A DATABASE AS THE BASIS OF AN OPERATING
SYSTEM

Jeffrey Schaffer June 1986
CSD-860037






UNIVERSITY OF CALIFORNIA
Los Angeles

A Database as the Basis of an Operating System

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in Computer Science

by

Jeffrey Paul Schaffer

1986



© Copyright by
Jeffrey Paul Schaffer
1986



The thesis of Jeffrey Paul Schaffer is approved.

Gerald Estrin, Committee Co-Chair

Edward L. Glaser, Committee Co-Chair

University of California, Los Angeles

1986

il






TABLE OF CONTENTS

Lo INErOAUCTION. Lottt e e e et et et et 1
2. Relational Databases. ....veueenitirii it e e e e et et e e e e 4
2.1. The Relational Model.. ... ..ot e 4
2.1.1. Relational Structures. ... .ooovereiiiei i e eneas 5

2.1.2. Relational Operations.........covvieiiiererureieininiieeareeieeaeieanenes g

2.2. Relational Programming..........covuviririeteiiirerisreiieiieiiereaianieeneananns 11
2.2.1. Description of the Language..........cooiiiiiiiiiiiiiiiiianinenieiineeninnns 12

2.2.2. Example — Implementing Relational Model Operations................... 20

3. Relational Implementation of Data Structures...........oc.oiviiiiiiiiiiiiin ..., 23
B StACKS . ettt e e e 24
A 0 L3 1 LTS U 28
TG R B o 1= S OO PO OO OOPOTOTN 32

K A B T O P U 34

S T & o | U 37

K M b (T S RO OPOPRU 39

4. Operating System Implementation..........cocviiiiiiiniiiii e 46
4.1, PhySICal DEVICES. .. ouinitint ittt et e eee e e tea e e e naaaas 46
A PIOCESSES. o ettt ettt et et 48
4.2.1. Process Creation. . ..oeiriie it et etereet e rereeeerieanaases 49

4.2.2. Process INteraction. ..o .vuivrieniieiteecies et e et eninnes 51

4221, S1gnals. ..o e 52

4.2.2.2. Semaphores. .. ..oviiiiiiiiiii 53

4.2.2.3. MailboXes.....oouiviiiniiii 55

4.2.3. Process Scheduling......ooooviviiiiiiii 56

4.2.3.1. Round-Robin..........ooooviiiiiiniiii e 57

4.2.3.2. Multi-Level Feedback.............ooooviiiiiiin, 58

4.3, ViInual MemOry. ..ot e e e s 60
4.3.1. Memory AllOCation. . ...uir v e 61

432, Paging. ... 63

4.3.3. Page Replacement. .....o.oooviiiiiiiiiiiiiiiii i i e 64

O A B (T3 o 13+ SO U ST 66

S COMCIUSIONS. ..o tttte it eree et et e et et et e ee et et et ea e ee e e et et eer e et aeanas 69
5.1, The Real World. ..ot e eaeas 70
5.2, Suggestions for Further Work............cooiiiii e, 71
BibHOGEAPIY ... vt s 73

1ii



AhRASRLLR WOWWWWW D

W

fu—y

NN RN

LIST OF FIGURES

A Typical Relation and its COMPONENTS. ...vvvuunivirriririerieer e aevee e 8
A SIACK. 1t 24
Relational Implementation of a Sequence..........c..ooeiiiiiiiiiiiiiiiiiiiee 25
F N 11 | (U 29
Improper Data Insertion in a QUEUE. ... e 32
Indexed Representation of @ SEqUENCE........ccooiiiiiiiiiiiiiiiiiiiiieeenn. 35
Relational Representation of a Two-dimensional Array..........ocovvveeeiiiiinninn... 39
Relational Implementation of a Tree.......oviiiiiviiiii e 42
Physical Device Relations.........ocivuiiiii i e 47
Process Hierarchy Relation............oooiiiiiiiiii e, 49
Signalling Relation. ..o.v.vuieriienieiii i 53
Semaphore Relations..........vuiviniiiieii e 54
Mailbox Relation. ........cooiiiiiinirii e 56
Process Scheduling Relations..........ooovvvvviiii i 58
Virtual Memory Relations. ........co.oeviiiiii e 61
LRU REIAtION. ... it e 65
Filesystem Relations. .. ......vititiiiiiirrir e e, 67

iv



ACKNOWLEDGEMENTS

I want to thank my family, friends, and committee for your help during the
writing of this thesis; your encouragement, direction, and occasional boots in the behind
were all necessary in order for me to complete the paper. In addition, two people deserve
special thanks. First, to Ted Glaser, my advisor and my friend, for teaching me to view
the world differently and for first suggesting the subject. Second, to my wife JoEllen,
for your editing, proofreading, assistance, and general support — though your patience
with me often wore thin, your were always there when I needed you. I could not have

completed this without you.



ABSTRACT OF THE THESIS

A Database as the Basis of an Operating System

by

Jeffrey Paul Schaffer
Master of Science in Computer Science
University of California, Los Angeles, 1986
Professor Gerald Estrin, Co-Chair
Professor Edward L. Glaser, Co-Chair

This paper shows that an operating system can be constructed such that its kernel
consists of a database system, unifying all of the data structures within the computer.
This concept is demonstrated by implementing key operating systems concepts on top of
a database; from these concepts a complete operating system can be built. The results
show that this type of underlying structure provides for a simplified operating system,
easily built and modified with a minimum of programming effort. The results also show
that a production version of such a system is impractical given current computer
architectures; full implementation would require a customized architecture. Given this, an

alternative use of such a system is provided.

vi



Chapter One

Introduction

Database systems are beginning to be recognized as powerful programming tools;
by providing a single, consistent view of data and a pre-defined access strategy, a
database system eases the program development task. As a result, many application
programs are being developed which incorporate a database system as the underlying
storage mechanism, significantly reducing the time and effort involved in developing
these programs [Martin82]. Such methods have never been applied, however, to
operating systems development. It is the thesis of this paper that an operating system can
be constructed such that its kernel consists of a database system, unifying all of the data
structures within the computer. Further, that this type of underlying structure provides
for a simplified operating system, easily built and modified with a minimum of

programmer effort.

Can an operating system benefit from a database underpinning? The answer is
"yes", for like any application program an operating system is an information processor.
In this case, the database consists of information on the state of the system and on the
programs and data contained within the system; this information is then applied as

necessary to manage the system. In a conventional setup, all of this data is stored in



separate sets of hard-coded structures. Two problems exist with this method of data
organization: (1) each structure requires its own access method, and (2) structures are not
easily extendable when additional information is required. In a system with an
underlying database, however, only one type of data structure exists with one uniform
access strategy; this permits the programmer to concentrate on the algorithm to be
implemented rather than the data manipulation mechanisms required to program it. If
another type of structure is desired, it is logically, not physically, defined on top of the

existing database structure. This make the structure easily extended as well.

This paper will show that a database can serve as the basis of an operating system
by implementing key operating systems concepts on top of a database; from these
concepts a complete operating system can be built. Since this paper uses the relational
data model for its underlying storage facility, the operating system being implemented
will be referred to as a relational operating system; this is used in preference to the term
database operating system in order to avoid confusion with any existing literature

[Gray78].

Before attempting to implement the operating system, it should be noted that one
strong argument can be raised against any database oriented operating system —
performance. If executed under existing computing architectures, a relational operating
system will simply be slow. Since the purpose of this paper, however, is only to prove
that a relational operating system is possible, two assumptions will be made: (1) that the
implementation machine is of a custom architecture providing the appropriate support,
and (2) that this machine is sufficiently fast. The impact of these assumptions will be

discussed in the conclusions section of this paper.



The remainder of this thesis is divided into four chapters. Chapter 2 provides
background material on relational databases and the relational programming language that
will be used to implement the operating system. Chapter 3 demonstrates how relational
programming can be used to implement other forms of data structures; e.g. stacks,
queues, etc. This chapter also serves as an example in relational program development,
documenting the evolution of each data structure from concept to final implementation.
Chapter 4 is the heart of the paper, describing numerous operating system concepts and
showing how these are implemented using an underlying database. Finally, Chapter 5

presents concluding comments and suggests areas for further research.



Chapter Two

Relational Databases

This chapter provides the reader with a brief background on the data model and
programming language chosen for implementation. Though many different data models
exist, the relational model is chosen for its simplicity; the structures provided by this
model form a natural representation for the data and are easily manipulated. The choice of
a programming langauge, on the other hand, is more limited; few relational languages
exist which do not require support from a conventional programming language. Thus,

the programming language chosen is one which does not require any outside support.

This chapter is organized into two sections. The first section discusses the
relational model, its data structures and operations. The second section discusses the
concept of relational programming and describes the specific relational programming

language chosen for implementation.

2.1. The Relational Model

First proposed by Codd in [Codd70], the relational model is based on the theory
that data can be expressed in the form of a simple data structure which exhibits the

properties of a mathematical relation; i.e. a structure which applies elementary relational



theory for data manipulation. The primary advantage of this approach is simplicity; only
one type of data structure exists at the external (user) level in a form which constitutes a
natural representation for data. Unlike the hierarchical or network model, the relational
data structure is independent of the underlying physical storage system; this permits
changes in the storage structure and/or the data access strategies without modifying the
user's programs or query techniques. The absence of a rigidly defined storage structure
also permits separation of the model's semantics from its structure; since no underlying
structure is implied, the eventual implementation structure chosen has no effect on the

data manipulation operations as is often true in other data models.

This section presents a brief description of the data structures and operations
which define the relational model. Additional information on the model, including
complete descriptions of its theory and restrictions, is presented in [Chamberlin76],

[Codd70], [Date81], [Maier83], and [Ullmang2].

2.1.1. Relational Structures

The fundamental structure in any database system, relational or otherwise, is the
database itself. A darabase is a stored, time-varying collection of data available for
computer processing. While only a single database is necessary, relational database
systems often support multiple databases for reasons of security, physical storage
limitations, and data transportability. In a multiple database arrangement, each database is
considered independent from the others; this limits data manipulation operations to

operating only on data contained within a single database at any one time.l Since the

YGenerally, however, a small set of operations is provided for copying data between
databases for further relational processing.



concepts of a relational database are the same regardless of the number of databases

supported, this paper assumes the existence of only a single database.

Within a database, data elements are divided into sets by their datatype; these sets
are known as domains. A domain can be thought of as a pool of values from which data
is drawn; typical domains include integers, names, addresses, zip codes, etc. Each
domain is restricted to include only those data values considered valid for that domain,
with validity requirements established at the time the domain is defined. A domain has
the property that it is separate and distinct from all other domains in the same database;
e.g. data drawn from the domain zip code is considered distinct from data drawn from the

domain integer, regardless of the fact that zip code may be defined as a subset of integer.

When a domain is defined, the list of data elements valid for that domain may
either be explicitly or implicitly specified; for example, a domain of part names would be
explicitly defined, while a domain of real numbers (containing an infinite number of
members) would be implicitly defined. While in theory a database should contain all of
the data values permissible in each domain, it is not practical to store those values not
currently in use due to physical storage limitations. In order to deal with this, databases
are restricted to contain only those values contained in each active domain; an active

domain is that portion of a domain that is currently in use.

