CONCURRENCY IN SYSTEMS WITH NEIGHBORHOOD
CONSTRAINTS

Valmir Carneiro Barbosa September 1986
CSD-860035

CONCURRENCY IN SYSTEMS WITH NEIGHBORHOOD CONSTRAINTS

Valmir Carneiro Barbosa September 1986
CSD-860035

UNIVERSITY OF CALIFORNIA
Los Angeles

Concurrency in Systems

with Neighborhood Constraints

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Valmir Camneiro Barbqsa

1986

© Copyright by
Valmir Carneire Barbosa

1986

The dissertation of Valmir Carneiro Barbosa is approved.

Bruce L. Rothschild

Yoo, O B Da

Kirby A. Baker

Gty f P

Judea Pearl _

Shede O Y0 la b

Sheila A. Greibach

oo (k2

Eliezer M. C@ni, Commmittee @.‘u’

University of California, Los Angeles

1986

ii

This dissertation is dedicated to Alzira, my wife.

iii

TABLE OF CONTENTS

page
1. INTRODUCGCTION 1iivicieiiinieriinseseesiescssasesassnsssssssssessesssssseseersssissas snsssssnas 1
1.1. Neighborhood Constraints and Concurrency ... 1
1.2. Concurrent Processes and Resource Sharing ..., 3
1.3. Concurrent Processes and Opimization ..., 4
1.4. An Overview of the DiSSErtationccciivmniiiemiinne s e 8
2. BACKGROUND AND PRELIMINARY RESULTSccccocccmiiniiinnn, 12
2.1, IntroduCtionccoeiivniiiceee s st ettt 12
2.2. Simulated Annealing ...t 12
2.2.1. The Method ...ttt 12
2.2.2. Functions Generating Sparse Graphscccccoiinicncciiinn 14
2.2.3. An Example: Satisfiabilitycccccovenmniiiinc i 15
2.2.4. More Examples: Graph Problems ..o 17
2.2.5. A Géneric Formulationc..cocceevininnnniinnc 22
2.2.6. Amenability to Speedup in Graph Problems 24
2.3. Graph-Theoretic Background ... 26
2.3.1. Acyclic OMENtatioNScoccocinminrsismsieiisssnissinssn s 26
2.3.2. Node MulticoloTings ..., 27
2.3.3. Sink DecompoSItionSccccveenmincineeinnnne st 29
2.4. Scheduling by Edge Reversal ..., 30
3. EDGE REVERSAL IN A SYNCHRONOUS MODEL ..o 34
3.1, INTOAUCHON 1oivirivereecrnreeree i rsas et st sessne e s a s b as shabsssaas srassnsaasnnnan 34
3.2. Orientation-Transition Diagramscciini 35
3.3. Synchronous Schedules ... 36
3.3.1. General and Greedy Schedulesocovecvnininininnininininns 36
3.3.2. A Stronger Form of Starvation-Freedom ... 37
3.3.3. A Comparison between General and Greedy Schedules 38
3.4. Structure of the Orientation-Transition Diagram ... 39
3.4.1. Reachability EQUAtiONSccceiiviiiiniiiiie e 39
3.4.2. Strongly Connected Componentscoveeeirinniienecossennnn. 41
3.4.3. Properties under Greedy Scheduling ... 42
3.4.3.1. PeriodiCity ...cooecececrriiicciriiniie s 42
3.4.3.2. Evolution of Sink Decompositionsccccevveeieenens 45
3.5. A Study of Periodic Behavior ... 45
3.5.1. Periodicity and Node Multicolorings ... 45
3.5.2. Periods in which Nodes Operate Exactly Oncec.ocooeeeinee 48
3.5.3. Periodicity in Trees, Cycles, and Complete Graphs 50
3.5.3.1. TIEES wooeeieiicctee e setssnssns st saesaasae s s s nn e e s 50
3.5.3.2. CYCIES et bt e s e 52
3.5.3.3. Complete Graphs ..., 58
3.5.4, Periods in which Nodes Operate More than Once 58
4. CONCURRENCY MEASURESoovrienrirnrnsresssessssessesesessssssssssssessesssanes 60
4.1, INOQUCHON .ereeeieeeeecrersiie s e st se e s as s rn e st s as s s s sn s s e s a e 60

iv

4.2. The Concurrency of a Schedule ... 61
43. The

The Concurrency of an OTentationc.coceecevernecrecrencsiiesseesiees 62
4.3.1. The Concurrency of Greedy Schedulesccoviviiininininnne 62
4.3.2. A Closed-Form EXpression ... 64
4.3.3. The Length of a Periodcccovveeniniiinninenncenncs 72
4.4, The Concurrency of @ Graph ... 73
4.4.1, The Optimality of Scheduling by Edge Reversal 73
4.4.2. Concurrency, Chromatic and Multichromatic Numbers 74
4.4.3. The Concurrency of Bipartite Graphs, Cycles, and Complete
GIAPNS vceiienirrerecree et et s s 75
4.4.4. Concurrency and Multichromatic Number May Be Distinct 78
4.4.5. Intractability of Maximizing CONCUITENCYccoveviieirurinenens 79
5. EDGE REVERSAL IN AN ASYNCHRONQUS MODELc.e.ne. 84
S.1. INTOQUCHION eeviecereieeiveriarerasrerseseassasrss e sssbetss st assssesssans sansnssansssssnsanss 84
5.2. Events and Global States: the General Caseccocnviiniinninsinnins 85
5.2.1. Events and Orderscccoeemrncrnncnnnsiminisssesssesssseasssnnsans 85
5.2.2. GlODAL STALES .veveereeerieereeeectisersnernesiirsessess s e sas s s e e srasananes 86
5.2.3. Precedence Graphs ... 87
5.3. Events and Global States: the Case of Edge Reversal 89
5.3.1. Events, Orders, and Global Statesc.ccovvnniiinienecisneniinn, 89
5.3.2. A Modified Precedence Graphcooiiiiiiiiiiiniinnieneniicne 91
5.3.3. Executions and the Timing of Eventsccccoeviiiiininnennn 92
5.3.4. Greedy Synchronous Operationouimmismmeeniessessesinnees 94
5.3.5. A Measure of CONCUITENCY ..ivvceemreceriiiirmessnsessminsnsssnsiseaiensen 95
6. THE PROBLEM OF IDENTIFYING OPTIMAL GLOBAL STATES 98
6.1. INTOAUCHON ..oeoveeeeireeeeeieercerssraseaessecsrrsseess s s s sasssan s sbn e st bs st e st snansens 08
6.2. Statement of the Problem ..o 99
6.3. Min-Flow FOMUIAtIONcccocoieeniiiimnmracniiniiseosnnesss s snsessssssssnsssnss 100
6.4. The Problem under Scheduling by Edge Reversal ..o 103
6.4.1. Min-Flow Formulation ..., 103
6.4.2. Max-Flow Formulationcccenvvniiimimonmnnne 104
6.4.3. An Example: Distributed Simulated Annealingccooceeeenene 105
6.4.4. Centralized Implementationc..ueoeeenniienisiennsenccnicnnenes 109
7. DIRECTIONS FOR FURTHER RESEARCH ... 113
REFERENCESoviievtiriesesnssscesesensnstetssssssssnessessessasmesssssass sasssssasasessassssssns 117

LIST OF FIGURES
page

Figure 2.1. Graph G Corresponding to the FormulaA; A -+ A As ..., 18

Figure 2.2. Graphs G” and G for the Minimum Dominating Set Problem 21
Figure 2.3. G[K 3], G the 5-Node Cycle ... 28
Figure 2.4. Example of a Sink Decomposition ... 31
Figure 2.5. Examples of Edge Reversal ... 33
Figure 3.1. Generic Structure of a Connected Component in OTD, 43
Figure 3.2. A Connected Component in OTD, and in OTD ... 44
Figure 3.3, Periodic Orientations and Associated Multicolorings 49
Figure 3.4. Types of Oriented Arcsin a Cyclecovviniiivncninincninininen, 53
Figure 3.5. A cw-Uniform Orientation ... 54
Figure 3.6. Arc Drifting under Greedy Scheduling ..., 55
Figure 3.7. A 5-Periodic Orientation ... 57
Figure 4.1. Used in the Proof of Theorem 4.7 ..o, 70
Figure 4.2. A 3-Cube and 3 5-Cube ..o 77
Figure 4.3. Optimal Orientations of a 6-Node and a 5-Node Cycle 78
Figure 4.4. An Example for which [x(G)]'1 <y (G)<[x* (€3 R 80
Figure 5.1. Precedence Graph for a Generic Asynchronous Computation 89
Figure 5.2. Precedence Graphs uhder Scheduling by Edge Reversal 93
Figure 6.1. Graph H for a Generic Asynchronous Computationccceceeee 102
Figure 6.2. Graphs PG/, H' and H' oooovvvvovvvuumermssereeesseesssscssssnsassseesssssansonss 106

vi

ACKNOWLEDGEMENTS

I wish to thank the members of my Doctoral Committee, consisting of Pro-
fessors Eliezer M. Gafni, Sheila A. Greibach, Judea Pearl, Kirby A. Baker, and
Bruce L. Rothschild. In particular, I thank Eli Gafni, my dissertation adviser, for his

help in devising the topic of this dissertation and throughout the work.

During my four years of graduate study at UCLA, [was supported by a scho-
larship from CAPES, Ministry of Education, Brazil, under grant 3638/81-4. I am
thankful to them for the promptness and dependability of their support. Some addi-
tional support was provided by Xerox Corporation under grant W850813.

Many people have been of great help, in a way or another, during my stay
here. Our families, mine and my wife’s, back in Brazil, have been exwemely sup-
portive, and I thank them for that. I would also like to single out my officemate John
M. Marberg, for his patient review of the manuscript, and my Brazilian friends José

Nagib C. Arabe, José D. P. Rolim, and Frank A. Schaffa, for the companionship.

Most of all, I thank Alzira M. Barbosa, my wife, for all her love and
encouragement. Things would have been much harder, were it not for her constant
support for all this time. This dissertation is warmly dedicated to her. T must also
remember Leonardo, who has been with us for over one year, for being such a great

boy.

vii

February 27, 1958
1980

1981-1982
1682
1982

1984-present

VITA

Born, Rio de Janeiro, Brazil

Electronics Engineer,
Universidade Federal do Rio de Janeiro, Brazil

Research Assistant,
Centro de Pesquisas de Energia Elétrica, Brazil

Master of Science in Computer Science,
Universidade Federal do Rio de Janeiro, Brazil

Research Engineer,
Centro de Pesquisas de Energia Elétrica, Brazil

Post-Graduate Research Engineer,
University of California, Los Angeles

viii

ABSTRACT OF THE DISSERTATION

Concurrency in Systems

with Neighborhood Constraints
by

Valmir Cameiro Barbosa
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1986
Professor Eliezer M. Gafni, Chair

A collection of processes is considered, and each two of them are classified
as either neighbors or nonneighbors, according to a symmetric neighborhood rela-
tion. This system can be represented by an undirected graph G whose set of nodes is
determined by the set of processes and set of edges by the neighborhood relation.
Neighborhood is meant to stand for resource sharing of some type, and therefore we
restrict ourselves to considering computations in which neighboring processes are
precluded from being concurrently active. This dissertation contains studies on this
type of system when the processes are scheduled for operation according to a
scheme that we refer to as Scheduling by Edge Reversal. This scheme is derived
from similar techniques previously employed in othér contexts, and is based on the

manipulation of acyclic orientations of G.

We present an analysis of Scheduling by Edge Reversal under synchronous
and asynchronous models of computation. This analysis includes studies of the graph

structures involved and definitions of concurrency measures. The chief concurrency

ix

measure that we analyze is a number depicting a property of G. This number is
related to G’s chromatic and multichromatic numbers, being in some cases distinct
from both of them. We show, in addition, that the problem of maximizing con-

currency is NP-coﬁlplcte.

A second contribution is the definition and solution of a problem on the pre-
cedence graphs generated by general asynchronous computations. This is the prob-
lem of identifying an optimal global state, according to a criterion that we specify.
We show that this problem can be solved through the use of Max-Flow techniques
on variations of the precedence graph, despite the known NP-completeness of simi-
lar problems on precedence systems. The special case in which the precedence graph

is generated by Scheduling by Edge Reversal admits efficient implementations.

A combination of the previous two contributions yields a proposal to imple-
ment the Simulated Annealing method distributedly for some types of functions. The
approach is applicable to approximating the solution to a number of NP-complete

problems, as for example the problem of finding a maximum independent set of a

graph.

CHAPTER 1
INTRODUCTION

1.1. Neighborhood Constraints and Concurrency

Many modern computer systems can be regarded as collections of processes
that cooperate, and compete for resources, with one another. Until some years ago,
this view of a computer system was best exemplified by the so-called multipro-
grammed systems, which consist basically of a computer being shared by more than
one user, each user having associated with it one or more processes. In systems like
this, processes compete for the resources of the single, centralized computer. Recent
years, however, have witnessed a trend towards parallelizing and distnbuting com-
puter systems, giving rise to multiprocessor systems. Among the reasons generally
cited for such a tendency, one finds the speedup of computations, cost-effectiveness,
and reliability. In parallel and distributed systems, resources for which the various
processes compete may be scattered throughout the system. More than one process-
ing unit is available, and these units communicate with one another either through
the access to shared memory cells (parallel systems), or through messages sent over

communication channels (distributed systems).

Resources are typically scarce in computer systems, having therefore to be
shared by the various processes. The design of systems in which processes are
allowed to operate concurrently requires that we establish rules whereby this sharing

of resources is to take place. In this respect, one assumption commonly made is that,

given a resource, only a predefined set of operations can be applied to it, and, more-
over, no two processes may have simultaneous access to it. One can, through this
orderly use of shared resources, ensure that their integrity is preserved, and that the

outcome of deterministic computations is reproducible.

In this dissertation, we consider 2 collection of processes, and together with it
a neighborhood relation that classifies each two processes as either neighbors or non-
neighbors. This neighborhood relation is taken to mean resource sharing, and there-
fore no two neighboring processes may be concurrently using a resource that they
share. Clearly, the level of concurrency that such a system is capable of providing
depends very intimately on how dense the neighborhood relation on its processes is.
This dissertation contains a study of the interplay between these two concepts,
namely concurrency and a process’ being constrained by its néighborhood to use the
resources that it needs in order to operate. Throughout this work, a system of the
neighborhood-constrained type described above will be represented by a connected
undirected graph G=(V,E). In G, each node corresponds to a process and each edge

to a resource shared by two processes. We let |N| be denoted by n.

Though the neighborhood-constrained model of concurrent computation
described above can represent a wide variety of sysic.ns, the details of an actual
model may vary considerably from system to system. For the sake of making the
exposition throughout the dissertation more uniform, we assume a distributed system
in which each process resides in a distinct processor, and processors communicate
through messages sent over point-to-point communication channels. One such chan-
nel connects two processors if the corresponding processes share a resource. We

shall, in the sequel, refer to G’s nodes, processes, and processors without distinction.

The following is how the remaining sections of this chapter are organized.
Section 1.2 contains a description of heavily loaded neighborhood-constrained sys-
tems in terms of the Dining Philosophers Problem of Dijkstra. In Section 1.3, we
describe the instance of such systems which originally motivated this work. The
problem we consider is that of implementing distributedly the Simulated Annealing
method to approximate the optimum of functions with a special form. Section 1.4

contains an overview of the remainder of the dissertation.
1.2. Concurrent Processes and Resource Sharing

In this section we use a generalization of Dijkstra’s Dining Philosophers
Problem as an abstraction of the neighborhood-constrained type of systems intro-

duced in the previous section.

The Dining Philosophers Problem was introduced by Dijkstra in [Dijk71].
Solutions to this problem, and variations thereof, can be found in [Chan80, Lync80,
Lync81, Rabi81, Chan84]. Here we consider the generalization addressed in
[Chan84]. According to this generalization, a set of Philosophers is given, and each
Philosopher may share a fork with one or more of the others. We consider the fol-
lowing particular form of the problem. Given that a Philosopher s always hungry,
and that he needs all of his forks in order to eat, schedule Philosophers for eating
such that deadlock- and starvation-freedom are ensured. We may look at each Philo-
sopher as being represented by a process, and at each fork as being a shared

resource.

This form of the Dining Philosophers Problem can be thought of as modeling

resource sharing systems in which all resources are under heavy demand. Readily,

such situations of heavy demand provide an ideal framework to study a system’s
capability of supporting concurrent processing. In this sense, the problem of
scheduling Philosophers for eating under the constraints and requirements outlined
above is in fact the problem of scheduling processes to operate on shared resources
in heavily loaded systems. The particular scheme we will employ, described in the
next chapter, requires that a Philosopher who has just eaten will not eat again before
all other Philosophers with whom he shares forks have eaten as well. It is deadlock-

and starvation-free, thus meeting the requirements for a solution to the problem.
1.3. Concurrent Processes and Optimization

In this section we describe a distributed implementation of the Simulated
Annealing method which can be viewed as an instance of neighborhood-constrained
systems. Here we only present the method’s characteristics which are essential to the
understanding of the distributed implementation. In Chapter 2, we present more

details, and elaborate on some examples.

Let X=({X,,....X,} be a set of n variables taking values from a common set
D, and FS the set of feasible points in D". The problem we address in this section is

that of finding a global minimum of a function f of the form
f:D">R

on the feasible set FS.

The problem of finding a global minimum of fon FS is typically a hard one,
especially if no simplifying characteristics are assumed, such as the convexity of £,
etc. The reason for this is that most iterative methods to solve it will at some point

get stuck in local minima, sometimes far from a global optimum. Also, many well-

known combinatorial problems, NP-complete in their decision-problem formulations
[Gare79], can be expressed as optimization problems. With respect to such prob-
lems, there is a widespread feeling that no efficient solution method exists, which

stands as an incentive to the search for alternative techniques.

The application of a technique known as Simulated Annealing to approxi-
mate the solution to the problem of finding a global minimum of f over FS was
recently proposed by Kirkpatrick er al. in [Kirk83]. Simulated Annealing originates
from a similar technique used by Metropolis et al. to simulate the behavior of
many-body physical systems at a fixed temperature [Metr53]. Its name originates
from the laboratory procedure known o physicists as annealing, whose purpose is to
bring a material to its ground energy states through its slow cooling from a relatively
high temperature. This is a delicate process, since there exists the risk of ending up
at poor states of locally minimum energy, if the cooling process is not sufficiently
slow. By analogy with this physical process, the proposal in [Kirk83] amounts essen-
tially to performing a stochastic search on FS so to resemble the behavior of the
microscopic constituents of the material being cooled. Their proposal is to jump
probabilistically from point to point in FS, therefore allowing occasional uphill
moves, i.e. moves in which the value of f increases. Such jumps are to be governed
by the Boltzmann distribution parameterized by a slowly decreasing temperature-

like parameter, still in analogy with the dynamics of the physical system.

Let the function f be written as

f&x)y= 3 gr(x),
Ygx

for all xe D", where gy(x) depends only on those coordinates of x corresponding to

variables in Y. The case of interest to us is the one in which the subsets ¥ of X such
that gy(x) is nonconstant are not “too large.” The application of the Simulated
Annealing method to functions like this is discussed in [Gema84], where the uncon-
strained minimization of fis considered, i.e. the problem of finding x*e D " such that
f (x*)sf (x) forall xe D”*. In order to guarantee that all global optima will be in FS,

one can incorporate penalty functions into f [Luen73].

