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ABSTRACT OF THE DISSERTATION

Distributed Algorithms for

Muld-Channel Broadcast Networks

by

John Michael Marberg
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1986
Professor Eli Gafni, Chair

This dissertation studies the use of broadcast communication in the design of
distributed algorithms. Broadcast communication networks provide an attractive
alternative to point-to-point networks, in that direct connection between any two or
more processors is facilitated without the need for a large number of links. More-
over, the topology is modular, and multiple parallel channels, if available, exhibit
redundancy and hence increased reliability.

Central to our study is the definition of a new computation model, called
Multi-Channel Broadcast network (MCB). It consists of p independent processors
which communicate over a set of k broadcast channels, k<p. Computation proceeds
in synchronous cycles, during each of which the processors first write and read the
channels, then perform local computation. The underlying assumption is that at

mOSst one Processor attempts to write on each channel in any given cycle (collision-
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free access). Performance is measured in terms of the number of cycles required by
the computation. Several versions of the model are characterized, differing in
aspects such as the number of channels a processor can access, the rate of transmis-
sion, and the dependence of the communication schedule on the data. A compara-

tive analysis of the computation power of the different versions is given.

We use the MCB model as a framework for the investigation of three para-
digmatic problems: sorting, selection and permutation. For each problem, we design

efficient broadcast algorithms and establish tight bounds on the complexity. The
main results are: an algorithm to sort n elements in 0(%) cycles; an algorithm to

sort p bit strings of length m in O(m+plogp) cycles, assuming the transmission of

each bit requires a separate cycle; an algorithm to select by rank among » elements
in O(%log%) cycles; and an algorithm to permute p elements in O(logp) cycles.

Matching lower bounds are shown in each case. Several communication protocols
that are developed as part of the solutions prove to be powerful design tools in the

MCB model, illustrating its viability.



CHAPTER 1
INTRODUCTION

Rapid advances in microelectronics and communications technology have
made the development of large multi-processor systems feasible. As a result, recent
years have witnessed an increasing interest in all aspects of distributed and parallel
computing. The design of distributed algorithms using different interprocess com-
munication schemes and the study of the complexity of such algorithms play an

important role in the effort to understand the capabilities of multi-processor systems.

In this work we focus on the use of broadcast communication in the design of
distributed algorithms. Broadcast communication networks provide an attractive
alternative to point-to-point networks, in that direct connection between any two or
more processors is facilitated without the need for a large number of links. More-
over, the topology is modular, and multiple channels, if available, exhibit redun-

dancy and hence increased reliability.

Our study defines a new computation model called Multi-Channel Broadcast
Network (MCB). The model is used as a framework for the characterization of dis-
tributed computations that use broadcast communication. Efficient algorithms and

tight lower bounds for several problems are developed.

In this Chapter we discuss the motivation for our work, give an overview of

our results, and survey related research.



1.1. Background and Motivation

Communication among processors in a multi-processor system can be esta-
blished in several different ways. Three common approaches are: point-to-point

communication; shared memory; and broadcast communication.

In the point-to-point approach, processors communicate by sending messages
over a set of communication links, each of which connects two processors. The set
of links induces a graph structure. Processors that are not directly connected by a
link communicate via a path in the graph that connects them. A system of this type
is called a point-to-point network. Numerous computation models based on this
approach have been studied. The models vary mainly in the topology of the com-
munication graph. For example: complete network [Afek85], mesh [Pete84], ring
[Dole82], etc. The ARPANET [McQu77] and the Cosmic Cube [Seit85] are exam-

ples of existing networks with point-to-point communication.

In the shared memory approach, processors communicate by accessing a cen-
tral shared memory facility. In contrast to point-to-point communication, there is no
direct transfer of information between processors. Instead, a processor makes local
information public by writing it into the shared memory, which can then be read by
any processor. A system based on this approach is called Paraile! Random-Access
Machine (PRAM) [Wyll79]., Three different PRAM models can be distinguished by
varying the assumptions on concurrent access to the shared memory: Exclusive-
Read/Exclusive-Write (EREW); Concurrent-Read/Exclusive-Write (CREW); and
Concurrent-read/Concurrent-Write (CRCW) (see [Snir85] ). The NYU Ultracom-
puter [Gott83] is an example of an existing architecture based on the shared memory

approach.



In the broadcasting approach, communication is established via a set of
shared channels (called broadcast channels) that are accessible to all processors,

Information is transferred by writing and reading the channels.

Broadcast communication can be viewed as an intermediate approach,
between shared memory on the one hand and point-to-point communication on the
other [Reis86]. Transmitting data over a broadcast channel makes it public, which
resembles writing into shared memory. Unlike memory, however, broadcast chan-
nels are “memoryless,” i.e., they do not retain data indefinitely. Only those proces-
sors that listen to the channel during the time of transmission receive the data. In
this respect, broadcasting has the same effect as sending messages over point-to-

point links to the processors that listen to the channel.

We call a systemn that uses broadcasting as the means of communication a
broadcast network. The Ethernet [Metc76] is an example of an existing broadcast

network with one channel.

Local area network architectures that use multiple broadcast channels have
recently been proposed [Chou83, Marh85, Mars82a, Mars82b] as an alternative to
single-channel Ethernet-like networks [Metc76]. In environments where messages
are generated in real time, splitting a single channel into multiple channels of nat-
rower bandwidth results in reduction of channel contention among processors at the
expense of longer transmission time. It has been shown in [Mars83] that for high
communication rates the reduced contention dominates the increased transmission

time, and the overall message delay is decreased.



Broadcast communication is an attractive alternative to point-to-point com-
munication. In the latter approach, two processors are able to communicate with
each other directly only if they are connected by a link. If the communication graph
is sparse, messages between two processors may have to traverse a path of multiple
links. Broadcast channels, in contrast, provide for direct connection between any
two or more processors. Moreover, sufficient connectivity can be achieved with rela-

tively few channels compared to point-to-point networks.

Broadcast networks have several other attractive qualities. The interconnec-
tion structure is modular, which provides for gradual system growth dependent on
user needs. Multiple parallel channels, if available, provides redundancy, and hence
grater reliability and fault tolerance in case of communication failure. Also, failure
of an individual processor does not disrupt the communication among other proces-

SOTS.

In view of these advantages, broadcasting seems a viable method of com-
munication for distributed computation. It thus becomes of interest to characterize
broadcast computation in the framework of a formal model. In this work, we pro-

vide such a characterization.

Central to our research is the definition of a new network model based on
multiple broadcast channels. The model serves as a vehicle for the design of distri-
buted algorithms using broadcasting and the analysis of their complexity. We apply
the model in the study of three paradigmatic problems: sorting, selection and permu-
tation. For each problem, we develop efficient broadcast algorithms and establish

tight bound on the complexity. Several communication protocols that are developed



as part of the solutions prove to be powerful design tools in the MCB model, illus-

trating its viability.
1.2. Overview of the Dissertation

Chapter 2 defines the computation model, called Multi-Channel Broadcast
network (MCB). The model consists of a collection of independent processors, com-
municating over multiple parallel broadcast channels. A configuration with p pro-
cessors and k channels is denoted MCB(p, k). We assume k<p. Computation
proceeds in synchronous cycles. During each cycle, a processor writes one channel
and reads one other channel, then performs local computation. The underlying
assumption is that at most one processor attempts to write on each channel in any
given cycle (collision-free access). We distinguish two variants of the model: the
general MCB — where each processor is capable of writing and reading any of the
channels; and the restricted MCB — where each processor is restricted to write only
on one specific channel. Performance is measured in terms of the number of cycles
and the number of messages used in the computation. Two different scales of cost
are used: uniform — where the ransmission of each atomic datum is assumed to take
a single cycle; and logarithmic — where each bit to be transmitted requires a

separate cycle.

Chapter 2 also investigates the complexity of computations in the MCB
model. Among others, a comparative analysis of the computational power of the
general and the restricted versions of the model is performed, and lower bounds for
various classes of problems are proved. Also, the MCB model is related to the

CREW shared memory model.



Chapters 3 and 4 discuss the problem of sorting a collection of elements dis-
tributed in an MCB(p, k). Chapter 3 assumes uniform cost, whereas Chapter 4 uses

logarithmic cost. A different sorting approach is presented in each case.

The sorting algorithms in Chapter 3 are based on a method called
COLUMNSORT [Leig85]. In this method, the input is organized in a matrix, and
sorting is accomplished by iteratively sorting each column separately, then perform-
ing a transformation on the matrix. COLUMNSORT is practical for our purposes
because each column can be sorted locally at a different processor, and the matrix
transformations can be implemented efficiently using the broadcast channels. Let
n2k3 elements be distributed in the network, with at most nn,, elements in any

given processor. We develop a sorting algorithm that runs in O(n) messages! and
O(max{%, nmax}) cycles on the restricted version of the model. By showing

matching lower bounds, we prove that the algorithm is optimal. We also develop a
recursive version of COLUMNSORT, in which each column is sorted by recursive
application of the basic algorithm. This version admits a wider range of inputs,

namely n2k *€, where O<e«1 is a constant.

Chapter 4 focuses on sorting algorithms with logarithmic communication
cost. Our approach is the following. The input elements are considered bit strings

of uniform length m. In order to avoid repeated transmission of long elements

1 Given two functions g(n) and f(n), where n>0, the notation “g(n) is O(f(n))”
(also written g(n)=0(f(n)) ) is interpreted as follows: there exist a constant ¢ >0
and some ng such that g(n)<cf(n) for all n2ny. Similarly, “g (n) is Q(f(n))”
means that there exist a constant ¢>0 and some ng such that g(n)2cf(n) for all
n2ng. Finally, we use “g(n) is &(f(n))” if g(n) is both O(f(n)) and Q(f(n)). In
other words, O(-), () and ©(-) denote, respectively, an upper bound, lower
bound, and simultaneous upper and lower bound on g(n) in terms of order of
magnitude. The formulation can be generalized to functions with more than one
parameter. For details, see [Aho83].



throughout the algorithm, each element is encoded into a shorter representation
called signatre, such that the signatures have the same relative order as the original
elements. Sorting then proceeds efficiently using the signatures. Finally, the ele-
ments are rearranged according to the order of the signatures. We present a
sequence of three algorithms based on this approach, each improving upon the previ-
ous one. The most efficient algorithm runs in O(m+plogp) cycles on a restricted
MCB(p, p), where each processor contains one input element. By showing a lower
bound of £(m) cycles, we prove that our approach is optimal for sufficiently large m.
We also discuss generalizations for network configurations with fewer than p chan-

nels and more than one element in each processor.

Chapter 5 considers the problem of selecting the d’th largest among n ele-
ments, for some given rank d. Our approach is to iteratively reduce the number of

elements that are candidates for selection by applying a filtering mechanism. We
. . P, . kn kn
develop an algorithm that runs in O( P log ?) cycles and O(plog ;——) messages on

a restricted MCB(p, k). We also establish matching lower bounds for a wide range

of cases, thereby proving that the algorithm is optimal.

Chapter 6 is concerned with the permutation problem: each processor is to
deliver a message to a distinct destination processor according to a given permuta-
tion of the processors. Although the problem is trivial in the general MCB, there is
an inherent difficulty in the restricted MCB, namely that a message cannot be sent to
an arbitrary destination processor in one step unless the latter knows the identity of
the sender. Our goal is to develop a permutation algorithm that is simpler than the
obvious solution that resorts to sorting. The approach is the following. A permuta-

tion induces one or more “rings” in the network, such that a processor is followed by



its destination processor in some ring. The permutation problem reduces to identify-
ing for each processor its predecessor in the ring. We develop an efficient mechan-
ism to traverse the ring from a processor all the way around to its predecessor. The
algorithm runs in O(log p) cycles and O(plogp) messages on a restricted MCB(p, p)

with uniform communication cost. A lower bound is also presented.

Chapter 7 suggests directions for future research in the area of distributed
algorithms with broadcast communication. Specifically, alternative network models
for broadcast communication are considered, and additional application domains are

discussed.
1.3. Related Research

In this section we review related work of other researchers in the area of

broadcast network models and their applications.

Landau, Yung and Galil (Land85] consider a model that consists of a fully-
connected synchronous point-to-point network, where each processor is capable of
broadcasting one bit on all incident links and reading one incoming bit during each
cycle. This is equivalent to a restricted MCB(p, p) with logarithmic communication

cost.

The Landau-Yung-Galil model is applied in solving the multiple
identification problem. In this problem, each of P processors contains a string of m
bits, and has to identify all the processors which have the same string as itself. The
approach in [Land85) is to sort the strings, then use the sorted order to form groups
of processors with equal strings. Sorting is performed by emulating the AKS sorting
network [Ajta83], which takes O(mlogp) cycles. When m is sufficiently large, this



is the dominating factor in the complexity of the solution. By replacing the AKS
emulation with the sorting method developed in Chapter 4 of this dissertation, we
are able to improve the complexity of the multiple identificaton problem by a factor

of log p.

Dechter and Kleinrock [Dech86] investigate a broadcast model cailed
IPABM (ldeal Parallel Broadcast Model). This model differs from the MCB in two
aspects. First, it has only one broadcast channel, and second, it uses concurrent-write
access to the channel, assuming a global, cost-free (“ideal”) collision resolution
mechanism. In the MCB model, in contrast, exclusive-write access is used, thus

avoiding altogether the issue of collision resolution.

The IPABM is applied in the design of algorithms for extrema finding, merg-
ing and sorting. In our model, these problems are solved without the use of
concurrent-write access (Chapter 3). In terms of communication complexity, our
solutions are comparable to those in [Dech86]. It should be noted, however, that the
[PABM algorithms are designed to optimize local processing costs (in terms of the
number of comparisons) as well as communication costs, whereas we consider only

communication costs.

Levitan [Levi82] discusses a model called BPM (Broadcast Protocol Mul-
tiprocessor), which has essentially the same properties as the IPABM. Algorithms
for extrema finding and sorting similar to those in [Dech86] are given, as well as an

algorithm for finding minimum spanning trees in graphs.

Santoro and Sidney [Sant82] consider a broadcast model called Shout-Echo,

in which a communication cycle consists of a broadcast message from a single pro-



cessor (“shout™) followed by replies from all other processors (“echo™). In the MCB
model, in contrast, each transmission is a broadcast message. Moreover, multiple
disjoint broadcasts may proceed simultaneously in the same cycle, using separate

channels.

The Shout-Echo model is used in the design of algorithms for selection
[Rote83, Sant83a, Sant83b]. By using the selection method developed in Chapter 5
of this dissertation, we are able to improve the upper bound for selection in the

Shout-Echo model by a factor of log p [Marb85a].

Several researchers use a hybrid approach, in which a point-to-point com-
munication network is augmented by a broadcast bus. This structure exploits the
advantages of both communication modes. Stout [Stou83] and Bokhari [Bokh84]
apply the concept to mesh-connected networks, demonstrating considerable speedup
for problems such as median and extrema finding, and semigroup computations.
Andreatos [Andr85] extends these results to other strongly regular networks, such as
triangular and hexagonal arrays. Kumar and Raghavendra [Kuma85], and Lin and
Moldovan [Lin86] consider a mesh with multiple busses — one for each row or

column.

The work of Chandra, Furst and Lipton [Chan83] characterizes in abstract
fashion the class of distributed protocols (also called Mulri-Party Protocols) that
solve (-1 predicates over a set of values distributed among the processors. The work
examines the inherent communication complexity of such protocols in terms of the
amount of information that needs to be known globally in the system. The model of

communication being used is similar to a restricted MCB(p, 1) where processors

10



broadcast one bit at a time in round-robin fashion. Tight upper and lower bounds are
given for some specific predicates, however the results are mainly of theoretical

value, since they depend on Ramsey-like counting arguments.

11



CHAPTER 2
THE MULTI-CHANNEL BROADCAST NETWORK MODEL

In this chapter we introduce a network model for distributed computation
using broadcast communication, We first define the model itself, then give a com-

parative analysis of different classes of computations in the model.
2.1. Description of the Model
2.1.1. General Organization

The Multi-Channel Broadcast (MCB) network model consists of a collection
of independent processors, which communicate by sending broadcast messages over
a set of parallel broadcast channels. The topology is illustrated in Figure 2.1. A
configuration with p processors and k channels is denoted MCB(p, k). It is assumed
that k<p and k divides p. Each processor and each channel have a unique identifier
known to all processors. We denote the processors as Py, Py,..., P,, and the

channelsas Cy, C3,..., C;.

