RESPONSE TIME IN PARALLEL PROCESSING SYSTEMS
WITH CERTAIN SYNCHRONIZATION CONSTRAINTS

Abdelfettah Belghith November 1986
CSD-860033

UCLA-CSD-860033
November 1986

RESPONSE TIME IN PARALLEL PROCESSING
SYSTEMS WITH CERTAIN SYNCHRONIZATION CONSTRAINTS

by
Abdelfettah Belghith
Leonard Kleinrock

This research was sponsored by the Defense Advanced
Research Projects Agency, Department of Defense,

Computer Science Department
School of Engineering and Applied Science
University of California
Los Angeles

ACKNOWLEDGEMENTS

The support by the Advanced Research Projecis Agency of the Department of Defense (Con-
tract number MDA-903-77-C-0272) for this work is greatly appreciated, and we owe a debt of

gratitude to the many employees of that contract. We would especially like to thank Lily Chien
and Jodi Feiner for their administrative assistance.

it

Table of Contents

LIST OF FIGUREScoiiiiinieiinrinniesinsissnssisssssisssissssasiessssonssssarsanmesssassssssnsessssssanssssessses
1 MOdel DESCHPUOMc.veviiiiiiiiiniiieese ittt nerses e st e nsaessenss s sanasestssasssnras ons
2 The Infinite Number of PrOCESSOIS Casec...cccecvvmveecnirrennarnsinessesisrnsesrsessnssasesssssassses
3 The UnIProCeSSOT CASEcccorrerercrerrescersnssersnresersessssssasantassssssssssssssssssassessseesssssessnssns
3.1 Completeness of the 1-DPS-WF family of Scheduling Strategies
3.2 The Job Average Response TiMmec.cccvvriencneniesseressessessesseessssessenssns
3.3 The Conservation LaWcciviimiiioinenneieomiorceni e sessssssessesns

4 The P-DPS-WF Multiprocessing System with the Same Concurrency Degree for all

SEAZES oo retreecr et s eesee e re e s e sa st s e et e b R AR bR bt e A bt et eabe b et terernres
5 Average Response Time in the P-DPS-WF SYSIEMccccoecvieveeveniereee e cerenan e
5.1 Job Average Respons¢ Time Through an Empty P-DPS-WF System
5.2 Approximation of the Job Average Response Timec..coevvcverccrrncnenn
5.3 Achievable Parallelism in a P-DPS-WF SYSIEMccocovvernveernrsrrvrnrsseseenne
B CONCIUSION .viviiiiiiiiitintitir e ntrreseenn s renc s seenetsesnesr st sasss st srssasassrnsrss st sersa st sanasebebessasssansans

RELEIEIICES oot cee et eestares e s e st cse e s e et s nscoees s s saenesesaaasssssssessnsteesstersnmensereses

iv

page

ii
il

iv

11
15
16
18
22

25
31
33
34
37
46

49

ABSTRACT OF THE REPORT

Response Time in Parallel Processing
Systems with Certain Synchronization Constraints

by

Abdelfettah Belghith
Leonard Kleinrock
Computer Science Department
School of Engineering and Applied Science
University of California, Los Angeles

We view a multiprocessor system as a set of P cooperating processors, and a computer
job as a set of tasks partially ordered by some precedence relationships. For a finite number of
processors, we assume that the total system capacity is shared among the jobs proportionate to
the number of their ready tasks. This is non-egalitarian Processor Sharing, as compared with the
usual egalitarian Processor Sharing technique.

Significant reductions in the expected job sojourn time can be realized by executing a
job on a multiprocessor system. This effect is known as the speedup factor, which typically
increases with the number of processors used. Along with an increase in the speedup factor,
comes a decrease in the efficiency of the processors. While a large speedup factor may appear as
a delight to the users, the efficiency of the processors is also extremely important. The inherent,
internal parallelism within jobs, namely, a job may need and consequently may hold more than
one processor at a time, makes the exact analysis of parallel processing systems so problematic.
We formulate an accurate and yet simple parametric approximation of the expected sojourn
time, and then investigate the tradeoff between speedup and processor efficiency.

iii

List of Figures

1: Process Graph with Identity Set Q= {A,B,C,D,E,F,G} ...

2: The Execution Graph of the Process Graph of Figure 1 ...

3: Process Graphs and their Corresponding Execution Graphs for N=4, (a) Process

Graphs, (b) EXeCUtion GIraPhScccociciiiinniiiiiniiin e bos e iesassssssssssssssesssssessssenes

4: Process Graphs and their Corresponding Execution Graphs for N=5, (a) Process

Graphs, (b) EXecution GIaphisccccceivninmmninnininmasssissssssesmssisss s sssssessas

5: Average Response Time in 2 1-DPS-WF SYStemcccovivivinnmnnivennsnsinsinicsnssnnnnes

6: Average Response Time in a P-DPS-WF Multiprocessor System with a Constant

COoNCUITENCY DEETEEcceeirieeiereirreesreseersresssasnesseesteeseesmtesss s sesbbessssabsstsssrsssrsonsasrsssssass

7. Average Response Time in a P-DPS-WF Multiprocessor Systemccocovvivvniernnna.

8: Achievable Parallelism in a P-DPS-WF Multiprocessor Systemcccecvvvens

9: Achievable Parallelism versus the Number of Processorsvvieieneninenrinnn.
10: Efficiency per Processor in a P-DPS-WF Multiprocessor Systemccvvvceeieennne
11: Power Function in a P-DPS-WF Multiprocessor SYSIemc.ccemecmnnvvenincnnesnannns
12: Maximum Power in a P-DPS-WF Multiprocessor SYSIEIc.cecvvirmiinninsvinsinsiniins

13: Achievable Parallelism at Optimal Operating Pointsc.ccocciiniinvcinniiicnienenn.

page

20

20

23

32

36

39

41

42

44

45

47

RESPONSE TIME IN PARALLEL PROCESSING

SYSTEMS WITH CERTAIN SYNCHRONIZATION CONSTRAINTS

In [Belg85], we studied the number of occupied processors in multiprocessor systems.
In particular, we proved that the expected number of busy processors is a function only of the
job average arrival rate, the task average processing requirements, and the average number of
tasks per job. Although this expected number of busy processors in a multiprocessing system
provides some insights as to how much resources can be utilized simultaneously, it does not
accurately ascertain the level of parallelism achieved by executing the jobs on a multiprocessor
system, This is the aim of the present Report.

First, we introduce and define a new scheduling policy (i.e., a service discipline) based
on a non-egalitarian sharing of the processors capacity among the jobs present in the system.
Using this scheduling policy, we convert the process graph describing the jobs into an execution
graph which identifies the execution stages assumed by any job throughout its life in the sys-
tem. In Section 2, we consider an infinite number of processors, and we formulate an exact
expression, a tight upper bound, and a tight lower bound for the job average response time. In
Section 3, we consider the uniprocessor case. We first prove that our scheduling policy forms a
complete family of scheduling strategies, in the sense that any response time requirement that
can be satisfied at all, can be accomplished by a strategy from the family. Then, we prove a con-
servation law that puts a linear equality constraint on the set of expected system times of the job
execution stages. An accurate and yet very simple approximation for the job average response
time is then formulated. In Section 4, we study the job average response time through a mul-
tiprocessing system in which all execution stages have the same concurrency degree. This will
enable us to formulate a parametric approximation of the job average response time in a mul-
tiprocessing system. Simulations are used to validate and prove the excellent accuracy of such
an approximation. We conclude the Report by studying the achievable parallelism and the

efficiency per processor, and by identifying the optimal operating points at which one should
operate the multiprocessor system.

1 Model Description

We assume that a job may be modeled as a set of N partially ordered tasks, and is
represented by a given directed acyclic graph called hereafter a Process Graph, the same for all
jobs. The Nodes in the process graph represent the tasks, and the edges represent the precedence
relationships among the tasks. The processing time of a task is assumed throughout this chapter
to be an exponentially distributed random variable. Different tasks in the process graph have
independent and perhaps different mean processing requirements. Tasks in the process graph
are identified using alphabetical labels. The task identity set, denoted hereafter by €, is the set
containing the identities of the N tasks. Let i’A, A e Q, denote the random variable represent-

ing the processing requirement of task A with mean Lll and a probability density function
A

by (x)=p4e " for x20. Jobs arrive to the multiprocessing system according to a Poisson pro-
cess with an aggregate rate A. The job process graph is assumed throughout the chapter, untess
stated otherwise, to possess only one starting task and only one terminating task. This property
of the process graph is required in the design and analysis of the approximations of the job aver-
age response time.