For functions like this, the stochastic search is such that the decision to
change the value of a variable, say X;, depends only on the values of those variables
X; such that there is a subset YCX of which both X; and X; are members and gy(x) is
nonconstant. We say that two such variables are neighbors of each other. Because of
the special form of f, the change caused to it by a change in the value of a variable
depends only on that variable and on its neighbors. This type of “local” dependence
of one variable’s value upon another’s hints at a possible speedup of the Simulated
Annealing method via a distributed implementation. In this implementation, n pro-
cessors are available, each one being responsible for the updating of one of the vari-
ables in X. Processors communicate through messages sent over point-to-point com-
munication channels laid down between processors whose variables are neighbors.
When a variable is updated based on the values of its neighbors, its new value is sent
over to them through these channels. Clearly, variables which are not neighbors can

have their values updated concurrently, thus the speedup in the simulation.

Recall that this system can be represented by the graph G introduced earlier.
We make the observation that this graph is such that it contains a clique, i.e. a com-
plete subgraph, for each subset Y of X such that gy(x) is nonconstant. Furthermore,

the form of f implies that G is somewhat sparse, since no clique involves a

significantly large portion of G.

A convergence proof for this variation of the Simulated Annealing method is
found in [Gema84]. It is shown that convergence can be ensured if all variables are
updated inﬁnitcly often and the parameter T is reduced no faster than a function of
time that the authors specify, The proof also requires that variables be updated
based on the current values of their neighbors, thus the need to avoid the concurrent
updating of neighboring variables. In order to see why the updating of variables
based on obsolete information has to be precluded, consider the variable X; and one
of its neighbors X ;. Suppose that at a certain point in time they exchange information
about their current values, and then operate concurrently based on that information.
As we will see in Chapter 2, the value of X; is changed based on a probability distri-
bution which is conditional on the value of its neighbors. If at the time its value is
changed the value of X}, say, is no longer the one on which the decision was based,
the system may be found in a state whose probability is not in accordance with the

probabilities used to do the updating.

The problem we now face is to come up with a distributed scheme to
schedule variables for updating which ensures that the conditions required for con-
vergence are met. The scheduling scheme used to schedule Philosophers for eating
in the previous section can be employed here, too. According to this scheme, once a
variable has been updated, it can only get updated again after all of its neighbors
have been updated as well. Since it is deadlock- and starvation-free, it satisfies all

the requirements for convergence,

Another problem 1s that of identifying the point of optimal value found dur-
ing the simulation. Because Simulated Annealing performs a stochastic search, it is
not necessary that such a point will be the one at which the simulation ends. It may
have occurred at an earlier stage in the computation, instead. Furthermore, each vari-
able is now placed in a different processor, its value constituting the local state of
that processor. Therefore, the problem of identifying the best point found by the
simulation amounts to finding a global state of the system, in the sense described in
[Lamp78, Chan85], at which the function attained the optimal value during the simu-

lation.

These two problems constitute the main issues dealt with in this dissertation.
1.4. An Overview of the Dissertation

A brief summary of the contributions of this dissertation follows.

1 Analysis of a distributed scheme to schedule processes for operation
under the neighborhood constraints described above. This analysis
includes definitions of concurrency measures, and a proof that the
decision problem corresponding to optimizing the amount of con-
currency for a given system is NP-complete. Such an amount of con-
currency has an interesting graph-theoretic interpretation, and is

related to G's chromatic and multichromatic numbers.

(ii) Solution of the problem of identifying optimal global states described
above. We propose a Max-Flow solution on precedence graphs for
the case of a generic asynchronous computation, and specialize this

solution to the case of the scheduling referred to in item (i).

(ili) A combination of items (i) and (ii) above yields a proposal for imple-
menting the Simulated Annealing optimization method distributedly
for the particular class of functions mentioned previously. In this pro-
posal, the scheduling scheme in (i) is used to schedule processors for
updating their variables, and the Max-Flow solution to the problem in

(ii) allows the optimum found to be retrieved.
We present below a description of Chapters 2 through 7 of this dissertation.

We start in Chapter 2 by presenting a more quantitative description of Simu-
lated Annealing, including its specialization to the class of functions discussed
above. In doing so, we elaborate on some examples, and establish some conditions
for some NP-complete graph problems to be cast in the formulation amenable to
speedup via concurrent execution. In Chapter 2, we also review the graph-theoretic
concepts that we need in the sequel. Particularly, we review node multicolorings and
sink decompositions of a graph’s node set under an acyclic orientation of its edges.
We end Chapter 2 by presenting the scheduling scheme we employ throughout,
which operates on acyclic orientations of G. We refer to it as Scheduling by Edge
Reversal, since it consists of having the orientation of all edges incident to a sink in
G reversed, when that sink operates, starting at an initial acyclic orientation. This
scheme is derived from similar techniques used by Gafni and Bertsekas to generate
loop-free routes in networks with time-varying topology [Gafn81], and by Chandy
and Misra to coordinate the eating of their generalized Dining Philosophers

[Chan84].

Chapter 3 contains a study of Scheduling by Edge Reversal in a synchronous
model of computation. Under the synchronous model, processes operate in lockstep,
and our scheduling can be viewed as the evolution in time of acyclic orientations of
G, such that from one orientation to the next at least one sink becomes a source. We
refer to the set of acyclic orientations of G, together with the mapping function from
orientation to orientation as dictated by the scheduling, as the Orientation-Transition
Diagram. A detailed study of this diagram is contained in Chapter 3. Besides
presenting general properties, which include the relation of Scheduling by Edge
Reversal to node multicolorings, we discuss the special structure of the Orientation-

Transition Diagram when G is a tree, a cycle, or a complete graph.

Chapter 4 contains concurrency measures for the synchronous model. We
define the concurrency of a schedule to be the average number of times that nodes
operate over the entire schedule. The concurrency of an orientation is then defined
as the maximum concurrency attainable from that orientation. A closed-form
expression is found for this measure in terms of the orientations of simple cycles in
the graph G. The concurrency of a graph is then defined to be the concurrency of the
orientation that provides the most concurrency. This concurrency allows us to estab-
lish that Scheduling by Edge Reversal is optimal among all schedules which operate
based on interleaved multicolorings. The problem of finding this number is then
shown to be NP-complete. Oddly enough, the hardest part of this NP-completeness
proof is to show membership in NP, which arises as a consequence of the closed-

form expression for the concurrency of an orientation.

Chapter 5 is devoted to analyzing our scheduling scheme in an asynchronous

mode! of computation. In this model, each process is run by an independent clock,

10

and therefore no global timing basis exists. In describing the asynchronous case, we
use the concepts of events and global states found in the works of Lamport and
Chandy [Lamp78, Chan85]. We first review these concepts for the case of a general
asynchronous system, and then specialize the definitions for the case of asynchro-
nous systems in which processes are scheduled for operation by Edge Reversal. A
measure is then presented for the concurrency attainable under the asynchronous
model, and it is shown to equal the concurrency that the synchronous model provides

from the same initial conditions.

In Chapter 6, we describe, in terms of precedence graphs, the problem of
identifying a global state of optimal value, where the value of a global state is the
sum over the participating local states of real numbers associated with them, That
this problem admits a polynomial-time solution is not immediately apparent, since
similar problems on precedence systems are known to be NP-complete [Abde76].
We show that a formulation exists to this problem which allows it to be solved by
finding the minimum flow in a slight variation of the original precedence graph,
properly labeled. In the case of general asynchronous computations, this Min-Flow
computation can be performed by a centralized processor in a time which is cubic in
the number of events in the computation. Further in Chapter 6, we specialize the
problem to the case of the precedence graphs generated by Edge Reversal. We then
show that a Max-Flow formulation is also possible, and that the solution can be
found more efficiently, due to the particular structure that these precedence graphs

then have.

We present directions for further research in Chapter 7.

11

CHAPTER 2
BACKGROUND AND PRELIMINARY RESULTS

2.1. Introduction

This chapter contains all the needed background to the dissertation, along
with a few preliminary results. Section 2.2 contains the description of a distributed
implementation of the Simulated Annealing method. We first discuss Simulated
Annealing in more detail, and then present necessary and sufficient conditions for
some NP-complete graph problems to be cast in the formulation amenable to
speedup via distributed processing. Section 2.3 contains some graph-theoretic back-
ground. We review the concepts of node multicolorings and of sink decompositions
of a graph’s node set under a given acyclic orientation of its edges. Finally, we
present in Section 2.4 the distributed node scheduling scheme that we employ

throughout this work, which we call Scheduling by Edge Reversal.

2.2. Simulated Annealing

2.2.1, The Method

Recall from Chapter 1 that X={X,...,X,} is a set of n variables taking
values from a common set D, and that FS is the set of feasible points in D". The
problem is to find a point x*& FS such that f (x*)<f (x) for all xe FS, where fisof

the form

12

f:D*oR.

A description of the Simulated Annealing technique more detailed than the
one we presented before is the following. Let xe FS be the point at which the simula-
tion is currently found and let x’e FS be a point obtainable from x by changing one of
the variables in X. A move to x’ is accepted with probability 1 if f (x)<f (x), and

with probability
[
T

4 '

otherwise. Here T is a parameter meant to act like absolute temperatre, ie. it is
slowly decreased from a relatively high initial value. It is intuitive that, at high
values of T, a coarse-grained scan of FS is performed. As T is decreased, the accep-
tance of uphill moves becomes less and less probable, and therefore a fine-grained

scan takes place.

Convergence proofs, variations, and discussions of other aspects of Simu-
lated Annealing can be found in many places, including [Gema84, Gree86,
Rome84b, Whit84, Gida85, Haje85, Mitr]. The method has been applied success-
fully to a number of hard combinatorial problems, especially in the field of VL3I, as
reported in [Vecc83, Hema84, Otte84, Rome84a, Felt85]. A more thorough experi-
mental evaluation of the Simulated Annealing capabilities is found in [Arag84],
where some typical NP-complete combinatorial problems are examined. The
approach behaves surprisingly well for some of these problems, whereas it cannot

outrun the best existing heuristics for some others.

13

2.2.2. Functions Generating Sparse Graphs

Let the function f to be optimized be written as

fo)= % grx),
Yex

for all xeD", where gy(x) is nonconstant only if Y is not “too large,” and depends
only on the coordinates of x corresponding to variables in Y. The application of the

Simulated Annealing method to functions like this is discussed in [Gema84].

Define two variables to be neighbors of each other if they both belong to a
subset ¥ of X such that gy(x) is nonconstant. The stochastic search takes the follow-
ing form. For 1<i<n, variable X; is assigned value x; with probability

n(X;=x; [Xj=xj,j¢i) ,

where 7 is the Boltzmann distribution, here given by

1
-1, T
(x) = ze ,

for all xe D", Z being a normalizing constant and T our temperature-like parameter.
Because of the form of f, it can be seen that
n(Xi=x; | X;=x;,j#i) = °(X;=x; | X;=x;,X; neighbor of X;) .

The decision to set the value of X; to x; is then seen to depend only on the values of

those variables X; which are neighbors of X;.

As we have seen previously, this system is of the neighborhood-constrained
type we have been considering, which allows a distributed implementation by
assigning each variable to a processor. In order for variable X; to be updated, the

current values of its neighbors have to be used, and for this reason X; cannot be

14

updated concurrently with any of them. As we remarked in the previous chapter, the
scheme we will employ to schedule nodes to update their variables is such that all

neighbors of X; get updated between two consecutive updates of X;.

An observation to make is that the set of variables X, when regarded as a set
of random variables, is said to be a Markov Random Field (MRF) with respect to the
graph G, as a consequence of the strict positivity of & over D", and of the special
form of the conditional probabilities discussed above [Rota64, Spit71, Besa74,
Grif76, Kind80, Isha81]. MRFs represent a way of generalizing the Markovian
dependence beyond the usual one-dimensional setting. The distributed version of
the Simulated Annealing method we have described can be used, as long as T is kept
constant, to update MRFs. In fact, there has been a proposal of a scheme to update

MRFs concurrently [Berg], but it is specific to the case in which G is a bipartite

graph.

In the next section we discuss in detail an NP-complete problem which can
be cast in the form of minimizing a function with the special form we introduced in

this section.
2.2.3. An Example: Satisfiability

The Satisfiability Problem is the problem of deciding whether a finite set of
disjunctive clauses can be satisfied. The version of this problem that we consider
here is the one in which each clause is restricted to have at most three literals. This

decision problem is NP-complete, as seen in [Cook71, Gare79].

15

Formulated more precisely, we are given the set of »n variables X introduced
earlier, in this case taking values from the common set D ={TRUE,FALSE }. On this
set of variables, r disjunctive clauses Ay, . . . , A, are defined. For 1<j<r, clause A; is

of the form
A_; =Lj1 V szv Lj3 ’

i.e. it is the logical disjunction of the three literals L;;,L;>,L;3. Each of these
literals is either a variable X;, for some 1<i<n, or its negation, or the constant value

FALSE. The decision to be made is whether the formula
Al A A A,-

can be satisfied, i.e. made TRUE by some assignment of values to the variables in X.

The following is a formulation of this problem that matches the template

introduced in the previous section. Consider the function

f)= % grx),
rcx

where gy(x)=c, 0<c<r, for all YCX such that ¢ of the clauses Ay, ... ,A, depend on
exactly the variables in ¥ and those same ¢ clauses are TRUE under the assignment
x. One can see that u clauses can be simultaneously satisfied if and only if there
exists a point xe (TRUE,FALSE}" for which f(x)=u. Thus a decision can be
reached by finding a point, say x*, at which —f is minimum, and then checking
whether f (x*)=r. The unconstrained formulation of the previous section causes no

problem here, since in this case FS=D".

As an example, consider the formulaA; A --+ A As, given by

16

X VXA G VX3VIDA X3V X)A XV XA X2V Xy).

This formula is satisfiable if and only if the function f given by the sum of the func-

tions below is such that —f has a global minimum of value r=-5:

1, if Ay is TRUE under assignment x ,
8ix, xy)(X) =

0, otherwise ;

1, if A, is TRUE under assignment x ,
81X, XX &)=

0, otherwise ;

1, if A3 is TRUE under assignment x ,
8 (X5 X5} ¥) =

0, otherwise ;

2, if both A4 and A 5 are TRUE under assignment x ,
g (XX,) (0) =

1, if only one of A4 and A 5 is TRUE under assignment x .

Figure 2.1 shows the graph G corresponding to this problem. It should be recalled
that, in G, node i cotresponds to variable X;, 1<i<5. Notice that G contains a clique

for each of the five clauses in the formula.

In the next section we turn to graph problems which can be cast in our spe-
cial formulation. Unlike the Satisfiability Problem we just discussed, all the graph
problems we consider require the incorporation of penalty functions into the objec-

tive function, in order to guarantee that all global optima are found inside FS#D".
2.2.4. More Examples: Graph Problems

In this section we consider an undirected graph G'=(V',E"), and we assume
that | N’ |=n. With each node in N’ we associate one of the variables in X, which, in

the cases considered here, take values from D=(0,1}. If we recall that N is G’s node

17

O O O O

5 3 4 2

Figure 2.1. Graph G Corresponding to the FormulaA; A -+ A As

set, then N” and N are the same set. Below we present three optimization problems
on G’. All of them are NP-complete in their decision-problem form [Karp72,
Gare79]. For each problem, we present its statement, the set FS of feasible solu-
tions, its formulation as an unconstrained minimizaton problem of the form
described previously, and how the graph G corresponding to this formulation is
obtained from ¢’. In presenting the formulation, we specify the functions gy(x)

which are nonconstant in the expression f (x) = ¥ gy(x). In each of the formula-
FeX

tions, penalty functions have been included to ensure that all global optima on D"

are in FS.
Minimum Dominating Set Problem:

(i) Statement: Find a subset /N’ with the properties that (a) each node
ie N’ is such that either ie/l or there exists a node je/f such that

(i,j)e E’, and (b) no other subset of N’ for which property (a) holds

18

has cardinality smaller than /1.
(i) FS ={xeD" !if X;=0, then X;=1 for some (i,/)e £, 1<i,j<n}.

(iii) Formulation:

Forall ieN":
g =X;,

2, if X;=X;=0 forall (i,j)e E’,

JURCACE {0, otherwise .

(iv) E=E" U {(i,j) | there is a node ke N" such that (i,k),(j,k)e E'}.
Minimum Vertex Cover Problem:

) Statement: Find a subset /CN’ with the properties that (a) no edge
(i,j)eE’ is such that i,j¢/, and (b) no other subset of N for which

property (a) holds has cardinality smaller than /1.
(i) FS=(xeD™ | if X;=X;=0, then (i, /)¢ E’, 1i,j<n}.

(iii) Formulation:

ForallieN":
gy =X;;
For all (i,j)e E"
2, if X;=X;=0,
j) (%) = !
§1i) {O, otherwise .
(iv G=G".

19

In these two problems, one sees that a minimum of f is achieved if and only
if, at this minimum, there is a one-to-one correspondence between variables with
value 1 and nodes in an optimal subset [of N° (a minimum dominating set or a

minimum vertex cover). The value of fat the optimum is then 1/1.
Maximum Independent Set Problem:

(i) Statement: Find a subset /CN’ with the properties that (a) no two
nodes i,jel are such that (i,j)e E’, and (b) no other subset of N for

which property (a) holds has cardinality larger than {/1.
(i) FS={(xeD" 1if X;=X;=0, then (i,/)¢ E’, 1<i,j<n}.

(iii) Formulation:
For all ieN"
giyx)=X;;

For all (i, /)e E":

o (X) _ 2, ifX,'=Xj=0 s
i) 0, otherwise .

ivy G=G"

In this problem, a minimum of f is achieved if and only if, at this minimum,
there is a one-to-one correspondence between variables with value O and nodes in a

maximum independent set I of N”. The value of f at the optimum is then n—171.

An interesting point to make is that not all of the examples given are such

that G =G’. This means, in practice, that if G’ is the graph corresponding to an actual

20

point-to-point network, and if we wish the optimization to be carried out on that
same network, then its processors may require information which is more than one
hop away in G’ in order to operate. For the Minimum Dominating Set Problem, for
instance, the updaﬁng of variable X; requires the value of all variables X; such that
the shortest path in G’ between nodes i and j is either 1 or 2 hops long. Figure 2.2
shows a graph in which solid edges belong to G’ and to G, whereas dashed edges
belong to G alone. To solve the Minimum Dominating Set Problem on G through
our distributed approach, a network with the interconnections shown in G would be
needed, if information were to be exchanged only between neighbors. The process-
ing on this network can, of course, be simulated on a network with the interconnec-
tions in G’. For such, information may have to be routed between nodes through

paths which are more than one hop long.

Figure 2.2. Graphs G’ and G for the Minimum Dominating Set Problem

21

2.2.5. A Generic Formulation

In this section we specialize once again to the case D={0,1}, and assume
that a point in FS will still be a member of FS if some variables with value O are
assigned value 1. Consequently, the point in which all variables have value 1 is in
FS. Our goal is to provide a general formulation to the problem of finding a point in
FS5¢<{0,1}" in which the number of variables with value 1 is minimum. We first pro-

vide some definitions.