Computation proceeds in synchronous cycles. We assume the existence of a
global mechanism to synchronize the beginning of each cycle. A cycle consists of

the following two phases at each processor.

1. COMMUNICATION: Write one channel and read one other channel.
2. PROCESSING: Perform local computation.

12



Py P, Py P, Py Pg

Figure 2.1. The MCB Network

The information written on a channel during a given cycle constitutes a mes-
sage sent by the processor writing the channel. The message is received only by the
processors reading the channel in that cycle. Processors reading a channel can detect
that the channel is empty, i.e., that no processor has written on the channel during

that cycle.

The capability of a processor to read and write two different channels simul-
taneously in the same cycle is assumed for convenience in algorithm design. It can
be shown that limiting each processor to access a single channel per cycle does not

decrease the power of the model.

The topology of the MCB generalizes several other broadcast network
models. The configuration MCB(p, 1) resembles the IPABM model of Dechter and
Kleinrock [Dech86] and Levitan’s BPM [Levi82]. At the other extreme, the
MCB(p, p) is similar to the model of Landau, Yung and Galil {Land85]). However,
we use different assumptions on channel access than in those models (see Section

2.1.2).
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As discussed in Chapter 1, broadcast channels and shared memory are
related, in that both provide “public access.” Yet, in the MCB model the number of
broadcast channels does not exceed the number of processors, whereas in shared
memory models such as the PRAM [Wyll79] there is usually an unbounded amount
of shared memory. This difference reflects the fact that channels are “memoryless,”
i.e., they do not retain data from cycle to cycle. As such, they do not serve as a

storage medium, but rather as a communication medium.
2.1.2. Channel Access Considerations

We distinguish two different versions of the MCB model by varying the

channel access capabilities of the processors.

1. General MCB — each processor is capable of writing and reading any channel.
2. Restricted MCB — each processor is allowed to write only on one specific chan-

nel, but can read any channel.

In the restricted MCB, the allocation of processors to channels is fixed and
known to all processors; it is henceforth assumed that processor P; writes on channel

C [%].

One of the advantage of the restricted MCB is that fewer transmitters are
connected to each channel. Particularly, when p=k, each processor has a “dedi-
cated” channel on which only it can write. For many applications, the restricted
model is sufficient. On the other hand, for some problems, the ability to write on any
channel can help improve the performance. In particular, it can be shown that the

general MCB is strictly more powerful than the restricted MCB (Section 2.2.1).
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Among the major considerations involved in the design of broadcast net-
works is concurrent writing on the channels. If more than one processor attempts to
write on the same channel in the same cycle, a collision occurs. To avoid the issue
of collisions and collision resolution {Gree82, Will84], the underlying assumption in
the MCB model is that computations are collision-free. In other words, it is assumed
that at most one processor attempts to write on each channel during each cycle.
Concurrent reading of the same channel by more than one processor is permitted
(this reflects the notion of broadcasting). Only algorithms which adhere to these
requirements are considered valid in the MCB model. This is similar to the
approach of the Concurrent-Read/Exclusive-Write (CREW) shared memory model
[Snir85].

2.1.3. Performance Measures

In analyzing the complexity of algorithms in the MCB model, we consider
only the costs of communication, assuming that local processing costs are negligible
by comparison. This is similar to the assumption in point-to-point networks. The
performance measures of interest are the number of cycles and the number of mes-
sages that are used in the computation. All the complexity bounds discussed in this

research are worst-case bounds.

We use two different scales of cost with respect to the amount of information

that can be transmitted in each cycle.

1. Uniform cost — the transmission of an atomic datum of the computation is
assumed to take one cycle.

2. Logarithmic cost — the transmission of each bit requires a separate cycle.

15



2.2. Bounds on MCB Computations

In this section we investigate the computational power of the MCB model.
The analysis shows that the general MCB is strictly more powerful than the res-
tricted MCB. Also, a class of computations called oblivious is defined and character-

ized. Finally, the relation between MCB and CREW is put in perspective.
2.2.1. Separating between General and Restricted MCB

It is obvious that the general MCB has at least the same computation power
as the restricted MCB. We now show that there is a gap (or separation) in power

between the two models, namely the general MCB is strictly more powerful.

Let / be an instance of a problem to be solved on the MCB. We denote the
input of processor P; as I(P;), and the corresponding output of that processor as

O((P)).

A problem is r-sensitive if for every subset of processors S, | S |=r—1, there
exist two instances 7| and /5 such that 7, (P;)=I,(P;) for all P;eS, and for some
P;eS, 011 P;) #012 (P;). Intuitively, in order to determine its output, P; must have
some “knowledge” about the input of at least r of the processors, regardless of the

method of solution.

As an example, consider the following problem, called the identification
Problem. The input of each processor is a single bit; all bits are 0, except for one

processor whose bit is 1. The task is to identify the processor whose bitis 1.

We now show that the identification problem is (p—1)-sensitive. Let S be a

subset containing p—2 processors, and let P; . and P; , be the two processors not in S.
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Define I as the instance where the bit of P; is 1, and define I, as the instance
where the bit of P; 5 is 1. Clearly, the output of any processor in § is different with

I than it is with /,. This satisfies the definition of (p—1)-sensitivity. Notice that the

problem is not p-sensitive, since knowing p —1 bits suffices to determine the output.

Theorem 2.1. Solving an r-sensitive problem on a restricted MCB (p, k) requires at
logr
4
log(=+1
og( ¢ )

least cycles.t

Corollary 2.1. Solving the identification problem on a restricted MCB(p, k)

requires at least log(p—1) cycles. m

P
log( k+1)

Proof of Theorem 2.1, Let us number the cycles of the computation sequentially.
The set of processors that affect processor P; in cycle ¢, denoted A;(1), is defined

recursively as follows.

1 A;(O)=P,' .

2. A+ =A;()V( k) Ayt)), where C; is the channel being read by P; in
[—1=j
P

cycle t+1.

Intuitively, A;(r) consists of all the processors whose local “knowledge” (or
parts thereof) could possibly have been conveyed to P; by the end of cycle 1. Notice
that all the processors that have write-access to the channel being read by P; are
added to A;(¢), regardless of which processor actually writes. This refiects the idea

that implicit information can be gained about a given processor just from the fact

1 Throughout this work, we use “log” to denote logarithm of base 2.
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that it chose not to write the channel in a given cycle. We will see later that this

information can actually be put to use.

Let t* denote the last cycle of the computation. It follows from the recursive
formulation that iA;(:*)iS(%H)‘ *. On the other hand, by definition of r-

sensitivity, there exists at least one P; such that |A;(t*)!2r. It follows that

t*z _ﬂ_ . B
log(%-#l)

It is easy to see that in the general MCB the identification problem can be
solved in one cycle. The processor whose bit is 1 writes its id on channel C, and all
other processors read that channel. On the other hand, Corollary 2.1 shows a non-
trivial lower bound for the problem in the restricted MCB. This establishes a separa-

tion between the two models.
2.2.2, Oblivious Computations

A computation in the MCB model is oblivious if the processors that write and
read each given channel in each given cycle are known in advance, independent of
the particular instance of the input. In other words, in an oblivious algorithm a pro-
cessor can determine which channel to read or write in any given cycle simply as a
function of the number of cycles that have elapsed form the beginning of the algo-
rithm (and perhaps the general parameters of the problem). A similar definition of
oblivious computation has been used in the context of shared memory models

{Cook86].
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Theorem 2.2, Solving an r-sensitive problem on an MCB(p, k) by means of an

oblivious algorithm requires at least max{logr, -;—} cycles.

Corollary 2.2. An oblivious algorithm for the identification problem requires at

least max{log(p-1), %1} cycles. m

Proof of Theorem 2.2, Asin Theorem 2.1, let A;(¢) denote the set of processors that

affect processor P; in cycle ¢. It is defined recursively as follows.

1. A;,(0)=P;.
2. A;+1)=A;(r)A;(r), where P; is the processor that writes on the channel that

P; reads in cycle ¢+1.

The definition reflects the fact that the processor 'writing a given channel in a
given cycle is fixed. Hence, contrary to the argument in Theorem 2.1, in an oblivious
computation no knowledge is gained about a processor unless that processor actually

writes the channel.

Let t* be the last cycle of the computation. From the recursive formulation,
IA;(*) 12! *. On the other hand, by definition of r-sensitivity, there exists at least

one P; such that 1A;(t*)12r. It follows that t*2log r.

To complete the proof, it remains to show that % cycles is also a lower
bound. To this end, r processors have to “reveal” local information, which entails »

transmissions. Since there are only k channels, at least 7:— cycles are needed. m
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The single-cycle identification algorithm for the general MCB shown in the
previous section is not oblivious. This is because the id of the processor that writes
the channel is dependent on the particular instance of the input. On the other hand,
by Corollary 2.2, there is a nontrivial lower bound on any oblivious algorithm for the
problem. This proves that in the general MCB, oblivious computation is less power-

ful than arbitrary (non-oblivious) computation.

To prove a similar separation in the restricted MCB, we now present a non-
oblivious identification algorithm for the restricted model that runs in

[—ﬁgk—‘l +1 cycles.
log(%ﬂ)

let us denote the group of % processors that have write-access to channel C;

as group i. Also, we refer to the processor with the j’th largest id in group i as the
J'th processor in the group.

Consider a tree with branching factor %H and k leaves, such that all leaves

are located in at most two adjacent levels (a full tree). Figure 2.2 shows a tree for
p=28, k=14. The leaves are numbered sequentially from left to right, beginning with
leaf 1. Each parent node has the same number as its rightmost child. The levels of

the tree are numbered sequentially from the leaves upward, beginning with level 0.

Thus, the root is in level [ﬁﬂ‘-—— .
log(%-l-l)

We associate the nodes labeled i with processor group i, and the link between

each such node and its parent with channel C;. The idea of the identification algo-
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level 3

level 2

level 1

Figure 2.2. Tree for the Identification Problem

rithm is to accumulate the information of the processors bottom-up along the tree.
Initially, each processor knows only whether or not its own bit is 1, and this informa-

tion is in the leaves.

In the first cycle, the information is transferred form the leaf groups in level 0
to the parents in level 1. This is done as follows. The unique processor in level O (if

any) having the bit 1 writes its id on the corresponding channel. In each parent
group in level 1, the i’th processor, ISiS%, reads the channel of the i’th leftmost

child. Notice that the rightmost child and the parent are implemented by the same
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group, so there is no need to read the rightmost channel. Since only one processor
reads each channel, there is a unique processor in all the groups in level 1 that knows

the processor whose bit is 1.

In the next cycle, the same scheme is used to transfer the information to level
2. The unique processor in level 1 that knows the id of the processor whose bit is 1

writes that id on the channel. Again, it can be seen that there is a unique processor

in level 2 that obtains that id. The scheme is repeated ’-ﬁgk—‘l times until the
P
log( ¢ +1)

computation reaches the root of the tree. At that point there is a unique processor in
group k (the root group) that knows the solution, i.e., the id of the processor that has

the bit 1. To complete the algorithm, the solution is broadcast to all processors over

channel C,.
The total number of cycles used in the algorithm is _logk +1. For
y2
log( k +1)

p25k, this is less than max{log(p-1), %1}, thus establishing the separation

between oblivious and non-oblivious computation on the restricted MCB. Notice

that log k

< log(p—1) +2. Following Corollary 2.1, the algorithm takes only 3
log(%+1) 1og(1;-+1)

cycles more than the lower bound.
The lower bound of Theorem 2.2 is valid both in the general and in the res-
tricted MCB. This gives rise to the question whether the two models are equally

powerful for oblivious computation. Intuitively, it seems that deciding “on the fiy”

which channel to write or read helps only if the decision is based on the input. We
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therefore conjecture that the answer is affirmative, i.e., that the models are equivalent

under oblivious computation.

Clearly, no mechanism can be devised that will convert any arbitrary oblivi-
ous algorithm from the general MCB to the restricted MCB without increase in the
number of cycles. This is because for some “bad” algorithms there is no way to par-
tition the processors among the channels without contention for write-access. Yet,
this in itself does not imply that there exists no algorithm for the problem at hand
which runs on the restricted MCB without added cost. Proving (or disproving) the

conjecture thus seems to be a difficult task, which may require new proof techniques.
2.2.3. The Relation Between MCB and CREW

The assumptions on concurrent access to the channels in the MCB network
are similar to the assumptions on shared memory access in the CREW model
[Snir85). Despite this similarity, we now show that there is a gap in computation
power between the two models. The gap stems from the inherent difference between

channels and memory we observed earlier, namely that channels are “memoryless.”

Recall that a computation is oblivious if the processors that write and read
each given channel in each given cycle are known in advance, independent of the
input. Now, suppose that the processor scheduled to write on a given channel in a
given cycle is allowed to decide, dependent on the input, whether to actually go
ahead and write, or just keep silent. A computation that provides this capability but
is otherwise oblivious is called semi-oblivious. A similar definition of semi-oblivious

computation has been used in the CREW model [Cook86].

23



It is easy to see that the lower bound of Theorem 2.2 is valid for semi-
oblivious algorithms. Intuitively, the argument (specifically the definition of A;(r))
does not depend on whether any data is actually written on the channel. Thus, a
semi-oblivious MCB algorithm for an r-sensitive problem requires at least logr

cycles.

Consider the problem of computing the logical “or” of p bits distributed
among p processors. This is clearly a p-sensitive problem. Hence, a semi-oblivious
MCB algorithm for this problem requires logp cycles. The straightforward solution
is to use bottom up processing along a binary tree. This takes [logp] cycles, which
is optimal.

A semi-oblivious algorithm designed for MCB(p, k) can be emulated cycle
by cycle on a CREW with p processors and k memory cells. The only delicate issue
in the emulation is how does a processor convey its decision to keep silent. This can

be done by writing some fixed dummy symbol into the corresponding memory cell.

Consequently, one would expect the tight bound of logp cycles for the logi-
cal “or” problem to carry over to the CREW model. Yet, it has been shown in
[Cook86] that the problem can be solved in log, 4,,0+0(1) cycles on a CREW
comprised of p processors and p shared memory cells, using a semi-oblivious algo-
rithm (the reader is reminded that logp denotes log,p). This establishes that the
CREW model is more powerful than an MCB of the same size, when considering

semi-oblivious computation.

The logical “or” algorithm on the CREW proceeds as follows. Let f, denote
the n’th Fibonacci number, where f4=0, f1=1, and fj;2=f; +fj41. Also, let m; be
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the i’th shared memory cell, and let ¥i be a local variable of P;. Initially, m;=b;, the

i’th input bit, and y;=0. In cycle ¢, £>0, processor P; executes the following.

1. READ: if i+fy <p then read Misf,, -
2. COMPUTE: Yi =y v m,-+fm .
3. WRITE: if (yi=1 and i>f2t+l) then mi—f2r+l =1.

It is shown in [Cook86] that after cycle t, my=b; v, v--- be+fzz+1—1' Let

f2n-1 <P <fa..1. Then, after n cycles, m, contains the solution. It can be shown

that » Slogz_ﬁgp +0(1).

To understand how the “obvious” bound of logp cycles is beaten, observe
that the key feature of the algorithm is the conditional writing in phase 3 of each
cycle. A shared memory cell is overwritten only by the value 1, and never by a 0.
The effect is that once a 1 has been written into the cell, it is preserved to the end of

the computation.

The ability to preserve the current information in a given memory cell by not
writing into it is what gives the CREW more computational power than the MCB. In
other words, in the CREW model, the decision of a scheduled Processor not to write
may in itself provide arbitrary information. In the MCB model, on the other hand,
due to the memorylessness of the channels, this decision reveals nothing but the fact

that no writing took place.
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CHAPTER 3
SORTING ALGORITHMS

In this chapter and in Chapter 4 we investigate the problem of sorting in the
MCB model. In this chapter we use uniform communication cost, whereas in
Chapter 4 we use logarithmic communication cost. In both cases we present efficient

sorting algorithms and establish tight lower bounds on the complexity. !

