A GRAPHICAL SIMULATION SYSTEM

Behzad Zamanzadeh June 1986
CSD-860036

UNIVERSITY OF CALIFORNIA

Los Angeles

A Graphical Simulation System

for Manufacturing Systems

A dissertation submitted in partial'satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Behzad Zamanzadeh

1986

The dissertation of Behzad Zamanzadeh is approved

LBt e

Robert. B. Andrews

(o T Hirn o

Authur. M. Geoffrion

LQZ{LM&Q_.Q_

Lawrence. P. McNamee

Edward. C. Russell

Yuwel! A Wodraoo

Russell. A. Westmann

Mlchaeq A, Melkanoff“ Commit Chair

University of California, Los Angeles

1986

ii

To
my father Habibollah Zamanzadeh

and my mother Iran Yadidi

iii

bt A b s

NN NNOONNNN

- *« & = L] . =] [] []

N

NN

[%)

[FERN VIRV Iy PO FY Iy UU y UT QU VE QY |
e o 8 * = a & @

RO N R e

e L L DD

N N N e il

w

AR
a s e @

B L N

~

= W=

NN N

% I

M -

[\ N

CONTENTS
LIST OF FIGURES .+ ¢ + &+ ¢ o o« o o o ¢ s o @
LIST OF TABLES + + ¢ « ¢ ¢« ¢ & o ¢ ¢ o o« o =«
ACKNOWLEDGEMENTS . ¢ + ¢ ¢ & o« o o ¢ s s o o
VITA « ¢ ¢ o o o o o o o o s o o s o o o
ABSTRACT « + & o « o o o o & o & o o o s »

INTRODUCTION L] - - L] - & - - L] - - - - - - -
Purpose And Accomplishments
Rationale And Background
Survey Of Existing Simulation Languages .
Selection Of The Base Languages
Graphical Man Machine Interface For
Simulation . + « & « ¢ ¢ ¢ ¢ s v e 4 e s

GRAPHICAL SIMULATION SYSTEM . . . + « + o
Overview Of Graphical Simulation System
User Interface e 4 s s s s & ® v s s »
Block-Command Symbolic Language Compiler
Pass 1 Of The BCSL Compiler
Pass 2 Of The BCSL Compiler
Block Graphic Symbolic Language
BGSL Elements And Programming Concept .
Block Command Symbolic Language . . .
Methodology Of Translation To SIMSCRIPT
Detail Description Of The BCSL Compiler
Architecture . . . ¢ ¢ « o « s s s « s + &
Description Of Key Block Processor
Routines . . & v & ¢ ¢ o 4o o o » o « o
Differences Between GPSS And BCSL
ADVANCE BloCck ¢« & 4 ¢ o 4 o s @« a2 s + o 4
GENERATE Block « +« ¢ o « o o s o 2 s s o
FUNCTION Commands . . « « & + 2 o o & &
Floating Point And Arthmetic Statements As
Operands . « « o o ¢ ¢ o o o « « « = o +
Output Generator And Output Files

CLASSIC APPLICATIONS AND CASE STUDIES
One-Line, One-Server Queuing System
Statement Of The Problem
Discussion Of The Model . « .
Discussion Of SIMSCRIPT Equ1valent
Discussion Of Results .« . . + «
Simulation Of The Production Shop
Statement Of The Problem
Discussion Of The Model

» - - . - L] L * L]
L[] - - L - L - L]
e = @ s 8 s = 8 L]

iv

xii

.
[y
W

28
30
33
37
43
43
45
48
61
63

69

78
88
90
93
96

98
99

102
104
104
104
109
110
123
123
125

Wwiwwww

Ll - N .

LY

L R S Y
W wwoN
[-

W N

B WWWNN DN NN

¢« s .
LUV RN & Iy o

U b e

Discussion Of SIMSCRIPT Equivalent
Discussion Of The Results o e .
A Bus Stop Simulation
Statement Of The Problem

Discussion Of The Model . s v e e e
Discussion Of SIMSCRIPT Equivalent Of
The Bus Model ¢ e s v 4 .
Discussion Of Results . ., . ,

ADVANCED FEATURES OF THE GRAPHICAL SIMULATION

SYSTEM
Modeling Flexible Manufacturing Systems
Statement Of The Problem . “ e v e e
Discussion Of The Model v e e e e e
Discussion Of SIMSCRIPT Equivalent For
The FMS Model ., . . . S e e e e e e s
Discussion Of The Results Of The FMS
Simulation . , ., . . . f e e e e e s
Description Of New FMS Blocks And Their
Translation ., . , s .
Define Transporter (DEF TRAN)
Define Workstation (DEFWSTAT)
Request Workstation (REQWSTAT)
Request Transport (REQTRANS) .
Enter Station (ENTERSTAT) « .
Leave Station (LEAVESTAT) . .
User Written SIMSCRIPT . . . e
SIMSCRIPT Line (SIMSLINE) Block
Append File . , . . ., « s s W
Generation Of Customized Simulation
Systems . , ., . ., . . ¢ e e 4 . .
Generation Of New Blocks In BCSL . .
WILDCARD And Expansion Of BGSL .« .
MACRO Blocks, . .
AN ALTERNATIVE SOLUTION
SHOP MODEL Tt e e e 4 s e e e e e .

- L] - L] L] - - L -

L]
. L] L]
- L] »
- L] -
- [] *
- - []
L] L] .
L] L] .
- - L]
. - []

. & -

CONCLUSIONS AND RECOMMENDATIONS « 4 .
SUMMARY s e s s s e .
Performance . . ., . . . ‘e e e .
Future Research Possibilities . . .
Limitations And Potential Improvement

N e o o

BIBLIOGRAPHY L L] L L] - - - L] L] L] L] - L] .

APPENDIX

A
B
C
D

SUMMARY OF BCSL MODEL BLOCKS

SUMMARY OF BCSL DEFINITION AND CONTROL BLOCKS
SUMMARY OF BCSL STANDARD NUMERICAL ATTRIBUTES

SYSTEM CONFIGURATION AND USERS GUIDE . . , .

-

TO THE PRODUCTION

-
*
L]
-
-
-
L]
L]
-
.

- - L[] - L[]

- L] - L] .

- L] [] - - - L] * L] -

L] L] L » -

136
143
157
157
158

165
168

178
180
184
187

196
209

214
214
217
219
222
225
228
228
229
229

234
234
237
240

243

252
252
256
258
265

268

272
280
285
287

FIGRUE

1_1 L]

2-10.
2=11.
2=-12.
2-13.
2-14.
2-15.
2-16.
2-17.
2-18.
2-19a.
2=19b.
2-20a.

2-20b.

LIST OF FIGURES

PAGE
Languages Used in the Development of GSS..... 10
Overview of Graphical Simulation System...... 32

Overview of User Interface........ Cetesnaanee 36
Block Command Symbolic Language Compiler..... 38
Data Flow in Graphical Simulation System..... 41
Adding user written BCSL:eveoasosaonnnas 42

Silhoutte of a Typical Block Command
Symbolic Languagel.l...lI...I..I.ll......l... 47

"Build Model" Selection Menu Display......... 49
"Add Block" Selection Menu Display....evsee.. 50
GENERATE Block Parameter Query Display....... 51
ADVANCE Block Parameter Query Display..cesv... 52
Model Segments.............;................. 55
Segment with Two TERMINATE BloCKkS..scseseaann 56
Data Flow in Graphical Simulation System..... 57
A BGSL Model and its BCSL Translation........ 60
Translation of a Model Segment.....sveseesse. 68
Primitive Elements in Raw SIMSCRIPT Text..... 73
Calling Sequence of BCSL Compiler ...eevessss 77
Translation of a GENERATE BlocK....eeeueess .. Bl
Translation of TERMINATE BloCK:eessoseeeseess 82
Translation of ADVANCE BlocKk....csssssacecssass 83
Translation of SEIZE BloCKk..seeesecosnn sesess 84

Translation of a RELEASE BloCK..eeoveevanssses 85

vi

2-21.

3-90
3-10 .
3-11.

3-12.

4_1 .

4"6 .

4-7,

Translation of a TEST BloCk ..ceicevencncseves
OQutput Generator......... Ceues s s s eseesaa s e
BGSL Model for the Barber ShOpPecescesscecasns
BCSL Model for the Barber Shop..ccesceecsens

SIMSCRIPT Equivalent Model for the
Barber Shopll.l...l......l..l'......l..'l...

Simulation Results for the Barber
Shop Model * 0 & 8% &8 & 0 S8 0B & P A A B S S0 S Y NS e

BGSL Model for the Production ShOPeeceeesoess
BCSL Model for the Procution ShOop .ceeeveesa
SIMSCRIPT Model for the Production Shop.....

Simulation Run Results for Production

shop....l...l....I.I...........'.l.'...l.“l

BGSL Model for the Bus StOP..cccececrsccssns
BCSL MOde:I. for the BUS Stop..-'—...‘-....l!..
SIMSCRIPT Model for the Bus StOPssseccsscess

Simulation Run Results for the Bus Stop

Model...l'......‘....l..l.......l.l..l.l....

A Flexible Manufacturing System Floor
Plan and JOb Routes.....l................‘..

Unfolded Visitation SequUenCe.icescscssassonsss

BGSL Model for the Flexible Manufacturing
System....'..'l--.l..-ll..ll.l.l...l...l....l

BCSL Model for the Flexible Manufacturing

System.....I..I.'..'l..'...l..l.l.l.l.......

SIMSCRIPT Model for the Flexible
Manufacturing System......c..... Chesescscaca

Simulation Results for FMS Model....cceeease

Pictorial Equivalence of the REQWSTAT

Block......-.l-....o'c--c.....‘.--.....t..c-

vii

87
101
107

108

112

120
129
134

145

155
160
163

170

178

182
183

189

194

199

211

221

4-8. Equivalent of REQTRANS BlocKk.:sseseeeeoeesnss 224
4-9, Equivalent of ENTERSTAT Block.......... ceeee 227
4-10. Append File ConcatenationN....c.cceeveccsosss 230
4-11. Usage of SIMSLINE BloCKiseeeeoeosesseressnas 233
4-12. Calling Sequence for a New BlocKk...eeeeee.es 236
4-13. WILDCARD Block Translation...ceeececescences . 239
4-14. EBquivalent of the "M" BlOCK +csssvcsecessnas 241
4-15.- BGSL Model Representing JOBl Transaction.... 245

4-16. Improved BCSL Model for the Production
Shopl....ll...oc &« 8 0 3 8 4 4 &8 & 0B 246

4-17. SIMSCRIPT Equivalent for JOBl Transaction... 248

4-18. Simulation Results for the Improved
Production Shop Modelﬂ.........l..l....‘l". 250

5-1. Animation Of Simulation RuN....eeeeeseevesss 260
5-2; Animation Routines and Block Commands....... 262
5-3. An Expert Simulation SystemM.....c.ceeveseeese 264
D-1 GSS Operations Environment...ccceeceecseesss 288
D~-2. Main MeNU..seeeceacrccncnasscacscs ceresessses 291
D-3. System UtilitieSeseeessescnscossosssssssasnsss 292
D-4. Simulate Model...cceuvivennsscessasscassseas 293

D_5. Model Settings..l.....I.I...I.I..I.I.l.l‘l.. 294

viii

LIST OF TABLES

PAGE
ADVANCE BlOCK.:seseoeosssssosassesnanceanas 90
Statistical Distribution Functions........ 92
Operands of GENERATE BlOCK:ssessesseseeoess 94
Function Commandecessecscsssovesssoncesssss 94
Column Definition for Facility Report 121
Column Definition for Queue Report 122

Composition of Machine Groups in
PrOduction Shopl.lO...l.......'.l......... 124

Visitation Sequences and Mean Operation
Times for the Three Job TypPeS..iecseeesssses 124

Explanation of the Abbreviations 273

ix

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my
advisor, Professor Michael A. Melkanoff, for his
constant guidance, encouragement and instructions during
the course of this research and my graduate work. I am
also grateful to Dr. Edward C. Russell for his
support, guidance and lmany valuable suggestions that

were indispensable for my research.

I am thankful to my committee members, Professors
McNamee, Westmann, Geoffrion and Andrews for their time

and valuable discussions.

Special thanks 1is also extended to Teledyne
Controls executive management for their encouragement

and allowing flexible working hours during the

performance of this research.

March 29,1955
1973-1976

1976

1977~-1979

1980

1979-1983

1983-1984

1984-1986

1986

VITA

Born, Tehran, Iran

Programmer,
Material and Energy Research Center

BS in Electrical Engineering,
Arya Mehr University of Technology

Systems Programmer, CompuCorp

Masters in Computer Science,
University of California at Los Angeles

Software Engineer, Teledyne Controls
Communication Group Supervisor,
Teledyne Controls

Software Project Manager,
Teledyne Controls

Engineering Section Manager,
Teledyne Controls

xi

ABSTRACT OF THE DISSERTATION

A Graphical Simulation System

for Manufacturing Systems
by

Behzad Zamanzadeh
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1986

Professor Michael A. Melkanoff, Chair

An on line graphical simulation system has been
ldeveloped based on an iconic simulation language. This
system facilitates the simulation of manufacturing
systems and Flexible Manufacturing Systems. Ease of use
by unsophisticated users, expandability of the 1language
and . flexible output generation are the main

characteristics of the Graphical Simulation System.

It has been demonstrated that iconic languages are
practical and convenient for unsophisticated users.
Several general purpose models in addition to a
manufacturing job shop model and a flexible
manufacturing model were built and are discussed in

details.

xii

Expandability of the underlying icoﬁic language has
made it possible to develop custom-made Flexible
Manufacturing Simulation System, which raises a new
concept in software engineering. Where software tools
for development of customized systems based on very high

level languages (graphical or natural) are the way of

the future.

xiii

1 INTRODUCTION

1.1 Purpose And Accomplishments

The purpose of this research has been to develop an
on-line Graphical Simulation System for manufacturing
systems. This system 1is based on a block oriented
simulation 1language. It permits the user to describe
the system model, which in turn 1is translated into a
computer program that simulates the maﬁhfacturing
system. Ease of use by unsophisticated users,
capability of on-line graphical interface, expandability
of language and flexible oufput generation have been the

major goals of this system.

During the course of this research the proposed
Graphical Simulation System has been developed, tested
and demonstrated with capabilities and potential beyond
the original expectations. The system is constructed
via three major building blocks; the graphical wuser
interface, the BCSL language compiler and the simulation
results output generator. The graphical user interface
for this system (including the BCSL generator) has been
developed by Edmond Mesrobian [28] as part of his
masters thesis. The present disertation has produced

the following results

Design of an iconic graphical simulation language

based on GPSS.

Definition of the equivalent SIMSCRIPT code for each
block in the proposed language and development of
the methodology for translating the icons

(block~commands) into SIMSCRIPT.

Development of the compiler which translates the
BCSL language into SIMSCRIPT (up to 40 blocks have

been implemented so far).

Demonstration of successful operation of the
proposed system by running several simulation tests

(with known results).

Simulation of a manufacturing job-shop model as well

as several complex general purpose models.

Proof of the expandability of the language by
defining new blocks for simulation of Flexible
Manufacturing Systems and testing them by running a

FMS simulation mode].

Experimentation with the "macro block" concept while
implementing the FMS new blocks. In addition
provisions for guidelines and techniques for further

expansion of the language.

The ﬁajor achievement of this research is that we
have demonstrated that graphical languages are practical
and that systems designed for the unsophisticated end
users with menu driven, interactive iconic interfaces
are more convenient to wuse than to those based on
procedural and command driven languages. In addition
the expandability of the Graphical Simulation system has
made it possible to use it as a tool in the development
of custom made simulation systems. This raises a new
concept in software engineering, where the development
of translators for very high level programming languages
as a tool for development of customized systems will be

more and more common.

1.2 Rationale And Background

Simulation is one of the most powerful analysis tools
available for the design and operation of complex

processes or systems, including manufacturing systems.

A modern manufacturing system usually consists of a
complex integration of machines, material handling
equipment, and operators, which produce a variety of
parts. In such lsystems, operations are performed at
stations, each containing a group of similar machines.
Material handling equipment is used to transport parts
between stations and operators who may be required to

operate machines or material handling equipment.,

Manufacturing systems have many of the same types
of problems. These problems can result in such symptoms
as insufficient throughput, late production, high
inventories, or highly variable work loads, all of which
are undesirable. The problems which cause these
symptoms are complex and are often difficult to identify

and alleviate.

Through the use of simulation tools, techniques and
methodologies the system analyst can accurately predict
the behavior and operational characteristics of complex

manufacturing systems before they are actually

installed. Simulation makes it possible' to study the
effects of informational, organizational, and
environmental changes on the operation of a
manufacturing system by making alterations in the
simulation model rather than experimenting directly on
the system itself. However, as manufacturing systems
have become more complex, shortcomings in existing
simulation modeling 1languages have become increasingly

apparent.

Usually a simulation study starts by defining the
system to be modeled and describing it in terms of logic
flow diagrams and functional relationships. But
eventually the analyst is faced with the problem of
describing the model in a language acceptable to the
computer which 1is used. Using conventional simulation
languages requires programming knowledge and experience.
In addition the user must become familiar with
simulation concepts and internal techniques employed by
the simulation language. As a result wusers have
hesitated to use simulation in order to resolve design

rand operational problems in the manufacturing

environment.

A survey of the aerospace industry, conducted by
Professor M.A. Melkanoff shows that a major problem has
been the fact that "simulation is done by someone else.”
Usually a separate group within the same company or
outside specialists are used to do the modeling and
simulation. As a result modifications to the model are
inconvenient and often take a long time before results

are in the hands of the analyst.

As pointed out by Oren and Zeigler [50], one of the
deficiencies of simulation software is in the user
interface. Lack of a good user interface = makes
simulation software difficult to learn and to operate,
especially for someone without solid computer skills

(Standridge [45]).

In recent years the ability to model complex
real-world systems within a "no programming" environment
has become more and more appealing. Users groups have
shown a great desire for systems that the user can
easily relate to, are convenient to wuse and provide
natural languages and symbols to interact with the user.
Therefore as graphics have become increasingly common as
a major component of modern computer systems, the
inherent naturalness of image-assisted communication has

motivated the development of interactive and

iconic (1) graphic interfaces.

Iconic interfaces are easier to use, and, by taking
advantage of our visual processing abilities, they can
provide superior information carrying capabilities for

user interaction.

As a result of the above observation we decided to
develop an interactive graphical simulation system,
which allows the user to build models using symbols and
commands that he is familiar with and which are commonly
used in his profession. The emphasis of this system is
on manufacturing systems simulation as this area has the
most demand. In the course of designing such a system

the following goals were set:

l. To develop an intermediate language, based on an
existing general purpose simulation language, which
lends itself to graphical representation so that
simulation results can be verified by comparing them
with results from existing case studies. This
provides the general purpose simulation capabilities
within the system.

(1) Iconic communication concerns the use of images to
convey ideas or information. The images are chosen to
relate ideas either by resemblance (pictorial), by
analogy {symbol), or by being selected from a

previously defined and learned group of arbitrarily
designed images (sign).

2. To select a powerful and widely used simulation
language as the target language. The graphical
model will be translated into the target language,
then the equivalent model will be compiled and
executed. This would eliminate the need for
development of an internal simulation mechanism and

other features which exist in all simulation system.

3. To provide iconic symbols within the graphical
language which makes the modeling of manufacturing
systems eésier for the end user. Figure 1-1 shows
the relationship between the principal languages
used in the development of the Graphical Simulation

System.

The General Purpose Simulation System (GPSS) has
been selected as the Dbasis for the intermediate
simulation language (BCSL), and SIMSCRIPT as the target

language.

This thesis describes the methodology and technical
descriptions of the Graphical Simulation System. It is
divided into five chapters and five appendices. The
remainder of Chapter 1 presents a brief survey of
existing simulation languages and the rationale behind

the selection of the target simulation language and the

intermediate simulation language basis. Later this
chapter provides a summary of current attempts to

develop interactive Graphical Simulation Systems.

Iconic Graphic Model in
Block Graphic Symbolic Language

v

Intermediate Simulation Model in
Block Command Symbolic Language

v

Target Equivalent Simulation Model
in SIMSCRIPT

v

Machine Code

Figure 1=1. Languages Used in the Development of GSS

10

Chapter 2 contains an overview of the Graphical
Simulation System followed by a detailed technical
description of the Block Graphic Symbolic language, the
Block Command Symbolic language and the BCSL compiler.
Chapter 2 discusses the methodology behind the
Translation of BCSL and the differences between GPSS and

BCSL.

Three case studies have been selected to be studied
in detail in Chapter 3. These problems were taken from
the GPSS book by Schriber [41]). This makes it possible
to compare the simulation model and simulation run
results of the Graphical Simulation System with known

results given in Schriber's book.

Chapter 4 discusses the advanced features of the
Graphical Simulation System specifically aimed at the
Block Command Symbolic language. This chapter describes
how a model can be developed for Flexible Manufacturing
systems and how GSS can be expanded by adding new blocks
to the Block Graphic Symbolic language and Block Command
Symbolic language. The use of MACRO blocks to develop
new blocks and an alternative model for production shop

simulaticon is alsoc discussed.

11

Chapter 5 contains the conclusions drawn on the
basis of the experience gained from development of the
Graphical Simulation system and its wusage to simulate
general purpose and manufacturing systems. Performance
and potential problems with the Graphical Simulation
System are also discussed. Finally, future research

possibilities based on this research are presented.

Appendix A,B and C contain a summary of all the
blocks implemented in the GSS so far. Appendix D
contains the GSS users guide and information about its

operating environment.

12

1.3 Survey Of Existing Simulation Languages

Simulation languages are languages in the more general
sense. They go beyond simply linking the user with the
computer as a means of conversing. They afford the user
an aid to problem formulation. Having a vocabulary and
a syntax, simulation languages are descriptive, and
consequently their users tend to think in them. Kiviat
[{22] believes that the two most important reasons for
utilizing simulation languages as opposed to general
purpose languages, are programming convenience and
concept articulation. Concept articulation is important
in the modeling phase and in the overall approach taken

for system experimentation,

Shannon and Phillips [44) describe Vénother
advantage of simulation language, namely their use as
communication and documentation devices. Emshoff and
Sisson [14] believe that all simulations require certain
common functions which make simulation languages
different from general algebraic or business programming
languages. Among those functions are the need to create
random numbers, advance time (either by one unit or to
the next event), record data for output, perform
statistical analysis, arrange outputs in specified

formats and detect inconsistencies and error conditions.

13

Specifically, simulation of discrete events requires
specific operations to determine the type of events, to
store and retrieve data from lists (including the event
list), call subroutines to adjust the state variables as
a result of the events, and identify specific state

conditions.

Simulation languages are categorized according to
the conceptual manner through which the host language
represents real-world activities (world view of a
simulation language). The implication of a language's
world view is that when utilizing a particular language,
the user is forced to view the world in the same manner
(Shannon [43]), and accordingly this restricts the arena
of language application. Three world views are
prevalent: event orientation, activity scanning, and

process orientation.

Using an event-oriented world view, the system to
be modelled 1is described in terms of status disturbing
events. The analyst constructs a simulation model by
defining each event which can occur in the system,
specifying the cause and effects of each event, creating
mechanisms to execute event changes within the
simulatién model, logically 1linking each event te

another, updating time and statistics at each status

14

disturbing event and collécting statistics of interest.
SIMSCRIPT (Kiviat [(23]), SPEED, MAP-1 (Miner [30]) and
special options within sLAM II (Pritsker [38]) are

basically event-oriented.

In some simulation models, events which are known
to occur <c¢annot be scheduled. However, it is usually
possible to define the event mechanism in terms of those
physical influences which trigger the event at an
unknown time. In these models the simulation time is
increased by units of time and all the activities in the
model are scanned to find out if a change of state
({event) has occurred. The mechanism by which events of
this nature are monitored is called activity scanning
and is normally used for continuous simulation modeling.
Activity scanning is provided by MICRONET, SIMAN (Pegden

[(37]) and SLAM II.

Using a process orientation, the simulation
language views the world as being composed of sequences
of events which occur in a definite pattern. For
example, a single channel queueing model posesses a
waiting line, a service mechanism, and structured rules
describing how items move through the service system.
The entire segquence of activities can be combined into a

single simulation "Command Module" which executes a

15

fixed set of processing rules.

Although gqueue disciplines and service time
distribution times may vary, once they are specified,
the sequence of events is wuniquely determined. GPSS
(Sschriber [41]), Q-GERTS, GENS, SIMPL/1, SIMULA, GASP,
and the new version of SIMSCRIPT II.5 (the latest
version of SIMSCRIPT) contain process oriented world
view. The fundamental and direct influence in this
world view of these langauges is the ability to model
complex real-world systems within a "no programming”
environment. GEMSII, Q-GERT, SIMAN, MICRONET, PSIM,
Interactive, IDSS 2.0 (Yancey [49]) and portions of SLAM
IT all use network-type symbolism to specify system

behavior and control.

A summary by Christy and Watson [11] of industry
practices shows that 40% of their respondents used GPSS
(this includes GPSS/H which is - an improved
implementation of GPSS) as their primary simulation

language, 19% used SIMSCRIPT and 6% used SLAM.

16

1.3.1 Selection Of The Base Languages -

In order to develop the Graphical Simulation System
we need to select a graphically representable simulation
language as the base for the intermediate language and a
powerful simulation language as the target language.
The GSS first translates the graphical models into the
intermediate language and then into the target
simulation language. The resulting model is equivalent
to the original graphical model. Finally, compilation
and execution of the equivalent model 1in the target
language will generate the simulation results. The
following criteria have been established for selection

of the target simulation language:

l. The simulation language must Ssupport a
process-oriented world view because process-oriented
simulation languages tend to be more structured and
modular which makes it possible to build an iconic

(symbol oriented) language on top of them.

2. The selected simulation language must be widely used

and available on most commercial computers.

3. The selected simulation language must also support
certain features of a popular general purpose

language so that the user-written routines have

17

maximum flexibility and strength. These features
must 1include arithmetic and list processing

capabilities.

4. The language must provide flexible output

generation.

5. It is desirable for the compiler to be written in
the same language as the target language so that the
need for an additional compiler is eliminated. For
example, if SIMSCRIPT was selected as the Target
language and FORTRAN selected to write the SIMSCRIPT
Translator, both FORTRAN and SIMSCRIPT compilers
would be needed to install the Graphical Simulation
System. This makes the Graphical Simulation package
more transferable across machines. Therefore, it is
desirable for the selected language to support the
features needed to build a compiler, 1like Text

processing capability.

The most popular process oriented language is GPSS
(General Purpose Simulation System). The principal
appeal of GPSS is its modeling simplicity in a
non-programming environment. A GPSS model is
constructed by combining a set of standard blocks into a

block diagram which defines the logical structure of the

18

system, For this reason, GPSS was selected as the basis
for development of the intermediate language (BCSL).
However GPSS suffers from the following shortcomings

which make it undesirable as the target language.

l. GPSS does not provide the features of a g¢general
purpose programming language and doces not support

list or text processing features.

2. GPSS is limited in computing power and lacks the
capabilitiy of floating point and real arithmetic.
As a result, the GPSS simulation clock 1is integer

- valued.

3. GPSS does not provide a flexible report capability
which makes it undesirable for generating individual
tailor made outputs of simulation results (GPSS/H

provides this capability).

4. To generate samples from distributions other than
the uniform distribution, a user written table
function must be included in the model. This is in
disaéreement with the general strategy of building
models using symbols. (This has been improved 1in

GPSS/H.)

19

5. It 1is difficult to trace the model parameters

step-by-step.

6. Modeling complex systems usually requires knowledge

of the internals of GPSS.

Another well known process-oriented simulation
language is SIMULA which 1is a superset of ALGOL60.
SIMULA has many statements that make it attractive for
performing discrete event simulation, including advanced
list processing capability. SIMULA is not widely used
in the United States but it has received considerable
attention in Europe. For more discussions of SIMULA

refer to Hills [18].

SIMSCRIPT II.5 is one of the most widely wused
simulation languages and is available on most commercial
computers. It satisfies all of the selection criteria
established for the target language. One of the
principal appeals of SIMSCRIPT as a programming and
simulation language 1is 1its English-like and free-form
syntax. Programs written in SIMSCRIPT are easy to read
and tend to be self documenting. Recently a
"process~oriented world view"” support has been added to

SIMSCRIPT II.S5 (Russell [40]).

20

SIMSCRIPT II is a computer language developed by
Kiviat{23] , Villanueva and Markowitz and the history of
SIMSCRIPT development is given by Markowitz, [27]. The
language had originally been divided into five levels.
The first three levels provide a power comparable to
FORTRAN, ALGOL and PL/1. The fourth level contains the
statements that provide a structure for modeling using
entity, attribute and set concepts (list processing).
The fifth level contains the statements for time
advance, event processsing, generation of samples, and

accumulation and analysis of simulation generated data.

The process~oriented SIMSCRIPT simulation model
consists of a preamble, a main program and procéss
subprograms. The preamble is not part of the executable
program and is used to define the elements of a model.
The preamble also includes declarative statements for
defining all variable types, arrays and needed

statistical data accumulation and analysis.

The main program is used for initializing
variables, scheduling the activation of the process
subprograms, and starting the simulation. The process
routines are used to represent arrivals of new objects
in the model, and a representation of what happens to

the objects within the modelled system. The process

21

routines also provide the mechanism for termination of
the simulation. The SIMSCRIPT simulation language
provides text processing, list processing and flexible
output generation capabilities which make it the most
desirable simulation language to be used as the base
language for development of Graphical Simulation

Systems.

22

1.4 Graphical Man Machine Interface For Simulation

In recent years, the importance of improving the user
interface for simulation systems has been recognized by
the industry. Aids have been developed to specify
computer readable forms of models, manage simulation
inputs and results, analyze simulation results, present
simulation results graphically and animate simulation
runs. Finally, since early 1983 several projects have
been directed towards development of graphical input

capabilities.

In this section I will present a summary of
existing simulation systems and languages that have been
introduced or are being enhanced to provide a graphical
user interface for simulation modeling. These include;
the very recent extention of SLAM II (TESS) and a new
version of SIMAN, both of which are directed toward
graphic input support, although I have not vyet seen a
demonstration of their graphical input capabilities.
Also, the Modelmaster (GEFSM) and a graphic interface
developed for GPSS (in Rensselaer Polytechnic) are
discussed. None of these systems provide the ease of

use, expandability and flexibility of the GSS

23

TESS, The Extended Simulation System (Standridge
[46]), provides an integrated framework for performing
simulation modeling. TESS provides capabilities for
animating runs without programming, and generating
graphs of all simulation results. Report generation and
the post-run analysis of simulation results are
included. 1Its goal is to provide also capabilities for
graphically building SLAM II networks and schematic

models.

A nonprocedural command language provides access to
the graphical builders and forms system as well as
selects data for reports, graphs, analysis or animation.
SLAM is a FORTRAN-based simulation language. It
supports the three modeling world views in a single,
integrated framework. SLAM II is the latest release of
SLAM. It permits process-~interaction, event-scheduling
and continuous modeling perspectives, or any combination
of the three. SLAM is the culmination of the family of
languages developed by Pritsker and others, starting
with GASP, GERT, and Q-GERT. Using TESS requires
learning its command language and in addition SLAM II is

rather a complicated language to learn.

24

SIMAN (Pegden [35])is a general purpose simulation
language which allows the adoption of an
event~scheduling, process-interaction, or continuous
approach, or a mixture of the three approcaches. The
language includes special features which facilitate the
simulation of manufacturing and material handling
systems, These special features include statements ¢to
simulation conveyors, robots, automated stérages and
retrieval systems, and manufacturing cells. The IBM-PC
version of SIMAN will be augmentable by a menu driven
support program which wiil allow the graphic and
interactive construction of a model, rather than
statement input. A post processor is available for the
IBM~PC to capture the dynamic behavior of a system
through the graphical animation of simulation results.
SIMAN was developed by C. Dennis Pegden, a faculty
member of Pennsylvania State University. The graphical
version of SIMAN on IBM-PC (when it becomes available)
. represents the closest of these systems to our original
goals. SIMAN 1is still rather difficult to learn and
does not provide the flexibility of SIMSCRIPT user

written subroutines in GSS.

25

Modelmaster (Graphically Enhanced Factory Modeling
System) 1is a Manufacturing Simulation System developed
by the General Electric Company (Duersch [12]). This
system provides facilities for modeling manufacturing
units, material handling, equipment and robots. It is
designed specifically for Manufacturing Engineers or
facility planning personnel. The user c¢reates the
graphic layout of workcenters and equipment on the video
screen, followed by definition of job sequences and
transporter paths. The software package then leads the
user through a menu-driven question and answer session,
based on the preceeding graphic input, in a
programming-free environment. The simulation model is
configured aﬁtomatically and runs in a manner
transparent Ato. the user. Simulation results are
available in the form of summary statistics reports,
graphs of queue contents and layout animation. This
system 1is limited to manufacturing simulation and does

not provide any flexible output generation.

A research activity in the Rensselaer Polytechnical
institute, headed by Shin-Miao Chin [10], has developed
a front end graphical interface for the GPSS. The block
diagrams can be interactively created on a CRT screen
and the necessary operand input for each GPSS command

block 1is preceeded by a description of the operand (the

26

user does not need to refer to the wuser manual). The
diagram c¢an be modified on the CRT screen by using
interactive devices. The user can change, 1insert, or
delete the components by using a light pen, cursor or
keyboard. The capablities of this system are limited to
the GPSS language, which does not provide flexible
output generation. It is slow and suffers from other
GPSS shortcomings (refer to section 1.3.1 for comments

on GPSS).

27

2 GRAPHICAL SIMULATION SYSTEM

This chapter contains a technical description of the
Graphical Simulation System and its components. The
Graphical Simulation System provides the user with an
Iconic Graphical Simulation language and an interactive
user interface. This system allows the user to
graphically represent a simulation model, interactively
build the model, translate the model into an equivalent

SIMSCRIPT model and obtain the simulation run results.

Symbolic icons are the primary means for modeling
this simulation system where the shape of each icon
represents its function. The symbols are c¢onnected
together wvia linear flow grapﬁs.which show the movement
of entities through the simulation model. The
sequencing 1is depicted by arrows which control the flow
of the entities through the entire model. The entities
represent "things" such as work-pieces, information or

people which flow through the real system.

An overview of the Graphical Simulation System’'s
architecture and its components including interactive
user interface, BCSL language compiler and output
generator is followed by a description of the Iconic

Graphical Simulation language (Block Graphic Symbolic

28

Language) and the underlying Block-Command Symbolic
Language (GPSS-like language). The iconic simulation
language 1is expandable which makes it possible to
develop special purpose simulation packages and generate

customized output reports.

In this chapter we describe the translation
methodology and techniques wused in the development of
the graphical simulation language. We demonstrate - how
the graphical representation of a model is translated
into the equivalent SIMSCRIPT model and how simulation
run results are generated by providing a detailed
description of the Block-Command Symbolic language
compiler, its components and outputs. Moreover, we
present the SIMSCRIPT equivalent of several key blocks,
thereby establishing a better unders;anding of the

general translation strategy.

29

2.1 Overview Of Graphical Simulation System

The Graphical Simulation System consists of three
major subsystems: frontend user interface including
graphics - and alphanumeric input capability,
Block-Command Symbolic language compiler, and OQutput
Display Generator (Figure 2-1 shows an overview of the

system).

The user creates a graphical image of the
simulation model, through the wuser interface of the
Graphical Simulation System, which will be stored in
"Block Graphic Files". In order to develop the graphic
representation of the model the user will use a graphics
terminal, joy stick, light pen (or cursor monitor) and a

set of function keys.

The user interface (GRAPE) is a menu driven, user
friendly tool, which allows the user to build the
simulation models and interact with the rest of the
simulation system. Thé user 1interface supports and
guides the user in every step of development,

compilation and execution.

The graphical and alphanumeric data representing
the simulation model, including block-flow structure,

relationship between building blocks and characteristics

30

of each block is converted to the Block-Command Symbolic
language. The BCSL compiler then generates executable
machine code to simulate the model behavior. This
system is based on a general purpose simulation
programming language called "Block-Command Symbolic
Language"”. The Block-Command Symbolic Language" |is
powerful, easy to wuse and expandable. This language
allows the user to tailor fit the simulation system
towards his own application by creating new special

purpose Block-Commands.

The output generator executes the machine code,
gathers required statistics, and later, generates and
saves a hard copy of the simulation run. It is also
possible to graphically display the animated state of
the model as the simulation progresses using the output

display generator.

31

> c
USER
INTERPACE
V
GRAPHICS
TERMINAL e - = = BCSL COMPILER
|
)
t
i
t
L 4
<« auTRT DECUTARLE
DISPLAY poday
GNERATCR

Figure 2-1. Overview of Graphical Simulation System

32

2.1.1 User Interface - The User Interface for the
Graphical Simulation System (GRAPE) contains five basic
building blocks; alphanumeric interface, graphic
support, system utilities, BCSL generator, and help
facility. Figure 2-2 shows an overview of the user

interface architecture.

The alphanumeric interface is primarily incharge of
all the non-graphic 1I/0 processing. These include
driving the menu, processing the user commands and data
(from key board, light pen or joystick),‘and scheduling
activities within the system. The alphanumeric
interface interacts with other parts of the system,
starts their activities and displays their messages on

the screen.

The graphic support 1is in charge of building,
modifying, displaying, and verifying the graphic model.
The graphic support is built on top of the GDDM package
which provides an interface for different IBM terminals
(see Appendix D for further environmental information).
The graphic support develops an online data Dbase
representing the model. This data base contains
information obout each block, their parameters and their
connection path . The graphic representation of each

block is saved in an ICON data base which is loaded to

33

the on-line data base.

The on line data base consists of two doubly linked
list structures. Each SYMDATA structure represents a
block, and its parameters, where the shape of the block
is selected by an index pointing to the ICON data base.
Each LINDATA structure represents a connection line

between two blocks.

The system utilities can display or print any file
generated by GSS. These include the intermediate
language (BCSL) translation of the .model, final
translation (SIMSCRIPT equivalent) of the model, the
simulation run results, and the compilers error
messages. In addition, a plot of the graphic model is
available by using tﬁe laser ©printer. The system
utility loads the online data base from the disk, and
saves the online data base in the disk resident
files(The disk resident data base also includes the
header file, representing the general model

characteristics).

The help facility in cooperation with the
alphanumeric interface assists the user in every stage
of the model development. Every function in the user
interface has a corresponding information file that the

help facility displays upon the users request, The BCSL

34

generator is developed as part of the user interface and
it is described in more details within the BCSL compiler

section.

35

1%

L804INS FIveviva
DIHIVEO E L

(L2 - T - I

1

IV AHAUNI J SN
DTUINNVHI W

WALSAS

HOLVHINID
508

ALIHOvS
d1H

10
HO INIYd

ISveviva
1594

Overview of User Interface

Figure 2-2,

36

2.1.2 Block-Command Symbolic Language Compiler - The
Block-Command Symbolic Language Compiler (SIMSCRIPT
Tanslator) consists of three components; BCSL Compiler
Pass 1, BCSL Compiler Pass 2 and SIMSCRIPT Compiler.
Figure 2-3 shows an overview of the Block-Command
Compiler. The Block~-Command Symbolic Code Generator
receives the Block-Graphic Symbolic data from the "Block
Flow Graph File", the "Data String File" and the "Block
Connection File". From this data the BCSL code
generator constructs the "Block-Command Symbolic File".
The Block Command Symbolic Code generator merges the
graphical and alphanumerical information, and checks for

semantics, syntax and typographical errors.

There is a one-to-one relationship between each
line of the "Block-Command Symbolic" Code énd the blocks
in the "Block Flow Graph". The BCSL compiler (SIMSCRIPT
translator) generates the equivalent SIMSCRIPT code for
each line of "Block-Command Symbolic"™ language. The
BCSL compiler consists of two passes. Pass 1 generates
SIMSCRIPT processes and routines for each block in the

"Block-Command Symbolic" Code.

37

_I
|
|

al

=

51

i

Ry
|
i
|
i

A

i {
I |
| GRAPHIC WD
—d WD
! SHELIC SeoLic | SPELIC
' LANGUAGE oxe I e
' CRNERAT(R
! |
| |
———————————— ‘r
e N
XL
TRANSLATOR BODY
LISTIG COPILER PASS 1 o
' oxE
SUPPLIED s
DATA DATA
mz STRECTRES
Y
BCsL
COPILER PASS 2

Figure 2-3. Block Command Symbolic Language Compiler

Considering the fact that SIMSCRIPT consists of
several sections (i.e., preamble, main, processes and
routines), each block-command affects several sections
of SIMSCRIPT depending on the type of block. Pass 2 of
the BCSL compliler generates the main, preamble, output

generator, initialization and monitor routines.