Active domains, or subsets of active domains, can be combined into a set of n-
tuples which represent all of the valid combinations between the data elements; this set is
referred to as a relation.? A relation describes the relationship which exists between all of
the domains after combination; specifically, individual data elements within each tuple

exhibit a direct relationship to all other data elements in that same tuple. As an example, if

2An n-tuple is generally referred to simply as a tuple; for convenience, this term will be
used for the remainder of this paper.



a relation is the combination of the domains name, address, and zip code, then each tuple
in that relation correlates a name with a specific address and zip code. Note that this
relationship is bi-directional; each tuple in the relation also associates the address or zip

code in that tuple only with a specific name.

Physically a relation resembles, and is often represented by, a table consisting of
an arbitrary number of rows and columns; figure 2.1 shows a typical relation in table
form.3 The number of rows in the relation refers to the cardinality of the relation, while
the number of columns refers to the degree of the relation. Each column in a relation is an
attribute of that relation; an attribute represents that set of data elements drawn from the
domain which defines the attribute. Associated with each attribute is an ateribute name;
this name must be unique within the relation itself but not necessarily within the database.
Related data elements from all of the attributes involved in a relation form each tuple of
that relation; this is the equivalent of a row in the table model. Attribute order within each
tuple is fixed; the rearrangement of attributes in only a subset of a relation's tuples
produces a relation of radically different meaning. Tuple order in a relation, however, is
arbitrary since every tuple represents a unique combination of data elements; positional

reassignment of that tuple has no effect on its meaning.

3Formally a table is a restricted view of a relation; for this discussion, however, it is an
appropriate and adequate model.



Relation personnel

name | address | home phone
John Smith 921 Applecore 555-9452 825-9452
Mary Doe 225 Sierra Park 555-1025 825-9999

Attribute names: name, address, home phone, office phone

Attribute name drawn from domain names, a subset of alphanumeric.
Attribute address drawn from domain alphanumeric.

Attribute home phone drawn from domain phone numbers.

Attribute office phone drawn from domain phone numbers.

domain name {John Smith, Mary Doe, Jeff Schaffer, ...}
domain alphanumeric {a, b, ..., ab, abc, ..., 921 Applecore, ...}
domain phone number  {555-1025, 555-9452, 825-1234, ...}

Figure 2.1. A Typical Relation and its Components

2.1.2. Relational Operations

Since a relation is in fact a set of tuples, then all of the standard set manipulation
operations can be applied; specifically, the operations union, intersection, difference, and
negation are all valid on relations. Three of these operations, union, intersection, and
difference, are dyadic operations and require that both input relations be of identical
structure; i.c. the attributes of both relations must be in identical order with each attribute
pair (one from each relation) derived from the same domain. These operations result in a

relation of the same structure as the input relations.



The final set operation, negation, is a monadic rather than dyadic operation; this
operation, however, also produces a result relation which is identically structured to the
input relation. Normally negation is defined as the difference between the relation formed
by the Cartesian product of the domains of the input relation and the input relation itself.4
The problem with this definition occurs when one of the domains of the input relation
contains an infinite number of values; negating this relation results in an infinite relation,
which is not strictly defined. To correct this problem, the Cartesian product is taken over
the active domain of the relation only, assuring a result relation with a finite number of

tuples [Maier83].

In addition to the basic set manipulation operations, four special operations exist
for relations; these operations, however, need not produce a result which is identical in
structure to the input relation(s). These special operations are:

1. Select — this operation produces a result relation which consists of a subset of
tuples from the input relation; membership in the resulting subset is based on
whether the individual tuple meets a user specified criteria. The result relation
produced by the ‘Select’ operation consists of the same number of attributes as the
input relation, but only a subset of the tuples.

2. Project — this operation produces a result relation which consists of a subset of
attributes from the input relation. The result relation produced by the ‘Project’
operation consists of the same number of tuples as the input relation, but only a
subset of the attributes.

3. Join — this operation produces a result relation which is the concatenation of a
subset of tuples from the first input relation with a subset of tuples from the

second input relation. Tuples are selected from each relation on the basis that, for

4The Cartesian product of n domains defines the maximum relation that can hold between
those domains.



user specified attributes in each input relation defined over the same domain, data
elements common to both relations exist in these attributes.> Although this
operation is generally defined only on two attributes (one per relation), the
definition of a join does not restrict the number of attribute pairs on which the join
may occur provided that each attribute pair is defined over the same domain. The
number of attributes in the result relation produced by the ‘Join’ operation is the
sum of the number of attributes of each input relation; the number of tuples in the
result relation is variable and depends on the number of shared data elements
between the relations.

Update — this operation produces a result relation identical to the input relation
except at selected row-column intersections; at these intersections the individual
data elements have been modified. The result relation produced by the ‘Update’

operation is identical in structure to the input relation.

Operations which insert and delete tuples in a relation are unnecessary since this

can be performed by the set operators ‘union’ and ‘select’, respectively. While other data

manipulation operations exist, those described above are considered primary and the only

ones of concern in this paper. Missing still, however, are the structure definition

operations; these operations create and delete relations and domains. Creating a relation

involves (1) creating an ordered list of attributes, (2) specifying the domains associated

with those attributes, and (3) naming the new relation. Creating a domain involves (1)

naming the domain, and (2) defining the valid values for the domain (either explicitly or

implicitly). Deleting a relation destroys both the defined structure and the data contained

within it. Deleting a domain, however, destroys the data within it only when the domain

3This type of join is known as a equijoin since the joining condition is based on data
element equality; similar definitions exist for other types of join, €.g. not equal, less than,

greater than, etc.

10



is no longer associated with any attribute in the database; until this occurs deletion

requests are ignored.

2.2. Relational Programming

This section discusses relational programming, a type of programming in which

relations constitute the primary data structure used for computation and manipulation.

This concept is similar to that of functional programming [Backus78], in which functions

form the principle object manipulated. Like functional programming, relational

programming has many advantages over traditional languages; it also, however, offers

several advantages over functional programming itself. Some of these advantages, as

originally noted in [MacLennan83], are:

1.

There is no distinction between functions and data: in relational programming, a
function is represented in the same form as other data — as a relation. This
provides for a concise and powerful language since only a single set of data
operators is required for both the manipulation of functions and data.
Multi-valued functions are valid: since a function is a relation, it is perfectly valid
to permit any function to be multi-valued in either input or output; i.e. any
function can be one-to-one, one-to-many, many-to-one, or many-to-many.
Relations obey simple laws: the rules which govern relations are less restrictive
than those governing functions. For example, the property

(fg)l=glfl
is true only for one-to-one functions, but is true for all relations.
Relations can represent complex data structures: relations can mode! complex non-
linear data structures, such as graphs, as easily as they can simpler linear

structures,

11



Finally, as in functional programming, relational programming languages have also been
shown to be complete programming languages [Kowalski78, MacLennan83]. This,
along with the advantages cited, led to the selection of a relational programming language

as the implementation mechanism for the relational operating system.

The remainder of this chapter discusses the relational programming language
proposed in [MacLennan81, MacLennan82, MacLennan83]. Note that the language
presented in this paper represents a combination of the different notations presented in
each of the papers listed above, with modifications introduced as necessary for clarity;
regardless of the notation, however, the concepts described in this paper are identical to

those presented in the original papers.

2.2.1. Description of the Language

Relational programming deals with three types of data objects: individuals,
classes, and relations. The first of these objects, the individual, consists of any singular
data value; e.g. a specific number or a particular name. In relational programming, an
individual represents the smallest manipulable data object. The second of the data
objects, the class, is a collection of individuals, i.e. a set. Often, though not always,
individuals are grouped into classes by a common property; e.g. the class integer consists
of a group of individual numbers all of which share of property of being integers. Thus,
classes are analogous, but not identical, to the concept of a domain in the relational model,;
the definition of a domain mandates that a common property relate all elements in the
domain, while a class may consist of unrelated objects. Since the size of a class is

variable, the actual number of objects contained in the class at any one time is determined

12



by the relational operator ‘size’; this operator, denoted as size C, returns an integer

indicating the current size of the class.t

The final data object, the relation, describes the correlation between the members
of two, not necessarily distinct, classes. In a relation, each member of the first class is
associated with one or more members of the second class; thus a relation is actually a set
of pairs where each pair describes the relationship between the classes. In relational
programming, a relationship is described by the notation xRy, indicating that element x
in class C; bears the relationship R to element y in class C). As an example, the notation
5<10, where both elements are members of the class integer, signifies that element 5
exhibits the less than relationship to element /0. This definition of a relation differs from
that of the relational model by its restriction to a two element, or binary, relation; this does
not prove to be a functional restriction, however, since any general relation can be

decomposed into a comparable set of binary relations [Kowalski78].

A relation may also be viewed as a two column table, with each row representing
a pair between the classes. The elements in the first, or leftmost, column bear the stated
relation to the corresponding elements in the second, or rightmost, column. As an
example, if there exists a class consisting of the elements {7, 3, 5, 7}, then forming the

relationship ‘<’ on this class yields the table:

<

LA ) — — =
qquqmwl

0The symbols R and C will be used throughout the remainder of this paper to denote a
relation and a class, respectively.

13



Each column is a subset of one of the original classes which formed the relation. The
class of elements contained in the left column of the relation is referred to as the domain
of the relation, while the class formed by the right column is referred to as the range of
the relation. The relational operators domain and range are used to separate the
respective classes from the relation; each operator extracts the proper column and deletes

duplicate values.

The inverse of a relation is described by the notation xR-1y, indicating that each
member of the range of the relation is associated with one or more elements of the
domain. In the table representation of a relation this is equivalent to reversing the
columns of the table. Using the ‘<’ relation above as an example, it can be seen that the

inverse of the relation yields the ‘>’ relation.

Relations can be combined by the standard set operators intersection, union, and
difference; these operations are denoted as RyNRj, RyUR,, and R;\R,, respectively.
Although not an operation for combining relations, the set operation of negation is also
defined for completeness; this operation is denoted as ~R. All of these operations are
defined for classes as well as for relations. It is possible for any of these operations to
result in a class with no elements or empty class , denoted by the symbol g. Similarly, a
universal class also exists; denoted by the symbol O, this class contains all possible data

elements.

Methods also exist which restrict relations to contain only specific pairs. A
relation may be restricted to particular values in either its domain or in its range by the
operations left-restriction and right-restriction, respectively. Formally, the left restriction

operation, expressed as x(C—R)y, is defined such that given relation R and class C,

only those pairs in R are selected whose domain component is also contained in class C.

14



Similarly, a right restriction operation, expressed as x(R « Cy, is defined such that only
those pairs with range elements contained in C are selected. Simultaneous left and right
restriction of a relation is also possible and is expressed as x(C; >R« C5,)y. One
particular simultaneous restriction, C—R+«C, occurs so often in relational programming

that the shorthand notation RTC has been developed for it,

As previously noted, there is no distinction in relational programming between
functions and relations — all functions are represented as relations. Unfortunately, the
notation xRy is inconvenient to work with when defining a function. To correct this, the
alternate notation y = R(x) is used when describing a function; while both expressions
are equivalent in definition, the latter is simply easier to deal with. This notation,
however, is only valid for one-to-one and many-to-one functions; if multiple result values
exist for any input, only one of these values is randomly selected and returned. As
demonstrated by the ‘<’ relation, many one-to-many and many-to-many functions exist
and require the return of all result values. Returning all possible results requires taking
the image of the input value(s) under the function; this is accomplished by the ‘image’
relational operator and expressed as image R C. The ‘image’ operation selects the
image (range) of all values in class C under relation R, deleting duplicate values as
required. The inverse image of a relation may also be taken; the converse of the image
operation, this operation returns those values in the domain of the relation for all values in

class C contained in the range of the relation.