Throughout the Report, we restrict the notion of a scheduling strategy. We consider
only strategies which satisfy the following two conditions:

1. They do not explicitly rely on any information about the remaining processing time of
any job in the system, and

2. they do not allow processors to be idle when there are jobs waiting to be processed (i.e.,
work-conserving strategies).

The scheduling strategy (i.c., the service discipline) 10 be adopted in the case of a finite
number of processors will be defined as stated below. For the uniprocessor case however, we
shall also consider preemptive and nonpreemptive priority scheduling strategies. In such a case,
we consider that the tasks in the process graph are assigned arbitrary but prescribed priority lev-
els. For the infinite number of processors case however, the scheduling strategy vanishes and
plays no role.

Let n denote the random variable representing the total number of ready (i.e., ready-
for-service) tasks from all the jobs present in the system in the steady state. The Discriminatory
Processors Sharing Discipline for our multiprocessing system is defined as follows:

1. If the total number of ready tasks, 7, in the system is less than or equal to the number of
processors P, then each ready task is allocated one processor; that is each ready task is
processed at a rate of 1 second per second.

2. If the total number of ready tasks, #, in the system is greater than or equal to the number

of processors P, then each ready task is served at a rate of % seconds per second. The
n

ready tasks equally share the P processors.

Although at any time the ready tasks share the capacity of the processors in equal pro-
portions, the above defined scheduling discipline divides the total processors capacity in
unequal fractions among the jobs present in the system. This is due to the fact that jobs, at any
given time, may participate with different numbers of ready tasks. The jobs that possess the
largest number of ready tasks will then receive the most preferential treatment at the expense of
the others (i.e., at the expense of the jobs having lower numbers of ready tasks). We shall ela-
borate on this in the sequel, but first let us introduce the notion of an Execution Graph.

An Execution Graph for a given process graph is an acyclic directed graph with nodes
representing the state of execution of a job (i.e., the identity of the ready tasks of the job), and
edges representing the precedence relationships among the nodes. A node in the execution
graph is hereafter called a stage of the execution graph. Assuming either an infinite number of
processors, or a Processor Sharing service discipline among all the ready tasks, it is not difficult
to see that a process graph can always be converted to an execution graph. Consider the process

graph given in Figure 1, and having 7 tasks identified by the set Q = <A,B8,C,D,E,F,Gr with A

being the starting task and G being the terminating task. Upon the arrival of a job described by
such a process graph, its starting task A immediately acquires the ready-for-service status, and
thus the execution stage of the job at its arrival instant comprises only the task A. At the com-
pletion time of task A, the job forks into two new tasks; namely task B and task C, which
immediately assume the ready-for-service status, and consequently the job execution stage at
such an instant comprises both tasks B and C. At this point, both tasks B and C are executed at
the same rate. If task B finishes first then tasks D and E assume the ready-for-service status, and
the new execution stage at the completion time of task B comprises the three ready tasks;
namely C,D and E. Otherwise, if task C finishes first then task F would acquire the ready-for-
service status, and consequently at the completion time of task C, the job execution stage
comprises the ready tasks B and F. Proceeding in this way, the process graph given by Figure 1
results in the execution graph depicted in Figure 2, where the stages are represented by circles
and are numbered from 1 to 16. Letters inside the circles denote the identities of the ready tasks
comprised in such stages.

Figure 1: Process Graph with Identity Set Q2 = {A,B,C,D,E,F.G}

Generally, a stage in the execution graph represents a specific set of tasks in the job pro-
cess graph that may be executed in parallel. Formally, let L denote the total number of stages in
the execution graph, o), i=1,...,,L identify the set of ready tasks that are executed concurrently
when the job is at execution stage i, and (i), i=1,....L be the number of tasks in stage i (i.e., f(i)
denotes the cardinality of the set i), i=1,..., L) also called hereunder the concurrency of stage i.
The task identity set €} is then defined as a function of the ofi), i=1,....L by:

L
Q= o)

i=l
From each stage, say stage i, in the execution graph, there are f(i) outgoing edges, each
corresponding to the termination of one of the ready tasks being executed in the set oi). The
stages at the end of these edges comprise the set of tasks in a(i) minus the just completed task,
plus the new ready tasks, if any, that are activated by the completed task (those which acquire
the ready-for-service status upon the completion of the completed task).

To fully describe the job execution graph, we must determine the transition probabili-
ties between the execution stages. Note that the time spent by a job in any given stage is the
time needed to finish one of its ready tasks comprised in such a stage, and that upon the comple-
tion of the execution of the terminating stage, namely stage L, the job departs the system at

Figure 2: The Execution Graph of the Process Graph of Figure 1

once. An execution stage, other than stage L, comprising one ready task, has only one successor
stage and consequently the transition probability is one. For execution stages with more than
one ready task, the situation is a bit more complicated. Consider execution stage nymber 3 in
the execution graph of Figure 2. This stage has 3 ready tasks (namely o(3) = C,D,E} and must
then have three successor stages, which in fact are stage 5, stage 6~. and_ stage 7 as epicted in

Figure 2. The processing times of these tasks are respectively X¢, Xp, and Xz which are

exponentially distributed random variables with respective averages :IC- -ul— and ——1—. Let
D

HE
P;, i=1,...L, j=1,..,.L be the transition probabilities between stage i and stage j. Due to the
memoryless property (i.¢., the Markovian property) of the exponential service time distribution,
a task in any stage, say stage number i, has the same mean service time regardless of whether it
had being processed earlier in another preceding stage. Moreover, if X and Y are independent

and exponentially distributed random variables with respective means 1 and —1—, then

Kx Ky
P [isf'] = _ﬁ‘__ Hence:
Wy + Ky
P task Z completes first | Z in a(i)] = Hz forall i=1,..L (1)

KA
st task A is ino(i)

Using the above equation, and for our example we obtain:

I RS . S S © -
He +Hp + e He + Bp + g AT

In the case of the same exponential service time distribution for all the N tasks, equation (1)
becomes:

Pas

* In fact:

PIXsY]= | P[Xsy \ySf’<y+dy]dP[f’Sy]
y=0

=]: [1-e"‘"’]ure_“" dy

y=0
—fry —(HxHay)y
= e - (Lx + Uy)e
,J.o hre ™y — e ,lo Hx + Hy) dy
Ky MWx

T px iy Mx=Hy

P [tasks Z completes first | Z in oi)] = f—a) for all i=1,....L

At any time during its sojourn time in the system, a job is fully described by its current
execution stage. The global state of the multiprocessing system is thus fully described by the
total number of jobs in each stage of the execution graph. It is not difficult to see that the execu-
tion graph is a Markovian state transition diagram. Indeed, in Figure 2, we indicated, on each
directed edge, the instantanecus average rate of exit from the execution stage along that edge
for the case of an infinite number of processors. For stage number 3 for example, the rate of
exit to stage number 5 is plp, the rate of exit to stage number 6 is pg, and the rate of exit to stage
number 7 is K¢

Starting from the initial stage in the execution graph, there are many paths a job can
traverse before reaching the terminating stage. Since we know the transition probabilities
between the stages (i.e., the probability of traversing each edge in the execution graph), the pro-
bability that a specific path is to be taking can be calculated. As an example, take the path
(1,2,3,5,9,13,16) in the execution graph depicted in Figure 2. The probability of taking such a
path is:

ko P B g,
Wz +ic Hct+Up+He Hc+He We+HF

and in the case where all tasks have the same mean service time, the probability of taking such a

1
th be —_—.
path becomes —

Suppose there are M paths from the initial stage to the terminating stage in the execu-
tion graph, and let P (m), m=1,...M represent the probability that a newly arriving job takes
path m in the execution graph. Therefore, we may think of our job arrival process as composed
of M Poissonian arrival processes, the mth of which has an average rate A(m)=AP(m),
m=1,...,.M. Moreover, the number of stages in any given path is equal to the number of tasks, N,
in the process graph, and consequently a job is a chain of N specific execution stages and is
hereafter regarded as requiring service N times. Upon arrival to the multiprocessing system, a
job is at its first execution stage. Upon the completion of this first stage, we may consider that
the job immediately and instantaneously feeds back its second execution stage. At the comple-
tion of its Nth stage, the job departs the system at once. The number of ready tasks a job has at
any given time is equal to the concurrency (the number of ready tasks) of the stage the job is in
at such a time. During its sojourn time in the system, a job participates with different con-
currency levels and hence receives different grades of service. It is for this very reason that our
multiprocessing system is hereafter called a P-dimensional Discriminatory processor sharing
With job Feedbacks and denoted using the P-DPS-WF acronym.