Finally, all the SIMSCRIPT routines generated by
Pass 1 and Pass 2 in addition to user supplied routines
are concatenated in one file and passed to the SIMSCRIPT
compiler. The SIMSCRIPT compiler uses this file to
generate machine executable code which will simulate the
model behavior in real time. Figure 2-4 shows the
transformétion of data in the Graphical Simulation

System.

The BCSL compiler provides the system with
SIMSCRIPT output generation capabilities, both as
default and as user requested (tailor-made) outputs.
The compiler also allows non-standard blocks to be added
to the graphical language which <c¢reates customized

special purpose simulation languages.

In addition, it is possible to generate the "Block
Command Symbolic File™ using editors or modify an
existing one generated from Block Graphic Symbolic

Language. Figure 2-5 displays a modification to the

39

compiler architecture of Figure 2-3, reflecting the user

written BCSL input.

40

BLOCK GRAPHIC <
SYMBOLIC LANGUAGE I
e,
s U
GEMERATE 2, DSSEXPONENTIAL, ...
REQ W STAT S
BLOCK COMMAND < .
SYRBOLIC LANGUAGE i
TERMINATE
S|
- PRE NBLE ‘
DEFINE JOB AS PROCESS
OEFINE TRANSPORT AS RESOURCE
SIMSCRIPY < HAIN
PROCESS GEN, J08
PROCESS J0B

MACHINE CODE

QUELE STATISTICAL
SDULATION RESULTS { FACILITY UTILIZATION

Figure 2-4. Data Flow in Graphical Simulation System

41

G\-—»

Figure 2-5. Adding user written BCSL

42

2.1.2,1 Pass 1 Of The BCSL Compiler - Pass 1 of the
BCSL compiler reads one line of "Block Command Symbolic"
code at a time, It parses each 1line by defining
operation, operands and label, then it generates a
SIMSCRIPT equivalent of the block. In addition pass 1
creates and adds new elements to appropriate set data
structures. These elements contain the characteristics
of each block in the model and will be used by pass 2 of
translator. Usually each block translates into
predetermined "raw" SIMSCRIPT code. The raw SIMSCRIPT
code is converted to executable SIMSCRIPT code by the
raw text processor. The raw text processor is the
central part of the SIMSCRIPT code generator. It
converts the raw text by replacing the undefined

primitives by their substitutes in the block operands.

2.1.2.2 Pass 2 Of The BCSL Compiler - During the
processing of each block 1in Pass 1 of translator,
several tables {set data structures) are prepared . so
that each block may cause several elements to be created
and added to appropriate sets,. These sets constitute
the basis for Pass 2 of the translator. They save the
characteristics of the processed block, the needed
variables, statistic counters and required output

definitions. Pass 2 processes all the set structures

43

prepared by Pass 1 and generates the definition
statements 1in the preamble section, initialization
commands in the initialize routine, output ccmmands in
the output generation routines and monitored routines
for extra étatistical analysis and flow-control of

processes.

44

2.2 Block Graphic Symbolic Language

The Block Graphic Symbolic Language (BGSL) is a ¢general
purpose simulation language which uses graphic images to
interact with the user. Block diagrams are the primary
means for modeling discrete systems in this simulation
language. These diagrams are linear top-down flow
graphs which show the movement of entities through the
simulated system. The shape of the individual blocks
indicates their function. The sequence of events is
represented by arrows which control the flow of entities

from block to block through the entire diagram.

These entities are used to represent work-pieces,
information or people which flow through the real
system. Each entity may be individualized by assigning
attributes to describe or characterize it. For example,
an entity representing a work-piece might have
attributes corresponding to the due date and processing
times. As the entities flow from block to block, they
may be delayed, destroyed, combined with other entities,
etc., as determined by the function of each block.
Figure 2-6 displays the silhouette of a typical "Block

Graphic Symbolic Language" program.

45

BGSL is considered a very high 1level programming
language, which 1isolates the programmer from many
syntactical barriers and 1limitations. BGSL is an
integral part of the Graphical Simulation System. This
system interactively guides the user through each step
of the construction via selection menus, help messages,

guiding messages {(what to do next) and error messages.

BGSL is an expdndable language which makes it
possible to define new blocks for the language as the
need arises. fhis allows the language to grow and
better meet the user_requirements as time passes. Using
this capability, new blocks have been added for
simulation of Flexible Manufacturing Systems.
Simplicity of model generation and system support
throughout the model building and verification allow a
non-sophisticated user (without programming background)
to generate rather complicated simulation models within

this graphical simulation system.

46

%i

1@ |

!

\

'E‘igure 2-6. Silhoutte of a Typical Block
Command Symbolic¢ Language

47

2.2.1 BGSL Elements And Programming Concept - The Block
Graphic Symbolic Language consists of three major
elements; Graphical Command blocks, block operands
(attributes) and connection lines. A graphic terminal
provides the user with a window to a two dimentional
"Graphic domain®™. The user can move around this domain,
zoom in, zoom out and select any element to add, delete

or modify.

In this language the user builds a simulation model
by selecting the blocks, adding them to the graphic
domain, defining their attributes and c¢onnecting them
together. Once the user starts building a model
(selects “BUILD MODEL" from the menu), an option 1list
will be displayed (Figure 2-7) which allows the user to
add, delete, modify and search for any blocks. When the
user selects ADD BLOCK, a list of available blocks is
displayed (Figure 2-8) from which one block may be
selected. Then the user will be asked to select a
location in the graphic domain into which to insert the
selected block. Later the operand query menu containing
the name and description of all needed attributes for
that block 1is displayed and the user will be asked to
provide data for each item. Figure 2-9 shows the query
menu displayed for the "GENERATE" block, and Figure 2-10

for the "ADVANCE" block.

48

USE THE LIGHT PEN TO MAKE A SELECTION FROM THE MENU:

CURRENT MENU PATH: /BUILD MODEL

L R L L e i R e T P e b e -

ADD BLOCK LOCATE BLOCK
CHANGE BiOCK INFO MOVE BLOCK DOWN
CONNECT BLOCKS MOVE BLOCK UP
DELETE BLOCK | Z0O0M IN

DELETE LINE Z00P OUT

LABEL - BLOCK

T e A e ——— . T e . A o sl -

PKF: 1 = HELP 3 = CANCEL/EXIT
7 = SCROLL UP 8 = SCROLL DOWN

10 = SCROLL LEFT 11 = SCROLL RIGHT

Figure 2-7. "Build Model" Selection Menu Display

49

USE THE LIGHT PEN TO MAKE A SELECTION FROM THE MENU:

CURRENT MENU PATH:

/BUILD MODEL/ADD BLOCK

ADVANCE GATESRG PRIORITY START
ASSEMBLE GATHER QTABLE STORAGE
ASSIGN GENERATE QUEUE STORAGES
BIVARIABLE INITIAL RELEASE TABLE
BUFFER LEAVE REALLOCATE TABULATE
CLEAR LIRK RETURN TERMINATE
DEPART LOGIC RMUT TEST
ENTER LOOP SAVEVALUE TRANSFERC
EQU MARK SEGMENT TRANSFERS
FURCTION MATCH SEIZE TRANSFERU
FVARIABLE MATRIX SELECTLOG UNLINK
GATELOG MSAVEVALUE SELECTMM VARIABLE
GATELOC PREEMPT SELECTREL WILDCARD
GATEFAC PRINT SPLIT

PFK: 1 = HELP 3 = CANCEL /EXIT

7 = SCROLL UP 8 = SCROLL DOWN 10 = SCROLL LEFT

11 = SCROLL RIGHT

Figure 2-8.

"Add Block" Selection Menu Display

50

SUPPLY THE FOLLOWING INFORMATION FOR THE COMMAND SELECTED,
THEN PRESS ENTER
GENERATE'S REQUIRED PARAMETERS

MEAN TIME :Z:>

SPREAD OR FNC MODIFIER -z :.>
OFFSET INTERVAL i "_'>
LIMIT COUNT - =

PRIORITY LEVEL ——

NO. OF PARAMEIERS = :.:>
TYPE OF PARAMETERS i :>
TRANSACTION NAME i

2ND DISTRIBUTION FNC PARAMETER — —

PPK: 1 = HELP 3 = CANCEL/EXIT

Figure 2-9. GENERATE Block Parameter Query Display

51

SUPPLY THE FOLLOWING INPORMATION FOR THE COMMAND SELECTED,
THEN PRESS ENTER

ADVANCE'S REQUIRED PARAMETERS

MEAN TIME - '>
SPREAD OR FUNCTION MODIFER ===

SECOND FUNCTION PARAMETER -= :>

PFK: 1 = HELP 3 = CANRCEL/EXIT

Figure 2-10. ADVANCE Block Parameter Query Display

52

Typically, the last step in building a model is to
connect the blocks. Each connection line needs a source
block and destination block. Each block can be entered
only from the top and exited from the sides or bottom.
Several entry lines can be connected to the top of each
block while no more than three exit lines are possible;
one from each of the right, left or bottom sides. The
user can choose to connect several blocks in one step

which speeds up building the model.

Each added block is assigned a default label except
when the user decides to define his own label. In the
latter case, the user can select to label any block or

change the label on any block.

Models in the Block Graphic Symbolic Language are
divided into several segments. There are three segment
types;: definition segments, control segments and model
segments. Each model can have several definition,
control or normal segments, even though usually there is
only one definition and control segment and several

normal segments in a model.

The order of blocks in the model segment represents
the order in which events occur for each transaction and
the flow of the transactions in the model. Typically,

each GENERATE block requires a normal segment block

53

connected to it so that the connection source is the
segment block and destination is the GENERATE block.
This block 1is called "father of GENERATE" block.
Similarly the next block connected to the GENERATE block
is its "son". Each block in the model must have a
father except the segment blocks. All the blocks
graphically connected to each other and to a segment
block constitute a segment (they all have the same

ancestors).

Figure 2-11 shows a model with three segments.
Notice that the normal segment block is the father of
the GENERATE block and the GENERATE block is the father

of the SEIZE block.

There could be any number of termination blocks in
each normal segment. Figure 2-12 shows a segment with

two terminate blocks.

Figure 2-13 illustrates that two or more segments
can share the same terminate block; However this
modeling technique is not recommended as it may lead to

confusion.

54

Figure 2-11.

55

Model Segments

Figure 2-12. Segment with Two TERMINATE Blocks

W
T

Figure 2-13. Data Flow in Graphical Simulation System

57

Definition segments are used to - define and
initialize distribution functions, tables, matrices,
variables, storage, transporters and work stations.
Control segments are used to start the simulation, reset
statistics and rerun the model. Even though blocks in
the definition and control segments are connected
together, this does not imply any entity flow nor
require any special order for blocks. Each block can
only belong to one father even though ;t could belong to
different segments. Father-son relationships in a BGSL
model are used to define the order in which Block

Command Symbolic Language statements are organized.

Usually, translation of a block in BCSL follows the
translation of its father block. The only exception is
when a block has more than one exit line (this block has
several sons). In this case one of the son blocks is
selected to follow the father's block translation in the
main line of code (main branch), and the other sons are
selected to START new sub-branches. Each sub-branch is
labeled and it is connected to the main branch via a
Transfer Command to its label. Figure 2-14 shows how a
father block and its multiple sons are translated into
BCSL. In this figure block "F" has one father (GF) and
three sons (S1, S2, and S3). Each son has a grandson

GS1l, GS2 and GS3 each following their father's block

58

translation. Labels L1 an L2 start the sub-branches for
each additional son. These labels are referenced by the

father's block attributes.

59

BGSL MODEL

!

]

F

Ll L2

GSl GS2 GS3

BCSL TRARSLATION

L1

L2

GF

4
Sl

G5l

§2

G52

83

GS3

+eeyll, L2

Figure 2~14. A BGSL Model and its BCSL Translation

60

2.2.2 Block Command Symbolic Language -

The Block Graph Symbolic Language is based on an
alphanumeric language called "Block Command Symbolic
Language" ({BCSL). BCSL is similar to and upward
compatible with the GPSSV language. Usually each block
in BGSL translates into a line of BCSL, where the
attributes of the block provide the command operands.

The format of BCSL is as follows; ’
Label Operation ~ Operandl, Operand2, ...Operand8.

 The order in which the commands will be located in BCSL
are determined by the connectivity and topography of the
graphic language and segments in which the blocks
appear. The -user can select BCSL as input to the
system, representing a simulation model. This is done
by using an editor and generating a file containing BCSL

code (GPSS-like language).

There is a one~to-one relationship between the BGSL
blocks and the BCSL commands. The same applies to the
attributes of each block. Operands used in BCSL and
BGSL generally follow the rules and conventions of GPSS
operands. Except that, any algebraic statement is

acceptable where GPSS only accepts integer values.

61

standard GPSS numerical attributes are also available to

the user.

Each statement in BCSL is represented by a block in
BGSL, even for statements used in definition and control
segments. (These statments are referred to as
"non-block” statements in GPSS.) All of the blocks in
the definition and control segments have the same

pictorial representation in BGSL (a rectangular shape) .

Appendices A and B contain a summary of all the
commands in BCSL which have been implemented in the
current state of the Graphical Simulation system. A
picture of each block, name and attributes needed for it
are provided and a list of standard numerical attributes

are included in Appendix C.

A detailed description of GPSS compatible blocks
can be found in Schriber [41]. New blocks are defined
in "Advanced Features" section and the next section
discusses the differences betwen the BCSL and GPSSV

standard blocks.

In the remainder of this thesis we will use BGSL
Blocks and BCSL Commands interchangeabily and will not
distinguish between them except where there are

implementation differences.

62

2.3 Methodology Of Translation To SIMSCRIPT

The process oriented simulation world view for modeling
of discrete systems has been used as a basis for
development of SIMSCRIPT equivalent code. The SIMSCRIPT
Translator provides the Block Command Symbolic Language
with features that represent the dynamic and static
objects of a system. The entities that represent
dynamic objects of a system are called transactions.
The static objects of a system are currently represented
by several blocks; FACILITY, STORAGE, workstation and
transporter. The FACILITY and transporter wusually
simulate a single resource object and the STORAGE and
workstation simulate multiple-identical resource
objects. During the execution of a BCSL Simulation
model, the transactions move through the model
(simulation system) from block to block. As they move,
they interact with the static entities or resources of
the system represented by various blocks. The main
functions of most of these blocks are to create and
destroy transactions, to alter their routings, and to
delay their movements according to the logic of the
model. The other blocks including control and
definition blocks are provided to support the simulation
features that are needed for building a simulation model

and for performing simulation experiments.

63

The equivalent SIMSCRIPT program for each BCSL
model 1is broken down ingo several standard and non
standard sections. These include; preamble, main,
initialization, main output generator, dedicated output
generators, transaction generator processes, transaction
processes, left monitored routines and user created
routines. The generated SIMSCRIPT equivalent program is
modular and well structured which facilitates future
expansion of the sourcé languages (BGSL and BCSL).
These features also make the debugging of the SIMSCRIPT
model easier by providing better traceability and

readability for the generated code.

The basic idea in translation of BCSL commands to
SIMSCRIPT language is based on the fact that each block
is translated into a predefined set of SIMSCRIPT
statements. The attributes of each block will supply
the input data for their corresponding variables and

parameters in SIMSCRIPT equivalent program.

Translation of the GENERATE block plays an
important role in the development of the translation
methodology for Block Command Symbolic ' language into
SIMSCRIPT. The GENERATE block represents the mechanism
for introducing arrivals of new transactions into the

system from the external world. 1In other words, it is

64

considered a source of transactions. Each GENERATE
block translates into SIMSCRIPT as a "Transaction
Generator Process", which is in charge of creating and
activating certain types of transactions and introducing
them into the modeled system. This process can be
characterized by describing the number of objects that

arrive and specifying the time between arrivals.

The GENERATE block translation also initiates
corresponding "Transaction Process” in generated
SIMSCRIPT equiﬁalent programs. A Transaction process is
a representatipn of what happens to the transaction
within the modeled system after it is introduced to the
system by the Transaction generator. A process may be
thought of as a sequence of interrelated events
separated by lapses of time, either predetermined or

indefinite.

In Block Graphic Symbolic Language the chain of
blocks connected to a GENERATE block in the same
segment, represents what happens to the transaction
within the modeled system. Each block in the model
segment represents an action, event or check point
happening to the transaction. This block in turn
translates into a section of the transaction process

initiated by the GENERATE block in the same segment.

65

The flow of transactions can be
nondeterministically suspended or permanently terminated
as the transactions pass through segment blocks. The
TEST and GATE blocks under certain conditions can cause
a transaction process to suspend itself. These blocks
will cause the generation of left-monitored routines.
The left-monitored routine will resume the transaction

process when the proper conditions are met.

The TERMINATE block represents a sink for the
transactions where transactions finally leave the
modelled system and disappears. This block translates
into the End Statement for the transaction process which
causes the transaction temporary entity to be deleted

from the model databse.

Figure 2~15 shows how a typical normal segment in
Block Graphic Symbolic language translates into

SIMSCRIPT statements.

In order to generate the preamble, initialization,
output generation and left-monitored routines, a list of
processes, resources, variables, and required
statistical analysis is needed. Utilizing set data
structures in SIMSCRIPT, the BCSL Compiler classifies
the BCSL block characteristics into predetermined data

structure elements. The BCSL compiler files each of

66

these elements into their corresponding sets (lists),
including the set of processes {transactions and
transaction generators), resources (facilities,
storages, working stations, and transporters), gqueues,
statistical variables, tabulated variables and

left-monitored variables.

These sets are prepared while the BCSL compiler
translates each block and generates their equivalent

SIMSCRIPT statements for the transaction processes.

Analyzing each object in a model .usually requires
several variables to be monitored. Monitoring of these
variables 1is accomplished either by adding monitor
statements within the transaction process or utilizing
the special preamble statements provided in SIMSCRIPT.
Examples of translation of selected blocks are included
in Section 2.4.1 (Description of Key Block Processor

" Routines).

67

e

TRANSACTION GENERATOR
PROCESS

A

LIND

D

TRANSACTION PROCESS

e

gifl
:
:
r—|"‘ﬂ

A
&
f
A
&

Y

—

PREAMBLE ROUTINE

—_— LEFT MONITORED ROUTINE
END IF_ _ _
INITIALIZATION ROUTINE —

END
OUTPUT GENERATOR NUTINE

END

Figure 2-15, Translation of a Model Segment

68

2.4 Detail Description of The BCSL Compiler

Architecture

SIMSCRIPT has been selected as the language in which the
BCSL compiler (SIMSCRIPT translator) is - written.
Availability of facilities needed for a compiler, like
text processing, 1list processing and dynamic memory
allocation have made it desirable to select SIMSCRIPT
for development of the compiler. In addition, selection
of the SIMSCRIPT language as a compiler eliminates an
additional compiler for the translator code itself
(e.g., if FORTRAN had been selected to write the BCSL
compiler, a FORTRAN compiler would have been needed in
addition to a SIMSCRIPT compiler). Therefore, in order
to build simulation models in BCSL, the only compiler
needed 1is SIMSCRIPT. This feature makes the BCSL
compiler easily portable to all the computers which

support SIMSCRIPT.

Given that the frontend user interface section of
the Graphics Simulation System is written in PL/1, it is
necessary to have both PL/1 and SIMSCRIPT compilers 1if

the user wants to transfer BGSL to a new computer.

69

Structured programming and modular coding
techniques have been used in addition to standard
SIMSCRIPT programming conventions in the development of
the BCSL compiler. The compiler includes the standard
preamble section which contains all the needed data
structures and corresponding data sets. The main
section initializes the translator parameters. The Main
section later calls Pass 1 of the compiler, calls Pass 2
of compiler, and finally returns the execution status of

the compilation back to user interface.

The first pass of the translator opens the BCSL
input file, the first pass output, the data file and the
listing file. It then reads each line of BCSL code and
copies it into an output 1listing file. Pass 1 also
outputs the same input line as a SIMSCRIPT comment line
into "pass 1" output file for debugging and
documentation purposes. Given that each BCSL line
carries the original block number of the corresponding
block in BGSL, it makes it possible to trace SIMSCRIPT

output code back to BGSL blocks.

While reading each line of BCSL, the first pass of
the compiler parses the BCSL input line into table,
operation and operand elements and calls the operation

processor routine. The compiler' "Pass 1" finally

70

closes all the files and exits when the last line of the

BCSL input file is reached.

The operation processor checks the validity of the
operation command and calls the appropriate block
~ processor routine. A typical block processor routine
contains the equivalent raw SIMSCRIPT code embedded in
the routine. For each line of raw SIMSCRIPT code, it
calls the "Raw Text Processor" routine to generate and

output executable SIMSCRIPT code.

The raw text processor routine parses the lines of
raw SIMSCRIPT code and generates a token tree. It then
replaces the primitive elements in the tree by their
corresponding Voperands. Finally the raw text processor
reassembles the executable SIMSCRIPT code by reversing
the processed tree and writing it into the Pass 1 output

file and the listing file.

The raw SIMSCRIPT text 1is a wvalid SIMSCRIPT
statement which contains several unknowns or primitive
elements. The primitive elements usually either vrefer
to an operand of the original block or are derived from
them. Each primitive element starts and ends with a
colon and contains an integer number which represents an

operand index number.

71

Notice that Pass 1 of the compiler originally
parses the command-block and generates an array of ’
operands. The Dblock processor routine can generate
additional operand array elements wusing existing
elements in the array. Figure 2-16 illustrates how
primitive elements and raw text are used to generate
executable STIMSCRIPT statements. In this example, the

primitive elements 1: and :2: are replaced by their

corresponding operands var and integer.

The block processor routine creates the necessary
Pass 2 data structure elements, defines their'attributes
and adds them to the proper sets as needed. It also
generates the data file which are used during execution

of generated SIMSCRIPT code as the input file.

The Second Pass of the compiler also follows the
modular programming techniques by opening the Pass 2
output file and calling a series of special purpose
routines. Each routine is responsible for creating
certain section of the target SIMSCRIPT program. These
routines include; preamble generator, main generator,
initialization routine generator, output routine
generator and left-monitored routine generator. The
second compiler pass finally closes all the files and

returns to the Main routine.

72

INPUT BLOCK COMMAND

LABEL OPERATION var, Integer, op3, op4, op5

!

PARSSER

l

OPERANDS var

ARRAY Integer
opl ’
opéh
ops5

EXECUTABLE SIMSCRIPT STATEMENT

DEFINE DEMO.var AS AN Integer VARIABLE

!

RAW TEST PROCESSOR

RAW SIMSCRIPT TEXT

DEFINE DEMO.:1: AS AN :2: VARIABLE

Figure 2-16., Primitive Elements in Raw SIMSCRIPT Text

73

The Preamble Generator searches the transaction
list and defines two processes for each element. The
‘transaction process and the corresponding transaction
generator process. It then searches resource lists and
generates a resource definition statement for each of
the list elements. Using the variables 1list,
left-monitored variables list, function list and matrix
list, the preamble generator routine generates
appropriate SIMSCRIPT definition statements for each of
these list elements. The Preamble generator also
generates ACCUMULATE and TALLY statements in order to
gather statistics for each of the model parameters.
These statistics include; maximum, standard deviation,
average and histograms of appropriate parameters.
Finally the Preamble generator routine generates
statements to define "standard numerical attributes”

used in GPSSV programs.

The main routine generator always generates a fixed
SIMSCRIPT routine which calls the initialization
routine, starts simulation and calls the output routine.
The Initializétion routine generator uses the matrix,
resource and variable lists to generate SIMSCRIPT code
which initializes them to given values as the simulation
starts. In addition, the output routine generator wuses

the FUNCTION 1list to generate read statements to read

74

the input data file containing the distribution

function.

The Output routine generator generates several
routines in the target SIMSCRIPT program. These
routines include a Central Output Routine which in turn
calls all other specialized output generator routines.
In addition, the resource report generator, queue report
generator, transaction report generator, tables report
generator and variable report generator routines are

created.

The left-monitor routine generator searches the
left-monitor variables list and, for each element in the
list, it checks the reason for left-monitored variable
and generates corresponding SIMSCRIPT code. Monitored
variables can be generated as a result of “TEST" or
"GATE" blocks which cause suspension of execution of a
process whenever certain conditions are not met by the
variable. The monitored variable is a model variable
which is tested every time the variable changes and the
corresponding process is reactivated if all conditions
are met. Left-monitor variable 1list elements contain
all the information regarding the reactivation

conditions and suspended process.

75

Figure 2-17 shows the calling sequence of the BCSL
compiler modules. As mentioned above, there 1is a
compiler block processor routine for each command in
BCSL (or Block in BGSL). These routines contain the
SIMSCRIPT equivalent of each Block Command. In the next
section several important block processor routines are

described.

76

of BCSL Compiler

2-17. Calling Sequence

Figure

77

2.5 Description Of Key Block Processor Routines

The g¢goal of the this section 1s to develop an
understanding of "block processor routines” logic and
later in conjunction with SIMSCRIPT equivalent of each
block, help provide a better understanding of the
translation techniques used 1in this compiler. This
section further <clarifies the SIMSCRIPT Translation
methodology by demonstrating the simplified eguivalent
of selected blocks in BCSL. For this reason the
GENERATE, TERMINATE, ADVANCE, SEIZE, and RELEASE block
processor routines have been selected as typical
examples of block processor routines. It 1is assumed
that readers are already familiar with the meaning and

usage of these blocks in GPSSV.

The GENERATE block processor routine is of central
importance to the BCSL compiler. It generates the
"Transaction Generator Process" and starts the
"Transaction Process". The first action taken by the
GENERATE block processor is to include an "END"™ to the
last transaction process because it is not possible for
any of the blocks in the same segment to decide if the
segment has ended; not even the TERMINATE block, because

a segment can have more than one TERMINATE block in it.

78

One way to determine where a transaction process
ends is to be aware of the graphical connectivity of the
blocks (segment boundary). This data 1is available to
the BCSL generator and is used to determine the order of
BCSL statements. 1In this way the BCSL generator can
guarantee the start of a new segment and mark the end of
another one. In other words, all statements belonging
to a segment are consecutive and the start of a new
segment by the GENERATE block marks the end of the last
segment. This makes it possible for the GENERATE block

processor to end the last transaction process.

The Generate block processor creates a transation
element, sets the transaction name and priofity
attributes and files the element in the transaction set.
This routine then investigates the type of distribution
function used for inter-arrival time and generates the
appropriate "Transaction Generator Routine”. The
transaction generator routine continuously activates the
transaction processes. In between each activation it
waits based on inter-arrival distribution function and

parameters.

In addition the GENERATE block processor creates
the top section of the "Transaction process". Figure

2-18 shows a simplified version of SIMSCRIPT equivalent

79

code generated for a selected GENERATE command block.
The SIMSCRIPT equivalents of selected blocks are
intended to help understand the reasoning behind and
techniques used for the translation of each block. The
convention used here for demonstration of SIMSCRIPT

equivalents is as follows:

1. Capital letters represent the reserved and required

SIMSCRIPT key words.

2., The primitives are shown in lower case. They

represent values supplied by the block attributes.

3. The lower case statements within brackets contain
the high 1level definition of several SIMSCRIPT

statements (simplified for clarification).

The TERMINATE block processor routine usually
generates the last part of the transaction process which
was started by the GENERATE block processor routine.
This routine generates SIMSCRIPT code té calculate "M1"
standard numerical attribute (transaction life time in
the model), increment the transaction counter and

decrements the "simulation stop counter"”.

80

Block Format:

GENERATE a,DsS$b,,,,,JOBl
where
a = mean integration time
b = distribution function name
JOBl = transaction name

SIMSCRIPT equivalent

PROCESS GEN.JOB1

LET STOP.FLAG.JOBl(GEN.JOBl)=1
WAIT Q UNITS

LET SEED=1 .

UNTIL STOP,FLAG.JOBl(GEN.JOB1)>=0
DO .
WAIT b (a, SEED) UNITS

fCalculate inter generation time}
ACTIVATE A TRAN.JOBl1l NOW
{Increment transaction counters]}
LOOP

END

‘PROCESS TRAN.JOB1
{Define local variables}
[Set start time for M1 SNA}

Figure 2-18. Translation of a GENERATE Block

81

The TERMINATE block processor generates statements to
test the "simulation stop counter", stops simulation if
the stop counter becomes zero and activates output the
generator routine. Transactions eventually leaves the
simulation'model when the "transaction process" ends.
Figure 2-19a shows the SIMSCRIPT equivalent for a

TERMINATE block.

Block Format:

TERMINATE a

where
a = Termination Counter

SIMSCRIPT Equivalent:

fcalculate M1 SNA}

fincrement transaction counter}
{decrement simulation stop counter by al
f{if simulation stop counter is exhausted}
CALL OUTPUT.GENERATOR ROUTINE

STOP THE SIMULATION

fend if}

Figure 2-19a. Translation of TERMINATE Block

82

The ADVANCE block processor establishes the distribution
function needed for delaying the simulated process. It
then generates a SIMSCRIPT statement to wait using the
given distribution function, and prepares the wait
statement parameters. The ADVANCE block will advance
the simulation time by a number drawn from the
distribution function defined in the second parameter of
the ADVANCE block. Figure 2-19b shows the SIMSCRIPT
equivalent for an ADVANCE block.
Block Format

ADVANCE a,DS$b

where

mean time
distribution function name

o

a
b
SIMSCRIPT Equivalent

WORK b{a, SEED) units

Block Format

ADVANCE a,b
WHERE
a mean time

b spread

SIMSCRIPT Equivalent

WORK UNIFORM.F(a-b,a+b,SEED) units

Figure 2-19b. Translation of ADVANCE Block

83

The SEIZE block processor searches the resource list for
the facility name and adds the name of the new facility
to the list if it already does not exist in the 1list.
The SEIZE block processor génerates the SIMSCRIPT
statement which requests the facility and locks it for
certain periods of time. Figure 2-20a shows the

SIMSCRIPT equivalent of a SEIZE command block.

BLOCK format

SEIZE a
Where
a = Facility Name

SIMSCRIPT equivalent

PREAMBLE

RESQURCES INCLUDE a

END
MAIN

CREATE EVERY a

END
PROCESS TRAN.name

REQUEST 1 a

END
Figure 2-20a. Translation of SEIZE Block

84

In the same manner as above the RELEASE block processor
searches the resource list to verify that the released
facility exists and then issues a RELINQUISH facility
command in SIMSCRIPT to unlock the facility for other
transactions. Figure 2-20b shows the SIMSCRIPT

generated equivalent of a RELEASE command block.

Block Format
RELEASE a
WHERE
a = facility
SIMSCRIPT equivalent

PROCESS TRAN.name

RELINQUISH 1 a

END

Figure 2-20b. Translation of a RELEASE Block

85

The test block processor generates the needed statement
to check the condition of thé test variable. TIf the
process can be suspended by the test block, then it will
add the test variable to the 1list of monitored
variables. Later, in Pass 2, a left-monitored variable,
and left-monitored routine 1is generated to reactivate
the suspended process. Figure 2-21 shows the

translation of a TEST command block.

For more information on the block processor
routines, please refer to the copy of tﬁe BCSL compiler
program. Each block processor routine name is the same
as the corresponding block name concatenated.with " .BLK"
extention (for example, to find the compiler routine for

the TEST block, look for the TEST.BLK routine}.

86

Block Format

TEST E a,b

Where
a = left variable
b = right variable

SIMSCRIPT EQUIVALENT

PREAMBLE

DEFINE a AS AN INTEGER VARIABLE MONITORED ON THE LEFT

END

LEFT ROUTINE a

DEFINE N.a AS AN INTEGER VARIABLE
ENTER WITH N.a

IF N.a EQ b

FOR EACH TRANSACTION IN BLOCKED.
TRANSATION.LIST

WITH MONITORED VARIABLE EQUAL a
DO

{remove transation from blocked transaction list}
REACTIVATE THIS TRAN.name NOW
LOOP

ALWAYS

MOVE FROM N.a

RETURN

PROCESS TRAN.name

IF a EQ b

ELSE

flet monitored variable of blocked transaction = al
FILE TRAN.name in BLOCKED.TRANSACTION.LIST

SUSPEND

ALWAYS

END

Figure 2-21. Translation of a TEST Block

87

2.6 Differences Between GPSS And BCSL

Compatibility of GPSS and BCSL has been a major design
goal in the development of BCSL. This allowed the Block
Command Symbolic Language to be based on a popular and
widely wused language. In addition, we can verify the
translaticn of simulation models built in BCSL by
comparing run results with existing results from

simulation runs for the same models in GPSS.

However, in order to improve GPSS capabilities,
additional options have been added to some of the blocks
and several new blocks have been defined. In this
section we describe the modified blocks and operands.
Chapter 4 on advanced features of BCSL contains the

description of new blocks and their operands.

These modifications were done to allow the user to
have access to a pool of distribution functions, to
avoid entering the distribution function tables every
time a new model is build and to allow floating point
numbers and arithmetic statements to be used instead of

integer numbers as is currently the case in GPSSV.

In the following sub-sections, the ADVANCE block,
GENERATE block and FUNCTION commands are described in

detail. 1In addition, the way in which floating point

88

and arithmetric statement are used in place of integer

operands will be discussed.

89

2.6.1 ADVANCE Block - The ADVANCE block is provided in
GPSS and BCSL to accomplish the task of freezing a
transaction’'s motion for a prescribed 1length of time.
The prescribed 1length of time 1is wusually a random
variable and represents a service time of a server.
Table 2-1 shows the ADVANCE block operands and their

descriptions.

TABLE 2-1 ADVANCE Block

ADVANCE A, B, C

OPERAND DESCRIPTION

A MEAN TIME

B) EITHER SPREAD MODIFIER OR A

DISTRIBUTION FUNCTION

C SECOND DISTRIBUTION FUNCTION
ARGUMENT (OPTIONAL)

In GPSS the service time distribution is expressed
through operands A and B only and two service time
categories exist: uniform distribution and

user-supplied distribution.

Uniform distribution service times are wutilized
when the "A" supplies the average time that transactions

entering the block are held there. The B operand

20

provides the half-width of range over which the holding

times are uniformly distributed.

The user supplied distributions are wutilized when
operand B starts with the letters "FN". The rest of the
B operand represents a distribution function name or
number that has been supplied in the definition segment.
In this case Operand A represents the mean time for the

distribution function.

In BCSL a third option has been added for selecting
distribution functions. This option requires operand B
to start with the letters "DS". The rest of B operand
supplies a distribution function name from available
distribution functioné in SIMSCRIPT language. Table 2-2
contains a- list of these distribution functions and
their arguments. In this case, Operand A supplies the
mean distribution for service time and operand C
supplies the second argument (e.g., standard deviation).
This argument is optional and is required only by a few

distributed functions.

91

DISTRIBUTION

FUNCTION ARGUMENTS
NAME
BETA.F POWER OF x, POWER OF (1-x), SEED
BINOMIAL.F NUMBER OF TRIALS, PROBABILITY OF SUCCEéS. SEED
ERLANG.F MEAN, k, SEED
EXPONENTIAL.F MEAN, SEED
GAMMA.F MEAN, k, SEED
LOG .NORMAL.F MEAN, STANDARD DEVIATION, SEED
NORMAL.P MEAN, STANDARD DEVIATION, SEED
POISSON.F MEAN, SEED
RANRDI .P LOW VALUE (INTEGER), HIGH VALUE, SEED
UNIFORM.F LOW VALUE (REAL), HIGH VALUE, SEED
WEIBULL.F SHAPE, SCALE, SEED
TABLE 2-2. STATISTICAL DISTRIBUTION FUNCTIONS

92

2.6.2 GENERATE Block - BCSL and GPSS transadtions are
created and enter the model by use of the GENERATE
block. The A operand specifies the mean time between
creations. If the B operand is a number, then the time
‘petween transactions is uniformly distributed 1in the
range of A-B to A+B. If the B operand starts with "FN"
it represents a function name or number supplied by the
user. The C operand specifies the time of the first
transaction creation and is referred to as the offset
interval. The D operand prescribes a limit on the
number of transactions which can enter the model through
a given GENERATE block. Each transaction created by the
GENERATE block has a priority specified by operand E.
Operands F and G, supplying the number and type of other
operands in GPSS, are not needed in BCSL simulation
language. These operands are not used in BCSL in order
to stay compatible with existing GPSSV code. Table 2.3
contains a list of GENERATE block operands and their

description in BCSL.

93

TABLE 2-3. OPERANDS OF GENERATE BLOCK

GENERATE A, B, C,D, E, F, G, H, I

OPERAND DEFINITION

A MEAN TIME

B SPREAD MODIFIER OR DISTRIBUTION FUNCTION
C OFF SET INTERNAL

D LIMIT COUNT

E PRIORITY LEVEL

F NO. OF PARAMETERS (NOT USED)

G TYPE OF PARAMETERS (NOT USED)

H TRANSACTION NAME (OPTIONAL)

I SECOND DISTRIBUTION FUNCTION ARGUMENT

94

The Block Command Symbolic language provides a third
option for the "B" operand, where "B" can represent a
distribution function available in SIMSCRIPT (the same
as ADVANCE block). The I operand is used for the second
argument of the distribution function if needed. Table
2-2 contains the list of available distribution
functions and their arguments. The H operand is used to
assign names to transactions generated by the GENERATE
block. Transaction name is an optional operand and is
mainly used to improve the graphical representation of
the models by selecting meaningful names for actual
tasks and entities that the transaction is representing.
If this operand is not provided the SIMSCRIPT translator
will assign a number to the transaction and will
generate a name for the- transaction based on the
assigned number. Notice that each transaction type will
be assigned a unique name but all of the transactions
created by the same GENERATE block will have the same
name. The SIMSCRIPT translator checks for duplicate

transaction names when names are provided by the user.

95

2.6.3 FUNCTION Commands - The FUNCTION command defines
a distribution function supplied by the programmer in
BCSL and GPSS languages. Given appropriate information
about a distribution, the processor automatically
performs a table lookup procedure using a uniform random
number generator each time a sample is needed to be
drawn from the distribution. 1In the FUNCTION definition
command, the location operand contains the name of the
FUNCTION: This name will be referred to by function
modifier operands of ADVANCE and GENERATE blocks. The A
operand contains the source of random number génerators
(1 through 8) and the B operand defines the number of
different values that are provided in order to specify
the discretely distributed random variable. The values
themselves and their corresponding cummulative
frequencies are provided in the following lines of the
FUNCTION statement in either GPSS or BCSL. Table 2.4
contains the list of operands and their definitions for

FUNCTION comands.

TABLE 2-4 FUNCTION COMMAND

LOC FUNCTION A, B, C
OPERAND DESCRIPTION
LOC FUNCTION NAME

96

A RANDOM STREAM NUMBER

B NUMBER OF DIFFERENT VALUES THAT ARE IN
THE FOLLOWING LINES

C VARIABLE TYPES

Follow up lines of the FUNCTION command have the

following syntax:
Xl,Ylfxz,YZ/.:../x.i,Yi/.-..xn,Yn.

Where Xi and Yi are the Ith cumulative probability
and the associated random variable value respectively,

and
X1 >> X2 saee X1 J..e22XnNn.

The C operand defines the type of Y values which in

BCSL can be real or integer.

Notice that in BCSL all X values are real and the

cumulative probability (Xn) is "1l.7".

The Block Graphical Symbolic Language represents
all the data needed for FUNCTION commands in one block,
thus providing a better graphical representation of the

data.

97

2.6.4 Floating Point And Arthmetic Statements AS

Operands - In GPSSV the only numerical input type
is integer. This imposes a significant restriction on
the user. BCSL not only allows floating point numbers
and variables but it also accepts any arithmetic

statement as a variable.

Each valid statement consists of numbers and
variable names separated by the arithmetic operands "+",
now o omym, mkn o and parentheses. BCSL arithmetic
statements have the same syntax as FORTRAN or SIMSCRIPT
arithmetic statements. This feature improves all the
commands that use numerical operand (Appendices A and B

refers to them as "K" operands).

98

2.7 Output Generator And Output Files

The output generator is in charge of the execution of
the simulation model and generation of the simulation
output results {program output). The generated output
results are stored in a file named after the model with
extension of RESULTS. This file 1is displayed on the
user terminal, and in addition a hard copy can be

obtained upon user request.

The Graphical Simulation System generates several
files while the model development and compilation is in
progress, including the block graph file, BCSL file,
BCSL Compiler 1listing, and SIMSCRIPT equivalent file.
The éCSL and SIMSCRIPT equivalent files are editable by
the user, which makes it possible for the user to
manually alter the model in different stages 6f
translation or compilation. The BCSL compiler listing
file contains every input line and its corresponding
output statements. It allocates the input line number,
output line number and specifies if the output line

belongs to pass 1 or pass 2 of the compiler.

It is possible to display the intermediate state of
the simulation model by graphically displaying the model
and animating the movement of the transactions through

the model blocks and their queues.

99

In Chapter 6 (Future Research Possibilities) we
will describe how the Graphical Simulation System can be
expanded to provide animation capabilities. Figure 2-22
shows the output generator, its input files, output
files and how potentially the graphical animated output

display can be added to the system.

