyzer.

%%

DeviceDefinition : LogicalDeviceDefinition PhysicalDeviceDefinition
LogicalDeviceDefinition : LogicallnputDevices LogicalQutputDevices
PhysicalDeviceDefinition : PhysicallnputDevices PhysicalOutputDevices

l.ogicallnputDevices :'%logicallnputDevices’ LIDrules
LogicalOutputDevices :'%logicalOutputDevices’ LODrules
PhysicalinputDevices :'%inputDevices’ PlDrules
PhysicalOutputDevices :DisplaysSection ScreensSection

DisplaysSection : '%displays’ DisplayRules
ScreensSection : '%screens’ ScreenRules

LiDrules : LIDrule | LIDrules LIDrule

LODrules : LODrule | LODrules LODrule

PiDrules : PiDrule | PIDrules PIDrule

DisplayRules : DisplayRule | DisplayRules DisplayRule
ScreenRules : ScreenRule | ScreenRules ScreenRule

LiDrule : LogicallnputDeviceName " InputTypes '}
LODrule : LogicalScreenName "’ IconTypes '}
PIDrule : LogicalinputDeviceName '’ PhysicallnputDeviceName '}
DisplayRule : OneToOneDisplayRule
AggregatingDisplayRule
PartitioningDisplayRule

OneToOneDisplayRule : DisplayName '’ PhysicalOutputDeviceName )
AggregatingDisplayRule :

DisplayName XYpartition ':’ PhysicalOutputDeviceName '}’
PartitioningDisplayRule :

DisplayName '’ PhysicalOutputDeviceName XY partition ’;’
ScreenRule : LogicalScreenName ’’ XYpartition ’;’

LogicallnputDeviceName :
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'pick’
'locator’
‘'valuator’
'keyboard’
‘'selector

InputTypes : InputType | InputTypes InputType
InputType :

‘category’

‘'operation’

‘entity’

‘position’

'quantity’

‘text’

LogicalScreenName : NAME

DisplayName : NAME
PhysicalOutputDeviceName : NAME
PhysicallnputDeviceName : NAME
lconTypes : lconType | IconTypes IconType
lconType : NAME

XYpartition : [ FractionPair *;' FractionPair ‘T
FractionPair : FRACTION ’’ FRACTION

%Yo

6.8 Device Compiler

The device compiler analyzes the logical device definition and the physical

definition to produce an input/output handler for the tool being specified. In addition
to the device definitions, the compiler consults the token list produced by the syntax
phase. Rather than creating new software, the device compiler makes calls on the sys-

tem librarian for predefined software packages. Figure 6.6 shows the data flow

diagram of the device compiler.

6.9 Summary and Conclusion

The logical device and physical device definitions comprising the complete

device definition for the influence diagram editor have been given. The specification
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Figure 6.6: Device Compiler
fits on one page which is as it should be. The complexity of input/output software is
hidden from the designer of a new tool and made the responsibility of a systems pro-
grammer. Input/cutput software is thus done in a general fashion rather than in a
manner that makes it suitable for only one tool. As new devices enter the inventory,
input/output software is developed and stored in the appropriate library where it
becomes immediately available to any tool that has been developed using the SARA-

TBS method.

The SARA-TBS fails to achieve device independence. The goal of device
independence was replaced by device tolerance. Until the rapid rate of advancement
being made in computer interaction devices slows, standardization of device inter-

faces will not occur and device independence will not be achieved.

The environment definition language should be implemented and user inter-

face experiments begun. Only then will the requirements of a user interface experi-
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mentation system become clear. What makes a good interface is currently being dis-
cussed philosophically. The pros and cons of user interface are rarely inferred from
rigorous experimentation. Perhaps the reason for this is that it is prohibitively expen-
sive to build special tools properly instrumented for experiment. SARA-TBS pro-
vides an environment for the development of real tools that could allow user interface

experimentation at a negligible cost.
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CHAPTER 7
The SARA User Interface Management System

Previous chapters present the SARA Tool Building System, SARA-TBS. A
phased method is given for describing the aspects of one tool that distinguish it from
other tools. Each phase of the method provides: a framework for discussing the
semantics, the syntax, the logical device, and the physical device characteristics of a
single tool, a specification language for describing each characteristic of that tool, and
finally a translator that takes the specification into an implementation. Implicit in
SARA-TBS is the existence of a reconfigurable target machine providing a powerful
execution environment of highly integrated, sharable components. This chapter
describes the reconfigurable target machine, the SARA User Interface Management
System, SARA-UIMS.

The chapter begins by making a distinction between policy and mechanism. A
list of UIMS supported mechanisms is given. Next, the user interface management
system is decomposed into a command-response system, a state representation sys-
tem, and a reference system. Each is described separately. Finally, conclusions are

drawn and suggestions are given for further research.
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7.1 Introduction

This dissertation describes a method for the economical construction of
CADOCS tools and their integration into a system of CADOCS tools. Clearly, any
two tools must be different in some, probably many, respects. Developers of 2
CADOCS tool system do not know a priori what new tools will be proposed for con-
sideration in the future and therefore can not discuss what their differences will be.
They can, however, be assured that any new interactive CADOCS tool, for example,
will have a command language and will allow users to interact with the tool through
physical devices. Of course any two tools will offer their users a different set of com-

mands, and, over time, the set of physical devices will change.

The developers of a CADOCS tool building system must consider what is
fixed regardless of the CADOCS tool and what is variable between CADOCS tools.
The need for a command language is fixed. The specific command language syntax
and semantics is variable. The need to interact through physical input and output dev-
ices is fixed, the set of physical devices supporting interaction is variable. The fixed
portions identified in this chapter have policy independent mechanisms to support
them. Policy decisions are left for the tool designer to consider along with the vari-

able portion.

All CADOCS tools require certain mechanisms that, if built correctly, can be
shared by a collection of CADOCS tools. By “‘built correctly’” we mean that the
mechanism is built independent of any particular policy and independent of any

specific tool’s application.

The remainder of this section identifies what functionality is desirable and per-

missible in the UIMS, and what functionality must be specified via the definition
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languages presented in previous chapters. A distinction between policy and mechan-
ism is made clear. The UIMS components are identified. Finally, the organization of

the remainder of the chapter is presented.
7.1.1 Policy versus Mechanism

Interactive, time-sharing operating systems manage the work of many users.
One responsibility of the operating system is to equitably divide host computer
resources between users. In this context, there are many ways to define ‘‘equitably’’.
Discussing alternative means of equitable resource allocation is used to clarify the

distinction between policy and mechanism.

There are many familiar cpu scheduling algorithms employed in operating sys-
tems. First-Come-First-Served, FCES, Shortest-Job-First, SIF, and Round-Robin,
RR, are common examples [Pete83a]. If FCFS is employed, jobs are queued in the
order they arrive. When the cpu becomes available, the oldest job in the queue is
selected for execution and run until completion. If SJF is used, the shortest job is
selected for execution and run until completion. If RR is used, each job is selected in
turn, and, rather than run until completion, is run for a system-wide amount of time,

the time quantum.

User jobs are usually referred to as processes internal to the operating system,
Processes may be in one of several states, e.g., active, blocked, sleeping, or ter-
minated, they belong to a user, they may communicate with other processes, and they
may have open files. With each process is associated a Process Control Block, PCB.
The PCB has separate components capable of representing each of the process’ state,
owner, open files, etc. The operating system contains a set of procedures and func-

tions to read and write the value of PCB fields.
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The set of PCB procedures and PCB functions and the PCB data structure
itself comprise the mechanism associated with process management. The algorithms,
FCFS, SJF, RR, represent the system’s chosen policy towards process management.

The mechanism remains fixed while the policy selected varies.

As a second example of a policy independent mechanism, let’s hypothesize
that the need for interactive user error recovery warrants a UIMS mechanism to regu-
late state change. The work space is the data structure that represents state. We may
conclude that do, redo, and undo are operations that surround the data structure and
are the only way of accessing the data structure. Together, the operations and data

structure comprise a state representation mechanism as suggested in Figure 7.1.

User Requests

Do, Redo, Undo

Figure 7.1: State Representation Mechanism
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Two examples of a state representation mechanism should make the definition
of a policy independent mechanism clear. Both examples are taken from the BSD 4.2

Unix,

The VIsual, VI, editor [Joy80a) allows its users to do a wide variety of com-
mands that will query or alter its work space, in this case, the buffered copy of the file
under edit. Examples of such commands are the global substitution of one text string
for another, the deletion of one or more lines of text, and the insertion of one or more
lines of text between two existing lines of text. VI also allows users to undo edit
commands. VI’s policy is to allow only the most recent work space altering com-
mand to be undone. Thus, all commands other than the most recent command are
committed and cannot be undone. In this case, the mechanism is built to support

only the policy presented to the user.

In the interactive command interpreter, the C-Shell, CSH [Joy80b], the work
space is composed of shell variables and the file system. CSH allows the doing and
redoing of commands. A script of previously issued user commands is maintained by
CSH as a circular history queue, HQ, of size H. Users are free to select the value of

H, but 16 is a representative value as shown in Figure 7.2.

When a command is issued the command script is copied into HQ[next] and
next (the queue index) is advanced clockwise. Thus, the most recent H commands are
available for redoing. In this case, the system offers a fixed mechanism and allows
the user to make the policy decision of how many commands are retained for undoing

by varying the value of H.