3.1. Introduction

Let n elements from a totally ordered domain be distributed in a network of p
processors, such that processor P; contains n; elements. Sorting is the task of reor-
ganizing the elements in the network so that each of the n; elements in P; will be

greater or equal to each of the elementsin P, .

We assume n2p and n; >0, If n;=§ for all i, we say that the distribution of

the input is even. Otherwise, the distribution is uneven.

The sorting algorithms described in this chapter are based on a method called
COLUMNSORT [Leig85], which is a generalization of odd-even sorting [Knut73].
In this method, the input is organized in a matrix, and sorting is accomplished by

iteratively sorting each column separately, then performing a transformation on the

1 The results in this chapter have been previously published in the Proceedings of
the 1985 International Conference on Parallel Processing [Marb85b].
© 1985 IEEE. Reproduced with permission,
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matrix. COLUMNSORT is practical for our purposes because each column can be
implemented in a different processor and sorted locally. Moreover, the matrix

transformations can be performed efficiently using the broadcast channels.

Following is a summary of our results. Let n2k> elements be distributed

evenly among the processors of an MCB(p, k). We develop an oblivious sorting
algorithm that runs in O(-E-) cycles and O(n) messages on the restricted version of
the model. Generalizing the algorithm to uneven distributions, we achieve a com-
plexity of O(max{%, Nmax}) Cycles and O(n) messages, where np,, is the max-

imum number of elements in any processor. The latter algorithm is non-oblivious
and runs on the general MCB. We also develop a recursive version of the algorithm
for even distributions, in which each column is sorted by recursive application of the
basic algorithm. This version admits a wider range of inputs, namely n2k'*¢, where
O<e<1, and achieves the same complexity as the nonrecursive version. Finally, we
prove that our algorithms are optimal by establishing matching lower bounds on the

complexity.

The discussion proceeds as follows. In Section 3.2 we describe
COLUMNSORT. In Section 3.3 we give the implementation for even distributions of
the input. In Section 3.4 we present the recursive algorithm. Uneven distributions

are discussed in Section 3.5. Finally, Section 3.6 shows the lower bounds.
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3.2. Algorithm COLUMNSORT

n . : s . .
Let m= Consider an input of n elements organized in a matrix of size

mxk. Traversing the positions of the matrix in lexicographic order by (column, row)
is called column —-major order. Similarly, if the traversal is lexicographic by (row,
column), it is called row—major order. The output of COLUMNSORT is the matrix

sorted in column-major order.

COLUMNSORT uses four transformations on the matrix, which are described

informally below, and illustrated by examples in Figure 3.1.

Transpose Take the elements of the matrix in column-major order and store

them in row-major order.

Un-Transpose This is the reverse of Transpose. Take the elements in row-major

order and store them in column-major order.

Up-Shift Shift each element L%J positions in the ascending direction of

the column-major order. The last I_%J clements are shifted circu-

larly to the beginning of the matrix.

Down-Shift This is similar to up-shift, except that the direction of shift is
reversed.

Following is a description of COLUMNSORT. The algorithm consists of 9
phases. Upon termination, the elements are stored in descending order of magnitude

in column-major order.
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1 [12]23 1] 2] 3
2 [13] 24 4|56
3 |14 25 7089
4 15]26 101112
5 16|27 Transpose  , [13] 1415
6 | 1728 16|17 |18
78] | e | 2202
8 | 1930 22|23 | 24
9 20|31 25|26 | 27
10| 2132 28|29 ] 30
11[22]33 313233
1 [12]23 29[ 718
2 11324 30] 8 |19
3 | 14]25 31| 9 |20
4 |15]26 32{10 [ 21
516)27 Up-Shift 33{ 11| 22
6 |17]28 1]12]23
7] 18]29] e 2 [13]24
8 | 1930 3 11425
9 2031 4 1526
102132 5 16|27
112233 6 | 1728

Figure 3.1. Matrix Transformations in COLUMNSORT
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ALGORITHM COLUMNSORT [Leig85]

[
.

Sort each column.

Transpose the matrix.

Sort each column.

Un-Transpose the matrix.

Sort each column.

Up-shift the matrix.

Sort each column except column 1.

Down-shift the matrix.

¥ o N ke W

Sort each column,

The version of COLUMNSORT presented above is essentially the same as the
original version in [Leig85], except that we have added phase 9, which simplifies the

distributed implementation, as will be discussed in Section 3.3.

The proof of correctness given in [Leig85] is based on an analysis of the dis-
tance of each element from its final position after each phase. Here we present an
alternative proof, based on the (-1 principle [Knut73). The principle states that if a
sorting algorithm works correctly for an arbitrary input of 0’s and 1°s, then it works

correctly for any input.

Given a matrix of 0’s and 1’s, we say that a given region in the matrix (e.g,
row, column, sequence of rows) is dirty if it contains both 0’s and 1’s; otherwise, it
is clean. The correctness argument proceeds by showing which rows and columns
become dirty or clean at different points in the algorithm. The goal is to show that

upon termination:
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(a) there exists at most one dirty column;

(b) the dirty column is sorted;

(c) the dirty column separates the clean columns of (’s from the clean columns

of 1’s.

Theorem 3.1.

Sl

After phase 3 of COLUMNSORT there are at most k dirty rows.
Given that m>k?, after phase 4 there are at most two dirty columns.
After phase 8 there is at most one dirty column.

After phase 9 the input is sorted.

Proof.

1.

Phase 2 has the effect of “dealing” the elements of each column in round-robin
fashion among all the columns. Since the columns were previously sorted in
phase 1, the difference between the number of (’s that any two columns receive
from any given column is at most one. Thus, the total difference in the number of
0’s between any two columns after phase 2 is at most k. Sorting the columns
again in phase 3 yields at most k dirty rows. Moreover, all the resulting dirty
rows are in one contiguous region that separates the clean rows of 0’s from the

clean rows of 1’s. The state of the matrix at the end of phase 3 is illustrated in

Figure 3.2.

Since m2k?2, the contents of any & consecutive rows is distributed by the un-
transpose operation among at most two adjacent columns. Given the state of the

matrix after phase 3, the un-transpose in phase 4 creates at most two adjacent
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dirty columns. These separate the clean columns of 0's from the clean columns

of 1's.

. Let x denote the number of 1's in the first dirty column after phase 4, and let y
denote the number of 0’s in the second dirty column. In order to clean at least
one of the two columns, min{x, y} “misplaced” 1’s need to be moved from the
first dirty column to the second, and an equal number of 0’s need to be moved in

the opposite direction. Since there are at most k dirty rows at the end of phase 3,

2
it must be that x+y<k?, and hence min{x, y }S[%—J.

The exchange of elements between the two dirty columns is achieved as

follows. Sorting the columns in phase 5 separates the 0’s from the 1’s in each
\ _
column. The up-shift of [%Ja I_-Icz—_] positions in phase 6 has the effect of mov-

ing the “misplaced” 1's from the first column to the second. This is illustrated in
Figure 3.3. Notice that the 0’s that need to be moved in the opposite direction
remain in the second column despite the up-shift. Phases 7 and 8 have the sym-
metric effect in the opposite direction. To prevent exchange of elements between
column k and column 1 due to the wrap-around of the circular shift, column 1 is

not sorted in phase 7.

The dirty column that remains at the end of phase 8 separates the clean
columns of 0’s from the clean columns of 1’s. Hence termination conditions (a)

and (b) are satisfied after phase 8.

. Sorting the columns in phase 9 satisfies termination condition (¢). This completes

the proof of correctness of the algorithm. =B
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clean rows

dirty rows

clean rows

Figure 3.2. Clean and Dirty Rows after Phase 3

0
o |[misplaced
0’s
0] | L 1
0 1 L1 0 [0 1
B 1 0 || misplaced
0’s
1
misplaced ]
I's 1
After Phase 5 After Phase 6

Figure 3.3. Element Exchange between the Two Dirty Columns
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It can be seen from Theorem 3.1 that COLUMNSORT works correctly only if
the dimensions of the matrix satisfy m2k2. In other words, in order to use & columns

during COLUMNSORT, the total number of elements, n, must be at least k3.
3.3. Implementation for Even Distributions

In this section we show how to implement COLUMNSORT on an MCB{(p, k)
when the distributon of the input is even. First, we handle the simple case where
p=k and n2k>; then, we generalize to arbitrary p>k; finally we discuss the case

n<k3. Unless otherwise mentioned, we use the restricted MCB.

3.3.1. The Case p=k

There are k(=p) columns, each containing m=’% elements. Column i is

implemented at processor P;. Phases 1, 3, 5, 7 and 9 are executed locally at each
processor, using some efficient sequential sorting algorithm (see [Knut73] for an
extensive survey of such algorithms). The remaining phases consist only of traffic
over the channels. There are &k channels, so all processors can broadcast their
columns simultaneously, processor P; using channel C;. To move an element from
column { to column j, processor P; must read channel C; in the appropriate cycle,
according to a fixed (predetermined) broadcast schedule. It remains to devise a

broadcast schedule for each transformation phase.

We give a schedule for phase 2. Similar schedules can be devised for phases
4, 6 and 8. To maximize the concurrency, k elements with distinct target columns

are moved in each cycle. Let us denote by E;[j, {] the I’th element of column i

whose target is column j, where OSISF%'I—I. Also, let us number the cycles of

34



phase 2 sequentially, beginning with cycle 0. In cycle ¢, each processor P; broad-
t

casts element E; [(i+ l I—ﬂ-l J)modk+ 1, rmod f%]] over channel C;, and the
k

corresponding target processor reads the channel. It can be verified that the schedule
implements the transpose operation in [%'](k—l)Sm cycles. Notice that the

schedule is oblivious. As an example, a schedule for m=11, k=3 is given in Figure

3.4. Each element E;[/, [] is shown with the cycle ¢ in which it is moved.

The order in which elements are stored in each target column during the
transformation phases is immaterial, because the columns are sorted in the next
phase anyway. The only exception is column 1, which is not sorted in phase 7. The
effect of not sorting column 1 is that the same elements that are shifted from column
k to column 1 in phase 6 are shifted back to column k in phase 8. Thus, these ele-
ments need not be stored in any specific order at P, either. Alternatively, these ele-

ments need not be shifted at all.

During each of phases 2, 4, 6, and 8, each processor broadcasts at most m ele-

ments. The schedules are such that all processors broadcast simultaneously. Thus,
the number of cycles in each phase is O(m)=0(-:-), and the number of messages is
O(mk)=0(n). The sorting phases are implemented locally and incur no communica-
tion cost. The total complexity of the algorithm is O(n) messages and 0(%) cycles.

The algorithm is oblivious.
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E,[3,01|E5[2,0]
=0 t=3

El [2a0] Ez[ 1! 0]
=0 1=

E,[3,0] E4[1,0]
=4 1=

E,[3,1]|E;[2,1]
=1 t=4
El[zv 1] EZ[I’ 1}
=1 =5

E,[3,2]|E,[2,2]
=2 =5
E|[2,2]|E,[1,2]
t=2 =6

E,[3,2] E,[1,2]
=6 =2
E,[3,3]1E5[2,3]
=3 =6
E,[2,3]|E;[1,3]
=3 =7

Figure 3.4. Broadcast Schedule for Phase 2
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3.3.2. The Casep>k

We now show how to generalize the algorithm for arbitrary MCB(p, &), p>k.
Our approach is to reduce the problem to the previous case. We augment the algo-
rithm with a preprocessing phase and a postprocessing phase, numbered, respec-
tively, 0 and 10. In phase 0, all elements are collected into k processors. Phases 1-9
then proceed as before, as if the network were an MCB(k, k). In phase 10, the sorted

elements are redistributed to all the processors.

Phase 0 is implemented as follows. The processors are divided into k groups

P2

of equal size X

. Group j consists of all the processors P; such that [i—:—] =j (i.e., the
processors that have write-access to channel C;). Processor P jp is the “representa-
k

tive” of the group. One processor after another, in ascending order of processors
within the group, all elements of the group are sent to the representative. All groups
proceed concurrently, group j using channel C; . Phase 10 is the inverse of phase 0.
The representatives broadcast the columns, and each processor collects its respective

elements.

The number of elements in each group is %=-% Thus, phases 0 and 10
take O(—E—) cycles and O(n) messages. Phases 1-9 have the same cost as in the pre-

vious case. The total complexity of the algorithm is O(n) messages and O(%)

cycles.
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3.3.3. Improvements in Memory Utilization

The implementation described in the previous section requires Q(—E-) auxili-

ary memory at each representative processor. The memory requirements can be

improved by modifying the implementation, as follows.

We distribute the role of group representative, considering each group to be a
single virtual processor with a single virtual column. The elements of the group are

not collected, thus phases 0 and 10 are eliminated altogether. Virtual columns are
sorted as if each group were a separate MCB(%, 1). Below, we describe a single-
channel sorting algorithm called RANKSORT, that runs in linear number of messages

and cycles and requires only O(%) auxiliary memory at each processor. Using this

algorithm to sort the virtual columns, the complexity of each sorting phase is 0(%)

cycles and O(n) messages. In the ransformation phases, the work of a given virtual
processor in a given cycle is carried out by the processor containing the element to
be broadcast in that cycle. The element received during the cycle can be stored over
the element just sent, thus requiring no extra memory. The total cycle and message

complexities of COLUMNSORT remain the same as before.

Algorithm RANKSORT proceeds as follows. Without loss of generality
(w.l.o.g.) assume that all the elements are distinct. If not, replace each element § in
P; with the triple (, i, j ¢), where j; is a unique index within P;, and use lexico-
graphical order among the triples. Each processor maintains a rank counter for each
of its elements. Initially, all counters are set to 1. The algorithm consists of two

phases. In the first phase, elements are broadcast in some arbitrary order (e.g.,
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column by column). After each broadcast, the counters of those elements that are
smaller than the element just broadcast are incremented by 1. Thus, at the end of the
first phase every processor knows the ranks of all its elements. Then, in the second
phase, the elements are broadcast in rank order and moved to the appropriate target

processors. It is easy to see that the algorithm runs in a linear number of cycles and
messages, using only O(%) auxiliary memory at each processor. Notice, however,

that the algorithm is not oblivious.

We may further reduce the memory requirements by replacing RANKSORT
with the algorithm described below, called MERGESORT. The entire
COLUMNSORT implementation then requires only O(1) auxiliary memory at each

Processor,

MERGESORT proceeds as follows. W.l.o.g. all elements are distinct. First,
each processor sorts its input list. Then, in repetitive phases, the next-largest element
in the network is chosen among the top elements of all lists and moved to the
appropriate target processor. In order to keep track of the top elements efficiently,
the processors maintain a distributed linked list of the top elements, sorted in des-
cending order. Each processor knows its own top element and the next-smaller top
element, the latter playing the role of a “pointer.” In addition, each processor P;
knows its rank in the distributed list, denoted R;. The list can be initialized by apply-
ing RANKSORT to the top elements.

Let P, be the processor at the head of the list in the current phase (ie.,
R4=1). P, sends its top element to the appropriate target processor, and all the pro-

cessors decrement their rank by one, thus effectively removing the head of the linked
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list. To insert the new top element of P, into the list, P, broadcasts the element, and
all processors compare its value with that of their own top element. Let P, be the
unique processor, i any, which has both a top element that is larger than the new
element and a pointer that is smaller or null. The new element is inserted after that
of P, . This is effectively accomplished as follows. All processors with a smaller
top element than that of P, increment their rank by one. Pj, sends K}, and its current
pointer to P,, then changes its pointer to the new element. Finally, P, changes its
pointer to that sent by P, , and sets R, to Rp+1. In case the new element is larger
than all the other top elements, which can be detected by silence on the channel dur-
ing the cycles where the rank and pointer for P, are supposed to be transmitted, P,

resets R, to 1, thereby remaining at the head of the list.

To achieve O(1) auxiliary memory utilization, when an element is moved to
its target processor, the target processor sends its smallest remaining input ¢lement
to the processor at the head of the linked list, which then inserts this element in the
proper position in its own input list. With this scheme, no extra memory is needed
for output lists, thus each processor uses only O(1) auxiliary memory. It can be
easily verified that MERGESORT runs in linear number of cycles and messages.