100

Figure 2-22, Qutput Generator

101

3 CLASSIC APPLICATIONS AND CASE STUDIES

In this chapter three problems were selected to be
studied and discussed in detail. These problems were
taken from Schriber, who presents a GPSS model and
corresponding results of simulation runs for each system

in his book "Simulation Using GPSS" (see reference ---).

The first problem represents the classic one-line,
one—servér ‘queuing system. It is used to familiarize
the reader with the translation philosophy and
techniques which have been discussed in the previous
chapters. This problem is intended to integrate all of
the topics discussed in regards to translation
methodology and implementation techniques used by BCSL

compiler by studying a simple model.

The second problem represents the production shop
model. The objective of this research has been to
translate a graphical representation of a production
shop model into SIMSCRIPT and successfully simulate such
a system using a general purpose graphical simulation
language. Detailed discussion of this problem and proof
of correctness for the results obtained are essential to

this dissertation.

102

The last problem selected is a more compilcated
model representing a BUS STOP. This model includes
several important advanced blocks. Their translations
demonstrate the usage of "left-monitored routines” and
corresponding techniques. The ability to use the Block
Command Symbolic language as a general purpose
simulation language and the versatility of this language

are demonstrated by this example.

103

3.1 One-Line, One-Server Queuing System

3.1.1 Statement Of The Problem - A simple one-line,
one-server gqueuing system was selected to demonstrate
how SIMSCRIPT translation is done and which SIMSCRIPT
statements correspond to which blocks in the BGSL model.

This model is described in Schriber’'s book as follows:

"The interarrival time of the customer at a
one-chair barber shop is uniformly distributed over the
range 18¥6 minutes. Service time for hair cuts is 16+4
minutes. Customers coming to the shop get their hair
cut on a first-come, first-served basis, then leave.
Model the shop, making provisions to collect data on the
waiting line. Then run the model through 8 hours of

simulated time."

3.1.2 Discussion Of The Model - This model includes two
model segments and a control segment. The main model
segment is easily constructed as a single sequence of
blocks, where the order of blocks corresponds to the

stages through which customers move in the real system.

Customers arrive, they queue and wait if necessary
for their turn. Then they engage the barber, get their
hair cut, release the barber, and leave. A second

normal segment known as the "timer segment”, is used to

104

control the duration of the simulation run. It
basically uses a GENERATE and a TERMINATE block which
trigger a simulation STOP flag after a certain amount of
time has passed. Figure 3-1 1illustrates the Block
Graphic solution for this problem which is the same as

the GPSSV model.

Figure 3-2 shows the Block Command Symbolic
language equivalent of -this code. Each line of BCSL
represents a block in BGSL and the corresponding block
number is shown in column 72-80 of the same line in
BCSL. Transaction names are selected for better
pictorial understanding of the model. These are
customer transactions and clock transactions which
appear as the 7th attribute of the GENERATE block in

order to stay compatible with existing GPSSV Code.

Notice that the mean and spread values for the
distribution functions are in real format. Figures 3-3a
through 3-3h contain the SIMSCRIPT equivalent of the
model, which is generated by the BCSL compiler
(SIMSCRIPT ﬁranslator). The original BCSL command 1is-
added as a comment to the SIMSCRIPT code ahead of its
corresponding SIMSCRIPT equivalent. Given that each
BCSL comﬁand contains the block number of the original

graphic block, it 'is possible to trace back from

105

SIMSCRIPT statements to the blocks in the Block Graphic

Symbolic language.

106

BO0O1

BO003

BOOO?7

18,6

MODEL
L BOOL1 SERENT

= O
JOEQ

SEIZE BO012 GENERATE

t BOOL3 TERMINATE
1
ADVANCE
16, 4
RELEASE
JOE
SEQENT
TERMINATE
START
BO0O9)

Figure 3-1. BGSL Model for the Barber Shop

107

FILE: CASE2X BCSL A1 VN/SP COMYVEESATIONAL MOBITOR SYSTEA

EERBRRD ."‘-‘;-"‘."-.-l“"'-lﬂ SERE RS REABAS A ISR AR SRR EE R AR SRS ST ANSR RV RS
X
»% BCSL CODE GEMERLTEx VEASION 1.0
s
ER T RT YIS T2 IR 2 YR 2 L R 2 R 48 2 ¢ 0 L 2 FETTTPIT ISV TP R I3 2R3 RISV 3 22 2 03 71 222 L) {2)
»
E
SIAULATE
»
=
asa JPFINITIUN SEGMENT
»
E s

GENERATE 184 4%c er e s CUSTORELR BO0O2
YUEBUE JOEQ B0Q03
SE1i: JOE BO0OS
DEPART JOE(’ BOOOS
ADVANCE 16. 4. BOOOG
LEAVE JOE BOCO7
TERNINATE BQOOS

-

- .

ss* NEi SEGAENI

-

-
GENEEATE 480.,,..,,CLOCK B0012
TRAMINATE 1 B0013

-

*

s«s COKTEROL SEGBENT

-

*

STARI 17 . 80009
»
»

END -

Figure 3-2. BCSL Model for the Barber Shop

108

3.1.3 Discussion Of SIMSCRIPT Equivalent - The Preamble
section (Figure 3-3a) defines four processes: customer
transaction, clock transaction, customer transaction
generator and clock transaction generator. The only
resource in this model is the barber "joe". The queue
block has caused the generation of standard numerical
attribute definition statements. The P-array and
X-array are defined globably for cross process
communications which provide GPSS compatibility of P and
X operands. Additional definition statements are for
the transaction counter and the seeds used in the
distribution functions. Accumulate and tally statements
are generated for each resource and their corresponding

queue.

The Initialize routine (Figure 3-3b) initializes
the number of barbers in the model, transaction counters
and stop £flag. Finally the initialization routine
activates the process dgenerator routines. the main
routine and output routine (Figure 3-3b) always call
predefined routines. The output subroutines (Figure
3-3¢c and 3-3d) each generate appropriate reports for
resources, queues, transactions, tables and variables in

the model.

109

The c¢ustomer (generator process (Figure 3-3e)
activates a customer transaction process using a uniform
distribution function and accumulates the statistics
regarding created transactions. The customer
transaction process (Figure 3-3f) reflects the
translation of each BCSL command into SIMSCRIPT and the
sequence in which the translation 1is done. Each
transaction process also keeps statistics on the, time
spent in the model (standard numerical attribute Ml) for

each occurence of the transaction.

The clock generator process (Figure 3-3g) activates
.fhe clock transaction process (Figure 3-3g) which in
turn will stop the simulation by decrementing the stop
flag counter to zero and finally will call the output

generator routine before termination.

3.1.4 Discussion Of Results - Figure 3-4 shows the
results of the simulation run for the barber shop model.
Tables 3-1 and 3~2 contain the definition for column
headings in the report. In order to verify the
correctness of translation of the model, these results
are compared with the results of simulation run results
from the same GPSS model in Schriber's book where the
average utilization of the barber 1is 86 percent and

average contents of the queue is 0.16 customers.

110

Facility utilization and average contents of the
queue matches the analytical modeling results as well as

Schriber's book results.

111

CACI STBSCRIPT IZ.5 IBY 5/370 a%.3 PAGE

GPTIONS TEx2,LOAD,ID,TRACE2,NOTRAN,CHK,BBN=KES

meassas

PRELNBLE

RORNMALLY MODE 1S5 REAL

PROCZSSES

EVILY THEib.CUSTOEER HAS A BONITOZ.Y

AKs BAY BELONG 1C THE SLOCEED.COSTOBEER
EVEARY T1REAM.CLGCK A5 A BONITOR.Y

AND ELY BELONG TO THE BLOCKED.CLOCK

THE SYSTEYX QeM5 THE BLOCKEL.CUOSIOMER

IHE SYSTE® OWNS THE BLOCKED.CLOCE

EVERY GEa.CUSTONEE HAS) STOP.FLAG.CUSTONEE
BVEaY GEN.CLOCK HEAS A STOP.FLAG.CLOCK
RESQURCES

EVERY JOE H1S L ¥NOBR.OPF.JOE

DEFISE TIBMEIM.P.JOE A5 A REAL VARIABLE
DEFISEZ IIREIN.G.JOE AS A REAL VARIABLE
DETIRE RUB.ENTI.(C.JGE A5 A INTEGER VARIABLE
DEFINE CaPhCITY.JOZ AS AN IPTEGEE VARIAZLE

-
CAO@Dln T L b

DEFIRE STOP.FLAG L5 INTEBGER VARIABLE
**DETIKE SNA FOE QUEDRS

DEPINE USJOEC AS INTEGER VARIABLE
DEFINE (USJOEY AS IBTEGER VARIABLE
DEFIKE CHJOEQ AS INTEGER VARIABLE
DEFINE QZSJOEQ AS INTEGER VARIABLE
DEFINE (.T.JOEQ AS INTEGER VARIABLE
DEFINE (.X.JOEQ AS INTEGER VARIABLE
*'DEPINE IBST BLOCK PLLGS

"*LEFINE STATISTICAL VARIABLES
**DEFINE EAMDOME VARILELES

"YDEPINE BATZICES

*'DEFINE GPSS GLOBAL VARIABLES
DEFINE P1 TO NEAS P_ARRAY (1)

DEFILE 22 TC MEAX P_AREAY (2)

DEPINE P3 IO HEAN P_ARRAY (3)

DEFINE P4 TO HEAN P_ARRAY (4)

DEFINE ES T0 BEAN P_ARRAY(S5)

DEFISE Pb TO HEAE P_AMAAY(6)

DEFINE P7 IO BEAN P_ARRAI(7)

DEFINE P8 TO REAN P_ARELY (9)

DETINE P9 TO AEZAN P_AREAY(9)

DEFINE P10 TO NEAN P_ARRAY {10)
DEFINE X1 TO HEAF I_ARERAY (1)
DEFINE X2 70 HEAN X_ARRAY (2)

DEYisE X3 TO ZEAN X_AEXAY (3)

15 DEFISE X4 TO MELY X_ARRAY (4)
46 DEFINE X5 YO HMEAE I_AHKEAY(5)
47 DEFINE X6 TO BEAN XI_ALKAY (6)

48 DEFIEE XI7 TO HEAN I_ARBAY(7)

==au¢uuuwuuuuuunnnmw~ BN K b b b b b
GbﬂwcﬂﬂlWlthOlﬂgIMBJHIDU\WNJE\Ult!:k)ﬂlbﬂ!;-JG‘U‘:ld:;:

Figure 3-3a.
Barber Shop

112

socavevavessnes TENSION 1.2 .cecescccsase

AL EEEE LI EEEEE L R Y R TR IR R i e e g

"*DEYINE YLEILBLES AMD LEPT SOMITORED TARIABLES

17-N07=-1985 16:44 (

Ssassssecssasasstassrenssnassivsansananas T

“essTreIRsESEREINIASsIIumsrrasansnsnasasane T

=

-

®asvsees SIASCLIPT CODE GENERATED BY veceee®
'!ececees®eees BCSL TO SINSCRIPT CROSS COBPTLER ...

=

-

-

-
*
-
[]

SIMSCRIPT Equivalent Model for the

PUEABBLE CACLI SIASCRIPI I1.5 IBE 5,370 R9.3 PAGE
GPTIONS TELE,LOAD,ID,TBACEZ,NOTEZS,CHK, REN=KEY 17-507¥-1985 16:z44 {

49 DEFINE X4 TO MEAN X_ARBAY(8)

50 DEF1BE 19 TC MEAN I_LERAIX (3)

51 DEFIKE X0 TO MEMN I_ARKAY(10)

52 DEPINE OKITS IC MEAN AIBUTES

53 DEPIEE EOMITOaA.V AS TEXT VARIABLE

54 PEFINE AnY AS A AZEAL YAIABLE

55 DEFINE C1 TO MEAE TIFE.V*HOO&S. V*NIRUTES.V

S0 *YTRAKSACIION DEFINITION

57 DEFINE TaaX.CNI&.CUSTOZEk AS AF IWNTEGER VAKIABLE
S5k DEFINE C.Tads.CNI.COSTOEE: AS LAY INTEGER VARIALLE
5% DEFINE SEED.THaN.CUSTOME:L AS AN INTEGEa VARIAELE
&y DETINE TEAB.CMIE.<LOCK AS AN INTEGEL VARIAELZ

ol DEF1UE C.TEaK.C¥1.CLOCE AS AN INIEGEm VAKIABLE

L2 GEFINE SETD.TEAN.CLOCK A5 AN INTEGER VARIABLE

&3 **DEFINE TABLE VARIABLES

T PUIALLY AND ACCUNMULLTE PCE RESOURCES

&5 ACCUAULLIE UIIL.JOE L5 AVERAGE ARD

113 EAX.NI.JOB AS HAXIZON OF k.IX.JOP

67 ACCUMOULATE AVG.uU.LEN.JOE AS AVEZAGE AND

64 AX.Q.LEN.JOE AS BALINUA OF B.(.JOE

69 1aLlY AVG.TINEIE.F.JCE AS BEa¥ OF TINEIN.F.JOE

w0 1ALLY AVG.TINEIN.L.JOE AS HEAN OF TINEIR.G.JOZ

n *OLLLLY AND MCCOBULATZ POR STATISLICAL VARIABLES
72 YOTALLY AND ACCUBSOLATE P02 QORDZES

73 ACCUNULATE QASJOEY AS AYERRAGE AND QESJOEQ AS HAXINDA
kL] OF L0sJoEp

15 TELLY ISJOEQ A5 MEAN OF y.1.J0EQ

76 TALLY LXSJOUEQ AS NEAN OF Q.1.JORQ

L DEFINE GEN.TI1NZ.COSTOAEZR AS A REAL VAATABLE

T8 TALLY AVG.GEE.TIME.COSTOHEZA A5 MEAN OF GER.TIAEB.CUSTOMER
79 DEFINE GEM.TIBE.CLOCK AS A &REAL VTARIABLE

8¢ TALLY AVG.GZE.TINE.CLOCK AS MEAN OF GEN.TIAE.CLOCX
81 "YH1ISTOGAAN POR TABLES

a2 END

Figure 3-3a. SIMSCRIPT Equivalent Model for
the Barber Shop (Con't)

113

LACI SIBSCRIPT I1.5 Ibn S/3T0 k9.3 PAGE
uP110M5 IliH.IDED.Iu.liiCEZ.IQTEIS.Cll.ill-ldl 17-30Y=-1985 W44 { ¥,

BAlb

CALL IBITIALIZE
START SLAULAIIOM
CAlL OUTPUL_ROUDIINE
END

PEWN=

CACL SIASC4IPT 11.5 IbS 5,370 £9.3 PAGZ .
02710M5 Tia®,104D,1ID,155CEZ, NOTEXE, B & EN=NED 17-80V~1945 16:88 [1,

BOUTLINE IBITIALIZE
¥Ous,LLY BOLE IS IW1EGEL
LE1 CAPACITY.JOE =)
ChREAIE EVEXT JOE(1)

LBl D.40E(Y) = 1

LEI 1aad.CBTu.CUSTOJEL = v
12i TEak.CHIR.CLUCK = 0
LET 550F.PLAG = 1

ACTIVAST & GEN.CUS1CHEa BOY¥
2C.1VREE b GEN.CLOLK BCE
EsD

@SN EWN -

y
- W

CACT SIBSCAIPT Ii.5 188 $/370 59.3 Phet
orFiION: I!iH.LSAU.lb.lilC!Z.IOTII!.CIK.H:I*‘&U 17=-RCY~1985 16:8s (1

ACJ11KL OULPUI_KOUSIEE

WR11Z AS /./4/.8 20,

J .‘.‘.‘."...‘.‘.‘.l‘.....‘..‘.l.'.‘..‘l..-'l.’ zo'
a8 mew,b bU,"s", /.8 20,

5 ®se CaAPLICAL SIAULATION SYSTEA OULRPOT **%,/,B 290,
: sen_ B 4u,"*",/, 2 &V,
s

9

| YR

-l-"...ﬁttll‘....l'....“‘..“..'.......-

USING b
CALL KESCUZCE_PkiN:

39 CALL GOEUE_ksldl
11 CallL ThASSACTIOM_PRINT
12 CallL TABLE_kaIRI
13 CALL STAX_Faikr
1o CALL XIVAs_ERINI
15 EWD

Figure 3-3b.

114

CACI SIASCRIPT II.S5 IB® 5/370 29.3 PAGE
0P11085 TERN,LOLD,1D,TRACE2,NOTERM,CHK,REN=NEN 17-507-1985 16:44 |

EOUTINE BRESOD&ECE_PRIKT

DEFPINE I AS i¥ INTEGEE VIAILEBLE

BOIJE AS /o/s/e/eB 2,"FACILITI",B 12,"CAPACITY™,
B 23,%AVEEAGE™, B 37,"SURBRE OP",

E 46,"LVERAGZ",P 59,"CURAZET™,5 70,"HaIINUN",
/eB 2,"BANE" B Z5,°0TILIZATION®,

£ 37,"EKTERIL3™,

b 48,%I1ME/TEAK",B 59,%*CONTENT",E 70,"CONTEZNT™,/
D5IkG 6

«3lIE CAPACITY.JOZ, {UTIL.JOE/CARPACITI.JOE),
(RUS. BB edUE = E.naJdO2),
AVG.TIMEIE.F.JOP,5.1,J08, 801, ¥X.J02 AS /,B 2,
"JOE*",b 12,1 6,B 23,D(9,3),B 37,1 6,B 46,0(%9,3),
14 B 5%,1 6,B 70,1 € -

-t owd ol ad
LANIJONOIOW E W

15 SLI1E AS /o/e/e/eB 2,"STOURLGE™,® 13,"CAPACITI™,

16 B 25,"AVEHAGE®™,5 &0,"MUNEEL OP%,

17 B 55,"AYERAGE®,B 70,“CURKENT™,E 85, 8iXIsgm®™, -
18 /,3 2,"MAME",.3 25,%0TILIZATION",

19 F 40, "BETESIES",)

20 E S5,"TISR/TEAN",B 70,"CONTEST",B 85,"CONTENT®,/
21 DSIkG €

22 WEITT AS fo/ele/eB 2,"RESOUKCE",B 15,"AVERAGE™,

i3 B 2B,%TOIAL",5 &1,"AVEMAGE®,B 53,"CODRREET",

24 E 66,"SAIINUS*,/,B 2,"QURUE*,B 15,"CONTENT®,

25 B 25,"ENTERIES™,B #1,"TISE/TAAN",B 53,"CONIZET™,

26 B 66,"COETENTS®,/

27 WRITE LiVG.(Q.LE¥.JOE,W04.ERT.J.J0E,AVG.TINEIN.Q.JOL,
28 Bal.JGE, MAX.G.LEN.JOE AS /,B 2,"JOE*.B 14,D(8,3},
29 E 28,1 6,8 41,D(9,3),8 53,1 6, 66,1 & DSING &

30 EED

Figure 3-3c.

115

OPIIUNS

1
2
3
L]
-]
6
7
8
4
10
11
12
13

14
15

OFTIICAS

MEWwhe

-
COUEWN,

CACI SIASCAIPT 11.5 1B $/7370 B5.3 PAGE

T!HG.LOLD.ID.TiiCZJ.KOIEII.CII.l!l-lii

BOUTINE YUERUC_PaINT

BRITE AS /o7+7e7+B 2,"wUEUZ®,B 12,72ALiBURY,
B 32,"AVE3iGE®, 32,%TOIAL®,

B 82,°ZEs0",b 52, AVELAGE®,B ©2,%3AVERAGET,
B 72,"CUshEBI",

7D 2,"BARE",b 12,%CUKTED.S", B 22,%COR.EK1S"™,

b 32,"ENIEaILS"™,

B #2,"EalERIES" .8 5%2,"TINE/Tudi",

B 64, "IINE/5nAkE", B 72,"CONTENLS®,/
US1AG &

2allz ur3iJOLY, JhsJOEQ,uCSIOEG,
uZEJUEt.Q:adutu,ulido:t.hiJOEQ AS /.8 2

[4
wJOEJ¥, B 12,1 t.& 22,01(8,3) .8 34,1 O,F 02,1 6,

P 5aeDi%s3) gk £2,D(%ed) oB 74,1 €
END

CACI SIESCaIPT I1.5 124 5/3

IELH.LOID.ib.TLlCEZ.IuT!ha,ChA.llt'I!u

EOUi1EE TKAESALIIUN_PRINT
DEFiX? 1 A5 Ab INiZGEa VARIALLE

17=307=-1945 16348 (

70 £9.3 PAGL

17-007-1585 MW:as {

SEIGE 85 /ol ol s/ s¥ 10.'THANSIC?IUE',B 25,"RJNDER",

B Wi, "AVERRGE". /0 [1J,"nAnt", 6 25,"CEEAGED",
E &J,"CLEATICKN 112%%,/ DSING 6

Halii 3&.2-0!2:-505!052..&'5.GSI-EIIE-EGSIUEER AS /0B 10,%CUSIOLEER",

P 25,1 6,3 4C,D(Y,) USING 6

BRilE !h;!.Clli-CLOCH.I'G-GII.TIIE-CLOCK AS /.B 10,"CLOCK®,

B 25,1 6.t #0,D(9,3) U3leG b
) 4 1)

Figure 3-3d.

116

1
1

1
1

QPTIONS

-
CWwa o AR -

-l
-

- d ok =
Ll o Y

CAZ1 S513SC&I?1 I3.5 138 S/370 k9.3 PAGE 1<
TeiA,LOAD,IL,10ACES, MOTERN,CHK,REN=SES 17-807=1935 l6:84 (1)

".OQ....-‘l.l.'.....“"..‘..“.‘...“l't...'..-’I-.....-‘-t..“‘...‘l-‘

LAR %

sese BC5L CODE GENEAATEr YEZaSION 1.0

[BR ¥
ll'lt..“‘ll'!..‘.l!...."‘.‘..l..l.‘-.-""‘I.".l"..l".“....‘..“.‘.
i'e

L SIBULATE

sssss DEFINILION SEGATNI

ten
1 GENESATE 18,6000 0,C051082E ' 20002

#AOCESS GEK.CDS1GAER

LEI 5TUP.FLAG.CUSTLY4E (GPR.CUSTCHZK} = 1

LE: SEZL.TWAN.CUSTUMER = 1

NAIl 0 UN1IS

UKiJl STOP.FLAG-CUSIOMER{GEZM.CUSTONEA) <= 0

De

DEFIEE GEN1.CUSTOEZ:L AS A REAL VAalaBLé

il7 GEN1.CUSTONEE = TIRE.V

BLII UNLEGaB.F{(18.~6.) /1.0, {18.46.) /1.0,
SEED.1EAN.COSTURER) 04115

LEi GEB.iIME.CUSIUMEE= (TIBE.¥ - GEM1.CUSIOBEi) *EOOKS. TSBINJIES. ¥
ACTIVATE A TRAN.CUSIOAZR ¥Ow

LE. TEANCNTa.CUSTORExaTRAN.CNTR.CUSTIONEL ¢
LET C.TEAN.LNI.CUSTONBL=C.TRAN.CET.CUSTCAEL + 1
LOOP

END

Figure 3-3e.

117

. CACI SINSCRIPT II.5 1pa S/470 m9.3 PAGE 13
OP110Bs ITERE,LCAD,1D,ThiC2Z,ROTEal,CEBK,EEN=BEN 17-307=1985 Tozes (1)

PROCESS TRAE.CUSTOAE.

DEFIYE P_AGNAY AS INIEGES,1=DEBENSIONAL Aaidl

AESE&VL P_AUKAT AS 10

DEFLINE 1IK.81 AS A REiL YARIABLE

Tib. A1 = T1BE.V

' QUIVE Jory §00a3

LET IXNysJUEy = T1BE.V

LEI GCSJOEBy = LCSJOR, + 1

LEZ1 GSJUEQG = wSJUEQ ¢ 1

LET uOsJu®y = 4OSJOEQ ¢ 1

ve SEIZE JOE BOUOW

LE1 T.¥.Q.J0% = TINE.V

LET BUB.ENT.Q.JOE = 0. ENT.Q.J02 ¢ 1

LELUEST T JOE

LET TIBEiN.{Q.JOE={TINE.V = TIN.{y.JOE} *HOURS.Y*N1N0TES. Y

LET TIb.P.JOE = TiAR.Y

e DEPART JOEQ BOOOS

LEZT Q.T.JORQ = (TI4E.Y =~ TINU.JOKQ) *aO0LS.V*RIMUTES.YV

IFf w.1.J0E, LE O

LET QISJURY = QZSJUE) ¢ 1

ELSE .

LET J.X.JURBy = (TIAE.¥ = T1N}.JOEC)*HOURS.VSINUTERS.Y

LLWATS

LET JUSJOR = GSJ0Eg - 1

LEL QUSJOEy = yO3JOEQ = 1

L ADVANCE 16,,8. BO00S6

WC2K DNIPORA.F{{16.-8.)/1.0,({16.+8.} /1.0,

SEED.1KLN.CUSTOBEK) OBITS

"e =EAVE JoE 20007
SELLINLUISH 1 JOE

LE: I1IAEIN.F.JOR=(T1ER.V - TId.P.JOE)*HOURS. V*HIBUILS.V

" TESALMAIE B0OuE
LRET 821 = (TINE.Y - TIN.H1)*HOOMS.VeAINUTLES.Y

LEY C.1RAB.CYI.CUSTOAZa = C.THAN.CNI.COSIQNEX - 1

BETUEN
Ten

[N N}
tiess NE§ SEGAESI
LA E |
[RN]

L GENERATE 880. ,5000+CLOCK 30012

VRPN S ERERREspEWwLWbwlWPwRWhiRbEbNMNLMNUN -
tlghaaeawa:404JttuN-g\nt-thngcuN-ac-00-40lnalﬁN-a§~D;:=:::=zn::¢36lrdetr&hnUd

Esb

Figure 3-3f.

118

CICY SIBSCaIPT IX.5 ILE 5,370 k9.3 RPLGE 1
OPTICES TZa%,LO0AD,1D,5XACZ2,¥0TRas,Chk,APE=EEe 17-D0v=1935 Te:84 { 1,

PROCESS GEM.CLCCA

1ET STOP.FLAG.CLUCK (GRE.CLOCK) = §

LEI SEED.ZLAL.CLOCK = 1V

BAIT O UNILS

9sTIiL S?OP-ILLG-CLOFK{S!H.LLDCI) <= 0

)

DEFINE GEN1.CLUCK AS A REAL VALIAZLEL

LET GRN1.CLGCK = LI8E.Y

31T DA1FOan.F ((830.=0)/1.0,(480.40)/1.0,
W SEEL.1hAN.CLCCK) BEITS

17 LET GEb.TIBF.LaULK® (T1IBE.V = GPE1.CLOCA) ®5LUss, VOSISOTES. Y
12 ACIIVALIE i Tadb.CLOIK BOK

12 1B ThAX.CM1].ClUCK=T1iudna CUTH.CIOLCK ¢ 3
w 1Z% CaTuaWaCNT, CLOCKEL 1ai¥oCNiaclOCH ¢ 1

L X Y BT R §7) v

15 Loue
te LMD .
CLCI SIESTRIPT 11.5 13K 5/37 59.3 F 1Y SN
OPTIOMS TEZi%,LuAD,iD,T14ACE2,NCIEEY,CMK RENEES 17-80¥-1985 16:48 (1;
1 PROCESS isid.CLOZK
2 DEPlks k_aakaY bS5 INTEGEa,V-LISLASIOBAL AREAY

J RESELYEZ #_ARaal AS 10

4 DEFIME 11K.31 a5 & ELL Vak1li3lE

& Tik.ET = JabE.¥

g .o 3EA8IGLZE 1 | TR K
]

9

LED BY s(1)BC.¥ = TIN.H1)®B0UdS.V*RINDIRS. Y
LBT ColiAS.LE3.CL0CK & C.TadN.CBT.CLOVE = 1
W LET 5107.FLAGC = STOV.FLAG = 1
11 I¥ SiGo.FLliG LE
2 CLLL ©OIPOL_SOUOIIEE

14 STOP

18 ALsSAYS

% ARIJES

18 s

”

18 s

1%

20 *vess CONIaLL SEGHENI
a

24 LAY]

23

28 tte

25

46 ¢ SIadu) U0y
27

28 e

29

’a LAY]

31

2 25D

Figure 3-3g.

119

SASSTLAINNOSASSSTUSESESRSSEISESINISEISRS
. -
s GuAPHICAL S1BOILATIUM SYSTEM OUTPOT e
L .
YT ITTCCIITY RTINS YNR ST AT LA IR LA 222 L1

FACLLITY CAPACITY AVERAGE MULBER OF AVERAGR CUSRENT BAKIMUR
NANE UTILIZATION ENTERIES TISE/TEAN CONTENT CONTEMT
JOE 1 M-LX] 25 16. 581 1 1
S10RBAGE CAPACTITY AVEEAGE B08sEs OF AVERAGE CUREEST
BANE : OTIL1ZATION EM1EARIES TIAE/TIRAD CONTENT
RESOUACE AVERAGE J0T1xL AVERAGE CUONaZN] SAXIIACA
QUELE COMTENY ENTERLES TINE/THAN CoaT2NT COBTENIS
JOE « 095 25 1.831 4] 1
QUEDE BAI1BUN AYELAGE TOTAL ZER0 AVERAGE SAVERAGE CURREKT
JABL CONIEMTS CON1ENIS ENTERIES BENTEEKIES TIAK/TRAS TIBE/TRAN CORIENIS
JOLU 1 « 095 25 a 1.920 4,368 ¢

TRARSACTION BUEBER AVIRAGER

hant CIEATEZD CRIATION TINE

CuUsSTOUALEs 25 18.785

CLOCK 1 480.000

Figure 3-4. Simulation Results for the Barber
Shop Model

120

TABLE 3-1.

COLUMN

—— gy ———————

FACILITY
NAME .

CAPACITY

AVERAGE
UTILIZATION

NUMBER OF
ENTRIES

AVERAGE
TIME/TRAN

CURRENT
CONTENT

MAXIMUM
CONTENT

COLUMN DEFINITION FOR FACILITY REPORT

DESCRIPTION

— e i el S M S —— S S S —— - —

Names of the various facilities

used in the model

The number of wunits within the
facility

Fraction of the time that the
corresponding facilities were

in a state of capture during
the simulation

‘Number of transactions entering

the facility

Average service
transaction

time per

The number of transactions in the
facility at the end of the
simulation run

The maximum number of transactions

in the facility reached during the
simulation run

121

TABLE 3-2. COLUMN DEFINITION FOR QUEUE REPORT

COLUMN DESCRIPTION

QUEUE Name of the various gueues used

NAME in the model

MAXIMUM Largest number of Transactionsin

CONTENTS the queue during the simulation

AVERAGE Average value of queue contents

CONTENTS

TOTAL " Total number of entries to the

ENTRIES queue

ZERO Total number of entries to the

ENTRIES queue which did not have to wait

AVERAGE Average time that each entry spent

TIME/TRAN waiting in the queue (Zero entries
are included in this avearge)

SAVERAGE Average time that each queue entry

TIME/TRAN spent waiting in the queue (Zero
entries are excluded from this
average)

CURRENT The contents of queues when simulation

CONTENTS stops

122

3.2 Simulation Of The Production Shop

3.2.1 Statement Of The Problem - A production shop is
composed of six different groups of machines. Each
group consists of a certain number of machines of a
given kind, as indicated 1in Table 3-1. For example,
group 1 consists of 14 casting units. Within any single
group, the machines are identical. It does not matter,
then, which particular casting unit is used to perform a
casting operation, or which par;icular shaper is used to
perform a shaping operation, etc. Three different types
of jobs move through the production shop. The job-types
are designated as type 1, type 2, and type 3. Each
job-type requires that operations be performed at a
specified kind of machines in a specified sequence. The
total number of kinds of machines each job-type must
visit, and the correspondig visitation sequence, are

shown in Table 3-2,

For example, jobs of type 1 must visit a total of
four machines. The machines themselves, listed in the
sequence in which they must be visited, are casting
unit, planer, lathe, and polishing machine. The table
also shows the mean time required by each job-type for

each operation that must be performed on it.

123

TABLE 3-3. COMPOSITION OF MACHINE GROUPS IN
PRODUCTION SHOP

GROUP MACHINES IN GROUP

NUMBER KIND NUMBER
1 CASTING UNITS 14

2 LATHES 5

3 PLANNERS 4

4 DRILL PRESSES 8

5 SHAPERS 16

6 POLISHING MACHINES 4

TABLE 3-4. VISITATION SEQUENCES AND MEAN OPERATION
TIMES FOR THE THREE JOB TYPES

TOTAL NO. MACHINE

JOB OF MACHINES VISITATION MEAN OPERATION

TYPE TO BE VISITED SEQUENCE TIME (MINUTES)

1 4 CASTING UNIT 125
PLANNER 35
LATHE 20
POLISHING MACHINE 60

2 3 SHAPER 105
DRILL PRESS 90
LATHE 65

3 5 CASTING UNIT 235
SHAPER 250
DRILL PRESS 50
PLANNER 30
POLISHING UNIT 25

124

For example, the casting unit operation job- Type 1
requires 125 minutes, on the average. The operation

times are all exponentially distributed.

Jobs arrive at the shop in a Poisson stream at a
mean rate of 50 jobs per 8-hour day. Twenty-four
percent of the jobs in this stream are of type 1, 44
percent are of type 2, and the rest are of type 3.
Whether an arriving job is of ¢type 1, 2 or 3 |is

independent of the job type of the preceeding arrival.

We are to build a model which simulates the
operation of the production shop. At the end of the
week print out the distribution of job-type, and the
distribution of the total number of jobs in the shop,
based on observations made at the end of each day during
the week. Assume that the queue discipline used at each
machine group is first-come first-served, independent of
the job type. Assume there are no discontinuities in

moving between consecutive 8-hour work days.

3.2.2 Discussion Of The Model - The general approach in
building the Jjob shop model is to be able to represent
the model in graphical form. This is made possible by
elminating tables and matrices, avoiding the

alphanumeric representation of data, using built-in

125

distribution functions and selecting meaningful names
and 1labels so that the graphical model becomes
self-explanatory. Figures 3-5a through 3-5e contain the

BGSL model representing the job shop.

Six segments are used to build this model. The
first segment is the definition segment, the second
segment the control segment, and the remainder are model
segments. One of the model segments represents the stop
simulation {time out) clock, which terminates the
simulation at the end of the week. The rest of the

model segments represent the job types.

Figure 3-5a shows "the definition segment and
control segment. In this model storages are used to
represent the machines in each workstation. Each
storage command defines the number of machines in the
corresponding workstation. Table commands define four
tables which hold statistical data regarding the time
spent in the job shop for each job type (T1l, T2, T3),
and the total number of jobs in the model at the end of
the work day (Tjobs). In order to calculate the number
of jobs in the model the "COUNT" variable is used. This
variable calculates the number of jobs in the system by
subtracting the number of jobs remaining in the model

from the number of jobs that entered the model. For

126

this reason, the "N$" Standard Numerical Attribute is
used ("NS$"SNA counts the number of transactions passed
through a labeled block) in conjunction with IN and OUT
labels used at the representative blocks for entrance
and exit of the job shop. The control segment contains
the START command which initiates the termination

counter to 5 (allowing 5 days of simulated operation).

Each job type has a separate GENERATE block and a
separate model segment. These model segments represent
the scheduled sequences which jobs will go through.
Figure 3~5b shows the model segment which simulates the
movement of JOBl job type (workpiece) through the
production shop. Figure 3-5¢ and 3-5d represent job2
and jopb3 job types. This segment uses a sequence of
ENTER, ADVANCE and LEAVE blocks to simulate each

workstation visited by the work piece.

In order to calculate the mean interarrival time
for each job type, the mean interarrival time (for all
of the job types) is multiplied by the percentages of
each job type. This is used to define the mean time for
GENERATE blocks. The exponential distribution function
for job interarrival times and service times |is
implemented using the "DS$EXPONENTIALF" attribute as the

function modifier for the GERNERATE blocks. Finally the

127

TABULATE block saves the residence time of each

workpiece in the production shop.

Figure 3-6 contains the Block Command Symbolic_
representation of the production shop model. Each
segment of the graphical model has a corresponding
segment in BCSL and each line has the corresponding

block number on it.

All blocks have default block numbers except IN and
OUT blocks which have labels. In the section on
~advanced features of BCSL, the job shop model 1is built
using a new block called "Request Work Station"™ which
simplifies the model. This block 1is a macro block
containing ENTER-ADVANCE-LEAVE blocks which makes the

model smaller and more understandable.

128

20001 DEYINITION o2
s WRENT
STAIT
0002 SIORAGE 0023 s
CASTER, 14/- - -
BOOOA TR
IO, & - - -
L
0007 TI TALE
BO008 © TE
B9
™ A2
20010 TI08S TARLE
BO0L2 CUUNT VARLARLEZ

Figure 3-5a. BGSL Model for the Production Shop

129

BOO11 MODEL
SEGMENT
ADVANCE
30028 EXPONENTIAL
BOO13
30029 LEAVE \\/]
; LATHE
ENTER i
IN1 CASTER
/5 30010 TER
Jl POLISHER
ADVANCE __ll__
BOOI4 EXPONENTIAL |
ADVANCE
I BOO3! EXPONENTIAL
LEAVE P_J___ .
BOOLS CASTER v
, LEAVE
L B0O32 POL1SHER
ENTER i
BOO24 PLANER
30033 TABULATE
71 "-\.,___I
ADVANCE
B0O2S EXPONENTIAL
i ouT! lII
LEAVE
BOO26 PLANER
ENTER
BOOD27 LATHE

Figure 3-5b. BGSL Model for the Production
Shop (Cont'd)

130

BO0D17 e

szen
2
ERATE
BOD18 TDER
4
o1 TARILATE
08s
B0 THRINTE

Figure 3-5c. BGSL Model for the Production
Shop (Cont'd)

131

w37

) mJ,

- 5
==
- i

" "“1

- [z |

Figure 3-54d.

BODAT

&

N

I
"
I
N

BGSL Model for the Production
Shop (Cont’d)

132

+
B T
- =
" -
= o
~ =
B |
- T ==
- i

Figure 3-5e. BGSL Model for the Production
Shop (Cont'd)

133

FALE: CASEOC BCS5L At ¥A/SP CONVELASAT1ONAL HOBITOR SYSIEY

SEACEANENIRIINSIAI SRS SSNSEIERETIRR USSR AINSLINNEISEIRISINISESRININERRRES
e

s BCSL CODE GEWEAATEE VZ2aSION 1.0

.

SURIEIIISNEEESNNTEEIS I CEIESENINAIBENELSANENEBIGUNEIERIEIIIRT RIS EISANRNIRESES

.
-
SIAULAIE
[]
L]

ese DEFIN1IIICE SEGREEAT

»
»

STORLGE CAS1EH, 14/LASRE,S/PLANEN, & B0002
5TU.AGE DEILL,B8/5udPEL, 16/POLL1SHER, 8 BuOOY
11 TASLE B1, 1203, 1200,10 80007
12 TABLE B1,1200,1200, 10 50008
13 1A8LE 51,1200,1202,10 50009
1J0ES TLBLE YSCOUNI, 10,10,6 0010
CGUNT VASIADLE WIINI-NSOUTTeNSIN2=BSOUI2¢XS{N3-N30UT]
L]
E
sen kEs SEGNEMI
[]
L 3
GESEaATE 344.,DSSELPORENLIAL.P,,,,,J081
181 EWIEL CASIEE,1 - 11
ADVANCE 1250.,DSSEXPONENTIAL.LT BOO1S
LEAVE CASIEE,? BOO15
EMIER PLANER BOOZ&
ADVaRCE 350.,DSSZXPONENILIAL.T BOU2S
LEAYE PLAME: BpOOZE
E¥iia LA1B2 30027
ADVANCE 200.,DSSEIPUNENTIAL.T Bu028
LEAVE LATHE 80029
ENTEE PULISHEZR 30030
ADVANCE 600.,D35ETPONERTIAL.P 50031
LEAVE POLISAER 80032
TABULALE T1 BOO43
oUT1 TEENAINATE 0011
]
L]
sse NEG SEGALA1
L
L]
GEMESATE 88Ude,sssrse TIREK 30018
TABYLATE TJ085 BUOTE
1E4MINALE 1 B0G20
[]
[3
sse gPa SEGUPN]
L 3
»
GENEWXTE 220.,DSSEYPONESTIAL.T,,,,,J082
INZ ENTEa SEAPER 12

Figure 3-6a.

Shop

134

BCSL Model for the Procution

ulB:z CASESC ELSL 1
ADVLNCE 105J. ,DSSEXrUNERTIAL. ¥
LEAVE Skikze
EFI7n DELLL
AUVANCE 9IC. , L5 EX20RENTIAL.F
LEATE DLlll
EXNTEA LALEE
ADVARCE 650.,L53EXPCRENTLIALLT
LErdE LalkZ
AAaILATE 12

OUic TEadlaniE
-
.

sés NEs SBOHERT
.