Several image related operations also exist. The first is the unir image, denoted as
unimg R x, which defines the class resulting from taking the image of individual x
under relation R. Similarly, the inverse unit image returns that class of elements
associated with an individual y in the range of R; this operation is so common it is

referred to as the all operation. If the ‘all’ operation is applied against the ‘=’ relation,

15



the result is to select the set of numbers equal to x, if they exist; this is referred to as the
unit class operation and expressed as un x. Similarly, the inverse unit class operation
also exists; this operation, denoted as un-1, filters out classes which do not consist of a

single element.

Up to this point, it has been assumed that all functions are unary; i.e. that they
have only one argument. Binary functions, however, are also defined under relational
programming. Passing both arguments to the function involved pairing the arguments
into a single relation; this relation is then passed as a single input to the function. Binary
functions are denoted as y = f (x,y). It is possible to generate a unary function from a
binary operation. For example, the binary function y = x+17 is denoted as y = +(x,1)
when expressed in pure binary notation, however, this may also be expressed as the
unary function y = (+1 )x; the advantage of this second form is that permits complex

combinations to be built,

Functions can be combined by the relative producr operation. Written as
y = f.g(x), this operation indicates the serial execution of the functions u = g(x)} and
¥ = f{u). Using relations, this operation serves to "cascade" the relations; i.e. the results
obtained from the first relation are used as the input to the second relation. Often a
relation is combined with itself in order to determine each element's ancestor; for
example, given the relation Parent, a list of all grandparents can be obtained by the
composition Parent.Parent. For convenience, a shorthand notation exists for expressing
the composition of a relation with itself; this is expressed as R®, where » indicates the

number of compositions of R with itself.

It is also possible to produce a relation, known as an ancestral relation, which

contains all of the ancestors of an element. Two types of ancestral relations can be

16



formed, the difference between them being the inclusion of the element itself as an
ancestor. The first type of ancestral relation is referred to as an ancestral of the first kind ;
denoted as R”, this ancestral represents the reflexive, transitive closure of relation R and
is defined as

R*=ROURTUR2URSURAUL ...
The second type of ancestral relation, referred to as an ancestral of the second kind,

represents the transitive closure of relation R; this is denoted as R* and defined as

Rt=RVUR2ZUR3URIURSUL....

Combinators represent a special set of data manipulation operators in relational
programming. While many combinators exist in relational programming, only four are
used in this paper; these combinators are:

1. Parallel — this combinator, denoted as R;||R,, returns all pairs which are in
parallel between relations. This operation is defined as
(V)R lIRo(x,y) = uR 3x N vRyy

If the arguments to the paralle]l combinator are the functions f and g, then the

operation f||g is defined as

[fllgl(x.y) = fix).g(y)]
which is the element pair formed by f{x) and g(x).

2. Overlay - this combinator, denoted as R;;R,, performs the conditional union of

relations. This operation is defined as

[R;:R5](x) = Rj(x) U [~.domain R;—=R)](x)
which indicates that if x is contained in the domain of Ry, then y = R;(x),
otherwise y = Kp(x). A common use of the overlay combinator is with the
identity function Id; this combination extends an operation to always produce a

defined result.

17



3. Duplicate — this combinator, denoted as A, duplicates relations. This operation is
defined as
Ax = (x,x)
where x is the data object to be duplicated, regardless of whether x is an
individual, class, or relation.
4, Duplicate and Parallel — this combinator, denoted as f0g, is a combination of the
duplicate and parallel combinators. This operation is defined as

(f Og)x = ( fllg).Ax = (fix).g(x))

Notice that up to this point there has been no discussion of an assignment
operator; this is due to the fact that it is rarely used in relational programming. It cannot
be eliminated from the language completely, however, since it is occasionally necessary
to assign the results of a function to a variable-like object; this is particularly true when
defining user-interactive programs where results must be temporarily "memorized" until
the user chooses the next function to be executed on the data. Thus, the assignment
operator, denoted as :=, is defined as

Ry =f(R})
which indicates that function f'is executed on relation R with the results placed in relation

variable Rz.

There also has not been a need as of yet to define specific operators for flow
control. Unlike the assignment operator, however, no specific notation need be
introduced for flow control; this can be easily handled though the application of existing
relational operators. For example, the relational equivalent of the C language if statement
is written as

C—fig

18



which applies the function f if the input argument is contained in class C; otherwise
function g is applied. Similarly, the equivalent of the C while statement is
(Cof)'e«~C

which continuously applies function f (zero or more times) until the input no longer
satisfies C; output from the process, however, is only permitted when the range of the
ancestral relation does not satisfy C, producing the proper result. Changing to an
ancestral relation of the second kind produces the equivalent of the do until statement,
expressed as

(Cofye~C

The final topic to be discussed are records. The goal is to be able to represent a
record, such as a tuple, in a form that is suitable for manipulation by the defined relational
operators. A record, however, is nothing more than a finite set of pairs. The first
member of each pair represents a unique identifier or selector for an associated data
element, which constitutes the second member of the pair. Thus, a single record is
nothing more than a relation which may be manipulated by any the relational operators
already defined. Individual records of same form may be combined into a class of
records or record set; a record set in relational programming is the equivalent of a relation

of degree n in the relational model.

Given a record, a means must be found to manipulate the data contained in that
record. If only one field of the record is to be modified, then that can be accomplished
directly by the use of the operation f.R(x), where x represents the selector for the field to
be operated on. This operation, however, produces only a single result; there are also
times when a complete modified record must be produced as a result. The solution is to
find a method by where a function can be applied to each field of a record and return a

new record as a result. To accomplish this, a type of record known as a functional record

19



is defined; a functional record is a relation where the first element of each pair is a selector
and the second element is a function. Thus, a functional record is a "relation of
relations”. Assuming that there exists a functional record F and a data record R of
identical size and with identical selectors, then the operation

[F(x)].R(x)
produces a partial record result at selector x; a full result record is produced by the

operation [F1.R.

2.2.2, Example - Implementing Relational Model Operations

In order to demonstrate how relational functions are developed, the relational
model operators Project, Select, and Join will be implemented using relational
programming operations. This is intended as a brief example in function development;
more detailed descriptions of function derivation can be found in [MacLennan82],

[Macl.ennan83], and chapters three and four of this paper.

Throughout this example we assume the existence of two record sets. The first

record set, Addr, consists of n; records, where each record R; is of the form {name,
address, phone}. The second record set, Salary, consists of ny records, where each

record R is of the form {name, dept, salary}.

The first operation, ‘Project’, is the simplest to implement. For example,
projecting out the fields name and address from Addr is accomplished on a per record

basis by the left-restriction operation

{name, address}—R;

20



This operation selects from record R; only those pairs with the selectors name and

address and produces another record as a result. Extending this projection to all records
in the record set involves the application of the image operation; this is defined as

image [{name, address}—] Addr
The result of this operation is another record set — the image of Addr under the function
[{name, address}—]. Generalizing this function completes its definition; thus, the
projection operation is defined as

Project attr rel = image [artr—] rel

The second relational model operation, ‘Select’, chooses records based on the
value contained in a particular field of that record. This is a two step process: the first
step associates for each record the field in question with the record, while the second step
selects records based on the desired field value(s). Examination of the first step reveals
that the required function must produce a relation which contains the selected field values
in the domain and the record itself in the range; i.e. indexes field values to records. This
function is defined as

index attr rel = [.attr]-l<rel
The second step of the function need only produce the image of the values being sought
under the indexed record set; this results in a record set containing only the selected
records. Thus, selection is defined as
Select atir rel val = image [index artr rel] val

where the class val contains the values being sought. Using the Addr relation as an
example, the records containing the values Schaffer and Coldwell in selector name are
found by the expression

Select name Addr {Schaffer, Coldwell}

21



The final relational model operation defined is ‘Join’. In relational programming,
a join is the equivalent of unioning each record in the first record set with each record in

the second record set which contains an identical value in the join field. Using the record

sets Addr and Salary as an example, a join on the name field is the union of records R;
and R, when the value associated with that selector in R; is identical to the value
associated with the selector in R;. By indexing each record set on the join field, the
parallel combinator can be used to match identical domain values. This results in a
relation which maps each matched value into a record pair; the first element of the pair
consists of record R;, while the second element of the pair consists of record R,. The
final step unions this pair and extends the operation to include the entire record set; thus,
the join of Addr and Salary on the name field is defined as

Join name (Addr, Salary) = image L (range [(index name Addr) || (index name Salary)))
Generalizing, the ‘Join’ operation is then

Join attr (rell, rel2) = image U (range [(index azer rell) || (index attr rel2)])

22



Chapter Three

Relational Implementation of Data Structures

This chapter shows the relational representation of commonly used data structures
and defines the functions which manipulate them. Data structures are the bases of all
programs, including operating systems; it is therefore essential that a set of data structures
be defined early. The functions which are shown here, or derivations of them, will be

used extensively in the next chapter when the relational operating system is defined.

The structures chosen for implementation are the stack, queue, deque, list, array,
and tree. One assumption is made in each implementation — only a representation of the
data is manipulated and not the data itself. Representations, such as a node identifier, are
necessary since the algorithms presented must manipulate unique data elements; user data
is rarely unique. Although not shown here, by considering the unique data elements as
record selectors, actual data selection can be obtained by extending the given functions

with record operations.

Many of the examples presented here were originally presented in [MacLennan82]

and [MacLennan83]; the reader should refer to these papers for additional information.

23



Given the static relational structure of a stack, it is now necessary to define the
relational programming equivalents of the stack manipulation operations. The remainder

of this section describes how these functions are defined.

The first stack manipulation operation to be implemented determines the depth of
the stack; i.e. the number of elements on the stack. Since this is the same as the size of
either of the classes which make up the stack relation, the ‘depth’ function is defined as

depth S = size.domain §

where S represents the successor relation describing the stack.

The second stack manipulation operation examines the data element at the top of
the stack. To accomplish this, it is necessary to determine which element in the sequence
corresponds to the top of the stack. Using the relation presented in figure 3.2 as an
example, it can be seen that the top of the stack is the only element which exists in the
domain of the relation but not in the range. Given this, a function is defined which
produces a resultant class containing only the top of stack element; this function is

initial S = (domain §) \ (range S)

Unfortunately, this function only returns the proper result when applied to a single
sequence; if applied to a structure with multiple entry points, the function yields a
resultant class which contains every entry point. Insuring the proper result for a stack
requires that the resultant class be limited to only a single element, attained by filtering the
output of ‘initial’ through the inverse unit class function. The new function which results
from this combination returns the first element of a structure only if that structure has a
single entry point; for structures which contain multiple entry points, the function returns
¢. This new function is defined as

first S = un-linitial §

26



Now that the location of the top of the stack 1s known, it is possible to define a
function which examines the data element at the top of the stack. This new function,
however, needs only to return the set containing the data element at the top of the stack —
a task already accomplished by the ‘first’ function. Thus, examining the first data
element in a stack is the same as accessing the top of the stack, with the ‘first’ function

being used for both.

The third stack manipulation operation deletes the data element at the top of the
stack. Deleting that element is the same as returning a list of stack all elements except the
one at the top of the stack; the calling program then need only refer to this new relation as
the stack. Thus, the deletion function is defined as

delete_first S = (~.first $)—S
This function performs satisfactorily under all conditions; a relation S which is either

empty or which contains a single element returns @ as a result.