It is interesting to note that CSH supports redo of the last H commands and

undo of the last zero commands while VI supports undo of the last one command and
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next

Figure 7.2: Circular History Queue
redo of the last one command. A complete treatment of error recovery and related
issues is given in the subsequent section on the state representation system. Examples
of policy decisions for bi-directional execution operations (do, undo, redo) regulating

state change are:

1.  Syntax and availability to users
2. Number and type of commands that can be undone or redone by users
3. If and when to commit commands so that they can not be undone

A design tool system, such as SARA/IDEAS, may exhibit a set of policies to
its end users based on the reasoned opinions of a few senior designers, on corporate
history, or on the whims of a systems programmer. A tool-building system such as
the one presented in this dissertation, SARA-TBS, must not dictate the policy of the
tools being built. The tool building system must provide the mechanisms to support a

reasonably wide range of policy choices and the ability to specify or to select policy.
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Separation of policy from mechanism is a widely supported principle in
operating system design, as indicated by the following quotation from Peterson and
Silberschatz [Pete83b).

One very important principle is the separation of policy
from mechanism. ...

The separation of policy and mechanism is very important
for flexibility. Policies are likely to change from place to place or
time to time. In the worst case, each change in policy would
require a change in the underlying mechanism. A general
mechanism would be more desirable. A change in policy would
then only require redefining certain parameters of the system.

Policy decisions are important for all resource allocation
and scheduling problems. Whenever it is necessary to decide
whether or not to allocate a resource, a policy decision is being
made.

The principle is not often present in operating system implementation as indicated by

the following quotation from Brinch Hansen [Hans73].

For the designer of advanced information systems, a vital
requirement of any operating system is that it allow him to change
the mode of operation it controls; otherwise, his freedom of
design can be seriously limited. Unfortunately, this is precisely
what many operating systems do not allow. Most of them are
based exclusively on a single mode of operation such as batch
processing, spooling, real-time scheduling, or conversational
access.

When the need arises, the user often finds it hopeless to
modify an operating system that has made rigid assumptions in its
basic design about a specific mode of operation. The alternative
—- to replace the orignial operating system with a new one — is in
most computers a serious, if not impossible, matter because the
rest of the software is intimately bound to the conventions
required by the original system.

This unfortunate situation indicates that the main problem
in the design of a multiprogramming system is not to define func-
tions that satisfy specific operating needs, but rather to supply a
system nucleus that can be extended with new operating systems
in an orderly manner. This is the primary objective of the RC
4000 system.
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The basic attitude during the designing was to make no
assumptions about the particular medium-term strategy needed to
optimize a given type of instailation, but to concentrate on the
fundamental aspects of the control of an environment consisting
of cooperating, concurrent processes.

The UIMS is the system nucleus that Brinch Hansen speaks of.
7.1.2 The Mechanisms

Four mechanisms are identified and elaborated upon: the state representation
mechanism, the reference mechanism, the interaction mechanism, and the input/output
mechanism. Each mechanism is composed of a data structure and controlled access

provided by a set of operations as depicted in Figure 7.3.

Operations

= Mechanism

Figure 7.3: A Mechanism Template

The work space and the bi-directional execution operations comprise the state
representation mechanism. A sampling of that mechanism is given in the previous
section. The design data base and a set of data base operations comprise the refer-

ence mechanism. The data base is an extension of the work space made necessary by
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the limited capacity and the high volatility of the work space.

The interaction mechanism is composed of the interaction handler and the
ATN. The interaction handler is guided by an ATN that captures the syntax and
semantics of a specific tool or set of tools. The interaction handler invokes operations
upon a dynamic model represented in the work space. All transformations performed
on the work space are routed through the bi-directional execution operations. The
interaction handler negotiates with the human user through graphical input and output

devices.

Finally, the graphical input/output mechanism accesses a display memory and
several components of the objects currently in the work space. The object com-
ponents used by this mechanism include the graphics part of each object, the putter

method of each object, and the gerter method of each object.
7.1.3 Chapter Organization

Recall the characterization of an interactive computer system’s Model Human
User (Human Problem Solving section of chapter 2). The Model Human User is
described as three systems, the preceptual system, the motor system, and the cognitive
system. Each system is subsequently described as a set of memories and processors.
The UIMS Characterization section is developed along similar lines. The chapter is

completed by a conclusions section with suggestions for future research.
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7.2 UIMS Characterization

The user interface management system is primarily characterized by the
command-response system. Control of the command-response system resides in an
interaction handler. The interaction handler is guided by an augmented transition net-
work (as described in Chapter 5), gets user commands from an input processor,
translates user commands into state operations, applies those operations to the set of
objects comprising the state, and displays the new state through the services of an out-

put processor.

UIMS characterization begins with a description of the command-response
system, Its complex memory hierarchy is discussed first followed by a description of
the input processor, the output processor, and the interaction handler. The correspon-
dence between the memories and processors of the command-response system and the

memories and processors of the model human user are shown.

The work space memory plays such a crucial role in the command-response

system that it is treated separately as the state representation system.

The command response system, operating on the state representation system,
allows for the efficient creation, modification, analysis, and simulation of designs. In
contrast, a design data base is a place in which to store designs in a highly retrievable
form. A brief discussion of the reference system, including the design data base, con-

cludes the UIMS Characterization section.
7.2.1 Command-Response System

The command-response system is the central component of the UIMS. Itis a

collection of processors and memories as shown in Figure 7.4. The command-
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response system implements the input/output, interaction, and state representation

mechanisms.

The interaction handler, guided by the ATN, has a simple two step main cycle.

Get next command from user.
Give user appropriate response.

The interaction handler gets a user command from the input processor and
then responds to it semantically. The semantic response is implemented as a call to
an operation in environment memory. If the operation is a transformation operation,
then one or more objects in state memory are affected. The display processor is

responsible for reflecting the change on a logical output device.

7.2.1.1 Work Space Memory

- The work space memory has two major components, the instruction memory
and the environment memory. The instruction memory contains the ATN defined in
Chapter 5. The environment memory contains, among other things, all modeled

objects.
7.2.1.1.1 Instruction Memory

The instruction memory contains the ATN which provides guidance for the
interaction handler. The creation of the ATN by the syntax definition compiler is dis-
cussed in Chapter 5. The only run-time operation available on the ATN is the selec-
tion of the unique start node.

package atnPackage
type atn is private;

function getStartNode (ATN: in atn) returns node;
-- an atn has a unique start node.
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Figure 7.4: Command-Response System
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end package atnPackagse;

An ATN is composed of nodes and arcs.

An ATN node represents a state where the interaction handler comes to rest
between interactions with the user. A node may be a start, accept, or intermediate
node. Start nodes have no input arcs. Accept nodes have no output arcs. Intermedi-

ate nodes have at least one input arc and at least one output arc.

The following operations are defined on nodes.

package nodePackage
type node is private;

procedure traverseGraph (N: In node);
-- N is a start node associated with a non-terminal in the grammar.
-- the procedure returns when it encounters an accept node.

function isAcceptNode (N: in node) returns boolean;
-- returns TRUE if there are no output arcs,
-- FALSE otherwise

function isStartNode (N: in node) returns boolean;
-- returns TRUE if there are no input arcs,
-- FALSE otherwise

function selectArc (N: in node; T: in terminal) returns arc;
-- one arc is selected from N’s output arc set.
-- T is either found directly on the output arc,
-- or it is found in a non-terminal’s first set.

function getNextTerminal (N: in node) returns terminal;
-- all terminal symbols that can legally be read from this node
-- are of the same type: category, verb, entity, point, value,
-- or string. the appropriate feedforward, getter, and feedback
-- are called. the results of the getter are returned.

function getter (N: in node) returns terminal;
-- all terminal symbols that can legally be read from this node
-- have the same getter method. That common getter method is
-- executed and the results are returned.

procedure feedforward (N: in node);

-- N is prompted for. many level of prompts are possible depending
-- on a user's skill and the available interaction devices.

185



end package nodePackage;

An ATN arc represents a transition from one node to another node. A transi-
tion from one node to another node is made by selecting one of the current node’s
output arcs and setting the current node to the destination node of the selected arc.
Arcs are labeled with a terminal symbol or a non-terminal symbol from the grammar.
A non-terminal symbol has a subgraph associated with it that represents its left- and

right-hand side.