»

GELELLTE

IN3 EXRIEZH
ADVAMRCE
LEAVE
EN.Za
ADVANCE
LEAVE
E&TEan
ADVANCE
wEAMVE
ENILa
ADVANCE
LIAVE
ENITa
ADVINGE
LFaAvE
ThbBJuLATE

CGuUls TFoanli¥AlZ

L 3

¥8/S5¢ COMVEESALIGEAL HOMITIOR SYSTEX

80048
B0OO39
BGoag
BUG41
BOY&2
BQUL43
BOQW«4
Buuas
BGCUUF
oul2

285.,D53PLPuBBRTILALLF, 440 0d0E]

CA51ER
2350.,DSSETEUVKENTIAL. P
CA3TE

SHAPEE

2500, ,LSFEXPUMERTIAL. §
SBaPEh

ballL
S0J.,CSSEALUNENTIAL.F
DRILL

Pukibia
30u.,DSSEIPONENIIALLF
PLANER

PULiISBED

25v. ,CSBEXFGNENTIAL.P
PULLanE..

T3

*88 CUNTPOL SEUIFNT
.

-
STACD

»

[

EHL

Figure

5

ini
Bwds
BG052
BuUS3
BOGS4
BOO55
80356
BGOS?
80058
304959
0060
BOO61
b0262
BU0ol
BO0G4
ov06S
0013

30023

3-6b. BCSL Model for the Procution
Shop (Cont'd)

135

3.2.3 Discussion of SIMSCRIPT Equivalent - The
SIMSCRIPT equivalent model for the production shop
consists of preamble, main, initialization, VSCOUNT
(functiqn) routine, generator processes and transaction
processes. All the sections of the SIMSCRIPT program
are discussed 1in the order in which they appear in the
generated output file. As described in the description
of the BGSL model, the ENTER, ADVANCE, and LEAVE block
chain 1is used extensively to represent usage of
machines. Translation of these blocks is similar to the
translation of the SEIZE, ADVANCE, and RELEASE block
chain discussed in the barber shop model. Figure 3-7
containé selected sections of the SIMSCRIPT equivalent

program for the production shop model.

The preamble section definés all the processes
where there 1is a generator process and a transaction
process per job type. The transaction process includes
TRAN.jobl, TRAN.job2, TRAN.job3 and GEN.TIMER. Each
transaction can be blocked by a GATE or TEST block;
therefore transaction names could be added to the
blocked transaction list for its corresponding
transaction type. There is a set for each transaction
types called BLOCKED.jobl, BLOCKED.job2, BLOCKED.job3

and BLOCKED.TIMER.

136

The preamble also defines all of the resources in
the model which include; CASTER, LATHE, PLANNER, DRILL,
SHAPER and POLISHER work-stations. A series of
definition statements define the variables representing
the time spent in the queue, service time, number of

people entering the queue and capacity of each resource.

If the user selects a 1label for a block, the
current number of the transaction in the corresponding
block is calculated. The jobl segment has INl and OUT1
as labels, wused to calculate the number of jobs in the
segﬁent. The total number of transactions which pass
the labeled block is collected using the integer
variables N$IN1, N$SOUT1 and the current number of
transactions 1in the labeled block is calculated using

the integer variable WSIN1, WSOUT1l for jobl.

The stop flag is defined as an integer variable and
VSCOUNT 1is defined as a function. The Pn and Xn
variables are replaced by elements of P and X arrays.
For example if the user selects the Pl parameter in the
SIMSCRIPT model, it refers to P-ARRAY (1), the first
element of P-ARRAY. The unit of time is defined as
minutes. Each transaction type in the model has a
transaction counter which 1is defined as an integer

variable. The table entry variables T1, T2, T3 and

137

Tjobs are defined as real variables.

M1, the time spent in the model by a transaction is
defined as a real variable and is calculated within the
Transaction process. Cl represents the current time and
is equivalent to the current time in days multiplied by
the number of minufes in an hour and the number of hours

in a day.

The ACCUMULATE and TALLY statements are generated
to calculate average utilization of resources, maximum
number of people in service, average number of Jjobs in
gueue and- the maximum number of jobs in the queue for
each resorce. FEach HISTOGRAM statement collects the
distribution of the number of times that table entries
fall within certain limits. The histogram limits are
defined for T1, T2, T3 and Tjobs tables; where Tl, T2
and T3 represent time spent in the model and tjobs
collects the total number of jobs in the system at the

end of each day.

The Main and Output routines consist of standard
calls to other SIMSCRIPT routines. These routines have
been discussed in previous sections. The initialization
routine, defines the capacity of the resources and
creates all the resources. These resources represent

the work-stations where the number of machines in each

138

group defines the capacity of the corresponding
resource. The initialize routine sets the transaction
counter to zero and activates all of the process
generator routines GEN.jobl, GEN.job2, GEN.job3 and

GEN.timer.

The special purpose output generation routines
RESQURCE~PRINT, QUEUE-PRINT, " TRANSACTION-PRINT,
TABLE-PRINT, STAX-PRINT and XVAR-PRINT generate the
output results using a series of WRITE statements with

predefined formats.

The storage and table block commands do not
generate any SIMSCRIPT code in Pass 1; therefore there
is no corresponding SIMSCRIPT statement following each
block in the SIMSCRIPT equivalent model. These blocks
generate the data element for the set structures which

is used in Pass 2 of the compiler.

The variable block command has caused the
generation of a VSCOUNT routine to calculate
corresponding variables. This routine acts 1like a
function routine in PORTRAN and calculates the total
number of jobs in the system at the end of the day by
adding the number of jobs in each model segment. The
number of Jjobs in each segment is calculated by

subtracting the total number of jobs left in the segment

139

from the number of jobs entering the same segment.

A GENERATE block is translated into the generator
process. The JOBl generator uses an exponential
distribution function with a mean time of 384 units for
interarrival time of the jobs into the system. The
generator process also collects the staticits on actual
interarrival times and increments the transaction

counter every time it activates a transaction process.

The Transaction process for JOB1 is called
TRAN.jobl and follows the generator process in the
SIMSCRIPT model. It defines the P-ARRAY as a local
array and saves the arrival time of the transaction.
The IN1 label causes the total number of transactions
passed to the ENTER block (N$IN1l() to be incremented and
the current number of transactions in the ENTER block
(WSIN1) to be incremented. WSINl will be decremented
when the transaction reaches the next block (ADVANCE).
The ENTER block is translated into a REQUEST statement
for a casting unit. The ENTER block translation also
collects statistics for casting units queue and service
time. The ADVANCE block {(block number 14) translates
into a WAIT statement using the transaction seed defined
earlier. Translation of the LEAVE block (block number

15) relinquishes the casting wunit and calculates the

140

time in service for the casting unit.

The transaction will continue its move in the model
by entering the next workstation, this process continues
as the transaction passes through the chains of the

ENTER-ADVANCE-LEAVE blocks.

The transaction finally enters the TABULATE block

and leaves the model via the TERMINATE block.

The TABULATE block translation first calculates the
"M1" Standard Numerical Attribute (representing the time
spent in them model by a transaction), then includes its
results in the corresponding table. The T1 table
represents the time spent in the JOBl process by the
transactions, T2 represents JOB2 and T3 represents JCB
3. This way every time a transaction reaches the
TABULATE block, the M1 SNA is calculated despite the
fact that it is also calculated by the TERMINATE block

in the same segment when a transaction leaves the model.

The reason for recalculating the "M1" when it is
used by a TABULATE block is that the "M1" SNA, which is
calculated by the TERMINATE block, belongs to a
transaction which has already left the model (last
transaction). Therefore, there is no calculated Ml

available for the first transaction when it arrives at

141

the TABULATE block, because this transaction has not yet
reached the TERMINATE block. As a result, if M12 is not
calculated by the TABULATE block, the first M1 used in
the table would always have a wrong value and the last

M1l generated could never be included in the table.

The OUT1l label translation calculates the total
number of transactions which have left the model. The
process actually terminates by a RETURN statement which
feturns the <control back to the generator process and
will cause the temporary element representing this job
transaction process to be deleted from SIMSCRIPT's

internal data base.

The generator process and transaction process
translation for JOB2 and JOB3 are similar to JOBl

transactions discussed above.

The TIMER generator process will activate a TIMER
transaction after a week. The TIMER transaction
tabulates the number of transactions remaining in the
production shop at closing time by calculating the
VSCOUNT variable using the V$SCOUNT function and storing
it in Tjobs Table. The TIMER transaction will decrement
the STOP counter for this simulation run by one, call
the output generator routine, and stop the simulation if

the counter is zero.

142

3.2.4 Discussion Of The Results - The generated output
report includes an analysis of each resource utilization
and their corresponding queue statistics. The resources
in the production shop model are the machines in each
work station. In GPSS terminology a resource with
" capacity larger than one is referred to as a storage and
in order to stay compatible with GPSSV, this terminology

has been used for report generation.

Figure 3-8 shows the BGSL simulation run results
for the production shop model. 1In this model, the unit
of time is a 10th of & minute (six seconds) . The
generated report shows that even though the average
number of jobs in the queues 1is small, the maximum
number of jobs in the lathe and drill queues are
relatively high. The number of created transactions and
average transaction interarrival times are displayed for
each job type. The collected statistics for time spent
in the model for each job type is displayed for T1, T2
and T3 tables. The collected statistics for the number
of jobs in the model is also included in this report in
TJOBS table. In order to provide a comparison between
the GPSSV and the BGSL models, the simulation run
results for the same production shop developed in GPSS

are included in Figure 3-8,

143

Given the fact that‘ the simulation results are
dependent on the interarrival times and service times
which in turn are dependent on the random number
generation method and the seeds used to generate the
numbers, we can say that the simulation results for the

BGSL and GPSS models are very close to each other.

The correctneés of the BGSL model and the
translation of this model have been confirmed by running
the production shop model several times using different
seeds and comparing the results with the models built in
GPSS, SIMSCRIPT and SIMAN [36] for the same production
shop. Furthermore, traceback routines and commands to
print out intermediate étates of the model have been
used to prove the correctness of the generated SIMSCRIPT

model for the production shop.

144

Criloas

-
COL AP UE LA -

-t ol -
[P

A [

CAC1 3135CalPT li.5 1IBNM S/470 B9.3 PAGE

2eud, l0AD,ID, i HACE2 , OTERR,CdK ,REN=) EN 19-40V¥=-1985 22:36 (

sesanan

savsnsssPosnvnssssnnsasssserrrsassssnsnsesevrnnnnes®
™

»
.
seseecs®ancnes SINSCRIPI CODE GENEMALID DY ceecea®
VY acrses®.ra. BCSL TU SLIASCHIPT CHUSS COAKILEZ 4..°
'Y s erPencncnnnosasnns VERSION 1.2 canvcccscnres?
L] -
.

[E XL EREE R RN R L L R Y R L P R R

FLTAALLE

EQuMhLLLY BUDE IS HEAL

ruUCESSES

EVCEY TRANLJIUB1 HAS A BUNITOE.V

AJo NAY QELLNG I0G THE BpLOCKES.JDA

EVoedY laab.TINEs EAS A BORIIOW.V

AND NAY ubELONG 10 THE BLOCKED.1iHdER

EVELY 4mdB.JObd HAS & MONIIOR.V

AbL MAY LELUNG 3IC THE BLOCKEJD.JCBH2

EYERY TahN.JdUBS HAS A HONITOa.V

ABD ALY BELUNG 10 TEE BLOCAED.JCHI

THL SYS5TILY OMN5 1HE BLOCKED.JOB1

ThE SYSILX GeNy iHE BLOCKED.TIAER

THE SYS1EE OWNS THE BLOCKED.JQB2

Thi 5YS1bS OuWlii TdE BAuCall,.JOB]

EVERY GEN.JO51 HaS A 510¢.PLalG.JOE1

EVELY UEM.GLME: udS & SIUP.FLAG.IIAEE

EVinY GEK-JOL2 4L5S & STOP.PLLG.JUB2

EVEh)Y WEb.JCEJ HAL A S10P.PLAG.JUE]

BESUUAKCES

EVERY CASTEs HAS A MON.OF.CASIER

EVelY LAIHRE FLS A SUA.OF.LAMIEE

EVEEY PLANE: 4A5 A NUS.QF.PLAREER

EVEaY DRILL 945 4 ¥UB.O0F.DEILL

EVELY SHAPEs HAS A MUS,0F.SHAPER

EVESY POLISHREZ dA5 A BONM.OQF.POLISHER

DEF1n% 11MEIw.F.CASTEs A3 A BEAL VARIALLE
DEFPIRE TIMEIN..Sa3TEu A5 A BEAL VialAbLZ
DEFIME NUS.ENT.CL.CASTER AS AL INTEGEs YARIABLE
DEFINE CaPACITY.CAS%Ea AS AY IN1LGEa VA&IABLE
DEFINE TINELMN.T.LATAE AS & AEAL VALIABLE
DEFL13E 1IEcIN.yu.LliTHE AS A ELML VASIAELP
PDEZTANE MJUE.ENIL(.LATHE AS A¥ INTEGER VARIAGLE
DEFINE CAPaCIlk.1lATHE AS AN INTEGEH VAslLBLE
DEFANE TINELh.T.PLAWER AS A EEAL VAhiASLE
DEFINE 1IMEIN.y.PLANEa AS L ZELL VAWIAELE
DEFINE MUNEMT.L.PLANESN AS AN IMNIBGER VARIABLZ
DEFIKEZ CAPACI1Y.oladbic AS &40 IMEGEE VARIAELE
SEILIKE 12BEIN.F.DRILL AS A NEAL VAalAB.E
DEFINE TIBEINWGeDLILL &S X kEAL VAM1AELE
DEFLNLE NUM.EBI.Q.balll AS AN INTEGER VABIAZLE
DEXINE CaAPMIT:.DEILIL A5 AP INTEGEs VALIABLE
DEZINE T1BEIV.F.SHAPER AS A PIAL VARLABLE
DEFINE T1BEIN.w.SkAPER AS A WEAL VARIABLE
DEFINE MURLENI.C.SadlE: A5 AN INTEGEL VARIABLE
DEFINE CAPACIIY.SRAPLa AS AN INILGEE VARIABLE
LEFPISE TiBELW.T.FOLIShER AS A REAL VANIAGL?
PEPINE T1IREIV.Q.POLISLEa AS & MEAL YARIAGLE

Figure 3-7a. SIMSCRIPT Model for the Production

Shop

145

1
1)

PaZllols
OPLIUNG

49
S5
51
52
53
54
55
So
57
58
59
L 1]
61
b2
bJ
[T
€5
bu
w?
od
69
v
FA
72
73
T4
75
7o
77
Te
79
(]
51
82
as
84
85
86
87
1]
8y
90
91
92
93
Y4
95
9¢
97
So
93
100
101
102
103
10«

Figure 3-7a.

CACI STI®SCaIP7 11.5 IBA S5/370 u9.3 PAGE

TCEM LUAD, 1L, IBACEL KOTELN, CHR ,AEN=N 2R

VEF4SE BUB.EE1.ueFOLISHER AS AN IMTEGER VAS1lAbLE
DEFINE CAPavli¥Y.PULISHED & PN INIZGEM WaalALLE
TtuLFANL VARl ABLES AKY LEP1 EGNITGXED VARLALLES
DLELNE MelTY 25 Id9EGEE VAEIRBLE

DEFLNE w#3IBY AS INTEGEL VAFIAELE

DE:INE KSOULY A4S INTEGEs WAMIABLE

DEFisE WsCUI1 A5 INTEwER YALIABLE

LEFINE KSIHZ A5 IRTEGEs YALIALLE

DEZINE B34iN2 AS IR13GTu VAIIARLE

DEFINE 50UT. A5 INTRGEa VARIAELE

DE*ING »30UT. RS IMTEGE FALLABLE

DZFINZ NSIK3 aS 1NiEGEM VAEISELE

DETIKE wflNS A> INTIZGEa VARIAELE

DEPIKE NaOJTs> AS INIEGEw VARlABiE

DEFANY w3LU1} Au 4NTEwEEL YAiihBLE

DEFIXE 5%0P.#LAG AS 1KLiESZR VhalaELE

DEFAME VSCUULT AS IUTEGEL FUMCIZON

"OJEFINE Skk Fua OFJES

*eQEFial TEST LLUCA ELAGS

*YJEFIN: $51a11513CAL VisIABLES

**DEFIME BABLOBE VARLAELES

er FFINE AMAICEL

TIDECINE GPSS GLULAL VAKIALL™S

DEFINE F1 10 MELD r_kakdl(})

LEFIME 2 TU BELM P_hakAY{2)

DLZINE k3 10 MERN P_Aaidldyf (3)

[EFIKE it 1C 32AK P_Aaba¥ (4}

LLFIKE P5 TO BEAL #_A&hdY(S)

UEFINF PE TL REAM P_AAPAY(6}

DEFINE #7 10 BEAN P_Adkil(7)

DEZ 4NE P5 10 EEAN P_AakldY{d)
VEFISE ¢9 10 BELN P_AR3AY (9)

DEFIME P10 10 NEBAN P_AZEAY(10)

DEFLIEE X1 10 AEak I_MAFAT(1)

CEF4NP X2 IUC BEAN X_AREAY (2)

DLEINE %3 Tu BELM X_behdl ()

DEPIEE X4 1L BEAM £_AaZAY (&)

CEFIBE 15 10 BEAN X_ALA&AY (5)

DEFIsE 1t 10 NEAN X_Ab2dY (u)

OeriXi 37 TO BEAE i_kalAX(?)

DEFISE X8 TU BEAM X_ARRAY{8)

DEFINE X9 30 MEAN X_LKEAY (9)

DEFLILE X1G TL BEAN I_AREAY({10)

Det INE UBILS 10 NEa® BIBUIES

DEFINE KOMITLL.Y 45 TEXT VARIABLE

DZFINE M1 45 A REAL VAR1aBLE

DEFIME (1 20 BE&h TINE.V$HOGnS.VeAINDIES.V

"¢ uANSACTION DEFIN1SICH

DETILE TudbLBTH.JUBT AS AK INiEGPa VAMIALLE
DEYINE C.1MAN.CNI.JOb3 AS AN INTEGZa VAdIAELL
DEFli? SEEw.1BaN.JUb? AS A¥ SN1IEGE2 WARIABLE
DEFIME TkAM.CNT&.IIBEL AS AN 1B1EGZk VAslailE
DEFZNE C.2REN.CNT.T1%E: AS AK INTESES VARLADLE
DEFINE SLEL.TkAN.I1BEd AS AN INTEGEA VAMLABLE
DEFINE GLAM.CHTR.JOZ2 AS> AM ANTRGER WAKIABLE
DEFINL C.1kAN.ZN1.J0F2 AS AN INTEGERZ VABIALLE

UL

Shop (Cont'd)

146

19=-M0¥=1985 2.:36 |

SIMSCRIPT Model for the Production

<
LH

PREARELE
OPTIUNS

109
106
107
L UL
109
19
T
112
113
14
115
11s
117
118
11%
129
121
122
125
Tuid
125
120
127
126
129
t
131
132
133
LEL]
135
13¢
137
138
139
14u
141
142
143
144
145
1486
147
148
149
150
151
152
153
154
1535
156
157
156
15¢%
1T

Figure 3-7a.

CACI SINSCAIP1 IJ.5 1BM 5,370 k9.3
TEh3,LukD,1D,3 KACE2, SUTERD,CHA HEU=NEs

DLFIXE SEED.1shK.JCE2 A5 AE IMIEGED VALIABLE

DETINE 1adboCHTER.JOB3 AS AN IMIEGEN VAuIMclE

DEFIME C.TxhB.CN1.J0OD3 &5 AN INTEGZa VARLABLE
DEEFIRE SEEJ-TRAN.JOTI AS AN IN]EGEs VA2IABLE
TYDEFLNE TABLT VAUIABLES

DEFINE 11 A5 REal YAalddLE

DETINE 32 AC MEML VARG ABLE

DEFINE 53 M5 wERL VaRIABLE

DEFIME TuUbS AS KEAL YABIALLY

**%AulY AND LCCURJLATE FOs BESUDNCES

ACCUMULAILE D1IL.CASTEa AS AVEKAGE AND

Bik.6L.CaSTEhi AS BAXIEGJM OF N.X.JASTEs

ACCUNULATE AVG. Lo LER.CASIEa A5 MVELAGE AMD
BiaoyellbhoCASTEL RS EAXIBUE OF Nay.u2S1LE

TALLY AVu.TiNEINF.CASTE: A5 MELM OF TIACZIN.F.CASIEE
TALLY dVGeulREIlbeweCasilua &5 KELAN OF IIMPIN.).CASIiLEs
ACCUNATLAGE UI1L.aAlEF AS AVENAGE AND

ELI.N1.LaTHE AS EaXxiInuil OF N, I.LATHE

ACCUNULATE AVuayoetEBoLATHE A5 AVELAGE ANL

BadawelEMa LIGHE ad MALINUA OF NowobdTHE

ThalY AVG.TIMELIM.F.uAJAE AS HUEAN OF TISELM,.T.LA1AE
TALLY AVGL.11PEIN. o LATHE AS MELM OF T1AEIN.Q.LATHE
ACCUNMULAGE LILlL.PLANEL AS AVERAGE AKD

BLi.Fi.”PLANEL B5 RAilBUB OF K.X.PLANER

ACCLAOLAIE AVGoC.LEMFLAEES AS AYEQAGE &MD
BiXewsLENLELiNED LS HALIBUE OF Nuy.PLANER

TawlY AVG.TINELIM.F.PLANER A3 AEAM OF T1HZIN.Y.PLAMER
TallY bV QINELBe wa PLMEF A5 Hihh OF T18ElS.y.Pukdis
BUCLMOLAIE UTILLLZILL AS AVELAGE AND

Bas.Nr.Dulll AS B LINUA OF N.X.DallLlL

ACCUNULAGE AVG.{-LEN.DILL 45 AVERAGE AND
BaleGoLEN.DRILL A5 BAXIBUN OF M.y.DLILL

TALLY AVG,TINEIN.F.DRILL A5 AEAN CF T18ZIN.F.DRILL
TALLY FVG.TIMELM. . CiJlL AS AELN CF TISEIN.y.Dalll
ACLUNULATE Uill.S5aAFES AS AYTZELGE &MD

AAd.Rl.SualBL AS MAIINUR OF N.X.5HAPLs

ALLUSULATE AVG.C.LENLSHAJER AS AVEQAGE AND
EAdl.walEN.SULPEs LS HLXIBUM OF N.Q.ShAPEn

TALLY AVG,.IINELAE.F.SdAFEs Ab AEAE OF TIMEIN.P.SHAPL:
TALLY AV4.TIPELIN.y.SA4r2a A5 MEAN OF TIBEIN.y.SHAPE:X
ACUUNULATE DTIL.POLISsaEb AS AVERAGE AND
BAZ.KX.FOLISHEL AS MAXIAYN OF N.X.POLISHEa
ACCYNULATE AVGoeueLEw. POLISHEZY AS AvVERAGE AND
Pad.wsLEU. POLISHER AS BALINON OF N.y.POLI1SHES

TALLY AVu.TlAPub.F.PULLSHEN AS BEAN OF TIAEIN.F.PCLISHEZA
TALLY AVG.IIKEIN. y.POLISHES AS MZAN OF ZIEFIN.y.POLISHER
*PlALLY AND ACCUBULATE Fulk STALISIICAL YAdiAWLES
TIGALLY LMD ACCUMULATE POE YURUES

JEFINE GZN.118L.JOBT 45 A &EZAL VARIABLE

1allY AVG.GEN.TINE.JOUL1 AS BLAM OF GEMN.IIME.JOBY
DEFINE GEN.IIBE.IIMER AS & REAL VARIABLE

TALLY AVG.GEN.TIME.TI®Zh A5 HEAN OF GEN.TIAE.TIMEK
DEFINE GEM.TifZ.40b2 A5 A MBAL VARIABLE

Tasid AVG.GEM.1IME.JObL AS AEAM OF GEN.I1ME.JOB2
DEFINE WER.IiBE.JUHJ AS A KEAL VAEIABL®

SBLLY AVG.GEN.TIEE.JO33 AS BEAN OF GEB.TINE.JO93

Shop (Cont’d)

147

PAGE

19-807=1945 22:36 |

SIMSCRIPT Model for the Production

3
1

FUEENBLE CACI SIASCRIP1 I1.5 IBA 5/379 9.3 PAGE
OPTIUNL LEs%,LUAD,ID,TRACEL,NUTELN,CHA , AEN=kEs 1I-30V=-1985 22:36 {

1€1 "*AISIUWALE FO4 TAELES

Tod AALL) 171.HI520(12u¢ 10 Wald BY 1200)

163 AS THE AlISTGCEAN ANMD T1.,AVG AS AVESAGE AND

164 T1.542 AS S1D.DEV AND T1,NUN.EN1 AS FUABER Or T1

165 TALLY 12.H1510(1200 10 10830 »X 1200)

166 45 3JE H1STOCK.8 AULC 12,AVG A5 AVESAGE ARD

167 12.5TV AS STID.DEY AND 12,NUB.EBMT AS wUAbBR OF T2

1é6a GALLY 13.M15.0(%s00 32 el Y 1202)

164 A5 THEE HISTUGZAS AMD T1.AVG A5 AFEWAGE AMD

172 T3.510 45 S$1D.DE7 AYD TI.NUON.EW1 A5 KUEREE OF TJ

M7 TallY TUULS.HASIV{10 1v 50 BY 10}

172 A5 1HE LIS1UGHN AED TJOES.AYG A5 AVERAGE AND

173 TJCB5.5T0 AS STL.DZV AMD TJOBS.HUS.ENT AS FUASER OF 1JU3S

LRl END

CaO0Ss=-REPFP:zRARENRCE

EASE TYPF AudE
AVG L GEM.TIAE.JUBI ROUTINE DOUSLE
AYG.GER.TINE.JCH2 HOUTINE DOUBLE
AVG.GEL.G1%E.JOLY 200L1N2 ' DOJBLE
AVG.GEI.TINE.TINER ROUTINE DOUBLE
AVGoyLEdCALSTED PUACTIOR AJIRIBOTE DGUBLLE
AVGayw.LEN.CaILL FUBCTION AITI2IsUlL DOUBLL
AVG. o nENLLATHE FUBCTION AJIRIBUIE DOTALE
AVGaye LEF.7LAKLS PUNCIION ATIRIBDE DOUBLE
AVG. e LEK.PLLISHER POGNCII0F ATTRIBOIE DOUSLE
AVGouweLEl.SHARPESR PUNCIION ATIRIGDTE DOUELE
AVG.TANFIN.F.CASTEE AOUILNE DOTHLE
AY¥G.T1AEIN.F.Dalll ROUilne DOJALE
AVG TIBEIN. Y. LATHE EOUTIMNE DoUBLE
AVG.TIEEIN.F.PLAVE ROGUTINE DOJBLE
AVG.TIEETN.P.PCLISHER EOUTLRE DOUBLE
AV TILEIN.Y.SHFPEa MOUILMNE DOUBLE
AVG,TINCAN. 2. CASIER KOUILNE DOYELE
AVG.TIMEIN.L.DB1LL BOUTISE DOOBLE
AVG.TIAR1N, J.LATHE ROOUTINE DOJBLE
AVG.1I82IN. v FLAMES BOOTINE DOUBLE
AVG.TINEIN. (o #ULLSLEs 20UT1ME DOUBLE
AVGo1IBEIb. 4 SALFER MGUTIINE DODBLE
BLOCKED.JUB1 52T
BLOCKEL.JGuL SEL
BLOCAEL.JCII 3ET
BLOCKEV.LINEs SET
CalBhbeCNi IO GLOBAL VARIABLE ANTEGEL
CodiidN.CHI.JOEL GLOESL VAERIAULE INIEGER
C.IRAB.CNT.JUL3 GLOBAL VALIABLE INTEGEL
CeTEAN.CWI.11BER GLOBAL VARIAGLE IW1EGEK
CAPACLTIY.CASTER GLOBAL VARIA3ZLE LBTEGEK
CLPACELY.DbIki GLOBAL VARIABL: IRTEGEEL
CAPACI1Y.LATAHE GLOBAL VARIABLE LINTBGER
CAFACITY.rLAEEl GLOBAL VAAIABLE IATEGER
CARACIiY.PULISHER GLOBAL VARIABLE IWLEGER
CARMIIT. Sudfin GLOBAL VARIABLZ INTEGER

Figure 3-7a.

Shop (Cont'd)

148

SIMSCRIPT Model for the Production

I
1)

OFI108S

VS W

OoPTIONS

WO SN EWN -

Figure 3-7b.

CACI SIAsSCRIPT 11.5 lBa S$/370 £9.3 PAGT

1REH,L0AD, 19,5 84CE2, BOTERN,Cik A FN=KEid

Halm

CALL INITIALILE
STAKT SIBULAIIORK
Call OUIPOI_a0V11NE
BND

19-30¥-1985 22:36 (

CACI SI3SCRI’T 11.5 IB2 5,370 k9.3 PAGE

ZERA,LOAD,ID,14ACEZ, FOTERA LK, BEN=DEN

ROTTINE 1M111AL1ZE
FOLPALLY MODY 15 IMTEGER
LET CAPACITY.CASTEr = 14
CREATE ZVEAT CASIE2(Y)
LEZ U.CASTIEE()) = 14
LZT CAPACIIT.LAIHE = 5
CREAST EYERT LATAE(Y)
LET U.LATEE(1) = 5

LET CAPACITY.PLANES = &
CREASE EVERY PLABEL (1)
LET O.PLABRE(V) = &

LE1 CaMACITY.DhILL = &
CLEATE EVEaY DRILL(1)
LE1 U.DMILL(1) = 8

LET CAPMCIIT.SHARER = 1b
CEZATE KVERY SHARZA(Y)
LE1 U.SHAPER{1} = 1C

L2l CAPACITY.POLISHRL = &
CHZAIE BYERY PGLISEEE (1)
1P1 U.FOLISHER({1) = 4
121 IHAN.CNIR.JObY = C
LET ThAN.CYIu.TINER = O
LET Tahk.CNia.JdUns = 0
LEi TaAN.CN¥14.J0283 = O

-LET SIUP.PLAG = 5

ACTIVA1L A GEK.JOE1 NOS
ACTLIVATE & GEN.I1L1AEE MOV
ACIIVATE A GEN.JOBZ BOE

“ACI1VATE A GEZ8.JCB3 NOe

RN

Shop (Cont'd)

149

19-30V-1935 22:36 {(

SIMSCRIPT Model for the Production

1

1

LACl SIBSCHIPT 11.5 188 5/170 9.3 PAGF 21
0211005 42bA, LUAD,aDd,TokCEL, NUTESY,CHE, skN=KEn 1y-MOV-1585 22336 { V)

FEASSEINERRERINNE NN URNINRRRSREERR ISP RSRNAES ¢ RSP RN RSO NS RENIPNSRIF RSN S NS

ttee 2(SL CCDE GENEZATEL VERASION 1,0
198w

[(REAL R FRLE LA SRR IS SRR R At R RIZ RSP Yl Rl iR R L RN]Y)

ve S130LA.2

tv#ss DEFINILION SEGHEN:

s

re

o STORAGE CASTEL,14/LALHE,S/PLANEN, & BOGOZ
ve STOBAGE DEILL,8/58AP s, 16/POLISUEL, 4 | 1oLV
LA & | IAbLE 21,1200,1200,1C 30007
LI ¥} TABLE M1,1200,1200, 140 BOOOS
LI £) IABLE 21,124v,1200, %0 BGUOoS
't TJODS 1ABLE Y3CO0NI,10,10,86 BOC 10

¢ CCUNT TAZIABLE PSLIST-RE0OUT1¢NSIN2-KSUDL2+NEINI~N30UT]

ROUIINEL VSCOUN]

Ll VI_COUNT = NSIRI1-Ki0UT1+NS1E2~NSOUT2+¥SINI~NS00T3
HEIuak WITH V&_COUMN.

END

[Y SV

Figure 3-7¢c. SIMSCRIPT Model for the Production
Shop (Cont'd)

150

CACI SIBSCEIPT I1.5 1IBB 5/37¢ w9.] PAGE 2:
OPTIONS TERY,LCAD,ID,Y2ACE2 NOTEHE, CHX BEN=NES 19-50V=-1985 24536 (1)

"taes NEa SEGMENRT

v GEMERATE 3w DSSEIFONENTIAL. F,paqe,9UB0

YaUCZSs GEK.JOEN
LE? S510¢.FLlG.JOBT(GEM.JOB1} =]

LEi SEFD.1ilk.JOBY =)

#Ail U UMLLS

UNTIL SIVF.FLAG.JOBY{SEN.JOBY) <= y

0o

DEPINE GENI1.JOB1 AS A aEAL VARILIBLE

LET GE#1.3GE1 = IiAF.V

SAI% EXEONENIZAL.F (Jma.,
SEEZL.TLAM.JOB 1Y) ONIIS

LEL GEN.ZINE.JOB1= [IIME.¥ - GEN1.JOb1)*HOUBS.Y*HINJUTES.Y
ACLIVATE A TEkAN.JOB1 §OW

LET IMAN.CHNTL.JCBI=TRAM.CNTK.JOEY + 1
LET CoThLaN.CNT.JO31=l.T400.CHT.J05T + 1
Lo02

L T

e
OOV ELWND =

-l
-

[I g g
CwE wh

Figure 3-7d. SIMSCRIPT Model for the Production
Shop (Cont'd)}

151

OP11UN,

LT -JCWmEL NS

Figure 3-7e.

CACI SIASCaIPY 1i.5 IBa 5/370 89.3 PAGE

SEaN,LUAD,10,15ACEL, BUTESE LK, REN=NEY T9-NO¥-1985 22136

EFaILESS 1naN.JUa1

DEFIND k_A8RAAY AS INTEGEs,1-DIAZNSIONLL AksiY
FESERVE P_adndAY A3 10

DEFIME TTH.XT1 AS X wEAL VAZIABLE

il E1 = QIME.V

R £ EN1EL CAS1EL,l m

"IN O *

LP. kdadl = NSINT + 1

Lia miudl = BilN? * 1

LEs illaiGASTE = TINE.YW

LET? BUR.LBC. o CASTEH = BUN.ENL.y.CASIEn ¢ 1

aBuU%3s 1 CASTEE

LEy IIBEIN. e CiLSTER=(TINE.Y - T1¥.w.CAS1Za) %HOURS. ¥ORINULES. Y
LET TIMN.F.CAS1Eh = TINE.W

'e LLVESCE 12500 o DSSELSONENTLAL. P BOV 14

LT kallil = aiik -1
BUOLK EXTPOUMEWIIAL.P(1250.,5EED.TEAN.JOBY) UMITS

L LEAVs CasaskE 1 80015

RELIKLUISa 1 CASIERQ
»EI JIBEiN.F.CASTEL=(IUME.V = SIm.P.CASTER) *dOUSS. Y*NINDL 2S5, ¥

L EX.En PLLWES BOC24

LEY 1iN.w.PLANEL = TLHE.V

LET NUAENT,. yoPLaNED = MUN.EET, J.FLANEL + 1

BEGUESY 1 riLiNEu

LP. TIMLIN.y.PLAMEG= (I1PE.¥ = 11d.J.P7LANEE) $HOURL.V*RINOTES.V
Lii TIN.F.PLANEs = TIZE.V

e ADVAUCT 350, ,DSIETFOKENTIAL.F BOG2S

- WQuK EXPOWENI]AL.PF{I50.,SEED.TEAN.JO3Y) UBITS
[X]

LEAVE ELANEL BOule

BEL1MYULISE 1 PLAREM
LE: TIBBIK.F.PLANZE*(1IAE.VY -~ TIh.P.PLANER) *nO0&S.Y*N1NUIES. ¥

" EF1En LATHE BOC LY

LET LIW.y«la7HE = 11MZ.¥

LEI MM ENuay.LATnY = NUB.ENT.Y. LATil + 1

he UEST 1 LATHE

LE: T.PElw.y.LAToE=(TLB8E.¥ - ZIM.C.LlA1hE) *HOUES.VeRINDYES, ¥
LEZ JINLFLLALHE = 1IME.V

‘e ADVAMCE 200, DSSEXFUBENTIAL. ¥ BO0 28

| [iFY) EIPOHE*11IL.!IZQO..SEID.TMAH.Jﬂlll UNITS

L LEAVL LFTHE P00 29

REilMyUlSH ¥ LALAE
LE. TISELN.F.LATHES(TINE.Y - TIN.F.LATHE)*HOIES.VERINOTES, ¥

v EN1Exn YOLISHER BOG 3¢

LZi IIM.y.kOLISJEK = I1HE.V
LET NUM.BENT.J.POLISEZa = BUN.ENT.C.POLLSHEE + 1
RELUEST 1 POLISHEL

SIMSCRIPT Model for the Production
Shop {(Cont’d)

152

2¢
1)

PaOlESS
OP1I0NS

57
Su
Sy
bv
61
[P
[-X]
b
65
bb
e7
bd
69
¢
71
T2
75
Ty
%
T
77
T8
T
8o
81
82
[X]
[:T]
-1
[:1.]
67
8u
89
0

TLAN.JUEDL CACI SImsCelPi 11.5 IE8 S/370 ¥9.3 PLGE
ABEM,LUAD RV, TAACEL MOTERI,CHA, M EN=NEN 19=-40¥-1985 22:36 {
LET TIM5iN.w.POLISHEr= (TINE.Y = TIN.y.rOLISHZR) *HOULS.VONINOTES.V
LY 11w.F.POulS5HFa = JINE.Y

v ADVAME 600, DSSEXFONENTIAL. F) LR
WUUK EXPukEM IAL.F(600.,SEED.TRAN.JCET) Oulls

" LEaVE POLISUER BOG32

DEuasuuIst 1 POLLISUEG

LEs CIMEIS.F.EOLLISUEL= (1188, ¥ — TiN F.PCLISHEL) PLCORS . YOR1NUTES.Y
'e 1ABJLATE i BRUJIJ

LEL A1) ={IINE.Y - Ti¥.R1} *HU0LAS.Y*BAINOTES.Y
L2: 11 = 1
'Y OUTt TERBINALLE 0o

"ouLl ¢

LEi B30U1Y = BSLYIY + 1}

LEI W3CJI1 = w3i0Jdil + 1

LRT AT ={liRE.V = TIWN.8%)*HUJRS.V*HAIKJUTES.Y
Lbi CaibaN.Ch1.J007 = L. THAMNLCNTI.JOBT - 1
EETULM

tis

Trees Nie SEGHENI

LA GESExAILE 8dlbeyr0re s 110BE BV 13

Figure 3-7f. SIMSCRIPT Model for the Production

Shop (Cont'd)

153

2t
1)

- CACl SINSCRIPI I1.5 Ib¥ S/3W 9.3 PAGE i
OPIIORS TERES,LOAD,ID,ThACE2,YOTERA,CHK,dEN~)NEs 19-R0v-1945 22:3€ (1

PROCESS CPN.T1IAE

LET STUr.FLAG.TIEEH (GEN.TINRER) = 1

LEL SEED.IWAK.TINEa = 1}

#AlT O UN11S

USTIL STOP.FLAG-TIRE: (GEK.TIBEN) <= 0

po

DEFIBE GEF1.1INEN &5 2 BEAL YAR1MEBLE

LET GENT.TI5Es = TIAE.YV

WAIT ONIPO&H.F{ (4800.<4}/1.0, (480Q0.+0)/1.0,
12 SEED.T&AU.TINER) UNIIS

11 LET GEN.T1SE.TIALa=>{TIRE. Y - GEN1.T]I8%a)*KOVUaS. Y*RINJIES. Y
12 ACTIVATE A TaAN.1IAZE NOW

3 LE) THAM.CPYI B . TIMER=TLAD.CRIG,.T1INEx ¢ 1

1q L C.IRANCHI.JISER=L . TNAN.CHT.TINEF ¢ 1

VMRV EWN-

15 LOCF
1% END
CACI S18SC«IPT I1.5 IbN S/370 £9.3 PAGL P4
OPIIONS YTEWE,LO0.D,ID,TdACE2,NOTERN,CHK,REN=AEN 19-30v-1965 22:36 (
1 PRULESS THAE.TINER
2 DETINE P_AERAAY AS 1MTEGER,1-DINSEASIONAL ARdAY
3 RESEMVE ©_AARAY AS W
L4 DEPINE TIh.R1 AS & REAL VALIABLE
5 TIN.ET1 = TIME.V
6 : TABULATE 1J0BS BO019
7
8 LEI TJO2S = WECCUNT
9 o TERSINLTIE 1 20020

1 LET 81 =({TIKE.¥ - TIN.K1) *HOURS.T*AINDIRS. ¥
12 LET C.TRAN.CHL.TIPEL = C.IBAN.COT.TINE? ~ 1
13 LE1 SIUP.FLAG » STOP.FLAG - 1

1% 1P STCP.PLAG LIE O

15 CALL QUTPXO1_kOUIINE

% sTO02
17 ., ALWAYS

186 “RETUASN

19 e

20

21 avy

a2

23 v'ees NE SEGHEINI
24

25 s

26

2’ "s

28

g: " GENEKATE 24Ua , DSERICEENTIAL. TP, 14443082
n ENL

Figure 3-7g. SIMSCRIPT Model for the Production
Shop (Cont'd)

154

SEAPB O ASELASR RSV EERSPANEP IV IR ORNENSI NN S

*# GEAZbICAL SISULATICN SYSTEB WUTPU1 &+

SICRISSANN SN SLENEGUBIIR TN NN VRSN NS IO ORI

FACALIIY CaPACITY
¥13E
3TunavE CAPATITY
HiNE
CASIEL i L)
LATAE 5
PLAuis L
DaILl b
SHAPEs 14
POLLSHER [
BESOJACE AVERAGE
JORUE CONTENT
CASLEL 1. 153
LATHE - Tl
PLANER Pkl
Dalll 1.273
SHAPE. - 150
PGLISHER .7217

TRAEIACIIOS

HaASZ

J021

TLIMER

JGEL

JCos

1IEBLE

T

Figure 3-8a,

AVESAGE
ULILIZATION

AYEHAGE
O3ILIZLIION

-810
«652
+509
«733
- 126
«b18

I0IAL

ENTERIES

164
173
142
179
189
130

NJBEEA
CHRATED

8z
5
11%
8z

AVERAGE

3010.43

155

BUARES OF
ESTEalLs

NORPES OF
EN.E&IZS

Tos
m
140
176
109
146

AVEKAGE
TIAZ/TEAN

AVEdAGE
TIBE/LTUAN

AVESAGE
TIAE/T4adil

1652. 142
¥57.415
Jel, 454
T04.383

126,895
433.79%3

CULERENT
COBTENT

CUKRENT
CONIENT

18

woOdkE

CURNENT

174.589
103.915
37.740
168.519
19.001
128.269

AVERAGE

CREAIICH TIAE

291.670
4799.999
208.4821
291.507

SID.DEY

CONTENT

COoOwWwNOO

aailaovm
CUNTEXT

BA X1 8URN
CONTEMT

i1

EFEgEmawm

arAxIaan
CONTEN1S

-
oWk w -

80, ENTERIES

1433.63

Simulation Run Results for Production
Shop

U2rE- LIMAT FRE LUERCY FRacT®l CF IUZAL

. 1o 28 e
430 22 «32
ELTTY b] 33
48vu 7 <10
[V R+ L) 1 a1
1i00 3 «01
d4du 9 0.
60y 0 0.
luswo 0 0.
1aBlE MV EuaGE 57D0.DEV BO.EM1EalES
12 27145.58 twat.19
JfPla LIBIT FadEJUERTY PEERCENT OF TOTAL
12046 LT .47
PITN 24 «25
3000 20 «21
dauld 5 U5
600u 1 01
T20v 1 01
400 +] Q.
9502 U 0.
10800 "] 0.
TLiLE AVRBAAGE S5TD.DEV BO.ENTERIES
13 5759.51 31511 85
U2PER LIAIT PEPQUENCY FERCENT G} TOTAL
1230] -1
240y 9 « 14
ELY Y] 11 «17
8290 9 Vi
600y 3 « 12
T20u Y 0%
duuu 1d «15
Y60 2 -03
1Udud 2 .03
Tidif AVEIAGE 31D. DEV B0.ENTERIES
1Juds 44,60 B.u8 5
JrPka LIAJI1 FuBJUENCE PEACZENI OF TOTAL
10 0 Q.
20 b 0.
Ju 1 «20
LY 3 «b0
59 1 «£0

Figure 3-8b. Simulation Run Results for Production
Shop {(Cont’'d)

156

3.3 A Bus Stop Simulation

3.3.1 Statement Of The Problem - A bus is scheduled to
arrive at a bus stop every 30 minutes, but it may be as
1.5+ 1.5 minutes late. Whether a bus is late or not in
no way depends on whether the preceeding bus was late,
and has no influence on whether the next bus will be

late.