Let F be a function of the form
F 28 520%

i.e. a function that maps each subset ¥ of variables into a region in D", We define F
as follows. For each YcX, a point x” is a member of F (Y) if ahd only if there exists
a point x€ FS such that x” and x have the same entries for the v_ariables in Y. Clearly,
F (X)=FS. The intuition behind this definition is that F(Y) represents the set of
points which would be feasible if only variables in ¥ were looked at. Put differently,
we can make a member of F (Y) feasible (i.e. a member of FS) by just changing the

values of variables outside Y. A property of F is that
FY)cF({,),

forall Y,Y,cX such that ¥Y,CY,.

Let a subset Y of X be called minimal infeasible at x if and only if x¢ F (Y)
and xe F (Y") for all Y'cY.

Theorem 2.1 presents a formulation to the problem of finding a point in FS in

which the number of variables with value 1 is minimum.

22

Theorem 2.1: Consider the function f given by the sum of the components

below for all xe D":

For all X;e X:
gixyx)=X;;
For all subsets Y of X:

2, if Y is minimal infeasible at x ,

grix)= :
0, otherwise .

Let x* be a global minimum of f over D". This point x* is such that no other point in

FS contains a srnallcf number of variables with value 1 than it does.

Proof: It suffices to show that x*e FS, since for points in FS the value of fis
the number of variables with value 1 in them. For suppose x*¢ FS, we then show

that x* is not a global minimum of f over D".

If x*¢ FS, then there must exist a subset Y of X which is minimal infeasible at
x*. Because the point in which all variables have value 1 is in FS, at least one vari-
able in Y must have value O in x*. By the definition of minimal infeasibility, if this
variable is turned from 0 to 1, a point xe F (¥) is obtained. By doing this, f will not
increase by more than 1. On the other hand, because x is a member of F (Y), f will
have decreased by 2. Since no other infeasibility may have been caused by this
operation, f suffered from x* to x a total decrease of 1, and therefore f<f (x*).
The process may be repeated as long as any minimal infeasible set at the point
obtained remains, and in the end a point x** will be obtained such that

f (x**)<f (x*), the required contradiction. W

23

The three graph problems presented in the previous section are instances of
the more general problem we have just considered. In the case of the Minimum
Dominating Set Problem, a point xeD" is infeasible if and only if the nodes
corresponding to variables with value 1 in x do not constitute a dominating set. The
same applies to the Minimum Vertex Cover Problem. The Maximum Independent
Set Problem, on the other hand, is such that xe D" is infeasible if and only if the

nodes corresponding to variables with value O in x are not an independent set.

Notice that, in practice, if the Simulated Annealing method is used to minim-
ize f, it will provide an approximation to the minimum of f, in which case Theorem
2.1 offers no assuraﬁcc that the point thus found will be a member of FS. If x* is
such a point and x*¢FS, we can use the techniques described in the proof of
Theorem 2.1 to obtain a point x**e FS such that f (x**)<f (x*). In other words, we
will be improving on the outcome of the Simulated Annealing method by searching

for a feasible point x** obtainable from x*.

In order that the formulation presented in the theorem be amenable to
speedup by distributed processing, there must exist a constant 420 such that the
diameter of the graph induced by a minimal infeasible set is no greater than d. In the
case of the graph problems we discussed previously, this value is equal to 1 for the
Minimum Vertex Cover Problem and the Maximum Independent Set Problem,

whereas it equals 2 for the Minimum Dominating Set Problem.
2.2.6. Amenability to Speedup in Graph Problems

Our goal here is to investigate a necessary condition under which a graph

problem can be solved on the graph G introduced previously through a network

24

whose graph G=(V,E) is such that N=N" and E=E"U((i,) dg(i,j)=d}, for some
d=0, where dg(i,j) denotes the shortest distance, in terms of number of hops,
between nodes i and j in G'. The practical implication of these conditions is that the
optimization can be simulated on the very network to which G” corresponds, infor-

mation having to be routed through paths which are no longer than d hops.

Theorem 2.2: Consider a problem on G’ whose solution is given by the
number N(G"). Suppose that N(G") can be found by minimizing a function like f
such that gy(x) is constant if any two variables X;,X;eY are such that dg-(i,j)>d for
some d20. Let G=(N'{\UN'5,E'|UE’;) be such that G',=(N",E;) and
G’3=(N’3,E’y) are connected undirected graphs. Then it must be that
n(G) =n(G"1) +N(G"2).

Proof: Let X, and X, be the panitions of X that contain the variables
corresponding to nodes in N'; and N*, respectively. Since all subsets ¥ of X such

that Y "X #& and Y X 20 yield gy(x)=0, we have

f)y= Y gr)+ X grix),
Ycx, Yex,

for all xe D". If we denote Y gy(x) by fi(x), we see that the minimization of fi(x)
Yox,

solves the problem on G, ke {1,2}. In other words, we must have

nGH =G +n(G) .

One consequence of this theorem is that we cannot hope to use our technique
to find a graph’s chromatic number, for instance. The chromatic number of G, usu-

ally denoted by %(G"), is the minimum number of colors needed to color the nodes of

25

CHAPTER 3
EDGE REVERSAL IN A SYNCHRONOUS MODEL

3.1. Introduction

We present in this chapter a study of Scheduling by Edge Reversal in a syn-
chronous environment. In our synchronous model, all nodes operate in lockstep
according to a global clock. Local computation takes no time, and messages sent in
the beginning of a clock cycle reach their destinations before the beginning of the
next cycle. Under a synchronous model of distributed computation, the following is
how Scheduling by Edge Reversal operates. At the beginning of the first clock cycle,
G is oriented by an acyclic orientation. One or more of the sinks according to this
initial orientation operate at this time, and send messages on all incident edges.
These messages correspond to reversing the orientation of those edges, and may
carry additional information, depending on the particular application at hand. At the
beginning of the next clock cycle, all such messages have been delivered to their
destinations, and G is oriented by a new acyclic orientation in which the sinks which
operated in the previous clock cycle are now sources. Edge Reversal in a synchro-
nous model can then be regarded as the evolution in time of acyclic orientations of

G.

In Section 3.2, we define Orientation-Transition Diagrams. In Section 3.3,
we define schedules, greedy schedules, and elaborate on a tighter form of

starvation-freedom that holds for Scheduling by Edge Reversal. The structural

34

properties of G’s Orientation-Transition Diagram are discussed in Section 3.4. The
discussion includes its strong connectivity and its main characteristics as implied by
greedy schedules, such as periodicity in the Orientation-Transition Diagram. Sec-
tion 3.5 contains a detailed study of greedy schedules, including their relation to
node multicolorings and the description of what happens in the cases in which G is a

tree, a cycle, or a complete graph.
3.2. Orientation-Transition Diagrams

Here we introduce a graph description of the evolution of acyclic orientations
of G. The Orientation-Transition Diagram of G, OTD for short, is the directed graph
OTD=(Q,). A vertex in OTD is an acyclic orientation of G. The directed edges in
OTD are defined by the function I', which is of the form

r:Q-29,
where w’e T'(©) if and only if there is 2 nonempty subset of sinks{w) whose reversal
yields @’. In OTD, a directed edge exists from @ to @’ if and only if w'e [(w).
It will be sometimes useful to have the function I' ™}, which is of the form
.29,

and such that T "Y(w) = {0’ e [(®@)}. In other words, ['(w) is the set of acyclic
orientations that can be reached from @ in exactly one synchronous step, while
I ~!(w) is the set of acyclic orientations from which w can be reached in exactly one
synchronous step. One sees that, if @'eT ~I(w), then @’ can be obtained from ® by

turning some of ®’s sources into sinks.

35

It is easy to see that the following holds for all we Q:

IT(w) | = 2|sinh(m)| -1,

-I r -1 (0)) 1 =2 | sources{w)) -1
These two quantities represent what we call the out-degree and the in-degree, respec-
tively, of a vertex w in OTD.
3.3. Synchronous Schedules

3.3.1. General and Greedy Schedules

Let (wg,k21) be an infinite sequence of acyclic orientations such that
W +1€ () for all k21. We call such a sequence a schedule, and denote a generic
schedule by ©. The set of all possible schedules is denoted by Z. In terms of the

graph OTD, a schedule is an infinite directed path.

A schedule oe X is said to be greedy if, for any two of its orientations ® and
@’ such that w’e [(w), " is obtained from ® by reversing all sinks in ®. The set of
all greedy schedules is denoted by £,CZ. We specialize the functions I' and I” 1o

the case of greedy schedules, by defining the two functions
I, : Q-Q
and
Iy .28

Let OTD,=(Q,I’;) be the graph depicting the evolution of acyclic orientations under

greedy scheduling.

36

The out-degree of a vertex w in OTD, is clearly equal to 1, by the definition

of [',. In order to evaluate its in-degree, we state the following simple lemma.

Lemma 3.1: Let @ and ' be acyclic orientations of G such that @'=I";(w). A

sink in @” has at least one neighbor which is a sink in @.

Proof: Since no sink in &’ is a sink in ®, then every sink in @’ has at least

one neighbor which is a source in ®” and is not a source in ®. Thence the lemma. B

It is an immediate consequence of Lemma 3.1 that IT'; L)l is given by the
number of nonempty subsets of sources (@) in which each member of sinks (©) has
at least one neighbor. In other words, a member o’ of I, l(w)1 is obtained from o
by turning into sinks a subset of sources in such a way that all sinks in @ become

nonsinks.
3.3.2. A Stronger Form of Starvation-Freedom

Consider node ie N, and a schedule o€ Z. Define m;(0,q) to be the number of
times that node i operates in the first ¢ orientations of &, g21. Clearly, m;(c, 1)=0 for

all ie N and all ce Z.

In this section we state a property of Scheduling by Edge Reversal whichis a
stronger version of its starvation-freedom property.. As we shall see in the proof of
Theorem 3.2 below, the fact that we assume G to be connected implies that a node

cannot operate much faster than any other.

Theorem 3.2: Consider nodes {,je N, and let them be connected in G by the
r-node undirected path whose nodes are i=iy,... =] Then

|m;(c,q)-m;(,q)|sr-1, forall ce Z and all g21.

37

Proof: We use induction on r. For r=2, i and j are neighbors, and therefore
alternate in their turns to operate, thus proving the assertion. As the induction
hypothesis, assume that the assertion is true for any two nodes connected to each
other by an undirected path with no more than r—1 nodes, for some r23. Now con-
sider nodes i and j in the statement of the theorem. The induction hypothesis applied

to the path i=iy, ...,i, yields
tm;(c,q)-m; _(0,q)1<r-2,
and applied to the 2-node path i,_y,i,=j yields
Im; _ (0,q)-m;(C,q) <1 .
It is therefore clear that

Imi(c,q)-m;(c,q)1<r—1.

Corollary 3.3: Consider nodes i,je N, and let the shortest path connecting
them in G have r -1 edges. Then |m;(G,q)-m;(0,q)1<r-1, for all oe X and all g>1.

[
3.3.3. A Comparison between General and Greedy Schedules

The following theorem establishes a comparison between greedy and
nongreedy schedules starting at a same orientation. It originates from a similar result

in [Camp86].

Theorem 3.4: Consider orientation ®, and let G,=(®;,®2,...)€Z; be the
greedy schedule that starts at ;. Let 0=(0";,®’;,...)e £ be any other schedule start-

ing at the same orientation (i.e. ®’;=w;). Then m{(G,q)<m;(C,.q) for all ieN and

38

ail g=21.

Proof: We use induction on gq. For g=1, the assertion clearly holds with
equality. As the induction hypothesis, assume that m;(G,q)<m;(C,,q) for all ieN
and some g=1. We then show that m;(c,q+1)<m;(G,,q+1). For such, it suffices to
show that, if a node ie N exists for which m;(g,q)=m;(0,.q), and i operates in going
from @', to @41, then it must also operate in going from w, to Wy}, i.¢. it must be
a sink in @,. Let ieN be such a node. Because i is a sink in @'y, it must be, by
Corollary 3.3, that either m;(G,q)=m;(c,q) or m;(0,q)+1=m;(0,q), for all neighbors
j of i. By the induction hypothesis applied to i’s neighbors, and using the fact that
m;(0,q)=m;(G,,q) together with Corollary 3.3, it must also be that either
mi(G,,q)+1=m;(C,,q), or mi(Sg,q)=m;(Gg,q). The former happens for some of
those neighbors j of i for which m;(0,q)=m;(0,q). Since both schedules start at the

same initial orientation @y, i is a sink in @,. W

Theorem 3.4 shows that a node operates no less frequently under a greedy
schedule than it does under any other schedule starting at the same orientation as the

greedy one.
3.4. Structure of the Orientation-Transition Diagram
3.4.1. Reachability Equations

Let @ and @’ be any two acyclic orientations. We say that o’ is reachable
from o if and only if w’eI™ (w), where I'* is the transitive closure of T'. Let
m;(®,0") denote the number of times that node i has to operate in order for @’ to be
reached from « through some schedule. Say that an edge (i,j) is marked if

o((, /)20’ ((i,/)), and unmarked, if o((i,/))=w'({i,j)). Consider the following

39

equations, which we call the reachability equations from to o’

m;(,0)+1, if (i,J) is marked ,

mj(m,m’)={

m;{w,w"), otherwise ,

for all edges (i, /) such that &((i, j))=/.

Theorem 3.5: The reachability equations from ® to @’ admit a nonnegative

integer solution if and only if w'e ['™* (w).

Proof: If w'eI™(w), then let y; denote the number of tmes that node i
operates from ® to @ in a schedule 6. Consider edge (i, /) such that @((,j))=j. If
(i,j) is marked, then in ¢ node j has to operate exactly once more than node { does
from o to ', i.e. y;=y;+1. If it is unmarked, then they both have to operate the same
number of times from to «’, i.e. ¥;=yi- Thus (y;,ie N) is a nonnegative integer

solution to the reachability equations from to w”".

Conversely, let (y;,ieN) be a nonnegative integer solution to the reachability
equations from ® to ', If edge (i,/) is such that o((i,/))=/, then it must be that
y;j=y;i+1if (i,j) is marked, and ¥;=y; otherwise. If we build a schedule in which each
node { operates exactly y; times up to a certain point, then at that point each marked
edge will have been reversed an odd number of times, whereas an unmarked edge
will have been reversed an even number of times. In other words, ®” will have been
reached. It remains to argue that such a schedule can always be built. For such,
notice that the nonnegative integers (y;,i€ N) are nondecreasing along any directed
path in . If a sink { such that y;21 operates in o yielding orientation w”, then the
same n-tuple, with y; replaced with y;—1, is a nonnegative integer solution to the
reachability equations from ®” to ®". This solution is also nondecreasing along any

directed path, and we see as a consequence that a sink can always be found to

40

operate. H

One consequence of Theorem 3.5 is that any orientation is reachable from
itself, and that the corresponding solutions to the reachability equations are any n-

tuple with the same nonnegative integer in all entries.

Theorem 3.6: Let o be reachable from , and Sg,...,5.; be the sink
decomposition according to . There is a schedule through which @’ can be reached

from o such that at least one node in §;_; does not operate between w and '

Proof: We show that the reachability equations from ® to ®” admit a nonne-
gative integer solution in which m;(®,®")=0 for some i€ §5-;. For let (y;,ieN) be a
nonnegative integer solution to those equations. Clearly, (y;—c,ieN) is also an

integer solution, for any integer c. In particular, take

¢ = min y;,
iESL—l

and we get a nonnegative integer solution, since the numbers y; are nondecreasing
along any directed path. In this solution, at least one of the nodes in S;_1, say i, is

such that y;—c=0, by the definition of ¢. Thence the theorem. W
3.4.2. Strongly Connected Components

OTD is a directed graph whose underlying undirected graph may have
several connected components. In this section, we want to show that each of these

connected components is strongly connected.

Theorem 3.7: Each of the connected components of OTD is strongly con-

nected.

41

Proof: We show that, given the acyclic orientations ® and ', if w’e I'* (w),
then we ™ (). By Theorem 3.5, the reachability equations from © to @’ admit a

nonnegative integer solution (y;,ie V). Let

¢ = max y;
ien Y’

and notice that the n-tuple {¢,ie N) is a solution to the reachability equattons from @

to itself. Then it must be that (¢ ~y;,ieN) is a nonnegative integer solution to the

reachability equations from ’ to @, and by Theorem 3.5 e I'* (0"). B
3.4.3. Properties under Greedy Scheduling
3.4.3.1. Periodicity

If only greedy schedules are considered, we see from the definition of [,
that, due to the finiteness of €, some orientations must repeat themselves periodi-
cally. In other words, there must be at least one integer p>1 for which p orientations
0, . . ., Op_y can be found, such that oy =L, (), p=T'g(01),..., A= "g(0tp_1). We
let such orientations be called periodic, and refer to the sequence of orientations
0, 01 85 a period of length p. Also, the value of Il'g'l(co)l can be equal to
zero for some orientations, and therefore these orientations are such that they can
only participate in a greedy schedule as the first orientation in that schedule. So
OTD,, like OTD, also has connected components, which, by the fact we just men-
tioned, are not in this case strongly connected. A greedy schedule can then be
viewed as an initial sequence of orientations, followed by an infinite repetition of a

period.

42

In Figure 3.1 we illustrate the general structure of a connected component of
OTD,. In Figure 3.2, we present an example for the case in which G is the 5-node
cycle. The example shows a connected component of OTD,, which includes only the
full edges in the drawing, and its enlargement to the corresponding connected com-

ponent in OTD, which includes the full edges and the dashed edges.

Figure 3.1. Generic Structure of a Connected Component in OTD,

We now establish a simple property of periods.

Corollary 3.8: All nodes operate the same number of times in a period.

43

Figure 3.2. A Connected Component in OTD, and in OTD

Proof: Immediate from Theorem 3.2. Also follows from the reachability

equations from an orientation to itself.

44

In the sequel, we shall denote by m the number of times that a node operates

in the period under consideration.
3.4.3.2. Evolution of Sink Decompositions

Here we look at greedy schedules by considering the sink decompositions of

the orientations involved. We state the following theorem.

Theorem 3.9: The length of sink decompositions is monotonically nonin-

creasing under greedy schedules, and if it decreases it does so by exactly one.

Proof: Recall that the length of a sink decomposition is the length of a long-
est path in the corresponding orientation. If all sinks are reversed, the length of such
a path can either stay the same, if it starts at one of the new sources, or decrease by

one, otherwise. W

Now define Q(op,...,0,_1)<Q as the set of acyclic orientations from

which the period ay, . . . , @, is reachable in some greedy schedule.

Corollary 3.10: Consider the period 0g,...,0,_;. Orientations
g, . . ., 0,y have sink decompositions of same length, and this length is no greater

than that of any of the orientations in Q(0p, ..., 0p-;). B
3.5. A Study of Periodic Behavior
3.5.1. Periodicity and Node Multicolorings

As we remarked earlier, Scheduling by Edge Reversal in a synchronous
environment is such that at each cycle the nodes which are allowed to operate simul-

taneously constitute an independent set. As a consequence, 2 node coloring of some

45

sort may assign the same color to all these nodes which operate at the same time. In

this section we relate our synchronous scheduling method to node multicolorings.