Typically the examine and delete top of stack operations are performed by a single
operation known as a "pop". Under relational programming, ‘pop’ is implemented by
combining the “first’ and the ‘delete first’ operations such that

pop S = first.(first ¢ S := delete first) §
As denoted by the ¢ operator, this function first duplicates S and then performs the ‘first’
and ‘delete_first’ operations in parallel. The ‘delete first’ function deletes the first
element in the sequence and then replaces the contents of relation S; the ‘first’ function
determines the first element of the unmodified S. The result of the combination of the
two functions is a relation containing the first element of the stack in the domain and the
modified stack relation in the range; the final ‘first’ operation returns the first element

from this relation.

27



The fourth and final data manipulation opefation inserts a new data element onto
the top of the stack; i.e. a "push" operation. Under relational programming this is
functionally the same as creating a new relationship between the element to be inserted
and the current top of the stack; this new pair is then made part of the existing relation by
the union operation. The newly inserted element automatically becomes the top of stack
element since it is now the only element contained in the domain of the relation and not in
the range. This function is defined as

insert_first S elt = [elt, (first S; {EOF})] VU S
where elr is the new data element to be linked into the stack. Note that the overlay

combinator is necessary only for the case of insertion into an empty stack.

3.2. Queues

The second data structure considered is the quene. A queue is similar to a stack in
that it is a sequential grouping of data elements with the newest data element at one end of
the structure and the oldest data element at the opposite end. The difference between them
occurs 1in accessing the structure; a stack permits data element
examination/insertion/deletion only from one end of the structure, while a queue restricts
data element examination/deletion to one end of the structure and insertion to the other.
Examination and deletion of data elements is performed from the end of the sequence
where the oldest (first inserted) data element exists; this is known as the front of the
queue. Data element insertion is performed from the end of the sequence where the
newest (last inserted) data element exists; this is known as the rear of the queue. Figure

3.3 shows a diagram of a typical queue,

28



FRONT REAR

Figure 3.3. A Queue

Given this structure, four types of data manipulation operations can be performed:
(1) determine the length of the queue, (2) examine the data element at the front of the
queue, (3) delete the data element at the front of the queue, and (4) insert a new data

element at the rear of the queue.

As was done with the stack structure, a queue can be relationally implemented by
describing the relationship that defines the structure and the operations which may be
performed on that structure. Like a stack, the structure of a queue is a sequence of data
elements; i.e. the successor relation still applies. Given this relational structure, it is now
possible to define the data manipulation operations. These operations, however, are quite
similar, if not identical, to those already defined for a stack. In only a few instances will
extensions need to be made; these are necessary since access to a queue is permitted at

both ends of the sequence rather than just the single end defined by a stack.

The first queue manipulation operation determines the length of the queue. This
function, however, is the same as the ‘depth’ function already defined for the stack
operations. Since this function yields the length of any sequence regardless of the data
model imposed upon it, the function will be retitled ‘length’ for use by this and all

subsequent sequentially based models.

29



The second and third queue manipulation operations, the examine and delete front
of queue operations, are also identical to the equivalent functions previously defined for a
stack; examination of the front element of the queue is accomplished by the ‘first’
operation, while deletion of the front element is accomplished by the ‘delete first’

operation.

In fact, only the last queue manipulation operation, inserting a new data element
into the queue, is different than the related stack operation. In this case the function must
access the rear of the queue rather than the front, requiring that a function be derived
which determines the final element in a sequence. Using the relation in figure 3.2 again
as an example, it can be seen that the final element in the sequence is special — it is the
only data element associated with the EOF marker. This trick makes it easy to quickly
find the rear of the queue via a right-restriction; the function which accomplishes this is
defined as

terminal § = domain (S« {EQF})
Of course, the same problem exists with the ‘terminal’ function as existed with the
“initial” function; given a structure with multiple entry points, the function returns the
class containing all of these entry points. The solution, however, is also identical;
applying the ‘un-1” function to the result of ‘terminal’ creates a new function which filters
out all multiple entry point structures. Thus, the function which returns the final element
of a sequence is defined as

final § = un-l.terminal S

Now that the location of the rear of queue is known it is possible to define the
insertion function. As was the case in the stack insert operation, a new relationship must
be created between the existing sequence and the new element; in this case, however, that

relationship is between the new element and the end of the sequence (without EOF). This

30



is accomplished by the creation of two new pairs in the successor relation: the first pair
links the final element of the queue with the newly inserted element, while the second pair

links the newly inserted element with EQF. This new function is defined as

ins_final S elt =S U (final S, elr U (elt, {FOF})

Unfortunately, the ‘ins_final’ function does not properly insert the new element
into the sequence; too many links exist, as shown in figure 3.4. The original rear of
queue element now points at the newly data element and the EOF marker. To correct this
problem, the redundant edges in the sequence must be eliminated; a redundant edge is
defined as one which links an element and any other element that is not its direct, or first
order, successor. By forming a relation which contains only second order (or greater)
successors, these may be eliminated from the result relation by the difference operation.
Since the second order successors of a relation are obtained by the composition of the
relation’s ancestral of the second kind and the relation itself, the function to eliminate
redundant edges is defined as

elim_edges § = 5\ (§+.5)
Given this, the insert function is now properly defined as
insert_final S elt = elim_edges.(ins_final S el?)
This function performs properly under all conditions; insertion in an initially empty queue
creates a relation consisting of the entry (elr, EOF) which has no extra edges to be filtered

out.

31



eoooﬁ@
(&)

New Flement

Figure 3.4. Improper Data Insertion in a Queue

3.3. Deques

The third data structure considered is the deque. A deque is similar to a queue in
that it is also a sequence of data elements; the difference between them occurs in access to
the structure. A deque is not restrictive and permits data element
examination/insertion/deletion from either end of the sequence. This structure is far more
general than the stack or queue and can implement either of the two. In describing the
arrangement of the data elements in a deque, the concept of describing element position in
the sequence by the age of that element is no longer valid since insertion occurs at either
end of the structure. What still holds, however, is that a deque is a sequential structure;
this alone 1s sufficient to relationally describe the arrangement of the data elements in the
structure. The ends of the structure are described as being leftmost or rightmost; the
choice of which end is considered the left or the right is arbitrary as long as the
description is consistent. Given this structure, four data manipulation operations can be
performed: (1) determine the length of the deque, (2) examine the data element at either
end of the deque, (3) delete the data element at either end of the deque, and (4) insert a

new data element at either end of the deque.

32



In defining the functions for a deque, it is useful to view a deque as a left entry
queue combined with a right entry queue. A left entry queue is considered one where
new data elements are inserted from the left end of the sequence, while a right entry queue
is considered one where data elements are inserted from the right end of the sequence. If
the queue structure defined in the previous section is considered a right entry queue, then
all of the right entry queue operations have already been defined; further, defining the left

entry operations requires that only minor extensions be made to these existing functions.

In fact, the length, examination, and insertion functions are already defined. The
‘length’ operation applies to any sequence and does not depend on a particular entry
point. Examining the data elements on the left and right ends of the deque is
accomplished by the “first’ and ‘final’ functions, respectively. Finally, left end element
insertion is defined by the “insert_first’ function, while right end insertion is defined by

the ‘insert final’ function.

Given this, the only data manipulation operation which needs to be defined is
deletion. Deletion is accomplished through two functions, ‘delete first’ and
‘delete_final’; each operation deletes the data element from the left or right end of the
deque, respectively. The function ‘delete first’ has already been defined, however,
leaving only the ‘delete_final’ function to be defined. The simplest method of
implementing this function would be to restrict the original sequential relation to contain
all elements except the one being deleted; unfortunately, this does not work since the
process eliminates other data elements as a side effect of the restriction. To prevent this,
an ancestral relation of the second kind is formed before the restriction occurs; now after
applying the restriction, links exist between all elements except those deleted. This
function is defined as

del_final § = $+T[~.(final S)]

33



Note that redundant edges still exist in the result, requiring that the resultant relation be
filtered through the ‘elim_edges’ function; therefore, the final form of the function is
defined as

delete_final S = ¢lim_cdges.del final §

3.4, Lists

The fourth data structure considered is the lisr. A list is a sequence of data
elements where access to any element in the sequence is permitted. The list is the most
general form of sequential structure and can simulate any of the structures examined so
far. Describing the arrangement of data elements in a list is identical to that of the deque
with the exception of the ends of the sequence; these are now referred to as the head and
the tail of the sequence rather than the left and right. Again, four types of data
manipulation operations can be performed on a list: (1) determine the length of the list, (2)
examine a data element in the list, (3) delete a data element in the list, and (4) insert a new

data element in the list.

Like the other sequentially based structures, the ‘length’ operation determines the
length of a list. Unlike the other sequentially based structures, a list is not restricted to
accessing data elements only at the ends of the structures. This necessitates that a method
exist which addresses a data element by the position it occupies in the list. In relational
programming, this requires converting the data from a relation that links a data element
with its successor to one that relates a data element with its index position; this new
relation, known as indexed, is shown in figure 3.5. The algorithm for forming this
relation must determine all of the data elements which are the predecessors of the indexed

element; given this, the size of the relation containing all of the predecessors of the

34



element is the same as that element's index position. The function which accomplishes
this 1s defined as
index § = size.all §*

The relation produced by this function correlates an element with its index position; index
position numbering beginning with one. Two tasks, however, remain before the function
is complete. The first task involves eliminating the EOF element; this special marker is
not needed since all elements of a sequence now exist as an individual entry in the
indexed relation. The second task switches the columns of the result relation; an indexed
list relates index position to data element, not data element to index position. Thus, the
final ‘index’ function is defined as

index S = [size.(all $")]-1 « ~{EOF}

indexed relation

sequence domain | range

1 a

2 b

0202020 5 |
4 d

Figure 3.5. Indexed Representation of a Sequence

With the relation converted to a more convenient form, examination of any of the
data elements occurs by specifying the indices of interest; the proper elements are then
selected by left restriction. This function is defined as

element S pos = range (pos—index S)
where pos is the class containing the indices of interest. Access to any element position

not currently in the list produces a g result.

35



The deletion of a data element from a list is only a slightly more complex
procedure. Unfortunately, deletion by simple restriction either eliminates necessary data
elements or split the list into two separate sequences. Since this problem is the same as
the one encountered with the ‘delete_final’ operation, that function can be used here if
generalized to delete any data element in the sequence; this modified function is defined as

del elt S elf = clim_edges.[(S T (~eln]
Deleting an element at a specific position is then

delete_element S pos = del elt S (element S pos)

As the function implementing deletion from a list resembles the function
‘delete final’, the function which inserts an element into a list resembles the previously
defined function ‘insert_final’. In this case, however, the function is far more complex;
‘insert_final’ took advantage of the fact that insertion always occurred in one location,
while the list insertion function must be able to insert an element at any location in the
sequence. Note that insertion of a new data element into a list is defined as placing that
element into the sequence before the specified element; i.e. if the positioﬁ where insertion
will occur is denoted by pos, then the new element is inserted before the data element at
position pos. Appending an element to the end of the list is accomplished by specifying

pos as EOF.