The following operations are allowed on arcs.

package arcPackage
type arc is private;

procedure makeTransition (A: In arc; N: out node};
-- the operation on the arc is applied to state memory.
-- the destination node of the arc is assigned to N.

function hasTerminalSymbol (A:in aré) returns boolean;
-- if arc is labeled with a TERMINAL, TRUE is returned,
-- glse FALSE is returned.

function hasNonTerminalSymbol (A: in arc) returns boolean;
-- if arc is labeled with a NONTERMINAL, TRUE is returned,
-- else FALSE is returned.

function getSubgraph (A: In arc) returns node;
-- arc is labeled with a NONTERMINAL, the subgraph associated
-- with the non-terminal is returned.

function applyOperation (A: In arc);
-- an arc may have an operation that must be called when
-- a transition is made from the source node to the
-- destination node.

function getDestinationNode (A: In arc) returns node;
-- an arc connects a source and destination node.
-- the destination node is returned.

end package arcPackage;
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7.2.1.1.2 Environment Memory

The other component of work space memory is the environment memory. Itis
analogous to the long term memory of the model human user. Its primary encoding
technique is semantic. The environment memory constitutes a mechanism in that it is
a collection of operations that provide controlled access to a data structure. The set of
operations are those defined during the conceptual definition phase (see Chapter 4),
and the data structure is the set of objects also defined during conceptual definition.
The set of operations do not change over time, but the collection of objects do. The
condition of the set of objects comprises the system state. Therefore, the set of
objects are held in a separate partition of the environment memory called the state
memory. The operations allowed on the environment memory are do, undo, and
redo.

package environmentMemoryPackage
type environmentMemory is private;

procedure do (C: in command; EM: in out environmentMemory);
procedure undo (EM: in out environmentMemory);
procedure redo (EM: In out environmentMemory);

end package environmentMemoryPackage;

State Memory

The state memory is a collection of objects entering into relationships with
each other as defined during conceptual definition. The objects are not directly acces-
sible except through the operations residing in the environment memory. The opera-
tions in environment memory represent the time invariant semantics of the user inter-
face while the objects in state memory represent the time varying semantics of the

model being designed. The operations that can be applied to state memory are those
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defined in environment memory.

The organization of state memory is so crucial that it is described in detail in a

separate, subsequent section.
Visible State Memory

At any one time, only a subset of the objects in state memory are displayed.
The visible state memory is that subset of objects in state memory that are curently
being displayed. Each of those objects in visible state memory has a graphic-part
instance variable and a putter method. The putter method of an object is a routine
that draws the shape of that object. Recall that each object was mapped to a shape
during syntax definition (see Chapter 5) and a routine was selected from the Device-
Independent Shape Library, DISL. The graphic-part is a data structure capable of
holding the parameters necessary to draw the shape, e.g., coordinates of a rectangle’s
corners, or a circle’s radius and center point. The graphic-part template is also taken
from the DISL. Objects from state memory may be added to or removed from visible
state memory.

package visibleStateMemoryPackage
type visibleStateMemory is private;

procedure addObject(O: in object; vsm: in out visibleStateMemory);
procedure rmObject(O: in object; vsm: in out visibleStateMemory);

end package visibleStateMemoryPackage;
Display Memory

An object’s putter method translates its graphic-part into a sequence of Gen-
eralized Graphics Primitives, GGPs, and copies the GGPs into display memory. GGPs

are discussed in Chapter 6. If an object is represented as a rectangle on a display dev-
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ice, then its graphic-part might be a four element list.

graphic-part = (P1, P2, P3, P4)

Its putter method might have a template with one GGP like

drawpolyline ( L1)

where L1 is expected to hold a list of points. The putter method would simply copy
the template to display memory but substitute the graphic-part for L1, producing a
segment in display memory like the following:

drawpolyline (P1, P2, P3, P4)

Four operations can be performed on display memory.

package displayMemoryPackage
type displayMemory is private;

procedure putter (DM: in out displayMemory; O:in object);
-- an object’s putter method passes in the object and
-- this procedure extracts its graphic-part and the ggps
-- from the object’s putter. each object so entered in DM
-- is represented as a segment.

procedure xyToContainer (P: in point; T: out terminal);
-- an x,y coordinate is passed in and its closest containing
-- object is returned as a terminal symbol.

procedure drawChangedSegments (DM: in out displayMemory);
-- those segments that have changed since the last call to
-- this procedure or to drawAllSegments are redrawn.
-- all segments in DM aremarked as unchanged.

procedure drawAllSegments (DM: in out displayMemory);
-- all segments are drawn. All segments in DM are
-- marked as unchanged.

end package displayMemoryPackage;
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7.2.1.2 Input Processor

The user’s arm-hand-finger movement is the point of contact with the system’s
physical input devices. Typically, the hand manipulates a keyboard or a mouse. As
described in Chapter 6, logical device definitions are interposed between physical dev-

ices and the interaction handler.

The input processor is subservient to the interaction handler. The input pro-
cessor is thus defined to be the implementation of the node operation, function get-
NextTerminal, and the set of logical input device drivers, getters, selected from the
Logical Device Library, LDL, by the device compiler (sce Chapter 6). A getterisa
software implementation of a logical device on some specific physical device. A
getter is one of: select-category, select-verb, select-entity, get-point, get-value, or
get-string. Getters beginning with the prefix “‘select-"’ are responsible for making
calls on xyToContainer to translate coordinates into a terminal that corresponds to

the object pointed to.

The following pseudo-code is a simplification of getNextTerminal.

function getNextTerminal (N: in node) returns terminal;
terminal T,

feedforward(N); -- possibly enable device & prompt.

T = getter(N); -- read from the device.

feedback(T); -- the object read might have a feedback method
-- e.g., the selected menu item might be highlighted.

return T;
end function getNextTerminal,

7.2.1.3 OQOutput Processor

Like the input processor, the output processor is a collection of previously

defined operations, a set of display memory operations and the set of putters defined
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in Chapter 6.

procedure drawChangedSegments(DM: in out displayMemory);
-- called to update screen.

procedure drawAllSegments(DM: in out displayMemory};
-- called to totally refresh screen.

7.2.1.4 Interaction Handler

The interaction handler is the controlling processor of the UIMS. Its function
is to traverse the ATN held in instruction memory. It has six registers, startNode,
currentNode, currentArc, currentToken, dollarDollar, and stateStack. After ini-

tializing its registers, the interaction handler traverses the ATN.

The interaction handler is described by psuedo-code and also relies on those
packages described previously.

procedure interactionHandler (G: in ATN);
register startNode;
register currentNode;
register currentArc;
register currentToken;
reqister dollarDollar;
register stateStack;

begin
startNode = getStartNode(G),
currentNode = startNode;
currentArc = nil;
currentTerminal = nil;
dollarDollar = nil;
stateStack = nil;

traverseGraph (currentNode);
end;

After initializing its internal registers, the traverse procedure is called with the

ATN’s start state,
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Recall from the syntax definition phase that the right-hand side of a syntax

rule can be value returning.

NT1 : NT2 NT3 NT4
{ (set $$ (sum $1 $2 $3)) }
At the time the right-hand side of the rule has been recognized, the values of NT2,
NT3, and NT4 have been computed as $1, $2, and $3 respectively. The sum function
is called to compute the value of NT1 which is locally called $$. This implies that $1,
$2, apd $3, must be remembered by the interaction handler at run-time. That is the

purpose of the state stack.

The following operations are possible on the state stack.
package stateStackPackage
type stateStack is private;
type dollarValue is private;
function push (SS: in out stateStack; V: in dollarValue};
-- pushes the new V onto the SS. Keeps track of how many
-- dollarValues have been pushed onto the stack that represent
-- the right-hand side of the rule currently being parsed.

function pop (SS: in out stateStack; N: in integer);
-- N values are destructively read from SS.

function nth (SS: in out stateStack; N: in integer) returns dollarValue;
-- the value of $N is non-destructively read from SS.

function rhsLength(SS: In stateStack) returns integer,
-- returns the number of symbols in the right-hand side of the
-- rule currently being parsed.

end package stateStackPackage;

The two most important procedures that comprise the interaction handler are
the mutually recursive traverseGraph and makeTransition procedures. The follow-

ing pseudo-code is a simplification of the two procedures.
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procedure traverseGraph (N: in node);
if isAcceptNode(N) return;
currentTerminal = getNextTerminal(N);
currentArc = selectArc(currentNode,currentTerminal);
makeTransition (currentArc,currentNode);
end procedure traverseGraph;
procedure makeTransition (A: in arc; N: out node);
if hasTerminalSymbol(A)
dollarDollar = applyOperation(A);
push(stateStack,dollarDollar);
N = getDestinationNode(A);
return;
if hasNonTerminalSymbol(A)
traverseGraph(getSubgraph(A));
dollarDollar = apEIyOperation(A);
pop(stateStack,rhsLength(N));
R‘ush(stateStack,dollar ollar);
= getDestinationNode(A);
return,
end procedure makeTransition;

7.2.2 State Representation System

The state representation system is a memory hierarchy and a set of bi-
directional execution operations that provide controlled access to the hierarchy. The
memory in question is the work space memory of the UIMS, but more specifically,

the portion of work space memory containing objects, the state memory.
7.2.2.1 Purpose

The purpose of this section is to justify the existence of a unique, centralized,
state representation system and to identify the operations allowable on state. Several
cases of bi-directional execution will be introduced and described, including, but not
limited to, user-level error recovery, data base error recovery, version control, and
step-mode interactive simulation of designs. A set of bi-directional execution opera-
tions is proposed and shown to be a generalization of those cases. A prototype imple-

mentation will be presented.
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7.2.2.2 Introduction

Interactive systems allow users to construct and modify data objects (docu-
ments, programs, models) in real time. Text editors are good examples of this class
of interactive program. Other software systems exist for the execution of objects,
(data objects or otherwise), e.g., analyzers and simulators. We use the term
“‘analyzer’’ to mean that class of tool that provides for the execution of a model (data
and/or program) statically, like a compiler. We use the term ‘‘simulator’’ to mean the
dynamic execution of a model against some collection of data. Simulators are often

constructed as interactive programs while analyzers less so.

Editors, analyzers, and simulators share many characteristics, one of which is
the ability of the system to move from an initial state towards some final state. In the
shadow of this common characteristic many disparate problems can be discussed. To
complement forward state transformations, it is desirable to be able to reverse the
effects of past actions and to restore the system to a prior state. One way to accom-
plish this is by saving state in anticipation of restoring to this state. We require an

automatic, economic, and convenient solution.