People arrive at the bus stop in a Poisson stream
at a rate of 12 people every 30 minutes. The bus, with
a capacity of 50, carries 35 +15 paésengers when it
arrives. After some 3 to 7 of the passengers get off
{uniformly distributed), as many waiting people as
possible board the bus. Those unable to board the bus

is leave the bus stop and do not return.

It takes 4 +3 seconds to unload a passenger and 8 +
4 seconds to load a passenger. Passengers unload
one-by-one, and get onboard one-by-one. Waiting people
do not begin to board until everyone intending to get
off has done so. The sequence for getting onboard is on
a first-come, first-served basis. any = person who
arrives at the bus stop while a bus is still loading |is
able to get on, providing there is room for them. In

case of a time tie between the events "bus is now

157

finished loading"” and "next passenger arrives", the
arriving passenger is taken onboard (providing, of

course, that there is room for that passenger).

We are to build a model which simulates the events
at the bus stop. Design the model to gather the

following information:

1. Obtain a waiting line statistics for people waiting
at the bus stop, include an estimate of the

distribution of in-line residence time.

2., Estimate the distribution of the random variable
"number of passengers per arriving bus who are

unable to receive service”,.

3.3.2 Discussion Of The Model - We have selected ¢to
build this model in BGSL so that it is exactly the same
as the GPSS model. This 1is being done 1in order to
verify upward compatibility of BGSL and GPSS and prove
the correctness Qf translations for many advanced
blocks. As Schriber describes in his book the model
consists of two model segments. The first segment
simulates the passengers who arrive at the bus stop,
wait for the bus, and then either get on or leave 1if

there are no further seats available. The second

158

segment simulates the bus and the passengers on board
who want to get off the bus. A passenger can get on the
bus when a bus arrives at the bus stop. They must
however wait for all the intended passengers to get off
prior to getting on the bus. A gate block is used as a
logic switch which controls the entrance of passengers
to the bus. The bus-gate can be controlled from the bus
segment or the passenger segment. The bus transaction
opens the gate when a bus arrives and intended
passengers get off the bus. 1In the passenger segment,
each passenger while getting on the bus will <c¢lose the
gate so the other passengers have to wait for their
turn. The passenger transaction will open the gate when
it leaves the model, thus allowing the next passenger in

line to try to get on the bus.

The bus waits until all the passengers get on the
bus before the bus exits the stop and closes the gate.
Figure 3-9 presents the BGSL model and Figure 3-10 shows
the BCSL translation for the same model. 1In this model,
even though we could use SIMSCRIPT provided distribution
functions, we used the FUNCTION command to stay
compatible with the GPSS model 'and to demonstrate that
this block is translated correctly in case a user wants

to define his own distribution functicn.

159

DQUE QTARLE

Figure 3-9a. BGSL Model for the Bus Stop

160

Figure 3-9b. BGSL Model for the Bus Stop (Cont'd)

161

Figure 3-9c. BGSL Model for the Bus Stop (Cont'd)

162

Faaul: CALELE BCSa al YA/SP COMYEaSATIUMAL BOWIIOR SYSTEA

..l‘....‘-‘..-l"l..t.“.t.‘.t"-.‘.-.....!l".‘!ll.lt‘t‘.t.".“‘..'"t-‘..‘..

L 1]

*% CSL CULE GLNERLIla YEaGION 1.0

(1}

PISEEAEINLENIN RN SRR SIS IISIEERR SRR ESAE LA RLTNENICASESSSISRERREERRITASELS

.

» L
S1MULATE

L

[]

®ss DEFLNITiVS SEGNEM

L]

-

XEDIS FUMITICH L¥1,C24 BG002
0,3/e0a W8/ 0l0d22/s340355/a4,e5U9/.5,409 ELuwd2
ebpe 913/, 10u/.15,%.38/7.8, . 0/.80,1.83/.88, 20002
dol2/eioded /a9 quaD2/ 58,4488 /.95,2.99/.9¢, BULO2
2ea/e97,3.5/.98,3.5/.99,4.6/,995,5.3/.9%0, Balu2
bed/e99Y,7./7-99%0,08.71.,10000, BOOU2

ORBOS FUNCIION unl,Cc2 50003
Vep20a/1.,51. 20003

OFF FONCI1ON BN1,C2 bBUOOW
Uegderle,da , Builuu

INUE TABLE LINE,3u0,300,7 Bu00S

Aak LALLL 380,90, 1, 1 Iudue

L]
L
*s% ks SEGEERT
]
L]

GENELATE 15C,FNSIPDLS,,,1 80008
JQUEIE L1152 BLODY
eA1k LS Y DL
DEPLal LIME i B3G 1Y
1854 o IINOdON,50,84D . 80912
LLGIL & BUS Bu013
GEZCHN ALVANCE B,n GEION
SAVEVALIE MOMGm+,1 b0015
LoGIC S aus BUGTE
TERMLMALE BGGY17
MAal SAVEVALUE MiDe,t BAD
TERY.NAGE o001%

%% NE& SEGRENT

.
»
GEFESLIE Tobv BOO21
ADVALCE 90,90 Bog22
SAVEVAILUL MOWOX,FEN3ONBUS BUG23
ASSlan 1, FUSLFF BLO24
BEXIT ADViNGE 4,3 EFIT
SAVEVALUE BGWOS-,] BUOsLo
LouP 1,MEL1] BOJ27
LGOGIC S EUS BUOLE

Figure 3-10a. BCSL Model for the Bus Stop

163

FilLE: CASESE LCSL &1 ¥YE/SP CONVERSATIONaL BUBIYON SYSIEY

P31 E usLing, § BOOD29
AES1 E aSuElON,C Buu3Y
TARJULATE 1313 Bu0 i1
SaVEvAlUE MRL,V BO0O32
L0uiC & BTL b003)
TE3IMATE 1 20034

L

.

o8 CONTEGL SESMNENI

s

.

Slaul 2% BU03G

»

.

ERD

Figure 3-10b. BCSL Model for the Bus Stop (Cont‘d)

l64

3.3.3 Discussion Of SIMSCRIPT Equivalent Of The Bus

Model - In this model in order to stay compatible
with the GPSS model we did not define the transaction
names. As a result, the BCSL compiler has automatically
assigned names té each transaction (the passenger
transaction is called TRAN.1ll and the bus transaction is

called TRAN.12).

Figure 3-11 contains the SIMSCRIPT equivalent for
the bus stop model. The preamble section defines the
processes, resources, variables equivalences and
'standard numerical attributes. Tally, accumulate
statements and histogram statements are included to
accumulate needed statistics. The distribution function
variables like XPD2IS ONBUS and OFF are defined as

Random Linear variables.

The gate controller switch (BUS variable), the
number of people in the line (QSLINE} and the number of
passengers getting on the bus (WSGETON) are defined as

left monitored variables.

The initialization routine reads the values for
user defined distribution functions, 1initializes the
monitored variables to zero, 1initializes the counters
and stop flags to zero and finally activates the

generator processes. The output routines generate

165

reports for resources, queues, transactions, tables and

statistical variables.

The Monitor routine which monitors the number of
people in the line (called LEFT ROUTINE QSLINE) checks
if the line is empty. It then reactivates the Dbus
transaction that is blocked waiting for the line to be
empty. The monitor routine for the number of people
trying to get on the bus checks if the last passenger
has gotten on the bus. It then reactivates the BUS
transaction that has been blocked waiting for the last
person to get on the bus. These two monitored routines
in ‘conjunction allow the bus to leave the station if the
line is empty and the last person has finished getting
on the bus. The monitor routine for the bus gate
controller checks if the bus is at the station and no
one 1is getting on the bus then it reactivates the first
passenger transaction which is waiting to get on the

bus.

The passenger transaction wuses QUEUE and DEPART
blocks to gather statistics on the GATE block and its
corresponding queue. Notice that for RESOURCES we do
not need to use the QUEUE and DEPART blocks. This is
because the queue statistic is calculated automatically

for them. The GATE block will cause the passenger

166

transaction to be blocked if the bus 1is not at the
station. The TEST block checks if the bus capacity is
full. If so, it directs the remainder of the waiting
passengers to leave the station. This 1is done by
transferring control to the label "MAD", where the
number of passengers which could not get on the bus is
incremented and the passenger transaction leaves the
simulation model without gqtting on the busf Otherwise,
if a passenger gets on the bus it will close the bus
gate so that the remainder of the passengers wait their
turn in line. Notice that every time a monitored
variable 1like WSGETON is wupdated, the left~monitor
routine is activated and a check will be made to find
out if the original condition is satisfied and all
transactions which are blocked waiting for the wvariable

to be met the condition is reactivated.

The bus transaction, after arrival, decides on the
number of passengers on board and the number of
passengers trying to get off the bus. Using the user
defined distribution functions, bus transactions waits
for passengers who want to get off the bus and opens the
bus gate for them. This wunblocks the passenger
transactions which have been blocked waiting for the
gate Eo open. Then the bus transaction is suspended

(blocked)} until the line is empty and the last passenger

167

has gotten on the bus, thus allowing the bus to leave
the station. Upon leaving the station, the bus
transaction tabulates the number of passengers who could
not get on the bus (MAD people), resets the MAD counter
and finally closes the bus gate before leaving the

simulation model.

3.3.4 Discussion Of Results -~ The report contains the
gueue and transaction statistics in addition to
distribution of the number of people which left the bus
stop without getting on the bus and distribution of the
number of people in the line. Figure 3-12 shows the
output report. There were 291 arrivals to the line in
total. The expected value would be about 300 and
Schribers GPSS model result is 288. The maximum number
of people in the 1line is 21 compared to the GPSS
simulation result of 16 and average number of people in
the line is 5.5 compared to the GPSS average of 5.6.
There were no passengers that did not have to wait to
get on the bus; therefore, the number of zero entries is
Zero. SAVERAGE (average time/tran excluding =zero

entries) is equal to the average time/tran.

168

The in-line residence time distribution is
demonstrated by the INQUE table. The average wait is
855 seconds compared with a GPSS waiting time of 889
seconds. There were about 51 passengers who waited

between 300 to 600 seconds.

The distribution of people not served per stopping
bus 1is included in the MAD table. Everyone was able to
get aboard the bus 17 times out of 25, compared with a
GPSS results of 21 times out of 25. All these
statistics are consistent with the data provided in the
problem statement and results achieved by therGPSS model

for the same problem.

169

OFTiUNS Tta#,lOAD,1D,TahlE2,B0TELN,CHE MEN=UER

WL E W

CAL1l S1MSCEiPT 1i.5 IBB S/370 59.3 PAGE
17-507-1985 17:40

¥l neeree4Pacuassnsssacecastassnsssnansnucdasssnsnnneer

'...--l.-‘-.-..o....l..l.‘..-t--...0.-.-.....‘.l..I.

", ieeass®rsoncs SINSCAIPT CODE GENEZATED EY cavees®
Y veoes¥asss BCSL 70 SIASCaIPY CROSS COERILER ...*

"t o avesescPuuenscncannnrae FEUSIOUN 1.2 sessssssansns®
-

...--l...'.I...-.II'-..l-I....-....--..‘......--.l.
"l.I-...'I.“...-....I-I..ll.....-..-.l--......---
FatAMULE

NOSBALL: WUDE 1S wEiL

PaulZa3ES

EVLEY TE2N.11 &AS A SONITOk.V

AND MAY BELONG 1U Ti? BLOCKED.11

EVEaY ThalMeld LEAS A MONI.Oa.V

AMC SAT BELOXG I TH® BLULKED.1Z

THZ SYSTEP OMWS SSE BLUCKED. 11

THE 5SYSTSH OwMs LHE SLOCKED.12

g¥cbi GEN.1Y BAS 3 S1UP.FLdG. M

EVZLY GEZh.12 3A5 A STUP.FLAG. 12

"4DEFINE VAslABLES ANy LEF]1 MONITOXED VAMIABLES
LETIN® kSGEIUF AS INTEGEuU VWARIAZLE .
DEFINE wacFIUM A5 1¥1EGEs VARILBLE BORITOSED ON THE LEFI
DEFIGE WSRAL 45 1MTZuwE: VA LABLE

DirANE WaHMD A5 INTESEL VAWIABLE

LEFINZ MSBEX1 BS LATEGER VAalABLE

DEFINE WSNEXT &5 INIEGER VAMIRILE

DEFINE STOF.PLAw A3 IN1BGEM VARIAELE

DEr1BZ buS AS INIZGba YAKIABLE BOWATGWED OW TAE LEPI
DEFi&E ISBOKON AS INIPGRE VARIADLE

DEFINE X59iD AS INTEGZL WARIGEBLE

YeDETINE Shd FOM OFUES

GEPINE WLINE A5 IN1EGEA VARLACLZ MONTTOUED Ob IME LEKI
DEFINE yOSLINE A5 IWIBGEL VARIABLY

DEYINE wcSilib2 &5 INIEGER WARIABLE

DETINE L235LLNE A5 INTEGES ¥AkildLl

DPEINE wa%.LIN: L5 INTEGER WAkIASLE

DEFINE y.X.Li¥E &S INTEBGEW YARLAbL.LE

*IDEFINE 1EST BLCIK FLAGS

LEi 15E BLOCAED.?iAé.T1 AS AN INIZeld VARLAoLE

DEFINT PLOCKED.FLIG.12 A5 AM INTEGEs YARIAGLE

sepEPINE SIATISTICAL VARIABLES

veDZFINL EANDOAZ ¥idilBLES

16E s¥oif® HAS A EPCi5S aANDOM LIMEAx VAGLALLE

LEFINZ X#DIS A5 2 wEAL VAMIABLE

TBE SYSTER dAS A OMBUS RANDOM LINBAR VARLALLE

DEFINE UBEUS A5 R ABAL VARIAELE

TLP STS1FA HAS A OFF MANDGH LlaEZAk VARILDLE

DEFLE: 0P AS & REAL WiRIaBLE

TLEPInE BATRICES

*IDEFIKE GP5S GLOBLL VABIADLES

DE*LKE ¥1 TO HEAM P_RiRAY (1)

DEFINL Pe 40 SEAN P_AKBLY (2)

DRYINE 13 10 BEAN P_AENAY(3)

DEFIEL P4 TO MELN P_ERalY(4)

DEFINE E5 T0 WEAN P_huildY (5)

DETINE P6 10 NEAN F_ARNAY (b}

Figure 3-lla. SIMSCRIPT Model for the Bus Stop

170

1
Y

PRiABELE CAC1 51ASC<IPI II.5 I3® 5/370 r9.3

OF110Ms TEsf,LUAD,al', TRACEL, BUIERY,CHA REN=ESS 17-4CY-1545 17:80 (

89 DEFINE ¥7 10 BELE P_ARBAL({T)

£y DEFIst Pu 10 MikL o_LzidY(H)

£1 DEFINE P9 TC MEAK P_ARFAY(9)

S2 DRFINE £10 T0 ABAR P_hadhI{10)

53 DETINE X1 10 AEAK X_AikAT(})

S4 DEFIME K< 50 MEAN X_AbsAY (2)

55 DEFLIWE 13 70 AEAK Z_RaLAY(4)

S. DEFIKE X4 TO BMEMN X_ahaiX (4]

7 DErC4MF X5 10 BEAM I_AusdY(5)

S5 wRFINZ at 10 BERE I_RKhGY (b)

S DEFANE I7 TO MCAK X_AeLAX(7)

64 DIFISZ Lo 10 BMEIN I_AxchY (8)

61 CETINZ X9 T0 AEBAM X_AZJAY(9)

v2 DELIME L10 %0 BEAK X_AsxiY(Tu)

63 DLFLKE usiTs TO WEAK B1RC1Es

v+ DLFIKE MCEI10a.V A3 TLAT VaMIABLE

65 DEFINE M1 AS A KEAL VasiAblf

6o DEFINE C3 10U BELAK TIEE.V®5OUab.¥sSINUIES.Y
€7 t1iLANSACTIGE DEFIRITIOR

oe DEFIKL TaAk.CNTa.11 A5 AN INIBGEd VWARIABLE
65 DFLAME C.l1kAN.CFT.11 L5 AN LIMIEGEL VARLABLE
70 GEFINE S5LbD.Talk.t1 &5 A5 IN1bGEs YialdBLE
7% DEFiNE Taik.CNZh.12 AS AN INTEGEs VARIADBLE
72 DEFINE C.1hkM.ThT.de AS &AM ISTEGEZ VARIABLE
75 DETIN® >ED.TaAX.12 A5 b INTEGEs VAKIABLE
76 YODEYINZ TABLE ¥ALIJBLES

75 DEF1MZ AAD AS EEAL VAkIAgu®

To Y%ialli AKD ACLTURJLALZ PO WZISOUNCES

77 YOTALLY ARD ACLUBULATE POR STALLSTICAL WAR1ABLES
75 Y91allY AMD ACCOEULAZE FUR QUEUES

79 ALCUKULATE JASLINE AS AVESAGL AND HFLLNE AS SAXIAUS2
BU CF JO0S.LIME

81 1asiY L34L1ME AS NEAN GF Q.T.LINE

82 TALLY JISLIKC AS MEAN OF Q.1.lIme

23 DEFINY GEN.118E.11 A5 A WELL VAERLLBLE

#e 14ail) AVG.oBE.TIAE.11 &S AERY OF GLE.11BE.11
85 DEFINE GEN.TIBE.T1i AS A aPAlL VaPLAGLE

86 TALLY AVG.GEN.TINE.1Z £S5 NEAR OF GEN.ZIBE.1Z
67 *SHISTOGeAM FUi TAILES

S84 TALLY BAu.HISTO(w 10 é BT 1)

4% 15 THE BISTCGRAM AND BAL.AYG AS AVERAGE AND
90 MiD.SID AS S1D.DZV ANL BAD.DOAM.EJT AS SUMSEW OF BAD
91 TALLY iN OP(50C 30 180 BT 100)

9 &5 auE HISIOGaAR AND AND

93 .T.LINE.STD A5 STD.DEV OF Q.T-LLNZ

9 ENJ

UL

PAZE

Figure 3-~1la. SIMSCRIPT Model for the Bus Stop

{Cont'd)

171

L

1;

- CACT SINSCHIPT JI.5 IBE 5/370 9.3 PAGE
OPTIOMS TEEY,i0Mu, 1V, BACE2,50TENS,Clh REESNES 17-50¥=-1985 17:4¢ (1

ROUIINE INIZIALIZE
SUKBALLTY BUDE 1S5 1NITGEa
BEAD IPLLIS

&EAD ONEOUS

READ OFF

LET BUS = O

L1XT ASKCMCK = 0

LET XSMA0 = O

_ LEZ T545.CEil.11 = 0

10 12T 1kAN.CM13.12 = O

11 Lil BLOCKEL.FLIG.11 & G
12 LPI buUCKED.FLAG.1< = O
13 LZi STUP.FLEG = 25

W AC1IVATE A GEM.11 Nue
1% RCTIVAGE A GiE.1s BUS

VRNV WN-

16 | 1%
CAC] SINSC4IPT Il.5 IBR S/370 9.3 PAGE 1
OPTIORS TEkY,LGAL,1J,IRaC53,N0% RRN,CHX, RENSELE 17=B0¥~19a5 17:40 { 1
1 LLF]1 PROUI1IET BIS
2 DEFINE K.8U5 A5 AW INIRGER VARIAJLE
3 ENZEL elld M.BUS
L} 17 E.BUS Eu 1
s POF EMH TEAM.TT IX BLUCKED.11 N1THE
6 BONIGGa. ¥ (ILAK. Y1} B2 SRUS®
7 DO
1Y BZ3OVE Tiug FX6ST TaAR.11 PiOA BLOCKID.IT
9 ARACTIVAIT %4135 TEAM.T1 MOU

16 Loop

1% AntdYs

12 BOVE PaON b.aUS
13 EELUkN

L L) EXD

Figure 3-11b. SIMSCRIPT Model for the Bus Stop
(Cont’g)

172

CACI S1ASCEIZPT 11.5 I16% 57370 39.3 PAGE 1
OPL1UN> TERN,LOAD,10,1ACEZ,NOTERS,CHE, REN=RES 17=-00V-1%a5 17340 (1.

1 LEFT BOTIINET 3L1SE

2 DREFINE B.uSLINE 15 AV IBIEGER VALIAEBLE
3 ENTER R11H H.USLINE

] IF B.CSLIME Ey O

5 PFOL EACH 13A%.12 I¥ biOCKED.12 BITH

6 ROBITOR.V(adaN.12) Ey “uRLINE"

7 Do

[] RESOYE THE F1a45T TRAY.1Z PROE HLOCKED.12
9 BEACIAVALZE GLIS TLAN. 1L WUW

w LOGP

n hLWAIS

12 BGVE §.00% WoySllNE

13 RETUaN

1% | 4]

CAC) 3TASCRI?I 11.5 I3R S/370 k9.3 PAGE 1
OPTIOKS TELN,LOAD,IL,TBACEL,PUIERR, CRAK , BEN=NES 17=-RCY-1565 17:40 (1

LEF1 POUI1NE aJGEICH

DEFINE M. W3GLIUD 1S AW INILGER VAGIAELL
EB1EE slubh K. NIGETON

Ir N.hEGEIOY EQ U

POL BACh Takb.tl 1M BLOCKEL.1Z WITH
MOLILZOL.V{Jiudlia 1) Eg ®HEGZION™

bC

KRNOYVE THE FILEST Talk.12 FROW BLOCKED. 1«
BEACTIVATE ThlS TRAN.12 BOW

"w LOO«

" ALEAYS

12 BOYE FaON N.L3GEION

13 RETOEN

14 END

"X ENE LR VY VI

Figure 3-11lc¢. SIMSCRIPT Model for the Bus Sto
(Cont'd) .

173

0P710ks

DO AT UVE LN -

10

CAC)1 SI85CalPT 1i.5 IBm $/37v 59.3
TEwY, LUAD, ID, THhACE2, NOTE4R, CHR aEN=DES

PRUCESS TRAE. N

DEFIGE F_Aualil A 191 5GEx ,1-DINERSLONAL AskdX
MESEBVE P_ALLAY a5 10

DEFISE 31i8.EL1 AS 5 REAL VAWIABLE

TIN.A1 = TL1EE.V

0, GULUE LINE

LET 11Wy.llNE = JaAE.¥
L®i LLiii¥P = QCTLINE ¢ 1
LE. uSLINE = ySLiNE ¢ 1
LT L UILINE = yOMLIKE + 3

L GazE LS 5435
L1t

1¥ EI5 BL 1

Lok

LET NUN1Iug.V{Iuar.11) = ®EU5*
FILE Thako1% IR ELOUCKEL.YV]
FHETRA N

6L 50 L_1

ALshY3

L DEFALY LINE

LE. We1.LIKE = (1iAE.¥ - TINU<LINE) *HOURS. V*R1EUTES.Y
I? Ga1.3IWE LE &

LED wosiIlk = 253L1ME + 1

ELSE

L2i wedoLIWL = (T1PL.V - 1IXy.LIMNE) *iiOURS.V*BIRULIES.Y
(YY) £

LET WILINE = QSLIRE - 1

LE1 LUMLINE = (URLIN® - 1

1 TE5% b I5N0ECH,50,00D

1P XZEONOX L1 SV
ELSE

GC 10U Mo

F P9 Y § &)

LA LOGIC & 11

LE: BUS = ¢
"¢ GEuUN ALVAMCE 8,4

SGEION*

Li. REGLICA = BIGEIOW ¢ 1

LED wSuETOM = WELEZION ¢ 1

WOuk ONIFQaP.F{(o=4)/1.0, (8+4)/1.0,
SBLiL.TakMd.1Y) DEIIS

L SAVEVLLUE MNOWGR+,1

LET HIGEION = WseRIOH - 1
LEy IShUsUE = XSRGEON ¢ 1
e LOGIC 5 aus

LE. BU3 = 1
" TE&BIMATY

Figure 3-11d. SIMSCRIPT Model for the Bus

(Cont'd)

174

PAGE

17-007-1985 17:48 {

B0O0Q9

800C

BOC11

BU1L

BOC12

GEION

80015

BOU1G

20017

Stop

2
N

FHOCESS TLdn. 11 CAC. SiH5C421271 11.5 18m

CPII0Ms

97
53
59
bu
61
€2
63
b4
65
tH
67
td
63
™
n
T«
74
kL]
1%
Te
17
T2
Ty
by
el
[P
8
1)

Iiw®eLOAD, IV, TEACEZ, . TEaN,Cdn,REN=VES

12. M1 = (1I2L.V = 1I¥.87) *HOURS.V*aINGIES.Y
1%L C.ThAKLLURZ. 11 = C TRAN.CMT.IE = O

REL JEN

" Rpid SAVEVALOE Biu+,1

‘Kab *

wE: Midad = REZAD o
LET wiBiD = BSRAD
LET i%aib = Z33A0 ¢ 1
L TERRINRALE

1
1

LET si%As t NEHAD -1 .

LET 21 »=(II8E.V - T1IN,31)*HOCRS. VORI AUTES. ¥
LET CoiaiN.CE1.11 = C.iazhi.ZWieil = 1
aE1TeM

tia

LN]

tisse Nia SEGAEERT

e wENEsalE 1800

Figure 3-lle. SIMSCRIPT Model for

{Cont'd)

175

5/379 #9.3 PLGE
17-3u¥=1965 17:60 {

[} 1Y)

B0L19

BoL2Y

the Bus Stop

21
L

OPTICERS

P N NEF il -

Fig

CALl 51M5CalPl 1I.5 1bM 5,370 E9.3

TEiM,:042,10,ThnT52, NOT2AE, CHA , LENSSES
FiwCEias Tbhk, 1

DE: 3L k_LawaY AS INTEGER,1-DIMZNSIONAL ARKAX
BELERVE Z_AukAY a% W

DEFIKE 71%K.E21 2S5 & aihl VASIABLE
4?1 = T1RE.V
. . ADVAKLE Yo, 9v

BULR VEIFUGBLF {{Fu-90) /1.0, (40490 /1.0,
S¥iD.TihL.12) UMIIS
T $aVzVlalUE SOsCH,PREONEDS
LEa FNFGYICL = CHeUsS

LZl EanueCh = PRIUMLUS
te ASHLGE 1, pNEUFF

LE: ZNuCEF = OFF

LE: i_AEcCAY(1) = FNIQFE * 1
' FE4T] ADVIMCE 8,3

"MEaL

LET MSMEI1 = B5MZXT ¢ 1

LE. #$3WEAT w eibEXis ¢ 1

Susk UslPULR.P ((4=3)/1.0, (4¢3)/1.0,
LETL.lhike 12} UNITS
L] SAVEVALJE NI&CH-,1

LEI aihEAT = WISEZIT - 1

1E. I5ECACE = ESHOWUR = 1
e Leos 1,8E11

LET F_RaadY(1) = P_AmdaX(l) - (1 * 1)
IF ?_Asenl {1} LE ¢

EisE

GL 70 KELT

ALeaYS
LA LOGIC & BUS

LET bdo = 1
ve 157 2 USiLlNE,O

IF JIuInz E, ©C

Tisk

LEY MUMILOE.Y(oLAk.12) = WL SLINE™
FZiB Gwake’2 IR 2LOCKEW.1Z

sC3roai

LLekisS
e %31 B BSGETON,0

Ir aSGLive By O

ELsE

LE. SUMIICK.V(1aAS.1%) = WESGERIUN"
FILE 1rak.1i IN BLOCKED.1Z

5054 EbD

LLEAYS
" TABULATF 34D
ure 3-11f. SIMSCRIPT Model for the Bus

(Cont'd)

176

Pasz

17-BCV=1985 17:40

BOO22

80022

[1171

NEXI

80026

B0O27

BoOL2E

0u2s

B0V 30

30031

Stop

24
1)

FhOCESS TrhN, 14
GPAIUMS

57
58
59
60
61
62
63
(1)
85
Lh
67
HLE
[3]
kL]
T
72
73
T4
75
76
T7
T8
79
8
81
82
81
as
a%
-1
a7
88
oy
99
"
92

Figure 3-11g.

22BN, LUADL, 1L, ThaCED, NOTERN, Cok £k Ep=NTH

LET BAD = ISMAD
" SAVEVALUZ MAD,OD
LET XS®AD = 0

o LOG1C F avs

L1 BUS = 0
"e 1EZRRLINAIE 1

LE1 31 =(TIAZ.V - IIN.81)*EOURS.YSALAUIES.V
LE: C.Thal.CEl.12 = C.TuiB.CNI. 12 - ¥
LF. SI0P.FLAG = STCP.FLAG = 1

I¥ SICP.ELAG LE U
Call WUTPNI_ROLIINE

Ak -y

3iJF
ALwhls
aELurk
(LR
te s

Vetwes CONIRGL SEGAEN]

" SIALT 25

. ENp

END

(Cont’'d)

177

CaLl SLBSCRIPT Il.5 IBW S/370 #9.3 PAGE 2%

17-40V=-1935 17:40 (V)

BOL32

BOL33

BOG3A

BO0 36

SIMSCRIPT Model for the Bus Stop

PRI ESEEANESSABENINSRESNEIINNEH RSSO NN
. .
e GRAIPHICAL SISULMLION SYSIEZM OU1PUL e*
L]
SR SNALETISSI RS PRI ICERIENNSISRESSNES

QUEdE BLRXIFC® AVERkGF 10TAL 2Ex0 AYERAiGE SAVERAGE CUERENWT
RANT CONtEM-S COK1LCEGs PaaPulES SNTEELPS T18E/1WAN IIME/TEAN CONIENIL
Llsatk 21 5.510 251 g 855. 649 855,649 [+}
WEANSACIIONL RUSLEE AVEnAGE
HilfE CaEh1ED C«tATION TIARE
11 291 155,251
\ 2% 1820.020
TABLE AVERAGE 3TD. wEY NU.BNIEALZS
Hal 1. 88 3.60 25
D#PEL LiAIT FRE_TEMY PEARCEN1 UY TDIAL
J 17 -68
1 | 08
2 1 08
3 e 08
4 [0.
5 v 0.
b 1 08
7 0 0.
8 3 .12
WJECE TABLE AVERAGE 5iD.DEV WO.ENTLRLIES
InLUE 855. 635 508.47 291
UrkBh LLHZS FaEQUENCY PERCEMT CF TOTAL
$0u 161 i
LN $1 .18
L1 50 «17
126U 52 «18
1504 36 12
1500 1 +00

Figure 3-12. Simulation Run Results for the
Bus Stop Model

178

4 ADVANCED FEATURES OF THE GRAPHICAL SIMULATION SYSTEM

The Graphical Simulation system is able to simulate a
Flexible Ménufacturing System using special purpose
blocks., These blocks are designed SO that an
unsophisticated user (non-programmer) can use the system
to simulate a Flexible Manufacturing System wusing the
floor plan of the target manufacturing system. In this
chapter we discuss the approach taken in the simulation
of Flexible Manufacturing systems.using a manufacturing
shop case. 1In addition a description of each new block
used in the modeling of Flexible Manufacturing systems
is followed by translation techniques wused for each

block.

Later, we discuss how the Graphical Simulation
System can be expanded in order to create special
purpose simulation systems and the rules used in
creation of new blocks in the Block Command Symbolic
Language and Block Graphic Symbolic Language are
described. Other advanced features of GSS, like adding
user written SIMSCRIPT code to the models and usage of

MACRO blocks is also included.

179

4.1 Modeling Flexible Manufacturing Systems

A Flexible Manufacturing Systems consists of
input/output (receiving/shipping) stations and
workstations connected together via transporter lines.
The raw material enters the shop through input parts and
follows a scheduled visit to workstations on its route,
and leaves the system at an output station. Very often
'there is only' one station used for Input/Output
throughout ‘the shop. A simple Flexible Manufacturing
System is selected to demonstrate how a Block Graphic
Simulation Model can be developed using the drawing of

the FMS floor plan. Figure 4-1 displays the drawing of

the FMS floor plan and the job routes.

In order to model this shop, we simply need to
unfold each Jjob's routing so that we can draw the
workstations in the order in which each job visits them.
The given FMS example in Figure 4-1 has the following

workstation routing.

JOB TYPE | STATIONS IN ROUTE
___________ +____________;___,,__
1 o, 1, 2, 4, 3, 0

1
2 | 06, 2, 3, 1, 4, 0

180

Thereby input and output stations are the same as
station Zero. The distances between stations are
entered into a distance table for the manufacturing

plan.

We can graphically draw the order in which the job
visits each station given the fact that in order for the
workpieces to move from station to station it needs a
transporter. Figure 4-2 shows how an unfolded
visitatioﬁ sequence can be drawn graphically. Notice
that entering and leaving Flexible Manufacturing Systems
can be done through any workstation. 1In order to build
the Block Graphic Symbolic language model for this FMS
all we need to do is to add Generator Blocks which
introduce jobs into the system and terminator block

which allow jobs to exit from the system.

181

Figure 4-1. A Flexible Manufacturing System
Floor Plan and job routes

182

ene T T

REQUEST A TRANSPORTEIR

VISIT WORK STATION

REQUEST A TRANSPORTER

=0

Figure 4-2. Unfolded Visitation Sequence

183

4,1.1 Statement of The Problem - The Flexible
Manufacturing example presented by Law and Larmey [25]
has been selected to illustrate some of the concepts
involved in modeling such systems. This example has
been modified to represent a general case for the
Flexible Manufacturing System. The manufacturing shop
consists of an input/output station and five work
stations. At present, workstations 1, 2, 3, 4, and 5
consist of 3,3, 4,4, and 1 identical machines,
respectively. The distance (in feet) between the six
stations are as follows (the input/output station |is

number 6).

STATION 1 2 3 4 5 6
1 0 90 100 180 200 270
2 90 0 100 200 180 270
3 100 100 0 100 100 180
4 180 200 100 0 90 100
5 200 180 100 90 0 100
6 270 270 180 100 100 0

Thus, for example, the distance between the input/output

station and workstation 3 is 180 feet.

Assume that jobs (or workpieces) arrive at the
input/output station with interarrival times that are
independent exponential random variables with a mean of

0.25 hours. There are three types of jobs, and jobs are

184

of types 1, 2, and 3 with respective probabilities 0.3,
0.5, and 0.2. Job types 1, 2, 3 require 4, 3, 5 tasks
to be done, respectively, and each task must be done at
a specified workstation and in a prescribed order. Each
job begins at the input/output station, travels to work
stations, and then leaves the system at the input/output

station. The routing for different Jjob types are as

follows:

JOB TYPE _WORKSTATIONS IN ROUTING
1 3, 1, 2, 5

2 4, 1, 3

3 2, 5, 1, 4, 3

Thus, type 2 jobs enter the system at station 6
(i.e., the receiving station). They have tasks done at
workstations 4, 1, 3 and finally 1leave the system at
station 6. A job must be moved from one station to
another by a transporter (e.g., an automated guided
vehicle), and there is only one transporter in the shop.
The transporter moves at a speed of 5 feet per second.
Thus, 36 seconds are required for the transporter to
move from station 6 to station 3. The transporter
processes requests by jobs in a FPFIFO manner,

Furthermore, when the transporter finishes moving a job

185

to a workstation, it will remain at that station if

there are no pending job requests.

If a job is brought to a particular wo;kstation and
all machines in that station are already busy or
blocked, the job joins a single FIFO queue at that
station. The time to perform a task at a particular
machine is a 2-Erlang random variable whose mean depends
on the job type and the workstation to which the machine
belongs. (A 2-Erlang random variable with mean m is the
sum of 2 independent exponential random variables each
with mean m/2.) The mean service time for each job type

and éach task is as follows:

JOB TYPE MEAN SERVICE TIME FOR SUCCESSIVE TASKS, HOURS
1 0.5, 0.60, 0.85, 0.50

2 1.10, 0.80, 0.75

3 1.20, 0.25, 0.70, 0.90, 1.00

Thus, a type 2 job requires a mean service time of
1.10 hours at work station 4 (the station where its
first task will be done). When a machine finishes
processing a job, the job waits until the job is removed
by the transporter while the machine continues

processing the next job in its queue.

186

Assuming no loss of continuity between successive
days operation of the shop, we are to simulate the
facility for 365 eight-hour days {(or 2920 hours) and

gather statistics on the following:

1. The mean total delay in the queue (exclusive of
service times) and the mean total transporter delay,

for each job type.

2. The Time-average number of jobs in the queue and the

mean delay in the queue, for each workstation.

3. The average proportion of time that machines are

working and are idle for each machine group.

4, The utilization of the transporter.

The transporter Jjob delay at a particular
workstation is the time interval between the instant the
job requests the transporter and the instant the
transporter arrives at the station. It does not include
the known time for the transporter to move the job to
the next station. The total transporter job delay is

the sum of its transporter delays at all stations.

4.1.2 Discussion Of The Model - The model includes a

matrix containing the distance table 1listing the

187

distances between stations. A workstation definition
allocates a number to each workstation which corresponds
to its row number and column number in the distance
table. The transporter definition specifies the speed
of the transporter and its corresponding distance table.
Tables define the system life time of workpieces to be

tabulated for statistical analysis.