The global state of our P-DPS-WF multiprocessing system is fully described by the
vector S =(ny,....M, ...,) where n;, i=1,....L represents the number of jobs in the system
which are in stage i of their execution. We can think of our multiprocessing system as a single
node queueing network with L classes *. For a finite number of processors, the total capacity of
the system is allocated to the different classes according to the discriminatory processor sharing

discipline defined earlier. If at any given time, the state of the system is (ny,...,n;,...,11),
then the capacity proportion allocated to class i is:
n;f (P
210
max {P, Y nf (i)}
J=1
L
since a class i job possesses f(i) ready tasks, and ¥, n;f (j) is the total number of ready tasks in
j=1

the system. The total number of jobs in the system, on the other hand, is readily given by
L

n= E nj.
j=l

Let P[ny,...,n,...,n) be the steady state probability density function that the sys-
tem is in state (n1,...,M,...,n.). To obtain these probabilities for all the feasible states, one
must find a solution to the global balance equations of the system. From the theory of queueing
networks, we know that P[ny,...,n;, ... ,n.] has the Product Form and is efficiently comput-
able under the following set of assumptions provided by Baskett, Chandy, Muntz and Palacios
[Bask75], and subsequently by Chandy, Howard and Towsley [Chan77] :

1. Allowable Scheduling Disciplines : the disciplines allowed are: First Come First Served
(FCFS), Processor-Sharing (PS), Last Come First Served Preemptive-Resume (LCFS-
PR), and Infinite Servers (IS).

2. Service Time Distribution : the service times at an FCFS server must be exponentially
distributed with the same mean for all classes. The service times at PS, LCFS-PR, and
IS can have a general distribution, perhaps with different mean service times for
different classes.

3. State Dependent Service Rates : the service rate at an FCFS server can depend only on
the total queue length of said server. The service rate for a class at a PS, LCFS-PR, and
IS servers may also depend on the queue length for that class, but not on the queue
length of other classes. Moreover, the overall service rate of a subnetwork may depend
on the total number of customers in the subnetwork.

* A jobis of class i, i=1,....L if it is in its ith execution stage; n;, i=1,....L is also the number of
jobs of class i present in the system in steady state.

4, Interarrival time Distribution: exogenous arrivals for a given class must be Poisson. In
particular no bulk arrivals are permitted

From this set of assumptions, we can see that the third one (and perhaps the fourth one
too) cannot be satisfied for our multiprocessing system. The third and fourth assumptions are
usually referred to as the Homogeneity Assumption, which states that the service rate at each
server for a particular class does not depend on the state of the system in any way except for the
total queue length and the designated class’s queue length at that server. This assumption essen-
tially implies the following:

a. Single Resource Possession : a customer may not be present (waiting for service or
being served) at more than one server.

b. No Blocking : the server's ability to render service is not controlled by any other
SETVETS.
c. Independent Customer Behavior : there should not be any synchronization require-

ments. Interaction among customers is limited to queueing effects.

d. Local Information : the service rate of any server depends solely on local queue length
and not on the state of the rest of the system.

e. Fair Service : if service rates differ by class, the service rate for a class depends only on
the queue length of that class at that server, and not on the queue lengths of other
classes. The servers may not discriminate against customers in a class depending on
queue lengths in other classes.

Nevertheless, there are two cases we can identify where the P(n,...,n;, ... ,n.] has
a Product Form solution as given by the following Proposition.

Proposition 1

If P[ny,....n,...,.n] is the steady state probability density function that the P-DPS-WF
multiprocessing system is at state (ny,...,n;,...,n.), then for the two following cases
Piny,...,n,...,n] has the Product Form solution:

1. Infinite number of processors, and

2. finite number of processors with f(i)=F, i=1,...,.L where F is any positive real constant.

Proof

We shall prove that for these two cases, the homogeneity assumption is satisfied. The propor-

tion of the processors capacity, denoted in this proof by C;, received by class i stages for

. . . n;f ()P
i=1,....L. when the state of the system is (ny,....,»%,...,n),18Ci= 7 . For
max {)}

Py nf(y
j=l

the case of an infinite number of processors, the proportion C; becomes C; = n;f (i), i=1,....L
which depends only on the number of stages of class i, and consequently assures the homo-
geneity assumption for product form solutions. For the case of constant concurrency degree,
the same for all the stages, the proportion of the processors capacity, C;, i=1,...,L, received by
class i stages for i=1,...,.L when the state of the system is (ny,...,n;,...,n.), is:

n;FP n;P

Ci= L - p L
max <P, ¥, n;Fp max{—, ¥ n;
p= Fja

the proportion C;, i=1,...L. depends then only on the number of class i stages and the total
number of stages in the system; and hence satisfies the homogeneity assumption for the system
to possess a product form solution.

The notion of an execution graph can be extended in a natural way, so that an execution
stage i, i=1,....L. may have any arbitrary concurrency degree f(i). Two distinguished case are
identified in the following definitions.

Definition 1

An Abstracted Execution Chain {AEC) is a chain of N execution stages, each of which may
have any arbitrary positive real concurrency degree.

Definition 2

A Restricted Abstracted Execution Chain (RAEC) is a chain of N execution stages, each of
which may have any arbitrary positive and integer concurrency degree. Moreover, the con-

currency degree f(i) of stage i, i=1,..,.N is less than or equal to N, and such that

N

N
Y r@s N(—+1). An RAEC is said to be feasible if it actually corresponds to a given process
i=1

2
graph with one starting task and oneterminating task.

10

In the sequel, we shall use abstracted execution chains to show that the discriminatory
processor sharing discipline with feedback forms a complete parameterized family of schedul-
ing strategies. Restricted abstracted execution chains, on the other hand, shall be used to formu-
late upper and lower bounds on the job expected response time , and ascertain the process
graphs that provide such upper and lower bounds.

Note that while an execution graph always corresponds to a given process graph,
abstracted execution chains and restricted abstracted execution chains may not necessarily
correspond to any real process graph description. Let the stages in the AEC and the RAEC be
numbered from 1 to N. Three limiting cases of RAECs may be distinguished from definition
(2); these are:

Definition 3

A Breadth First Execution Chain (BFEC) is an RAEC with f(i)=N-i+1 for i=1,...,N. A Depth
First Execution Chain (DFEC) }is an RAEC with f(i)=i for i=1.....N. An Egalitarian Execution
Chain (EEC) is an RAEC with f(i)=1 for all i=1,....N.

Let p denote the total utilization factor of our P-DPS-WF multiprocessing system. We
can either express p using the process graph description, or its corresponding execution graph
description. Using the process graph description, the utilization factor p may be expressed as
follows:

A 1
== ¥ —)
P=P AEEQ Ha
Using the execution graph description, we also obtain the above expression of the system utili-
zation factor, for a job takes a given execution path in the execution graph, and in such a path
every task appears exactly once. From {Klei75] we know that the stability of the system is
maintained as long as p is less than unity.

2 The Infinite Number of Processors Case

We consider an infinite number of processors. We shall first develop an expression for
the job average response time, where jobs may be represented by any given arbitrary process
graph comprising N tasks. Then, and by the use of restricted abstracted execution chains, we
formulate a tight upper bound and a tight lower bound on the average response time and provide
the process graphs, among all possible process graphs comprising N tasks, which achieve these
upper and lower bounds.

11

We now proceed to determine the average input (i.e., arrival) rate to each stage in the
job execution graph. Recall that the average arrival rate of jobs to the system is A, that the
number of levels in the execution graph is equal to the number N of tasks in the process graph,
and that the number of stages in the execution graph is L, with L2N. Let A;, i=1,...,L represent
the average arrival rate of class i jobs (i.e., the average input rate to stage i). We readily have
A =A; = A, and using the transition probabilities between the stages yields:

i-1
A=Y Pyd; i=2,..L 3
i=1
The sum of the average input rate to all execution stages in any given level of the execution
graph is A. Since there are exactly N levels in the execution graph, we must have:
L
z li =NA
i=1
An execution stage may belong to several paths in the execution graph. The probability that
A;
stage i is visited during a job execution is then given by — A . On the other hand, the expected

time a job spends in stage i is given by —1—~———. Consequently, the average response time,

Y Mk

ke agi)

denoted by T .., of a job with an arbitrary process graph comprising N tasks is given by:

L A;

To=Y — “4)
AT e
ke ali)

For the case of the same average service time, say & for all the N tasks, equation (4) reduces

to:
_LLL (5)
T lug‘f

Let T, yp and T., ;5 represent, respectively, the upper bound and the lower bound on
the expected response time of jobs with an arbitrary process graph comprising N tasks, and in a
system with an infinite number of processors. The following two Theorems provide the exact
values of T, yp and T ;5.