A list of specific examples of forward and backward state transformation fol-

low.

1. The Visual editor, VI [Joy80a], supports a simple undo. The Chapter 2 sec-
tion on COPE [Arch84] describes a high quality do/undo/redo facility and
introduces the terminology. Many systems have undo added on rather than
designed in. Undo is typically added on for user-level error recovery. How-
ever, a good undo facility gives rise to bolder user actions, allows automatic

systems to exhibit greater initiative, and makes a user more likely to explore
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less familiar system features.

The C shell history mechanism [Joy80b] provides a redo facility for the com-
mand language of the UNIX operating system. It is not integrated with a

corresponding undo mechanism.

Backward transformation in data base management systems is motivated
largely by the need to restore the data base to a legal state after it has entered
an incorrect state. The data base may enter an incorrect state because of the
actions of an errant or malicious end user, because of electrical power or
hardware failure, or because of errors in the implementing software [Date77].
A classic recovery strategy was developed when data bases were stored on
magnetic tape. The data base was recorded on one input tape and a sequence
of data base transactions were recorded on another input tape. The results of
applying the transactions to the data base were recorded on yet another tape.
Any error that ocurred during processing could be dealt with by repeating the
procedure on the original input tapes. Even if an entire output tape were lost,
it could be recreated by repeating the process on a sequence of transaction and
data base tapes. A variant of this technique is still used in version control sys-

tems.

Software development can be characterized as a sequence of versions of a pro-
gram through its evolution. The source program is a model of a system and
the various evolutionary versions are the model’s states. Version control sys-
tems such as SCCS [Bona77] and RCS [Tich82b, Tich82a] typically bookkeep
the steps of development taken but don’t provide for reverse execution.
Reverse execution is simulated by replaying the change script against the ini-

tial state of the model.
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5. Execution of models (by simulators and analyzers) is also a sequence of state
transformations. Instruction set simulators, such as ISPS [Barb79a, Barb79b,
Barb80), typically operate in two modes, step and continuous. Step mode
interprets and executes the next instruction and returns control to the user so
that the user can examine the contents of simulated machine registers and
memory that comprise state. Continuous mode typically executes instructions
until an instruction is accessed from a specified address. While executing in
continuous mode, users often find themselves attempting to fetch instructions
from data space or from uninitialized memory and are unable to ascertain how

they got there, i.e., they cannot undo their recent steps.
Analyzers are typically built as batch tools providing no interactivity at all.

In both simulators and analyzers, forward execution is well understood. It is

the minimum and the norm. Reverse execution is less frequently provided.

6. Automatic programming or automatic design frequently employ forward
exploration (perhaps based on blind or heuristic search) and subsequent back-
tracking. Such techniques rely on the runtime stack built and maintained by
the implementation language compiler to implicitly provide for rollback or
backtracking. Alternately, the program must explicitly maintain the informa-

tion for backtracking.

These topics are generally discussed separately even though they are more
alike than different. We suggest here that by identifying the salient commonality we
can provide a single, general solution to them all. Treated in a unified way, the solu-

tion can be economical, convenient, general, and clear.
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Central to the discussion is the familiar concept of state. State is defined as
the set of all system variables and their values. Given that definition and the terminol-
ogy presented in the next section, we are ready to build the first level of our solution
based on state change and state restore. Several forms of state representation are
given. Economy of the chosen form is shown by comparing it with other forms of
state capture. After the form of state representation is presented, the set of state

operations, through which all state change requests must be channeled, is presented.
7.2.2.3 Terminology

This section introduces the terminology necessary to discuss bi-directional

execution.

WS : WorkSpace, an area containing all objects that may change during system exe-

cution.

IH : the Interaction Handler, a processor that submits requests on behalf of the user to

transform objects within a WS.
T,, : some state Transforming operation,
S, : some State.

O : some set of Objects.

O; : some Object.

A : some set of Attributes.

A; : some Attribute.

V : some set of Values.

Vy : some Value.
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SE : a Script Element composed of a single transformation operation and a
specification of the object’s attributes that are to receive new values, i.e.,

Tn(O,A, V).

EX : that portion of the interaction script already EXecuted.

PX : that portion of the interaction script Pending eXecution.

Throughout this section, a rectangular grid, such as the one shown in Figure
7.5, is used to represent a snapshot of system state. The rectangle is labeled S,
where n is the number of state transformations that have been made and that are still
in effect since the session began. State is composed of many objects which are in
turn composed of many attributes. Objects are shown along the horizontal axis and
their attributes are shown along the vertical axis.

Objects

Attributes

Sa

Figure 7.5: State Representation Template

The only operations performable on state are do, undo, and redo. Their
semantics are described by a combination of state transformations and script opera-

tions. User commands undergo a translation into requests for transformation opera-
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tions. These transformations are represented as script elements in PX and EX.

In order to perform a state transformation, a representation of the command
and its arguments is pushed onto the front of PX, the transformation operation is

applied to state, and the command representation is moved from PX to EX.
DO Tp, (0,A,V) =>PUSH (T, (0,A,V), PX)
=> (T (Sa)) = (Sa+1)
=> PUSH ( POP (PX) , EX)
Undoing an operation is described as restoring the current state from S;, to its

former value S,_;, followed by moving the command representation of Ty, from EX

to PX where it can be redone if necessary.

UNDO Ty, => (Ta (Spe1)) = (Sn)

=> PUSH ( POP (EX) , PX)

To redo a transformation, the top most command representation from PX is

applied to state and then is moved to EX.

REDO Ty => (T (Sp)) — (Sp+1)

=> PUSH ( POP (PX) , EX)

A possible fourth operation on state is commit. Its effect is to render all com-
mands on EX undoable. 1t is performed by forgetting all attribute values but those

values current in state S;.

COMMIT =>n« 0 ie., S;is S
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=> FLUSH ( EX)

7.2.2.4 Computational Inverse Functions

One way to provide forward and backward state transformations is to write a
function that computes the inverse of each forward transformation function. This
approach to state representation and do/undo/redo requires the tool developer to
define the transformation functions that take the system from state S; to state S;;q
and inverses of those transformation functions that take the system from state S;;; to

state S;.

+1
Tm

N

~—__

-1
m

Sn Sn+1

Figure 7.6: Computational Inverse Functions

For example, consider the simple transformation, increment.
Tine (X) =X e X+1
A simple inverse exists, decrement.
Tk (X) = Tgee X) =X e X-1

The tool implementor must write both functions and somehow bind them together as

inverses. Whenever it is necessary to undo an operation, its inverse is found and
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executed. However, consider another simple transformation, square, raise to the

power of two.
Tsquare (X) =X « X2

When it becomes necessary to undo TsquaRe. the former value of X has been
overwritten and is not available. In order to restore the previous value of X, the
computational inverse function, Tsquare = Tsgrr. is called and can only produce
both a positive and a negative root of X. The correct root is impossible to determine

unless care has been taken to save the old value.

.

Not all functions have purely computational inverses. The fundamental
difficulty is the information loss associated with many obvious and non-contrived
transformations. Computational inverse functions are considered here only to
motivate the need for additional memory. The next three methods all support both

forward and backward state transformations by exploiting extra memory.
7.2.2.5 Not-So-Instant Replay

One strategy to provide bi-directional execution can be called not-so-instant
replay. The fundamental notion is to keep the state present at the beginning of the
session, the original state, intact. A copy of the original state is made and called the
current state. Each transformation takes the current state into the next state which
then replaces the current state. In order to undo the last command, the original state
is again copied to the current state and the entire session transcript, save the last

script element, is replayed.

For example, a session might progress from Sy to S, through some sequence

of transformations (T, Tz, ..., Tz—1, T2).
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S; « T1(80,0,A,V)

Sz «— TZ(SlsO’A’v)

Sz-1 & T;-1(52-2,0,A,V)

Sz « T;(Sz-1,0,A,V)

When the user requests a rollback from S, to S,_; the system first restores
the current state to S and then replays all but the last transformation, i.e., T,., but

not T,.

S1 « T1(Sg,0,A,V)

Sy « T2(84,0,A,V)

Sz-1 ¢ T;-1(82-1,0,A,V)

This implementation strategy is intolerably slow if the number of transforma-
tions per session is high and the need for backward execution is relatively high.
However, it may be appropriate if memory space is at a premium and backward exe-

cution is rare. Version control software typically employ this strategy with success.

7.2.2.6 Complete State Capture

The need for fast backward execution may obviate the use of not-so-instant
replay and justify the space costs of the complete state capture strategy. Initially, the

original state is called the current state. Each transformation is applied to the current
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Figure 7.7: Not-So-Instant Replay
state producing a new state. The new state is called the current state, but, unlike
- not-so-instant replay, the old current state is retained. Thus if Z transformations

have been applied to the intial state,

Sl «— T1 (So,O,A,V)

82 « TZ(SI ,O,A,V)

SZ «— TZ (SZ—1 ’ O’ A: V)

then there will be Z + 1 states consuming memory.
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R T T T Time
Sz-2
S Sy

Figure 7.8: Complete State Capture

The space consumed by the complete state capture strategy is large and pro-
portional to session length. It does, however, solve the time problem presented by

not-so-instant replay.