The first task that the list insert function must perform is to determine where to
link the new element into the sequence; this requires finding the data element where
insertion will occur and its predecessor element. These functions are performed by

find_prev S pos = [S-1.(element S pos)]; final S
find_curr S pos = (clement S pos); {EOF}
The overlay combinator is required in each function to handle the ends of the sequence

properly. Note that if the pos requested is beyond the end of the list, the functions will

36



return the position at the end of the list. Given the positions to insert the elements, the
elements themselves are inserted via the function

ins_elt S pos elt = ([find_prev S pos], elr) U (elt, [find_curr $ pos]y w S
Eliminating the extra edges completes the function; thus, ‘insert element’ is defined as

insert_element S pos elt = elim_edges.(ins_elt S pos elr)

3.5. Arrays

The fifth data structure considered is the array. Two general types of arrays exist:
single-dimensional and multi-dimensional. The single, or one, dimensional array is a list
of data elements where all of the elements are related by the type of data they contain; e.g.
a list of a store's total sales by month are all members of datatype dollars. By definition,
the first element of the list is associated with the first index position of the array, the
second element with the second index position, etc. From this definition the second and
more general multi-dimensional array structure is built. A multi-dimensional array is a
grouping of one-dimensional arrays where all of the arrays are of identical length and
contain related data elements. Three types of structure manipulation operations can be
performed on an array: (1) determine the size of the array, (2) examine a data element in
the array, and (3) replace a data element in the array. Insertion and deletion of data

elements in an array is not permitted since an array, once defined, is fixed in size.2

The data structure required for a one-dimensional array maps an ordered list of
integers to the data element that occupies the index position that the integer represents; i.e.
the indexed structure defined in the previous section. Thus, a one dimensional array is a
list and may be manipulated by the list operations already defined. This can only occur,

however, if the data elements can be freely converted between the sequence and array

2While true for most languages, this is not true for all; APL is a notable exception,

37



structures. The function which converts data from a successor structure to an indexed
structure has already been shown, leaving only the reverse operation to be defined. If we
assume that index positions are consecutively numbered in the indexed relation, then this
new function need only link each element with the element in the index position one
greater than the one being examined. After creating this sequential list of elements, the
function’s final step is to associate the last data element in the list with an EOF marker.
Appending an EOF marker requires two functions; the first function determines which
element ends the sequence, while the second function appends the EQF marker to that
data element. These functions are defined as

end § = (range $) \ (domain §)

append eof S=end SU S
The final conversion function, ‘successor’, is then defined as
successor I = append eof./.(1+).J-1

where [ represents the indexed relation to be converted.

The structure for a multi-dimensional arrays is only slightly more complex.
Multi-dimensional arrays require a separate relation for every dimension represented; e.g.
a two-dimensional array consists of two relations, presumably row and column. Each
relation is an indexed type structure, except that there are now multiple elements at each
index position; figure 3.6 shows this structure for a two-dimensional array. Operations
on this structure are similar to those already defined — they are simply extended to use
multiple relations. For example, assuming a two-dimensional array consisting of
relations row and column, the size of the array is defined as

size_array = ([size.domain row], [size.domain column])
The function which examines any element in the array is defined as

array_elt row# col#t = (image row row#) U (image column col¥)

38



Finally, replacing any element in the array is defined as
rep_array_elt row# col# newdata =
[row := (row#, newdata) U del_index row row#] ||

[column := (col#, newdata) \w del_index column col#]

where
del_index rel index = rel < .~.array _elt row# col#
row column
rray domain | range domain | range
! i 1 a 1 a
1a 2 b 1 c
c| d 3 c 2 e
e | f 4 d 2 b
5 € 3 d
6 f 3 f
Figure 3.6. Relational Representation of a Two-dimensional Array
3.6. Trees

The sixth and last structure considered is the tree. A tree represents a significant
deviation from the list structures examined so far. A list is a linear structure, so that the
successor to any data element is guaranteed to be a set containing at most a single data
element. A tree, however, is a non-linear structure; the successor set of any data element
can contain multiple elements, provided that all of those elements have only the one
predecessor. Certainly a tree is more general than a list; a tree can represent a sequence if
all of the sets of successors are limited to one element. This is rarely done, however, and

in this paper a list and a tree are treated as two separate entities.

39



A tree is made up of three types of data elements or nodes. The first type of
element is a branch node, which is a data node associated with a set of successor
elements. A branch node is considered the parent of each of its successor elements; in
turn, each successor is referred to as a child of that branch node and a sibling of its other
children. Children are ordered within a branch node such that the first child is associated
with the leftmost branch of parent and the nth child is associated with the rightmost
branch. The second type of element in a tree is the root node ; a root node is defined as a
branch node restricted in position to the beginning of the tree. The third and final type of
element in a tree is a leaf node; a leaf node is exclusively a data node and has no

SuUcCCeSsSors.

A tree structure always begins with a single data element, the root node, and its
associated set of successors. By definition, a directed arc exists between the root node
and each of its successors; each arc is the only path that exists between the root and the
child in question. Examining each of the children finds that they are either leaf nodes or
branch nodes. If the child is a leaf node, then there are no further children; if the child is
a branch node, however, then it has its own set of children with a directed arc to each.
This process of descending the tree can continue until there are no further branch nodes to
descend; at this point, every node in a tree has been visited and a path from the root

established to each.

It is convenient to define levels for describing where a node exists in the tree. If
the root of a tree is defined as level zero, then all of the children of the root exist at level
one in the tree. Similarly, all of the children of the children of the root exist at level two
in the tree. In general, the children of any branch node exists at a level one greater than
the level of the branch node. Note that the level in a tree where a node exists is equivalent

to the number of arcs traversed in the path from the root to the node in question; this is

40



referred to as the path length to that node. Path length is particularly important when
dealing with leaf nodes; for many applications, such as artificial intelligence problems, the

choice of the path taken depends on the path lengths involved.

Given this structure, four types of data manipulation operations can be performed
on a tree: (1) determine the path length of a particular node from the root node, (2)
examine the data associated with a particular node, (3) delete the subtree that begins with
a particular node, and (4) insert a subtree in a named branch position of a particular node.
In order to minimize the number of functions needed, the definition of a subtree is
extended to include trees beginning with a leaf node; this eliminates the need for separate

insert and delete operations for branch nodes and for leaf nodes.

Describing a tree via a relation requires that each pair in the relation describe the
link between a node and one of its children; thus, for a node with » children, » pairs
would exist in the relation. This relation, however, is not sufficient to completely
describe a tree; still missing is the information which describes which branch must be
taken from a node to get to a particular child. The relational structure required is one
which incorporates all of this information, accomplished by having each pair combine a
node and branch number to uniquely specify a child. The relation that results from this,
child, is defined such that

xchildy
indicates that y is the child node of x, where x is the node-branch pair which leads to y.

Figure 3.7 shows a diagram of a typical tree and its equivalent child relation.

41



child relation

tree domain range

1 o node | brch
Level O 1 ] 5
1 2 3
1 3 4
2 1 | EOF
vl (2)  (3) (4) LS
4 1 7
4 2 8
L 4 3 9

Le

. 0]010)010 I
6 1 | EOF
7 1 | EOF
8 1 | EOF
Level 3 @ 0 9 1 | EOF
10 1 | EOF
11 1 | EOF

Figure 3.7. Relational Implementation of a Tree

Before defining the data manipulation operations, it is useful to define a set of
"utility” functions for trees; these functions, which will be used extensively by the data
manipulation operations, determine data element relationships and assist in maneuvering
through the tree. These functions are:

1. Root ~ this function yields a class containing the root of the tree. This operation
is defined as
root T = first.(first || Id).T
2. Leaves — this function yields a class containing all of the leaves of the tree. This
operation is defined as

leaves T = domain.terminal T

42



Descend — this function descends to the next level of a tree, yielding a child
element. This operation is defined as
descend T nd br = [T (nd, br)] \ {EOF}
where T is the relation describing the tree, nd is the node being descended from,
and br is the branch of the node to descend. If the specified descent "runs off the
end of the tree” (i.e. nd is a leaf node), ¢ is returned.
Ascend — this function ascends the tree, yielding the parent element of a node.
This operation is defined as
ascend T nd = first.T-1 nd
Note that the ‘first” operation is required since the inverse of T yields a relation;
the “first’ operation yields the parent node. If nd is the root node, the function
returns @.
Left — this function finds the left sibling of a node. This operation is defined as
left T nd = T.(1d || (-1)).T-! nd
If nd is the leftmost child, the function returns @.
Right — this function finds the right sibling of a node. This operation is defined as
right T nd = T.(Id || (+1)).T-1 nd
If nd is the rightmost child, the function returns g.
Children — this function yields a class containing all of the children of a node.
This operation is defined as
children T nd = image T (nd x integer)
where integer is the class of all integers. Note that the Cartesian product which is
formed produces all possible branches from the parent node; if there are no
children, the function returns @.
Siblings — this function yields a class containing all of the siblings of a node.

This operation is defined as

43



siblings T nd = children (T < ~nd).ascend T nd
If there are no siblings, the function returns @.
9. Subtree — this function yields the subset of the tree relation which defines the

subtree rooted at a node. This operation is defined as

subtree T nd = [(x integer).(children T nd)*]—>T

With the utility operations defined, it is now possible to define the data
manipulation operations for a tree. The first operation determines the path length to a
node. By definition, the path length to a node is equivalent to the level of that node in a
tree; thus a function must first be developed which determines the level of each node in
the tree. This function, a derivative of the ‘index’ function developed for lists, is defined
as

level T = [size.(all [(first || 1d).T1H)]! « ~{EOF}
Given this, the path length to of any node in the tree is defined as
path_length T nd = domain {(level T)¢nd]

It is also possible to determine the minimum and maximum path lengths to a leaf
node are in the tree. This requires that the path lengths to all of the leaf nodes be known;
this is accomplished by the function

leaf _lengths T = path_length T (leaves T)
From this, the functions that determine the minimum and maximum path lengths are
min_path_Ing T = first.<T.path_leaves T
max_path_Ing T = end.<T.path_leaves T
Given this, it is also possible to determine which leaf nodes terminate the minimum and
maximum paths; this is accomplished by the functions
| min_path_node T = image (level T) (min_path_Ing T)
max_path_node T = image (level T) (max_path Ing T)

44



The result of these functions is the class containing the leaf nodes which are on the
minimum/maximum path(s), permitting direct access to these nodes. If desired, the
minimum/maximum path itself may then be traversed simply by ascending the tree until
the root node is reached; if a descending traversal is also required, a stack of nodes can be

formed during the ascent for use later,

The second data manipulation operation examines the data associated with a node.
As was true in the previous structures studied, this is same as returning the node itself,

accomplished via the tree traversal operations already described.

The third data manipulation operation deletes a subtree. This is accomplished by
(1) removing all of the EOF markers, (2) determining the nodes in the subtree to be
deleted, (3) restricting those nodes from the tree relation, and (4) replacing the EOF
markers on the leaves of the tree. The first part of the function determines which nodes
ar¢ to be deleted and deletes them; this is defined by

del_tree T nd = TT[~.(children T nd)*]

The remainder of the function manipulates the EOF markers; this is defined as

delete_tree T nd =

[del_tree (Te—~{EOF}) nd] L [(x {EOF}.end.del_tree (T¢<—~{EQOF}) nd)}

The final data manipulation operation inserts a subtree at a specified node and
branch; if a subtree already exists at the specified branch, it is deleted. Given this, the
insertion operation is defined as

insert_tree T nd br new = [(T-1 nd),(first.first new)] U [del tree T nd]

where new specifies the relation for the new tree to be inserted.