In terms of communication costs, RANKSORT and MERGESORT are com-
parable to the single-channel sorting algorithm in [Dech86], even though the latter
algorithm uses concurrent-write access to the channel. It should be noted, however,
that the algorithm in [Dech86] is designed to optimize local processing costs (in

terms of the number of comparisons) as well as communication Costs.



3.3.4. The Case n<i?®

We have seen that inputs of size n <k cannot be sorted using & columns. To

sort inputs of such size, we need to use fewer columns. Clearly, [#*| columns will

work. The processors are divided into groups of size I'T%] with the last group
n

possibly “padded” with dummy processors containing dummy elements. The algo-
rithm then proceeds as before. The complexity is O(r) messages and on*) Cycles.
This is obviously suboptimal in the number of cycles, because not all channels are
utilized. Also, since not all processors within a group have write-access to the same

channel, the algorithm requires the use of the general MCB.

For the subcase n<k ”2, we can provide a different implementation, which

resuits in better cycle complexity than O(n**). The idea is the following. We collect
the elements into k processors, then view the input as a matrix of size kx%. In other

words, each processor now contains 3 Tow, not a column. The dimensions of the
“inverted” matrix satisfy the requirements of COLUMNSORT. We apply the algo-
rithm, thereby obtaining column-major sorted order, which is then converted to

row-major order by transposing the matrix.

Unlike the previous implementations of COLUMNSORT, in this
configuration the sorting phases cannot be performed locally. Yet, since each of the
k elements of a column is located in a different processor, sorting can be done by

emulating some sorting network, such as AKS [Ajta83] or the bitonic network
[Batc68]. Using AKS, the % columns can be sorted in O(-E—logk) cycles and

O(nlog k) messages.
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The total complexity of the implementation is O(%log k) cycles, which is

better than the previous complexity of o(n™ cycles. This, however, comes at the

price of increasing the message complexity from O (a) to O(nlog k).

Notice that despite its asymptotic optimality, the AKS network is considered
impractical due to the large constants involved. Substituting AKS with the bitonic
network {which is considerably more practical), the complexity of our algorithm

increases by a factor of log k in both messages and cycles.
3.4. A Recursive Version of COLUMNSORT

We have seen that in the range n<k®, the channel utilization of
COLUMNSORT becomes suboptimal. We now show a recursive implementation of
the algorithm which effectively reduces the range of input sizes that exhibit subop-

timal performance.

The idea is the following. We implement the sorting phases by applying the
algorithm recursively on each column. The column length decreases from one recur-
sive level to the next. The recursion is continued until the columns are sufficiently
short to be sorted directly in a smali number of cycles. By using the appropriate
number of columns in each level we achieve maximum channel utilization, thereby

improving the performance.

We now formalize the approach. Let s>1 be an integer such that k24° and

3s+6
n2k ¥*2  W.lo.g. assume that n, p and k are powers of 4° (i.e., n=4", p=4*7 and

- 2s
k=4% for some integers r2g2i21). Finally, let k=(£n—) (since we are only
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interested in the case n<k>, clearly k>2).

We apply the recursion to a depth of s+1 levels. A recursive call in any level

except the last uses k virtual columns. Thus in level j, 1</<s, each group consists of

. . n
% processors, and each virtual column consists of = elements. In the last level,

k! k
)
level s+1, each call uses E—ks=(%) columns, and hence each column is of length

n . .
rk Notice that the elements of a column are not collected into one processor.

It can be easily verified using the assumptions on #n, p and k given above, that

:nj_?;z for all 1<j<s. In other words, the requirement that the column length be at
k

least Ez is satisfied in each level of the recursion.

Since k*<k, there are enough channels for all the recursive calls in the same

phase of the same level to proceed in parallel. In level j, each recursive call uses a

separate set of channels. During the transformation phases, each virtual

i

L4

i elements, and all segments are broadcast

column is divided into —5— segments of

simultaneously — each on a separate channel. Thus, the number of cycles in each

transformation phase in each level is O(%). In level s+1, the length of the columns

is %, so the number of cycles in each sorting phase of that level is also O(-;cl).

The total number of cycles in the algorithm is O(S‘i‘). The total number of
messages is O(sn). We now show that in a wide range of cases s can be assumed

constant. Consequently, the complexity of the recursive algorithm is O(-'kl) cycles
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42
and O(n) messages. Let 0<e<2 be a constant such that k24 3  and n>k!*€,

4;28 1. It can be verified that all the restrictions on the magnitude

of n and k imposed by the recursive implementation are met. Thus, given g, 5 is con-

Now, choose s=[

stant,
3.5. Implementation for Uneven Distributions

In this section we generalize the COLUMNSORT approach to uneven distri-
butions. First, however, we digress to discuss a simple algorithm to compute partial

sums. We will use this algorithm as a subroutine in the sorting algorithm.

3.5.1. A Partial-Sums Algorithm

¥ &d

Let @ denote an associative arithmetic operator, such as “+”, “max”, etc. Let

{a1,az,..., a,} be a set of values distributed in the network, such that g; is at £; .

2]
p

We denote by aP the partial sum a,®a,® - - - ©a;. The largest partial sum, ay, is
called the total sum. Also, for convenience, we use a§ =m, where @ denotes the
identity value of @. In the following, we describe an algorithm to compute at each
P; the partial sum a®. The algorithm is adapted from the F&* tree-machine

[Vish84], which is used for similar purposes in a different setting.

Consider a network in the shape of a full binary tree with p leaves (i.e., all
leaves are located in at most two adjacent levels). Each node is a processor, and
communication is along the edges. q; is initially at the i’th leftmost leaf. The fol-

lowing computation produces the partial sums a® at the leaves.



Assume the local variables L, R, and F at each node contain the last value
received from the left son, the right son, and the father, respectively. The computa-
tion consists of a bottom-up phase followed by a top-down phase. The bottom-up
phase starts with the leaves sending a; to their father. Upon receiving values from
both sons, an internal node sends L&R to its father, When the computation reaches
the root, the top-down phase is started with the root sending ® to its left son and L to
its right son. An internal node, upon receiving a value from the father, sends F to the
left son and FL to the right son. When the computation reaches the leaves, each
leaf sets aP=F@a; . Itis easy to verify that this scheme correctly computes the par-

tial sums.

The implementation in the MCB model is straightforward. Consider first the
case p=k. The tree computation is emulated level by lcvél, first bottom-up, then top-
down. A father node is implemented in the same processor that implement its right
son, thus only the messages between father and left son need actually be sent. Since

there are [logp] levels, the complexity is O(p) messages and O (log p) cycles.

Now consider an arbitrary MCB(p, k). We divide the processors into & equal
groups in the same fashion as in Section 3.3.2. The values of each group are col-
lected to the representative. A tree computation is then performed as if the network
were an MCB(k, k) consisting only of the representatives, where the initial value of a
representative is the sum (using @) of the values in its group. Upon completion of
the tree computation, each representative knows (via the variable F of the
corresponding leaf) the sum of all the values in the groups to its left. Using this

information, the representative computes all the partial sums for its group and broad-

casts them. Since there are % processors in each group, the total complexity of the

45



algorithm is O (%+1og k) cycles and O(p) messages.

Notice that at the root of the tree L®R=ag’. Thus, if only the total sum is of
interest, the bottom-up phase followed by a single broadcast message from P, (the

root processor) suffices.
3.5.2. The Sorting Algorithm

The implementation of COLUMNSORT in Section 3.3 makes explicit use of
the fact that all processors have the same number of elements. We now discuss the
problems that arise in generalizing the implementation to uneven distributions, and

how these problems can be solved.

With an arbitrary number of elements in each processor, it is impossible to
partition the processors into groups that comprise columns of uniform length.
Instead, we form groups that have approximately the same number of elements.
After the elements of each group are collected into one processor, dummy elements

are added where necessary, to make all columns exactly equal.

Now consider the issue of collecting the elements. In the restricted MCB,
since the groups are nonuniform, we cannot allocate a separate channel to each
group. Consequently, there might be a situation where a subset of processors which
have write-access to the same channel contain a total of Q(n) elements, even though
each group in itself has strictly less than O(n) elements. This creates a communica-
tion bottleneck, resulting in a cycle complexity of ©(n), which is clearly inefficient.
In fact, this complexity can be achieved with a single channel (e.g., using RANK-
SORT, as described in Section 3.3.3). We therefore use the general MCB. This



enables us to allocate a separate channel to each group, as in the even case.

As for synchronization among the processors during element transfer — with

even distribution it is easy to implement an exclusive-write strategy: processor P;
Lo, .
waits -p—((z—l)mo-d %) cycles before sending its elements. In the uneven case, on

the other hand, since the groups are nonuniform, the number of cycles each proces-

sor has to wait must be determined explicitly during the algorithm.

It is obvious from the above observations that the computation, in particular
the task of element collection, is dependent on the specific distribution of the input.
This renders the algorithm non-oblivious, in contrast to the algorithm for even distri-

butions.

We now describe the implementation. Let n; denote the number of elements
in processor P;. Also, let n=max{s;|1<i<n} and m=max{%, Nmax ). We
assume n2k>.

Using the partial-sums algorithm, the processors compute the values 1,

and m, and the partial sums n}. Group j is formed by all processors P; such that

+

n-
[—]=j. It can be seen that there are at most k groups, each group containing at

m

MOSt Mm+n ., —1<2m elements. Similar to the even case, the representative of group

J is processor P jp (which may or may not be in the group), and the channel allo-
k

cated to the group is C;;.

As for element collection, the number of cycles a processor has to wait to

send its elements is equal to the total number of elements in lower-indexed proces-
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sors in the same group. Let Pfj denote the first (i.e., least-indexed) processor in
group j. The number of cycles processor P; in group j has to wait can be expressed
as (n}"—n,-)-—(n}'j -y, ). All that needs to be done to compute this number is for Pfj to
broadcast n}j ~nf To this end, notice that P; is the first processor of group j if and

n+

only if f;i'|=j and [%kj—l. Thus, Py, can easily identify itself.

After the elements have been collected, the columns are padded with dummy
elements up to length m+nn—1. Since element collection may take a different
number of cycles in each group, a global synchronization point for the beginning of
phase 1 needs to be set. This can be at m+n ,, cycles after the beginning of element

collection.

The remainder of the algorithm then proceeds as in the even case. Notice,
however, that due to the padding of columns, it might be that not all the elements
that go to a given processor in phase 10 are in the same column at the end of phase 9.
Nevertheless, since there are at least npn,, elements in each column, the elements
that go to each processor are guaranteed to be in at most two adjacent columns.
Group representatives broadcast each element twice, thus enabling processors to col-

lect all their elements without missing any messages.

There are at most m+n n,,~1<2m elements in each group, so the cost of col-
lecting the elements and the cost of each transformation phase is

O(m)=0(max[-:—, Rmax ) cycles and O(n) messages (notice that dummy elements

need not be broadcast). The applications of the partial-sums algorithm in phase 0
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incur a cost of O(%Hog k) cycles and O (p) messages. The total complexity of the

algorithm is thus O(n) messages and O(max{%, Mmax }) CYCles.

3.6. Lower Bounds

We now establish lower bounds on the complexity of sorting under the

assumption of uniform communication cost.

Clearly, if n elements are to be rearranged in the network, {2(n) messages and
Q(%) cycles are lower bounds. We can, however, prove a stronger result. We show

that these bounds hold even if all we require is that processors obtain a list of
“pointers” to the elements in the sorted order, without actually transferring the ele-
ments to their destination processors. For example, the index pair (i , j) could serve

as a pointer to the j’th element in processor P;.

We use the following notation. N is the list of all the elements in the net-
work, |N|=n. N; denotes the list of elements at processor P;, I N;|=n;. Also, N[/]
is the j'th largest element in N, and N[jy, j2], /j1S/2, is the list
[N[J11. Nlj1+11. ..., N[j2]]. We define N;[j] and N;[j, j2] similarly. Finally,
nmax and n a0 denote, respectively, the largest and the second-largest among the

n;.

Theorems 3.2 and 3.3 below use a comparison argument. The results there-
fore apply only to comparison-based sorting algorithms (i.e., algorithms where the

elements are used only in comparisons with each other).
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Theorem 3.2. Sorting n elements requires Q(n~n pax+1 max2 ) MeEssages.

Clearly, a lower bound on messages for MCB(p, k) immediately implies a

lower bound, smaller by a factor of &, on cycles.

k

Corollary 3.1. Sorting n elements requires £( Ycycles. B

Proof of Theorem 3.2. Given the input N and the cardinalities n; , we will devise

lists N; such that Q(n—n .. +n max2 ) messages are required.

Regardless of the sorting method being used, each element must be directly
compared with its immediate predecessor and successor in the sorted order. The lists
N; are constructed so that for sufficiently many disjoint comparisons, the two ele-
ments to be compared are in different processors, thus requiring at least one message

per comparison.

Let n; 2n; 2 --- ?.n,-P be a non-increasing order among the n;. Let g,

denote the number of processors for which n;2m. Consider the distribution where
-1

N,-j ([I=NLi+ ¥ gm}. In other words, the elements are distributed by going in
m=1

round-robin fashion from processor to processor, and placing one element at a time

in the sorted order in each processor. It can be easily seen that no two immediate

neighbors in N[1, n—=np+7maxy] are in the same processor. Thus, at least

Ln-nm+nm

> | = Q(n—n max+n max2) messages are required to complete the sort-

ing. &

The following theorem gives a different lower bound on the number of

cycles.

50



Theorem 3.3. Sorting n elements requires {2(min {71 ey, AN mex ) CyCles.

Proof. Let p; _ denote a processor such that ni =fmax. W€ use an argument

similar to Theorem 3.2, except that here we focus only on comparisons involving

elements of P"m..x .

n . . .
Assume first that "‘““SE (i.e., min (A pax, P=Nmax } =Mmax).- Consider a

distribution where for all 1<j<n .., N[2/] is at Pimu whereas N[2j-1] is at some
other processor. In this distribution, at least n ,,, messages are required in order to
compare all pairs of immediate neighbors in N[1, 2n,,:]. Since P,-m.x is involved in

each such message (either as sender or as receiver), the number of cycles is also at

r

least npax . A similar argument shows that when n e > >

, at least n—n 0y cycles
are required, and the result follows. B

The following corollary shows that the lower bounds are tight, and that the

algorithms we have presented are optimal in a wide range of cases.

Corollary 3.2, Given a constant 0<a<1 such that n .. <on and n2k3, the complex-
ity of sorting n elements on an MCB(p, k) is ©(n) messages and ©(max {%, Rmax ))

cycles.

Proof. 7, <0nimplies n~nmn,, 2(1-0)n 2 (1—0)n nay - Thus, the lower bounds of
Theorems 3.2 and 3.3 and Corollary 3.1 reduce to Q(n), £2(n nax), and Q(—E—), respec-

tively. The matching upper bounds are provided by the algorithms presented in pre-

vious sectons. W
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For even distribution of the input, Corollary 3.2 applies both in the general
and in the restricted MCB. For uneven distribution, the upper bound is valid only in
the general MCB. Moreover, in the even case, due to the recursive version of
COLUMNSORT, the result holds in the wider range n2k*¢, O<e«1. It should be

noted that the tight bounds on messages and cycles are simultaneous.

It is easy to see that sorting is a p-sensitive problem. This is because a
change in the value of one input element is likely to affect the position of any

number of elements in the sorted order. Following Theorem 2.1, a sorting algorithm

on the restricted MCB(p, k) requires _logp cycles. Consequently, the AKS-
1og(%+1)

based algorithm presented in Section 3.3.4, which runs in 0(%logk) cycles, is

optimal for n=0 (p)=0(k).
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CHAPTER 4
SORTING ALGORITHMS WITH BIT COMMUNICATION

4.1. Introduction

This chapter continues the investigation of sorting algorithms. Here we
assume logarithmic communication cost, i.e., each bit to be transmitted requires a
separate cycle. Although one could apply the algorithms of Chapter 3 under loga-
rithmic cost, we use a completely different approach, tailored specifically for bit

communication.

The configuration being considered is an MCB(p, p) with one element per
processor. For our purposes, each element is a bit string of uniform length m. An
MCB(p, p) can easily emulate a sorting network for p elements, such as AKS
[Ajta83] or the bitonic network [Batc68]. However, under logarithmic communica-
tion cost this becomes inefficient when the elements are long, since 8(m) cycles are
needed to emulate each stage of the sorting network. AKS emulation, for example,

requires a total of &(mlogp) cycles.