Automated Teller Machines, ATM, interact with extremely unsophisticated
and error-prone users and with extremely large data bases with high reliability
requirements. ATM sessions are typically short and the state of an individual user’s
account is quite small compared to the entire data base. Complete state capture is a

reasonable strategy for this application.
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7.2.2,7 Minimal State Capture

The bi-directional execution strategy chosen for the SARA-UIMS strikes an
effective compromise in space and time requirements. The minimal state capture
strategy exploits the fact that during any single transformation operation, the entire
state does not change. Nor do entire objects change necessarily. Typically, only a
few attributes of a few objects change and only the changes in those few values must
be recorded. A picture of Z transformations applied to the initial state, S, is shown

Figure 7.9.

S; € T1(50,0,A,V)

Sz & T2(51,0,A,V)

Sz « TZ(SZ—I :O’ A’V)

Minimal state capture offers a reasonable compromise when compared to
not-so-instant replay and complete state capture. A complete comparison of the

methods is given in the next section.
7.2.2.8 Comparison

This section quantitatively compares the various state capture methods. The
space and time comparision is summarized in Figure 7.10. The computational
inverse function approach failed to meet semantic requirements, but is included in

the table as a point of departure.
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So
Figure 7.9: Minimal State Capture

Three types of variables are used, typical session quantities, time costs, and

space costs.
Session Quantities

Nr: average number of transactions in session
N4, T: average number of attributes affected per transaction
No: average number of objects comprising state

Na,0: average number of attributes per object
Space costs

Ssg: space for script element

SaA: space for attribute
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So: space for object, So =S4 X Naso

Ss: space for entire state, Sg = So X No
Time costs

Tr: average transformation time
Taa: average time to allocate Sy
Tk : average time to deallocate Sy

Tgg: time to allocate Sgg

The space and time costs of script maintenance, Ssg and Tsg, are not

included in the cost calculations since they are small and common to all methods.

Space and Time Comparison of State Capture Methods
Method Space Forward Step ~Backward Step
TComputational Inv Ss TT Tt
N-S-I Replay 2xSg Tt (%T_ -DTr
Complete State NrxSg Tr+TaaxNoXNa0 | NoxNa0xXTaa
Minimum State Ss+NXNa/TXSa T1+TaaXNa/T Na,xXTaa

Figure 7.10: Space and Time Comparison of State Capture Methods

Space Consumption

Not-so-instant replay requires only marginally more space than inverse func-
tions. Most importantly, it is completely independent of session length. Also
noteworthy is the fact that as the amount of space to hold all of state increases, ie.,
as the number of objects increases, space consumption increases only by a factor of

two.
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The space requirement of complete state capture is extremely sensitive to

long sessions and to large numbers of objects.

The space requirement of minimal state capture is proportional to session
length like complete state capture. This dependency is mitigated by the relatively
few attributes whose new values require the allocation of space, for typical opera-

tions.
Forward Step Time

The two most important parameters of forward step time are the time
required to apply the transformation, T, and the time required to allocate an attri-
bute, Tos. The time required to perform a forward transformation for all state cap-
ture methods is independent of session length. Complete state capture and minimum
state capture are sensitive to the number of objects comprising state. The depen-
dency exists because both methods must dynamically allocate storage space during
forward transformations. Not-so-instant replay is insensitive to the number of
objects since the same space is reused. If Tt is overshadowed by Ty, , various

memory allocation strategies may be applied to reduce Taa.
Backward Step Time

The backward transformation time of not-so-instant replay is severly depen-
dent on the session length and the cost of reapplying the transformations must be
paid again. The most important time cost associated with complete state capture and
minimum state capture is the time to deallocate the space of one attribute. In a prac-
tical implementation, this cost would not be paid at the time a backward transforma-
tion was made but at some later time during garbage collection. Complete state cap-

ture is sensitive to the number of objects comprising state and spends significant
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time deallocating space that did not need to be allocated in the first place. Minimum
state capture is most dependent on the few number of attributes that actually change

during a transformation.
Summary

Minimum state capture represents a time and space cost effective solution to
bi-directional execution. For low values of Ny, it is only modestly dependent on

session length, N, and on object population, Ng.
7.2.2.9 The Mechanism

This section describes an implementation of minimal state capture. Not
shown is the interaction handler’s translation of user requests into calls on the bi-
~ directional execution operations, do, undo, and redo. Four T objects are presented,
the work space, the script, the script element, and the attribute. The portions of
those objects germain to the state representation mechanism are discussed in turn.
After each T object has been discussed, a do operation will be followed through the

sequence of operations necessary to perform state capture.

As a convention, the instance variables whose changes are not monitored end

in ““-part’’ and instance variables whose changes are monitored end in ““-attribute’’.

For this discussion, the most important part of the work space is the script-
part and the methods that operate on it. The most important methods are script-
append, script-truncate, and script-reappend. A fourth method, delta, will be

described during the hand execution of do.
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7.2.2.9.1 The Work Space Object

The script operations on the work space result in the same operation being
invoked on the work space’s script-part.
(define (MakeWorkspace)
(let {(...)
script-part (MakeScript)})
(object nil

géript seif) script-part)
script-append self cmd) (script-append script-part cmd) self)
script-truncate self) (script-truncate script-part) self)
script-reappend self) (script-reappend script-part) self)
delta self attr) (delta script-part attr))
(setter script) self val) (set script-part val))
undoable? self) (undoable? script-part))

redoable? self) (redoable? script-part))
workspace? self) t))))

7.2.2.9.2 The Script Object

The script has two important instance variables, ex-part and px-part. Ex-
part holds script elements of transformations already executed and px-part holds
those script elements pending execution. A third instance variable, tmp-se-pan, is

a temporary variable that holds a new script element while it is being filled in.

The script-append and script-reappend methods construct a script element
to document the transformation currently underway and call the T eval function to
affect the transformation. The script-truncate method also performs bookkeeping
tasks on the script element, but instead of evaluating a command, it calls for a roll-
back on the script element that is being removed from px-part. The script’s delta
method, as did the work space’s delta method, just passes its duties onto the T
object below it in the hierarchy. The T object below the script is the script element.

(define (MakeScript)
(let ((ex-part nil) ; part of script already ex-executed
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px-part nil) ; part of script pending ex-execution
tmp-se-part (MakeScriptElement)))
(object nil

executed self) ex-part)
pending self) px-part)
delta self attr) {(delta tmp-se-part attr))
script-append self cmd)
tmp-se-part tmp-se-part (MakeScriptElement))
tmp-se-part (command tmp-se-part) cmd)
eval cmd *scratch-env*)
- call the xfrm, it will call delta as needed
(push ex-part tmp-se-part)
self)
({script-truncate self)
(cond ({null? ex-part) nil)
(else
set tmp-se-part (pop ex-part))
rollback tmp-se-part)
push px-part tmp-se-part)
self)))
(fscript-reap end self)
cond {{null? px-part) nil)
(else
set tmp-se-part (pop px-part))
eval (command tmp-se-part) *scratch-env*)
push ex-part tmp-se-part)
salf)))
undoable? self) (not (null? ex-part)))
redoable? self{ (not (null? px-part)))
script? self) t))))

7.22.9.3 The Script Element Object

A script element has two instance variables, a command-part and an
affected-attributes-part. The command-part holds a representation of a transfor-
mation operation and the operation’s arguments. The affected-attributes-part

holds a list of those object’s attributes that are affected by this operation.

There are methods to set and retrieve the command-pan of a script element,
and there is a rollback method that is invoked by the script-truncate method of the

script. The script element’s rollback method applies the attribute’s rollback method
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to each element of the list of affected attributes. In addition, there is finally a delta
method that does little more than just punt to a subordinate object.

(define (MakeScriptElement)
(let §(command-part nil)
affected-attributes-part nil))
(object nil

command self) command-part)
rollback self)
(iterate search ((attr (car affected-attributes-part))
(rest-of-attrs (cdr affected-attributes-part)))
(cond ((null? attr)
(set affected-attributes-part nil)
self}
(else
grollback attr)
search {car rest-of-attrs;
(cdr rest-of-attrs))))))
{setter command) self val) (set command-part val))
delta self attr) gpush affected-attributes-part attr))
script-element? self) t))))

7.2.2.9.4 The Attribute Object

Each attribute has a present value and a list of past values. The rollback
method overwrites the present value with the most recent value from the list of past
values and removes that value from the list. The value-part is maintained as a stack

with the top value being the present value.

The other interesting attribute methods are the ones to read and write the
value of an attribute, the current value, cv, methods. An attribute’s value cannot be
examined or altered directly. When the value of an attribute is requested, CV pro-
vides the present value. When an attempt is made to alter an atiribute, the new value

is pushed onto the value-part.
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The controlled access to all attributes through the ¢v method constitutes the
lowest level mechanism in the SARA-UIMS. Recall that the semantic phase of
SARA-TBS generated the T object equivalent of each object that could be manipu-
lated via the user interface. During the generation of T objects, the OReO compiler
must insert calls to the cv method.

(define (MakeAttribute attr-name)

(let ((value-part nil))
(object nil
cv self) (car value-part))
rollback self) {pop value-part) self)
(setter cv) self newValue
push value-part newValue)
delta *ws* self)

self)
((attribute? self) t))))

7.2.2.9.5 Walkthrough of the Do Operation

We now hand execute a do operation through the sequence of T objects just
introduced. The mysterious delta method will be described. The example begins
after the interaction handler translates a request to do a command into a script-

append operation on the work space with the command as argument.