Each job type is modeled using a separate model
segment. The GENERATE block in each segment introduces
the corrésponding job type 1into the system wusing an
exponential distribution function. A series of
transporter request blocks and workstation request
blocks connected to each other, represent all the eveﬁts
happening to each 'workpiece (job) in the modeled
Flexible Manufacturing System. Finally, the tabulate
block is used to gather statistics on the time spent in
the model for each job type and a terminate block ends
all the activities within a normal segment. A clock
segment stops the simulation after 365 days. Figure 4-3
shows the Block Graphical Symbolic language, and Figure

4-4 shows the BCSL model for the FMS model.

188

N0o7 TEFINITICN
SHENT
BOOOL n
MKIRTY.
INTTIAL
o002 pi(1,2),...

3012 Di(s,5),...

Figure 4-3a.

B0
o7
072
w073

BOO74

&

o

@

BGSL. Model for the Flexible

Manufacturing System

189

mol13

BoLA TRANSFORT

BOO15 STATION 1
Bzl :

molé DERISTAT

w017 TERISTAT

BOD19 DEMNSTAT

Figure 4-3b. BGSL Model for the Flexible
Manufacturing System (Cont'’'d)

190

P04

pooz?

80031

Figure 4-3c¢.

EEMSTAT

e
o~

__LV‘”
RECMSTAT
SIATION 1

1

TOTRANS

N
N/

w35

03?7

BGSL Model for the Flexible

Manufacturing System (Cont'd)

BO0&1

B0043

BOOAS

BOOA7

BO0A9

2
Lt

Figure 4-3d. BGSL Model for the Flexible
Manufacturing System (Cont'd)

192

o1

05?7

BO06]
[Crosamon .
EIRANS
O
_/ BO064
MECMSTAT
STATION? pooes
e
2T
N/
4 MW e
pro
¥
RROTRARS
P Boos?
./
st

Figure 4-3e. BGSL Model for the Flexible

Y]
$Q

+

D

EE_E)

SIATION]

¥

€
¢

]

Manufacturing System (Cont'd)

193

PiLE: F¥5a03L beSE Al YR/5¢ CCEVERSLTIONAL BONITOR SYSTEN

SR INBOBESY “.....“"'-'.'.‘-"'."-‘...“...‘".......“‘.‘..".... [TTEEIE LN
[1]
e+ BCSL CCOE GENERALES Ved310M 1.0
L 1
.‘..'l.'."'..’.O".‘t“l.'.‘.‘..“.‘..‘-‘-...‘.'-“.“l‘-.‘.“"‘...‘.‘--....
L]
-
SIMOLAIE
»
»
ees DEFINIIION SEGKERT
]

[]
b1 Hhiald I,0,b E00O01
INITahl 5!301(1.;),ib/l!!Dl(I,J).100/!!391{1,&),150 By0O2
IN4G IAL AX$D1{1,5) ,200,8X501(Y,6) ,270/8X3D1(2,1),5¢0 bu033
1n15ial uxso1:¢.:,,qu/uxsnllz.u;.4uu/a;sn|(2.5;.1uu Bulvd
AhlalAa BLSL1{2,6) ,2T0/9X301{3, 1) ,300/R45D1(3,2),100 Bo00S
1kI7dal BA3DY(3,8) , 10 /B1501(3,5), W/ /Na5D1(3,6),160 * BuOJs
IKITLAL MIFDT{4,1) ., 180782501 (4,2) ,200/0X8D1{4,3),100 POOOR
IN1izEL a:snt(u.sj.au/nxsn1(u.a).21u/axsoii5.11.zac B0009
Islulni 5150115.43.180/33:n1(5.3).10uxn:so1(5.u;.9o BUO1uY
In111ad nxsni(s,s).100/51101(&,1:.zvo/uxsnlle.2),210 BOOTY
181514l :xs:tcu.J),1u0/nxsul(s.u;,1ou/nxsnl(e,5).100. B0012
[
[]
ass NEs SELMENT
[]
.
DEFTaiN> 1BANSPU:E1,50,1,3X3D1,€ B0014
LEFRSIMIL STATIOKY, 1,3 20015
DEFWSIAT STAL1iCN2,2,3 B0016
DEFau121 STLTION3,d,4 BOU Y7
DEFRS1aS STATIONS, 4,4 BOO18
DEFLSTIAL STRILUES,S, BOO19
DEFa LML i05TaTI0N,0) BUOZ0O
TAEY1 1IAbLLE 81,200,20,20 30021
1:iz TAbLLE ni,100,2v,2v 80022
1AE3 1ab.b a1,200,20,20 80023
*

.
ses NEs ShaNELI
.
.

GEINEsATE 50/.3,053[1#0!!.1131.!....,JOB! BOO2S
EN1EGSTAL 1GHTIALLIOK 30026
BEwaiANS 1kAR3PO0LT,STaTIVES B0027
RE.aSIN STALIOM3, 1,50, , DSSTRLANG. ¥, 2 B00Z8
SLyihalS 1EAKSPUET,STATIONY 50029
BELNSILT SLATION1,1,00.,DSSERLANG.F,2 £0030
EELYTiANS TFARGPURT ,,STATIUNZ 50031
hEud S1al 5%.1I0K2,1,d5%.,DSSEXLANG.F,2 30032
aE Thaius TEANSKFULL,51ATIOND BOO3S
sEdSTR1 S15TI0KS,1,50.,D58ELLANG. P, 2 BG4
BE ThAbS TEAMSPOLT,10GTATION BQO3S

Figure 4-4a. BCSL Model for the Flexible
Manufacturing System

194

FILE: PASMULL BUSL A VB/SP COMVERSAI IONAL BONITOE SYSTEA
LEAVIST.T 1OS1ATICN BUO36
TALILATE TP 80037
SLakINalE Bu03a

. -

[]

sse NEid SECHENT

*

»

GEETEATE 50/.5,DSTRBIPONENTIAL.F,,,,,9002 BOO4O
ENVLEESTAT IOSTATIUN BGO41
#EyishNS TiANSPOR1,394TION BUGH2
AF 4SIAT STATiLMG,1,110.,DSSExlAbG.Y,2 BUGY3
BEg.sils GeaNSPUal, 51411081 POO4Y
EF eolal STAT4ON1,1,80.,D35EaLANG.F,2 BLOWS
#ivahads 1BIRSKCaG,UTLTIOR3 s0U46
BF.e3Ta2 STATLCM3,1,75..DS3EELAsG.F,2 BGOW?
RELIalK5 1kANSSLEL,1052L110Y BUQuB
LTAVESTAT ICSIATLILN BOQuY
TAEGLATE 382 LL06a
TERAINATE B006Y

»

[]

#ss NF. SEGAEST

-

. .

GENERRIE 50/..,0SSEXPGUENIIAL.Fu,,qsJ063 CY B
ENTEL3TaT JOSTATION BLd53
BEJ: BANS TmiNSPOHTI,STRTION2 BUOSH
EEusSTAT S51aiitud, 1, tela,D5iBalAN.F,2 B0O55
aEuTsaMs THAMSPUAL,51AIL1UNS BOOSE
EEjesTA. S1M1I085,1,25.,D55Z8LAN3.P,2 BIUS?
ETl.aAbS TEARSPOLI,SIATLON] Boas8
MEQWSTAT S5TATiON%,1,7u.,D55ZMLANG.F,2 BUOSH
BELIRANS THAMSPURT,STATICKY B0O0ED
KEwaSihs SILTIONS,1,9U.,DSSEBLANG-F,2 30061
BEJiEANG TEAISPURa,5.aTlukJ BOQ62
hiyeSTA1 STATIONI, 1, 1W0.,D3SIEdLANI.F,s B0Ce3
EE laANs TEAMSPURT,105TAIION Bu064
LEAVESTAL JOLIALION BO0LS
1a0ULITE " TAbL3 BOOLS
TESBINATE BU067

-

»

*ss NE4 SEGNEN]

]

L]

GENE4ATE 24UGC, ses0s CLLCA BLOT1
TEHRINATE 1 30072

»

-

ses CCNIZOL SEGHENT

-

»

STA&T 1 L

Figure 4~4b. BCSL Model for the Flexible
Manufacturing System (Cont'd)

195

4.1.3 Discussion Of SIMSCRIPT Equivalent For The FMS

Model - The preamble defines the transactions and
their transaction generators as processes. There are
three transaction (job) types: jobl, job2, and job3.
In this Flexible Manufacturing System each work station
and transporter is defined as a resource and several
variables are defined to keep track of needed statistics

for the resources and their queues.

The total delay, due to unavailability of
workstations and transporter, for each job type is
defined as statistical variables. Therefore an
automatic print out of their values will be done at the
end of the simulation run. The distance table |is
defined as . a matrix, in addition to the usual SNA
definitions. Three Table variables are defined as real
variables for the TABl, TAB7, and TAB3 tables. Tally
and Accumulate statements are generated for resources,
gueues, and statistical variables (including Total
delays in the system). FInally, Histogram statements

will keep statistics on table entries.

The Initialization routine establishes the
resources capacity, initializes the distance table and
original 1location of the transporter. Finally the

generator transactions are activated. The output

196

routines generate extensive reports on resource
utilization, transaction interarrival time, Tables of

total system time and total delays for each job type.

There is a transaction generator for each job type
which generates transactions with exponentially
distributed interarrival times. Each transaction enters
the Flexible Manufacturing System through an ENTERSTAT
block, which does not cause any delays in this example.
This block initiates the statistical calculations for
delays in the model for the job type. Then the
transaction requests a transporter to visit the first
workstation, it may have to wait for the transporter to
arrive. Then the transporter time is addéd to the total

delay before it reaches the destination.

In the next step, the transaction has arrived at
the destination work station and the work will take an
Erlang distribution time. The sequence of "request for
transporter"™ block and “"request for workstation™ block
is repeated for all the workstations in the job path.
The Transaction finally leaves the FMS model through a
LEAVESTAT block which calculates the total workstation

delay and transporter delay.

197

The TABULATE block adds the total time spent in the
model to the corresponding table for the job type. The
clock transaction steps the simulation by decrementing
the "stop counter" and starts the report generation.
Figure 4-5 contains the SIMSCRIPT equivalent for this

Flexible Manufacturing System.

198

CPilONS 1Fbf8,ilad,1D,2aABl, MOTEEN,CHE ,aLN=NEn

WO W E Wl

CACI SIMSCHIPT 1i.5 IBRM 5,170 B9.3

eneanee?

"..'--.l‘..l.....l-....‘l.....‘-.ll.........l...-.
¥ teeees®innaes SIASCLRIPY CODE GEMELALED BY ececuen
" ®__.. BCSL i0 S1OSCHRIPL CHUSS COMKILER ...

.. %rensesosvnenans VEKSLON 1.2 taveecaccanns

1 essssetevacsannsnasassvssssssnsssncennnsissnssanss

N T R R RN R L R R R R N R R

L N I O N

"-.IIII..I......“....ll.-..-...-III..I...-III.-.“
PLEASSLE

¥OrnillY MODE IS aihi

LALCEZSDPY

EVLRY 1haN.JOib1 EAS A HONI10L.¥

AND BAY LELUKNG JC THE BLOCAEU.JOBY

EViaY TaaN.JUBZ #a5 & BOWITOL.V

4hi 3AY BELUNG TU THZ sLOCKED.JCH2

EVEDS 1sAN.J05] HAS & HONITUs.V

AND SAY LELUNG 10 THE BLUCKEU.JCBS

EViol Gaak.ClULK LAS 4 BOK1ZOL.YV

A8 BAY pELuNG IU 14E BLUCKEJ.CLOCK

1hc 3YS1EM OwNs THE BLUCKED.JOY)Y

ThE SYSTER UabS 1HE bLUCKED.JGE2

TH: SY>%EX OdNS 1HE BLOCRED.JUL3

15F SYSTCH O%bS Taf BLUCKBD.CLOLK

EVEGY wENoJC3Y IS A S10P.FLAG.JIDED

EVEuY GEbediuZ hAS & STOP.PLAG.JIWLZ

EVEnY GEN.JUE3 BAS A STOP.FLAG.JUE]

EVLRY GEb.LLOCK HAS A STUR.kLAGeclUod

LESOUBLES

EVELY Thkdoiull HAS A NDA.OF.TadhSPURI

EVERY 51411081 Has b NUM.OF.Sik1ICN1

EVEaY STATIUNZ das A NOM.OF.STIATICH2

BEVZuY STATIUN3 HaS L MUN.CF.SIA11083

FYEET STATIONG BAS A MUB.OP.STATiIOMw

EVint STATIONS MiS L BOM.OF.STATi0N5

EVvFuY 105TAT.uH bas b NUB.OP.IOSTAIIOR

DEFINE 11METu.F.TaANSrO&T 15 3 EZAL VARIABLE
DEFIME 1.EEIN.2.TEASSPURI A5 A KBAL VARIABLE
DEFIBE %K. ENi.w.TsANSP0aT &5 AN INIBGER YARIJELE
DETLINZ CALACIIY.TANSPULL A5 ds ANTEGEZS YAhIADLE
DBPINE iIBEIN.F.STalION1 A5 b MEAL VARIEBLE
DEFINE TIMEIN.L.STATIONT A5 A SEAL VABLABLE
OGEFINE WUN.BKTew.5TATIONT AS AN INIEGE: ViklABLE
DEFINE CAEACITY.STA2IuNl AS AK 1WIEGEM VARLAJLE
DEZINE TIMEIK.F.SIATIUNZ AS A REAL VARIABLE
DEFINE TIMELN.,.STATIUNZ &5 A BEal VARLABLE
DEFINRE WUBLENG.w.STA1IIUNZ 45 AN IBizGEs VakIABLE
DEFAILE CAPALLTY.51ATION2 AS AN INTEGEA VAEIABLE
DEFINE 1IMEIN.F.STAIIONI A5 & BEalk YARIAolE
DETINE 1T4%EIN. . STATiOb3 AS A aBAL VARLABLE
L2FikL NUM.EN1.4.5Ta11083 &5 LW ISTEGER YAI14ASLE
DEF1ME CAPACITY.STATiUM3 AS AN INTEGER VASIALLE
DEPINE TIMEIN.F.3TAIIUMM «3 A SEAL VAHIABL:
DEFANE TIPELK.L.STATIGMs AS & EEAL VARiaBLE
DEFINE BUM.EN1.w-STATIONG &5 &Y INTEBGEL VAAJABLE
DEFINE CAPACI1Y.STATIONG AS AN IBTEGER VARIALLE
DZFINE 1IMEIN-F.51A110N5 &S & REAL VARIABLE

PAGE

19-EO¥=-1985 22:73 |

Figure 4-5a. SIMSCRIPT Model for the Flexible

Manufacturing System

199

,
L]

FSEANBLE
LPLIUNS

89
5
51
52
53
S4
55
56
57
Sd
59
[
61
6<
€4
b
65
14
67
(173
(-}]
70
71
72
Ta
74
15
76
77
To
79
[:1})
81
42
83
84
a5
86
a7
-1}
83
90
91
92
53
94
95
5o
97
9y
99
10u
101
10
103
104

Fi

CACI SINSCalPT I1.S5 IbM S/3TU &%.3 PAGE
1EL4,LUAD, 1L, THACEL ,NUTERN,ChK ,uEN=NEs 19-NC¥=1985 22:13 |

DEFINE TIEEIM.u-5TA1IUKS A5 A REAL VARIABLY
CEFIYE BU%.ELT.wsSTATIOES 45 AW ISTEGEs VAuIaBLE
DETINE CAPRCITY.STA1IiONS AS AM INIZGER YAR1ABLE
DEFINE 21FEIN.F.TOSTL1IOM &S A BEAL VanlAaLE
DEPINE TIMPIMeg.1lO0STATION AS A BEAL VABIAELE
LDEZINZ N08.EN1.0.I10S1a%108 AS AN INTEGER VAZIALLE
DEFIME LabACLITY.JOSIATION A5 AN INTRZGEx VARIABLE
VOQEFINE ViulAELLS aNu LEFY MONITCHED VAaIABLES
DEYLINF SI10L.FLAL AS INIZGEa VAnlAbLE

DEFISE 1akN5P087_LUC_BUN a5 INIEGER VAMIABLE
*I,EF1AE SMA FOL QUEURS

COSFFINE 1bsT LLOLK FLAGS

SUDBFINE STATLS1iCAL VARLAGLES

DEF1NL JOBV.wOnKST4TION. DELAY AS R Kedl VAxIAGLE
DEFIA® JUL1.ThANSICRT.DELAY &5 A LEAL VARIABLE
DLFlbic JObeodOuKSTATI0K.DELAY 55 A wWBhi VilaBLE
OLPLHE JObLZ2.TaAMSPUST.LELAY AS L REAL TARIABLE
DEFIBE JOE3.w0OnKSTLiIubuDELAY AS A KEAL VARIASLE
DEEINE JUB3.1hAM5PUB%.DELAY AS A BEAL VAH.ABLE
*SJEFINE BAMDOSE YARILBLES

VeOEFINE BATLICES

PEFINL 323ED1 AS ML 2-DINENSICEALL INTEGEE AmaAY
YYOEFIN? GP3S GLOBAL VARLAGLES

DEFIKE ¢1 10 BEuN P_REsAY (1)

VEFIME #2 1L BEAK P_AaidY (2)
DEFINY EJ 20 BEAN D_ARRLY (4)
VEFINE P4 TO MEAN k_AHAY ()
DEFINE PS5 TO MEAN P_i2all|(5)

DEFiuE kb 10 REAK P_aBBAY(E)

DEFIKE ¥¢7 10 SELN F_AKRAY(7)

DEFINE 28 TC MPAN P_LindY (4)

DEFINE PY 10 MELa k_ARaiY (9)

DEFINE P10 Tu BEAY P_ALRAY(1I)

DEFISE a) 20 SEAS I_lakiY{))

DEFAIRE £2° TG MEAN X_laihY (2)

DEFINE 43 50 BEab X_AaaldY ()

CEFIME 34 10 BEAM K_AELAY {4)

DEFINE 15 10 MERE I_ARBAY(S)

DEFINE XI€ TC MEAM X_AkkAY {6)

DEFINE 37 10 BEMN I_aRiaf(?)

DZFIRE X6 10 MEAN X_ALKAT(8)

DEFINE A9 1C BEAK X_AkaiY({9)

DLEINE 110 TU MEAN X_AbkAY(10)

DEF1KE ULIZS 10 MEAY MINULES

DEFINE HONLTCGL.V AS TELT VARLABLE

GEFINE 8% 45 b bEal VARIRLBLE

DEF1KE C1 IC AZAN T1ME.V*d0UZ3.V*AINUIRZS.Y
"O1EARLACTION DEFINIZION

CEFisc TaAN.CNIE.JUL1 AS AN INTEGESZ VAR1ABLE
DEFINE C.1hAM.CN1.JOBY A3 AN INTEGER WaalabBil
DEFINT SEED.1RA#.JObY AS AN INIEGE2 VARIABLE
DEFINE Tahk.CWis.JOEZ AS AN IN1EGEs VAEIASLE
DEPINE C.ThAN.C8T.uOB2 AS &b 1MTEGER VAAIABLE
DLEINE SELD.THEN.JOB2 AS AN IMIEGE: VAGIABLE
DEFINT Sahb.ChTk.JOE3 AS AE LNTBGEZ VAsIABLE
DEFINE L.TBAN.CHL.JOB3 AS AN INTEGEL VALIABLE

gure 4-5a. SIMSCRIPT Model for the Flexible
Manufacturing System (Cont'd)

200

P
1

PREAMELL
OPI1IUNS

105
106
107
106
199
110
m
114
113
14
115
116
117
1le
19
| P2Y)
121
122
143
124
125
126
127
1a8
129
130
mn
132
133
134
135
13b
137
138
138
140
141
\ L P!
A K
The
145
14t
147
14
149
15v
151
152
152
154
155
15¢
157
158
15%
160

Figure 4-5a.

CACI SIRMSCaIPT 11.5 InH 5737 £9.3
TFaH,LUID,;D.T!ICIZ.huTBBH,Cdﬁ,R!lll!i

DEFINZ ZEED.THLN.JOE3 S AN IN1ZGEa YAiTABWE
DEFIME TadN.CN1a.CLOCK AS AN IM1IEGCR YARLALLE
DEFINE L.Tud¥.CNI.CLULK AS AN IMNIEGEx TALIAbLE
DEFINE SBZD.TuAN.CLOCK AS AW LNIEGEM YARIABLE
YIDEFLUE TABLL YAKLRSLES

DEF1NE 14B1 &S REAL VAEIABLE

DERINE TAlZ A5 REAL YAkliolE

DEFANE TA83 AS SPZal VakIADLL

092 ALY AND ACCURULATE YOk LESODKCES
LCCUMULRTE UMIL.Tak¥or0ki Aa AVERAGE AND
MAi.Ni.TaANSS0ZT A5 2AX1IBUA OF Mo X.TEASSPORT
ACCJBULAWE AVGewoLEM.TLANSPORY AS AVERAGE AND
BAXeyoLPEdEARS LT AS BAXINGA CF B.CalaAbSeUED

TLLLY 1¥G.TINEIN,F.T2ANS#Osl AS HZAN OF 1I82I%. k. 13anspP0aT
T4L.Y AVG.TIRELh, 2. TaANSPORT A5 AEAM OF TIMEIK.w.T&AM520ET

ALZUSULATE UTLIL.STATIGMY A5 AYEHAGE AND

EA1.5X.STATIUAY AS MAXRLDMUB OF E.1.STATIOM

FCCUBULATE AVieusLZM.STATIGK] AS AVEsAGE ABV
4al.doLEN.SIATICNT AS HAXINON OF N, 4.STAI1081

TeL.Y RVG.TIBLIN.F.SIATIONY 45 8Ead OF TIKEIN.Z.STATIOR]
TALLY AVu.118BIE. .STAIIULT AS REAS OF T1BElk.u-STATION?
ACCUNJLATE UZ1L.S1331002 A5 AVEHWGE AND

BAd.EX.STATILIOKZ AS AAxiaUn OF F.X.5TATIONZ

ACCUBULAE 3VG.C.LEN.S127I082 LS AVERAGE AbD
LAkeJoLEN.52ATiJED AS HALIRUS UE BoLoSTATIONZ

ToLLY AV3.IIAEIN.F.STATIONZ 4S5 BEAN OF 11IMEIN.YF.SIATION2
TheoY AVGLTLIAEIN. 2.5TAIIUNZ AS BEAH OF TIABIb.y.S5T1ATION2
LCoUBULATE OTIL.STALIURI AS AVEZAGE AND

BAX.%NE.514710N3 &S BAX1NUR OF . E.STATIONG

ACCUBULATE AVG. . LEK.STATIOR3 45 AVEHAGE AND
BAL.y.LEN.ST1A140K3 AS BAXIAYUA OF 5.C.STAT10M]

TillY iVG.TIAEIN.F.STAIION] LS BEAN OF 1IREIN.F.STATICHS

Thail AVG.TIAEIN.,.STATIO0N] AS BEAS OF TI8EIN.Q.STATION]

ACCUMULATE CiIL.STATIUNG AS AVEBAGE ANi

BAI.EX.STAIIONG AS MAXiwlm OF N.IX.S1alliNé

ACCURDLATE AVG.y.LEN.SIATIONG AS AVERAGE ABD

B42.0 LEN.STATIUNS AS BAXILEUM GF No ue STATIONS

ALLY AVG.1IZEIN.Z7.3TATIONE AS SEAN OF 1IMEIN.F.5IATIONS
TALLY AVG.TLBEIK, .STIATIONS RS BEAY OF Ti8EIday.51A210M4
ACCUMULASE ©1I4.5TATI0ES a5 AVEBAGE &MD

SAX.BX.STATIUNS A5 SAaXisUs OF MaX.5TAILUKS

ACCUSOLITE AVieyeLEN.SIAZIONS 15 AVERAGE AND

#AX . .LEh.STALIICES AS MALINOY OF Ne Q. STAILUNS

ZLLLY AVu.1iRELK.E.S5TAIIONY AS REAN OF TINEIN.P.S1LTIONS
TALLY AVG.TINEBIN.{.S5IATLGHS AS BEAN OF TIBEIN.Q.STATIUES
ACCUSULAGE USIL.IOSTATIION AS AVERAGE AND
ALL.EX.TJOSIATICE AS MALIEUA OF %,.I.10STALIONM

ACUURULALE AVG.RaLlENLIOSTATION A3 ATVERAGE A8D
AAX.2.LEM.IUSIATLON AS BAXI3Ud CF B.G105TaTi0N

2ALLY AYG.1IMELL.E.IOSTATION 15 HELN OF TIBEIN.F.1l0SIATIONW
TALLY Avu.1I18ELN.). iUSTATIO8 AS HEAN OF TIAEll. we IOSTATION

®3,ALLY 3ND ACCURULATE PO STATISTIICAL VARIABLES

TALLY AVG.JUEBV. alakSTATIOK.DELAY AS AVEEAGE OF JUBT.BORKSTATION.DELAY

PaGE

19-N0V-1985 22:13 |

TALLY A¥3.J0B1.1LiRSPONT.DELAY AS AVERLGE OF JOB1.1AANSPOKT.DELAY

TALLY 3Vi.J0B2. aURKSTATIOW.DELAY AS AVERAGE OF JOb2.WORKSIATION.DELAY

TALLY a¥G.JC22.TLAN5FONT.DELLY AS AVEZAGL OF JOB2.THANSPORI.DELAY

Manufacturing System {Cont’'d)

201

SIMSCRIPT Model for the Flexible

)

FuEANBLE CAC1 SIMLC&IRT II.5 lim Sy370 £9.3 PAGE
UPTIUNs TZh3,L0aD,I10,THACEZ,NOTEaH,CHK, REN=KER 19-50¥-1985 2::13 |
1;1 TALLY AVGeJO23.WOuKSIATION.DELAY 45 AVERAGE OF JUBI.VOAKSIATION.DELAY

BODE

DOOGLE
DOUDLE
DOUBLE
DUCBLE
DOU3LE
DOUBLE
DOUSLE
DOUBLE
DUUBLE
DOUELE
DOUBLE
DOUALE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUbLLE
DOUBLE
DOGOBLE
DOUBLE
DOUBLE
DOUBLE
POUBLE
DOUBLE
DOUBLE
DOUBLE
DOUDLE

Yol T4iLY AVGeJdUbd»1FANSPOKT.DELAY AS AVERAGE OF JOB3.TLANSPORI.DELAT
163 9994L.Y AND ACLUMJLATE PUE QUEUES
164 DEFINE GEM.AILME.JOE1 L5 A EAL VARIABLE
165 Taill AVG.GEN,TINE.JOi1 AS MEAN OF GEa.1INZ.JO0B1
1oc DEFINE GEK.TINE.JOB2Z A5 A £EAL VABIABLE
167 Galll AVe.eEh.TIN%.J0p2 AS MEAE OF GEN.IIBE.JOD:
168 DEFINE GEN.I1RE.JObJ AS & BEAL VARLAMLE
16% 14Las AVG.GEN.TINZ.JOB3 AS MEL¥ OF GEN.TIBE.JO53
170 UZFINE GEN..IME.CLOCa AS A LML VABIABLE
171 14Lls aVé.GEN.TINE.CLOCK AS #AN OF GRN.TIBZ.CLOCK
17. YVELSTOGaAM Fub TALLES
175 TALLY IAE1.EISi0(2V0 TO 560 Bx 20)
174 AS 13F BiSTOshAM AWD TAB1.AVu AS AVERAGE AKD
175 1a31.51L0 A5 STD.DEV AND TADI.MUM.EST AS NUASER OF TABY
176 TALLY 1462.H1STO(100 50 860 BT 20)
177 A5 1dE KISICGSAN AND 1AL2.AVG RS AVERAGE 2MD
178 TAu2.S1C AS STID.DEY AND 1io2.NUE.ENT A5 BO2BEE OF TAk2
179 Iall{ TAEJ.AISTC(Lut 10 SoU BY 20)
18y AS 1KZ MASIOGeAN ARD TaBI.AVG AS AVIDAGE AND
181 TAJJ.SI0 AS SID.LEZY AWD T&b3.WOA.EN1 AS BWUREZx OF TAE3
182 END
CEOUS S~EKEEFEEERUMCE
'TLH TIPL
AVG.GEN.TIEE.CLOCK ROVTINE
AVG.GEM TINELJUB] EOUIINE
AVG.GER.TINELJOEZ 20ULLNE
AVG.GEM.TadE.J0bBS KOUTINE
A9C.J051. iniK5r0dT. DELAT ROOTIKE
AVG.JObV. ¥LEKS1ATIGM . DELAY 200TIME
AVu.JOBa. TEaESP0nl.DILAY HOUTINE
AVG.JUEZ.nLEKSTA11ON. DELLY ROUTLNE
A¥G.JOL3.ThANSSURT.DELLY ROV i1NE
AVG.JOL 3. alEnSTATIUN. DELAY BUDTINE
A¥Gey-LEN.1O51A2I0N PUNCIION A11KIBOTE
AVu.2.llra STATION PUsCIlUN ATIRIZGLE
AVG.Q.LEK.S1ATICSZ FUNCIIUN ALIRIBUTE
AVo. o iEN.STATA0NS PONCTION ATTRIBULE
AVG.y.LEK.SIATICNG PONCTIUN AL12IBUTE
4VG .. LEN.STATIONS PONLTION ATTEIHOTE
AVG.U.LEN.% aiESPOR FUSCTION ATZ&I3UTE
AVG.TISEIN.F.IUSTATION AOUTINE
AVG.IINEIN.P.S5ATIOM MOUTINZ
AVG.TINEIN.F.STATIONS BOUILNE
AVG.WIEEIN.F.STATIONY EOUTINE
AVG.11%E1N.F.S1ATION4 AOUTINE
Vu.TIRLIN.F.S4ATIORY 4OULINE
AVG.T142ib.FoTaANSrOal ROUTLNE
AVG.TIALIH, w- JUSIATINY KOUIINE
AVG.TIMPIM. wo54ATIONY EGUTINE
AVG.TIMEIN.w.STATIONZ BOUTIEE
AVG.TIMEIN. L -5TALION ROUSINE

Figure 4-5a,

DOUBLE

SIMSCRIPT Model for the Flexlble
Manufacturing System (Cont’d)

202

¢
1)

oPI1GKS :ShH.LUiD,l9.=HAC£J,IDIEIH.CJM.I!I'IE!

DEWTFEWNMELAN -

¥uaaLlll
KESEEYL Xl
LEl ClaaCIiT.1hab520h: = 1
CSEAIS EVEAY 3aANSrOKT(V)
LET U.12RNSPONL{T) = 3

LET CAPAL11Y.STAIICONT = 3
CLEATE EVEa) 5I2310R1(1)
LE] D.S1ALiCL1(1) =2

CACL SIASCELPT 1..5 1an 57370 b9.3 PAGE
19~¥OV=-1985 22:13 (

BLJUGIEE 1N1ITIALLZE
#0D:: 1S INIEGER

A5 & oY &

1w LET CAPAC111.51LTIONg = 3
1 CaEATE EVELY STATICEI(D)
12 LET U.Sia1I0LZ(Y)} = 3

13 L2T CaFaCliY.SIA%TION] = &
14 CLEa%E EVEHY SuaualOki{l)
15 LP1 C.5T41i0ba(l) = &
CAPICITY.SLATICHG = 4
17 CRLATE EVERY SuATILNs (1)
16 LET U.5TATIORN{1) = &

19 LEi CaPACIiY.STARI0NS =1
U ChEATE EVEaAY S1aL1055(1)
N LP. U STATIORS(N = 1

22 1E> CAFACTIY.JOSYAIION = 3
i3 CLZaTE LWEEY 1uSiAIIUN(Y)
U.JUSTA110K()) = 1

16 LEs

24 Lkl
25 LE.
v LES
27 LEl
28 ibs
29 LLi
IV LEZ
31 LLEI
32 LEL
33 LE.
34 LEZ
35 LE:
36 LET
a7 LET
3o LEL
3% LEL
[1] LEs
81 LET
LV 1E1
43 LEZ
a4 Lui
85 L21
[1 EL
a7 LEi
4b LE.
49 LET
50 LEL
51 LEL
- LEl
53 LET
94 LEL
55 LET
5¢ LEL

BISu1(1,2%)
nXipi1(1,3)
RX.21(1.4)
uIrDI(1,5)
BXEDI(V, L)
1X5u1{2,1)
#15b1({2,3)
EXSDI(2,%)
MiZL1(2,%)
mabli2,)
NI»D1(3,1)
9X3$LC143,.4)
NLSD1(3,4)
L3011 (3,%)
nX3D1({3,6)
RXSDV (%, 1)
AXEDI(U,%)
LI (4, 3)
AXZDV({&, %)
BX3 D7 ({4,t)
HasdY(5. V)
2XID1(5,2)
AXsD1(5,3)
BISTI(5,4)
BXYD1(5,%)
RiaD1{s,1)
nXSLI(L,42)
PEEDi(t,.d)
AAISOT(b,u)
BEib1(0,5)

90

1o
180
290
=70
LT

100
U0
183
270
100
1w
100
100
160
184
200
10w
90

270
200
180
120
E

190
470
2T0
1ac
130
10w

1LANMSPURT _LOL_K0X = &
1aAN.CR1R.JORY = U

Figure 4-5b.
Manufacturing System (Cont'd)

SIMSCRIPT Model for the Flexible

[
1

AUUIINE I1#1T1AL1LE

OPTIONS T!iH,LUiD.lD.TiAt!Z.lOTlh!.CHl,illlllH

57 LT 1aak.CHTR.JOL2 = O
58 LEI 1LAM.CNTR.JCEI = O
€9 LET 1hAN.CEIR.CLOCK = §

ou LEI S51UP.FLAG = 1

€1 ACTIVALE A GEN.JCB1 KON
[¥4 ACTIVLIL A GLB.JUBZ BUG
€3 ACTIVATE & GEE.JUBI BUk

bh AC311¥i%E A4 GEN.CLOCK XOW

85 EXD

NAEE

CaileliY. 105541100
CAPACIIY.STATIUNT

CIPACITY.S51A11064

CAPMIIZYLS55AT10ed

CAPACILY.SAAR1IONS

CAPACLIY. STATIUNY

CArhuITY. TuAUSCURT
GER.CLOLL

GEn.d021
GEN.JOLL
GEb.JC33

INlTiALILE
I0S1AIIUN
axr3ot

STATICN1
STAI1O0KS
STATIOK3
STATICH«
SIAT1ICS5

S30F. FL&G
Thak.Cuil. CLOCK
TaiM,C¥1s. JUEBT
1RAN. ClilE.JOE2
TEAM.CETL.JOE]D
TEANSEQAT
1eARSPCaT_aUL_BUA
0.103%4.10%
U.5TA2I0N1
U.5STATIGUZ
U.STATICKS
U.5TATIONG
U.5TRTIONS

Figure 4-5b,

CHEGSS5-2TFEREMNCTE

IIPE

GLObal VAKIASLL
GLGBAL VAKLIALLE
SLOuvLL Vazldbli
GLOBAL VARLAGLLE
GLUBAL VaulablE
GLObAL VaslablLE
GLOLAL TARid3iE
PROCESS ¥CTICE
GLODal VAaaldblE
PAOCESS #CIICE
GiL0%al VARIADLE
fd0CE35 MCTICE
GL0BAL VARLAGLse
PaLC25s #CTIuE
GLOBAL VasIABLE
ROUT1NE

EESOURCE

GLOWAL VARLASLE
GLOSAL VaaIkBL2Z

RBS0UNCE

BESQUMCE

BESQUKCE

HESOURCE

RESOUACE

GLOBAL VAMIAILE
GLOBAL VAkiABLE
GLOUAL VAKRIABLE
GLOBRAL VAKIABLE
GLOBAL VARIABLE
2KSOURCE

GlLOBAL VARIAZLE
PE=RANENY A1idIBUIE
PERRASENT AITRIBJIE
PEASASNENT AITRIFDTE
PZuBLNENT AT1AIBUIE
PERBANENI ATI&LBUTF
PEMBLSENI A1IZIEUIE

CACI SINSCAIPI 1I.5 IB2 5,370 9.3 PAGE

19-povY-1985 22:13

#0DE

1MTESER

1M1 EG2E
INTEGER

INTEGER

INLEGER
INTZGEL
IBTEGZ
IBRTLGER
IFTEBGEE

18TESEa

INTEGEL
INIEGEs

{(2-D) IBTEGER
{2-D) INTEGE:

1NTEGEL
19TEGEE
IBTEGED

INTEGEL

INTEGEP

INTEGESR
{1~-D) 1INIiGis

{1=D) L¥TEGEKL

{1-D) INTEGER
(1-D; IMIEGER

{1-D0) INTEGE.
{1-D) INICGER

SIMSCRIPT Model for the Flexible
Manufacturing System (Cont'd)

204

1
1)

CAcl SIASCAIPT II.5 IbR S/370 B9.3 PAGE

OPTIVES TLEL,LUAD,1D,1LACEZ,NOTELY,CHS ,BEN=bEs

19-N0V¥-1935 22:13 |

LAY]

T DEFT:ANS THANSPULT,S50,1,8XSD?,6 BOO T4
" DPEPUSTAT S33110M1,1.3 BOO015
" DEFSSTIT STATIONZ,2,3 0016
" DEFLSTAT STATION],J,4 30017
" DETUSTAT SIATIONG,4,d BpOG18
" DEFW51AT SIAT1IONS,5,1 B0019
o DEF¥STLT 10512710%,6 BUG23
" 1a51 TABLE #1,200,20,20 BOG21
** TAB2 1ALLE B1,100,20,20 »0022
"% 1B} TABLE B ,200,20,20 30023
e
LN]
seuss Epw SEGHENI
LAY
LAE
" GEBEXATE 50/.3,DSSEXrONENIIAL.P,,.,J0B1 80025

FBOCESS GEZb.JOB1

1E1 SIOF.FLAG.JCH) (GEN.JOBY) = 1
LET SEED.TIadN.J0B1 = 1 .

WAI1 O VMIIS

DETii STOP.FLAG.JUB1(GEN.JOBT) <= O
Lo

DEF1NE GEXT1.JOBT AS & AEAL VAR1ABLE
LE1 GEN1.J0L1 = TIBE.V

whil EXFONEMIIAL.T (50/.3,

10 SEED.ThAN.JOB1) ON1IS

VENEUE WK -

n LE; GEE.TI1RE.JUB1={TIAE.Y - GEK1.J0b1)*BOUES.V*H1LU1ES.V

12 AC11V:SE & TEAN.JOB1 NOM

13 LEI TEAN.CHTE.JOBI=IRAR.CMIA.JOEY ¢ 1
14 LES C.THAR.CE1.JOB1=C.1aAN.CH1.J081 + 1
15 LOGk

16 EMD

Figure 4-5c.