12

Theorem 1

The upper bound T.. ;jp on the expected response time of jobs having any given arbitrary pro-
cess graph comprising N tasks is given by:

N o
Tops=Y —
U8 .?1 Hi

Proof

From equation (4), we obtain the following nonlinear program to solve:

1. i l,' = ?JV
L ll' =1
Maximize A=Y Subject to: 3 2. f=21,vi=1,.,L
Sy Y " 3. Ash
ke afi) LN

A
Consider the ith term in the expression of A, Maximizing ——e— is the same as maximizing

Y M
ke agi)
A; and minimizing the sum ¥, W, for all i=1,...L. The maximum value of A;, i=1,....L is A.
ke afi)
The minimum of the sum ¥, g, i=1....L is obtained when f(i)=1. On the other hand, if
ke ali)

f(i)=1, i=1,..,L then L=N. All the four constraints are also satisfied, and A becomes
N

a=ay L
i=1 i

I

It is rather interesting to note that among all possible process graphs comprising N
tasks, the process graph PG(N,N) is the one that maximizes the expected job response time;
such an average response time is exactly T., yg. Also in the special case of the same average

service time, say ﬁ, for all the N tasks, we have T, yp = i:-— Although in general it is hard to

infer the total number of stages in an execution graph obtained from an arbitrary process graph,
the next Lemma identifies the process graphs PG(N.r) comprising N tasks and r, r=1,...,N levels
which result in the smallest, respectively the largest, number of stages in their corresponding
execution graphs EG(X,N).

13

Lemmal

1. Among all possible process graphs comprising N tasks (i.e., PG(N.r) for r=1,... N}, the
process graph PG(N,N) gives the execution graph with the smallest number of stages;
this number of stages is equal to N,

2. Among all possible process graphs comprising N tasks (i.e., PG(N,r) for r=1,....N), the

process graph PG(N, 1) gives the execution graph with the largest number of stages; this
number of stages is equal to (2V¥~1).

Proof

First, we prove statement one. Since the execution graph obtained from a PG(N,r) has exactly N
levels, and since the minimum number of execution stages per level is one, it follows that the
minimum number of stages in an execution graph is also equal to N. We now proceed to prove
the second statement. It is not difficult to see that the process graph PG(N,1) gives the execu-
tion graph with the largest number of paths; and hence the largest number of stages. On the
other hand, the sets a({), i=1,...,L. are the Power set of the set of tasks, without the empty set.
The proof follows since the cardinality of the Power set is 2V.

Ml

Theorem 2

The lower bound T .. ;5 on the expected response time of jobs having any given arbitrary pro-
cess graph comprising N tasks, and such that the tasks have the same average service time, &
is given by:

1

!

M=

1
Tou = ——
A8 T

-
1l
—

Proof

From equation (5), we obtain the following nonlinear program to solve:

-

L
L T h=AN
L li i=1
Minimize A= Z—— Subject to: {1 2. f@)zi,vi=1,.,L
;—jf(‘) 3 <k
L2N

Since the execution graph has N levels, we can write:

14

N A; }
A= —
L1270

Now, let us proceed to minimize level by level under the stated set of constraints. Since for ali

levels j, j=1,...L we have ¥, A; =X, our minimization problem is equivalent to maximizing
i€ levelf

the number of stages per level and for all levels; hence maximizing the total number of stages in
the execution graph. From Lemma 1, we already know that the process graph that gives the exe-
cution graph with the largest number of stages is the PG(N,1). On the other hand, the process
graph PG(N,1) is the process graph where a job arrives as a bulk of N concurrent tasks.

The service time of such a bulk of N parallel tasks is max, Q{i A}, and consequently:

N

y L

=;[: [1—(1—3'"‘)”]:1: = & I

-
—

3 The Uniprocessor Case

In the case of a uniprocessor system, we may consider the nodes in the process graph as
having assigned priority levels. This system can then be studied by means of the M/G/1 queue-
ing system with job feedback *. However, we are mostly interested in the study of the discrimi-
natory processor sharing service discipline.

Very few studies of the M/G/1 queueing system with the discriminatory processor shar-
ing discipline have appeared in the literature and none to our best knowledge if we also have
job feedback. Kleinrock [Klei67] was the first to introduce such a strategy for a single processor
system with M job classes and no feedback, and provided an expression for the steady state
expected response time of a class k job whose required service time is t. Under a different set of
assumptions, and using a different analysis method, O'Donovan [O'Do74] obtained the same
expression. More recently, Fayolle, Iasnogorodshi, and Mitrani [Fayo78] presented another
solution to the same problem. Their analysis method follows O’Donovan’s approach in deriving
a system of integro-differential equations for the steady state expected response time of a class k
job whose required service time is t. The system of equations was solved, for general distribu-
tions of the required service times, by the method of Wiener-Hopf. In the case of exponentially
distributed required service times, the authors in [Fayo78] provided a system of linear equations
for the unconditional steady state average response times. In this section, we first prove that the
1-DPS-WF family of scheduling strategies forms a complete family in the sense that any

* A comprehensive treatment of the M/G/1 queueing system with job feedback and non-
preemptive, work-conserving priority scheduling is giving in Chapter 6 in [Belg86].

15

response time requirement that can be satisfied at all, can be achieved by a strategy from the
family. Then, we proceed to investigate the job average response time in the 1-DPS-WF
ayatem, and present an accurate and yet very simple approximation. Finally, we develop and
prove a conservation law that puts a linear equality constraint on the set of expected system
times of the different stages representing the job execution using the discriminatory processor
sharing discipline with feedback.

3.1 Completeness of the 1-DPS-WF family of Scheduling Strategies

we now proceed to prove that the 1-DPS-WF with jobs represented by an AEC forms a
complete parameterized family of scheduling strategies. A performance requirement stated in
terms of the average system times of the different stage types, is said to be achievable if, given
the loading conditions on the system (i.e., given the p;, i=1,...,.N), there exists a scheduling stra-
tegy which satisfies it. A family of scheduling strategies is said to be complete if every achiev-
able performance requirement can be satisfied by a strategy from the family. Let the perfor-
mance of the system, given the p;’s, i=1,...N, be measured by the vector

T= [Tl, eos T, Ty | I, for a given scheduling strategy S, the value of the performance

vector is T, we say that S achieves T and denote it by S =»T. A given performance vector T is
said to be achievable, if there exists a scheduling strategy S such that S =»T (S need not be
unique). Denote the set of all achievable performance vectors by H; we have:

H={T|3$:S=&T}

It is obvious that not all performance vectors (e.g., T=(0,0....,0)) are achievable. Let ® be a
family of scheduling strategies, and let H 4 represent the set of all performance vectors that can
be achieved using strategies from the set ®. That is :

H¢={T|ES;SE¢andS=>T}

We say that the family ® is complete if Hg = H. In other words, the family ® is complete if
any performance vector T which can be achieved at all, can be achieved by a strategy from the
family &. Note that no finite or denumerable family of scheduling strategies can be complete.

Let Py, P,, ..., Pyp be the performance vectors of the MP preemptive priority discip-
lines which can be operated with the N stages. These MP vectors are the vertices or "comers”
of the set H. Moreover, the set H is a convex hull defined by these vertices (and is an (N-1)
dimensional set because it lies on the hyperplane defined by the generalized conservation law
defined and stated in Chapter 6 in [Belg86]). In other words, the boundary of the convex hull
H consists of the performance vectors which correspond to strategies giving one or more stages
preemptive priority over the remaining ones. These comers of the set H represent then the

16

extremes of the system performance (best for some stages and worst for others).