For the next theorem, we recall that E:N—{cy, . .. »Cq-1 ¥ isa k-tuple color-

ing of G’s nodes, and C;cN denotes the subset of nodes with color ¢, for 0</<g-1.

Theorem 3.11: Consider the period ¢y,...,0,_1, in which each node
operates m times. G admits the p-color, m-tuple coloring by colors cg, ... 1 Co1s
such that Cy=sinks(oy), 0<k<p—1. Moreover, the following two properties hold for

this coloring:

(1) Letc;,...,¢; and ¢j,...,c; be the m colors assigned to nodes i
and j, respectively, and assume without loss of generality that
i1<..<ip and ji<..<j,. If i and j are neighbors such that

(i,))=i, then i <j1<ir<jr<...<ipy<fpm;
(ii) Each node in C} has at least one neighbor in C (x_1ymedp, 0Sk<p -1.

Conversely, if G oriented by oy admits a p-color, m-tuple coloring by colors
o - - - ,Cp—1 Obeying properties (1) and (ii) above, then ¢ repeats itself according to
the sequence oy, . . ., 0, 1,04, in which each node operates m times in going from

oo back to itself, and such that sinks (0)=Cy, 0<k<p—1.

Proof: In order to show the first part, color the nodes in sinks (o) with color
¢k, 0<k<p-1. Each node is a sink in exactly m of the orientations in the period, so it
receives exactly m colors, and therefore the coloring described above is a p-color,
m-tuple coloring such that Cy=sinks (o) for all applicable values of k. If oy ((i, /))=i

for an edge (i,/), it must be that i1 <j; <i2<j3<...<i;y<Jp, since node i’s operations

46

must alternate with those of node j, and i must be the first one to operate. Also, it
must be by Lemma 3.1 that each node in C; has at least one neighbor in C (¢-1ymodp>

O<k<p-1.

Now we show the converse statement. By property (i), all nodes in Cg are
sinks in 0, i.e. Cogsinks(0g). Also, if a node not in Cy is to be a sink in &, then it
must be, by property (i), that either it is a member of C, and has no neighbor in Cy,
or it is a member of C, and has no neighbor in C¢UC 1, etc., all the way to its being
a member of C,_; with no neighbor in Cgu - -~ UCp-2- In any of these cases pro-
perty (ii) is contradicted, and consequently sinks(0p)<Co, that is, sinks(0g)=Cyo.
The same argument can be applied inductively to showing that
sinks (03)=C, . . . , sinks (0,)=C g, since property (i) guarantees that all nodes in Cy
are sinks in o, and property (ii) implies that such is the case for nodes in Cj only,
where o denotes the orientation obtained after all nodes in Co,...,Ce-y have
operated, in this order, for 2<k<p. Because each node belongs to exactly m of the
color classes Co, . ..,Cp-1, it must be that each node operates m times in going

from oy to ¢,. Consequently, it must be that a,=cty. W

Corollary 3.12: Let G oriented by o admit a p-color, m-tuple coloring by
colors ¢y, . . ., Cp1 Obeying properties (i) and (ii) in the statement of Theorem 3.11.
Orientation 0 is in a period of length p in which each node operates m times if and

only if no integer ¢22 exists such that G oriented by oty admits a %-color, -’;l-tuple

coloring for which properties (i) and (ii) hold with % and % in place of p and m,

respectively.

47

Proof: The sufficiency condition is a consequence of the first part of

Theorem 3.11. Necessity follows from the second part. B

By Corollary 3.12, if orientation 0y is such that G oriented by it admits a p-

color, m-tuple coloring for which properties (i) and (ii) in the statement of Theorem

3.11 hold, then ¢ is in a period of length %, in which each node operates L;- times,

where ¢ is the largest integer for which G, oriented by oy, admits a E-color, .
q q

tuple coloring of which properties (i) and (ii) are true. Conversely, if o is in the

period o, . . ., 01, and each node operates m times in it, then there is no integer

g=2 for which G admits a %-color, %-tuple coloring obeying properties (i) and (ii)

under 0.

In Figure 3.3 we present periodic orientations of two different graphs to illus-
trate Theorem 3.11. Next to each node in each of the two orientations one sees the
appropriate colors. The orientation on the left is in a period of length 5 in which each
node operates twice (hence the S-color, 2-tuple coloring of its nodes), while the one
on the right is in a period of length 8 in which each node operates 3 times (hence its

nodes’ 8-color, 3-tuple coloring).
3.5.2. Periods in which Nodes Operate Exactly Once

Periods in which each node operates only once (m=1) are especially simple
to analyze. In this section we investigate a necessary and sufficient condition for an

orientation to be in such a period.

48

€p.C3,C5

€0,C3

€2,C4,C7 €1,C4:Cp
€2,C4 C1,C4
€C1,C3.C6 €2,05,C7
C1,C3 Co,C7
Cp.C2,C5 CpsC3.,C

€1.C4,C7

Figure 3.3. Periodic Orientations and Associated Multicolorings

Corollary 3.13: Consider orientation o, and let Sg,...,53-1 be its sink
decomposition. This orientation is in a period o, . .. o P in which each node
operates exactly once (i.e. m=1) if and only if each node in Sy has at least one

neighbor in S;_;. In this case, p=A and sinks (0t)=S;, 0<k<A-1.
Proof: Immediate from Theorem 3.11. W

Corollary 3.14: Let oy be a periodic orientation such that m=1, and denote
by Sg....,Sa1 its sink decomposition. If G is not a tree, then it contains, for some

g=1, a simple cycle with g nodes, which, shown in order, are

. . .q .q
l(l),...,li.l....,!0,...,11_1 ,

49

where ite S, for all 1s/<q, O<k<A-1.

Proof: If G is not a tree, then the assertion follows immediately for A=2. If
A>2, then build the simple cycle as follows. Choose a node from those in S 1. By
the properties of a sink decomposition, this node must have a neighbor in S;_,, this
neighbor a neighbor in $;_3, and so on. A chain with A nodes is then obtained, each
one belonging to a different layer in the sink decomposition. The node in Sy, in par-
ticular, has a neighbor in §3_;, by Corollary 3.13, and we pick this node to be part of
the chain, if it still is not. We proceed likewise until a node is picked which is
already in the chain, which must happen if A>2, since G cannot possibly be a tree in
this case (see Theorem 3.16 below). Then a simple cycle is formed with gA nodes,

for some g1, q of them from each of the layers of the sink decomposition. W

The next section contains a study of the structure of OTD, when G is

assumed to be a tree, a cycle, and a complete graph.
3.5.3. Periodicity in Trees, Cycles, and Complete Graphs
3.5.3.1. Trees

Here we consider the case in which G is a t:.e. In what follows, we recall
that d,(7) stands for the depth of node { in orientation ®, i.e. d,(i)=k if and only if

i€ Sy, where Sg, . .., 531 is G’s sink decomposition according to @ and 0<k<h~1.

Lemma 3.15: Let G be a tree, and let it be oriented by w. There is an orien-
tation @’ reachable from o through some greedy schedule, such that, for all i, je N, if

(i—/) is an edge oriented according to «’, then d i (i)—d v (j)=1.

50

Proof: The proof goes by induction on the number of nodes in the wee,
which we denote by 7. In the basis case we have r=2, and the lemma holds trivially.
Assume that the lemma holds for all trees with r22 nodes. Now let G be a tree such
that INI=r+1, and let it be oriented by . If in all leaves are sinks, then apply the
argument that follows to the orientation immediately reachable from . Let ! be one
of the leaves which are sources in , and let G be the tree induced by the nodes in
N—{!}. Since IN—{!}|=r, the induction hypothesis applies to G particular, if
we orient G“)’s edges by the appropriate truncation , of orientation ¢, then there
must be an orientation w’; of GO edges reachable from @, such that for all
I, jeN-{1}, if the edge (i—/) exists in ', then dy (i)-du ()=1. Let @ be an
extension of @, to include the edge adjacent to leaf /. Because / is a source in @,
then it is clear that @’ is reachable from @ through a greedy schedule. According to
o', [is either a source or a sink. If it is a source, then dy(/)—d ({)=1, I being the
only neighbor of /. If it is a sink, it may be that d (D—d o (I')>1, in which case we
consider the orientation immediately reachable from «’, call it ®”. According to ®”,
I is a source, and therefore d - (I)—d i ({)=1. Since this is still true of all other edges
(because it was so in @), the lemma follows, in the latter case with @”, in the former

case with @’ itself. B
Theorem 3.16: If G is a tree, then a period in OTD, has length 2.

Proof: Orient G by orientation ®. By Lemma 3.15, there is an orientation '
reachable from @ such that if an edge (i =) is oriented by @', then d i (¥)—d v (/)=1.
This means that in the sink decomposition of @’ there are no edges between nonsuc-
cessive layers. As a result, an orientation whose sink decomposition has length 2

must be reachable from w’. The theorem then follows from the observation that any

51

orientation whose sink decomposition has length 2 must be in a pertod of length 2,

by Corollary 3.13. W

Corollary 3.17: If G is a tree, then OTD, has exactly one connected com-

ponent.

Proof: Theorem 3.16 implies that any period in OT. D, must correspond to a
partition of G’s nodes into two independent subsets. Since a tree admits only one
such partition, the period must be unique, and therefore so must the corresponding

connected component. Wl

3.5.3.2. Cycles
Define an arc to be a path in G falling into one of the following categories:
) a-arc: alternating sinks and sources (Figure 3.4(a));

(ii) cw-arc: comprises at least three nodes, starts at a source, ends at a
sink, and all edges in between the endpoints are oriented clockwise

(Figure 3.4(b));

(iii) ccw-arc: comprises at least three nodes, starts at a source, ends at a
sink, and all edges in between the endpoints are oriented counter-

clockwise (Figure 3.4(c)).

An oriented cycle is therefore the juxtaposition of arcs of the types above
with endpoints in common. Notice that no oriented cycle can be made of a single

Cw- Or ccw-arc.

52

(a)

()

(©)

Figure 3.4. Types of Oriented Arcs in a Cycle

A further definition that we make is that of a cw-uniform orientation of a
cycle, and likewise that of a ccw-uniform orientation. A cycle is said to be oriented
by a cw-uniform orientation if its orientation is the result of the juxtaposition, end-
points shared, of arcs, none of which is a ccw-arc. It is said to be oriented by a ccw-
uniform orientation if no cw-arcs can be found in the juxtaposition of arcs that con-
stitutes its orientation. An orientation consisting of a single a-arc may be thought of
as belonging to either class; such orientation is only possible in cycles with even
length. In fact, any g-arc in a cw- or ccw-uniform orientation must have an even
number of nodes. Figure 3.5 exemplifies a cw-uniform orientation. Boxed segments

correspond to g-arcs.

53

0
Py

Figure 3.5, A cw-Uniform Orientation

Lemma 3.18: An orientation oy of a cycle is periodic if and only if it is

either cw- or cow-uniform.

Proof: The argument we use here is based on the fact that when all sinks
operate synchronously in a cycle, the resulting orientation has all of its CW-arcs
(ccw-arcs) shifted one node counter-clockwise (clockwise) with respect to the previ-
ous orientation. As the operation goes on, this counter-clockwise (clockwise) shift-
ing continues, leaving an a-arc behind. This is illustrated in Figure 3.6, where we
show a segment of a large cycle whose only non-g-arcs are those shown by squares
in the figure. The nodes seen in the figure are naturally the same in all of its stages;
what happens is that the cw- and ccw-arcs are formed by different nodes at each

stage.

Sufficiency is shown by simply noting that in a cw-uniform (ccw-uniform)

orientation all non-g-arcs are cw-arcs (ccw-arcs), and therefore the shifting described

54

Figure 3.6. Arc Drifting under Greedy Scheduling

55

above never causes arcs to collide, since they all drift in the same direction. As a

result, the initial orientation @y is necessarily repeated.

To prove necessity we merely observe that in the process described above
through which a cw- or cew-uniform orientation repeats itself, all intermediate orien-
tations are also cw- or ccw-uniform, respectively, and for this reason all orientatibns
in that period must be of one of these types. We see that this is the case for orienta-
tions in all periods by pointing out the process by which a cw- or ccw-uniform orien-
tation is reached from an orientation of neither of these types as the synchronous
operation of sinks progresses. For assume that an orientation ® has at least one cw-
and one ccw-arc. As the synchronous operation proceeds, cw-arcs drift counter-
clockwise, and ccw-arcs drift clockwise, leaving a-arcs behind. As a result, cw-arcs
meet ccw-arcs at some point, annihilating themselves, the shorter one completely.
Eventually, only cw- or ccw-arcs remain, but not both, meaning that a cw- or cow-

uniform orientation has been reached, respectively., W

An orientation is said to be p-periodic, for some 2<p<n, if it is either cw- or
. n .) g :
ccw-uniform, and ¢== nodes ig, . .. ,i;-1 can be identified such that the following
p

conditions hold:
(1) There are exactly p ~1 nodes between i, and i (k+1)modg» 0Sk<g—1;

(i) The orientaton of the edges in the sequence of nodes

Iks -+« » L(k+1)modg 18 €xactly the same for all 0<k<g 1.

Note that by Lemma 3.18 an orientation is in a period if and only if it is n-

periodic. Figure 3.7 illustrates a 5-periodic orientation of a 10-node cycle; nodes ig

56

and {; have been identified.

iy

_—
O]

i

Figure 3.7. A 5-Periodic Orientation

Theorem 3.19: Let G be a cycle, and consider a period in OTD,. If 2<p<n is
the least integer for which the orientations in this period are p-periodic, then p is the

period’s length.

Proof: Let ap be an orientation in the period of OTD, considered here. By
Lemma 3.18, o is either cw- or ccw-uniform. In this proof we assume that o is
cw-uniform, since the case in which it is ccw-uniform is entirely symmetric. Because

0 is cw-uniform, there is an integer 2<p’<n for which oy is p’-periodic; we let p be
the least such integer. By the definition of p-periodicity, we can find q=§ nodes

ig,...,ig-1 such that, for 0k<qg -1, i and i(x+1)modq are p-1 nodes apart. More-
over, the edges in the sequences of nodes ig, . .., ! (k+1)modq ar¢ identically oriented
for all applicable values of £. A step of synchronous operation can be viewed as each

edge taking on the orientation of its neighboring edge on the clockwise side. By the

57

p-periodicity of 0, the orientations of all edges will repeat themselves every p steps.
Also, because p is the least integer with the property mentioned above, no smaller
number of steps will suffice for the orientations to be repeated, and therefore p is

indeed the pcn'od’é length. W
3.5.3.3. Complete Graphs

Theorem 3.20: Let G be a complete graph. OTD, is constituted by (n—1)!

periods such that p=n and m=1.

Proof: Observe first that each of G’s acyclic orientations is such that each
layer of its sink decomposition contains exactly one node. In particular, if we denote
by Sg, .. .,S3-1 the sink decomposition of one particular orientation, it must be that
A=n and that the node in S has as neighbor the node in S3-;. By Corollary 3.13,
such an orientation must be in a period 0y, . .., ® -1 With p=n and m=1. Also, we
see from the form of the sink decompositions that G admits exactly n! acyclic orien-
tations, and since they are all periodic with p=n, OTD, must be constituted by

(n—1)! such periods. B
3.5.4. Periods in which Nodes Operate More than Once

In this section we investigate the question of how small and how large the
value of p can be for a generic period 0Oy, . . . ,ap;l, if the graph is not a wee. A
lower bound and an upper bound on this value will be presented in Chapter 4, and
here we provide a preview of those bounds. The upper bound is a consequence of
the fact that a simple cycle whose length is a multiple of p exists in G if a period of
such a length is present in OTD,. In Chapter 4, we show that such is always the

case, and that in fact something stronger holds. If in the period o, . .., 0 €ach

58

node operates m times, then G, oriented by o, has as a subgraph a simple cycle
which, when oriented by the appropriate truncation of o, is itself in a period of
length p in which each of its nodes operates m times, 0<k<p-1. Notice that this can
be easily seen to be true if m=1 in the period oy, . .. ,0tp_1, as a consequence of

Corollary 3.14.

The following are the bounds that we show in Chapter 4. Assume that G
contains at least one cycle (i.e. it is not a tree), and let K =(Ng,Eg) and C=(N¢,E¢)
denote G’s largest completely connected subgraph and largest simple cycle, respec-
tively. Consider a period in OTD,, and let p be its length. It must be that
INg |Sp<INc|.

This upper bound on the size of a period is useful in providing us with the
cost of edge reversal simulation to detect periodicity. More specifically, we can cen-
tralizedly simulate the synchronous process of greedily reversing edges incident to
sinks. If we do so from an arbitrary orientation ®, we know that if @ is periodic, then
n steps of the simulation suffice for it to repeat itself. If this repetition does not hap-
pen in that number of steps, then certainly w is not periodic. It is straightforward to

see that such a simulation has a complexity of O (n3).

59

CHAPTER 4
CONCURRENCY MEASURES

4.1, Introduction

In this chapter, we discuss how much concurrency can be attained under
Scheduling by Edge Reversal in a synchronous model. We define in Section 4.2 a
measure for the concurrency of a schedule, and in Section 4.3 a measure for the con-
currency of an orientation. The latter expresses the amount of concurrency attainable
when the computation is started at a certain acyclic orientation. In this respect, we
show that the best is to follow the greedy schedule from that initial orientation. We
obtain a closed-form expression for this concurrency involving characteristics of G
only. In Section 4.4, we come to the question of how much concurrency the graph G
can provide. This question amounts to choosing an initial acyclic orientation which
will provide a maximum amount of concurrency. Such a measure is a number related
to G's chromatic and multichromatic numbers, and allows us to establish the
optimality of Scheduling by Edge Reversal among all scheduling schemes based on
what we call interleaved multicolorings. We show the value of this measure for
some particular graphs, which include those discussed in Chapter 3. Finally, we
prove that in general the decision problem corresponding to finding it is NP-

complete.

60

4.2. The Concurrency of a Schedule

We recall from Chapter 3 that operation in the synchronous model under
Scheduling by Edge Reversal can be regarded as the evolution in time of acyclic
orientations of . In particular, we have defined a schedule e Z to be an infinite
sequence of orientations of the form o=(w;,0,,...), where a nonempty subset of
sinks () is reversed in going from ; to @y, k21. If all of the members of
sinks (@) are reversed, we say that © is a greedy schedule, the set of all greedy

schedules being denoted by Z,.

In this section, we wish to define a measure for the concurrency attainable

with a schedule. For such, we start by defining the function
v:Ix(1,2,..]=R.

For a schedule oe I and a positive integer g, ¥(G.q) is the concurrency attainable in

the first ¢ orientations of schedule ¢. We define ¥(5,q) to be given by

1
'Y(C,Q) = ; EE\IME(G’Q) ’

for all ceX and all g21. We recall from Chapter 3 that m;(c,q) stands for the
number of times that node i operates in the first ¢ orientations of ©. One sees intui-
tively that Y(0,q) represents the average number of times that a node operates in the

first ¢ orientations of schedule ©.