45



Chapter Four

Operating System Implementation

This chapter considers various operating systems concepts and their
implementation using relational programming. In examining each concept, no attempt is
made to correct any inefficiencies or problems inherent to that algorithm; analysis and
modification of each algorithm is beyond the scope of this paper. Finally, several
performance related assumptions are made throughout the chapter; for example, disk
access is assumed to be instantaneuous. These assumptions do not change the basic

nature of each implementation and may be eliminated by extending the defined functions.

4.1, Physical Devices

Every computer system consists of a variety of physical devices; it is the task of
the operating system to supervise these devices, regulating their allocation and use. In
addition, the operating system provides a medium through which programs in the system
view devices. One trend in operating systems design is to represent devices in a manner
identical to other system structures; for example, in the Unix! operating system each

device is viewed as if it were a file [Ritchie74]. This paper uses a similar concept; the

1Unix is a trademark of ATT Information Systems.

46



difference is that physical devices are mapped onto relations rather than files. Though
many types of devices exist, only three will be considered here: the central processing
unit (CPU), primary storage (main memory), and secondary storage (disk). A
description of each of the devices is presented below, with diagrams of the associated

structures shown in figure 4.1.

disk memory

address | data address data

Figure 4.1. Physical Device Relations

The CPU, the heart of the computer system, interprets program instructions and
produces the desired results. Associated with the CPU is a high speed memory set which
denotes its current state; this state information includes the current instruction being
executed, the address of the next instruction to be executed, status flags, etc. In most
computer systems this high speed memory is represented as a set of registers. This paper
takes a slightly different approach; here the CPU state information is assumed to be
entirely contained in a single record of the relation CPU. Each attribute of this relation is
the equivalent of a hardware register; i.e. they represent the instruction register, program
counter, etc. Operations performed on this relation produce the expected results; reading
an attribute returns the current state of that register while writing to an attribute modifies

the register, changing the system state.

47



The second major device to be mapped to a relation is main memory. Memory is
comprised of two distinct parts — a physical address and the data contained at that
address. Thus, the equivalent relation memory must consist of address-data pairs, one
for each byte in main memory. Reading or writing data to this relation is the functional
equivalent of reading/writing the data to main memory at the specified addresses. An
identical structure is used for mapping the third major device, disk. Note however, that
the domain of disk could easily be redefined to include physical device information (i.e.

disk number, cylinder, sector) rather than just the simple byte address used here.

4.2. Processes

The concept of a process is truly central to an operating system, for the operating
system itself is a process — the process which manages the system. For the purposes of
this discussion a process refers to any program currently in a state of execution, where a
state of execution is defined as either: (1) running, i.e. the program is currently executing
instructions on a CPU, (2) ready, i.e. the program is ready to run but is waiting its turn
for a CPU, or (3} blocked, i.e. the program is waiting for the completion of an external

event before it is ready to compete for CPU time.

Associated with each process is a unique identifier known as its pid. Identifiers
are drawn from the class pids; this class, a subset of the class integer, contains all of the
valid process identifiers in the system.2 Process identifiers are used to represent each
process in the various operating system structures; these structures record the priority of
the process in the system, the memory assigned to the process, etc. One such structure is

the record set pstate; each record in this set is identical in structure to the record CPU,

ZUnique identifier sets are subsets of the class integer simply for convenience; integers
are easy to manipulate. For the remainder of this chapter, therefore, any class of unique

identifiers defined for a structure will be a subset of inreger.

48



thus serving to describe the state of the system as of the last time the process executed.
By saving the current state of the CPU in pstate and loading CPU with the state record of
another process, a context switch occurs; this is assumed to be a machine level operation
invoked by calling context switch with the pid of the new process to be executed. A

second assumed function, cur_pid, returns the pid of the process currently executing.

4.2.1. Process Creation

Processes are created as the result of an explicit request by the currently executing
process. When this occurs, a parent-child relationship is established between the creating
and created processes. A relation, known as prree, is used to record this hierarchy; this
relation is shown in figure 4.2. Prree serves serves two purposes in the operating
system; in addition to recording the process hierarchies, it also indicates all of the active

processes in the system.

ptree

| #— domain —1@— range —p|
pid | brch child

Figure 4.2, Process Hierarchy Relation

The first step in creating a new process obtains an unused process identifier.
Since no explicit list is kept of unused identifiers, it is necessary to calculate them by
determining the difference between the class containing all of the identifiers and the class

containing those identifiers currently in use; any element of the class returned by this

49



function can be chosen as the new process identifier. Given this, the function which
returns the first free process identifier is defined as

new_pid = lo.[pids \ (domain.domain ptree)]
where

lo class = first.sort class

sort class = <T.({EOF} U class)

The second step in creating a process builds the process's CPU state record.
Defining the function which creates this record, however, is difficult since the complete
structure of pstate is unknown. Thus, we assume the existence of the function
create_pstate which, given the pid of the new process, creates an initial state record for

that process.

The third and final step in creating a process establishes the refationship between
the new process and its parent; this operation, however, is simply an application of the
‘insert_tree’ function defined previously. Given this, the function which creates a new
child process for pid is defined as

create_process = first.(Id0[c_stateQins_ptree]).new pid
where
c¢_state pid = pstate := create_pstate pid
ins_ptree pid = ptree := insert_tree ptree cur_pid new_brch (pid,{ EOFY})

new_brch = (+1).size.children ptree cur pid

Deleting a process is the reverse of creating one with one modification; when a
process is deleted, all of its children are immediately terminated. Since this is just an
application of the ‘delete _tree’ function, the process deletion function is defined as

delete_process pid = [delete_pstate®(ptree := delete tree prree)] pid

50



where delete_pstate is the function which deletes the CPU state records for the
terminated processes. Note that no explicit function is required to release the process

identifiers; this occurs automatically by their not being included in the pzree relation.

Unfortunately, the functions described here for process creation and deletion are
incomplete; missing are the operations which insert and delete the process from other
system structures (such as the scheduling queue). Since these operations will not be
defined until later in the chapter, however, it is simply noted that the ‘create_process’ and

‘delete_process’ functions should be expanded to include them.

4.2.2. Process Interaction

For the most part, processes are independent of each other, unconcemed with the
actions of the other processes in the system. Situations do arise, however, when two (or
more) processes must interact; this interaction may be in the form of mutual exclusion,
process synchronization, or process communication. Mutual exclusion algorithms
prevent concurrent access to a limited or shared resource by different processes; these
algorithms serialize the execution of the processes. The execution order of the processes
is irrelevant as long as they execute in disjoint timeframes. When order is important,
process synchronization algorithms must be employed; these algorithms synchronize
processes by delaying the execution of the first until the second has completed a mutually
agreed upon milestone or event. Finally, process communication algorithms must be
employed when the limited form of communication provided by mutual exclusion and
process synchronization proves insufficient for the information exchange required

between processes.

51



4.2.2.1. Signals

The first process interaction mechanism to be examined is a simple signalling

scheme used for process synchronization. Under this scheme, a process P;, which is
dependant upon a second process P,, suspends execution (i.e. blocks) until notified by
P, that the mutually agreed upon event has been completed. The process which blocks is
referred to as waiting on the event; the process which notifies the blocked process of

event completion is referred to as signalling that event,

While any number of processes can wait on the same event, the question is how
many of these processes should be notified when the event completes. There are two
general solutions to the problem: either (1) only one of the waiting processes is notified,
or (2) all of the waiting processes are notified. Under the first approach, waiting
processes form a FIFO queue on each event; when that signal arrives the first process in
the queue is notified and unblocked. Under the second approach, no queue exists; all
processes waiting on an event are unblocked when the signal is sent. This paper uses
both approaches; signal implementation takes the approach of notifying all processes,

while the FIFO queue approach will be discussed in section 4.2.2.2.

Signal implementation under relational programming requires a data structure
which relates processes with the events they are waiting on; this relation, known as
waiting, is shown in figure 4.3. The operations required to manipulate this relation are
minimal, for their only function is to add and delete pid-event pairs. Process blocking is
implicit, accomplished simply by the process's existence in the waiting relation. Thus,
the signalling functions are defined as

wait event = run_next.[waiting = waiting U (event X cur_pid)]

signal event = waiting := (~event) — waiting

52



where event represents the class of valid events on which the process is waiting/signalling
and ‘run_next’ schedules another process for execution; see section 4.2.3 for a full

description of the ‘run_next’ function.

waiting

event pid

Figure 4.3. Signalling Relation

4.2.2.2. Semaphores

Another method of process synchronization is provided by Dijkstra's semaphores
[Dijkstra65]. Semaphores correct a basic problem encountered with signals — signalling
systems have no memory, so that a signal sent with no process waiting is lost. A
semaphore, on the other hand, is a form of history mechanism, retaining the knowledge
that an event occurred which no process saw. Two types of semaphores exist: binary
semaphores and counting semaphores. Binary semaphores simply remember that an
event occurred, regardless of how often that event occurred. Counting semaphores, on
the other hand, retain a count of how often each event occurred; in this section only

counting semaphores will be considered.

Two relations are required to implement semaphores. The first relation, known as
semaphores, contains each semaphore and its associated event count. The second

relation, known as waiting, associates each semaphore with the queue of blocked

53



processes waiting on it; this is essentially the same structure required to implement the

FIFO queue approach to signal reception. Figure 4.4 shows a diagram of both relations.

waitsem
semaphore |#—domain —p-}&— range —p]
semaphore | count semaphore pid I next

Figure 4.4. Semaphore Relations

Both relations are manipulated by the semaphore operations P and V, which can
be considered expanded versions of their signalling counterparts ‘wait’ and ‘signal’. In
addition to adding and deleting processes, however, these operations must also account
for the current value of the semaphore and manipulate that value as required. Given this,
the P operation is defined so that the calling process will wait on a semaphore only if the
value of that semaphore is zero; otherwise the process will proceed and the value of the
semaphore decremented by one. Similarly, the V operation is defined so that when it is
called the first process waiting on that semaphore is permitted to proceed; if no process is
waiting the value of the semaphore is incremented by one. In implementing these
functions we assume the existence of a class pos_int which consists of all positive
integers including zero; given this, the semaphore functions are defined as

P sem = (decr sem) || (wait_sem.domain.sem—semaphoree{0})
V sem = [incr.(sem \)0sig_sem].domain (sem — waitsem)
where

decr sem = semaphore := ([(Id || (-1)).(semm — semaphore)] « pos_int); semaphore

54



incr sem = semaphore = [(1d || (+1)).(sem — semaphore)]; semaphore
wait_sem sem = waitsem :=
(sem x.insert_final cur_pid [image waitsem sem))); waitsem

sig_sem sem = waitsem :=

waitsem < [del _elt (range waitsem) (first.image waitsem sem)]

4.2.2.3. Mailboxes

Mailboxes provide a method of general communication between processes. This
scheme assigns each process a unique mailbox; when a message is sent by another
process, it is delivered to this mailbox and held until collected by the mailbox owner.
Should the owner request delivery of a message before it has been posted, the process
blocks until the message is sent; i.e. the reading and writing processes are synchronized.
Process synchronization can be accomplished by any of the methods already discussed,;

for this example signals are chosen.