Returning to our 1-DPS-WF family of strategies, it is rather easy to see that for any
given strategy in such a family (i.e., any given vector (f(1),...,f(@),...,f (N))), multiply-
ing all the f(i), i=1,...,N by the same constant does not change the strategy. Therefore one of the
f(i)’s can be arbitrary fixed; let f(N)=1. We have now an (N-1) dimensional parameter set G
defined by:

G= {O"(l'),---,f e S N=1) | F()>0; i=1,...,N-1}

Each point in the set G uniquely determines a 1-DPS-WF strategy, and consequently a perfor-
mance vector T. Moreover, it is rather easy to see that this correspondence is one-to-one and
continuous. Let ¥ denote such a family of strategies. Since the parameter set G is open, it fol-
lows that the set Hy of performance vectors achievable by strategies from the family W is also
open and therefore Hy # H; that is, ‘¥ is not complete. In fact, the performance vector of any
preemptive priority discipline cannot be achieved by a 1-DPS-WF strategy because the latter
would not allow a stage in the system to be completely deprived of service. However, the fam-
ily ¥ is almost complete in the sense given by the following Theorem:

Theorem 3

The set of performance vectors achievable by strategies from the family ‘¥, H, is equal to the
set H of all achievable performance vectors without its boundary. If a performance vector T is
an inside point of H, then it can be achieved by a strategy from ¥; and if T is on the boundary
of H, then it can be approximated as closely as desired by strategies from V.

Proof

Consider the parameter subsets defined by:

GLy= {(f(l)...., F @)y f (N=-1) | L& (D)<SU 3 i=1,...,N-1 }

where L and U are positive real numbers, and let ¥, iy denote the family of 1-DPS-WF stra-
tegies defined over G yy. We then have:

G =limg 0, 05= GLy and He=limg 0 v Hy,

The boundary of the set G, iy consists of those points (f(1),...,f(i)....,f(N-1)) for which f(i)=L for
at least one i and/or f(j)=U for at least one j, i=1,...,N-1 and j=1,...,N-1. Let B, ;; be the set of
performance vectors which cotresponds to these boundary points in G, y. Now, since the set
G v is compact and there is a one-to-one correspondence between the set G, i and the set
Wi,u, then the set Hy,, consists of the set B,y and all performance vectors inside it.

17

Moreover, the set By, iy is a closed and continuous surface since it is the image of a closed and
continuous surface by a continuous mapping. Let T be any arbitrary performance vector such
that it is an inside point of H. Because By is continuous, then there must exist a sufficiently
small L, and a sufficiently large U such that the performance vector T is an inside point of the
set By . This means that T belongs to H ¥y y and hence T belongs to Hy.

The above Theorem states the special fact that if a performance vector T is on the boun-
dary of the convex hull H, then it can be approximated as closely as desired by strategies from
the family ¥, In particular, the preemptive priority ordering (1>2> - - - >N) can be achieved by
considering the point in the set G defined by f(N)=1, f(i) — i=1,..,N-1, and such that
@
F+1)
by considering the point in the set G defined by f(1)=1, f(i) =0 i=2,....N, and such that
M-—)x, i=1,...,N.

f

—o0, i=1,...,N-1. Likewise, the preemptive priority ordering (1<2< - - - <N) is achieved

3.2 The Job Average Response Time

We now proceed to investigate the job average response time in the 1-DPS-WF system.
Jobs are described according to a given process graph with N tasks. The process graph, in the
sequel, is assumed to have only one starting task and only one terminating task; Figure 1 is an
example.

We shall first determine, among all possible RAECs with N stages, the RAEC that pro-
vides the lowest job average response time, and the RAEC that results in the highest job aver-
age response time. We then discuss and present a rather accurate approximation of the job aver-
age response time. Simulations are used to back up and validate the accuracy of the approxima-
tion.

Theorem 4
Among all possible RAECs with N stages, the BFEC is the RAEC which provides the largest

job average response time, and the DFEC is the RAEC which provides the lowest job average
response time,

18

Proof

Among all the RAECs with N stages, the RAEC which results in the earliest job completions is
the one that implicitly allocates the highest priority to the jobs having the least remaining pro-
cessing time; this is the DFEC. The RAEC which results in the furthest job completions on the
other hand, is the one that implicitly allocates the highest priority to the jobs having the largest
remaining processing time; this is the BFEC. The proof is complete since the unfinished work
in the system, at any time, is independent of the way the server capacity is shared among the
different jobs present in the system (i.e., independent of the RAEC representing the jobs).

il

Although the BFEC and the DFEC do not correspond to any given process graph, they
present, by means of Theorem 4, respectively upper and lower bounds on the job average
response time. Many RAECs, among all possible RAECs with N stages, do not actually
correspond to a given process graph. Indeed for N=3, the only feasible RAEC is the one with
f(1)=£(2)=1(3)=1; for the number of process graphs with N tasks is one, the process graph
represented by a chain of three tasks. There is also a unique process graph for N=2, the one
corresponding to the RAEC with f(1)=f(2)=1. Among all the RAECs with N=4 stages, only two
are feasible, for there are only two possible process graphs having N=4 tasks, and each one of
them corresponds to a unique feasible RAEC. These two possible process graphs with N=4 are
depicted in Figure 3:(a) and their correspondent RAECS are depicted in Figure 3:(b). For N=5,
we obtain 4 possible process graphs, each of which corresponds to a unique RAEC, Figure 4:(a)
represents these 4 possible process graphs, and Figure 4:(b) depicts their corresponding RAECs.

From the above, we observe that for any given N, there are only very few feasible
RAECs. Moreover, the feasible RAECs are by no means extreme cases. In fact, if there exists a
stage i, i=1,...,L. in the execution graph such that f (i)=2, then the stages immediately before the
last in the execution graph must have a concurrency degree of one. In other words, any path in
the execution graph has the inherent property that f(1)=f(L-1)=f(L)=1 for any arbitrary given
process graph comprising N tasks. This inherent property of the execution graph assures that the
job average response time should be much closer to the average response time given by the
EEC with N stages, then to the average response time obtained by using either the BFEC or the
DFEC with the same number of stages. The average response time resulting from the EEC may
be considered somehow as a median among the average response times given by any feasible
RAEC. For large values of N (i.e., N25), the resulting execution graph may have many execu-
tion paths, These paths are obviously feasible RAECs with N stages. Due to the inherent pro-
perty of the execution graph, namely that f(1)=f(L-1)=f(L)=1, we may suggest that the majority
of the RAECSs representing the execution paths provide somehow slightly larger values of the
average response time than the one resulting by using the EEC with the same number of stages.
Consequently, the EEC represents an optimistic and good approximation of the average
response time of jobs having any arbitrary given process graph.

19

b
-

[\]
-t

-
p—y

(a): Process Graphs (b): Execution Graphs
Figure 3: Process Graphs and their Corresponding Execution Graphs for N=4

3 2 1
' 2 1 2
1 1 1
_ 1 1 1
(a): Process Graphs (b): Execution Graphs

Figure 4: Process Graphs and their Corresponding Execution Graphs for N=5

20

From Proposition 1, we know that the steady state probabilities P [ny, ..., 5, ..., 1]
that the uniprocessor system is in state (ny,...,7;...,n) have a Product Form solution
when the jobs are represented in the system by their EEC. The uniprocessor system can be seen
as a single node BCMP [Bask75, Chan77] queueing network with N classes. A job in the sys-
tem is of class i, i=1,....N if it is at its ith execution stage. Since the service time of task i,
i=1,...,N is assumed to be exponentially distributed with an average L. and since A; = for

i

i=1,....N, it follows that *:

N N (p)"
Plny, ..., ... ,ny1=P[0,..,0,...,01(3 n)! H

i=] i=]

—— m20 Q=N 5)

N
where p; = -3—'— i=1,....N. Let n =3 n;, and P[n] be the steady state probability that there are
i i=]
n jobs in the system. From equation (5), we obtain:
Pn]=P[0] p" n20

N N g N
wherep=3 p;=3 —,andsince 3, Pln]=1, we get:

i=t =t Wi inl
n)
Pn)=(l-p)p n20

and consequently, if we let n denote the average number of jobs in the system in the steady

state, we get from equation (6) and using the factthatn =Y, nP([n]:

i=0
7=
1-p
Since A= T% and using Little’s result; namely that n =AT (1), where T(1) denotes the
Ew
average response time, we have:
N
1
2=
(=2 Q)
I-p

* For the sake of clarity and since we are working on the EEC, we are using here numbers
instead of letters to identify the different tasks,

21

Equation (7) represents an approximation (an optimistic approximation) of the job aver-
age response time of jobs having any arbitrary given process graph comprising N tasks. To
validate this approximation, we simulated the 1.DPS-WF system using the process graph
description depicted in Figure 1. The method used to estimate the extent of the simulation tran-
sient state is the method of independent replications [Lave83), and the method used to estimate
the statistic T(1) for the 1-DPS-WF system in the steady state is the method of batch means
[Lave83]. Figure 5 depicts the job average response time given by equation (7) along with the
simutation results represented by the confidence intervals. The confidence intervals are depicted
in Figure 5 as vertical bars, are obtained from the simulation output via the t-distribution, and
are at the 90% level.