1. The work space method for script-append simply calls script-append on

the work space’s script-part.
2. The script’s script-append method performs four steps.
a. a new script element, se, is created.

b. the command-part of the script element is set to the command (actu-

ally performed by a script element method).
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c. the command is actually applied to its arguments.
d. the command is entered into the executed part of the script.

As the command is applied to its arguments, attributes are changed. This
causes the attribute’s cV setter to be invoked. If many attributes are changed
by a single transformation, then there are correspondingly many calls on the

cv setter. The Cv setter is implemented in two steps.
a. the new value of the attribute is pushed onto the value-part.

b. the delta method is called on the work space with the attribute as

argument,
The work space’s delta method passes control to the script’s delta method.

The script’s delta method passes control to the script clement’s delta
method. The script element in question is the one held in the temporary

instance variable, s@, which was allocated in step 2a.

The script element’s delta method adds the changing attribute to its list of
affected attributes. If N attributes are changed by one transformation opera-
tion, then there will be N calls on delta and N attributes in the script

element’s list of affected attributes.

7.2.2.9.6 Mechanism Summary

The UIMS kernel must support mechanism not policy. A tool designer using

the SARA-TBS may wish to impose a variety of policies on the end user and may

not wish to pay the space and time cost of a state representation mechanism as just

suggested. Alternate policies can be supported by implementing families of script
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routines. By identifying several alternative interactive models with various degrees
of recovery and implementing a set of cooperating script routines for each alternative

we can achieve a balance of cost and performance.
7.2.3 Reference System

The reference system is composed of a large design data base and an associa-
tion processor. Previously solved designs are stored in a fashion that allows them to
carry associations with other designs. The association processor allows the design
data base to be t;averscd and examined according to associations with other designs
or known quantities. The association processor has been called a browser [Land83]

in other SARA research.

Landis [Land86] proposes a relational data base that integrates with the
SARA-TBS and the SARA-UIMS.

Because the types of relations that might exist between designs is unpredict-
able, it is recommended that each tool that results in a storable design should have a
separate subdialogue written for it that allows the end user to browse through the

design data base.
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7.3 Conclusions and Suggestions for Further Research

The implementation of the user interface management system meets its stated
goals. It directly supports the interaction needs of its users by providing a well
chosen set of policy-independent mechanisms integrated with SARA-TBS. The

implementation strategy is shown to be efficient and cost effective.

The bi-directional execution operations promote more liberal exploration.
The user is free to explore sequences of operations without fear that his or her steps
cannot be retraced. If the art of design were better understood, the rules known to a
successful designer could be captured in an expert system’s corpus of rules. This
control knowledge could be offered by the expert system, acting as a surrogate for a

human user, interacting with the interaction handler.

But what is design? A more powerful family of script operations can be
implemented that would allow the human t{o document why certain design branches
were explored, why some design alternatives, once explored, were rejected, and why
others were selected. A full design audit trail can be captured. This audit trail could

form the basis for research into how successful designers approach the art of design.
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CHAPTER 8 _
SARA/IDEAS - A Computer-Based System Design Methodology

System ARchitect’s Apprentice, SARA, is a requirement-driven top-down and
bottom-up design method for concurrent digital systems [Camp78]. SARA supports
the design process of complex concurrent digital systems. Both hardware and
software design are supported. The SARA method is supported by an extensive body
of software designed at UCLA and implemented in the PL/1 language on the MUL-
TICS system at MIT. It provides separate tools for the structural and the behavioral

modeling of systems. The history of SARA is given in [Estr78].

This chapter first introduces the SARA design methodology and then
describes, in separate sections, each major tool or subsystem that makes up the SARA
tool system, Concurrent reader and writer processes communicating through a shared

buffer are employed as a running example to clarify the design procedure and its sup-

porting tools.
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8.1 Design Procedure

This section describes the SARA design procedure as depicted in Figure 8.1.
The design process is initialized by insisting that the designer partition the universe of
design discourse into a system module, and an environment module in which the sys-
tem will operate. This first step may seem rather mechanical, but its omission is the
cause of many faulty designs. The environment module is made explicit so that the
designer is forced to focus attention on what assumptions are being made about it.
Once those assumptions are documented, the designer turns attention to specifying

requirements to be met by the system module.

Neither the environment assumptions nor the system requirements are sup-
ported by a formal language and a corresponding language analyzer. Although Win-
chester [Winc81] has proposed a SARA requirements definition language and a

requirements analysis technique, it has not been implemented as a SARA tool.

The next step in initialization is the development of a high-level behavioral
description of the system module. Behavior is described in three different domains,
the control flow, the data flow, and the interpretation domains. Each is supported by a

language and language analyzer. Collectively, they are supported by a simulator.

Both top-down partitioning and bottom-up composition are supported. If the
system being designed is simple it may be described immediately in the three

languages already mentioned.

Designers are rarely faced with the task of starting from scratch. Complex
systems are composed of many subsystems and it may be possible to re-use what
another designer has already provided. A power supply is an obvious example of a

re-usable subsystem.
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If, for example, the system being defined is a variant on a well established pro-
duct line, it may be possible to search an existing library of previously designed and
tested modules. These building blocks can be collected to form a composition. If the
product line is special-purpose digital controllers, the building block library might
contain descriptions of TTL DIP chips that typically comprise major portions of the

product line.

However, a system is likely to require the design of a new subsystem or com-
ponent, If the new subsystem is large, divide-and-conquer is employed. The system
module is partitioned into smaller, more manageable modules. Initialization is
repeated for each new module thus identified. Each new module becomes a system

that exists within a containing environment.

Regardless of the tactic taken, partitioning or composing, the resultant design
is tested using the many tools in the SARA complement. These tools are generally
one of two types, analyzers or simulators. The results of analysis or simulation are
tested against the requirements. If requirements are met, then the designer may turn
attention to another module. If requirements are not met, a new partition or composi-

tion is attempted in a search for satisfaction of requirements.

In the following sections, each major step in the methodology will be dis-

cussed in greater detail using the reader-writer example.
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Figure 8.1: The SARA Methodology
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8.2 Requirements Definition

The SARA methodology is requirement-driven, yet it has no supported
requirements definition language nor language analyzer. Winchester [Winc81] has
proposed such a language and has defined a set of analysis techniques, tools, and pro-

cedures that fill this requirements definition subsystem gap.

The Requirements Definition Language, RDL, is used to separately specify the
functional, process, and attribute requirements that comprise the semantic model of
the computer system being specified. The semantic model is composed of six primi-
tives that describe the structural and behavioral components of the system. Winches-
ter describes a correspondence between these six primitives and those of the extant
SARA system. Given this correspondence, it is possible to generate SARA models
from RDL and to apply SARA analytical and simulation tools in the verification of

the specification.

In lieu of an RDL specification, the next two sections describe the environ-
ment assumptions and the first definition of the system module for the reader-writer

example.
8.2.1 Environment Assumptions

The environment will contain two processes: sender and receiver. The

sender process behaves as follows:
. It sends messages to the buffer system through the write procedure.

. It sends only one message at a time and, after sending one message, can

proceed only after write finishes.
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. After the last message is sent, sender terminates.
The receiver process behaves as follows:
. It requests messages fom the buffer system through the read procedure.

. It reads one message at a time and, after requesting a message, can proceed

only after read finishes.
. After the last message is read, receiwver terminates.

8.2.2 System Module

with SARA_INTERFACE; use SARA_INTERFACE;
package buffer_package is
type message_slot is private;
type buffer is array(1..MAX) of message_slot,
procedure write(m : in message_slot);
function read returns message_slot;
procedure init;

end buffer_package;

A buffer is, then, a sequence of MAX message_slots. procedure init initial-
izes the buffer to be empty. Calls to procedures read and write can occur con-
currently. If write is called when the buffer is full, the caller will be inhibited until
there is an empty slot in the buffer. If read is called when the buffer is empty, the
call will be inhibited until some message is written onto the buffer. The system needs

to manage the buffer in such a way to ensure that:
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. Messages are delivered in the same order as they are received.
. No message is destroyed (written over) before being read.

. No message is read twice.

8.3 Structural Modeling

The structure of a system is expressed in terms of the Structure Model, SM.
The SM has three primitives: modules, sockets and interconnections. Modules can be
connected with other modules by an interconnection connecting two sockets, one
socket in one module and one socket in the other module. Thus, sockets are commun-

ication ports for modules.

The interconnection is not directed, it just models a communication line but
does not reveal which way the information flows. An interconnection always con-
nects two and only two sockets. Furthermore, a socket can have only two intercon-
nections attached to it: one going out and one coming in. Hierarchical decomposition

is achieved by refining a module into submodules.

There is a top level module called universe which has no sockets. Hierarchi-
cal decomposition is achieved by refining a module into submodules. This process
can be repeated until the system has been decomposed into small enough modules,
whose behavior can be directly mapped to an exisiting behavioral model stored in the
Building Block Library or whose behavior is simple enough to be understood and

expressed using the behavioral primitives.