The amount of concurrency achievable with a schedule is then defined to be

given by the function
Y : 2R

such that

61

() =£n"a 70,q),

for all oe . The reason for the notation lim instead of simply lim in this definition is
that limit alone might not exist for some schedules (however, it does exist for greedy

schedules, as we will see in the next section).
4.3. The Concurrency of an Orientation
4.3.1. The Concurrency of Greedy Schedules

Having defined a measure for the concurrency attainable with a schedule, the
question of which schedule to follow from a given initial orientation arises. In this

section, we define the concurrency of orientation we Q 1o be given by the function
Yo : Q—R,
such that
Yo(®) = Tax (),

where Z(w)CZ denotes the set of schedules whose first orientation is 6. Clearly, only

one such schedule is a member of Eg as well, i.e. |z(m)nzg I=1.

The following is a corollary of Theorem 3.4, and states that the concurrency
attainable from orientation w is the concurrency attainable with the greedy schedule

that starts at @.

Corollary 4.1: For all weQ, let ceX(w) be a greedy schedule. Then
Yo (W) = Ys(0). -

62

Proof: Immediate from the fact established by Theorem 3.4 that

m(¢,q)Sm;(0,q), forallieN, all 6’e Z,and all g21. W

Next we find an e:{pression for the value of ¥,(®) in terms of the period
reachable from w in OTD,. Recall that Q(ag, . . ., Oy 1) is the set of acyclic orienta- '

tions from which the period o, . . . , @, is reachable in OTD,.

Theorem 4.2: Let g, ...,0,_1 be a period in OTD, in which each node

operates m times. Then

m
T

Yo(©) =
pP

for all we Q(0g, . .., 0p-1).
Proof: Let ¢ denote the greedy schedule from ®. By Corollary 4.1,
Yo(@) =%(0) = lim — T mi(0.q),
q—= qn eN
where we have dropped the lim notation from the definition of 7;, since the limit

always exists for greedy schedules. Let o be the first periodic orientation reachable

from o in G, and assume that it is the kth orientation in @, k21. For sufficiently large

q, i.e. g2k, the first g orientations of ¢ include lﬂjﬁ} repetitions of the period, so
the sum above can be written as n l-g;kJm +0(q). Similarly, q itself can be written
p

as [q——f—}p +0(g). In the limit as g—ee, therefore, we have ¥,(0) = % [|
D

63

Corollary 4.3: Forall we Q, ¥, (m)s%.

Proof: Immediate from Theorem 4.2, if we recall that ms%, i.e. the most

frequently that a node can operate in a period is in every other orientation. W

If G is a tree, then we have, as a consequence of Corollary 3.17, that
Q0,01)=E2, where o, 0; denotes the single, 2-orientation period in OTD,. We

then have the following corollary of Theorem 4.2.
Corollary 4.4: If G is a tree, then 'yo(m);—%, forall weQ. B

4.3.2. A Closed-Form Expression

If G is not a tree, it is possible to obtain an expression for Y,(w) that depends
only on the graph-theoretic properties of G oriented by ®. We develop such an

expression in this section.

We start by recalling that, if K is the complete graph on k nodes, k21, then
G [K,] stands for the lexicographic product of G and K. We saw previously that this
product may be visualized as the graph obtained by replacing each of G’s nodes with
an instance of Kj, and then connecting a node in the instance of K replacing node
ieN to a node in the instance of K, replacing node jeN if and only if i and j are
neighbors in G. Here we propose to visualize G [K] a little differently. We suggest
that it be viewed as the graph obtained by replacing each node in K with an instance
of G. A node in an instance of G is connected to a node in another instance of G if
and only if either they correspond to the same node in G, or they correspond to

neighboring nodes in G. This alternative way of looking at G[Kj] is totally

64

equivalent to the previous one, and can be illustrated by Figure 2.3 of Chapter 2,
where we show G [K ;] in the case in which G is the 5-node cycle. In that figure, the
outermost and the innermost pentagons correspond to the two instances of G used to
build G [K;]. In the sequel, we will look at G [K]’s node set as composed of the k

layers Lg, . . . , Lg—1, each of which is an instance of N, G’s node set.

Let &g be a periodic orientation of G’s edges, and assume that it is in a period
of length p in which each node operates m times. Now we investigate some of the
periodicity characteristics of the graph G [K,,]. Build an orientation &y of G [K,,]'s
edges as follows. Edges in the graph induced by one of the layers Ly, ... ,Ly. are
oriented by oy as those of G are by ¢. Edges between nodes in different layers are
oriented by o’y from the layer with the higher subscript to the one with the lower.
Consequently, all sources in o'y are nodes in L,,_;, while all sinks are in L. If we

let S, ...,8; denote G[K,]’s sink decomposition according to oy, then we

have
S%-1 SLm1
and
Socly.
Lemma 4.5: Orientation oy is in a period of length p in which each node
operates exactly once.

Proof: By Corollary 3.13, it suffices to show that each node in §'y has at least
one neighbor in §_;. For recall from Theorem 3.11 that G admits a p-color, m-
tuple coloring of its nodes, such that each node with color ¢; has at least one neigh-

bor with color ¢(;_1ymodp» 0SISp—1. This coloring is such that a node has color ¢y

65

among its colors if and only if it is a sink. A corresponding p-color, 1-tuple coloring
for the nodes of G[K,,] can be obtained as follows. A node in L,,_; gets the color
with the highest subscript among the m colors assigned to the corresponding node in
G, a node in L,,_, gets the color with the second highest subscript, and so on.
Clearly, each node in §*; gets color ¢o. Each such node must have a neighbor with
color ¢,_;, which must be a node in L,,_;. That this node is 2 member of S
comes from the fact that in G every node with color Cp—1 is a source, by Theorem

3.11. W
Itis a consequence of Lemma 4.5 that A’=p.

Before we proceed to the main result of this section, we need a few more
definitions. Let k denote an undirected cycle in G, ie. a sequence of nodes
fy,...,d1x,i1, where Ikl denotes the number of nodes in the cycle x. This cycle
may be simple or not, i.e. it is possible that more than one of the nodes ', ...,i
are actually the same node in N. We say that x is traversed in the clockwise direction
if it is traversed from i, to i le1- Otherwise, it is said to be traversed in the counter-
clockwise direction. These directions defined, we let n_,, (x,) denote the number of
edges in X oriented clockwise by @, and neew (K,) the number of edges in x oriented
counter-clockwise by . Notice that a same edge may be counted in both of these
quantities, since it may appear more than once in K, sometimes in the clockwise
direction, sometimes in the counter-clockwise dircctidn. Define the ratio

Row (K, W) Aoy (K, @)

pP(K,®) = min ,
Ixi ikl

and let K denote the set of G’s undirected cycles.

66

Lemma 4.6: Consider a cycle xe K. The ratio p(x,®) is the same for all ® in

the same connected component in OTD.

Proof: By Theorem 3.7, each of the connected components of OTD is
strongly connected, which means that any two orientations in that component are
reachable from each other under Scheduling by Edge Reversal. If @ and o are two
such orientations, then ng, (K,®)=n.,(X,0") and n.q.(K,0)=n., (x,0"), since the

reversal of sinks in K does not change these numbers. Thence the lemma. W

Theorem 4.7: If G is not a tree, then ¥, () = m12 p(x,m), for all we Q.
XE

Proof: Let o be the first periodic orientation reachable from w. By Lemma
4.6, it suffices to show the assertion for oy. Also, if the period in which o partici-
pates has length p and in it each node operates m times, then it suffices, by Theorem
4.2, to show that

m—

» min p(x,0p) .

We first show that p(lc,ao)Z% for all ke K. For such, consider the graph

formed by the !kl nodes in k. This graph is a simple cycle with K nodes (a same
node in N may have several instances of it in this graph). Let #(w) denote the
number of sinks in it under orientation . Similarly, let #, () denote the number
of sinks in it which are also sinks in G, i.e. members of sinks(w). Clearly, we have

the inequalities

#(w)
Ikl

p(K, @) 2

67

> #ec(w)

¥

Ikl
for all we Q. In particular, if we take the sum on the period oy, . . . WOy, We get
#y (o)
T pka>) "l |
ae {gy, ..., Q) ae (o, ..., o, } K
_mlx!
Tkl
=m.

Since the left-hand side of the inequality above is equal to pp(x, o) for any

Osk<p-1, we get the desired inequality ‘
p(K,00) 2 —’;— ,
for all ke K.
To complete the proof, we need to show that
min p(x, otg) < %’- .

To do this, we resort to the graph G {K,] introduced earlier, and to its orientation
oy, which by Lemma 4.5 is in a period of length p in which each node operates
once. By Corollary 3.14, a simple cycle exists in G[K,,] with a number of nodes
which is multiple of A" (recall that Sy, ...,S3_; is G [K,,]’s sink decomposition
according to a’p). This simple cycle may be traversed as follows. Pick the first node
in Sy, the next in Sy, etc., until a node in S4 is picked, then another one in
Sx-1, and so on, until the simple cycle is closed. If we extend the definition of the

ratio p to the graph G{K,,], we immediately see that, if ¥’ is the cycle we just

68

described, then p(x,ct 0)=;. This is so because, if the traversal we described is in

the clockwise direction, then there exist p—1 consecutive edges in the clockwise
direction for each edge encountered in the counter-clockwise direction, since A'=p.
This simple cycle k" in G [K,,] corresponds to a cycle x, not necessarily simple, in G.
To see how the value of p(k,0g) behaves, we notice that, as the cycle K’ is traversed
as described above, a traversal also takes place on the cycle x. This traversal of «
may only encounter edges oriented in the opposite (i.e. counter-clockwise) direction
when the traversal of ¥’ moves from one of the layers Lg,...,L,_ to another,

since while the traversal is in the same layer the orientations of edges in x and K" are

the same. Consequently, we see that (K,%)Sﬂ, thus completing the proof. In Fig-
P 7 p p g

ure 4.1, we offer an illustration of the second part of this proof. Namely, we show
the same graph of Figure 2.3 oriented by the respective o'p. Dashed edges
correspond to the simple cycle x” discussed above. The outermost pentagon is L,

the innermost one being Ly, W

Corollary 4.8: If G is not a tree, then let x* be a cycle for which

nl’.‘W (K*! m)
Y, (@)=p(x*,), for some we Q. Furthermore, suppose that p(x*,) = T
Any segment of x* oriented in the clockwise direction must be a shortest directed
path in G oriented by . Similarly, any segment of x* oriented in the counter-

clockwise direction must be a longest directed path in G oriented by .

Proof: By Theorem 4.7, cycle k* must exist. By hypothesis, x* has at least
as many edges oriented in the counter-clockwise direction as it has in the clockwise

direction. Then it must be true, by Theorem 4.7, that

69

Figure 4.1. Used in the Proof of Theorem 4.7

N (K*,) < N (K,)
{K*| T Ikl

for all ke K. Now let /., be the number of edges in a segment of k* oriented by @ in
the clockwise direction. Similarly, let /.., be the number of edges in a segment of k*
oriented by in the counter-clockwise direction. The first claim is that !~y must be
the length of a shortest directed path in G ofiented by w. For, if not, then there must
be another segment oriented in the clockwise direction between the same two nodes,
whose length is /', =l.,—{, for some ! >0. Consequently, there must exist a cycle ¥’

such that

70

Now (K, W) _ R (K*,)= < Ry (K*, @)
Il le*l=l P

contradicting the assumed pptimality of x*. The second claim is that /., is the
length of a longest directed path in G oriented by w. For otherwise there must exist
another segment oriented in the counter-clockwise direction between the same two
nodes, with I, =l +{ edges, for some [>0. This implies the existence of a cycle ¥’

such that

Row(K,0) _ Aow(K*, @) - naw(K¥, ©)
Kl Ix*IH Ikl

again contradicting the assumed optimality of x*. W

Let K, K denote the set of all of G’s simple cycles. In the next corollary, we

show that the result of Theorem 4.7 can actually be made more precise.

Corollary 4.9: If G is not a tree, then y,(®) = milg p(x,), for all we Q.
Ke

Proof: Let xe K be a cycle for which the minimum stated in Theorem 4.6 is
achieved. We show that there must be a simple cycle enclosed in x for which the
same ratio is achieved. For let x consist of the nodes i, ..., ¢ . We can partition
these nodes into simple cycles as follows. Starting at iy, let a simple cycle be formed
whenever a node, say j;,, is visited twice for the first time. From this node, let
another simple cycle be formed when a node found after j;, is repeated for the first
time. Let this node be j;, . If this process is continued, a number, say /, of such nodes
will be found, unti! all of the Ix| nodes are exhausted and i, is reached again. The
cycle « is then constituted by /+1 edge-disjoint simple cycles, ! of them formed

when the nodes j; ,...,J; are found, the /+1st being Py eeesdipneeondipee-sin

71

Clearly, because these simple cycles are edge-disjoint, at least one of them must
yield a ratio no larger than that of k. Because in x a minimum ratio is achieved, these
simple cycles whose ratios are no larger than x’s have actually a ratio which is the

same as x’s. W
4.3.3. The Length of a Period

Consider one of G’s simple cycles, say x, for which the minimum in Corol-
lary 4.9 is achieved. Let G denote the graph induced by the nodes in k. If ® is an

orientation of G’s edges, let w, be the corresponding orientation of G,’s edges.
One immediate consequence of Corollary 4.9 is that 'ya(a),()=%, if this is the value

of ¥, (w). By Theorem 3.11, wy is itself in a period of length p in which each of G ’s
nodes operates m times. What this means is that, as far as periodicity is concerned,
the whole graph G behaves as one of its simple cycles. In other words, there is a
simple cycle in G whose number of nodes is a multiple of p. Consequently, the
value of p for any graph which is not a tree cannot exceed the size of its largest sim-

ple cycle.

These observations were previewed in Chapter 3, where we also pointed out
that this bound on the length of a period readily yields a method for telling whether

an orientation is periodic or not in O (n3) steps.

72

4.4. The Concurrency of a Graph
4.4.1. The Optimality of Scheduling by Edge Reversal

We have seen that the question of how much concurrency can be achieved in
the synchronous model from an initial orientation @ amounts essentially to finding
the quantity ¥, (), which is also the amount of concurrency provided by the greedy
synchronous schedule from . One question that remains to be answered is how
much concurrency G can provide, i.e. what the optimal initial orientation is in terms

of the value of v, (w).

We define the concurrency of a graph to be given by the number v*(G) such

that

Y*(G)=5x)1€a3 Yo(®) .

In this section we present a criterion according to which Scheduling by Edge
Reversal is optimal. For such, consider a g-color, k-tuple coloring of G’s nodes using
the colors ¢, ...,co_;. Let it be called & In our synchronous environment, one
possible way to schedule independent sets of G for operation at each of the steps

would be to let all nodes with color ¢ operate, then those with color ¢, and so on.
The concurrency attained with this scheduling would be —:— As we will see in the
next section, there are colorings of this type which would provide a concurrency

larger than y* (G).

Now consider two neighboring nodes i and j in G. Let the g-color, k-tuple
coloring described above assign colors ¢;,,...,¢;, and ¢, ..., t© nodes { and j,

respectively. Assume without loss of generality that i;<---<iy and that

73

J1<''*<Jr. We say that this coloring is interleaved if and only if either

N<j1<ig<ja< -+ - <ip<y, Or f1<i|<jo<is< - <Je<lp.
Theorem 4.10: If & is interleaved, then y* (G)z—:—.

Proof: Orient G by an orientation @ such that w((, JN=jif and only if j; <i,.
All sinks with color ¢ are sinks in . If we reverse all of them, we get an orienta-
tion in which all nodes with color ¢ are sinks. Reversing all of these sinks, the fact
that § is interleaved implies that the orientation obtained is such that in it all nodes
with color ¢ are sinks, and so on. This sequence of orientations in which all nodes

with color ¢ operate, then those with color €1, etc., is therefore an Edge Reversal
. k. . .
schedule. The ratio — is the concurrency of this schedule, which must then be no
q

larger than y* (G), by definition. W

As a consequence of Theorem 4.10, may be called the interleaved

1
Y (G)
multichromatic number of G, in the spirit of the definition of x* (G).

4.4.2. Concurrency, Chromatic and Multichromatic Numbers

In this section, we establish a relation between Y* (G) and G’s chromatic and
multichromatic numbers, denoted by %(G) and X*(G), respectively, and discussed in

Chapter 2.

1 1
Theorem 4.11; —— < v (G) < .
YH(G))

x(G)

Proof: The first inequality follows immediately from Theorem 4.10, since

any l-tuple coloring of G’s nodes is interleaved. To see the second inequality, recall

74

that y* (G)=§ for some g-color, k-tuple coloring, thence

k
x*(G)

Y (G) s

1
X*(G)

<

By Theorems 4.10 and 4.11, any g-color, k-tuple coloring of G’s nodes which

is not interleaved must be such that

1
x* G

k
Gy<—<
?“()<q

4.4.3. The Concurrency of Bipartite Graphs, Cycles, and Complete Graphs

In this section, we investigate the behavior of the quantity ¥* (G), when G is
taken to be a complete graph, a bipartite graph, or a cycle. For these graphs, we also
discuss how ¥* (G) relates to x(G) and x*(G). Values of x*(G) that we report are
from {Stah76].

The simplest case is that in which G is a complete graph, since by Theorem
3.20 we have that 'yo(co)=—’1; for all we Q. Consequently, we have y* (G)=%. Also,

we have that (G)=n and %*(G)=n. Therefore, for a complete graph,

1 1
_)=
X(G) o y i (€)

=1
-

If G is a bipartite graph, then x(G)=2 and ¥*(G)=2. Also, we can obtain an

acyclic orientation of its edges by orienting all edges from one of the two partitions

75

to the other. Such an orientation is clearly periodic, by Corollary 3.13, with p =2 and

m=1. By Theorem 4.2, ya(co)=%, and by Corollary 4.3, v*(G)=1/2. So we have

1 1

3]]
TGO =g

x(G)

if G is a bipartite graph. This case includes trees (in accordance with Corollary 4.4),

and cycles with an even number of nodes.

As an interesting example, we consider the hypercubic network [Seit85].
This is a bipartite graph, and therefore achieves as much concurrency as is possible
according to our definitions and our constraints. A hypercube has 2¢ nodes, all of the
same degree 4, for some d21. Figure 4.2 shows two hypercubes, for d=3 and d =5,
respectively. The numbers shown next to each node are useful in figuring out the
interconnection pattern that yields the hypercubic configuration. Two nodes are con-
nected to each other if and only if their numbers differ in exactly one bit of their

binary representations.

When G is a cycle, we use Corollary 4.9 to find the optimal value of ¥,(w). If

n 1s even, such an optimal orientation orients) edges in the clockwise direction and

% in the counter-clockwise direction. In this case, ¥ (G):—é—, in full conformity with

the previous paragraph on bipartite graphs.

n-1

If » is odd, then optimality is achieved by orienting edges in one direc-

n+l n-1

tion, and the other in the opposite direction. We then get v* (G)=7’ and
. 2n
since we have x(G)=3 and x* (G)“—*;T, we get

76

5 1
7 3
6 2
7 160
19 3
18 7/ N 2
22 y /’ \ \\\ 6
23 / \ 7
21 7/,/ \\\ 5
\
20 & N 4
28 N % 12
2 \\\\ /,// 13

1 A\ \ / p. 1>

30 N\ AVS 7Rt

27 11

Figure 4.2. A 3-Cube and a 5-Cube

77

1 _ 1 _n-=1
x(G) <rG)= Y*(G) 2n

1
3

In Figure 4.3, we show optimal orientations (which also happen to be periodic, by

Lemma 3.18) of a-6-node and a 5-node cycle,

Figure 4.3, Optimal Orientations of a 6-Node and a 5-Node Cycle

4.4.4. Concurrency and Multichromatic Number May Be Distinct

In all of the examples in the previous section, it is the case that

t % Since the problem of finding ¥*(G) has been shown in [Gr6t81] to

G
be NP-hard (see [Gare79]), establishing the fact that the two quantities are in general
the same would provide an immediate proof of the NP-hardness of the problem of
finding y* (G) as well. Though it is indeed the case that this problem is intractable,
as we show in the next section, here we wish to provide an example for which the

equality above does not hold. Consider the graph G of Figure 4.4, In {Stah76), it is

shown that G’s k-chromatic number x*(G) is given by

78

¥H(G) = 2c+1+ {%—1—}

2k+1+% ifkisodd,

2k+1+%—2— ifk is even .