From Figure 5, we observe that equation (7) represents a very accurate approximation
of the job average response time in the 1-DPS-WF system and for jobs having the process graph
depicted in Figure 1, Over all permissible ranges of the system utilization factor, the approxi-
mation is well within the 90% confidence intervals. It is also rather interesting to notice the
narrowness of these confidence intervals. The optimistic character of the approximation may be
observed on Figure 5 for moderate values of the system utilization factor (the average response
time curve intersects the confidence intervals at their lower parts). For either small or high
values of the utilization factor, such an optimistic behavior is much less noticeable.

3.3 The Conservation Law

In this section, we develop a conservation law that puts a linear equality constraint on
the set of average system times of the different stages in the abstracted execution chain that
represents the job execution in the uniprocessor system using the discriminatory processor shar-
ing discipline with feedback. In [Klei76], Kieinrock established the conservation law for the
M/G/1 queueing system and for any non-preemptive work-conserving queueing discipline. In a
similar fashion, we shall use the fact that the unfinished work in the system is invariant to the
sharing of the sever capacity, provided that the sharing discipline does not explicitly rely on
information about the remaining processing time of any job in the system. In [Belg86], the
authors provided a generalization of the conservation law for any M/G/1 queueing system with
job feedback, and any non-preemptive work-conserving priority scheduling of the different
stages constituting the job.

Let T;, i=1,...N represent the average time spent in the uniprocessor system by stage i

from the time of its arrival to the system until its completion. For stage i, i=1,...,N, let L be the

i
Y
stage average processing time, and p; = —';'- be the uniprocessor utilization due to stages of type
i
i. We consider that all jobs have the same AEC, and hence A; =A, i=1....,N, and p,-=%,
(]

22

mEL—=- MOZOoOTUVIMID MOPPIMP

100

@®
Q

-~
o

(023
o

(2]
o

10

lIlILJ]lLlliilllll]IlllIllllllll!IllllllllilllllllllllillllllIllllllllilllllIllllllllllJllJll]lIlll

lllll]f!lllllllllllllllIlll11IIFlIllIlIIlllllIllIIIll[l[llllllllllllli]llIllllIIIIIIIIIIl[llllllll?

00 01 02 03 04 05 06 07 08 09 1.0

UTILIZATION FACTCR

Figure 5: Average Response Time in a 1-DPS-WF System

23

=1,...,N. Recall that the f(i), i=1.,...,N are arbitrary and continuous positive real values.

Theorem 5 : The 1-DPS-WF Conservation Law

For an exponential work-conserving uniprocessor system using the discriminatory processor
sharing discipline with jobs described by an abstracted execution chain, it must be, for any
choice of the concurrency degrees f(i), i=1,....N, that:

N
z L
B[z]n- 55

N
wherep=Y p; <1l
i=1

Proof

N —

let us first prove that ¥, [): Pj] T; = constant. Let U denote the average unfinished work in
i=l

the system, and P[ny,...,n; ...,ny] denote the steady state probability that there are n;,

i=1,...,N stages of type i in the system. A stage of type i found in the system participates, in the

unfinished work, by its remaining service time plus the service time of its fed back stages;

namely stages i+1,....N. Therefore, if the state of the system is (nq,....n;,...,ny), and by

using the Markovian property of the exponential service time distributions, the unfinished work
N N

in the system, given such a state, is Y m; ¥ i. Consequently, the average unfinished work
_ i=t jei W
in the system, U, is given by:

Pl]=0

E=i é} Y Plny,... ny. .. ny] [E":Z :]

which amounts to:

N _N |
U=Ymy —
=l W

where ;:—, is the average number of jobs in execution stage i in the system in steady state. Using
Little's result {Litt61], namely that rT, =MT;, i=1,...,N and recalling that the unfinished work in
the system is invariant to the sharing discipline of the server capacity among the stages present
in the system, completes our first proof. Now let us take the special case of an EEC chain to
represent the job description. For this case, we have:

24

M=

1
=1 B 1
T: = =1 — i=1,...,
i o N i=1,...N

Using these values completes the proof.

In the sequel, we shall develop an approximation for the job average response time in
the P-DPS-WF multiprocessing system based on the EEC approximation. But first, we shall
investigate the P-DPS-WF multiprocessing system where all the stages in the execution graph
have the same concurrency degree. Results from such a system will also be used in the P-DPS-
WF average response time approximation.

4 The P-DPS-WF Multiprocessing System with the Same Concurrency Degree for all
Stages

In this section, we study the P-DPS-WF multiprocessing system where jobs are
represented by a given execution graph with stages having the same concurrency degree,
denoted hereafter by F (i.e., f(i)=F, i=1,...,.L). A job is therefore described by a chain of N exe-
cution stages with the same concurrency degree F. Let the state of the system be
S=My,...,n,...,0y) where n;, i=1,...N represents the number of jobs which are present in
the system and are at their execution stage number i. We shall refer to n;, i=1,...,N as the
number of class i jobs. Let p;, i=1,....N denote the utilization factor of the multiprocessing sys-
temn due to class i jobs, and p denote the total utilization factor of the system. Hence we have

N
p =3 p:. To evaluate the p;'s, i=1.,...,N, recall [Klei75] that the utilization factor is in a funda-
i=l
mental sense the ratio of the rate at which work enters the system to the maximum rate (i.e.,
capacity) at which the system can perform this work. The work an arriving customer brings to
the system equals the number of seconds of service he requires. If i i=1,...,N represents the

average service demand of a class i job, we then have p; = Lli' i=1,...,N independently of the
i
value of F. Therefore, we have:

— ®)

1
K

M=

_A
P=p

i

[
-

25

Since from Proposition 1, we know that the multiprocessing system under investigation
has a product form solution, we can use the M =» M conditions [Munt73, Bask75, Chan77] to

determine the steady state probabilities P[nry,...,m,...,.ny]. If the system state is
(B1{s... M, ...,nN), then the departure rate of class i jobs, denoted hereafter by d;, is given by:
n"FP
d;= I W i=lL..,N
max {P, Y, n;F
j=l
. n;FP
since ~ is the proportion of the processors capacity allocated to class i jobs.
max {P, p njF}
j=1
The above equation may be rewritten as:
d; = ‘ "‘N i=1,..,N ©9)
max L 3 n
F' o /
Now using the M == M conditions [Munt73], we have:
n+DPY;
Plng, ... n+l, ... 0yl D "N
max {%,1 + 2-21 n j}
j= "y

P[nl,...,ni..--lnN]

for all i=1,...,.N and for all the feasible states. Let y denote the set of all the feasible states; that

isy=<(y,....0...,08) |’4i=1,....N n;20 ». The above equation yields:
Pn n+l,....n]—L;max £ 1+§n~ Pln Ris . orin] (10)
12«0 fl 3o s TEN uanl+l Fi j=lj- 1v oo cnfbiy ooyl
¥i=l,.,Nand¥(n,,....n;, ... ,.nN) € X

Using equation (10) repetitively and starting from P{1,0,...,0], we can express the probability
of any feasible state as a function of the probability P[0,...,0] of the system being empty. We
obtain:

n;

N A'i n; i—1
P[nl, N T ,HN] =P[0,...,0} H { [_] %‘ H max {_2' ' E "k+j }} (11)

i= WP L k=1

'V(nl.....n,-....,nN)e X

Now since we have:

26

N "; P i-1 , i=l P
TIA[Imax <=, 3 mt+j pp=][] maxs—,j
i=1 | jel F j=1 F

N
and by letting n = ¥ n;, equation (11) yields:

i=]

]f[lmax{% } N a1
Piny, aN1=PI0,...00 Z — 1'[[—'] — (12)
i=1

Vg, ... M. .. BN E)

Equation (12) gives the probability of any feasible state as a function of the probability
PJ0,...,0] of the system being empty. In the sequel, we develop a closed form expression for the

probability P[n] of having a total of n jobs in the system in steady state. Let m = L% | denoting

the largest integer less or equal to % We distinguish two cases depending on the value of m.