In our buffer system, we would decompose our universe module into the
buffer system and its environment. The environment and the buffer system would

communicate through the write and read operations. Figure 8.2 shows the SM for
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the Buffer System.

environment

ew

write

er

read

universe

br

buffer

Figure 8.2: Structure Model of the Buffer System

The environment module has two sockets: ew (for environment write) and er

(for environment read). These sockets are connected through interconnections write

and read respectively to sockets bw and br in the buffer module.

The environment module or the buffer module could be partitioned further

into submodaules if needed.
8.4 Behavioral Modeling

In SARA, the behavior of the system is modeled using the Graph Model of
Behavior, GMB [Razo77]. The GMB offers the designer three different but related

modeling domains, control, data, and interpretation. The designer focuses on one of
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these domains at a time. After developing independent systems descriptions in each

domain, the designer insures that they are consistent with each other.
8.4.1 The Control Domain

The control flow model describes concurrency, synchronization and pre-
cedence relations in a graph using an underlying theoretical model similar to Petri-

Nets [Pete81].

The control domain of the GMB is a directed hypergraph, i.e., a graph in
which the edges may have multiple sources and/or multiple destinations. Control
nodes (the vertices) represent events and control arcs represent precedence con-

straints, or a partial ordering, among the events.

Each node has an input logic expression, which is a boolean expression on the
input arcs, that expresses the condition under which that node can be initiated. An
OR, ““+”, in the input logic means any of the operand arcs can initiate the node. An
AND, ““*’’, in the input logic means that all operand arcs must pass control before

that node can be initiated.

Each node has an ourput logic expression, a boolean expression on the output
arcs, which shows where control is passed upon termination of that node. An OR
here implies control is passed to one of the designated arcs. An AND implies control

is passed to all of the designated arcs.

Both input and output logic expressions can be arbitrary functions using
ANDs and ORs. Control flow in the control graph is represented by the passing of
tokens through control arcs. When a node is initiated, it consumes the tokens which

enabled it. Upon node termination, tokens are created and placed on output arcs
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according to the node’s output logic expression. The semantics of a control graph are
dictated by an underlying machine known as the token machine which performs
state-to-state transformations on the graph, starting from an initial token distribution

and terminating if and when no further transformations are possible.

Continuing with our buffer system, we define a control graph for each of the
modules defined in the SM. To show this mapping, each control graph can be drawn

on its corresponding SM module:

arw
s SEND
+
af oW
write
INIT 1 +ffER ew
*
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REC2 arr or read
*
+
air ald _4er
*
a2 L(REC1
environment buffer
universe

Figure 8.3: GMB Control Graph for the Buffer System

The following tables describe the function of the various components in the

control graph:
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Control Nodes

INIT
TERM
SEND

RECA1
REC2

RECM

REQ

Control Arcs

'S

ackw

aokr

Initiation process, initiates sender.

Termination process.

Sender process, sends message to the buffer and receives ack-
nowledgment.

Receiver process 1, requests message.

Receiver process 2, actually receives message from the buffer
and informs REC1.

Receives message from the environment, acknowledges, and per-
forms the write operation.

Receives request, performs the read operation, and sends it to
the environment.

Arc to initiate the system.
Semaphore, indicates the number of empty slots in the buffer.

Semaphore, indicates the number of messages in the buffer.

8.4.2 The Data Domain

The data domain of the GMB is a bipartite directed graph, i.e., a graph in

which there are two kinds of nodes (datasets, represented as rectangles and data pro-

cessors, represented as hexagons) and in which arcs (called data arcs) are used to

connect datasets with data processors. Thus, every data arc goes from a data proces-

sor to a dataset or viceversa. This graph represents the data flow of the system by

defining its data paths.

Datasets model static collections of data. Data processors are data transform-

ers which can read from and/or write to datasets. Data arcs define the read and write

accesses of a data processor to a dataset.
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Continuing with the buffer example, we draw the data graph over the SM and

show the mapping existing between the data graph and the control graph.

write

read

environment buffer

universe

Figure 8.4: GMB Data Graph for the Buffer System

The following table describes the function of the various data processors and

datasets in the data graph:

Controlled Processors

CHK ~ Mapped to control node TERM, processor which checks the
message received against the initial messages to determine that
they are the same and in the same order before termination.

RDI Mapped to SEND in the control graph. It reads messages from
INPUT into MESIN, one at a time.
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RDO Mapped to REC2 in the control graph. It reads messages from
MESOUT, and deposits them into QUTPUT, one at a time.

REC Mapped to RECM in the control graph. It receives messages
from the environment and deposits them into dataset BUFFER.,

SEN Mapped to REQ in the control graph. It reads messages from
BUFFER and passes them back to the environment.

Datasets

INPUT Initial sequence of messages.

OUTPUT Messages read from BUFFER, to be checked against INPUT.

MESIN,

MESOUT Message slots, interfaced with submodule buffer.

BUFFER The actual buffer in the system.

8.4.3 The Interpretation Domain

The Interpretation Domain defines the format of the data stored in datasets and
defines the transformations of data performed by the data processors. Many interpre-
tation languages can be used for this domain. The original SARA system used PLIP
(an extension of PL/1) as its interpretation language. The current system, being

implemented in a Lisp dialect, supports a Lisp-like interpretation language.
8.5 Building Block Library

In order to support bottom-up design, it is necessary to have a collection of
previously designed and tested models, appropriate for the design domain, stored in a
design database. The SARA design database is called the Building Block Library by
Drobman [Drob80]. His work concentrates on hardware building blocks but the pro-

cedure is also applicable to software modules.
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The primary hypothesis of Drobman’s work is that *‘a set of models of
hardware and software building blocks can be created and utilized as primitive ¢le-
ments in a computer-aided design system and methodology such that the composition
of requirements-satisfying, partially correct, microprocessor-based digital systems is
dramatically enhanced.”’ He demonstrated satisfaction of the hypothesis by defining
building block descriptions of the Am2901 bit-sliced microprocessor, the Am29775
PROM, and other similarly complex devices, and then using those building blocks to

design a 16-bit microprogrammable microprocessor.

Drobman’s building blocks are prefabricated simulation models of physical
building blocks. The simulation models are defined in the previously mentioned
SARA languages, the Structure Model Language and the Graph Model of Behavior
Languages.

Other SARA researchers have studied the requirements and organization of a

design library [Land83, Land86, Mars83].
" 8.6 Socket Attribute Modeling

During research on the Building Block Library and the SARA simulation
tools, it was felt that many of the errors detected during simulation could have been
found much earlier by analysis of some as-of-yet undefined static description of the
building blocks. This observation spawned SamPaio’s research into the Socket Attri-
bute Model, SAM [Samp79), and Penedo’s research into the Module Interconnect
Description, MID [Pene81]. While both deal with a description of a building block at
its interfaces, sockets or interconnects, SAM concentrates on hardware building

blocks and MID concentrates on software building blocks.
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SamPaio provides a language to describe the behavioral attributes of a
hardware module’s sockets, for example, electrical characteristics (fan-in, fan-out),
timing (set-up and hold times), bandwidth, and perhaps physical characteristics. With
these descriptions attached to a module’s sockets it is possible to detect inconsisten-
cies ocurring during composition of two or more modules. The detection of socket
mismatch errors ocurrs at the time the socket connection is attempted, not later during

an expensive and time consuming simulation that may not detect the error at all.
8.7 Module Interconnect Description

Penedo attacks the same problem as SanPaio, but on the software front. She
describes software modules as they appear at their interfaces. Most type checking
compilers detect some of the errors that Penedo is after, for example, procedures
called with the wrong number or type of arguments. The product of her research is
the Module Interconnect Description, MID [Pene81, Pene79]. Berry later shows that
Ada package specifications meet the needs of Penedo’s MID [Berr84]. Krell [Krel86]
continues this line of reasoning by researching the suitability of Ada as the language

for the interpretation domain of the GMB.
8.8 Extensibility and User Interface

The extant SARA system implementation at MIT was not constructed in an ad
hoc manner. From the beginning, the implementors knew that no matter how com-
plete their tool kit was, there would be inevitable pressure to add new tools. They
therefore established a procedure for constructing a new tool and for eventually
integrating it with the existing tool kit. This procedure is described in [Vern78]. To
insure consistency between existing and newly defined tools, Fenchel [Fenc80]

defined a user interface construction tool that promotes sharing of grammatical con-

231



structs between tools. By following the procedure and by using the user interface
construction tool, the end product is self-describing offering syntactic and semantic
help to the end user. Fenchel’s tool [Fenc82, Fenc78] is summarized in the following

paragraphs.

Each tool intially is partitioned into user interface dependent and independent
parts. The user interface independent part is partitioned into a collection of PL/1 rou-
tines that comprise the tool’s functionality. The syntax of the user interface depen-
dent part is described in an SLR(1) grammar. Upon recognition of certain syntax

rules, a user interface independent routine is called.

Once the tool is fully constructed the user interface independent routines are
merged with those of any pre-existing tools. The tool’s syntax specification is added

as a subdialogue to the tool system’s grammar.

The underlying support tools use the grammar to provide integral help to the
end user. This insures that the user gets help information that is in agreement with the
implementation. It also alleviates the burden of providing help from the tool imple-

mentor.
8.9 The SARA/IDEAS Environment

The SARA methodology is supported by automated tools in an integrated,
interactive environment. These tools allow the user to create and modify SM and
GMB models. There is also a design data base from which models can be stored and

retrieved.

The GMB Simulator [Razo79] is one of the tools in the SARA environment.