As a result, we have

. 2L ifrisodd,

X(G) _j2 2%

k
%, if k iseven .

k
Therefore, the value that we get for x*(G) = r;n?-x—(’;(ﬁ is y* (G)=-:5E-. Also, we have
2

that the value for y*(G) is Y“(G):—S—, and as a consequence it is established that

rOrro:

For the graph of Figure 4.4, it can be easily seen that x(G)=3, and we have

1 1
< G) < .
x(G) f(’xwm
These strict inequalities show that in some cases Y* (G) is different from both KIG_)
1
and .
*(G)

4.4.5. Intractability of Maximizing Concurrency

Consider the definition of Problem I1 below.

79

Figure 4.4, An Example for which [x(G)]™! <v* (G)<[x*(G)]"!

Problem I1: Given the graph G=(N,E) and the integers p22 and m21, is

there an orientation we Q of G such that ¥y, (0))>ﬂ?
p

IT is the decision problem corresponding to the optimization problem of

finding v* (G). We show in this section that IT is NP-complete.

Lemma 4.12: There exists a polynomial-time algorithm to ﬁnd ¥,(w), for

any we £,

Proof: By Theorem 4.7, it suffices to show that rmg p(K,®) can be found in
KeE
polynomial time, for any we Q. We describe an algorithm which operates on the fol-

. X . X .
lowing table. There is one row for each rational ;-, where x is the number of edges

80

oriented in a path in the direction in which the path is traversed, and y is the total

2

number of edges in it. Clearly, no more than n“ such values can exist, and so this is

the number of rows in the table. Each row is indexed by a tuple of the form (x,y),
where —;— is the corresponding value of the ratio that it stands for, 1<x,y<n. Our

table has one column for each of the n? ordered pairs of nodes in G. Each column is

therefore indexed by the pair (i,/}, i,jeN.

The algorithm we propose proceeds in stages, and the table is updated from
stage to stage. At stage k, the entry (x,y),(i,j) of the table contains an integer &’ if
and only if & is the largest integer such that 1<k’<k and: (1) there is a path from i to j
in G containing k" segments of which the first, third,... are oriented in the direction in
which the path is traversed from i to j, whereas the second, fourth,... are oriented in

the opposite direction; and (2) the ratio of the number of edges oriented in the direc-

tion of the traversal to the total number of edges in the path is equal to % If no such

k’ exists in the range specified, the entry is set to infinity. Clearly, no more than n
stages are needed, since Corollary 4.9 allows us to ignore any candidate ke K which
is not a simple c¢ycle. By Corollary 4.8, each of the segments comprising the path
described above has to be either a shortest directed path, if it is traversed in the for-

ward direction, or a longest directed path, if traversed in the backward direction.

The algorithm is initialized by computing, for each ordered pair of nodes
(i,j), the shortest and the longest directed paths from i to j in G oriented by . These
values are kept in two separate arrays, and are used during the algorithm to build the
table. At the same time, the values of the shortest paths are themselves stored in the

table, as folldws. Entry (x,x),(i,j) of the table gets value 1 if the shortest directed

g1

path from i to j has length x. All other entries get value infinity. This constitutes the
first stage of the algorithm. At the kth stage, 1<k<n, entry (x,y),(/,j) of the table gets
value k if there is a node, say /, such that: (1) entry (x",¥"),(i,1) of the table had value
k-1 at the end of the previous stage; and (2) either x —x’ is the length of the shortest
directed path from / to j, if k is odd (in this case, y =y'=x—x"), or y -y’ is the length of
the longest directed path from j to /, if k is even (in this case, x=x"). At the end of the
nth stage, each column of the form (i,i) is scanned and the minimum ratio is selected
among the rows which have finite values in that column. Then the minimum of these

minima is taken.

Clearly, each stage of the algorithm takes O (n*) time. The algorithm, there-

fore, operates in a time which is O (n5). W

We now let IT denote the usual Colorability Problem [Karp72] (known to be

NP-complete), given by the following formulation.

Problem IT: Given the graph G’=(N',E”) and the positive integer K'<n, does

G’ admit a lFtuple coloring of its nodes using K colors?

In Theorem 4.13 below, we use Problem IT in showing that Problem IT is

NP-complete.
Theorem 4.13: Problem IT is NP-complete.

Proof: In order to show that IT is NP-complete, we have to show that it is a
member of NP and that all problems in NP are polynomially reducible to it [Karp72,
Gare79]. That [Te NP is directly implied by Lemma 4.12. Notice that this assertion

relies essentially on the closed-form expression found earlier for the concurrency of

82

an orientation. In this sense, this membership in NP constitutes the hardest part of

this proof, unlike most NP-completeness proofs.

We show that all problems in NP are polynomially reducible to IT by show-
ing that there is an NP-complete problem which is polynomially reducible to [T. We
do so by showing that IT’=<I1, i.e. that Problem I1” is polynomially reducible to Prob-
lem I

Consider the instance of problem IT" consisting of the graph G'=(V',E") and
the positive integer K<IN'|. Let G =(N, E), together with the integers p22 and m21,
be the instance of problem IT obtained as follows. G is obtained from G’ by adding a
new node, say &, to N’, and connecting it to all other nodes in N, i.e. N=N"U{k} and
E=E"U((k,i),ie N'}. Furthermore, let p=K+2 and m=1. The action of problem IT on

this instance consists of deciding whether there is an orientation ® of G such that

Yo(w)> . By Corollary 3.13, all periods in G’s state space are such that each

K+2

node operates only once. This is seen by noting that, in any such period, the orienta-
tion resulting from an operation of node &, whose sink decomposition we denote by
So....,5%1, is such that each node in Sy has as neighbor the node in S3-;={k}.
For this reason, 1 actually decides whether there is an orientation o of G whose sink
decomposition has length smaller than X+2 or, equi:ralently, by the remarks in
Chapter 2, whether G’s nodes can be colored by less than K'+2 colors. This is true if
and only if the nodes of G’ can be colored by less than K'+1 colors, i.e. by K colors.

83

CHAPTER §
EDGE REVERSAL IN AN ASYNCHRONOUS MODEL

5.1. Introduction

In this chapter we present a discussion of Scheduling by Edge Reversal in an
asynchronous environment. Qur asynchronous model is such that each node has
access to a local clock only, and therefore no global timing basis exists. Messages
sent over communication channels remain in transit for a finite, though arbitrary,
time. In this model, the following is how Scheduling by Edge Reversal functions,
Sinks in the initial acyclic orientation operate and send messages out on their
incident channels, in order to reverse the orientation of the corresponding edges.
Whenever a node gets similar messages on all of its incident channels, it proceeds
likewise. As in the synchronous model, these messages may carry additional infor-

mation, depending on the application at hand.

In Section 5.2, we present details of the model for the case of 2 generic asyn-
chronous computation. The concepts of events, orders, local and global states are
reviewed, following [Lamp78, Brac84, Chan85). We also discuss the representation
of this event system by a precedence graph, i.e. a directed acyclic graph which
represents the interdependence among events. Section 5.3 specializes the concepts
described in the preceding section to the case of Scheduling by Edge Reversal. We
discuss how this affects the notions of events, orders and states, and discuss another

precedence graph that can be used in this case. To finalize, we discuss the concepts

84

of an execution and of the timing of an event. We show that the synchronous model
of Chapter 3 can be regarded as a special case of the asynchronous model described
in this chapter. A concurrency measure is then presented for the asynchronous case,

and we relate it to the synchronous measures discussed in Chapter 4.
5.2. Events and Global States: the General Case
5.2.1. Events and Orders

Let &@; be the sequence of states of node i in a computation. Notice that it is
in perfect accordance with our assumptions to talk about the state of a node at a
given time, where it is understood that time means local time, as given by that
node’s clock. In the beginning of a computation, each node is in its initial state. As
the computation progresses, a node’s state changes, and these changes are caused by
events. At the end of the computation at node i, i.e. when no more events involve

node i, we say that node i is in its final state.

An event v has associated with it a node i and a time 1, as given by i’s clock,
at which v happened. It may have been triggered by a message from one of i’s neigh-
bors, or may be a spontaneous internal event. Its effect is to make node i change its
state from a member of @; to the next. Finally, it may or may not cause i to send a
message to one or more of its neighbors. We assume that it takes no time for an
event to happen, from the receipt of the message that triggers it, if any, to the even-
tual sending of messages, if any. In the sequel, we let V denote the set of events for

a given computation.

83

Despite the absence of a concept of global time in our model, there is still
some causality among the events. Define the following relation, called BEFORE, on
the set V of events. Two events v,v'e V are such that v BEFORE V' if and only if: (i)
v and v’ involve the same node, and v occurs before v/, without any other event hap-
pening in the meantime, or (i) a message is sent by v and received at some neighbor-
ing node by v’. Notice that there are at most two events v such that v BEFORE v,
for any event v'. Let B denote the transitive closure of BEFORE. B is a partial order

of the events in V, since it is irreflexive and transitive [Ende77].

Let V; denote the set of events which happened at node i, ieN. Each of the
sets V; is totally ordered by the relation B. We call ve Vi the first event at node i if
and only if no other event v’e V; exists such that v’Bv. Similarly, it is the /ast event at
node i if and only if no event v'e V; exists such that vBv’. In the same vein, let ¢; be
the state of node i at some local time. We denote by se (¢;) the event, if any, that
happens at node i when it is in state ¢:, and by pe (¢;) the event, if any, that happens

at node i resulting in its transition to state 0;.

An event V' is in the past of event v if and only if it is a member of
PAST (v) = (veVIVBv},
and is in its furure if and only if it is a member of

FUTURE (v) = (v'e VIvBV') .

5.2.2. Global States

In this section, we review the concept of a global state (or snapshor) of the

system. A system state is defined to be an n-tuple whose ith component is a member

86

of ®;. This definition is usually extended to include the states of the communication
channels as well. Here, however, we restrict ourselves to discussing node states
only, since this serves our purposes quite adequately. Below we characterize system

states which are global states.

Let ¢ be a system state and ¢; the corresponding local state of node ieN.

Define the past of ¢ to be the set of events

PAST (¢) = [{pe (6:)} W PAST (pe (¢£))] .
ieN

and its future to be

FUTURE ()= [{se (¢;)) w FUTURE (se (¢,-))] .
ieN

This system state is a global state if and only if

ve PAST () — PAST (v)CPAST (¢) .

In other words, ¢ is a global state if and only if the past of an event in the past of ¢ is
contained in the past of ¢. The set of global states will be denoted by ‘¥C®. Like-

wise, a generic member of ¥ will be denoted by .
5.2.3. Precedence Graphs

All the concepts discussed so far in this chapter can be better understood if
we consider a graph representation of them. In this section, we discuss a precedence
graph that represents the interdependerice among events, and in which the concept of

a global state can be clearly visualized.

87

The precedence graph we consider is the acyclic directed graph
PG=(V,BEFORE). That is, PG’s set of vertices is the set of events V, and its
directed edges are specified by the relation BEFORE as follows. If v and v’ are
members of V, then an edge exists in PG from v to v’ if and only if v BEFORE v".
As a consequence, the in-degree of any vertex in PG is at most 2. In PG all events
veV; form a directed chain from the first event in i to the last. Each edge in this
chain can be thought of as representing the state of node i between the events
represented by the endpoints of that edge. Notice that this representation does not
include an edge to represent either a node’s initial or final state. Edges exist between

these chains as dictated by the messages sent between nodes.

An example of a precedence graph is given in Figure 5.1. Each dashed hor-
izontal line represents a local time axis for a node. Local time increases from the
left to the right. The rest of the drawing represents the precedence graph PG for
some computation. We have exemplified three candidates for global states. Each of
these candidates is represented by a vertically oriented line, each of which crosses a
number of edges. The chain edges crossed by one such line stand for the local state
of the corresponding node in that candidate to global state. If a chain is crossed
without an edge in that chain being crossed (e.g. line (), then the corresponding
node is either in its initial or final state in that system state. The interchain edges
crossed by the line should represent messages which would be in transit in that glo-
bal state, had we included the state of communication channels in our definition of a
system state. By our definitions of a global state, one of these vertically oriented
lines is a global state if and only if it is not crossed by any edge from the right to the
left. It is clear that the lines labeled (a) and (c) in the figure are global states,

whereas the one labeled (b) is not.

88

(a) (b) ©

Figure 5.1. Precedence Graph for a Generic Asynchronous Computation

5.3. Events and Global States: the Case of Edge Reversal
5.3.1. Events, Orders, and Global States

We now restrict ourselves to asynchronous computations governed by
Scheduling by Edge Reversal. We assume that a node’s state may only change when
the node operates. In other words, if a node receives a message from one of its
neighbors which is not the last message it has to wait for before operating, then the
event corresponding to this message does not change its state. Based on this assump-

tion, we may classify the events in V into the following two types. A type-1 event

89

constitutes the receipt of a message at a node, which is not the last message that node
has to wait for in order to operate. As a consequence, its state does not change, and
no message is sent out. In a typical type-2 event, a node receives the last message for
which it is waitiﬂg, operates, and then changes its local state. A message is then
broadcast to all of its neighbors. In the sequel, V' and V; denote the set of type-1

and type-2 events, respectively.

Because of the assumption that a node’s state may only change when a type-
2 event happens, we see that two global states are distinct from each other if and
only if at least one type-2 event in the past of one of them is in the future of the

other. This motivates the following theorem.

Theorem 5.1: In an asynchronous computation in which nodes are scheduled

[Val+n
for operation by Edge Reversal, at most — 2 pn distinct global states may
- n

exist.

Proof: Let ¢; be a local state of node i, and consider the number of distinct
global states y such that y;=¢;, i.e. the number of distinct global states in which
node { participates with its local state ¢;. We show that this number is no greater than
271 A global state involving ¢; can be constructed as follows. Visit a neighbor of
{, and select one of its local states which can participate with ¢; in a global state.
Then a neighbor of that neighbor, and so on. At each step, at most two distinct local
states can be considered for inclusion in the global state. Since the distance from i to
another node is in the worst case equal to n~1 edges, we get the number 2"~! of pos-
sible distinct global states in which ¢; participates. Considering that there are at

most |V |+n distinct local states during the computation (the » initial states, plus

90

the states generated by type-2 events), we see that there may be no more than

1V, 14n

2n—1
n

distinct global states. The division by n comes from the fact that in the number
(1V4l4n)2* 1,

each global state is accounted for # times. W
5.3.2. A Modified Precedence Graph

Because of the assumption that only type-2 events may change the local
states of nodes, it becomes convenient to define a precedence graph whose set of
vertices is V5. We denote this graph by PG’=(V,,BEFORE). Each of its vertices is
a type-2 event. Also, if v,v'eV, the directed edge (v—v) ekists if and only if 4

type-1 events, say v;, . . .,V € V1, can be found such that
v BEFORE v;, BEFORE - -- BEFORE v;, BEFORE v

for some d=0. The graph PG’ can be viewed as obtained from PG by lumping
together all consecutive type-1 events in a same set V; to the succeeding type-2 event
in that same set, if any. Notice that a vertex in PG’ typically has both its in-degree
and its out-degree equal to 1 plus the degree of the node in G at which the

corresponding event happened.

We illustrate the construction of this graph in Figure 5.2, where three graphs
are shown. From the top, one finds G, then the corresponding PG, then the
corresponding PG’. The initial orientation of G is that shown in its drawing. In the
drawing of PG, events enclosed in an ellipse are replaced in PG” with one single ver-

tex. One should notice that global states can still be graphically represented in PG’

o1

as they can in PG, through the use of vertically oriented lines that separate its vertex
set. However, each line in PG’ may correspond to more than one in PG. All of these
lines in PG, however, correspond to the same global state. As a consequence, the
lines that we can draw in PG’ suffice to represent all possible distinct global states,
so in this aspect nothing is lost in moving from PG to PG’. As an example, in Figure

5.2 we show two such lines in PG and the corresponding line in PG’.
5.3.3. Executions and the Timing of Events

In this section, we investigate the impact of message delays on the timing of
events. We assign different delays to messages, and investigate the effects of doing
this. When it takes messages different times to be delivered, the structure of PG may
change. Nevertheless, because the computation is based on Scheduling by Edge
Reversal, the relative order of the type-2 events remains unchanged. What may
change is how type-1 events get organized in between two type-2 events. The struc-

ture of PG, the graph in which only type-2 events participate, remains the same.

Define an execution 8 to be an assignment of finite real numbers to messages,
and denote by @ the collection of all such assignments. Each of the members of © is
a possible scenario for the occurrence of the events in V. We restrict these real

numbers assigned to messages to being in the interval [0, 1].

Each execution 8e @ is an assignment of real numbers in the interval [0,1] to
the edges in PG” which comrespond to messages being sent between nodes. If we
assume that all other edges get value 0, then we define the timing tg(v) of a type-2
event v under execution 6 to be the weighted length of a longest path in PG’ from a

source to v.

92

Figure §.2. Precedence Graphs under Scheduling by Edge Reversal

93

In the spirit of Chapter 3, we now define m;(6,¢) to be the number of times
that node i operates under execution 8 “up to time .” More precisely, the value of
m;(9,1) is the number of type-2 events v happening at node i such that Tg(v)<t. In the

next section, we ini/estigatc some consequences of this definition.
5.3.4. Greedy Synchronous Operation

Consider the execution 8, ® which assigns value 1 to all messages. One

immediately notices that Tg,(v) is a nonnegative integer for all ve V. In fact, if we

let w; denote the initial acyclic orientation of G, and furthermore let O,€ X, be the
greedy synchronous schedule from «y, then execution B can be thought of as the
realization in an asynchronous environment of the greedy synchronous schedule Cg.

To see this, recall from Chapter 3 that, for all ie N,
m;(6;,0) =m;(c,,1)=0,
and for all ie N and all g1,
mi(85,1) = m;(Cy,q+1)

where q —1<t<q. In other words, the number of times that node operates in the g+1
first orientations of the greedy synchronous schedule G, is the same as it does in exe-

cution 6; up to time ¢, if g—1<t<q.

Theorem 5.2 below provides us with a counterpart of Theorem 3.4. It states
that nodes will not operate more frequently in an execution in which all messages

take as much time as possible to be delivered than in any other execution.

Theorem 5.2: m;(8;,t)<m;(8,1), for all ie N, all 8 ©, and all 1>0.