SIMSCRIPT Model for the Flexible

Manufacturing System (Cont’'Qqd)

205

2t
L

CAC1 SIASCeIPT 1I.5 IDE 5/370 k9.3 PAGE 21
OUPTIONS iLiH.LUID,Ib,lilCEZ,IUTEBH.CHl.R!l-lll 19-00¥-1985 Z.:14 | 1,

PaCCESS THAN.JOEN

DEFLINE P_Aukal A3 INTEGEK,1=DIBENSIONAL ARRLY

BESEAVE P_AKndY AS 10

DEF1NE 21¥W.A1 A5 3 =EAL VARIABLE

TIn.B51 = T1M8.¥

e EN1EsS14% IOSIATIOR BOC26

LET CURsENI_US_NUd = &

LE1 Tlh.u.I0STRZL0N = TINE.V

LE: WUB.EN1.y.TO5TZlION = NUR.ENI.y.IO0S1ATION # 1

11 FELUES1 1 I0SIATION

32 LE: TIMEiN.g.IGSTaTIUNs (TIME.V = TIN.U.I05STATION) *§0UBS.V*8INOIES.Y
13 LET T1M.F.LCSTATIUM » TIAE.V

'@ &D0 TIMELN.u.lOSTATION TO T01AL.WS.DELAY

15 W0LK UMLEULI.F((0-0) /1.0, (0+0) /1.0,

1o SEEU.TLa¥.JCLT) URILS

17 BELiKJUisi 1 JUSTALION

18 LE® TINEIN.F.IOSTATIONe ($IR&.Y = 1IN.?.I0STATION) SHOULS.VeAINUIEL.Y
19 o KR 1uAES ThAMSPO2T,STATION) BOU27
20

21 LET aEy . 1IBE = 1I4E,¥

22 LEZi 11M.y.ThAKSPCa1 = TINZ.Y

23 LET WOMLENT. .TXANSPOAL = NUM.ENI.J.TRANSPORT + 1

2% BELUEST Y 1KANSPURI

25 LET 11MElh...ThAKSPORTS (TIHE.Y = TIK.G.TRANSP0RT) *HOURS.VeRINUIES.V
20 LEG 1IN.E.ThANSPOERT = TINE.V

37 WALT MXSDI{IPABSPCAT_LUC_NU3,CURREST_u5_N0H) /50 UNITS

28 LE1 18AESPUAT_LOC_NUM = CURLZNI_¥S_mum

29 L2ZT TuME.TEAP = (TIAE.V — EEy.T14E) *HOURS.V*NINUTES.?

30 ADD 1IEE.1EA¢ 1C TOTLL.TUdBS.DELAY

31 LE1 MEXI_ws_WUM = 3

32 &Aii MXSD1(CURKENI_us5_BUN,BEXI_US_WOH) /S0 UNIIS

33 LET 1aAMSPOsT_LOC_NUS = NEXT_uS_sUd

J4 aELlNguIsd 1 THABSFORI

35 227 GINEIN.F.TaAMSPCRT=(1IRE.YV = I1M.F.TUANSPORT) SHOURS.VEBINUIES.Y
ga " BEgWsTALl STA110E3,1,50.,DSSEalABG.#,2 80026

3

38 LE. CURMENI_NS_NuB = 3

3% LE1 Tla-u.STAIIONS = T.iME.¥V

WU LET BOZ.EN1.,-ST1ATI083 = NON.ENT.L.STATION} + 1

41 REQUEST 1 STA1ICA3

42 LEL TIMEIR,.y.SIATIONs=({TINE.V - 1IN.y.STATIOK3} ®HOUAS.V*AIBUIES.V
43 LEY 1is.F.51AIl0s#3 = TIAE.V

M4 LDD TIREIN.y.STATION] %0 TO1al.NS.DELAY

45 wULa EhLANG.P? (50.,2,SEED.TEAN.JCBY) ODM1TS

e LELINGUISH 1 STalload

%7 LET T1MEIN.F.STATIUNI=(11mE.¥ -~ TIN.F.STATICNI)*uCUNS.VeAINOTES.-Y
ug v BEUIkANS 1sANSPUST,STAIIUNI . B0029
4y

9% LET sEQ.TIZE = 11mE.Y

91 LET 43N.u.labUSPOs] = TIAE.Y

52 LE: MNUB.ENi.y.1EANSPORT = NOA.ENZ. J.TEABSPORT ¢ 1

83 MEQUEST 1 ThARSPOal

Su L2l “19EiN.y.TRABSPGET™ (TIAE.V = TIN.L.TEANSPORT) *4OURS.VSSINTIES.Y
55 LET 1IN.P.ILESKORT = TIAL.Y

56 WALT %501 (TEARSOKI_LOC_MUR,CURBENI_WS_¥UB) /50 DULTS

- '
CEaT T WE Wh

Figure 4-5d. SIMSCRIPT Model for the Flexible
Manufacturing System (Cont'd)

206

PRUCESS ieAu.JULY CAC] SIASCARIPT Il.5 1&% 5,370 B9.3 PAGE
OPIIONS TERN,LUAD,1D,THBACEZ, NOTEEM,CHK,UEN=SEe 19-M0¥-1985 22:13 (

57 LE1 TRANSPOa1_LOC_NUS = CURREN]_Ji_RUn

58 LEI I1BE.TEM: = (TIBE.V -~ REU.IIAR)¥HOURS.VeAINUTES.V

59 ADD TIRE.IEF2 T0 TOTAL.TxAWS.DELAY

60 LBl XEX1_w5o RUB = 1

61 WAIY MASDI(CURREMI_ES_BUN,NEXI_N5_WOUA} /50 QUITS

62 LEL IRAMSPORI_LOC_NUM = NEBXI_S5_NOA

63 aRLIEQUISH t IBANSPORT

64 LET TLEEIN.F.TRANSPOST= (TIME.¥ ~ TIN.P.TEANSPOLT) *HUDRS.VS3IINUIES.Y
65 ¢ BEYNSTAL STLTION1,1,00.,DS886LANG.F,2 3030
113

67 122 CULRGENT_Wks_NUn = 1]

68 LZ. 11N.y4.STA11O0M] = ILNE.Y

69 LEI WUb.EMNl.yu.STATION1 = BUM.ENT..STATION] + 1

70 kEJUESYT 1 STATIONT

71 Led TIELINGJSTATION!=(TINE.Y ~ 1IK.Q.5IATIONT) *HOULS.VSHIROTES.V
72 LEI TIN.F.SIALIOCKY = TINME.V

73 ADD TIRLIN.w.STAYJIOK! 10 TOTAL.¥5.DELAY

T4 aUEA EaldkboF(60.,2,5EED.GNAN.JCBY) UNITS

75 RELINGUISH 1 SlallIowt . -

Tu LE1 TIREZIN.P.STATION)=(TINE.V ~ TIN.F.STATION]) SHOURS.V®HINDTES.Y
11" AEVikAbS THAMSPORT,SIAIION2 B00 31
18

79 LET BEu.11AE = TINE.V

80 LEl TlbewIRANSPURT = IJaE.V

81 LET WUB.ENG.weTHANSPORT = PUB.EN{.Q.1RANSPOLT + 1

82 RE.VUES] 1 TRAMSPOLI

a3 LEl SGIMEIN.w.lab¥W320LT=(T18E. ¥ - TIN.(.TEARSPORT)*AOUES.T*HINOTES.V
84 LEL Y1k P.1MAMSEGET = IINE.¥

85 SAIY AISD1{TaANSPORT_LOC_NUR,CONKINT_W5_BOA) /50 OBISS

8o LEI TRAESPURT_LOU_NUY = CURKENI_aS_MiA

87 LET 3IIAE.TENP = (TIBE.Y - EFJ.I1MBE) "HOUKS.V#BINOG1ES.V

ag 409 TIRE.TER? 10 TOTAL.ThAANS.DELAY

69 LE1 BEXI1_N3S_NUN = 2

90 WAI1 SI3DV(COLZENT_RS_NUR,BEXI_N5_w0A} /50 O0MIIS

91 LE. THARSPOR1_LOC_NUA = MEXT_wS_d#08

92 EEL1W,Ul3d Y TEANSEQR]

93 Lgs TIARIN.F.ILAMSPOMdI=(TINE.Y - TIN.P.IRANSPOAT) *HOURS.TY*HINOTES.Y
9 RELLSTIAT STATIONZ,1,85.,DSSEELANG.T,2 80032
95

96 LET CUABKENI_WS_HDU" = 2

97 LEQ TIN.Y.STAIIONZ = TIAE.V

95 LPET MOA.EBI.Q.STATIQEZ = NOR.ZET.(C.STATIONS ¢ 1

99 kKZyUES1 1 STAIION2

130 LE1 iIBBIN.J.STATIUN2=(TIME.V = 1iN.u.STATION2) *HOUES.¥*ALINDTES.Y
10 LE1l 115.F.STAIIOK2 = 1IBE.YV

102 ADD TIREl13.Q.STATIONZ TO TOTAL.SS.DRLAY
103 WO0uLk EsaLANG.F(85.,2,5EED.TaAN.J0BY} ONIIS

104 KELIN,ULSE 1 STATION2

105 LEI1 TIARIN.F.STAIION2=(TIIBE.Y - 1IN.P.5TATION2) *HOD4S.VSHIROTES. ¥
:0; ve EZuThANS IBANSPURT,STATIONS BOC43

/]

108 LET REJ.TIEE = TISE.Y

WY LE: TIN.Y.15ARGPORT = 1INME.V

110 LET NURALENT.u«TEANGPUKT = BOA ENT.C.TRAMSPOMT ¢+ 1

111 RELJJEST 1 ThikSPOMl

112 LET T.iMEIN.(.ThRWSPORT=(IIAE.¥ =~ TIN.Q.TIANSPOAT) *LOORS.V*AINOTES. Y

Figure 4-5d. SIMSCRIPT Model for the Flexible

Manufacturing System (Cont’'d)

207

27
1)

PROCESS laAm.Jubl €ACI S1ASCul?T II.S5 IBHW 5,370 k9.3 PAGE
OPTIOKS 1Lo%,LO0AL,I0,TEaC22,WOTEEN,CHE, EN=NEe 19-k0V=-1985 22:13 |
113 LF4 TaN.F.IEANSPUGEL = TIBE.V
114 wAIT NISOV1(TeuANSPCET_LOC_MNUM,CURBENT_SS_NUM) /50 UNLIS
15 I®I 1TaANSPCHL_LOL_NJ% = CULSENT_WS_FUA
114 LEI 1IME.IE%: = (TINE.V - FEQ.1INE)*HOJRS.VSMINUTES.Y
117 DL TIME.TERL T0 1022L.TEANS.DELAY
1y LET KEXT_w3_NDA = 5
11y §aIl 22201 (CUMMENT_WS_NUN,BEXT_WS_BUR} /50 ONITS
120 LET TrAN3¥ORI_LOUC_ NOS = NEI1_NS_NUS
121 KELINQUISH TEAK3POXT
1l L2T TIPELR.FP.THANS2OK1= (TINE, ¥ = TIN.P.TEANSYOx]) *HOURS VOBINDTES.Y
123 ¢ afYhSial STALIONS, 1,5V, ,DSSRaldlG. ¥ ,2 BOG34
124
125 i CUbaZN1_s5_NUN = 5
12¢ LE! TlN.ueSTA11UKS = T1AZ,.V
127 LEI NUR.Ekl.weSTLIIONS = KUL.ERT.u.STATIORS + 1t
148 BT UFS3T 1 STALIUMS
149 LBL ITEELN.yw«SIATIONS=(TIAE.Y = TIN.uW.5TAIIONS) *AQULS.VYOAINOTES.V
130 LET 2I¥.}.5TAI1CKE = TIBE,.V
131 ADD TiME1K.G.STATIO¥S 10 10TR1.W5.DELAY
132 WUEh ERLANG.F {50.,2,SEED.T2AN.J081) ODMITS
133 RELINLUISH 1 S1ATIUNS
134 LET AJBEuM.F.STATIUNS=(TLME.Y - TIN.T.3TAZ1O0WS) *uOOLS.V*AINOTES.V
135 ¢ SELIEANS ThANSPOA]1,10S51AT10M BOu3S
1136
137 LEi L2,.7182 = T1RE.V
138 LET 1154 4,+-ThANSPO0S = TINE.V
139 LE. BOB.ENT.v.ThiKSPU&L = BURLENT. .THABSPURT ¢ 1
146G RBUOES1 1 TaANSECRI
141 Li: SIBEIN.y.ldaNSeUnT=(TIRE.¥ - 1IN.(Q.TRANSPGRT) *HOUURS.V*AIBUILES.Y
142 LI Tia.F.1LLkSPCGLT = TIME.V
143 WALL MXSDV(TAANSPOAT_LOC_NUA,CURGENI_WS_NOM) /50 URiIl5S
186 LEY 1EANGPORL_LOUC_BUA = COLJAENI_wS_bUBE
w5 LE: 1IME.LERP = (TIME.Y - REy.1JAE, *HOURS.V*BINJIES.T
146 ADD TAME.TESE TC 10TAL.ThANS.DELAY
147 LEi WELI_BS_WUR = &
148 WAIT BISLY (CUARENT_WS_WUBS,MEXI_E5_NUR) /56 ONIIS
149 LZ]1 TshNSPOBT_LOC_Nus = NEX1_H5_Nin
150 52LuMQUISa 1 TRANSPCL1
151 LE: T1REIN.F.TadW5POkI=(1INE.V - T]i.F. Ihllsrosi)tuou:s.vtuxlu1zs.
152 ¢ LEAVES1AT IG3TATION B00 3¢
153
154 LE1 JCDV.eOKKSTATION.DELAY = TO1aL.sS.DELMY
155 LET JOB1.TaidNSP04T.DELLY = TO1A1.1RANS,.DiLAY
156 v+ TABULAIE TabY 50037
157
158 LET %1 ={1I#ic.V ~ TIN.BT1)SHOURS . V*MINUTRS.Y
159 LE1 1231 = 51
160 ** TERZINATE BOQ a3
163
162 LET 41 =(T1NE.Y -~ 1Ia.87)*HCURS.V*HINUIES.Y
163 LET C.ibbN.CHNT.JOBY = C.TRAK.CM3.JORY ~ 1
164 PETU&E
165 94»
166
167 s
168

Figure 4-5d. SIMSCRIPT Model for the Flexible

Manufacturing System (Cont'aqd)

208

2t
1

4.1.4 Discussion Of The Results Of The FMS Simulation -
The standard output report for the resources include the
utilization report for the transporter (under
facilities) and the workstations (under storages). The
IOSTATION does not have any working units. As a result,
the average utilization of this station is zero. The
resource report also includes the queue statistics for
the transéorter and workstations. The report shows that
the number of machines in the ©5th station is not
sufficient, As a result, the waiting time for this
station is considerably higher than for others. Figure
4-6 shows the output results for the Flexible

Manufacturing System.

The standard report also includes the average
interarrival time for the Transaction by type. The
TABl, TAB2, and TAB3 tables contain the distribution for
the total time spent in the FMS model by each job type.
The average for total delays occurred for each job type
because of Transporter delay or unavailability of
workstation on its path is reported under the variable

report.

The total time spent in the model by each job type
can be estimated by adding the workstation delays,

transporter delay and mean value for all of the service

209

times in the job's path. For example, the total
workstation delay for jobl is approximately 84 units.
Its transporter delay is 28 units. The mean service
time of workstations that jobl visits are 50, 60, 85 and
50 unts which add wup to 245 units. Therefore, the
estimated average time spent in the model by jobl is 353
units. This shows 1less than 2% deviation from the
simulation run result (360.87 units). Furthermore, the
correctness of the SIMSCRIPT model of this Flexible
Manufacturing System 1is confirmed by ' adding print
statements within the SIMSCRIPT code and tracing the

state transactions of the model

210

.'.‘...‘.-t.‘.'.“.“-..'..'.‘.I"...‘..

. [
i #% GE.PHICAL SIRULATION SISTEZ OUIFRJ] ¥
» *

.“....‘.-‘.C“!'....".‘.‘...“.-....‘.

PLCILITY CiritllY AVERAGE BUABER OGF AVEKAGE CORRENT #sAxiImge
| YY 95 011L1%A3100 ENIEAIES 3IBZ/TkaN COMTENI CORIEN]
1kAdSiul] 1 481 216 5.35C] 1
STGaAE CAPACLITY AVERAGE WIA2ZE OF AVEZAGE CURAENT HAXIBON
haLE ULILIZLTION ENT EallS TI1AE/TEAN COBTESI COPTERT
STATIGHI 3 «dou L 1] T72.53% 3 3
STAMlIui2 3 eJiad 29 85,074 ¢ 3
STATICKS 4 .262 L1} 57.88% 1 [}
STALICNS 4 -29Y 7 100.971 2 [}
51kiIukd 1 « 494 27 83,593 1 1
IUSIALION 1 0. 50 -000 0 1
BES0URCE AVEHALL 1014l AVEKAGE CURRENT BAXIN0H
wUEUE CUNTENT ENTEATES TIRE/TiAN CONTRNS CONTENILS
TRAMSFOLT «301 216 3.3 0 5
51351081 « 136 L1 Tau79 0 5
STATIONZ «025 29 2.037 Q 2
STATI0MS -.031 (1] 1.665 0 2
SIATIUNG « 006 27 540 0 1
$1411005 «031 29 92.131 2 []
10STATION 0. 50 -0400 9 0

TRAUSACTICK BURBEE AViiAGE

[719.7 CazZATED ChEAIION IINE

JUi 1 22 106,562

JOEZ 20 112.133

Jubd [} 280.538

CLOCE 1 2800.000

Figure 4~6a. Simulation Results for FMS Model

211

1AbLE AVELAGE 51D.DEY NO.EN1EAIES

+AE1 363.87 103. 3¢ 19
BifEn LIKIT P EyUENCE PEHCENT1 LP 101AL

20u 2 .11

22u J 0.

249 L] L5

26U 2 - 11

286 1 «05

Juy 1 -05

3z 1 -0

KT P .11

K'Y 0 0.

kY17 3 « 1o

400¢ 1 «35

bau 1 .05

“4s 1 +05

LYY 1 aWE

(31} (] 0.

504 o Q.

52¢ 1 -05

544 1] O

Sl 1 +05
TAuULE AVERMLT STD.DEV BO.EETERIES
1AE2 2711.52 1We.5% 15
Ue’Eb L1943 PRELUERCY PERCENY OF TOTAL

W] .

120 ¢ Qs

L [TH 4 «13

160 1 U7

18¢ 1 <07

2466 1 =07

2l 1 +07

240 2 . »13

260 2 +13

280 Q 0.

Juv '] 0.

EF D] 2 «13

ETH] 1] 0.

360 0 0.

36wy 1 .07

800 0 0.

bav 1] 0.

4ub 1 +07

boy] 'y

Figure 4-6b. Simulation Results for FMS Model {(Cont'd)

212

ThbLF ’ AVERALE 31D.DEY BL.ENTELIES

TAbd 4bi. €0 9994 7
GPEEb LaNal FERUJENCY PRLCENT OF TOTAL

2uu [H] .

240 4] 0.

24 0 0.

FI 3 '] 0.

ibU] 0.

360 1 14

2 0 U

FLLY) 1 .14

Jow [¢] 0.

BT 4] Oe

“v 4] 0.

+£0 [T} 0.

W4y 1 14

[T 1 ala

LT 1 a1

%J0 [+] 0.

520 1 18

54U '] 0.

560 1 .14
ViaJhcLE MNARE AVEdAGE
JOL1.9uVahSTAI1I0MN. LELAY 84.05%0
JOL 1.1 haNSrOul. VELAY 28,141
JCb2.wUBRLIATION. DELRY 0. 651
JOTl.3aAN3EURT.DELAY 23,755
JOEJMLEAKSTATION.DELLY 14+ 035
JUbI. AT ANSPUST.LDELAY <9.503
1EVLAR KAAE " WALUE
BXED1(1,2)
AXSL1(1, 3) 100
MisD1(,4) 160
axs01{1,5) 204
BXSD1{1,¢) 270
ntst1(£, Y 90
ALEDY(Z,]) 100
#X3D1(2,4%) 400
uX$C1(2Z,5) 140
Hiftl1{2,46) 270
EXE21(4,1) 100
BLID113,.2) 109
ALiDV(3,.4) 100
NL3L1(3,9) 100
BXED1 (3,0} 160
RASDI{4,) 180
NEILT (%, 2) 200
Bi+DV (%, 3) 190
NX3D1(%,5) S0

Figure 4-6c. Simulation Results for FMS Model {(Cont’'4qd)

213

4.2 Description Of New FMS Blocks aAnd Their Translation

4,2.1 Define Transpocter (DEF TRAN) - This block
introduces the transporter into the simulation of
flexible manufacturing systems and defines the
characteristics of the transporter. The transporter
specification consists of transporter name, speed,
capacity, distance table and initial position for all

transporters from the same type.

The transporter speed is given in feet per second
and transporter capacity specifies the number of
‘independent units of transporter type in the Flexible
Manufacturing System. At any instant of time, the
capacity refers to both active and inactive units. The
transporter - capacity remains constant within the model.
However, the number of active units may change over time

as transporter units are used and released.

The distance table selects the name of the matrix
previously defined in the definition segment of the
model which contains the distances between each two
stations. Each station 1is assigned a number which
represents its column and row number in the distance
matrix. The distance matrix contains the distance in
feet if the transporter speed is defined in feet/second

otherwise 1if a metric system is used we can use meter

214

for distance and meter/second for speed.

The define transporter block appears only in the
definition segment. The format of the DEFTRAN block is

as follows:

DEFTRAN T, 8, C, D, I
WHERE
T = TRANSPORTER NAME
5 = TRANSPORTER SPEED
C = CAPACITY
D = DISTANCE
I = INITIAL LOCATION

Pass 1 of BCSL Compiler for DEFTRAN block creates a
transporter data structure, defines its attributes and
adds it to the transporter list. It creates a variable
to hold current location of the transporter and selects
its initial value and adds the variable to the variable
list. Basically, Pass 1 of the translator creates and
files the above three data structures where distance
table name and transporters speed are saved to be used
when a request for a transporter block is being

processed.

Pass 2 of the compiler uses the resource list and
generates accumulate statements for the average and
maximum number of jobs in gueue for transporter, also

maximum and average wutilization for the transporter.

215

Pass 2 generates code to tally the average time in the
queue and the service time. It defines the "current
location" variable globally so all the process routines
can share it. The current location variable holds the
station number of the last station that the transporter

visits at any time during the simulation.

The initialize routine uses the starting station
number to initialize the «current location of the
transporter when the sumulation starts. In addition, it
sets the capacity for the transporter resource. The
output generator routine for resources generates
SIMSCRIPT code to output statistical results of averages
and maximum values for queues and service periods for

the transporters.

216

4.2.2 Define Workstation ({DEFWSTAT) - The define
workstation block introduces a workstation into the FMS
model and defines its characteristics. The workstation
specification consists of the workstation name, its
corresponding number and capacity. Each workstation
consists of several identical machines whose number is
defined by the capacity of the workstation. An integer
number allocated to each workstation represents the
workstation's corresponding column and row number in the
distance matrix. The workstation number allocation will
start from one and is incremented by one every time.
The define workstation block appears in the Definition

Segment only. The format of the DEFWSTAT block 1is .as

follows:

DEFWSTAT W, N, C

WHERE
W = WORKSTATION NAME
N = WORKSTATION NUMBER
C = CAPACITY

Pass 1 of the BCSL Compiler creates a workstation
data structure, defines its attributes (name, number and
capacity) and files the element into a workstation list.
Later during processing of request for workstation
blocks in Pass 1, this structure is used to find the

station number given the name or vice versa.

217

Pass 2 of the compiler, defines workstation as a
resource, generates, accumulate and tally statements for
corresponding variables in the preamble routines. The
initialization routine generates capacity definition
statement for the workstation resource using the
workstation capacity attribute. The output generation
routine generates statements to generate statistical

results for the workstation resource.

218

4.2.3 Request Workstation {(REQWSTAT) - The request
workstation block is used to simulate a typical
workstation in a Flexible Manufacturing System. This
block basically respresents what happens to a job while

it is in the corresponding workstation.

It specifies the workstation name, the number of
machines used by the job and tge distribution function
of service time. Mean service time and two additional
parameters are defined for given distribution functions.
This block is used in model segments of Flexible
Manufacturing' models. The format of REQWSTAT is as

follows:

REQWSTAT W, N, M, D, P2, P3

WHERE
W = WORKSTATION NAME
N = NUMBER OF UNITS NEEDED
M = MEAN SERVICE TIME (FIRST PARAMETER)
D = DISTRIBUTION FUNCTION
P2 = SECOND PARAMETER
P3 = THIRD PARAMETER

The request workstation block in fact is a macro
block implemented using three standard BCSL (GPSS)
blocks: SEIZE, ADVANCE and RELEASE. Figure 4-7

demonstrates a pictorial equivalence of the REQWSTAT

219

block.

A workstation is a resource which jobs will seize
and release as they move through the model. We don't
need to enter and leave the queue in BCSL in order to
gather gqueue statistics for the resources because these
statistics are accumulated automatically for each

resource in the model.

Pass 1 of the BCSL Compiler searches the
workstation list, finds the workstation element with the
same name and extracts the workstation number. It sets
the SEIiE block parameters using the temporary
parameters, calls the SEIZE block generator routine, it
then sets the ADVANCE block parameters and calls the
ADVANCE block generator routine. Finally, pass 1 sets
the RELEASE block parameters and calls the RELEASE block
generator. Pass 2 of the translator doces not take any

special actions for this block.

220

ENTER

LEAVE

Figure 4-7. Pictorial Egquivalence of the REQWSTAT
Block :

221

4.2.4 Request Transport {REQTRANS) - The request
transport block simulates usage of a transporter by a
workpiece (job) in the Flexible Manufacturing Models.
This block specifies the transporter name and name of
destination station. The definition of the next station
to be visited by the transporter allows the workstation
block to be more general and makes it possible to use
this block in any job shop simulation. The format of

the REQTRANS block is as follows:

REQTRANS T, S

WHERE
T = TRANSPORTER NAME
S = DESTINATION STATION NAME

The request for a transport block is a mixture of
standard BCSL (GPSS) blocks and SIMSCRIPT code. It uses
SEIZE and RELEASE blocks, and utilizes a WAIT statement
to simulate the transportation time and transporter
delay. The transporter delay represents the time needed
by the transporter to move from the station from which
it is released to the current station in order to pickup
the workpiece (job). Figure 4-8 shows the pictorial

equivalence of the REQTRANS block.

222

Pass 1 of the BCSL Compiler sets the SEIZE block
parameters using the temporary parameters, calls the
SEIZE block generator to 1lock transporter resource,
finds the distance matrix, and extracts the transporter
speed from the transporter list. Pass 1 calculates the
distance of the transporter to current stations and
allows the job to wait for transporter to arrive to the
current station, calculates transporter dglay
statistics, finds the distance to the destination
station and waits for the transporter to deliver the job
to the next station., It finally calls the RELEASE block
generator in order to release the transporter. The
Eransporter will remain in the last station until a new

request is issued for it to move a workpiece,

223

Figure 4-8. Equivalent of REQTRANS Block

224

4.2.5 Enter Station (ENTERSTAT) - The enter station
block simulates the entrace of a job into the Flexible
Manufacturing System Model. This block in fact 1is
similar to a "Request a Workstation” block in regards to
the fact that the job can be waiting in receiving due to
paper work and space limitation delays. The ENTERSTAT
block specifies the name of the station through which
the job first enters the FMS, the number of units in
that station, the distribution function of delays and
related parameters. The format of the ENTERSTAT block

is as follows:

ENTERSTAT s, N, M, D, P2, P3

WHERE:

STATION NAME

NUMBER OF UNITS

MEAN TIME (FIRST PARAMETER)
DISTRIBUTION FUNCTION
SECOND PARAMETER

THRID PARAMETER

wrogogER2Z2Wm
W wunn

o g

Usually the amount of delay is zero, or the number
of resources are infinite and a fixed delay is imposed

on incoming jobs.

225

The Enter Station block is a composite of SIMSCRIPT
code and request workstation block. The SIMSCRIPT
section creates and files needed statistical variables
in their corresponding sets. Figure 4-9 shows the

pictorial equivalence of ENTERSTAT block.

226

L

4

Figure 4-9. Equivalent of ENTERSTAT Block

227

4.2.6 Leave Station (LEAVESTAT) - The leave station
block simulates exiting the Flexible Manufacturing
System by a job. This block does not represent exiting
of the simulation model. In order to exit the
simulation model we still need to use a TERMINATE block.
Separation of Leave Station and TERMINATE block provides
more flexibility and generality in using FMS blocks, by
allowing a FMS model to be added to a global simulation
model. Thus the global simulation model includes the
Flexible Manufacturing System model. The format of

LEAVESTAT is as follows:
LEAVESTAT S
WHERE

S = STATION NAME

The equivalent of the Leave Station Block
calculates statistical wvalues, 1like total workstation
delay and transporter delay in the Flexible

Manufacturing System.

4.3 User Written SIMSCRIPT

There are two ways that user written SIMSCRIPT code can
be added to Block Graphic Symbolic Language (BGSL):

through SIMSLINE block or by means of an append file.

228

4,3.1 SIMSCRIPT Line (SIMSLINE) Block - A SIMSCRIPT
Line Block represents a SIMSCRIPT statement to be added
to the main line of the generated SIMSCRIPT equivalent
of the BGSL model. The format of a SIMSLINE block is as

follows:

SIMSLINE SS
WHERE:

SS = IS A SIMSCRIPT STATEMENT

Thus the user can add as many SIMSCRIPT statements

as desired between BGSL (or BCSL) Commands.

4.3.2 Append File - Using any editor available in the
host operating system, the user can generate an append
file containing SIMSCRIPT routines. This file is
appended to the output of the BCSL Compiler (SIMSCRIPT
Translator) and later, in combination with generated
SIMSCRIPT, it 1is compiled to generate the executable
machine code. Figure 4-10 shows how the append file is.
concatenated with pass 1 and pass 2 generated SIMSCRIPT

code.

229

SDECKIPY
J— SIMYCRIPT

.

Figure 4-10. Append File Concatenation

230

in order to call the users written routines 1in the
append file, a SIMSLINE block is used within the BGSL
model. This block contains a SIMSCRIPT statement which
calls the corresponding routine. 1In this fashion the
user can add large numbers of SIMSCRIPT statements into
the BGSL model by wusing only one block. Figure 4-11
shows how a SIMSLINE block calls a routine within the

append file.

The ability to add SIMSCRIPT statements to BGSL
provides several debugging tools currently available
through SIMSCRIPT, to BGSL users. These debugging tools

are as follows:

1. Any print statement within blocks to check the

variables as the simulation time progresses.
2. The trace back utility in SIMSCRIPT.

3. User supplied debugging routines in SIMSCRIPT like

SNAP.R

4. BETWEEN.V tracing routing, which traces the flow of

SIMSCRIPT execution.

231

Notice that in order to use these debugging tools,
the user needs to know the SIMSCRIPT programming

language.

Custom made output routines can be added to the
simulation model by writing special purpose output
generator routines which are called from within BGSL
blocks. This feature provides the user with flexible

output'generation in addition to standard BGSL outputs.

232

SDMLINE CALL 3= MATDE .b
i
|
|
=
BGSL Mode Appund Pile

~

Figure 4-11. Usage of SIMSLINE Block

233

4.4 Generation Of Customized Simulation Systems

4.4.1 Generation Of New Blocks In BCSL - Generation of
new blocks in Block Command Symbolic language requires
the addition of a block processor routine into the BCSL
compiler (SIMSCRIPT Translator). This routine will be
used during Pass 1 processing of the new block. In
addition a «call "to the "new block processor routine"
must be added to the "operation processor routine”.
Figure 4-12 demonstrates the calling seduence in Pass 1

of the compiler regarding the addition of the new block.

Very often Pass 1 of the BCSL compiler satisfies
all the requirements for processing of a new block and
there is no need to add a new data structure to the
compiler, In these cases, the above two steps will be
sufficient to permanently add a new block to BCSL. But
if there is a new data structure to be added or if
additional action needs to be taken 1in the Preamble,
Initialization or output routines, then the following

steps should be added to the compiler:

1. Definition of new data structures in the preamble
section of the compiler. Add a set which contains
the new data structure elements and is owned by the

system.

234

Within Pass 1 "new block processor" routine create a
new element (Temporary entity) corresponding to the
new data structure, define its attributes and

eventually file the new element into the new set.

Through Pass 2 routines, preamble, initialization or
output generator, for each entry in the new set, add
the needed SIMSCRIPT code to generate the

corresponding sections of eguivalent SIMSCRIPT code.

235

PASS 1

CALL OPERATION PROCESSOR

OPERATION PROCESSOR

IF OPERATION EQ NEWOP
CALL NEWBLOCK PROCESSOR
ELSE

END

NEWBLOCK PROCESSOR ROUTINE

Figure 4-12. Calling Sequence for a New Block

236

4.4.2 WILDCARD And Expansion Of. BGSL - In the last
section we described how to create new blocks and expand
the Block Command Symbolic language. It 1is also
possible to add new blocks to the Block Graphic Symbolic
language. This requires modifying the user interface in
order to add the new block’s pictorial representation
(ICON) into the graphic data base and to add the new

block's. name into the block selection menu.

In order to isolate the user interface from
possible modifications as new blocks are added to the
Block Command Symbolic Language, the WILDCARD concept is
developed. The WILDCARD block 1is added to the block
selection menu and can have up to ten attributes. The

format of a WILDCARD block <can be represented as

follows:
WILDCARD N, Al, A2,.....A9
WHERE :
N = NEW BLOCK'S NAME
Al = FIRST ATTIRBUTE OF NEW BLOCK
A% = THE NINTH ATTRIBUTE OF NEW BLOCK

237

The WILDCARD block can be processed either by the
BCSL generator or the BCSL compiler. The BCSL generator
accepts the WILDCARD and generates a new block with the
name of the new block using its corresponding attributes
to replace the WILDCARD block in the generated BSCL
code. In addition, the BCSL compiler is also capable of
receiving WILDCARD blocks. Pass 1 of the compiler will
generate a new command using the new block’'s name (first
attribute of the WILDCARD block)} and will call Pass 1 of
the compiler recursively in order to process the new
block. Figure 4—15 shows how a WILDCARD block is

transformed into the corresponding new block.

238

WILDCARD BLKNAME,.Al, A2, ... A9

i

PASS 1 of BCSL COMPILER
OR
BCSL GENERATOR

!

BLENAME Al, A2, ... A9

(PASS 1 OF BCSL COMPILER)

~

Figure 4-13. WILDCARD Block Translation

239

4.4.3 MACRO Blocks - In previous sections we described
how to create new blocks in Block Graphic Symbolic
language. Very often the new block 1is <c¢reated using
existing blocks. By definition a MACRO block is a new
block created using restricted existing blocks in BCSL.
For example, block "M" may consist of six existing

blocks Bl, B2, B3, B4, BS5 and Bé6

where:

Bl has 3 attributes
B2 is a TEST block and has 3 attributes
B3 has 2 attributes
B4 has 2 attributes
BS is a TRANSFER block with 1 attribute

B6 has 1 attribute
Figure 4-14 demonstrates the Graphical

representation of an "M" block and its equivalent

blocks.

240

i

~

Figure 4-14. Equivalent of the "M" Block

241

The "M" Block can be represented in BCSL as follows:

Bl Pl, P2, P3
TEST P2, P4, L1
B3 P5, P6
M= TRANSFER L2
Ll B4 p2, P7
L2 B5 (P8 + P7)/2

For this example we need 8 attributes for the "M"
block in order to be able to supply the needed
information to all of the construct blocks. The format

of an "M" block will be as follows:

M Pl' PZ'DIOIIPB
WHERE :

Pl through P8 are the attributes

Attribute P2 is shared by several internal blocks
and labels L1 and L2 are used internally; therefore
there is no need to supply them through MACRO block

attributes.

Note that one of the limitations of a MACRO block
is the maximum number of attributes allowed in a block
{in BCSL there is a maximum of 10 attributes). This
limits the attributes available for the internal blocks
and finally limits the number of blocks that a MACRO

block can hold.

242

4.5 AN ALTERNATIVE SOLUTION TO THE PRODUCTION SHOP

MODEL

This section presents an improved solution for the
manufacturing job shop model discussed in Section 3.2 of
this dissertation. The new model 1is built primarily
using the new blocks developed for simulation of the
Flexible Manufacturing System. The define workstation
(DEFWSTAT) and the request workstation (REQWSTAT) blocks
are used in conjunction with the standandard BCSL blocks
in development of the alternative model. As a result,
the number of blocks used to simulate the same job shop

has been reduced to about 1/3 of the original model.

Figure 4-15 shows a BGSL modei segment which
represents JOBl sequence in the model. As illustrated
the REQWSTAT blocks have replaced the
SEIZE-ADVANCE-RELEASE block chains (there is no
transporter involved in this model). Figure 4-16 shows
the BCSL equivalent for the model. The number of
command lines is reduced by a factor of 3 for each model
segment. Figure 4-17 shows the SIMSCRIPT equivalent
transaction process representing the JOBl segment. A
comparison of this transaction process and JOBI
transaction process in Figure 3.7e demonstrates that the

SIMSCRIPT equivalent of both segquences are equal.

243

Finally, Figure 4-18 contains the simulation run results
for the new alternative model. As it is obvious, the

results are the same for both models.

244

MODE L y
BOD14 SEQMENT
REQUSTAT
BOOT9 POLISHER
L
GENERATE TABULATE
I JOB 1 30020 ™ \I
y
REQWSTAT
80016 CASTER

o | |

%

REQUSTAT
BOOY? PLAMNER

;

80018 LATHE

]

Figure 4-15. BGSL Model Representing JOBl Transaction

245

FILR: RZW5C BCSL Al Ya/52 CORVERSATIONAL NORIZTOR SISTZA

SN IS RS IS RS A RE LSS S LRV RIS EUR SR NN ERL WD CREBEFEL P EEE AP E S SR TN LR EEER SR SN AR BN
-8
e
SEE RS EEARERSERF AR AR ORERSES R RN SN RN RSB VASE L RS RIS S AP ER ERRR LS AR RSB IP R ER SRS
L d '
. .
SIBEULATE
L J
[3
€ws DEFINITION SEGAZNT
[3
.

T1 TABLE a1,1200,1200,10 30009
T2 IiBLE 21,1200, 1200,10 20010
T3 TABLER 31,1200,1200, %0 80011
TJO08S 1IA5LE ¥3COONT,10,10,6 80012
COONT YABIABLE ESINI+NSINZ+NSTN3~NS00T 1~H500T2~4S00T3 803513
.

.
kes EEN SEGEENT
[

DEFESTAT CASTER,1,13 80002,
DEFMSTAT LATHE,2,5 80003
DEPRSTAT PLADER,3 .0 80004
DEPESTAT oRIL,%,8 830005
DEPYSTAT SHAPRER,5,16 30006
DEPISTAT 20LISHER, G, BJ0O07

‘% ARV SEGAENT
.

GENERATE das.,DSSEXS0NENTIAL.P,,,,,J0R 1,J081 BO0O15
Il REQWSTAT CASTER,1,1250.,DSSZXPONERTIAL.F im
»EQUSTAT PLABER,1,350.,0SSEX2002NTIAL.F 80017
KIQ4STAT LATHE,1,200.,0S3ELPONBITTAL.P .NRE.]
aZQeS5TAT POLISHER ,1,600. ,DSFEXPONZNTIALLF BGQ13
ZA3ULATE T1 3Gu20

UUT1 EHMI1IATZ GuT

== ¥yB¥ SEGYENT

GENEBAATE 4800.,,,4r0 PIA2R,TINZD 80023
TAGULATE IJOES 3004
TEa3TIATE 1 N 39925

*® NEV SEGHAZNT

GENE2ATE 220.,DS52XPONENTIAL.P,,,,,J002,J0R2 35027
Ixz AEQASTAL SBAPEE,1,1050., DSIELPONENTIAL.? Idg

Improved BCSL Model for the Production

Figure 4-16a.
Shop

246

ILE: MEUSC BC3L Al
REGESTAT DRILL,1,900.,DSSEIFONESTIAL.TY
REQ¥STAL LAiTHE,1,650.,DSSEXPCNERIIAL.Y
TABJLATE 72

0012 CLERIINATE

s» §FY SEGHENRT

GENERATE
I3 REJISTAT
BECHSTIAT
REQESTAT
BEJWSTAT
EEQUSTAT
TABOLATE

OUTS TEEJLNATE

298..953!!?0!!'?1!&.!,,.,,JOBJ.JOB3
CASTER,1,2350.,DSSRIPONEETIAL.Y
SEAPER, 1,2500.,DSSEIPOSENIIAL.?
DEILL,%,500.,0SSELPONBITIAL.Y
PLAKER,1,300.,DSIEXPONCNTIAL.F
PCLISHER,1,250.,053RXPONENTIAL.Y

T3

&% CONTREOL SEGNENT

H

S5TART

Figure 4-16Db.

5

Shop

247

¥Y#/52 COMVEESATIONAL 3I0¥IICHE 5YsTZa

BOOZ2®
BUU30
BOG31
0GT2

BOU3L
IN3
BLI3b
awaid?
ENIVEY-)
L-IVER)
30040
G1TT3

30943

Improved BCSL Model for the Production

CACI SIBSCaIPT II.S IBM 5/370 B9.3 PAGE

PTIONS 1TERM,LOAD,ID,TEACEZ,BOTZRN,CHK,REN=NZY 29=-Ja¥-1986 21:36 |(

PiGCESS TRAN.JOBI

DEFINE P_AAREAY AS INTEGER,1-DISEZESIOEAL AREAY

ABSEEVE P_ARRAY AS 10

DEPINE TIK.A1 AS A BEAL VARIABLE

TIN.81 = T1HE.V .

e IE1 REJUSIAT _ClS?!l,‘,1250..DSSBXEOIBITIAL-!

TNt *

LET NSI¥1 = ASIN1 +
10 LET KSIN1 = ESIN1 o
11 LET CUR&ENT_4S_w08 = 1
12 LET TIF.Q.CASTES = TIAR.Y

13 LET NUN.ENT.y.CASTES = NUS.ENT.Q.CASTER + 1

18 AEQUEST 1 CASTE:

$5 L2T TIMEIN.Q.CASTER=(TINE.Y - TIN.J.CASTER)$EOUBS.Y*HINUTES.V
16 LET TIN.F.CASTEZ = TINE.YV

17 ADD TINEIN.Q.CASTXR TO TOTAL.US.DELAY

18 ¥ORK EIZONEBNTIAL.? (1250.,3ZED.TRAN.JOB1) USITS

19 BELINQUISH 1 CASTEZ

20 LET TIREIN.P.CASTER®(TISR.Y - TIN.Z.CAST=E)eHOULS. VeRINOTES. Y
21 BEQUSTAT PLAEE,1,350.,DSSZIPONESTIAL.T

X K N Y

1
1 .