Our goal is to develop a sorting method which does not entail repeated
transmission of long elements. To accomplish this, we separate the task of comput-
ing the position of each element in the sorted order from the actual rearrangement of

the elements in the network.
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The idea is to compute for each element a short encoding called signarure,
such that the signatures have the same relative order as the original elements. The

sorted order can then be found efficiently using the signatures.

We present a sequence of three algorithms, A, B and C, based on this
approach. Each algorithm improves upon the previous one, using a more efficient
technique to sort the signatures. Algorithm A uses bottom-up processing on a tree,
running in a total of O(m+plog?p) cycles. Algorithm B combines the tree with a
bitonic network, and runs in O (m+plogp loglogp) cycles. Algorithm C employs
divide and conquer, and has a complexity of O(m+plogp) cycles. The first two
algorithms are oblivious. By showing a lower bound of Q(m) cycles, we prove that
the algorithms are optimal for sufficiently large m. We also discuss generalizations
of algorithm A for network configurations with fewer than p channels and more than

one element in each processor.

The discussion proceeds as follows. Sections 4.2 through 4.4 present the
sorting algorithms. The lower bounds are shown in Section 4.5. Generalizations are

discused in Section 4.6. Concluding remarks are given in Section 4.7.
4.2. Algorithm A

Before we describe the algorithm, we need the following definitions. Let
[ai,az,..., q] denote a list of [ elements. Given two lists of equal length /,
X=[x1,x2,...,x] and Y=y, ¥2,..., ¥1], we use (X, Y) to denote the list of

palrs [(xl’yl)’ (xziy2)1~-°! (xl’ )’1)]-

Let Z=[z,, z49,...,2] be a list of / not necessarily distinct elements from a

totally ordered domain, and let Zj 2Zj,2 " 27 be a nonincreasing order among
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the elements. The list [i1, i2,..., ;] is called the sorting permutation of Z.

The rank of z; in Z, denoted R(z;, Z), is defined as the number of elements in
Z that are strictly larger than z;. We use R(Z) to denote the list
[R(zy,2),R(z5,2),..., R(z;, 2], called the rank list of Z. Computing R(Z) is
called ranking.

Following our approach, the algorithm consists of three phases: (1) signature

computation; (2) signature sorting; and (3) element transfer.
4.2.1. Signature Computation

W.l.o.g. assume p divides m. Let ¢; denote the element initially at processor
P;. Lete; ;, 1Sj<p, be a substring of ¢; of length % starting at position (j—l)'—;— +1.

We call ¢; ; the j'th component of ;. We can view the input as a square matrix of

components {e; ;11<i,j<p}, with the i’th row located at processor P; .

The signatures are obtained in the following manner. Let B; denote the j’th
column of the component matrix. We compute for each component ¢; ; the rank
ri,j=R (e, B;). All ranks are in the range 0 to p—1, so we view them as strings of
llogp] bits. The signature of element ¢; is the concatenation of the ranks of its com-

ponents, i.€., the string r;17;2 * * * Fip. Thus, each signature consists of p [log p] bits.

It can be verified that the signatures have the same relative order as the origi-
nal elements. This follows from the fact that ranking preserves order. Notice that
when m<plogp the signature is actually longer than the element itself. This has no

bearing on the performance of the algorithm.
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To implement phase 1, we first transpose the component matrix, thereby
moving each column B; to processor P;. Then, the ranks in each column are com-
puted locally, yielding a transposed matrix of ranks. As will be seen in the descrip-
tion of phase 2, there is no need to “un-transpose” the ranks and explicitly form the

signatures.

The transpose operation is implemented using the following oblivious com-
munication protocol. There are p—1 steps. In step ¢, 0sr<p-2, processor P; sends

Component €; (i+rymodp+1 10 Processor P (i nmodp+1 Over channel C;. Each step

takes % cycles, for a total of %(p—l)=0(m) cycles.

4.2.2. Signature Sorting

The second phase computes the sorting permutation using the signatures.
This could be done in O(plogzp) cycles by straightforward emulation of the AKS
sorting network. However, due to the large constants involved, this is impractical.
Instead, we use the following method, which achicves the same complexity but is

considerably more practical.

We begin by ranking the signatures. Let Z denote the corresponding rank
list. Since ranking preserves order, the ranks in Z have the same relative order as the

original elements. We thus obtain the sorting permutation from Z.

We now describe how to compute Z. Let s5; denote the signature of element
e; . Breaking each signature into two parts of equal length, let s7 denote the left part
(the most significant bits) and let s; denote the right part (the least significant bits).

Let S, S$*, and $~ denote the lists comprising all the s;, 57, and 57, respectively.

56



The reader may verify the correctness of the formula
Z=R(S)=R((R(S™), R(S7))), where the order among rank pairs is determined
lexicographically. This suggests the following bottom-up tree computation of Z.
We divide each signature into p equal substrings, or components. Now, consider a
full binary tree with p leaves (i.e., the leaves are in at most two adjacent levels),
where the j’th leftmost leaf contains a list comprising the j’th component of every
signature, Moving bottom-up in the tree, we combine at each parent the lists of its
two children, as follows. Let G* and G~ denote the lists of the left and right child,
respectively, The parent is assigned the list R((G*, G7)). It is easy to see that the

root contains the rank list Z.

Notice that the j’th leaf list is actually the j’th column in the rank matrix of
phase 1. That column is located in processor P;. We implement each parent node in
the same processor that implements its left child. The root is thus in processor P .
To evaluate a parent node, G~ is sent from the processor implementing the right
child to the processor implementing the parent. The latter then computes
R((G™*, G7)) locally. All nodes in the same level in the tree are processed in paral-
lel. There are |logp ]| levels, each entailing p [log p] cycles to transmit the lists G™.

The total cost of the tree is therefore O(plogzp) cycles.

It remains to obtain the sorting permutation from Z. Since Z is in P, this
can be done locally. Finally, P, broadcasts the permutation to all processors. The
total cost of phase 2 is O(plogzp) cycles.
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4.2.3. Element Transfer

In the third and final phase of the algorithm, the elements are transferred to
their destination processors according to the sorting permutation. Let Py, be the
destination of element e;. Since the permutation has been broadcast, Pd.- knows the
index i. e; can therefore be sent directly from P; to Pd‘, over channel C;. All the

processors proceed in parallel. The total cost of the transfer is O(m) cycles.

The reader may observe that the transfer protocol just described is not oblivi-
ous, since the id of the channel to be read by each processor depends on the sorting
permutation. On the other hand, phases 1 and 2 are oblivious. We now give an

oblivious transfer protocol which is as efficient as the non-oblivious one.

The protocol consists of three steps. First, the elements are divided into p
equal components and transposed, similar to phase 1. In fact, if storage availability
permits the processors to save the component lists B; in phase 1, this step is redun-
dant. Second, each P; locally rearranges B; according to the sorting permutation.
That is, if the destination of element ¢; is processor Py, , then ¢; ; is placed in posi-
tion d; in the list. Finally, the rearranged components are transposed a second time.
It can be verified that this effectively accomplishes the transfer. The cost is O(m)

cycles.
4.2.4. Complexity

Summing up the costs of all three phases, the complexity of algorithm A is
O(m+plog2p) cycles. If m is sufficiently large, it dominates the complexity. In Sec-

tion 4.5 we show that in this case the algorithm is optimal.
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Notice that the algorithm beats AKS emulation when m2plogp. This illus-

trates the difference between logarithmic and uniform communication.
4.3. AlgorithmB

In phase 2 of algorithm A, as the computation gets closer to the root of the
tree, more and more processors become idle. The idea of algorithm B is to modify
the tree computation in order to increase processor utilization, thereby improving the

performance. We now describe how this is accomplished.

The ranks in each level of the tree can be viewed as components of new sig-
natures whose length is half the length of the signatures in the previous level. Based
on this observation, we make the following change. Instead of evaluating the entire
tree, we stop at a level where the new signatures are sufficiently short, then switch to
emulation of the bitonic sorting network [Batc68] on these signatures. Appending
the signature of element e; with the index i, the effect of the sorting is that each pro-
cessor P; knows the j’th index in the sorting permutation. To make the entire per-
mutation public, one processor after another broadcasts the permutation index.
Notice that prior to the bitonic sort it is necessary to transpose the current ranks, so

that each processor will contain its signature.

Let the tree computation be discontinued after r levels. The length of the sig-

natures is then O(Ll;’g-z) bits. There are O(log?p) phases in the bitonic network, so

the emulation takes O(B—lgrg}-’-log 2p) cycles. The cost of r tree levels is O (rplogp)

cycles. By choosing r=2loglogp, the total cost of phase 2 becomes
O(plogp loglog p) cycles.
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Phases 1 and 3 are the same as in algorithm A. The total complexity of algo-
rithm B is therefore O(m+plogp loglogp) cycles. Notice that in contrast to the
AKS network, the simple structure of the bitonic network results in a very practical

algorithm.
44. Algorithm C

The main idea in phase 2 of algorithms A and B is to iteratively reduce the
length of the signatures by half. Yet, using the tree mechanism, each reduction step
takes the same number of cycles, p [logp], regardless of the current length of the
signatures. If each reduction could be performed at a cost which is linear in the
current length of the signatures, the complexity of phase 2 would improve to

O(plogp) cycles. This is basically what is achieved in algorithm C.

Phases 1 and 3 of algorithm C are the same as in the previous algorithms, and
will not be discussed. In phase 2, instead of a tree, we use a divide and conquer
approach resembling radix-exchange sort [Knut73). The idea is the following. Ini-

tially, all p processors comprise one group. We divide the processors into several
subgroups, each comprising at most r%'l processors. The division is such that the

input elements in each subgroup occupy successive positions in the sorted order,
starting at a given (known) position. From now on, it remains only to determine the
order within each subgroup. Moreover, all subgroups can proceed in parallel,
independent of each other. Each subgroup computes a new set of signatures, using
the same method as in phase 1 but starting from the current signatures. It can be
seen that the length of the new signatures is at most half the previous length. The

division is then repeated recursively in each subgroup until all subgroups become



singletons, at which point each processor knows the position of its input element in
the sorted order. To obtain the sorting permutation, one processor after another

broadcasts its position.

We now show how to implement each recursive level in linear number of
cycles in the current length of the signatures. Consider a group R in a given level of

the recursion, consisting of r=|R | processors, Pi Piyyo. s Pi. The length of the

1.2’
signatures in R is r[logp] bits. Let the signatures be organized in a transposed

matrix of rxr components (see algorithm A).

Processor P; , which contains the first (most significant) column of signature
components, divides the processors into subgroups, such that each subgroup
comprises all and only those processors which have the same first component.
Clearly, the elements in each subgroup belong in successive positions in the sorted
order. Moreover, since each signature component is actually a rank, the component
corresponding to a given subgroup is a *“pointer” to the position in the sorted order

(of the elements of R) where the largest element of the subgroup belongs.

Obviously, there exists at most one subgroup with more than r%] Processors.

Let us call this the “bad” subgroup. P; informs group R about the division by
broadcasting the processor ids and the comesponding pointer of every subgroup,
except the bad subgroup. The processors and pointer of the latter can then be deter-

mined by elimination.

It now remains to further divide the bad subgroup. This is done by processor

P; ., using the second most-significant signature component, in a similar way as

iz’

before. The scheme continues component after component until either the size of
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the bad group is reduced below [%‘I, or all components are exhausted. In the latter

case, the bad subgroup can be excluded from the remainder of the recursion since all

its input elements are identical.

It can be seen that each processor id is broadcast at most once during the
above protocol. Thus, the cost of dividing group R is O(rlogp) cycles. The new sig-
natures in each subgroup are then computed form the current signatures using the

method of phase 1, which also costs O(rlogp) cycles.

Since the size of the groups is reduced by at least half in each recursive level,

the recursion terminates after {logp] levels. In each level the groups proceed in
logp )2

parallel, so the total cost of phase 2 is O( )f‘, ( 5 logp))=0(plogp) cycles. Notice
=0

that it is necessary to set a global synchronization point at the end of phase 2, since

groups of different sizes proceed through the recursion at a different pace.

The total complexity of algorithm C is O(m+plogp) cycles. It can be seen
that the algorithm is not oblivious, in contrast to algorithms A and B. This is because
the division into groups is dependent on the input. It is interesting whether the upper
bound established by algorithm B can be improved by means of an oblivious algo-
rithm.

4.5. Lower Bounds

We now establish a lower bound on the complexity of sorting under loga-

rithmic communication cost.
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Clearly, if elements of length m are to be rearranged in the network, Q(m)
cycles is a lower bound. Yet, similar to the uriform case, we can prove a stronger
result by showing that this bound holds even if all we require is that destination pro-
cessors obtain “pointers” to the elements in the sorted order, without actually
transferring the elements. For example, processor P; could use as pointer the j’th

index in the sorting permutation.
Theorem 4.1. Sorting strings of length m requires Q(m) cycles.

Proof. Consider the following problem. Let e¢; be a bit string known only to P,
and e, a bit string known only to P, . Given that ¢,#e,, we want to determine

whether or not ¢ >e, .

Yao's lower bound on two-party protocols [Yao79] shows that a solution
involving only P; and P, requires (m) cycles. Essentially, the argument in
[Yao79] is the following. Consider a 2™x2™ matrix representing all the possible
combinations of values of e, and e,. Deciding on the outcome of the comparison is
equivalent to identifying a rectangle within the matrix such that two properties hold:
(1) the given input combination is in the rectangle; and (2) the outcome for all the
combinations in the rectangle is the same. Since there are Q(2™) disjoint rectangles
satisfying the second property, 2(m) bits need to be communicated to isolate a

specific rectangle.

The lower bound holds even if more than two processors are involved in the
computation. This is because the contribution of processors other than P, and P, is
warranted only by the information they obtain from P and P,, and such informa-

tion may as well be communicated directly between the two processors.
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On the other hand, the comparison problem can be solved by sorting, using
dummy elements ¢;=0 in all processors except Py and P,. To this end, ey >e, if
and only if the first index in the sorting permutation is 1. Consequently, any lower
bound on the comparison problem is also a lower bound on sorting. Hence, sorting

requires Q(m) cycles. &

Corollary 4.1. When m is sufficiently large, algorithms A, B, and C are optimal.
Specifically, algorithm C is optimal form2plogp. &

Another implication of Theorem 4.1 is that the divide and conquer method
used in algorithm C is optimal, in the sense that signatures of length plog p cannot be
sorted in less than Q(plogp) cycles. Thus, algorithm C is the best possible imple-

mentation of the signature approach.
4.6. Generalizations of Algorithm A

We now generalize algorithm A to networks with fewer than p channels and
more than one ¢lement in each processor. First, we consider the case of an
MCB(p, p) with a total of » elements, each processor containing ﬁ- elements. We
then show how to extend the approach to arbitrary k<p channels. Finally, we discuss
uneven input distributions.

4.6.1. The Case n>p=k

Dividing each element into p components, we can view the input as a set of

n . . -
— component matrices, each matrix comprising one element from every processor.
p

We transpose each matrix scparately, then form at each processor a single com-



ponent list by merging the corresponding columns of all matrices. The remainder of

phase 1 and phase 2 then proceed as before. In phase 3, we rearrange the component
matrices according to the sorting permutation, then use § transpose operations to

accomplish the transfer.

The cost of the transpose operations in phases 1 and 3 is O(%m) cycles. The

cost of phase 2 is O(nlogn logp) cycles (notice that each rank list now consists of

nlogn bits). The total complexity of the algorithm is therefore

o (ﬁ-md- nlog nlog p) cycles.

4.6.2. The Case n>p>k

We now consider an MCB(p, k) with arbitrary k<p channels. The approach
is similar to the implementation of COLUMNSORT in Chapter 3. We divide the pro-

cessors into & equal groups, collecting the elements of each group to one “represen-
tative” processor. We then proceed as if the network were an MCB(k, k) with *:-

elements in each processor. Finally, we redistribute the elements in the sorted order

within each group.