94

Proof: Let ¢ be a nonnegative integer, and " be a nonnegative real number
such that t<t’<¢+1. Since the timings of all type-2 events are nonnegative integers in
8,, we see that m;(8,,1)=m;(8,,?) for all ie N. For all other executions 8¢ ©, it is true

that m;(8,1)<m;(8,7), and therefore it suffices to prove the theorem for r€ {0,1,2,...].

We use induction on t. For r=0, the theorem holds trivially with equality.
Assume that it holds for some integer ¢ 20. We then show it for z+1. It is sufficient to
show that, if m;(0,,2)=m;(8,r) for some O ®, and i operates from 7 to t+1 in 6, then
it must also operate in 0 in the same interval. For let v be the event corresponding to
i’s operation from f to r+1 in 6. Also, let v’ be the event corresponding to the first
operation of node i after ¢ in 0. Clearly, we have Tg(v)<tg,(v), and so v’ must take

place between ¢ and r+1 as well. W
5.3.5. A Measure of Concurrency

In this section we give a measure of concurrency for Scheduling by Edge
Reversal in an asynchronous model. The definidon we give for the concurrency
attainable in the asynchronous model from an initial orientation @ is entirely analo-
gous to the one provided in Chapter 4, and therefore we proceed directly to its final

form. It will be a function of the form
Ya: 2R,

such that

e 1
Ya(@) = mig lim =5 Zmi®.0),

for all we Q. The reason for the ¢+1 in the denominator, instead of simply ¢, is that

we allow £=0. We can think of the ratio

95

1
(r+1)n

Zm,-((-),r)
ieN

as representing the amount of concurrency achieved under execution “up to time

5,” r20.

The measure of concurrency ¥,(w) indicates the very least amount of con-
currency that can be achieved in the asynchronous environment from orientation .
By Theorem 5.3 below, this minimum amount happens when all messages take as
much time as they can to be delivered. It corresponds to the concurrency attainable
in the synchronous environment from that same orientation if the duration of each
synchronous step is the longest time that a message may spend in transit in the asyn-

chronous model.
Theorem 5.3: For all we Q, v,(®) =v,(®).
Proof: Recall that, if 8, is the execution in which all messages take one unit
of time to be delivered, then for all ie N,
mi(8,,0) = m;(G,, 1) =0,
and for all ie NV and all g1,
m;(6s,1) = m;i(Gy,q+1) .

Here o, is the greedy synchronous schedule from , and q—-1<t<q. Theorem 5.2
states that m;(8;,1)<m;(0,1), for all ie N, all 8 ®, and all 720. Consequently, we can

actually write

= lim {] +1 ¥
Ya (@) ;ﬂ @+Dn ‘_EVma(Ggq)

which immediately implies that

96

Ya(m) =Yo(w) ,

forallwe Q. W

97

CHAPTER 6
THE PROBLEM OF IDENTIFYING OPTIMAL GLOBAL STATES

6.1. Introduction

Here we consider the following problem on the asynchronous mode] of
Chapter 5. With each state of a node, associate a real number. Find a global state for
which the sum of these numbers over the participating local states is optimal (max-
imum or minimum). As we remarked in Chapter 1, a solution to this problem allows
us to retrieve the minimum found by 'thc distributed variation of the Simulated

Annealing method.

We present a precise statement of the problem in Section 6.2. Since an asyn-
chronous computation can be represented by the precedence graph PG inroduced in
Chapter 5, the problem can be thought of as a problem on precedence graphs.
Despite the known NP-completeness of some similar problems on precedence sys-
tems {Seth75, Abde76, Abde78, Gare79), we show in this chapter that finding an
optimal global state amounts essentially to finding a minimum flow in a modified
form of the precedence graph. We discuss this Min-Flow formulation in Section 6.3.
In Section 6.4, we concentrate on computations governed by Scheduling by Edge
Reversal, and discuss the problem on PG’, the variation of PG introduced in Chapter
5. The Min-Flow formulation of Section 6.3 is of course also applicable here. A
Max-Flow formulation is also possible, due to the special structure of PG’. We ela-

borate on the application to the distributed implementation of Simulated Annealing.

o8

Both the maximum and the minimum flow computations can be performed
efficiently in the case of Scheduling by Edge Reversal, by partitioning the graph in a

convenient way.
6.2. Statement of the Problem

We first recall some notation from Chapter 5. For a general asynchronous
computation, V denotes the set of events in that computation, ®; the sequence of
states of node ie N, @ the set of all system states, and ¥ the set of all global states
with respect to V. Here we assume that each node state is labeled with a number

given by the function

g: Ud—R.
ieN

The problem we wish to discuss is how to find a global state y*e'¥ such that

Sesw*d2z Y gy,

ieN ieN
for all ye ¥, where we recall that y; denotes the local state of node i in the global

state .

One equivalent statement of this problem comes .rom the following observa-
tion. Each global state includes exactly one component for each node in N. For this
reason, if w*e ¥ is a solution to our problem, then it is also a solution if the function
g is increased by a real constant on all of the members of ®;, for some i€ N. In par-

ticular, let g; be a real constant such that

g; Smin{0, J.-Igg.-g)},

for all ieN. The problem we posed above is equivalent to the following problem.

99

Find a global state yw*e ¥ such that

2Ry 2 T Ay,
ieN ieN

for all ywe ¥, where the function # is of the form

h: U(D‘-—)[O,N) ’
ieN
and is given by
h@)=g) -g;,

for all ¢;= ®; and all ie V. In other words, the solution to the original problem is still
valid if the function g is replaced with the nonnegative function A. The fact that we
can pose the problem using nonnegative labels only is of crucial importance to the

solutions we propose in the sequel.

As a final observation, notice that we can also pose the problem as a minimi-
zation problem by just replacing & with —g. Of course, the same construction to
obtain £ is still valid. In Section 6.3 we deal with the formulation as a maximization

problem, whereas in Section 6.4 we also regard it as a minimization problem.
6.3. Min-Flow Formulation

We can view the problem as a problem on the precedence graph PG. This is a
graph which possesses one vertex for each of the events in V, and there are directed
edges between vertices if and only if the respective events are related to each other
through the relation BEFORE. It is an acyclic directed graph with a directed chain of
edges for each node in N, from the first event in that node to the last. Events in the

chain corresponding to node i are members of the set V; of events happening at node

100

i. Each edge in this chain represents the state of node i between the two events that
serve as endpoints to it. Clearly, a node’s initial and final states are not represented

by any such edge.

In order to restate the problem in terms of the graph PG, we expand the ver-
tex set of PG by two vertices s and ¢, such that there is a directed edge from s to the
first event in each node, and from the last event in each node to . We call this
expanded graph H=(J,A), where J=V'U({s,2}, and A is the enlargement of PG’s edge
set to include the edges directed away from s and those directed toward z. An s —t cut
is a subset of A which disconnects s from ¢ by partitioning the vertex set J into two
components, call them S and S, such that se S and re S. We shall denote by § :S the
set of edges in the 5~z cut which lead from a vertex in S to a vertex in S, and by S:S
the set of edges which lead from a vertex in S to a vertex in S. from the discussion in
Chapter 5, it is clear that any global state induces an s—¢ cut in H. The s-t cut

corresponding to the global state ywe'¥ is such that
S = {5} UPAST(y)
and
S ={t) UFUTURE(y).

In fact, we can even say that H depicts global states in a better way than PG does,
since now there is a directed edge corresponding to each node’s initial and final
states. These are the directed edges from s to the first event in each node, and from
the last event to . In H, there is a directed chain from s to r corresponding to each
node, and this chain contains the corresponding chain that exists in PG. Although
each global state induces an s—t cut in H, the converse statement is not necessarily

true. For there are st cuts which do not correspond to global states. As an example,

101

consider the graph H depicted in Figure 6.1. This graph is obtained from Figure 4.1.
In Figure 6.1, we show the same vertically oriented lines, labeled (a), (b), and (c),
that appear in Figure 4.1. Clearly, all three lines represent s —¢ cuts in H, though the
line labeled (b) does not represent a global state. Nevertheless, it is immediate to see
that every s - cut such that $:5=0 induces a global state. In Figure 6.1, this is the

case with the cuts labeled (a) and (c).

Figure 6.1. Graph H for a Generic Asynchronous Computation

The problem can then be restated as follows. Label each edge ae A with the
2-tuple (b (a),c(a)) such that:

(1) b(a) = h(¢;), if edge a corresponds to state ®; of node i (i.e. it is in the
chain corresponding to node i), or b(a) =0, otherwise. Notice that
this labeling assigns the value of 4 at initial states to edges from s.

Similarly, it assigns the value of 4 at final states to edges to t.

102

(ii) cla) =eo.

Define the value of an 5 —t cut to be

Zb@- ¥ cl.

aelS: S aes:S

It can be seen that, if an s—f cut is such that S:S#(, then its value is minus infinity.
Consequently, an s—¢ cut induces a global state if and only if its value is nonnega-

tive. Clearly, global state y is such that ¥ A(y;) is a maximum over ‘¥ if and only
ieN

if the corresponding s—z cut is of maximum value. By the Min-Flow Max-Cut
Theorem [Dilw50, Lawl76], an s—r cut of maximum value in H can be found by
computing the minimum flow from s to 7, using b (a) as a lower bound to the flow on

edge a€ A, and ¢ (a) as an upper bound, i.e. a’s capacity.
6.4. The Problem under Scheduling by Edge Reversal
6.4.1. Min-Flow Formulation

In all of Section 6.4, we investigate the problem in the case in which nodes
are scheduled for operation by Edge Reversal. Recall that the simplified precedence
graph PG’ can be used in place of PG in this case, and still every distinct global state
is represented. Clearly, the construction used previously to obtain graph # from PG

can also be used to obtain a similar graph from PG’

A graph H'=(J",A’) is obtained from PG’ by enlarging its vertex set, V5, with
the vertices s and . Also, a directed edge is created from s to the first type-2 event in
each of the nodes, and from the last such event in each of the nodes to r. By assign-

ing the values described in Section 6.3 to the edges of H’, a global state of maximum

103

value can be found by computing the minimum flow from s totinH'.
6.4.2. Max-Flow Formulation

As we remarked previously, in the remainder of Section 6.4 we assume that
the problem is originally posed as a minimization problem. We have already seen
that any s~z cut in A’ such that S:S=@ induces a global state. While this is true for
general asynchronous computations, it can be made more precise because H’ is gen-
erated by Scheduling by Edge Reversal. Suppose that an 5—¢ cut in &’ contains an
edge in S:S which does not correspond to any message, i.e. an edge in the chain of
some node. Let this edge be (v—v"), and i the node at which v and v’ happened.
Messages are sent by v to i’s neighbors, and received by v" from those same neigh-
bors. At least one of these messages must correspond to an edge which is also in
S:S, and therefore we get the following tighter characterization of a global state. In
H’, any s—t cut such that S:S contains no edge between different chains is such that

S:S =, and so induces a global state.

After transforming PG’ into the graph 4’ of the previous section, we take the
additional step of transforming the graph A’ into the graph H'=(J",A") as follows.
The vertex set of H’ is the same of &”. Its directed edge set is obtained from A’, the
edge set of H', oy reversing the orientation of all edges which correspond to mes-
sages, i.e. all edges connecting events in different chains. Just as with the graph H’,
every global state induces an s—z cut in A’, but not conversely. However, from the
discussion above, we have that in #’ every s—¢ cut such that S:S contains no edge

between vertices in different chains induces a global state.

104

The following is a restatement of the problem. Label each edge acA’ with

the number ¢ (a) such that:
1 c(a) = h(0), if edge a corresponds to state ¢; of node i,
(i1) ¢ (a) = oo, otherwise.

Redefine the value of an s —¢ cut to be

Y, cla).

aes:§
From this definition, one sees that, if an s—¢ cut is such that § :S contains an edge
between vertices in different chains, then its value is infinity. Consequently, every
s—t cut with finite value induces a global state, and vice-versa. A global state y is

such that ¥ 4 (y;) is a minimum over ‘¥ if and only if the corresponding s -z cut is
ieN

of minimum value. By the Max-Flow Min-Cut Theorem [Lawl76], an s-t cut of

minimum value in H’ can be found by computing the maximum flow from s to ¢,

using ¢ (a) as the capacity of edge ae A
We show in Figure 6.2 a graph PG’ and the corresponding graphs H’ and H.
6.4.3. An Example: Distributed Simulated Annealing

We described in Chapters 1 and 2 a distributed realization of the Simulated
Annealing method to approximate the minimum of functions of many variables. We
had the set X={X,...,X,} of n variables, each of which takes values from a com-

mon domain D. The function fto be minimized was

fx)=3% grix),
YexX

105

for all xe D", where gy(x) depends only on those coordinates of x respective to vari-
ables in Y. The implementation we suggested associates node i with variable X;, and
connects two nodes to each other if and only if there is a subset Y of X of which both
variables are members, such that gy(x) is nonconstant. Nodes are scheduled for
operation by Edge Reversal, and updated their variables probabilistically, using

neighboring values only.

Here we want to cast that particular application in the model of Chapter 3.
We start by noticing that each @; has values from D. Consequently, ®gD". The
function f can then be also regarded as a real function on @. As the simulation
proceeds, global states are produced, and one wishes to obtain, at the end, a global
state for which the function was found to be minimum during the simulaton. We
show below how this problem of retrieving a global state of minimum value can be
regarded as an instance of our problem. In other words, we specify the function g
whose sum over the local states participating in a global state is to be minimized

over V.

Using the terminology of Chapter S, the state of a node only changes when a
type-2 event happens, i.e. when messages have been received from all neighbors,
and the node operates. A type-2 event v causes a change in f, denoted by OA(v),

which is given by
Sv)=f()-fx),
where x and x” are points in D* which differ only in the coordinate corresponding to

the node where v happened. In x, this coordinate is the state of that node preceding v,

in x’ its state succeeding v. Because of the special form of f, we have:

107

Sv)= 3 gr(x) ~ T gy(x)
YeX Yox

=Y er()+ ¥ gy - ¥ gr(x)~ ¥ gyx)

Yex Yex rex Yex
- XieY XY XieY XeY

=¥ grx)~ ¥ gr(v),

Yox Ygx
X.eY XeY

since all functions gy such that X;¢ Y do not depend on the value of X;. Notice that
these are quantities that can be readily determined by node i, since they only involve
local information. For the sake of simplicity, we let 8/(v)=0, whenever v is a type-1

event. At any global state y, we have

f=fyo+ 3 84w,
ve PAST (y)

where \; is the initial global state. This can be rewritten as

fFw=Fflyo)+ 3 Y 8,

ieN veV.~PAST (y)

thus leading to the following formulation as an instance of our problem. Let the

function g be such that

g(y) = Y 5.
veVnPAST (y)

Clearly, global state y* is such that
F sy,
for all ye'F, if and only if

28w)< T ey,
ieN ieN

for all ye . Notice that g (y;) is the cumulative change caused in f by node i from

108

the beginning of the simulation up to local state ;.
6.4.4. Centralized Implementation

We discuss in this section a centralized implementation of the Max-Flow
solution proposed above. We leave the desirable distributed implementation to be

developed in further research (see Chapter 7).

The solution we propose requires that a leader be elected in G. Such a leader
is a node which all other nodes have agreed to be distinguished [Gall83). After the
computation governed by Scheduling by Edge Reversal has terminated, the pre-
cedence graph may be transmitted to the leader, which will then work on the solu-

tion.

We saw that a minimum global state in PG’ may be obtained by finding a
minimum s —¢ cut in H’ or, equivalently, by computing a maximum flow from s to ¢
in H’. Since the graph H has |V, |42 vertices, a centralized implementation using
the most efficient known max-flow algorithms [Malh78, Papa82, Gold86] could
require as much as O (1V, 1) time to run. The value of |V21 depends on the
number of events in the computation to which H’ refers. Since this number is in

principle unpredictable, the Max-Flow computation may turn out to be quite costly.

In this section, we show that a minimum s —¢ cut can be obtained by finding
n+1V,!l s—tcuts in H’ at a cost which depends polynomially on » only, and then
taking the minimum of these cuts. As a result, the cost of finding a minimum cut is

linearin 1V, 1.

109

First, some definitions. The immediate past of a global state y in the set V; is

the set

APAST (y) = (pe,(y;),
ieN

where pe, () is the type-2 event, if any, that immediately precedes ;. Similarly,

we define the immediate future of yinV, tobe

IFUTURE (y) = _jsea(y,) ,

i€.

se(y;) being the type-2 event, if any, that immediately succeeds ;. Now let v be an
eventin V. A global state vy, is the earliest global state with respect to v if and only
if velFUTURE (\[,r,_.). and, furthermore, no other global state V¥ is such that
velFUTURE (y) and (V2PAST (y)) < (V2PAST (y,)). In the same vein, we say
that ; is the latest global state with respect to v if and only if veIPAST (y;) and,
besides, no other global state Y is such that velPAST (¢) and
(VaFUTURE () < (V3~FUTURE (w).

Intuitively, the earliest global state with respect to a type-2 event v is the
“leftmost” cut that can be made in PG’ such that v appears immediately to its right.
Similarly, the latest global state is the “rightmost” cut that can be made in PG’ such

that v appears immediately to its left.

We now define SL (¢;), the slice of V' with respect to local state ¢;. If ¢; is
the initial state of node i, then

SL(¢)=V,n PAST (yp),

where y; is the latest global state with réspect to event se(9;). If ¢; is the final state

of node i, then

110

SL(§;)=V4 ~EFUTURE(y,),

where . is the earliest global state with respect to event pe,(9,). If neither of these

is the case, then
SL(¢;) =V, N PAST (y) N FUTURE (v,) ,

where \; is the latest global state with respect to event se(¢;), and , is the earliest

global state with respect to event pe(¢;).

Notice that the subgraph of PG’ induced by SL (¢;) includes all and only the
global states in which ¢; can participate. Then we can find the minimum global state
in PG’ by first finding the minimum global state in the n+IV | slices of V;, and
then finding the minimum among them. We show below that a minimum global state
in the subgraph induced by one of the slices can be found in a dme which does not

depend on 1V, 1,
Theorem 6.1: The set SL (¢;) has at most —;-(n2+3n) events, §;e D;, ieN.

Proof: Consider node i. Let dg(i,/) denote the distance in G between nodes i
and j. We show by induction on this distance that, if node j is such that dg (i, j)=k for
some 0<k<n -1, then SL (¢;) contains at most k+2 events happening at j. The asser-
tion is clearly true for k=0, since pe,(d;) and se2(¢;), if defined, are the only events
in SL (¢;) happening at node i. Assume it is true for k—1, and show it for £. Let j be
such that dg (i, /)=k, and let ! be one of its neighbors such that dg(i,/)=k-1. By the
induction hypothesis, there are at most k+1 events in SL(¢;) happening at /. Since
the computation is governed by Scheduling by Edge Reversal, and considering the
definition of SL (¢;), no more than k+2 events may happen at j, thus proving the

assertion. SL(¢;) has the greatest number of events when there is exactly one node

111

in G whose distance from i is &, for each 0<k<n—1. In this case, there are
243+ - +(n+l) = %(n2+3n)
events in SL(¢;), i.e.

ISL(O)) < -;—(n2+3n) .