23 LET WSIN1 = G5IN} - 3

2% LET COSRENI_VS_¥uA = 3

25 12T TIN.y.PLANEA = TIAR.Y

26 LZT NUA.ENT.G.RLANER = NON.ENT,J.PLANER + 1

27 BEQUEST 1 PLANER

28 127 TIN2IN.Q.PLANE®=(TIAR.Y ~ TIN.J.PLANES)SHOORS.T*4INOUTES.V
29 L2 TIK.P.PLANEL = TIBE.Y

30 ADD TIAEIN.Q.PLANZL TO TOTAL.US.DELAY

31 GOBK BIDUNEYTIAL.P (35d.,SESD.ZRAd.JOB1) UNIZS

32 &ELIMGUISH 1 PLAFER

33 LEY PIREIN.P.PLAYEZR=(TINE.Y — TIN.?.PLADER) *SOURS.VeHINUTES.?V
TR BEQESTAT LATHE,1,200.,0SEZXPONENTIAL.?

36 LET CURRZNY_dS_sum = 2

37 LET TIN.G.LATHE = TIAE.Y

36 LET u3JA.GNT.2.1ATHZ = NUM.ENT.Q.LATHZ + 1

39 HBQUEST 1 LATHE

4G LET iIMBIN.Q.LiTH2Z=(TIAE.V - TI¥..LiTHE) *H004S.VsRINITES.V
41 LET TId.?.LATYE = TINE.Y

32 400 TIAEIN.Q.LATEE f0 TOTAL.¥S.JBLAY

83 SudX ZYPONENTIAL.? (220.,SEED.1EA4.JOBY) UNITS

46 ZLINLUTISE 1 LATHE

45 L2T TISEIN.f.LATHE=(TINE.V - TIN.Z.LATSE) *HOORS.V*RINUTES.V
4o 1 8EyESTAT POLISHEE, !,000.,DSSEX208E¥TIAL.P

88 L2T CUaaB¥T_W5_NUR = 6

%) LBT II¥.;.POLISHER = TI3E.V

50 LET S0M.28T.Q.20LISHER = SOR.INT.S.POLISHER + 1

51 EBEC7¥SY 1 POLISIES

2 L2T TIAZIN.y.POLISAFA=(TINE.V - TIN.Q.20LLSHER) *HOOURS.T*HINTTES.7
€3 L®T T1i.?.2CLISHEZ = TI4E.¥

S4 400 TIMEIN.Q.POLISHE TO TOTAL.W¥S.DELATY

25 40aX ZIPONBNTIAL.F{§J0.,3EED.T3AS.JOB1) JUITS

Se EBLINGUISE 1 POLISAER

25
1)

Figure 4-17a. SIMSCRIPT Equivalent for JOBl Transaction

248

280C2Z55 TBAN.JOB1
JPTIONS T!BJ.LOID,;D.TEICEZ,in!BS.CHK.RIl-l!H

57
58
S9
60
61
62
63
64
65
66
67
ad
69
70
7
12
73
4
75
76
77
78
79
a8y
81
82

Figure 4-17b.

CACI SINSCEIPT II.5 I3A 5/370 3.3 PAGE

29-JAN-1986 21:36 (

LE2T TIMEIN.P.POLISBES=(TIAE.Y - TIN.P.20LISHER) *HO00BS. V*AIBUTES. Y

b TABULAIZ

LET 81 »(TIaR.¥ - TIN.21)*HQUAS.V*HINUTRS.Y

LET T1 =M
1 QOUT1 TEENINAIE

*ogTT *

1

LET M300T1 = N3QUT1 + 1
LET US00T1 = #304I1 + 1

LET X1 = (TIAE.V - TIN.E1)*HOURS.T*AINUTES.Y

LET C.TEAN.CET.JOB1 = C.IRAN.CHNT.JOB1 - 1

2BTURY
1.

LR
trews NEW SEGHENT
LAN |
AR]
' SENERATE

8800.,,s900T1828,TINER

249

6
1}

SIMSCRIPT Equivalent for JOB1l Transaction

w

FacCILITY
NABE

CASTER
PLANER
LATHE
POLISHER
SEAPER
DAILL

STORAGE
| FY.F

<UJZUE
NANE

Figure 4-18a.

CAPACITY

e

CAPACITI

ABSOQRCE
QU2JE

CASTER
PLANEE
LATHE
20L1ISAER
SHAPER
DRILL

AAXINOH

T2335ACTIOH
322

Jogt
IINER
Jos2
Jo3J

TAILE
b)

9222 LIAIT

ATERAGE
UTILIZATION

1.000
- 141
207
«280
- 987
«598

AYERAGE
UTILIZATION

AVERAGE
CONTENT

70.229
«Q83
- 187
«056
55.942
3.917

AVERAGE
CONTENTS

HOARER
CREATZED

66
5
118
as

AVERAGE
12947412

FEEQTENCY

NUBBER OF
ENTER1ES

‘19
9
16
3
23
10

ROABSER OF
ENTERIES

T0TAL
ENTERIES

151
9
16
8
126
22

TOTAL
BATERIES

AVEIAGE
CIEAIIOR TIAE

357.592
4799.999
203. 125
278.120

STD.DEY
774643

e

AVEZRAGE COEEZHT
TIAE/TRAT CONTENT
1309.337 1
374.932 J
325.009 1
854.558 1
1039.425 1
1583.916 1
ATERAGE CUSREST
TIME/TRAN CCYLBYT
AVERAGE CURGENT
TINE/TRAY CONTENT
12272.845 132
221.812 0
22¢.108 J
138.999 1
11633.306 103
3189840 12
Z230 AFEZAGZ
BETRAIES TINT/TRALS

SC.ENTERIZ®S

6

PRICENT CF TOTAL

Simulation Results for the Improved
Production Shop Model

250

1200 0 0.
- 2400 0 0.
3690 2 «33
4400 1 «17
6000 Q 0.
7200 [+ [+
8400 Q9 0. |
9600 '] 0. .
10800 3 «50
TABLE ‘AVERAGE STD.DEY 30.BETERIES
12 10782.67 8389417 7
gesER LIAIT FREQUENCY PRECENT OF TOTAL
L1200 : Q. [+
2400 1 .14
" 3800 2 =29
adoo 0 Q.
6Q00] Q.
7200 0 0.
848G0 .] 0.
9600 ' [+] Q.
10800 - L) «57
TASLE AVERAGE 5TD.DEY ¥Q.ERTBEIES
13 2990.53 9. 1
gPPE=R LIAIX FREQOCICY PERCERT OF TOTAL
1200 0 0.
2400 1 1.00
3oud [} Q.
4800 9 0.
60409 0 0.
7200 Q 0.
T 0 Q.
96010 0 0.
133w [+] Q.
EABLE AT ERAGE 5TD. DEY ¥0.ZXTERIZES
>JaBs 158.20 70.52 5
JPPEE LINIT PREZQGENCY PEACEST OF TOTAL
19 Q 0.
20 [+ 0.
3Q 2 0.
wg 0 Q.
S0 S 1.00

Figure 4-18b. Simulation Results for the Improved
Production Shop Model

251

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 SUMMARY

A Graphical Simulation System has been developed which
allows graphic and interactive construction of a model,
rather than statement inputs. This proves that purely
graphical languages based on menu driven interactive
interfaces are practical. Further, this system has
improved the conventional programming concepts, in such
a way that the user interactively develops a model
through visual images rather than through logically

connected procedural statements or commands.

Developing a model using the Graphical Simulation
System does not require conventional programming
knowledge. There are no syntax bariers, no command
language statements to memorize and no procedural
programming conventions to follow. The interactive menu
driven user interface provides an extensive help
facility which supports the user in every step of model
development, telling what each option on the menu means.
In addition, there are always guidelines displayed on
the CRT, telling the user what to do next and how to get
to the next step. As a result; all the user needs to

know 1is: (1) what it is that he wants to model, (2)

252

general concept of process oriented simulation, and (3)
the function of each block that is needed to build the
model. Furthermore, the user interface displays the
meaning of all the parameters needed for each block and

will check the validity and correctness of user input.

According to our experience, using the Graphical
simulation System and building models are rather trivial
to learn. Development of Flexible Manufacturing System
models does not need any programming background and
requires very short training period; Which proves that
the GSS is well suited for doing simulation by
non-programmers. However, the user needs to be familiar
with process oriented world view of simulation (in
specific GPSS programming mentality) in order to develop

general purpose simulation models.

The Graphical Simulation System provides general
purpose simulation capabilities in addition to special
purpose custom made simulation blocks. One of the
original goals of this research has been achieved by
successfully developing and testing a graphic
manufacturing production shop model. A model has been
built for the production shop, described by Schriber
[41]; correctness of this model and related simulation

results have been discussed. 1In addition, an equivalent

253

model for the same production shop has been developed
using special purpose FMS blocks, which has simplified

the model and reduced its size by 1/3.

The Graphical Simulation System is built on top of
SIMSCRIPT which is a simulation language with the power
of a general purpose programming language. SIMSCRIPT
has text processing, list processing capabilities and
extensive report generation qualities. Users can write
SIMSCRIPT routines and include them in the generated
SIMSCRIPT equivalent of the model to take advantage of
SIMSCRIPT capabilities 1like flexible odtput generation

and tracing.

The major achievement. of this reéeargh has been the
extendability of the Block Command Symbolic Language.
Specifically, development of MACRO blocks each of which
represents several graphically connected blocks. These
features made it possible to use the GSS as a tool in
the development of the Flexible Manufacturing System
Simulation Sub-language. As a result a new concept in
computer science has been experienced namely that
software topls for development of very high level
languages (dedicated, natural or graphic languages)
maybe a common practice in the future. These tools are

capable of generating systems that are expandable and

254

can adapt to the users needs as technology changes and

new requirements are established

The modularity of the Graphical Simulation System
components makes it possible to further expand the
system and provide animation of simulatien runs. The
animation would be based on original graphic models
which makes it superior to existing animation packages.
The integrated display makes it more understandable and
allows more complicated model animation. Also by adding
expert system components or knowledge based components
to the Graphical Simulation System , we can develop

expert simulation system.

The recent surge of interest in the development of
truly graphical simulation languages, demonstrates the
importance of these systems and confirms our belief that
graphical interfaces are the way of the future. Even
though several industrial attempts have been in progress
since this research activity started, a general purpose
interactive graphical simulation system is not yet on

the market; which makes GSS a pioneer in this field.

255

5.2 Performance

In order to evaluate the performance of the
Graphical Simulation System, we will consider three
major areas; model development, compilation of the model
and execution run. The first and most important area is
the user time required to build a model. Using the
process~-oriented world view and iconic graphic-oriented
languages has greatly improved the time required for
every phase of model development especially the original
model formulation steps. The actual time spent to enter
GSS models into the computer 1is less than the time
needed for the same model in SIMSCRIPT (on the average
it improves the time by a factor of 1/3) and is the same

as the time needed for GPSS or SIMAN models.

Compilation of a BGSL model requires more CPU time
than compilation of equivalent models in GPSS, SIMSCRIPT
or SIMAN. The main reason for this 1is that a BGSL
graphic model is first translated to BCSL and then
translated to an equivalent SIMSCRIPT model. The
equivalent SIMSCRIPT model on the average contains more
statements in it than a manually written SIMSCRIPT
model. As a result it takes 1longer to compile the
generated equivalent SIMSCRIPT model. The SIMSCRIPT

compiler takes about 90% of the total BGSL compilation

256

time.

Finally, execution of generated models are as fast
as any other language including GPSS, SIMSCRIPT or

SIMAN.

257

5.3 Future Research Possibilities

The ability to add new blocks to the proposed language
has facilitated the developmept of new special purpose
simulation systems as proved by the development of the
Flexible Manufacturing System Simulation Block-Commands.
By defining a new set of blocks, we can simulate
different activities in the target model. Expansion of
this system and development of special purpose
simulation systems (i.e., "Robot" simulation) can be a
* follow up research project. Improving the front end
graphical interface to be able to easily add new icons

for new blocks can be a part of this research activity

Adding a graphical output generator to the current
system will allow the animation of simulation runs by
simulating the movements of entities into the system and
displaying them on the screen. The user can find out
about the build up of the bottlenecks in the modeled
system by observing the animated flow of ~material
through the plant (or in a more general case, the
movement of objects through the queue and service

components of the system).

258

Animation can be done by generation of animation
output routines for each block in the model. The
animation output routine modifies the screen whenever
the .corresponding block is executed. This way, as the
simulation time progresses, new objects are introduced
by the GENERATE block. These objects will be shown
entering the model and moving from block to block as
they wait in the queue or service blocks. Finally they
will disappear into the TERMINATE block. The originally
drawn graphical model can be wused as the static
background display for the animated objects. The
animation output routine generator can be a separate
module written in PL/1 which generates the graphic
output commands for each block based on the type,
parameters and location of that block. Figure 5-1 shows
how the animation output routine generator can be added
to the compiler software. The animation executable code
will finally be 1linked to the simulation executable
code., In this case, the SIMSCRIPT equivalent of each
block contains a call to the corresponding animation
output routine. Therefore every time a process routine
containing the block equivalent code is activated, the
animation output routines are called 1in the s ame

sequence as the equivalent code is executed.

259

SIS
(VA AL}

HOLVEINED
1IN0
T SN0

WALSAS
Jr.E o]

TN 34Nt

usn

l‘l.\lll\"g_-=.5n OXNINON

B SIMSH MOLIV WIS

TN WITHIVED

() ¥

[w3100M4 0 NOIZINIST0

. ﬂ TUSNASAS 40 NOILING ST

Animation Of Simulation Run

Figure 5-1.

260

Figure 5-2 shows how the animation output routine
is called via the equivalent SIMSCRIPT process routines.
The animated objects could be symbolized by little balls
which move from block to block and can be accumulated

either in a block or outside a block.

Another candidate for future research is the
development of an expert simulation system based on
existing GSS system. 1In the proposed system, the user
describes the facts about the system, its environment
and the problem which he is trying to solve. Later the
expert simulation system generates the simulation model,
runs the model, collects the results, analyzes the

results and recommends the potential solution.

The main goal of this research would be to isolate
users from the expertise and knowledge needed to build a

simulation model and further improve the user interface.

The user of this system basically enters all he
knows about the problem through the user interface and
the system builds the model for him. The expert system
generates a model in the Block Command Symbolic language
or the Block Graphic Symbolic language for the
simulation wusing the rules and knowledge base. Later
the Block-oriented model is‘ translated into SIMSCRIPT

for final compilation and run.

261

This system also displays the graphical model so
that the user can visually verify if the model is valid.
Figure 5-3 shows the overview of the proposed expert

simulation system.

262

WaNSIC 01 SLINE0
ERALML FTRETL

L DIANIS W04 1IVA SO

TINNN " LLYMINY

FHWILYAY ST DTANIS VNN
NIING NI LIVA O S1OWE0

IS AYWINY -

AUWNINAL " UNIN TVD

RYIW UNINW TIVO

TN AUVNINY 1TV

135" UWINW TTVD

VNI

YN

Animation Routines and Block Commands

auUVEI BV A3 5V
S10E0 AN AVWISIO
UVMINID AN

R bt

SIIANOE NOLLYMINY

AUV UAVMINY TV)

PN IVEINID SST00N

1300M L4105 S

UVNEG

Figure 5-2.

263

USER |
INTERFACE
GRAPHICS
DISPLAY
BGSL
COMPILERS
CUTHT /DISPLAY
GENERATOR
ANDATION
MODEL MUTINE
EXECUTABLE GENERATOR
CODE .
EXECUT,
[
COE | u ANBATIOM
NNTINES
mn
Y
IMATION COMPILER

KECUTABLE

Figure 5-3. An Expert Simulation System

264

5.4 Limitations And Potential Improvements

The original objective of this research has been to
develop a prototype for graphic simulation which is
upward compatible with GPSS and capable of modeling
manufacturing production shops. About 20 blocks of GPSS
were selected to constitute the backbone of the BCSL.
By the end of this fesearch the number of implemented
blocks has grown to 40 blocks (including almost all of
the elementary and intermediate GPSS blocks) and the
simulation capabilities of the GSS has been extended far

beyond manufacturing modeling.

The generated Graphical Simulation System is not
intended for commercial use and certainly does not cover
all the aspects and utilities developed for such systems
which require large manpower and several years of

development.

Since June of 1985, where the GSS has been fully
operational, several areas have been improved. Several
features have been added to the user interface to
facilitiate and speed up the model building process, in
addition the BCSL compiler has been optimized to reduce
CPU time requirements. Still, some improvements could
be made in both areas. The user interface can be

improved to provide an easy tool for the user to define

265

new iconic shapes in BGSL for every new block in BCSL.

One of the inherent problems with a system such as
GSS is that the user needs to be familiar with SIMSCRIPT
in order to be able to develop and debug complicated
models. In fact, the more complicated the model is, the
more the user needs to know about the internals of the
simulation system. 1In this regard, more debugging tools
and messages can be added to the ‘system to faciliate

error detection and traceback.

.A few features of GPSS V could not be completely
implemented by the SIMSCRIPT equivalent models,
primarily because the underlying differences between the
SIMSCRIPT and GPSS internal mechanisms. Following is a

list of missing or mismatched features of GPSS V;

1. Deterministic functions are not implemented (this

requires an extensive table-lookup mechanism).

2. Variables used for distribution functions and
supplied functions must be real (integer values will

look like zeros to SIMSCRIPT in certain places).

3., A variable can not be used more than once in each
segment by the GATE or TEST blocks in order to
suspend that segment (this can be improved by a more

complicated 1left-monitored routine for the GATE and

266

TEST variable).

The GENERATE block priorities can be brcken through
by monitor routines belonging to lower priority

segments.,

The following is a 1list of 1limitations for the

advance features of BCSL.

1.

The number of blocks allowed in a MACRO block is
limited because the maximum numer of parameters for
the MACRO block is limited to 10 (this limits the
number of attributes available for the internal

block).

Advanced GPSS blocks are not implemented.

TRANSFER BOTH option is not implemented

267

10.

11.

12,

BIBLIOGRAPHY

Abed, Seraj Yousef, "A Comparative Study of Three
Simulation Languages as Applied to Manufacturing
Facility Simulation", PhD Dissertation, Iowa State
University, 1982.

Alan, A., Pritsker, B., "Introuction of Simulation
and SLAM", 2nd Edition, 1984.

Banks, J. and Carson, J.S., "Discrete-Event System
Simulation®, Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1984.

Banks, Jerry and Carson, John 5.,
"Process-Interaction Simulation Languages”,
Simulation, May, 1985.

Berry, Robert, et al, "PAWS 2.0 Performance
Analyst's Workbench System User's Manual", December
1982.

Bobiller, P.A., "Simulation with GPSS and GPSS V",
1975.

Bratley, P., et al, "A Guide to Simulation”,
Springer-Verlay, New York, N.Y., 1983.

Braum, J.E., et al, "SIMSCRIPT 1II.5 Reference
Handbook", CACI, 1983.

Cheny, T.C.E., "Simulation of Flexible Manufacturing
Systems", Simulation, Dec. 1985.

Chin, Shim-Miao, et al, "A Graphical Approach to
Simulation”, Computer Graphic World, September 1981.

Christy, D.P. and Watson, H.J., "The Application of
Simulation: A Survey of Industry Practices",
Interfaces, 13.5, 1883.

Duersh, Ralph R., - and Laymon, Marc A.,
"Programming-Free Graphic Factory Simulation with
GEFMS/PC (Graphically Enhanced Flexible Modeling
System)", Proceedings for the 1985 Winter Simulation

268

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Conference.,

El Maraghy, H.A., et al, "Simulation and Graphical
Animation of Advanced Manufacturing Systems",
Journal of Manufacturing Systems, Volume 1, Number
1, 1983.

Emshoff, J.R., and Sisson, R.L., "Design and Use of
Computer Simulation Models", 1970.

Gilman, Andrew, "Interactive Control of Models; A
Natural Companion to Animated Simulation Graphics®,
Proceedings of 1985 Winger Simulation Conference.

Goldern, Donald G., "Software Engineering
Considerations for the Design of Simulation
Languages", Simulation, October 1985.

Henriken, J.D., and Crain, “GPSS/H User's Manual”,
Wolverino Software Corp., 1983.

Hills, P.R.,"An Introduction to Simulation wusing
SIMULA" ,Publication No.S855, Norwegian Computing
Center, Oslo, 1973.

Holly, Michael Alvern,'"An On-Line Graphical Systen
for Digital Design", PhD Dissertation, UCLA, 1968.

Hutchinson, George K., "The Desing of an Automated
Material Handling System for a Job Shop", Computer
Industry, June 1983.

Kerchoffs, E.J.H., et al, "The Impact of Advanced
Information Processing on Simulation”, Simulation,
Jan. 1986.

Kiviat, P.J., "Development of Discrete Digital
Simulation Languages", Simulation, Vol. VIII, No.
2, 1967.

Kiviat, P.J., et. al," The SIMSCRIPT II programming
language", Printice Hall, 1969.

Law, Averill M., et. al, "On-Line Demonstration of
Simulation Software", Winter Simulation Conference,
1982.

Law, Averill M., and Larmey C.S., "An Intorudction
to Simulation Using SIMSCRIPT II.5", CACI, 1984

269

26.

27.

28,

29-

30-

31.

32.

33.

34.

35.

36.

37.

38.

39.

Lodding, Kenneth N., "Iconic Interfacing", IEEE
Computer Graphics and Applications, April 1983.

Markowitz, H.,"SIMSCRIPT, Encyclopedia of Comupter
Science and Technology", J.Belzer, et. al,Inc, 1978

Mesrobian, Edmond, "An User Interface for a
Graphical Simulation System", Unpublished Masters
Thesis, UCLA Computer Science Department, 1986.

Miner, R.J., et al, "Decision Support for
Manufacturing", Proceedings, 1981 Winter Simulation
Conference, IEEE, Dec. 1981.

Miner, Robert J., et al, "Map/l User's Manual",
April 1983.

Mortenson, R.E., "Maintenance Planning and Scheduing
using WNetwork Simulation®™, Proceedings, 1981 Winter
Simulation Converence, 1EEE, Dec. 1981.

Mullarney, A., "SIMSCRIPT II.5 Programming
Language", CACI, 1983.

Nance, R.E., et al, "Simulation Model Management:
Resolving the Technological Gaps", Proceedings, 1981
Winter Simulation Conference, IEEE, Dec. 1981.

O'Keefe, Robert, "Simulation and Expert Systems - A
Taxonomy and Some Examples", Simulation, January
1986.

oren, T.J., Z2eigler B.P., "Concept for Advance
Simulation Methodologies", Simulation, March 1979.

Pegden, Dennis C., et al, "Introudction to SIMAN",
1983.

Pegden, Dennis C., "Introudction to SIMAN",
Proceedings of the 1985 Winter Simulation
Conference.

Pritsker, A.A., "Application of SLAM", IIE
Transaction, 1982.

Rundgren, W. P. and Standrige, C.R., "A Database
Support Discrete Parts Manufacturing Simulation®,
Proceedings, 1981 Winter Simulation Conference,
IEEE, Dec. 1981.

270

40.

41,

42.

43,

44.

45,

46.

47.

48,

49,

50.

Russell, Edward C., "Building Simulation Models with
SIMSCRIPT II.5", CACI, 1981.

Schriber, Thomas J., "Simulation using GPSS", Wiley,
1974.

Schroer, B.J., et al, "Just In Time Manufacturing
System Simulation on a Microcomputer", Simulation,
August 1985.

Shannon, R.E., "System Simulation: The Art and
Science", Prentice-Hall, 1975.

Shannon, Robert W., et al, "Comparison of Modeling
Languages for Simulation of Automated Manufacturing
Systems", AUTOFACT 5 Conference Proceedings,
November 1983.

Standridge, C.R., ™Using the Simulation Data
Language", Simulation, Sept. 1981.

Standridge, Charles R., "performing Simulation
Projects with the Extended Simulation System
(TESS)", Simulation, Dec. 1985.

Swezzey, Robert W., et al, "A Case Study of Human
Factors Guidelines in Computer Graphics and
Applications, November, 1983.

Torn, Aimo A., "Simulation Graphics: A General Tool
for Modeling Simulation Design®", Simulation, Volume
37, December 1981.

Yancey, D.P., et al, "ICAM Decision Support System
(IDSS), Third Interim Technical Report", June, 1983,

Zeigler, B.P., "Concepts and Software for Advanced

Simulation Methodologies", Proceedings, 1980 Winter
Simulation Conference, IEEE, Dec. 1980.

271

APPENDIX A

SUMMARY OF BCSL MODEL BLOCKS

This appendix consists of a list of all the various
BCSL model Blocks implemented so far in this language,
arranged in alphabetical order according to Block

Operation. This information is provided for each Block.
1. A picture of the Block is shown.

2. The Block Operation 1is given and the available

choises of Auxiliary Operators are listed.
3. List of block's operands and role of each operand is
indicated.
Each operand is represented in following format;

Operand = Explanation : Available choises list

Table A-1 showes the abbreviations used in
supplying The range of choices available for the

Operands.

272

TABLE A-1. Explanation of the Abbreviations

ABBREVIATION MEANING

k AN ARITHMETIC EXPRESSION

sn A TEXT STRING, A SYMBOLIC NAME
SNA FAMILY NAME OF A STANDARD

NUMERICAL ATTRIBUTE (see
appendix ¢ for more information)

SNASsn FAMILY NAME OF A STANDARD
NUMERICAL ATTRIBUTE, FOLLOWED
BY A DOLLAR SIGN ($) AND A
SYMBOLIC ENTITY NAME

273

ADVANCE A, B, C

A = Mean Time: k, SNASsn
B = First Spread Modifier: k, SNAS$sn
or Function Modifier: FNsn, DSsn
C = Second Function Argument: k
ASSIGN A, B, C
A = Parameter Number [+]: k, SNAS$sn
B = Value to be Assigned: k, SNAS$sn
C = Number of Function Modifier: k, SNAS$sn
DEPART A, B
A = Queue Name: sn, k, SNASsn
B = Number of Units: k, SNAS$sn
ENTER A, B
A = Storage Name: sn, k, SNAS$sn
B = Number of Units: k, SNASsn

GATE LS A, B

LR
A = Logic Switch Name: sn, k, SNA$sn
B = Next Block if Condition is False: sn, k, SNASsn

GATE NI A, B
I
NU

274

GATE

1]

U

Facility Name: sn, k, SNASsn

Next Block if Condition is False:

SE A, B

SF
SNE
SNF

Storage Name: sn, k, SNAS$sn

Next Block if Condition is False:

GENERATE A, B, C, D, E,

A = Mean Time:

B =

C = Offset Interval: k,
D = Limit Count: k, SNAS$
E = Priority Level: Kk,
F =

G = Type of Parameters:
H = Transaction Name: sn
I =

LEAVE

A = Storage Name: sn, k,
B = Number of

k, SNASsn

F, G, H, I

Spread Moodifier: k, SNA$sn
or Function Modifier: FNsn, DSSsn

SNASsn
sn

SNASsn

Number of Parameters: k, SNASsn

(F]

Second Function Argument: Kk

A, B

Units: k,

275

SNASsn

SNASsn

sn,

sn,

k.,

k.,

SNAS$Ssn

SNASsn

LOGIC I A
R
S

A = Logic Switch Name: sn, k, SNAS$sn

LOOP A, B

A = Parameter Number: k, SNASsn

B = Next Block if Parameter = 0: sn, k, SNAS$sn
MSAVEVALUE A, B, C, D

A = Matrix Name: sn, k, SNASsn

Row Number: k, SNASsn

oy
(]

(9]
]

Column Number: k, SNASsn

D = Value to be Saved: k, SNASsn

PRINT A, B

A = Lower Limit: sn, k, SNASsn

B = Upper Limit: sn, k, SNA$sn
QUEUE A, B

A = Queue Name: sn, k, SNASsn

B = Number of Units: k, SNA$sn
RELEASE A

A = Facility Name: sn, k, SNASsn

276

SAVEVALUE A, B, C

A = Savevalue Name [+]: sn, k, SNAS$sn
B = Value to be Saved: k, SNASsn

C = Savevalue Type: Real or Integer
SEIZE A

A = Facility Name: sn, k, SNAS$sn

TABULATE A, B

A

[}

Table Name: sn, k, SNASsn

B

"

Weighting Factor: k, SNAS$sn

TERMINATE A

A = Terminate Counter Decrement: k, SNASsn

TEST G A, B, C
GE
E
NE
LE
L

p
]

First Value: k, SNASsn

m
]

Second Value: k, SNASsn

O
]

Next Block if Condition is False: sn, k, SNASsn

TRANSFER A, B, C
(statistical)

A = Selection Mode: k, SNASsn

277

w
it

First Block: sn, k, SNASsn

@]
]

Second Block: sn, k, SNAS$sn

TRANSFER: A, B
(Unconditional)

A

Selection Mode: Not Used

B Next Block Entered: sn, k, SNASsn

ENTERSTAT A, B, C, D, E, F
A = Station Name: sn

B

Number of Units: k

C = Mean Time: k

D = Distribution Function: DSsn, FNsn
E = Parameter 2: k
F = Parametér 3: kK

LEAVESTAT A

A = Station Name: sn

REQWSTAT A, B, C, D, E, F

A Station Name: sn

B = Number of Units: k

C = Mean Time: k

D = Distribution Function: DSsn, FNsn

E = Parameter 2: k

278

F = Parameter 3: k

REQTRANS A, B

A

Transport Name: sn

B Next (Destination) Workstation: sn

279

APPENDIX B

SUMMARY OF BCSL DEFINITION AND CONTROL BLOCKS

In this appendix definition and control blocks are
listed alphabetically, according to their "Operation.”

The following information appears for each block
1. The role of the field is briefly described.

2. The available choices in supplying the information

required in the various fields are then summarized.

The definition and control blocks do not fit into a
uniform scheme for summary purposes. Except for the
common concept of "location, Operation, and Operands"
fields. Each operand 1is represented in following
format; |

Operand = Explanation : Available choises list

280

LOC

LOC

LoC

LOC

CLEAR A, B
Savevalue(s) not to be cleared: Xj, S$sn

Delimiter if Multiple Entries: ,

EQ A,B
= Symbolic Name of Entry: sn
Numeric Equivalent value of Symbolic name: k

Mnemonic for Entity type:

FUNCTION A, B, C,
= Name of Function
Function Argument: SNASsn, except MX
Functioon type and No. of Points: C,D,E,L,M

Variable Type: Real, Integer

INITIAL A, B
Logic Switche(s) to be set: LS$2n

Delimeter if Multiple Entries: /

INITAL A, B, C
Matrix Savevalue(s): XS$sn
Initial value: k

Delimiter if Multiple Entries: /

281

LOoC

LOC

LocC

LOC

LOC

LOC

INITAL A, B, C
Savevalue(s): Xj, S$sn
Initial value: k

Delimiter if Multiple Entries: /

MATRIX A, B, C,
= Name of Matrix: k, sn
Matrix type: x
Number of Rows: k

Number of Columns" k

QTABLE a, B, ¢, D,
= Name of Table
Name of Queue: sn, k
Inclusive Upper Limit of Lowest Freq. Class: K
Width of Intermediate Frequency: Kk

Number of Frequency Classes: k

ATABLE A, B, C, D
= Name of Table
Name of Internal Variable: sn
Inclusive Upper Limit of Lowest Freq. Class: k
Wwidth of Intermediate Frequency: K

Number of Frequency Classes: k

282

START A, B, C, D, E
A = Initial Value of Termination Counter: Kk
B = Printout Suppession: NP
C = Initial value of Snap Interval Counter: k

D = Signal for Chain Printouts: 1

LOC STORAGE A
LOC = Name of Storage: k, sn

A = Storage Capacity: k

STORAGE A, B, C
A = Reference to Storage: S$sn
B = Storage Capacity: Kk

C = Delimiter if Multiple Entries: /

LOC TABLE A, B, C, D

LOC = Name of Table

A = Table Argments: k, SNAS$sn

B = Inclusive Upper Limit of Lowest Freq. Class: k
C = Width of Intermediate Frequency: k

D = Number of Frequency Classes: k

LOC VARIABLE A

283

FVARIABLE

LOC = Name of Variable: k, sn

A = COMBINATION OF NUMERIC DATA SPECIFICATIONS
AND ARITHMETIC OPERATORS

LoC OPERATION A, B, C, D, E
LOC = Define Transport

= Name: sn

= Speed: k

= Number of Units: k

o o & M
I

= Distance Table Name: sn

E = Starting Workstation Number: k

LOC DEFWSTAT A, B, C
LOC = Define Workstation

A = Name: sn

B = Number: k

C = Number of Units: k

284

APPENDIX C

SUMMARY OF BCSL STANDARD NUMERICAL ATTRIBUTES

The list of

BCSL Standard Numerical

implemented in this

listed alphabetically under the various entity headings.

Expanded definitions and discussions can be found in the

GPSS book by Schriber.

ENTITY - SNA

BLOCKS N
W

CLOCK Cl

FACILITIES F

FC
FR
FT

MATRIX MX(A,B)
SAVEVALUES

QUEUES Q
QA
QcC
oM
QT

(0).4
QzZ

RANDOM RN
NUMBERS

285

language are summarized below,

BRIEF DESCRIPTION

—— ol S — — . ——— . b —8 VD

TOTAL COUNT
CURRENT COUNT

VALUE OF RELATIVE CLOCK

FACILITY STATUS (1=BUSY;
0=AVAILABLE)

CAPTURE COUNT

FRACTIONAL UTILIZATION
AVERAGE HOLDING TIME PER
CAPTURE (INTEGERIZED)

VALUE OF ELEMENT IN ROW A,
COLUMN B, FULLWORD MATRIX

CURRENT CONTENT

AVERAGE CONTENT (INTEGERIZED)
ENTRY COUNT {(TOTAL ENTRIES)
MAXIMUM CONTENT

AVERAGE RESIDENCED TIME

({ BASED ON QC)

- AVERAGE RESIDENCED TIME

{BASED ON Q2)
ENTRY COUNT (ZERO ENTRIES)

A NUMBER BETWEEN 0 AND 1

Attributes

SAVEVALUES X

STORAGES

TABLES

TRANS-
ACTIONS

VARIABLES

R

S

SA
scC
SR
SM
ST

TB

TC
TD

M1l

BV

286

VALUE OF FULLWORD SAVEVALUE

REMAINING CAPACITY

CURRENT CONTENT

AVERAGE CONTENT (INTEGERIZED)
ENTRY COUNT

FRACTIONAL UTILIZATION
MAXIMUM CONTENT

AVERAGE HOLDING TIME PER UNIT

AVERAGE VALUE OF NONWEIGHTED
ENTRIES

NUMBER OF NONWEIGHTED ENTRIES
STANDARD DEVIATION OF
NONWEIGHTED ENTRIES

PARAMETER VALUE
RESIDENCE TIME IN MODEL

CURRENT VALUE OF BOOLEAN
VARIABLE

CURRENT VALUE OF ARITHMETIC
VARIABLE

APPENDIX D

SYSTEM CONFIGURATION AND USERS GUIDE

The Graphical Simulation System, runs on an IBM
4341 computer on top of CMS operating system. The PL/1
and SIMSCRIPT compilers are required for running the
Graphical Simulation System in addition to GDDM graphics
packages. Figure D-1 shows the GSS operations

environment.

Three types of terminals are supported by GSS user
interface. The IBM 3279 terminal is a graphic display
with color graphics. In this case the wuser interface
splits the display in two sections; graphic zone and
menu zone. The light pen is used to select menu items
and the key board is used to move the cursor within the
graphic region. The IBM 3277-GA terminal is a
combination of the IBM 3277 for alphanumeric display and
a Tektronix 614 high resolution graphic tube. The light
pen is used to select the menus and the joy stick is

used to move the cursor within the graphic region.

287

1o 4341

wy/sP
o
SIMSCRIPT oaT
COWILER g oss
-t A, 1]
A
\ GRAPHICS
DISPLAY
AL/
COMPILER oo
—{0] Lorstix
LASER
ARINTER
PLOTER
o
PRINTER

Figure D-1. GSS Operations Environment

288

The GSS supports the IBM 3290 plasma based
terminal, which represents state-of-the-art in graphic
terminals and allows two windows to operate in parallel.
In addition the IBM 4250 laser printer can generate a

hard copy of the graphic region on the 3279 terminal.

As discussed in Chapter 2, the GSS consists of 3
sections. The user inferface (GRAPE) is written in PL/1
and relys on the CMS operating system utilities. The
graphic support part of the user interface is done by
the GDDM package. The BCSL éode generation is written
also in PL/1. The rest of GSS (BCSL Compiler and Output
Generator) only require the SIMSCRIPT compiler and runs
on any computer which supports SIMSCRIPT (including the

IBM/PC).

In order to use the Graphical Simulation System on
the UCLA CAD/CAM lab’s IBM 4341; the user activates the
user interface by typing GRAPE. The first menu (Figure
D-2) allows the wuser to either start building a model
from scratch by selecting the BUILD MODEL option or locad
an already existing model. The user loads an existing
model by selecting SYSTEM UTILITIES on the first menu,
The SYSTEM UTILITIES menu {(Figure D-3) allows the user
to load a model, save the mode, print or display any

files and get a plot of the graphic model.

289

Once an existing model 1is 1locaded, the wuser can
select the BUILD MODEL on the first menu tc modify the
model. Later the user can compile and execute the model
by selecting the SIMULATION MODEL option. The SIMULATE
MODEL menu (Figure D-4) allows the user to translate the
graphical model, then compile the BCSL and finally
execute the model. 1In each step the generated files are

displayed.

Through the SYSTEM UTILITIES menu the user can
change the model settings (Figure D-5), where the size
of the graphical gird, scroll region and default
language can be selected. The GSS user interface allows
GPSS/PL1 and BCSL to be selected as the simulation base
(the GPSS/PL1 1is a GPSS compatible langauge which is
PL/1 based). For further information on the User
Interface package (GRAPE) and detail operations manual,

refer to Mesrobian [28].

290

. . i S o P i i S A L))) S T —)y] o ——— —

USE THE LIGHT PEN TO MAKE A SELECTION FROM THE MENU

CURRENT MENU PATH:

— S T . e e i i AN S MNP N AP A L L A . S e W S S M A S e S A S

BUILD MCDEL

SIMULATE MODEL

SYSTEM UTILITIES

EXIT GRAPE

—— . . D — — ————— i) T " D W . S - T) i

PFl = HELP

——— i ——) i S ——— ——— D M W T i L N A S — T ——————) — —

Figure D-2. Main Menu

291

. o oy o o o e e i i e T]} S W Tt el S —— T L S S i e e A

USE THE LIGHT PEN TO MAKE A SELECTION FROM THE MENU

CURRENT MENU PATH: /SYSTEM UTILITIES

v e e AP i} P A L S M P W b o M S Y N S S i T A) S SN S W W S S M N N S e e —

CLEAR MODEL PRINT FILES
DISPLAY FILE . REMOVE FILE
LIST MODELS SAVE MODEL
MODEL SETTINGS USE MODEL
PLOT MODEL

PFl1 = HELP PF3 = CANCEL/EXIT

I ————— R P g R R B B e b Kl g

Figure D-3. System Utilities

292

T) mh T S S T T ———— o ——————) =} = b = Tl ——————— —— . S} i} . . — — — —

USE THE LIGHT PEN TO MAKE A SELECTION FROM THE MENU

CURRENT MENU PATH: /SIMULATE MODLE

D i ——— T it T ——— - — T 3} —— ———— T — . =} waib =i - = = T S S S g i 3. — ———

GENERATE CODE
COMPILE MODEL

EXECUTE MOPEL

D il S A D D —— T o ————— o — . . — T . A A b S . . R S = W =S . . A . — .) —

. — T — ———— A AP ot T —————— T — Tt =} —ml T R T R W R N W WM G S . Y S — —y —

Figure D-4. Simulate Model

293

e > . o o kS o kb . . i S S Tl Y P S T S S e e S SRS e S ==

SUPPLY THE FOLLOWING INFORMATION FOR THE COMMON

SELECTED THEN PRESS ENTER

— A . — — o T . —— . — S . . T) S S M S . i T Wk . S S S e S S S S8

NUMBER OF ROWS IN THE MODEL GRID (10-99)} ==> 50
NUMBER OF COLUMNS IN THE MODEL GRID{10-99) ==> 50

PERCENT OF SCREEN TO SCROLL UP (25-75) ==> 50

PERCENT OF SCREEN TO SCROLL DOWN (25-75) ==> 50
OF SCREEN TO SCROLL LEFT (25-75) ==> 25

SIMULATION LANGUAGE (GPSSPLI OR BCSL) ==> BCSL

e e o e~ S A i o . kT < D e T T i M D i T wl Tak S S ok ld oy e —

Y) o A D D VA S . S T b S i} W S S S ol i A S S S S S S B L S S e e e

Figure D-5. Model Settings

294