The cost of collecting and redistributing the elements is O(%m) cycles.
Adding the cost of sorting (which is similar to the previous case), the total complex-

ity is O (%m+ nlogn log k) cycles. This is optimal for m= klog n log &, since moving

n strings of m bits using k channels requires Q(%m) cycles.
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Provided n2k3, we can sort optimally even if m<klogn logk. This can be

done by adapting COLUMNSORT to bit communication. Under uniform communi-

cation cost, the algorithm runs in O(%) cycles. Under logarithmic cost, each cycle

expands to m cycles, so the complexity is O(%m) cycles, which is optimal.

4.6.3. Uneven Distributions

The difficulties in generalizing algorithm A to uneven distributions are simi-
lar to those encountered with COLUMNSORT. We therefore use the same approach,
i.e., we form processor groups with approximately the same number of elements,
collect the elements of each group to one processor, then proceed as in the even case.

Similar to Chapter 3, the algorithm is non-oblivious and runs on the general MCB.

The implementation is considerably simpler than under uniform cost. Let n;
denote the number of elements in P;, and let n ,,, be the largest n;. The cardinalities
n; are broadcast one after another using a total of O(plogn) cycles. The calculations
involved in group formation are then performed by each processor separately, mak-

ing it unnecessary to use the partial-sums algorithm. Since each group contains at

n . T
most max{?, nmax} €lements, the cost of element collection and redistribution is

O((max{%, N max }) M) cycles. A similar cost is incurred in phases 1 and 3 of the

sorting. Phase 2 is identical to the even case, and costs O(nlog nlogk) cycles. The

total complexity for uneven distributions is therefore

O( (max{%, Nmax ])m+nlognlogk) cycles.



4.7. Concluding Remarks

We have investigated the complexity of sorting under logarithmic communi-
cation cost. Algorithm C is optimal for m2plogp. On the other hand, when m<p,
AKS emulation achieves a better performance of O(mlogp) cycles. An open prob-
lem is to bridge the gap between the upper bound O(plogp) and the lower bound
Q(m) in the range p<m<plogp. It also remains open whether O(mlogp) is optimal

for m<p.

Landau, Yung and Galil [Land85] use a model which is equivalent to ours to
solve the Multiple Identification problem. In this problem, each of p processors con-
tains a string of m bits, and needs to identify all the processors which have the same
string as itself. The approach in [Land85] is to sort the strings, then use the sorted
order to form groups of processors with identical striﬁgs. Sorting is performed by
AKS emulation, which takes O(mlog p) cycles. The total complexity of the solution
is O(mlogp+p) cycles. By replacing the AKS emulation with algorithm C, we are
able to improve the upper bound for the multiple identification problem by a factor

of log p. Following Theorem 4.1, this is optimal.
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CHAPTER 5
SELECTION ALGORITHMS

In this chapter we consider the problem of selecting the 4’th largest element
among a collection of elements distributed in an MCB(p, k). We present an efficient

algorithm for the problem and establish matching lower bounds. !

5.1. Introduction

Let n elements from a totally ordered domain be distributed in the network.
Selection is the task of identifying the d’th largest clémcnt, for a given rank d.

W.l.o.g. we may assume that 154< I'%] (if not, reverse the order and select the ele-

ment of rank n—d+1). Of specific interset is the rank d= r—'211, which is called the

median.

A naive approach to selection is to sort the clements, then retrieve the
selected element directly by rank. This is inefficient because the extra information
provided by sorting comes at a cost and is not really needed. A more promising
approach is the following. Reduce the number of candidates for selection by repeti-
tively applying an efficient filtering mechanism. When the number of remaining

candidates gets below a specified threshold value, sort the remaining candidates and

1 The results in this chapter have been previously published in the Proceedings of
the 1985 International Conference on Parallel Processing [Marb85b].
© 1985 IEEE. Reproduced with permission.
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retrieve the selected element by rank.

In this chapter we present a selection algorithm which follows this approach.
. . . P kn kn
The complexity of the algorithm is O( X log ?) cycles and O(plog 7) messages

on a restricted MCB(p, k), using uniform cost. We prove that this is optimal in a

wide range of cases by showing a matching lower bound.

The discussion proceeds as follows. In Section 5.2 we describe the algorithm.
In Section 5.3 we prove its correctness. The complexity analysis is shown in Section

5.4. Concluding remarks are given in Section 5.5.
§.2. The Selection Algorithm

W.lo.g. assume that all the elements in the nétwork are distinct. If not,
replace each element & in P; with the triple (&, i, j g)’ where j; is a unique index

within P;, and use lexicographical order among the triples.

We use the following notation. The number of elements in processor P; is n;.
The number of remaining candidates for selection at each stage of the algorithm is
m. The number of remaining candidates in processor P; is m;. Initially, m=n and
m;=n;. The threshold value for the number of remaining candidates is denoted m*.

The rank of the element to be selected is d.

The algorithm consists of two phases: a filtering phase, followed by a termi-
nation phase. In the filtering phase, the number of candidates for selection is itera-
tively reduced until it gets below m*. In the termination phase, the remaining candi-
dates are collected to one processor; that processor completes the selection locally

and broadcasts the result.
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5.2.1. The Filtering Phase

A typical iteration of the filtering phase proceeds as follows. Using some
efficient sequential selection algorithm (e.g., [Blum73] ), each processor P; locally
computes the median of its m; remaining candidates. Let us denote this value as
med; . If there are no remaining candidates in P;, med; is given a dummy value.
Using COLUMNSORT (Chapter 3), the pairs {med;, m; ) are sorted in descending
order of the first coordinate. We denote the pair located at processor P; after the

sorting as {med;’, m; ), to distinguish it from the original pair of that processor.

Using the partial-sums algorithm (Chapter 3), the processors compute m and
the partial sums m;"". Let m;"" be the smallest partial sum such that m;**a-'-;-. We

denote the comresponding median, med;’, as med\, . Intuitively, med; is chosen so
that sufficiently many candidates are larger than it, and sufficiently many are smaller.
Py can identify medy, by comparing m;"* with the next-smaller partial sum. It then
broadcasts medy, to the other processors, which, using the partial-sums algorithm,
caiculate the total number of candidates that are greater or equal to medy, . Denote

this number my, . There are three cases.

Case 1. my=d

The selected element is med, ; the algorithm terminates.

Case 2. my>d
The candidates smaller or equal to med are purged from each processor, and m is
set to my,~1. If m>m*, the next filtering iteration is started; otherwise, the termina-

tion phase is executed.
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Case 3. my,<d
The candidates greater or equal to medy, are purged from each processor, m is set to
m—my, , and d is set to d—m1, . Similar to case 2, if m>m* the next filtering itera-

tion is started; otherwise, the termination phase is executed.
5.2.2. The Termination Phase

In the termination phase, all the remaining candidates are collected to proces-
sor P, which then selects the element of rank d and broadcasts it to the other pro-

CESSOrs.

The difficulty is that not every processor necessarily has remaining candi-
dates. In order to implement the element collection efficiently, P, must avoid pol-

ling processors which do not have candidates.

Let us call the processors which have remaining candidates active processors.
The idea is to link all the active processors in a linked list. The elements are then
sent to P, in order of the linked list, as follows. When the current active processor
has finished sending its elements, it notifies P, of the identity of the next active pro-
cessor on the list. All active processors listen to all the transmissions, thereby syn-

chronizing with each other when to start sending elements.

The linked list of active processors is formed in the following way. Let g; =i
if P; is active, and otherwise let ¢; =0. A partial-sums computation is performed on
the values g;, using the operation &="“max”. It can be seen that if P; is active, then
a?il points to the nearest active processor to P;’s left (with respect to the leaves in
the tree). Also, ag points to the rightmost active processor, which is the first in the

list.
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5.3. Correctness Proof

We now show that the selection algorithm works correctly. Assume induc-
tively that at the beginning of the current filtering iteration the element to be selected
has not been purged, and that 4 is the correct rank of this element among the remain-

ing candidates. This is clearly true at the beginning of the algorithm.

In case 1, the number of candidates greater or equal to med., is d. Since
w.l.o.g. we assume that all elements are distinct, the decision to select med., is
correct. In case 2, since mi, >d, the element we are looking for is greater than
medy, . Thus, all candidates smaller or equal to medy; can be purged. In case 3, a
similar argument applies, except that since the my, candidates being purged are
greater than the selected element, the rank d needs to be lowered by the same
amount. Since at least one candidate is purged in each instance of case 2 or 3, m
becomes smaller and smaller, and eventually the algorithm either terminates in case
1 or reaches the termination phase, where the correct element is selected locally at

P,.
5.4. Complexity Analysis

In analyzing the complexity of the algorithm, we need to determine the cost
of a filtering iteration and the termination phase, and calculate the number of filter-

ing iterations.

Each filtering iteration involves the following: (1) sorting the pairs
{med;", m;"); (2) computing med, ; and (3) computing m, . Using the costs of

COLUMNSORT (assuming p2k'*€) and the partial-sums algorithm, the complexity

of each iteration is O(%Hog k)=0(%) cycles and O (p) messages.
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The analysis of the number of filtering iterations is illustrated in Figure 5.1,
which captures the situation at the beginning of a typical iteration. Let M; denote the
list of remaining candidates in P;. The lists are shown in the order
My, Mz’., ..., M, from left to right, where M;’ is the list that corresponds to the
pair { med;’, m;"). The elements in each list are shown in descending order from top
to bottom. Since the lists are given in descending order of the medians, it can be
seen that for any list M;’, half the candidates in M;" and at least half the candidates in
every list to the right of M;” are smaller or equal to med;”. Similarly, half the list M;’
and at least half of every list to the left of M;" are greater or equal to med;’. This is

shown in Figure 5.1 by the encircled areas.

In particular, since med,(=med;”) was chosen such that m;”* is the smallest

partial sum of candidates which is greater or equal to L;—, it can be seen that at least

. m .
% candidates are smaller or equal to medy; , and at least Y candidates are greater

or equal to med; . Consequently, in each instance of case 2 or 3 of the algorithm, at

least one fourth of the remaining candidates are purged. Thus, O (log —-E;-) iterations
m

suffice in order to reduce the number of candidates below m*.

The termination phase involves application of the partial-sums algorithm,
and the transfer of m* elements. This amounts to 0(%+m*) cycles and O(p+m*)

messages.

yia

The total complexity of the selection algorithm is O(m™*+ p

log _n_) cycles
m *

and O(m*+plog L*) messages. Choosing m*=-%, the complexity becomes
m
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Figure 5.1. An Iteration of the Filtering Phase

0 (%log k?n) cycles and O (p log k?n) messages.

We now show a simple modification that improves the performance of the

algorithm for small ranks d<§. Clearly, only the d largest elements in each proces-

sor have the potential of becoming the selected element. Therefore, at the beginning
of the algorithm each processor can eliminate from candidacy all but d of its ele-
ments. In other words, the initial number of candidates at P; is m;=min(n;, d}. The

total number of candidates is at most pd, which is less than n. The improved com-

plexity of the algorithm is O(%log dk) cycles and O (plog dk) messages.
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Notice that because of the use of COLUMNSORT in the filtering phase, we
have assumed in the analysis that p=k'*¢. When this is not the case, we can replace
COLUMNSORT with emulation of the AKS sorting network [Ajta83], thereby

increasing the complexity by a factor of log p in both messages and cycles.
5.5. Lower Bounds

We now establish lower bounds on the complexity of selection under uni-
form communication cost. We first discuss finding the median, then generalize to
arbitrary ranks. The bounds are based on an adversary argument adapted from
{Fred83], and apply only to comparison-based algorithms.

Theorem 5.1. Selecting the median of n elements requires ﬁlog 2n; - 10821 yax)
i=1

messages.

Corollary 5.1.  Selecting the median of »n eclements requires

log 2n
—-—-g-—-—'-nlx—) cycles. &

1 2
Q('; Zlog 2n; - i

i=1
Proof of Theorem 5.1. We devise an adversary that, given the cardinalities »; and a

selection algorithm, generates an input distribution such that the algorithm requires

P
Q(3 log 2n; -log 2n,,, ) messages when executed on that input.
i=1
The adversary is free to make each element arbitrary large or small, as long
as the relative order in each processor is maintained consistently. Initially, none of
the elements has a fixed magnitude. The adversary follows the execution of the

algorithm, fixing the magnitude of elements as the algorithm proceeds. Elements not
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yet fixed are candidates for the median. Fixed elements are made either “very
small” or “very large,” in the sense of being smaller or larger than all the remaining
candidates in the network. By keeping an equal number of very small and very large
elements at all times, the adversary excludes such elements from being selected.
Clearly, the algorithm cannot terminate before the number of candidates is reduced
to one. Total order is maintained among the fixed elements of all processors by
making each new very small element (very large element, respectively) larger

(smaller) than all the existing very small (very large) elements.

Let n; (2R 2 2n,—P be a nonincreasing order among the n;’s, and
assume w.l.o.g. that p is even. The adversary divides the processors into disjoint
pairs Py, Py ), (Piy, Pig)s ..., (P, Py ). Denote a typical pair (P, Py ), and

assume w.l.o.g. that n,—n; is even. The elements are initialized as follows. All the

. . b .
elements in P, are made candidates. The smallest elements in P, are made

na_"nb
very small, and the

largest elements in P, are made be very large. The

remaining n, elements in P, are made candidates. Thus, both processors of each

pair have the same number of candidates.

Whenever a message is sent which contains a candidate of P, that is larger or
equal (smaller, respectively) than the median of the candidates in P, , the adversary
fixes that candidate and all those larger (smaller) than it in P, to be very large (very
small), and an equal number of candidates in Py to be very small (very large). From
that point on, these elements are no longer candidates. When the message contains a
candidate of P, , the same action with the roles of P, and P, reversed is taken. No

action is taken by the adversary if the message does not contain a candidate. Con-
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current messages (in the same cycle) are handled in arbitrary order.

Let 2¢q be the number of candidates in a given pair of processors immediately
before a message containing a candidate of that pair is sent. It can be seen that at

most ¢g+1 candidates, all of them in the given pair, are fixed by the adversary as a

£
2 P

result of that message. Thus, at least 21082":‘2,- 2 —%—EloaniJ =
j:l j=2

p
Q(¥ log 2n; —log 2n .5 ) messages are needed to reduce the number of candidates in
i=1

the network toc one. B

The lower bounds of Theorem 5.1 and Corollary 5.1 can be generalized for
an arbitrary rank d, as follows.

Theorem 5.2. Let d be an integer, p<d< f——g—'l Let 5 be the number of processors for
which n.-ag—. Let ni 2R, 2 Zn.-p be a nonincreasing order among the n;’s.

p
Selecting the d’th largest element requires €X( (s-—l)log2+ Y log 2n;j_) mes-

J=s+1

sages.

Corollary 5.2. Selecting the d'th largest element, p<d< [%'I requires

-1 2d 1 &
Q(-sk—log?-#? Y log 2n,-j ) cycles. B

j=s+1

Proof of Theorem 5.2. We use the same adversary argument as in Theorem 5.1.
The only difference is in the initialization of candidates and fixed elements. In pairs

of processors { P,, P ) where b2s+1, all the n;, elements in P, and an equal number
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of elements in P, are made candidates. In the remaining pairs, candidates are chosen
so that: (1) each processor will have at least % candidates; (2) the total number of

candidates in the network will not exceed 24; and (3) both processors of a pair will
have the same number of candidates. Let m=2g denote the initial number of candi-
dates in the network. Among the remaining n—2q elements, d—¢ elements are made
very large, and the rest very small. With this setup, the selection problem reduces to
finding the median of the 2¢g candidates. Let m; denote the initial number of candi-

dates in P;. Similar to Theorem 5.1, the number of messages required is at least

2

5 { » sd P

) lome,-zj 2 3 Elome,-j =Q((s~Dlog—+ ¥ log 2n,-j ). o
j=1 =2 j=s+1

The following corollary shows that the lower bounds are tight, and that the
selection algorithm is optimal in a wide range of cases.

&

Corollary 5.3. Let 0<e<1 be a constant such that p2k 1*€, nsz, and 5
£

<d< [%'l.

2
The complexity of selecting the d’th largest element in an MCB(p, k) is

Also, let the distribution of the input be such that for at least 24 Processors nizg.

@(i—log -kf) cycles and ©(p log %) messages.