Only one relation needs to be defined for mailbox implementation. This relation,
known as mail, associates process identifiers with their mailboxes; a diagram of this
relation is shown in figure 4.5. Two operations manipulate this relation: the first posts
messages to a mailbox while the second retrieves the posted messages. These functions
are defined as

send_msg pid_msg = [signal.domain®(mail := mail U)] pid_msg
get_msg = cur_pid — mail; [get_msg.wait cur_pid]
where pid_msg consists of the pair pid-message; this form is used so that multiple

messages may be sent with one call.

55



pid msg

Figure 4.5. Mailbox Relation

4.2.3. Process Scheduling

The scheduling process allocates the primary system resource — the CPU.
Scheduling algorithms are classified as either preemptive or non-preemptive. In a
preemptive algorithm, a running process receives exclusive CPU use for a finite amount
of time or quanta; when that quanta expires the process is interrupted and another process
selected for execution. Once interrupted, the process must wait until there are no higher
priority processes in the system before it again receives CPU service. Non-preemptive
algorithms, on the other hand, do not interrupt the process during its CPU allocation;
processes run untif completion. In a typical time-sharing system, the job blend will
consist mostly of short, interactive type processes with only a few processor intensive,
batch type processes seen; non-preemptive algorithms prove a poor choice in this type of
system because of the excessive delays that occur when a batch process executes. In this

paper only preemptive algorithms will be examined.

56



4.2.3.1. Round-Robin

In round-robin scheduling a single FIFO queue exists from which processes are
selected for execution. When a new process enters the system, it is given the lowest
priority assignment in the system — at the rear of the queue. As time 1s spent in the
system the process gains priority, advancing towards the front of the queue until it is
finally the highest priority process in the system. When a CPU next becomes free, this
process is selected for service and executes for a maximum of one quanta. If the process
completes during this time, it exits the system; if not, it is cycled back to the end of the
queue to await additional CPU time. It can be seen that this scheme provides equal

service to both interactive and batch processes.

A relational programming implemenation of round-robin scheduling requires only
one data structure; this structure, shown in figure 4.6(a), forms the FIFO queue of
process identifiers. Two operations can be performed on this structure: adding a process
to the queue and selecting the highest priority process for execution. At first glance, these
operations appear to be just applications of the standard queue operations. In fact, the
first of these functions is such an application; this function, which appends a process to
the queue, 1s defined as

schedule pid = sched := insert_final sched pid
The second function, however, is not accomplished by simply applying an existing
function; consideration must be made for blocked processes. To account for this, the
selection operation must be redefined so that the process selected for service is the highest
priority ready to run process in the system. Given this change, the function which selects
the highest priority function is defined as
select_process = first.(Id0pop_proc).first.elim_blocked

where

57



pop_proc pid = sched := del_elt sched pid
elim_blocked = del_elt sched (~.range waiting)
In this case the only blocked processes are those waiting on a signal, however the
function may be easily modified to include other blocking mechanisms. Finally,
executing the selected process involves a simple context switch; therefore, the function
which schedules a new process is defined as

run_next = context_switch.select_process

sched
sched |4—domain —p-lg— range —p]
pid next queue pid | next
(a) Round-Robin (b) Multi-Level Feedback

Figure 4.6. Process Scheduling Relations

4,2.3.2, Multi-Level Feedback

Multi-level feedback scheduling can be considered a variation of the round-robin
algorithm. One problem with the round-robin scheme is that there is no distinction
between interactive and batch processes; interactive processes simply complete in fewer
queue cycles. If batch processes are considered to be of low priority in the system,
however, then each batch process in the queue only serves to delay CPU service for the
high priority interactive processes. Multi-level feedback algorithms correct this deficiency

by penalizing processes which require large amounts of CPU time, i.e. batch processes.

58



In a multi-level feedback scheme, there exists not one but k process queues (Q;,
Qa, ..., Op), each with an associated priority level (P}, Py, ..., Py, where P; > Py > ..>
Pp). The next process selected for CPU service always resides in the highest priority
non-empty queue; thus, for a process residing in the kth queue to receive service, queues

I through k-1 must be empty. When a new process enters the system it is enqueued on

Q; regardless of whether it is a interactive or batch type process.3 If all processes are
runnable, then the next to receive CPU service will be selected from (. If this process
completes during its allocated quanta, it exits the system; if not, it is lowered in priority
and enqueued on (J;. At this lowered priority, the process will not be selected again for
CPU service until it is the highest priority process in Q5 and Q; is empty. When finally
selected, if the process still does not complete during its quanta it again drops in priority
and is enqueued on Q3. Thus, assuming that a process has not run to completion, it will
always reside in queue g+, where ¢ is the number of quanta the process has already
received. Note that while this type of algorithm provides for fast response to interactive
processes, it accomplishes this at the expense of batch processes; batch processes can

now experience excessively long delays before receiving CPU service.

Certainly a method of implementing the multiple queues required by this algorithm
18 to provide k relations, one per queue. A far simpler approach, however, combines the
queues into a single relation; this is possible since the queues consist of disjoint sets of
elements. Queue identifiers must also be incorporated into this relation, for without them
it would be impossible to know which queue has higher priority. Figure 4.6(b) shows
the final structure of this relation. Multiple queues make the functions which implement

multi-level feedback scheduling more complex than the equivalent round-robin functions;

3Generally this cannot be predetermined.

59



the intent of each function, however, is the same. Given this, the scheduling functions
are defined as
schedule pid queue = sched = (queue x.insert_final pid [image sched queue)]); sched
select_process = first.(Id0pop_proc).first.image.(Id0lo.domain).elim_blocked
where
pop_proc pid = sched := sched « {del_elt (range sched) pid]

elim_blocked = sched « [del _elt (range sched) (~.range waiting)]

4.3. Virtual Memory

Virtual memory systems provide each process with a virtual address space much
larger than the available main memory. To accomplish this, only small sections of a
process reside in memory at any one time; each section is referred to as a page. It is the
responsibility of the system to map any reference to a virtual address by the process into
the appropriate physical memory address. Referencing an address not currently in main
memory results in a page fault, a process which causes the system to automatically load
the proper page from secondary storage. To accommodate pages, memory is partitioned
into equal size sections known as page frames; each frame is the same size as one page

and is used as a container for a page when it is in main memory.

Implementing virtual memory requires defining several new data structures. The
first of these structures is a list of all of the possible virtual pages; this class, known as
vpages, is a subset of the class integer. The next structures to be defined, frames and
pages, relate each frame/page with the set of addresses on primary/secondary storage that
it occupies. The last structures to be defined are the relations p_frames and p_pages;
these relations map process virtual page references to a physical frame/page. A diagram

of each of the relations is shown in figure 4.7.

60



frames pages

frame | address page | address
p_frames p_pages
|#— domain —p»@— range —| |4— domain —wre— range—|
pid | vpage frame pid | vpage page

Figure 4.7. Virtual Memory Relations

4.3.1. Memory Allocation

The first step in allocating memory to a process determines the number of pages
requested. Memory is only allocated in pages; requests which are not a multiple of the

page size are rounded upward to the next multiple. This is accomplished by the function

round_up req = lo.domain.[(Id || (xpg_size)).integer]<—(all = req)]
where

pg_size = size.lo.domain frames

and = represents the multiplication function. Once this is determined, a set of continuous

virtual pages equal in length to the request is allocated in the process's virtual address
space; when additional memory is requested in a virtual system, the allocation occurs only

in the virtual address space of the requesting process. This function is defined as

61



alloc_vpage req = extend req (first_fit.round_up req)
where
first_fit req = lo.image [seq_size].all 2 req
seq_size = index.[elim_edges.sort.vpages \.unimg (domain p_pages).cur - pid]!
extend num base = [all 2 base] M [all < (base + num))
Next, each virtual page is associated with a physical page in secondary storage; this is
accomplished by the function
alloc_page vpage = map_addr vpage.[domain pages \ range p_pages]
where
map_addr s_addr d_addr = [mk_map d_addr].all [mk_map s_addr]
mk_map addr = index.elim_edges.sort addr
The result of this function is used to update the p_pages relation; the function which
accomplishes this is defined as
up_pgrel pgrel =p pages = ([(cur_pid x) || Id].pgrel); p_pages
The final function is the actual entry point to the memory allocation operation, tying all of
the previous functions together as one. This function is defined as
alloc_mem req = first.[lo®(up pgrel.alloc_page)].alloc_vpage.round up reg
This function returns the first address of the allocated memory in the virtual address

space.

Releasing a virtual page from the address space only requires removing the proper
vpage entry from p_frames and p_pages; this function is defined as
rel_page vpage = [del framesOdel pages].vpage
where
del_frames vpage = p frames := (~.X vpage.cur_pid) — p frames

del_pages vpage = p pages := (~.X vpage.cur_pid) — p_pages

62



Notice that if the page is shared between processes it is only deleted from the address
space of the requestor; while it is still in use, it is not physically deleted from either

primary or secondary storage.

4.3.2. Paging

When a page fault occurs, the operating system must load the referenced virtual
page into main memory. To accomplish this, the operating system must decide which
frame to be allocate to the page. If unallocated frames exist, the decision is simple — any
one of the free frames is chosen. When the pool of available memory has been
exhausted, however, a page frame must be freed so that execution can continue. The
strategy for choosing which frame will be freed is referred to as the replacement policy of

the system; specific replacement policies are discussed in section 4.3.3.

The first step in implementing the page fault mechanism is to allocate a frame in

main memory for the page being brought in; this is accomplished by the function
alloc_frame = lo.domain.[(domain frames \ range p_frames)—frames; rpl_frame]
The first free frame is chosen if one exists; if not, the page replacement function
‘rpl_frame’ is called to frec one of the frames. Once this is done, a new vpage-frame
mapping must be created for the process and the p_frames relation updated with this
information; this is accomplished by
up_frmrel vpage frame = p_frames := [cur_pid, vpage), frame]; p_frames

Next the page must be copied from secondary to primary storage, mapping the addresses
appropriately; this is done by
cp_mem vpage frame = memory =

[(map_addr (image frames frame)) || Id].[(disk_addr vpage) — disk]; memory

where

63



disk_addr vpage = image pages.p_pages (cur_pid X vpage)
The final function to be defined merges all of the previous operations into one; thus, the
function which handles page faults is defined as

fault vpage = [cp_memQup frmrel].vpage x.lo.alloc_frame

Shared memory is not supported in this version of the ‘fault’ function. Should
shared memory be desired, the only modification required is to check if the virtual page

has already been loaded by another process before attempting to do so.

4.3.3. Page Replacement

When a page fault cannot be satisfied due to a lack of available memory, the page
replacement algorithm selects an allocated frame and frees it. Ideally, the frame freed is
the one which will not be referenced for the furthest time into the future; this choice yields
the best possible system performance [Belady66]. Unfortunately, absolute knowledge of
which frame this is requires a crystal ball — a hardware device not yet well defined.
Lacking this, various heuristics have been devised to predict which frame is the least
likely to be referenced. Although several strategies exist, only one is described here — the

Least Recently Used (LRU) algorithm.

Under a LRU replacement strategy, the page frame which has not been referenced
for the longest period of time is selected for replacement; the assumption is that this frame
has the lowest probability of being referenced in the near future. Implementation of this
algorithm requires that every page frame be associated with a timestamp; when the frame
is referenced, its timestamp is updated. At page replacement time, the frame with the
oldest timestamp is selected from a set of candidates and freed. This set of candidate

frames may be drawn either from local memory or global memory. If drawn from local

64



memory, only those page frames occupied by the faulting process are considered for
replacement. If candidates are drawn from global memory, then all page frames in
memory are considered in the replacement decision without regard to which process

occupies them; in this paper candidate page frames will be drawn from global memory.