The construction outlined previously can be applied to the graph induced by
each of the slices SL(¢;) to find the minimum global state involving ¢;. By Theorem
6.1, this has a time complexity of O (n®), using one of the Max-Flow algorithms
found in the literature [Maih78, Papa82, Gold86]. The overall complexity of finding
the optimal global state is then O (1V ;| n®). Notice that this complexity is achieved
despite the fact that, by Theorem 5.1, the number of distinct global states is linear in

[V, | and exponential in n.

In these constructions, the capacity of edges outgoing from s and incoming to
t are set to infinity, since we do not wish a cut involving these edges to be con-
sidered. Exceptions to this rule are cases in which an edge from s is connected to the
first event in a node, or an edge to ¢ is connected to the last event in a node. Such

edges are assigned capacities reflecting that node’s initial or final state, respectively.

Though we have dwelt on the Max-Flow formulation in order to present this
more efficient implementation, it should be noticed that we have essentially used a
property of the global states generated by Edge Reversal. As a consequence, similar

techniques apply to the Min-Flow formulation as well.

112

CHAPTER 7
DIRECTIONS FOR FURTHER RESEARCH

In this chapter we point out some directions in which the research presented
in this dissertation can be extended. First, we discuss extensions pertinent to
Scheduling by Edge Reversal, including applications and concurrency measures.
Secondly, we consider extensions to the Max-Flow solution to the problem of identi-
fying optimal global s.tates. The extensions we consider have to do with a fully dis-
tributed, on-the-fly implementation of that solution when the computation is
governed by Scheduling by Edge Reversal. Lastly, we comment on possible exten-

sions to our distributed implementation of the Simulated Annealing method.

We describe a few lines of research to be pursued in the context of analyzing
the Scheduling by Edge Reversal method itself. To begin with, one might look for
different areas and problems to which the scheduling method would be applicable.
For example, the model described in [Yemi83] for resource sharing systems requires

that independent sets be scheduled for operation, and so our method might be useful.

Since the decision problem corresponding to determining y*(G) is NP-
complete, the search for heuristics to approximate its value might turn out to be of
interest. With respect to the particular applications that we have considered, this
would provide a means of coming up with an initial orientation yielding a value of

concurrency approximately close to the optimum.

113

As a second direction in which this work can be extended, we argue towards
the possibility of implementing distributedly the Max-Flow solution proposed in
Section 6.4, when the precedence graph is generated by Scheduling by Edge Rever-
sal. The idea is to have each node ieN store information about the events that
involve it, i.e. the members of V; which are type-2 events, and calculate, distribut-
edly and on-the-fly, the maximum flow from s to ¢ in the graph H. A newly proposed

Max-Flow algorithm [Gold86]) is quite convenient in this sense.

Unlike other Max-Flow algorithms, this algorithm first finds the cut of
minimum value, in a first stage, and then computes the maximum flow, in a second
stage. This makes it convenient to us, since it is the minimum cut that we are really
locking for. Moreover, and more importantly, this algorithm operates fully distribut-
edly by relying on local information only. It operates on a residual graph, which is a
subgraph of the original graph containing nonsaturated edges only. Each vertex
keeps an estimate of its distance to ¢ in the residual graph, and pushes excess flow in
the direction of ¢, based on this estimate., The only requirement is that the estimate be

a lower bound on the actual distance to ¢ in the residual graph.

We show in the following simple lemma that these distance estimates can be
associated with the vertices of H’ as soon as it starts to be built, i.e. during the com-

putation itself.

Lemma 7.1: In A, a shortest undirected path from any event to ¢ exists along

the chain corresponding to the node at which that event happens.

Proof: Notice that any alternative to the path asserted by the lemma would

be a path that goes to the chain of another node, and then heads to . If these two

114

chains correspond to nodes which are k£ hops away in G, for some 1<k<n, then we
see that k hops are needed to get from one chain to the other. If [is the length of the
path asserted in the statement, then Corollary 3.3 implies that the alternative path

cannot be shorter than £+({ —k), thus showing the equivalence of the two. B

The following is an alternative initial labeling of vertices which can be used
by the algorithm. Vertex s gets label 0, and the kth event at each node gets label -,
k>0.

Because possible global states cannot be too spread out in the precedence
graph (see Theorem 6.1), not all of a node’s history has to be kept during the Max-
Flow computation, which may account for a good message complexity. We leave
the details of this completely distributed, on-the-fly implementation for further

research.

Finally, we discuss possible extensions to the distributed implementation of
the Simulated Annealing method. First, we would like to investigate other charac-
teristics of problems whose solution can be approximated through our distributed
implementation of Simulated Annealing, and perform tests to find out the

effectiveness of the proposal.

Another direction in which investigation can be furthered is the following.
Recall that our distributed implementation performs a stochastic search on the
entirety of D”. That the solution must lie inside the feasible set FS is something to
be incorporated in the objective function through the use of penalties. The reason for
this is that the convergence proof in [Gema84], in which we based our proposal,

requires the set X of variables to behave as a Markov Random Field (MRF), as

115

explained in Chapter 2. For such, it is necessary that all points in D" have a nonzero
probability of being found during the simulation, be they feasible or not. The ques-
tion that poses itself is then how to perform the search inside FS only. It has been
shown in [Mous‘M] that the probabilities involved would still leave X with the neces-
sary characteristics of an MRF. Nevertheless, convergence is yet to be proven. Even
if such is the case, however, we tend to think that the original unconstrained
approach is more efficient, since it allows infeasible intermediate configurations,
possibly making the paths among feasible configurations shorter, and convergence

faster.

116

[Abde76]

[Abde78]
[Arag84]

[Awer85]
[Berg76]

[Berg]
[Besa74]
[Boll79]

[Brac84]

[Brig82]

REFERENCES

Abdel-Wahab, H. M., *‘Scheduling with Applications to Register
Allocation and Deadlock Problems,”” Ph.D. Thesis, University
of Waterloo, Waterloo, Ontario, Canada (1976).

Abdel-Wahab, H. M. and T. Kameda, **Scheduling to Minimize
Maximum Cumulative Cost Subject to Series-Parallel Pre-
cedence Constraints,”’ Operations Research 26(1), pp.141-158
(January/February 1978).

Aragon, C. R,, D. 8. Johnson, L. A. McGeoch, and C. Schevon,
“‘Optimization by Simulated Annealing: an Experimental
Evaluation,”” Workshop on Statistical Physics in Engineering
and Biology (April 1984).

Awerbuch, B., “‘Complexity of Network Synchronization,”’
Journal of the ACM 32(4), pp.804-823 (October 1985).

Berge, C., Graphs and Hypergraphs, North-Holland, Amster-
dam, The Netherlands (1976).

Berger, T. and F. Bonomi, ‘‘Parallel Updating of Certain Mar-
kov Random Fields,’’ unpublished manuscript, Cornell Univer-
sity, Ithaca, NY.

Besag, J., ‘‘Spatial Interaction and the Statistical Analysis of
Lattice Systems,”’ Journal of the Royal Statistical Society, Series
B 36(2), pp.192-236 (1974).

Bollobds, B. and A. Thomason, ‘‘Set Colourings of Graphs,”
Discrete Mathematics 25(1), pp.21-26 (January 1979).

Bracha, G. and S. Toueg, ‘A Distributed Algorithm for General-
ized Deadlock Detection,”” pp. 285-301 in Proceedings of the
Third Annual ACM Symposium on Principles of Distributed
Computing, Vancouver, BC, Canada (August 27-28, 1984).

Brigham, R. C. and R. D. Dutton, “‘Generalized k-tuple Color-

ings of Cycles and Other Graphs,”’ Journal of Combinatorial
Theory, Series B 32(1), pp.90-94 (February 1982).

117

[CampB6]

[Chan84]

(Chan85]

{Chan80]

{Clar76]

[Cook71]

[Demi79]

(Dijk71]

[Dilw50]

(Ende?77]

[Felt85]

[Fior77]

[(Gafn81]

Campbell, M., “‘Data Flow Graphs as a Model of Parallel Com-
plexity,”” Ph.D. Dissertation, in preparation, Computer Science
Department, University of California, Los Angeles, CA (1986).

Chandy, K. M. and J. Misra, ‘‘The Drinking Philosophers Prob-

lem,”” ACM Transactions on Programming Languages and Sys-

tems 6(4), pp.632-646 (October 1984).

Chandy, K. M. and L. Lamport, ‘‘Distributed Snapshots: Deter-
mining Global States of Distributed Systems,”” ACM Transac-
tions on Computer Systems 3(1), pp.63-75 (February 1985).

Chang, E., ““n-Philosophers: an Exercise in Distributed Con-
trol,”” Computer Networks 4, pp.71-76 (1980).

Clarke, F. H. and R. E. Jamison, ‘‘Multicolorings, Measures and
Games on Graphs,” Discrete Mathematics 14(3), pp.241-245
(March 1976).

Cook, S. A., ‘“The Complexity of Theorem-Proving Pro-
cedures,’”’ pp. 151-158 in Proceedings of the Third Annual ACM
Symposium on Theory of Computing, Shaker Heights, OH (May
3-5, 1971).

Deming, R. W, “Acyclic Orientations of a Graph and
Chromatic and Independence Numbers,’’ Journal of Combina-
torial Theory, Series B 26(1), pp.101-110 (February 1979).

Dijkstra, E. W., ‘‘Hierarchical Ordering of Sequential
Processes,’” Acta Informatica 1, pp.115-138 (1971).

Dilworth, R. P, ““A Decomposition Theorem for Partially
Ordered Sets,”” Annals of Mathematics 51, pp.161-166 (1950).

Enderton, H. B., Elements of Set Theory, Academic Press, New
York, NY (1977).

Felten, E., S. Karlin, and S. W. Otto, *‘The Traveling Salesman
Problem on a Hypercubic, MIMD Computer,”” pp. 6-10 in
Proceedings of the International Conference on Parallel Pro-
cessing, Chicago, IL (August 20-23, 1985).

Fiorini, S. and R. J. Wilson, Edge-Colourings of Graphs, Pitman,
London, England (1977).

Gafni, E. M. and D. P. Bertsekas, ‘‘Distributed Algorithms for
Generating Loop-Free Routes in Networks with Frequently
Changing Topology,”’ IEEE Transactions on Communications
COM-29(1), pp.11-18 (January 1981).

118

[Gall83]

[(Gare79]
[Gell75]

{GemaB4]

[Gida85]

[Gold&6]

[Gree86]
_ [Gree74]
[Grif76]
[Grot81]

(Haje84)

Gallager, R. G., P. A. Humblet, and P. M. Spira, ‘‘A Distributed
Algorithm for Minimum Weight Spanning Trees,”” ACM Tran-
sactions on Programming Languages and Systems §, pp.66-77
(January 1983).

. Garey, M. R. and D. S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness, Freeman, San Fran-
cisco, CA (1979).

Geller, D. and S. Stahl, ‘“The Chromatic Number and other
Functions of the Lexicographic Product,”” Journal of Combina-
torial Theory, Series B 19(1), pp.87-95 (August 1975).

Geman, S. and D. Geman, *‘Stochastic Relaxation, Gibbs Distri-
butions, and the Bayesian Restoration of Images,”” [EEE Tran-
sactions on Pattern Analysis and Machine Intelligence PAMI-
6(6), pp.721-741 (November 1984).

Gidas, B., ‘‘Non-Stationary Markov Chains and Convergence of
the Annealing Algorithm,”” Journal of Statistical Physics 39,
pp-73-131 (1985).

Goldberg, A. V. and R. E. Tarjan, “‘A New Approach to the
Maximum Flow Problem,’’ pp. 136-146 in Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing,
Berkeley, CA (May 28-30, 1986).

Greene, J. W. and K. J. Supowit, ‘‘Simulated Annealing without
Rejected Moves,”” [EEE Transactions on Computer-Aided
Design CAD-5(1), pp.221-228 (January 86).

Greenwell, D. and L. Lovisz, ‘‘Applications of Product Colour-
ing,”’ Acta Mathematica Academiae Scientiarum Hungaricae
25(3-4), pp.335-340 (1974).

Griffeath, D., “‘Introduction to Random Fields,”’ pp. 425-458 in
Denumerable Markov Chains, ed. J. G. Kennedy, J. L. Snell, and
A. W. Knapp, Springer-Verlag, New York, NY (1976).

Grotschel, M., L. Lovész, and A. Schrijver, ‘‘The Ellipsoid
Method and Its Consequences in Combinatorial Optimization,”
Combinatorica 1(2), pp.169-197 (1981).

Hajek, B., ‘“‘Link Schedules, Flows, and the Multichromatic
Index of Graphs,”” pp. 498-502 in Proceedings of the 1984
Conference on Information Sciences and Systems, Princeton, NJ
(March 14-16, 1984).

119

[Haje85)

[Hemag4]

[Hilt73]

[Isha81]

(Karp72]

[Kind80]

[Kirk83]

[Lamp78]

[Lawl76]

{Luen73]

{Lync80]

(Lync81]

Hajek, B., ‘‘Cooling Schedules for Optimal Annealing,”
manuscript, University of IDlinois at Urbana-Champaign,
Urbana-Champaign, IL (January 1985).

Hemachandra, L. A. and V. K. Wei, *“Using Simulated Anneal-

ing to Calculate Combinatorial Constants,” pp. 345-352 in

Proceedings of the Twenty-Second Annual Allerton Conference
on Communications, Control, and Computing, Monticello, IL
(October 3-5, 1984).

Hilton, A. J. W., R. Rado, and S. H. Scott, *‘A (<5)-colour
Theorem for Planar Graphs,”” The Bulletin of the London
Mathematical Society 5(15), pp.302-306 (November 1973).

Isham, V., ‘‘An Introduction to Spatial Point Processes and Mar-
kov Random Fields,”” [International Staristical Review 49,
pp.21-43 (1981).

Karp, R. M., ‘‘Reducibility among Combinatorial Problems,’’
pp. 85-103 in Complexity of Computer Computations, ed. R. E.
Miller and J. W. Thatcher, Plenum Press, New York, NY (1972).

Kinderman, R. and J. L. Snell, Markov Random Fields and Their
Applications, American Mathematical Society, Providence, RI
(1980).

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, *‘Optimization
by Simulated Annealing,”’ Science 220(4598), pp.671-680 (May
13, 1983).

Lamport, L., *“Time, Clocks, and the Ordering of Events in a
Distributed System,”” Communications of the ACM 21(7),
Pp.558-565 (July 1978).

Lawler, E. L., Combinatorial Optimization: Networks and
Matroids, Holt, Rinehart and Winston, New York, NY (1976).

Luenberger, D. G., Introduction to Linear and Nonlinear Pro-
gramming, Addison-Wesley Pub. Co., Reading, MA (1973).

Lynch, N. A., *‘Fast Allocation of Nearby Resources in a Distri-
buted System,”” pp. 70-81 in Proceedings of the Twelfth Annual
ACM Symposium on Theory of Compurting, Los Angeles, CA
(April 28-30, 1980).

Lynch, N. A., “‘Upper Bounds for Static Resource Allocation in

a Distributed System,”’ Journal of Computer and System Sci-
ences 23(2), pp.254-278 (October 1981).

120

[Malh78]

[Metr53]

(Mia}

[Mous74]

[Otte84]

[Papa82]

[Rabi81]

[Rome84a]

[Rome84b]

[Rota64]

Malhotra, V. M., M. P. Kumar, and §. N. Maheshwari, ‘‘An
O (1V1?) Algorithm for Finding Maximum Flows in Networks,"
Information Processing Letters 7(6), pp.277-278 (October 1978).

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H.

. Teller, and E. Teller, ‘‘Equations of State Calculations by Fast

Computing Machines,”” Journal of Chemical Physics 21,
pp.1087-1091 (1953).

Mitra, D., F. Romeo, and A. Sangiovanni-Vincentelli, ‘‘Conver-
gence and Finite-Time Behavior of Simulated Annealing,”
Advances in Applied Probability. To appear.

Moussouris, J., ‘‘Gibbs and Markov Random Systems with Con-
straints,”’ Journal of Statistical Physics 10(1), pp.11-33 (January
1974).

Otten, R. H. J. M. and L. P. P. P. van Ginneken, ‘‘Floorplan
Design Using Simulated Annealing,”” pp. 96-98 in Proceedings
of the IEEE International Conference on Computer-Aided
Design, Santa Clara, CA (November 12-15, 1984),

Papadimitriou, C. H. and K. Steiglitz, Combinatorial Optimiza-
tion, Prentice-Hall, Inc., Englewood Cliffs, NJ (1982).

Rabin, M. and D. Lehmann, ‘‘On the Advantages of Free
Choice: A Symmetric and Fully Distributed Solution to the Din-
ing Philosophers Problem,”” pp. 133-138 in Proceedings of the
Eighth Annual ACM Symposium on Principles of Programming
Languages, Williamsburg, VA (January 26-28, 1981).

Romeo, F. and A. Sangiovanni-Vincentelli, ‘‘Probabilistic Hill
Climbing Algorithms: Properties and Applications,”” Memoran-
dum No. UCB/ERL M84/34, University of California at Berke-
ley, Berkeley, CA (March 13, 1984).

Romeo, F., A. Sangiovanni-Vincentelli, and C. Sechen,
‘‘Research on Simulated Annealing at Berkeley,”” pp. 652-657
in Proceedings of the IEEE International Conference on Com-
puter Design: VLSI in Computers, Port Chester, NY (October 8-
11, 1984).

Rota, G.-C., “‘On the Foundations of Combinatorial Theory, L.
Theory of Mdbius Functions,”” Zeitschrift fiir Wahrscheinli-
chkeitstheorie und Verwandte Gebiete 2(4), pp.340-368 (March
13, 1964).

121

[Seit85]

[Seth75]

[Spit71]

[Stah76}

[Stah79]

[Stan73]

[Vecc83]

(Whit84]

(Yemi83]

Seitz, C. L., *“The Cosmic Cube,’”” Communications of the ACM
28(1), pp.22-33 (January 1985).

Sethi, R., ‘‘Complete Register Allocation Problems,”” S/IAM
Journal on Computing 4(3), pp.226-248 (September 1975).

_ Spitzer, F., ‘“‘Markov Random Fields and Gibbs Ensembles,” .

American Mathematical Monthly 78, pp.142-154 (1971).

Stahl, S., *‘n-Tuple Colorings and Associated Graphs,”” Journal
of Combinatorial Theory, Series B 20(2), pp.185-203 (April
1976).

Stahl, S., ‘‘Fractional Edge Colorings,”” Cahiers du Centre
d’ Etudes de Recherche Opérationelle 21(2), pp.127-131 (1979).

Stanley, R. P., ‘‘Acyclic Orientations of Graphs,” Discrete
Mathematics 5(2), pp.171-178 (June 1973).

Vecchi, M. P. and S. Kirkpatrick, ‘‘Global Wiring by Simulated
Annealing,”” IEEE Transactions on Computer-Aided Design
CAD-2(4), pp.215-222 (October 1983).

White, S. R., “‘Concepts of Scale in Simulated Annealing,” pp.
646-651 in Proceedings of the IEEE International Conference
on Computer Design: VLSI in Computers, Port Chester, NY
(October 8-11, 1984).

Yemini, Y., ‘‘A Statistical Mechanics of Distributed Resource

Sharing Mechanisms,”” pp. 531-539 in Proceedings of the
Second IEEE INFOCOM, San Diego, CA (April 18-21, 1983).

122