1

Proof. nsz implies log % 2 log % 2 5

&

bounds of Theorem 5.2 and Corollary 5.2 reduce to Q(plog %‘) and Q(%log ﬂp”_),

log —kf- Using s= [£2£]+I, the lower

respectively. The matching upper bounds are achieved by the algorithm in Section
54. =
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It should be noted that Corollary 5.3 applies both in the general and in the
restricted MCB. Also notice that the tight bounds on cycles and on messages are

simultaneous.
5.6. Concluding Remarks

Rotem, Santoro and Sidney [Rote83] study the selection problem in the
framework of the Shout-Echo model. In this model, a communication cycle consists
of a broadcast message from a single processor, followed by replies from all other

processors. The selection algorithm given in [Rote83] has a complexity of
O (log p log(min{ % d})) cycles, where d is the rank of the element to be selected.

By implementing our selection method in the Shout-Echo model, we are able to
improve this upper bound by a factor of log p, which can be shown optimal (see
[Marb85a] ).
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CHAPTER 6
PERMUTATION ALGORITHMS

In this chapter we address the problem of performing permutations among
the processors in the MCB. We present a simple and efficient algorithm for the res-

tricted MCB, and establish a matching lower bound.

6.1. Introduction

Consider the following problem. Each processor P; needs to send a message
to a destination processor Py . It is given that no two destinations are the same; in
other words, the list of destinations indexes [d, ,d3, . ..,d,] is a permutation of the

list [1, 2, ..., p). The task is to deliver the messages to their destinations efficiently.

In the general MCB(p, p) it is straightforward to permute the messages in a
single cycle (assuming w.l.0.g. that each message is short enough to be transmitted
in one cycle): P; writes its message on channel Cy , and Py, reads the channel. In
other words, channel C; serves as the “mailbox™ of processor P;. In the case of a

P

general MCB(p, k) where k<p, a similar approach accomplishes the task in p

cycles, with each channel serving as mailbox for % Processors.

Yet, the above method fails on the restricted MCB. Since each processor can
write only on one predetermined channel, a message cannot be delivered to an arbi-

trary destination processor in one step unless the latter knows the identity of the
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sender, so that it can read the appropriate channel. In other words, in the restricted

MCB, unlike the general MCB, there is no notion of mailboxes.

The obvious way to permute the messages in the restricted MCB is by sort-
ing, namely the messages are tagged with their destination, then sorted. However,
performing a permutation seems an “easier” task than sorting, since the destination
of each item is already determined in advance. Moreover, it has been shown in
Chapter 3 that when p<k!*t, sorting entails the use of AKS emulation, which is
impractical due to the large constants involved. It is our goal in this chapter to

develop an efficient method to perform permutations without relying on sorting,

As mentioned, the underlying difficulty is that a destination processor is ini-
tially unaware of the corresponding source processor (i.e., the sender). Our approach
is to have each processor identify its source. Once this has been accomplished, mes-
sages can be delivered directly to their destination over the channel associated with
the source. We call the task of identifying the sources the permutation problem. In
a way, the problem is a generalization of the (single-bit) identification problem dis-

cussed in Chapter 2.

A formal definition of the permutation problem is the following. Each pro-
cessor P; has an index d;, called the destination index, such that die {1,2,...,p},
and d;#d; if and only if i»j. The task of processor P; is to compute an index s,

called the source index, such that d,j=j.

We present a non-oblivious algorithm for the permutation problem that runs
in O (logp) cycles and O(plogp) messages on a restricted MCB(p, p) with uniform

communication. By showing that the problem is (p—1)-sensitive, we prove that the
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algorithm is optimal in the number of cycles. The algorithm can be generalized to
arbitrary MCB(p, k), k<p, achieving a complexity of O(%logp) cycles and
O(plogp) messages. When psk*¢, 0<e«l, this complexity matches sorting, yet
our algorithm is considerably simpler. We then prove that Q(%) cycles and Q(p)

messages are lower bounds for permutation. This improves the lower bound derived
from the (p—1)-sensitivity of the problem when p is sufficiently larger than k. We
conclude that for p2k!*¢, the permutation problem can be solved optimally via sort-

ing, using the COLUMNSORT algorithm of Chapter 3.

The discussion proceeds as follows. In Section 6.2 we present the algorithm.

Section 6.3 shows the lower bounds. Concluding remarks are given in Section 6.4.
6.2, The Permutation Algorithm

Consider the following directed graph, induced by an instance
I=[d,,d;,..., d;] of the permutation problem. There are p nodes, labeled 1
through p. Each node i is connected by an outgoing edge to node d;. It is immediate
to see that each component of the graph is a directed ring (see Figure 6.1 for an
example). Associating processor P; with node i, computing s; is equivalent to identi-
fying the predecessor of P; in the ring. In the remainder of the discussion we will

use the terms node (in the context of the rings) and processor interchangeably.

Since initially each processor knows only its successor in the ring, the ring
can be “traversed” only in the outgogoing direction of the edges. In order to identify

its predecessor, a processor needs to go around the entire ring.
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I=[4, 1,16, 8, 13,9, 15, 5, 11, 12, 6, 7, 3, 10, 14, 2]

Figure 6.1. Ring Graph Induced by a Permutation

A straightforward but slow method of traversing the ring is to go from node
to node along the edges. This is implemented as follows. Each processor repeatedly
broadcasts its destination index, which serves as a “pointer” to the next node in the
ring. A processor first reads the channel of its successor, then follows the pointer
and reads the next channel, etc., until it encounters the pointer back to itself.
Depending on the size of the ring, this method could take up to O(p) cycles and

0(p?) messages.

A faster way to cover the distance is to use what is called the doubling tech-
nique [Wyll79]. The idea is to double the distance traversed in each step. Suppose a
distance of r steps along the ring has already been covered. Each processor now
broadcasts the pointer to the node at distance r from itself. In the next cycle, the pro-

cessor reading that pointer can proceed directly to the node at distance 2r. The
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algorithm presented in this section is based on this approach.

There is a problem with the approach, namely that the ring is of arbitrary
size, i.e., the predecessor of a node can be at any distance, whereas doubling “visits”
only the nodes at distance 2‘, =0, 1,2, - - -. We will show later that the doubling
technique can be refined to cover exactly the distance to the predecessor. First, how-
ever, we need to determine that distance. This can be accomplished by counting the
number of nodes in the ring. Yet, the latter task is not trivial. The difficulty lies in
the inherent symmetry of the ring, which does not provide a fixed point from which
to start the counting. Such a point could, for example, be the node of minimum id in
the ring. Fortunately, the standard doubling technique can be used to find the

minimum node.

Based on these observations, our solution to the permutation problem con-
sists of three phases: (1) finding the minimum node in each ring; (2) finding the size
of each ring; and (3) identifying the predecessors. We describe the algorithm for
MCB(p, p), then show how it can be generalizeed to arbitrary k<p.

6.2.1. Finding the Minimum Node in the Ring

Although the exact size of each ring is not known, p is obviously an upper
bound. The doubling technique is therefore guaranteed to cover the entire ring

(perhaps more than once) in [logp] steps.

Let M;(t) denote the minimum id among the nodes in the ring which are at
distance 2'-1 or less from node i (in the outgoing direction of the links). Clearly,
M;([logp]) is the minimum id in the ring. Inidally, however, each node i knows
only the value M;(0)=i.
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The values M;(¢), 121 are computed recursively in [logp] steps using the
doubling technique. Let N;(r) be the node at distance 2 from node i. Initially,
N;(0)=d;, where d; is the destination index of processor P;. In step t, 1<r<[logp],
each P; broadcasts the values N;(t—1) and M,(r—1), and reads channel CN‘_(,_U. It

then sets N;(t):=NNi(,_1)(t—1) and M;(t):==min{M;(t-1), MN‘,(,_I)(I—I)}.
6.2.2, Finding the Size of the Ring

Once the minimum node in the ring has been identified, the ring can be “cut”
between the minimum node and its predecessor, to form a linearly linked list. The

goal is then to determine the length of the linked list.

We use the doubling technique in the following manner. Let ir and i; denote
the first and last node, respectively, in a given list. Notice that both P; £ and P; can

identify themselves after the first phase.

Each processor P; has a counter L;. The value of the counter after step ¢ of
the doubling is denoted L;(¢). Initially, L;I(O)=0, and for all i#i; in the given list,
L;(0)=1. Let the pointers N;(¢) be defined as in the first phase, except that N; (£)=i

for all £ (i.e., the last processor in the linked list points to itself at all times).

The computation proceeds as follows. In step ¢, 1<r<[logp], each processor
P; broadcasts N;(t—1) and L;(t-1), and reads channel CN‘.(,,U. It then sets

Ni(#):=Nn,¢-1y(¢-1) and Li(r):=Li(1=1) +Ly -1y (t-1).

It can be seen that L;(¢) equals the number of links covered in ¢ steps of dou-
bling beginning at node i. Since P;, points to itself, the doubling becomes stagnant
when the end of the list is reached. It can also be verified that L; . (t)=0 for all ¢.
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Thus, L;([log p]) gives the distance from node i to the end of the list. The length of
the list, in number of links, is L=L; J’,(I'log p ). This is also the distance from each

node to its predecessor. P; y broadcasts L to all the processors in the ring.

6.2.3. Identifying the Predecessors

As noted earlier, the standard doubling technique cannot be used to visit the
predecessor unless the distance is a power of 2. We now show how to refine the

doubling technique to cover an arbitrary distance L.

We assume w.lo.g. that P; remembers the values
Ni(1), Ni(2), ..., N([logp]) from the first phase. Let b (105118 [logL]-1 * * * b1bg be
the binary representation of L, where by is the least significant bit. We define

N’;(£)=N;(t) if b;=1, and otherwise N”;(1)=i.

The id of the node at distance byb,_; - - - bg from node i, denoted D;(t), can

be computed using the following recursive formula.

1. Dy(0)=N";(0).
2. Di(t)=N'p ¢-1y(t).

We are interested in D;(|logL ]), which is the id of the predecessor of P;.

Intuitively, the distance to the predecessor is covered in “hops” of size b,2',

llog L
1=0,1,..., |logL]. This gives the correct result since L= i b 2.
=0

The computation is implemented as follows. In step 1<s<|logL ], processor

P; broadcasts N’;(r) and reads channel D;(t—1). It then sets D;(#)=N"p (1)(®).
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6.2.4. Complexity

Each of the three phases uses the doubling technique to traverse a ring (or
list) of size at most p. Hence, the complexity of the algorithm is O(log p) cycles and

O(p) messages. In Section 6.3 we show that this is optimal.

The algorithm can be generalized to arbitrary MCB(p, k), k<p, by emulating

each cycle of the original algorithm using % cycles. This results in a complexity of

O(%log p) cycles and O (plog p) messages.

when p<k!*t, O<e«l, our algorithm matches the complexity of sorting (see
Chapter 3). Yet, our solution is considerably simpler and more practical, since the
sorting algorithm uses AKS emulation. This supports the observation made earlier,

namely that the permutation problem seems easier than sorting.
6.3. Lower Bounds

The permutation problem is (p—1)-sensitive. To see this, let S be a subset of

p-2 processors, let P; be a processor in S, and let P; and P‘-z be the two processors
not in §. Consider an input instance 7, in which o:i,-l =j, and an instance [, that is
derived from 7, by switching d,-1 and d,-z. That is, in [, d,-2=j. Clearly, S,/ and /5

satisfy the definition of (p—1)-sensitivity (see Chapter 2).

Following Theorem 2.1, solving the permutation problem on the restricted

MCB requires logp-l) cycles. In particular, when p=k, at least log(p—1) cycles
log(%+1)

are required.
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Corollary 6.1. The permutation algorithm for MCB(p, p) described in Section 6.2
is optimal in the number of cycles. ®

We now prove that I_%J messages and I_-%J cycles are lower bounds for

permutation. This improves the lower bound derived from the (p—1)-sensitivity of

the problem when p is sufficiently larger than £.

Theorem 6.1. The permutation problem requires at least L-%_] messages.

Corollary 6.2. The permutation problem requires at least LZPIJ cycles. m

Proof of Theorem 6.1. We have seen in Chapter 2 that information can sometimes
be gained implicitly from the fact that a certain processor does not “talk” (i.e. does

not write on the channel) in a given cycle. The idea here is to show an instance of

the permutation problem which forces I_%J processors to talk at least once.

Let I be the circular shift permutation, i.e., d;=(i mod p)+1. Let [’ be the per-
mutation obtained from / by switching each pair dp;_; and dy;, 15st% ). Thus,

1=[2,3,4,5,...,p,1],and I'=[3,2,5,4, - - - ].

Suppose that neither P, nor P, talks during the execution of the algorithm
on input /. Assuming the algorithm is correct, P 3 evaluates its source index as 53=2.
Now, consider the execution of the same algorithm on input /*. The claim is that
either P, or P, must talk. To see this, assume that neither talks. Then, processor P
cannot distinguish instance /” from /, so it evaluates s3=2, which is incorrect (the

correct value is s3=1).
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In other words, regardless of the algorithm, given the inputs / and /* defined

above, either P, or P, must talk during the computation for at least one of the two
inputs. It can be seen that a similar argument holds for each of the L%J disjoint
processor pairs (P, P3), (P3,P4), - --. Hence, the combined number of mes-

sages required for the two instances is at least L%_], which means that one of the

. . T12]
instances entails | "2

12 LEJ messages. B
5 4
Corollary 6.3. When p2k!*€, 0<e«l, the complexity of the permutation problem

on an MCB(p, k) is ©(p) messages and 6(%} cycles.

Proof. The lower bounds are given by Theorem 6.1 and Corollary 6.2. The match-
ing upper bounds can be achieved via sorting, using the COLUMNSORT algorithm
of Chapter 3. m

Corollary 6.3 applies both in the general and in the restricted MCB. In the
general model, the upper bound is also achieved by the straightforward method dis-

cussed in Section 6.1.

6.4. Concluding Remarks

We have developed a permutation algorithm that runs in O(%log p) cycles.

This is optimal when p=k, and matches the complexity of the obvious solution using

sorting in the range p<k!*t. On the other hand, in the range p>k!*®, sorting
achieves optimal complexity of 0(%) cycles, whereas our algorithm is inferior. It

remains open whether it is possible to perform permutations optimally in the range
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p>k*€ without relying on sorting.

There are two generalizations of the permutation problem which seem more
difficult. The first is the partial permutation problem. It is similar to the (full) per-
mutation problem, except that some processors do not have a destination index. The
algorithm we have presented cannot be applied here, since partial permutations do

not necessarily induce a ring graph.

The second generalization is the emulation problem. Every processor P; has
a reading index r;, 1sr;sk. Also, k processors P; each have a writing index w;,
1<w;<k, such that no two writing indexes are the same. The task is to deliver a mes-
sage from P; to P; if and only if w;=r;. An algorithm solving this problem on the
restricted MCB would constitute a mechanism to emulate, cycle by cycle, arbitrary
computations of the general MCB. It is interesting to investigate the complexity of

such emulation.



CHAPTER 7
DIRECTIONS FOR FUTURE RESEARCH

This chapter suggests directions for future research in the area of distributed
algorithms with broadcast communication. The discussion covers two main topics:
network models for broadcast communication; and design and analysis of broadcast

algorithms.
7.1. Network Models for Broadcast Communication
7.1.1. Variants of the MCB Model

We have distinguished different variants of the MCB model by changing
some of the assumptions. With respect to channel access, there is the general MCB,
where each processor can read and write any channel, and the restricted MCB, where
each processor can write only on one predetermined channel. With respect to com-
munication cost, there is uniform cost, where the transmission of an atomic datum is
assumed to take one cycle, and logarithmic cost, where each bit to be transmitted
requires a separate cycle. Also, we have defined oblivious computations, where the
processors that access each channel during each cycle are predetermined, indepen-

dent of the input.

Chapter 2 has presented several separation results regarding the computa-
tional power of the different variants of the model. An interesting open problem is

whether the general and the restricted MCB are equally powerful for oblivious
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computation. As discussed in Chapter 2, we conjecture that the models are indeed
equivalent. Proving (or disproving) the conjecture seems to be a difficult task, which

may require new proof techniques.