Case of n<m

n n
Since [] max {-}i , j}: [-}i] , equation (12) gives:
j=1 F F

N a1
P[nl,....n,-,...,nN]=P[0.---.0] ! H[_] L

g R 1F; ;!

Y{ny,....on,....ny)e y and n<m

Consequently, we have:

P[0.....0 NrhTr
Plnl= [F,] p2 {1}[;] F}

N %
since P[0....,0]=P[0], and ¥ — = Pp, the above equation yields:

i=1 M

27

7]

P[n]=P[0]T ¥ n<m (13)
Case of n>m
Since }':'[lmax {% , j}= [—i—,]m ;—: equation (12) yields:
Plny,....n,....0n)=P[0,..,0] [_%]"‘n_"_l;l;_ £11 [ﬁ]'ﬁ n%'
Yy, ...ooB...,ny) ey and n>m

Consequently and after some algebra, we obtain:

P m
Hi
Pn]=P{0] or p* vV a>m (14)
We now proceed to evaluate the steady state probability P[0] of the system being empty. Using
the fact that ¥ P[n]=1, and equations (13) and (14), we have:

n=0
[
m n o

piori=3 [Ly 5 g

1
n=0 n. n=m+l m!

which after some algebra yields:

PO ="§1 [ﬂ’—]n L. —[—E"—%E L (15)
o LF 1 n! m! 1-p

Equations (13), (14) and (15) provide explicit expressions of the steady state probability P[n] of
having n jobs in the system. Let # denote the steady state average number of jobs in the system.
Using equations (13), (14), and (15), we have:

ﬁ='§0nf’[n]
Pp Y Ll

which after some algebra, yields:

28

.
_Pp P £ L
=F PO e T T F)l—p (o

Equation (16) along with the expression of the probability P[0] given by equation (15), expli-
citly defines the steady state average number of jobs in the P-DPS-WF system where jobs are
represented by any given execution graph with stages having the same concurrency degree F.
The job average response time, T(P), in such a P-DPS-WF system can then be obtained by

using Little’s result; namely that T(P) = % where A is the aggregate rate of the job Poisson

arrival process. Using equation (8) and equation (16), we thus have:

Pp 1" Pp " 5 1
P Elu PO[F] ,Elu. PO[F] _?.:iu. 7
P)= —F ()] m Pliop + P[0l ————— (-F)P(l—p) a7

Example

Let us take the case of F=1; this is the usual Processor Sharing scheduling strategy. We
have m=P, and equation (16) becomes:
Gl
F P

n=Pp+P[0) P (1—p)2

where, by using equation (15), P[0] is given by:

P-1
S (i) S (id)
Fiol E, n! P! 1-p

This is the known solution of the average number of jobs in the M/M/P FCFS queueing system
and the M/G/P Processor Sharing queueing system.

Limiting Behavior of T(P)

It is of interest to determine the limiting values To(F,P) and T, (F,P) of the job average
response time as the utilization factor p approaches respectively zero and one, for any real posi-
tive value of the concurrency degree F. As p approaches zero, the job average response time
approaches the total job average processing time through an empty system. Since the average

max <P.F

processing time of execution stage i, i=1,...,.N is P ? we obtain :
i

29

max {P,F} N
To(F,P)= —FF)

(18)

On the other hand, the limiting value T, (F,P) is specified in the following Theorem.

Theorem 6

The limiting value T (F,P) of the job average response time through a P-DPS-WF system with
a constant concurrency degree F, the same for all the stages, is independent of F and is equal to
the average response time in an M/M/1 queueing system having the same utilization factor p;
that is:

T\(F.P)= —1% *

Proof

Let us prove that as p approaches one, the average number of jobs in the system as given by
equation (16) approaches the average number of jobs in an M/M/1 queueing system having the
same utilization factor. From equation (15), we have:

m!
—(1

F

limg_,; P [0] =

Replacing P[0] by this limiting behavior in the expression for n as given by equation (16)
yields:

P
I _y
n

which completes the proof.
L}

Let us now return to equation (9) providing the departure rate of class i jobs, i=1,...,L

when the system state is (ny,...,n;,...,n.). We can rewrite equation (9) as follows:
nl
L F i
d;= Fp; i=1,...N (19)
>
max <+—, ¥, R
{F b= ’}

We recognize this as the rate of departure of class i jobs from a processor sharing system

30

comprising % processors, and where the average service demand of class i jobs is ﬁ This
i

amounts then to a decrease in both the number of processors and the average service demand of
class i jobs, i=1,....N when F>1, and 1o an increase in both the number of processors and the
average service time demand of class i jobs, i=1,...,N when F<1.

Figure 6 depicts the job average response time given by equation (17), as a function of
the system total utilization factor p, and for various values of the constant concurrency degree
F. Assume, for example, that we start with P=20 processors, N=1 and p = 0.05. Therefore, for
F=1, we have the usual processor sharing multiprocessor system whose job average response
time is depicted by the curve that intersects the y-axis at the value 20. For F=2, we obtain the
curve that intersects the y-axis at the value 10. This is the curve of the job average response
time in a processor sharing system comprising 10 processors and where the job average service
demand is 0.1. For F=20, we obtain the curve that intersects the y-axis at the value 1. This is the
curve of the job average response time in a processor sharing uniprocessor system, where the
job average service demand is 1. Consequently, we may conclude that it is much better to have
a system comprising less processors with shorter job service demands than a system comprising
more processors but with larger job service demands.

The other average response time curves in Figure 6, are obtained using values of F
smaller than unity, For F = % for example, we obtain the curve that intersects the y-axis at the

value 40. This is then the job average response time in a processor sharing system comprising
40 processors, and where the job average service demand is 2.

5 Average Response Time in the P-DPS-WF System

We now proceed to investigate the job average response time in a P-DPS-WF multipro-
cessor system. Jobs are represented by a given arbitrary process graph with N tasks and
comprising only one starting task and one terminating task. We shall present and analyze a
rather accurate approximation for the job average response time. This approximation is based
on the EEC and the P-DPS-WF systems with constant concurrency degree, the same for all exe-
cution stages. Simulations are used to validate the approximation. First, we shall deduce the
exact value of the average response time of jobs through an empty P-DPS-WF system (i.e.,
p =0), and then we provide a generalization of Theorem 4.

31

ML= MOZOOVHMD MOPIM<P

100

80

70

60

40

30

20

10

F=1/4

F

2/7

F=2/5 '

F=1/2

F=2/3

F

1

Libi it i a bl dansa b annaidast ALl it it st tiFiaaiai1i1 LLLLL i s it b i g iananagasdiaastatil

F=20

Ilillll||Illllllllfllllillllllll]]lIlllllrllllllllllllllllIIIFFEIIIIIIIIIIll[llliilITIIlIlllT||lIIl

00 0.1 62 03 04 05 068 07 08 09 1.0

UTILIZATION FACTOR

Figure 6: Average Response Time in 2 P-DPS-WF Multiprocessor
System with a Constant Concurrency Degree

32

5.1 Job Average Response Time Through an Empty P-DPS-WF System

The job average response time through an empty system, denoted hereafter by 7o(P), is
equal to the average processing time needed by a job when it is alone in the system. Since if X

and ¥ are independent exponentially distributed random variables with respective means Lli
X

and _ul_ and if Z is the random variable defined by Z=min(X,¥) then
¥

P{Z<z] =1-¢ ™2 .50 It follows that the average of the random variable Z is
7= 1

Mhx + Ly
vice, execution stage i terminates, then the average service demand brought by stage i to the

. Consequently, since whenever the first task among the set oi) completes ser-

system is given by ;, i=1,....L. On the other hand, the processing rate (i.e., capacity)

Y M
Ae al)
at which this service demand is serviced depends on whether f(i) is greater than P. If f(i) is less

or equal to P then each task in the set ofi) is processed at a rate of one second per second. If f(i)

is greater than P, however, each task in the set o) is processed at a rate of ?%)— seconds per

second. If So(i) denotes the average processing time of stage i in an empty system, we have:

max {P-f @)}
1

So(i) = i=1,..L 20

P
2 Ma
Ae af)

On the other hand, since the probability that stage i is visited during the execution of a job is

A
given by T‘, i=1,....L. We thus obtain:

L
To(PY=3 = So(® 21)
= A
Equation (21) along with equation (20), provides the exact value of the total average processing
time needed to complete a job through an empty P-DPS-WF system. If P = o, equation (21)
reduces to equation (4). In the case of sy = for all A e £, equation (20) reduces to:

max {P,f (i)}

PF O i=l,..,L

Soli)=

and equation (21) becomes:

33

L A; max {P,f(i)}

APy = f@)

To(P)=

5.2 Approximation of the Job Average Response Time

We now proceed to determine which RAEC, among all possible RAECs with N stages,
provides the upper (respectively the lower) bound on the job average response time.