Implementation of the LRU strategy requires two data structures. The first
structure, known as timestamp, relates each frame in memory with its current timestamp;
a diagram of this structure is shown in figure 4.8. The second structure, known as dirzy,
is a class of page frames identifying those which have been modified but not written back
to disk; it is preferable not to use these frames as candidates since their secondary storage
copy must be updated before they can be freed. For efficiency, the hardware updates

both data structures directly whenever a page frame is referenced.

timestamp

frame | timestamp

Figure 4.8. LRU Relation

The function which implements the LRU strategy first attempts to select the oldest
clean frame in the system for replacement; if none exist the oldest dirty frame is chosen
and written out to secondary storage. In either case, the pframe relation is updated so that
no process owns the newly freed frame; references to the discarded page will cause a
page fault. Given this, the LRU replacement function is defined as

rpl_frame = first.[Id0(write_dirtyQelim_frm)].sel rpl

where

65



sel_rpl = lo.image (candidates) l.lo.range candidates
candidates = [domain.((~dirty)—frames; frames)]—timestamp
write_dirty frame = cp_disk.[(range.image (p_frames) 1)01d].(frame N dirty)
cp_disk vpage frame = disk :=
[(map_addr (disk addr vpage)) || Id].[(image frames frame) — memory]; disk

elim_frm frame = pframes := p_frames«(~frame)

4.4. Filesystems

The filesystem manages the secondary storage area, providing a permanent

storage location for programs and data. Some of the tasks performed by the filesystem

are:

1. managing secondary storage allocation.

2 organizing files into manageable structures.

3 mapping from a representation of the data, i.e. a file name, to the data itself,
4. providing a security system for files.

5 reading and writing files.

Most of these operations are variations of previously defined functions and will not be
repeated here. Only one function will be defined here, that which maps filenames into
actual files (open); the mechanism for reading or writing the file itself is an application of

the paging mechanism.

Filesystems are usually organized into cither flat and hierarchical structures. In a
flat file structure, all files in the filesystem are organized on one level. There are two
disadvantages with this type of organization: (1) if many files exist, it may be difficult to
find the one of interest, and (2) all file names used in the filesystem must be unique. In a

hierarchical organization, files reside within directories which break the filesystem into

66



smaller, more manageable pieces. The advantage of this is that a filename need only be
unique within a directory rather than across the filesystem. The disadvantage of this type
of structure is that a user must know exactly where the file is located in the structure; if
the tree is very complex, finding a file in an unknown location is difficult. Since a flat
filesystem can always be implemented under a hierarchical one, a hierarchical

implementation will be discussed here.

Three relations are necessary to implement a hierarchical filesystem. The first
relation, known as dtree, represents the file hierarchy. In this tree, branch nodes indicate
directories and leaf nodes indicate files. The second relation, known as filenames, maps
unique dtree node identifiers to external filenames. The third relation, known as files,
maps the same node identifiers to the sequence of pages in secondary storage which make

up the actual file. Figure 4.9 shows a diagram of these relations.

diree
| #— domain—peqg—range —p)
node | brch child
files
filenames |4—domain—#4— range —»|
node | filename node page | next

Figure 4.9. Filesystem Relations

67



The ‘open’ function converts a filename into the sequential list of pages which
constitute that file; the input to the function is a relation which lists the full path to that file
as a sequence. Given this, the ‘open’ function is defined as

open path = image files.range.path nodes path
where
path_nodes path = (path_Ing dtree) N node_1vl path

node_1vl path = filenames-1.all (index path)-1

68



Chapter Five

Conclusions

This thesis has two distinct goals. The first goal is to show that a database, by
unifying data structures, can serve as the kernel of an operating system. The second goal
is to show that this type of structure simplifies the operating system and allows it to be

built and modified with a minimum of programmer effort.

Both of these goals are met in Chapters 3 and 4. Chapter 3 clearly shows that a
database provides a common storage structure upon which any other data structure can be
imposed. Using this new basic structure, Chapter 4 demonstrates how the various
operating system concepts can be implemented. Judging from the amount of code
required, it can clearly be seen that an operating system implementation using a relational
database is much simpler and less time consuming to implement than an equivalent
conventional operating system. In fact, the functions presented here required only a few
person-weeks to implement, rather than the person-months or person-years common in
an operating system such as Unix. Further, as shown in Chapter 4, implementing a

different algorithm or a different concept also requires little effort.

69



5.1. The Real World

While it is possible to build an operating system based on a database, is it practical

to build one? Several assumptions have been made in this paper to provide an ideal

implementation environment, an environment not easily reproducible in the real world.

Each of the three major assumptions made in this paper is presented below along with its

effect on a physical implementation.

1.

Language - the first assumption made is that the described relational programming
language exists; in fact, the language is still experimental with only simple
implementations existing [MacLennan82]. Even if the language were available,
however, it has not proved to be an ideal choice as an implementation language.
The language is complex and often awkward to use; for example, the restriction to
binary relations often necessitates building complex relational structures. These
complex structures, difficult to conceptualize and use, could be eliminated by
permitting an arbitrary number of attributes in a relation. Several other examples
of this type also exist. In general, simplifying the language would greatly add to
its usability.

Architecture - the second assumption made is that a computer exists whose
architecture is designed around relational structures; this computer would (1) be
optimized for use with the relational programming language, and (2) represent all
devices as relations. While such a device does not exist, nothing prevents it from
being designed and built. Until this is done, the proposed operating system could
be implemented by building a compiler for the language (or alternate language)
and a set of low level driver routines which map the conceptual relational devices
to their equivalent physical devices. This second approach has the advantage of

fast implementation, but would also suffer from poor performance.

70



3. Performance - the third assumption made is that the implementation machine is
sufficiently fast. This assumption was made so that performance would not be
considered while the feasibility of the relational operating system was being
shown, Performance, however, cannot be ignored when an actual
implementation is considered; if the CPU is spending most of its time executing
the operating system, it is spending little time accomplishing user tasks.
Unfortunately, implementing a relational operating system on a von Neumann
computer would result in a very slow system. Large quantities of data need to be

manipulated, unsuitable for the von Neumann's word-at-a-time architecture,

Does this mean that the concept of a relational operating system is unusable in the
current computing environment? The answer is no, for other types of uses exist. While
impractical for use as an operating system in a general computing environment, a
relational operating system can serve as an excellent development facility for operating
systems research; emphasis is placed on design, not on programming. Concepts can be
quickly developed into working programs, interfaced with other pieces of the operating
system, and tested in minimal time. When testing is complete, the package would be
implemented again using more traditional approaches. The fast development cycle
permitted by this approach encourages the development of customized operating systems,
systems which would eliminate the unneeded overhead imposed by a larger and more

general operating system.

5.2. Suggestions for Further Work

Numerous areas exist for further research. First and foremost, a working model
of a relational operating system needs to be developed; only when this is accomplished

will the true performance and capabilities of the operating system be known. This also

71



involves research in the area of implementation languages, as there is no requirement that
the choice of langauge be restricted to the relational programming language described.
Several high level data manipulation languages, such as SQL, can also be used if
additional support is provided by a conventional programming language. In addition,

new types of relational programming languages can be devised.

A second area for additional research involves designing new computer
architectures; rather than building software systems around existing computer
architectures, we should be designing computer architectures which support higher level
software systems. As an example, to support the principles proposed in this paper, a
computer should be designed which executes a relational language directly and whose
device structure appears as a set of relations. Besides the obvious performance
advantage, this type of computer would be very easy to program. Alternately, rather than
designing new architectures, what would the performance of this type of system be on an

existing large mainframe or supercomputer?

The final proposed area for additional research involves determining what other
external views of the operating system are now possible given a database underpinning,
For example, are their alternative environments, such as a database environment, a
programming environment, efc., that can be provided to the user at the operating systems
level? Since a relational database can support multiple views of the same data, can
multiple environments be provided concurrently? Are there advantages to this type of
approach? Obviously, this is the most open-ended of all of the research areas, for it asks
that the traditional views, and possibly the traditional roles, of an operating system be re-

examined in light of the new power provided by using an underlying database.

72



[Backus78]

[Belady66]

[Brinch73]

[Chamberlin76]

[Codd70]

{Date81]

[Deitel84]

[Dijkstra65]

[Gray78]

[Habermann76]

[Kowalski78]

[Maier83]

Bibliography

Backus, J. "Can Programming Be Liberated from the von Neumann
Style? A Functional Style and Its Algebra of Programs." Comm. ACM
21:8, pp. 613- 641, August 1978.

Belady, L.A. "A Study of Replacement Algorithms for Virtual-Storage
Computers." IBM Systems Journal 5:2, pp. 78-101, 1966.

Brinch Hansen, P. Operaring System Principles. Englewood Cliffs,
N.J.: Prentice-Hall, 1973.

Chamberlin, D.D. "Relational Data-Base Management Systems.”
ACM Computing Surveys 8:1, pp. 43-66, March 1976.

Codd, E.F. "A Relational Model of Data for Large Shared Data
Banks." Comm. ACM 13:6, pp. 377-397, June 1970.

Date, C.J. An Introduction to Database Systems (3rd ed.). Reading,
Mass.: Addison-Wesley, 1981.

Deitel, HM. An Introduction to Operating Systems . Reading, Mass.:
Addison-Wesley, 1984,

Dijkstra, E.W. "Solution of a Problem in Concurrent Programming."
Comm. ACM 8:9, p. 569, September 1965.

Gray, J.N. "Notes on Data Base Operating Systems,” in Operating
Systems: An Advanced Course (R. Bayer, RM. Graham, and G.
Seegmiiller, Eds.). Berlin: Springer-Verlag, 1979.

Habermann, A.N. Introduction to Operating System Design . Chicago:
Science Research Associates, 1976.

Kowalski, R. "Logic for Data Description,"” in Logic and Data Bases
(H. Gallaire and J. Minker, Eds.). New York: Plenum Press, 1978.

Maier, D. The Theory of Relational Databases. Rockville, Md.:
Computer Science Press, 1983.

73



[MacLennan81]

[MacLennan82]

[MacLennang3]

[Martin82]

[Ritchie74]

[Tanenbaum76]

[Ullmang82]

MacLennan, B.J. Overview of Relational Programming. Naval
Postgraduate School Computer Science Department Technical Report
NPS52-81-017, November 1981.

Maclennan, B.J. A Relational Program for a Syntax Directed Editor .
Naval Postgraduate School Computer Science Department Technical
Report NPS52-82-006, April 1982.

MacLennan, B.J. Relational Programming. Naval Postgraduate
School Computer Science Department Technical Report NPS52-83-
012, September 1983.

Martin, J. Application Development Without Programmers.
Englewood Cliffs, N.J.: Prentice- Hall, 1982.

Ritchie, D.M. and K. Thompson. "The UNIX Time Sharing System."
Comm. ACM 177, pp. 365-375, July 1974,

Tanenbaum, A.S. Structured Computer Organization. Englewood
Cliffs, N.J.: Prentice- Hall, 1976.

Ullman, J1.D. Principles of Database Systems (2nd ed.). Rockville,
Md.: Computer Science Press, 1982.

74