Also of interest is to investigate other enhancements to the MCB model. For
example, concurrent write-access to the channels, similar to the CRCW shared
memory model [Fich84] or the single-channel broadcast models in [Dech86,
Levi82]. Another possible enhancement is to allow a processor to read several chan-

nels simultaneously in each cycle.
7.1.2. Alternative Interconnection Structures

In the MCB model, every processor is connected to every channel. While this
provides increased flexibility in communication, it is also expensive in terms of the
power requirements of the communication devices. Specifically, the more receivers
are attached to each channel, the more powerful the transmitters that are required.
An alterative interconnection structure, where fewer processors have read-access to
each channel, is desirable. Such an interconnection should, nevertheless, exhibit the
following two properties of the MCB structure: (1) any two processors should be
able to communicate with each other in a constant number of “hops” over the chan-
nels; and (2) the number of channels needed to achieve the first requirement should

be small.

One possible interconnection is illustrated in Figure 7.1. The processors are
organized in a square grid. Each row and each column of processors is connected by
a broadcast channel. Given p processors, Zp"‘z channels are needed, and the number

of processors connected to each channel is p ™. Moreover, each processor is con-
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Figure 7.1. Grid Broadcast Interconnection

nected to only two channels, which makes the total number of connections 2p, com-
pared with pk in the MCB model. Also, it can be seen that any pair of processors
can communicate in two hops. The approach can be generalized to three dimensions

in the natural way.

A variation on this structure, which accommodates *“private” channels, simi-
lar to a restricted MCB (p, p), is the following. The processors are organized in a
square grid, as before. There are p channels, each of which is dedicated to a
different processor for writing. The processors in the row and column that intersect
at a given processor have read-access to the channel written by that processor. The

number of processors connected to each channel is thus 2p™. Again, each pair of

93



Processors can communicate in two hops.

Another possible organization, illustrated in Figure 7.2, is called Selective
Broadcast Interconnection (SBI) [Marh85]. This is a parametrized family of inter-
connections, with the following parameters. Each processor can read &, channels and
write k, channels. The total number of channels is k,-k,,. Let us number the chan-
nels using pairs (i, j), where 1<i<k, and 1Sj<k,,. The processors are divided into &,
equal wriring groups, and k,, equal reading groups. The processors in writing group
i have write-access to the channels numbered (i, *), and the processors in reading
group j have read-access to the channels numbered (*, j). In Figure 7.2, the case
p=12, k,=3, k,=2 is illustrated; each processor is shown twice — once as a writer
and once as a reader. It can be seen that a processor in writing group i can commun-
icate with a processor in reading group j via channel (i, f), i.e., any two processors

can communicate in one hop. The number of processors that are connected to each

channel varies from channel to channel, but never exceeds %(kwﬂc,). For k., =k,,
this number is —2%
k

It is interesting to compare the computational power of these network models

and others of similar type with the MCB.
7.2. Design and Analysis of Broadcast Algorithms
7.2.1. Open Questions in Sorting, Selection and Permutation

We have designed algorithms for sorting, selection and permutation. The
optimality of these algorithms has been shown in a wide range of cases, but there

remain unresolved questions with regard to tight bounds in the remaining cases. In
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Figure 7.2. Selective Broadcast Interconnection

the following, we review some of these questions.

Algorithm COLUMNSORT in Chapter 3 is optimal for n2k*¢ when the dis-
tribution is even, and for n2k> when the distribution is arbitrary (uneven). It

remains open to devise tight upper and lower bounds in the remaining ranges.

Sorting algorithm C in Chapter 4 is optimal for m2plogp. On the other
hand, when m<p, AKS emulation achieves a better performance of O(mlogp)
cycles. An open problem is to bridge the gap between the upper bound O(plog p}
and the lower bound €2(m) in the range p<m<plogp. It also remains open whether

O(mlogp) is optimal for m<p.
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The selection algorithm in Chapter 5§ uses COLUMNSORT in the filtering
phase, and we therefore assume that p2k € When p<k!'*¢, we can replace
COLUMNSORT with AKS emulation, thereby increasing the upper bound on selec-
tion by a factor of log p in both messages and cycles. It is open whether this com-

plexity is optimal in the given range.

The permutation algorithm in Chapter 6 is optimal for p=k, and matches the

complexity of the obvious solution via sorting in the range p<k!*t. On the other
hand, in the range p>k!*t, sorting achieves optimal complexity of O(-%) cycles,

whereas the permutation algorithm is inferior. It remains open whether it is possible

to perform permutations optimally in the range p >k 1*€ without relying on sorting.
7.2.2. Additional Applications

The application algorithms developed in this dissertation demonstrate the
practicality of the MCB model as a framework for distributed algorithm design, pro-

viding motivation to investigate additional problems in other domains.

One interesting domain is numeric algorithms. Examples of typical applica-
tions in this area which are of distributive nature include matrix operations (multipli-
cation, determinant, etc.), dynamic programming, and recurrence equations. Such
problems have been investigated in the context of other distributed computation

models [Bert82, Boro82, Cari84].

Another important application domain is graph algorithms. It is not yet clear
how to exploit broadcasting efficiently for this type of problems, the reason being
that unlike point-to-point networks, the MCB model does not have an inherent graph
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structure. Several researchers, however, have successfully used a hybrid approach,
in which a point-to-point network is augmented with a broadcast bus [Andr835,

Bokh&4, Stou83].
7.2.3. Characterization of Broadcast Protocols

Chandra, Furst and Lipton [Chan83] give a theoretical characterization of the
class of multi-processor protocols that solve 0-1 predicates over a set of values dis-
tributed among the processors. The work examines the inherent communication
complexity of such protocols in terms of the amount of information that needs to be
known globally in the system. The model of communication being used is similar to
a single-channel MCB where processors broadcast one bit at a time in a round-robin
fashion. Yao [Ya079], and Papadimitriou and Sipster [Papa84] give a similar char-
acterization of two-processor protocols. Generalizing these protocols to multiple
broadcast channels is a difficult open problem. An MCB where each processor is
capable of reading all the channels simultaneously could be used as framework for
the analysis.

97



[Afek85]

[Aho83]

[Ajta83]

[Andr85]

{Batc68]

[Bert82]

[Blum73]

[Bokh84]

[Boro82]

[Carl84]

REFERENCES

Afek, Y. and E. Gafni, “Time and Message Bounds for Election in Syn-
chronous and Asynchronous Complete Networks,” in Proceedings 4th
ACM Symp. on Principles of Distributed Computing, 1985, pp. 186-195.

Aho, A.V., J.E. Hopcroft, and J.D. Ullman, Data Structures and Algo-
rithms, Addison-Wesley, Reading, MA, 1983.

Ajtai, M., J. Komlos, and E. Szemeredi, “An O (MlogN) Sorting Net-
work,” in Proceedings 15th ACM Symp. on Theory of Computing, 1983,

pp. 1-9.

Andreatos, A., “Parallel Algorithms for the Strongly Regular Intercon-
nection Networks,” M.S. Thesis, Dept. of Electrical and Computer
Engineering, Univ. of Massachusetts at Amherst, May 1985.

Batcher, K.E., “Sorting Networks and their Applications,” in Proceed-
ings AFIPS Spring Joint Computer Conf., Vol. 32, April 1968, pp. 307-
314.

Bertsekas, D.P., “Distributed Dynamic Programming,” /EEE Trans.
Automatic Control AC-27, 3 (June 1982), pp. 610-616.

Blum, M., RW. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan, “Time
Bounds for Selection,” JCSS 7, 4 (Aug. 1973), pp. 448-461.

Bokhari, S .H., “Finding Maximum on an Array Processor with a Global
Bus,” IEEE Trans. Computers C-33, 2 (Feb. 1984), pp. 133-139.

Borodin, A., J. Von Zur Gathen, and J. Hopcroft, “Fast Parallel Matrix
and GCD Computations,” in Proceedings 23rd IEEE Symp. on Founda-
tions of Compuzer Science, 1982, pp. 65-71.

Carlson, D.A. and B. Sugla, “Time and Processor Efficient Parallel
Algorithms for Recurrence Equations and Related Problems,” in
Proceedings 1984 Int. Conf. on Parallel Processing, pp. 310-314.

98



[Chan83]

{Chou83]

[Cook86]

[Dech86]

[Dole82]

[Fich84]

[Fred83]

[Gou83]

[Gree82]

[Knut73]

[Kuma85]

Chandra, A.K., M.L. Furst, and R.J. Lipton, “Multi-Party Protocols,” in
Proceedings 15th ACM Symp. on Theory of Computing, 1983, pp. 94-
99.

Choudhury, G.L. and S.S. Rappaport, “Diversity ALOHA - A Random
Access Scheme for Satellite Communications,” IEEE Trans. Communi-
cations COM-31, 3 (March 1983), pp. 450-457.

Cook, S., C. Dwork, and R. Reischuk, “Upper and Lower Bounds for
Parallel Random Access Machines Without Simultaneous Writes,”
SIAM J, Comput. 15, 1 (Feb. 1986), pp. 87-97.

Dechter, R. and L. Kleinrock, “Broadcast Communications and Distri-
buted Algorithms,” IEEE Trans. Computers C-36, 3 (March 1986), pp.
210-219.

Dolev, D., M. Klawe, and M. Rodeh, “An O (nlog n) Unidirectional Dis-
tributed Algorithm for Extrema Finding in a Circle,” J. Algorithms 3, 3
(Sept. 1982), pp. 245-260.

Fich, F.E, P.L. Ragde, and A. Wigderson, “Relations between
Concurrent-Write Models of Parallel Computation,” in Proc 3rd ACM
Conf. on Principles of Distributed Computing, 1984, pp. 179-189.

Frederickson, G.N., “Tradeoffs for Selection in Distributed Systems,”
in Proceedings 2nd ACM Symp. on Principles of Distributed Comput-
ing, 1983, pp. 154-160.

Gottlieb, A., R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph,
and M. Snir, “The NYU Ultracomputer - Designing an MIMD Shared
Memory Parallel Computer,” IEEE Trans. Computers C-32, 2 (Feb.
1983), pp. 175-189.

Greenberg, A.G., “On the Time Complexity of Broadcast Communica-
tion Schemes,” in Proceedings 15th ACM Symp. on Theory of Comput-
ing, 1982, pp. 354-364.

Knuth, D.E., The Art of Computer Programming, Vol. 3: Sorting and
Searching, Addison Wesley, Reading, MA, 1973,

Kumar, VXK. and C.S. Raghavendra, “Array Processor with Multiple
Broadcasting,” in Proceedings 12th Ann. Int. Symp. on Computer
Architecture, 1985, pp. 2-10.

99



[Land85]

{Leig85]

[Levi82]}

[Lin86]

[Marb85a]

[Marb85b]}

[Marh85]

[Mars82a]

[Mars82b]

[Mars83]

[McQu77]

Landay, G.M., M.M. Yung, and Z. Galil, “Distributed Algorithms in
Synchronous Broadcasting Networks,” in Proceedings 12th Int. Conf.
on Automata, Languages and Programming, 1985, pp. 363-372. To
appear in TCS.

Leighton, T., “Tight Bounds on the Complexity of Parallel Sorting,”
IEEE Trans. Computers C-34, 4 (April 1985), pp. 344-354.

Levitan, S.P., “Algorithms for a Broadcast Protocol Multiprocessor,” in
Proceedings 3rd Int. Conf. on Distributed Computing Systems, 1982, pp.
666-671.

Lin, T.C. and D.I. Moldovan, “M?2 Mesh: An Augmented Mesh Archi-
tecture,” in Proceedings 1986 Int. Conf. on Parallel Processing, pp.
308-315.

Marberg, J.M. and E. Gafni, “An Optimal Shout-Echo Algorithm for
Selection in Distributed Sets,” in Proceedings 23rd Ann. Allerton Conf.

on Communication, Control, and Computing, Univ. of lllinois at Urbana
Champaign, 1985, pp. 283-291.

Marberg, J.M. and E. Gafni, “Sorting and Selection in Multi-Channel
Broadcast Networks,” in Proceedings 1985 Int. Conf. on Parallel Pro-
cessing, pp. 846-850.

Marhic, M.E,, Y. Birk, and F.A. Tobagi, “Selective Broadcast Intercon-
nection: a Novel Scheme for Fiber-Optic Local-Area Networks,” Optics
Lerters 10, 12 (Dec. 1985), pp. 629-631,

Marsan, M.A., “Multichannel Local Area Networks,” in Proceedings
IEEE Fall COMPCON, 1982, pp. 493-502.

Marsan, M.A., D. Roffinella, and A. Murru, “ALOHA and CSMA Proto-
cols for Multichannel Broadcast Networks,” in Proceedings Canadian
Communications and Energy Conf., 1982, pp. 375-378.

Marsan, M.A., P. Camarda, and D. Roffinella, “Throughput and Delay
Characteristics of Multichannel CSMA-CD Protocols,” in Proceedings
IEEE GLOBECOM, 1983, pp. 1147-1151.

McQuillan, J.M. and D.C. Walden, “The ARPA Network Design Deci-
sions,” Computer Networks 1, 5 (Aug. 1977), pp. 243-289.

100



[Metc76]

[Papa84]

[Pete84]

[Reis86]

[Rote83]

{Sant82]

{Sant83a]

[Sant83b]

[Seit85]
[Snir85]

[Stou83]

[Vish84]

Metcalfe, R.M. and D.R. Boggs, “Ethemnet: Distributed Packet Switch-
ing for Local Computer Networks,” CACM 19, 7 (July 1976), pp. 395-
403.

Papadimitriou, C.H. and M. Sipster, “Communication Complexity,”
JCSS 28, 2 (April 1984), pp. 260-269.

Peterson, G.L., “Efficient Algorithms for Election in Meshes and Com-
plete Networks,” Tech. Rep. TR 140, Dept. of Computer Science, Univ.
of Rochester, Rochester, NY, Aug. 1984.

Reischuk, K.R., “Parallel Machines and their Communication Theoreti-
cal Limits,” in Proceedings 3rd Annual Symp. on Theoretical Aspects
of Computer Science, 1986, pp. 359-368.

Rotem, D., N. Santoro, and J.B. Sidney, “A Shout-Echo Algorithm for
Finding the Median of a Distributed Set,” in Proceedings 14th S.E.
Conf. on Combinatorics, Graph Theory and Computing, Boca Raton,
FL, 1983, pp. 311-318.

Santoro, N. and J.B. Sidney, “Order Statistics on Distributed Sets,” in
Proceedings 20th Ann. Allerton Conf. on Communication, Control and
Computing, Univ. of Illinois at Urbana Champaign, 1982, pp. 251-256.

Santoro, N. and J.B. Sidney, “Communication Bounds for Selection in
Distributed Sets,” Working Paper 83-39, Faculty of Administration,
Univ. of Ottawa, Ottawa, Canada, 1983.

Santoro, N. and J.B. Sidney, “A Reduction Technique for Distributed
Selection: 1,” Tech. Rep. SCS-TR-23, School of Computer Science,
Carleton Univ., Ottawa, Canada, April 1983.

Seitz, C.L., “The Cosmic Cube,” CACM 28, 1 (Jan. 1985), pp. 22-35.

Snir, M., “On Parallel Searching,” SIAM J. Comput. 14, 3 (Aug. 1985),
pp. 688-708.

Stout, Q.F., “Mesh-Connected Computers with Broadcasting,” [EEE
Trans. Computers C-32, 9 (Sept. 1983), pp. 826-830.

Vishkin, U., “A Parallel-Design Distributed-Implementation (PDDI)
General-Purpose Computer,” TCS 32, 1 (July 1984), pp. 157-172.

101



[Willg4]

[Wyll79]

[Yao79)

Willard, D., “Log-Logarithmic Protocol for Resolving Ethernet and
Semaphore Conflicts,” in Proceedings 16th ACM Symp. on Theory of
Computing, 1984, pp. 512-521.

Whyllie, J.C., “The Complexity of Parallel Computation,” Tech. Rep. TR
79-387, Dept. of Computer Science, Cornell Univ., Ithaca, NY, Aug.
1979.

Yao, A.C., “Some Complexity Questions Related to Distributive Com-

puting,” in Proceedings 11th ACM Symp. on Theory of Computing,
1979, pp. 209-213.

102