Another tool is the Control Flow Analyzer, used to analyze control graphs for control
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flow anomalies such as deadlocks and to assure some control flow properties such as

proper termination.

All of these tools were developed using an early version of the method and
supporting development software described in this dissertation. The SARA/IDEAS
system runs on an APOLLO workstation at UCLA.

8.10 Summary and Conclusions

The SARA tools comprise a powerful, interactive, modeling environment. As
such, the tool set is representative of CADOCS systems in existence today. The
SARA/IDEAS system now being constructed incorporates all of the functionality of
the previous SARA system. In addition, graphical interaction is incorporated. An
even greater decoupling of interaction tasks and operational software, a more
comprehensive and formal specification technique, and greater integration of design

tools with the design data base, have all been achieved.

Specification and construction of SARA/IDEAS provides an excellent testbed

for the method and for the tool-building tools put forth in this dissertation.
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CHAPTER 9

Conclusions

As computer based systems become more complex and assume greater
responsibilities, the need to produce reliable and cost-effective designs becomes
increasingly important. Many tools have been proposed and built that support the
design activity. When several of these tools are gathered together, the aggregation is

called a Computer-Aided Design of Computer Systems, CADOCS, system.

Often, CADOCS systems are constructed from separately developed com-
puter programs. Often these programs are written in different programming
languages to run on different computer systems, offer different user interfaces, and
store the results of their analysis or simulation in a way that precludes information
sharing between programs. Tool developers typically concentrate their efforts on the
design capability of a tool and are unable to justify the expense of providing a state-
of-the-art user interface. The resulting CADOCS systems é.re only nominally
integrated and are difficult to use at best. The power of such CADOCS systems is
roughly equal to that provided by the set of comprising tools less that due to the
difficulty of use caused by the juxtaposition of inconsistent user interfaces and of
incompatible analysis outputs. The cost of CADOCS system construction is equal to
the cost of developing the set of constituent tools plus the cost of masking over the

inconsistencies and incompatibilities.

234



A major contribution of this research is the definition of a tool building sys-
tem and a run-time environment that promotes the construction of a consistent and
compatible set of tools whose increased utility derives from the synergistic aggrega-
tion of complementary tools and whose cost is lower due to the significant amount of

software that is shared between tools.

The fundamental approach is to decouple interface software from modeling
and analysis software. This allows implementation of each to proceed independently
and to be implemented by specialists. The decoupling also allows several different

interfaces to be proposed for a single implementation of modeling software.

The method and tools defined in this work represent a significant improve-
ment in interactive system development. The capabilities of the previous SARA
implementation have been extended to include the construction of graphical inter-
faces, access to a larger body of reusable code, and a more orderly evolution from
tool conceptualization through to implementation. The work represents the synthesis
of formal language theory, human-computer interaction, and software engineering
applied to the specific problem of designing and implementing integrated collections

of computer-aided design tools.

The SARA/IDEAS environment provides a fertile environment for explora-
tion in the area of user interface. Experimentation will lead to a better understanding
of what constitutes a good user interface. The support system also provides an
umbrella under which additional CADQOCS tools can be integrated with a system-

wide, consistent user interface.

The methodology has successfully been applied to the definition of the

SARA tools as well as to the definition of an Influence Diagram Editor which has
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application in political science and policy analysis.
9.1 Contributions
User Interface Management System Kernel.

The methodical use of the tool building system produces a procedural inter-
face to the modeling objects appearing in the user interface. The kernel provides
another procedural interface to objects. All operations on objects are funneled
through this deeply buried procedural interface consisting of do, undo, and redo pro-
cedures. The tool designer need not be aware of this interface. However, its ser-
vices will be invoked automatically. A set of families of do, undo, and redo routines
are defined along with a set of equations to help determine the space and time cost

associated with the use of each family of routines.

Filtering operations through the funnel provides: necessary error recovery
services for the design data base management system, design configuration manage-
ment services, interactive user error recovery services, support for interactive
exploration, audit trails, and a mechanism to support forward search and backtrack-
ing algorithms. A tool designer never has to justify the cost of developing bi-

directional execution software; it is incorporated automatically.

A prototype implementation of the minimal state capture method of bi-
directional execution defined in Chapter 7 is implemented in the T language under

BSD 4.2.

Interaction Handler
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The interaction handler, or ATN interpreter, is fully implemented on BSD 4.2
and on the APOLLO and fully integrated with SARA/IDEAS. Eduardo Krell
translated a simple prototype written in Franz Lisp into the final product written in
T. Eddie Lor and Krell replaced the ATN with LL(1) parse tables and rewrote the

Interaction Handler accordingly.

The Interaction Handler couples the syntactic interface and the semantic
modeling capabilities according to the syntax specification. Its services are shared
by all tools in the SARA/IDEAS system. It provides command recognition, invoca-

tion of semantic routines, integral help, prompting, and menu generation.
Method.

The method is multilevel and object-oriented. The four phases of CADOCS
tool design method are the conceptual or semantic, the grammatical, or syntactic,

logical device, and physical device phases.

The semantic phase supports a designer in the creation of a new modeling
capability from its initial conceptualization to its complete semantic definition.
Modeling objects, their inter-relationships, and the operations performed upon them

are all identified in this phase.

The grammatical phase supports complete syntactic definition of a tool.
Primitive grammatical elements, terminals, are identified. Terminals can be ordered
and collected into phrases and sentences, not-terminals. The tool designer will asso-
ciate each sentence with a semantic operation defined in the previous phase. The
run-time environment must support the recognition of sentences and an invocation of

the specified operation.
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The logical device phase focuses the designer’s attention on the logical dev-
ices and logical interaction tasks required to support interaction. have been
identified by other researchers. Software implementations of logical devices (e.g.,
selector, valuator, pick, text) are developed for available physical devices (e.g., a
specific mouse, tablets, keyboards). These logical device drivers are maintained in a
special library. This phase is primarily concerned with the mapping of terminals

from the previous phase onto logical device drivers from the library.

Finally, the physical device phase focuses the designer’s attention on the
physical device inventory available to support interaction. Logical devices and tasks
are assigned to physical devices. Several other aspects of the physical environment

may also be dealt with in this phase.

Each phase of the method is supported by a specification language and com-
piler. The resulting set of specifications allow the tool designer four degrees of free-
dom in altering the final tool specification. For example, several alternative syntaxes
can be proposed and implemented with little or no alteration of the other three

phase’s specification.
The Tool Building System Implementation

The parsers for the semantic phase and the physical device phase are imple-
mented on BSD 4.2. They are not integrated with the other components of

SARA/IDEAS on the APOLLO workstation.

The syntax phase compiler and the logical device phase compiler are imple-
mented on BSD 4.2 and are fully integrated with SARA/IDEAS on the APOLLO.
Eduardo Krell translated an LL(1) parse table generator written in Franz Lisp into

the final syntax and logical device phase compilers written in T.
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9.2 Suggestions for Further Research

As a result of this work, several areas for further research were identified.

They are summarized in the following paragraphs.
Elevate Level of Interaction Tasks

The set of interaction tasks is too small and is defined at too low a level of
abstraction. For example, moving a graphic object from one point on the display
surface to another is a common operation in systems incorporating interactive graph-
ics, yet describing a move operation using the interaction tasks discussed in this
dissertation would have to be implemented, perhaps, as two picks. Another example
is expanding a graphic object. Dragging and rubber-banding are common techniques
that would be difficult to describe given this dissertation’s set of interaction tasks.
The set of interaction tasks and related logical devices should be extended with a set

of higher level operations.
Relax Language Restrictions

Humans are used to conversing with computers by issuing simple imperative
and interogative sentences. However, when several designers use a computer as a
medium to support collaboration, imperative and interrogative sentence structure
may prove to be too restrictive. Further research should be conducted to relax the
L1(1) restriction without loss of prescience and the other ingredients necessary for
intelligent, multi-level prompting, error detection, error reporting, error recovery,
and user help. The Augmented Transition Network is capable of supporting far less

restrictive grammars.

Apply Method to Tool-Building System
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This work identifies an essentially batch means of specifying a system’s user
interface. Three steps are involved, specify the interface with an editor, compile it,
execute it. Using this batch mechanism, it is possible to build an interactive tool that

will replace the batch tools.
Extend Coverage to Include General Interactive Systems

The approach taken here to interactive modeling syétems should be studied

for its applicability to the broader class of general, interactive systems.
Rebuild System in Ada

The operation specification languages defined in this work evolved toward
Ada package syntax as the research matured. Implementing the tool-building system
and user interface management system in an Ada-like language may produce a more

robust and elegant system.
Menu Language

The integral help mechanism is capable of showing the user all of the tokens
that would be accepted by the interaction handler from the current state. This same
information can be used to generate menus. The shape library could be augmented

to include a display description of a system-wide menu.

Adding the capability of automatic menu generation would constitute a
significant advance in the interfaces that can be described using the SARA tool-

building system.

Multi-Party Dialogue
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Designers must collaborate on complex designs. Most design systems
prevent designers from interfering with each other, but no design system discovered
during this research encouraged and supported design collaboration. The
specification of multi-party dialogue appears to be a good starting point for research

into design collaboration.
User Interface Experiments

This research discovered very little agreement on the meaning of a good
interface. The SARA/IDEAS system collects ail human-computer interaction in one
place. It thus provides an excellent environment for conducting quantitative and

qualitative user interface experiments.
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