Theorem 7

Among all possible RAECs with N execution stages, the DFEC is the RAEC which provides
the lowest job average response time. Moreover, there must exists a value p' of the system utili-
zation factor such that for all p e [0,p*], the EEC is the RAEC which provides the largest job
average response time, and for p € {p’,1), the BFEC is the RAEC which provides the largest
job average response time.

Proof

The proof is based on a sample path representation of the job arrival and departure patterns. For
a given sample of the job arrival process, the RAEC which results in the earliest job departures
is the DFEC, for it implicitly and dynamically allocates the highest priority to the jobs nearest
to completion. This proves the first statement. For p=0, the DFEC and the BFEC provide the
same average response time which is, on the other hand, smaller than the one provided by the
EEC. From Theorem 4, we know that the BFEC is the worst RAEC in the 1-DPS-WF system.
Since for p—»1, the P-DPS-WF system becomes congested and thus behaves as a 1-DPS-WF
system with a total capacity of P seconds per second, it follows that for a sufficiently high value
of the utilization factor, the BFEC results in the largest job average response time.

1]

Although the BFEC and the DFEC do not actually correspond to any given process
graph, they present, by means of the above Theorem, and for certain ranges of the utilization
factor, respectively upper and lower bounds on the job average response time. Moreover, given
the process graph description, Theorem 7 states that there exists a certain value p’ such that for
all p € [0,p"], the job average response time lies between the one given by the EEC and the one
given by the DFEC; and for all p e [p', 1), the job average response time lies between the one
given by the BFEC and the one given by the DFEC.

Recall that among all possible RAECs with N execution stages, there are only a few
feasible ones. Moreover, the inherent property of the execution graph, namely that f(1)=f(L-
1)=f(L)=1, assures that the job average response time for high values of the system utilization
factor is much closer to the average response time given by the EEC then to the one obtained by
either using the BFEC or the DFEC. The approximation of the average response time in a P-
DPS-WF system must satisfy the following:

1. For p =0, the approximation should provide the same value as the one given by equa-
tion (21). Moreover, for small values of the utilization factor, the approximation should
result in a curve lying between the curves provided respectively by the EEC and the
DFEC.

2. For higher values of the utilization factor (i.e., p>p'). the approximation should result
in a curve that is very close to the curve provided by the EEC.

The above two requirements can be satisfied by using the P-DPS-WF system job aver-
age response time given by equation (17) with the proper value for the concurrency degree F.
Therefore, we have a parametric approximation that depends only on the parameter F. For any
given process graph, we start by computing the value of the job average response time To(P)
through an empty P-DPS-WF using equation (21). Now, since the concurrency degree F is less
or equal to P, the number of processors in the system, by equating the just computed value of
To(P) to To(F,P) given by equation (18), gives the value of F:
N1
s _ To(LP)

F=T0® = To®

where To(P) is given by equation (21). Notice that for P=1, the value of F is one and, hence
our approximation results in the one presented earlier for the uniprocessor case.

We simulated the P-DPS-WF system using the process graph description depicted in
Figure 1, and for the values P=2,3,4,5 and 16. The task average service time is equal to unity
and the same for all the seven tasks. The Merhod of Independent Replications [Lave83] is used
to estimate the extent of the simulation transient state, and the Method of Batch means [Lave83]
is used to estimate the job average response time T(P) in the steady state. Figure 7 depicts the
job average response time as given by equation (17), along with the simulation results
represented by the confidence intervals. The average response time in an empty system using
equation (21) is 5.208333 for P=2 and 5.055555 for P=3. From these values, we get F=1.344 for
P=2 and F=1.3846 for P23. The confidence intervals are depicted on Figure 7 as vertical bars,
are obtained from the simulation using the t-distribution, and are of 90% level.

35

mEL—=- MOZOTUMI MO>PIM<P

100

3 =]
o
LilLill) llllllllIllllllllllll]llllllllllllllllllllljlllllIlllIlllljlllllllllljllllll]lIlllllllllllll

18]
o

F-3
[~

lIlllllllllllllIIIIIIIIIIIIIIIIIIIIIlIlIIIrTIIIIlIIIIIIllllll[lllIillllllIllllTIllllIIlIf'lllllITT

06 01 02 03 04 05 08 07 08 09 1.0

UTILIZATION FACTOR

Figure 7: Average Response Time in a P-DPS-WF Multiprocessor System

36

Over all the permissible range of the utilization factor (i.e., p € [0,1)), the approxima-
tion is well within the 90% confidence intervals, It is rather interesting to notice the narrowness
of these confidence intervals even for very high values of p. The optimistic character on the
other hand, is less noticeable than in the uniprocessor case.

5.3 Achievable Parallelism in a P-DPS-WF System

Significant reductions in the job average response time can be realized by executing a
job, described by a given process graph, on a multiprocessor system. This effect is known as the
Speedup factor (see below), which typically increases with the number of processors composing
the multiprocessing system. Along with an increase in the speedup factor, comes a decrease in
the efficiency of the processors. As more processors are used, the total amount of processors idle
time increases also. While a large speedup factor may appear as a delight for the users, the
efficiency of the processors is also very important. It is rather easy to get an efficiency of one,
but this system is extremely slow (e.g., the job average response time is too large). This tradeoff
is investigated below by the use of the Power function as defined in [Klei79, Gail83]. First, we
shall investigate the achievable parallelism attained by a multiprocessor system with P proces-
sors, and then we shall return to investigate the above tradeoff.

Customerly, the speedup factor, denoted by o, of a parallel processing system is defined
as the ratio of the job total processing time through an empty uniprocessor system to the job
total processing time through a empty multiprocessor system [Kung84, Hwan84], This is the
same definition as the concurrency degree used previously. It is not difficult to realize that the
speedup factor (in the special case of exponentially and identically distributed task service

requirements) is bounded above by % Indeed for the process graph with N concurrent tasks,

and for the case where the service time per task is exponentially distributed with mean ﬁ the

same for all tasks, Theorem 2 readily gives the lower bound on the average response time using

an infinite number of processors. For large N (ie., N>> 1), T, 5 = lnN—u-i-d) where @ is the

Euler’s constant (i.e., ®=0.57721...), and the job processing time in a uniprocessor system is
N

v

Although the speedup factor, as defined above, represents a very useful measure in
determining the process graph structural parallelism (i.e., the inherent parallelism within the job
process graph), it does not portray the achievable parallelism obtainable by using a multiproces-
sor system, for it does not incorporate any measure of the queueing effects. It is therefore more

interesting for our purposes to redefine the speedup factor as a function of the number P of pro-
cessors used, the system utilization factor p, and the scheduling strategy adopted. For a given

37

scheduling strategy S, we therefore define the speedup factor to be:

T1(5.p)
Tp(S,p)
where T,(S,p) and Tp(S, p) represents the job average response times respectively through a

uniprocessor system and a multiprocessor system, for the same scheduling strategy and for the
same utilization factor p.

o(S,P,p)= (22)

The question naturally arises as to which centralized system we are in fact comparing
our multiprocessor system. It is not hard to see that indeed we are comparing the multiprocessor
system with P processors, to the centralized system composed of P individual noninteracting

uniprocessor subsystems, where the average arrival rate of jobs to each is % This indeed con-

stitutes an interesting comparison, for it ascertain the gain achieved by interconnecting the P
individual processors. Moreover, the super uniprocessor (i.e., a uniprocessor system having the
same capacity as the P-processor system) system is always superior to the multiprocessing sys-
tem.

For our discriminatory processor sharing scheduling strategy, equation (22) becomes:

S(DPS-WF,P,py= LLFSWE.p) 23)
P = T (DPS—WF, p)

Using our approximation, we then obtain the speedup function for our process graph of Figure
1. Figure 8 depicts the P-DPS-WF system speedup as a function of the utilization factor p, and
for various values of the number of processors P. At p =0, we obtain the customary definition
of the speedup factor, that is o(DPS-WF,1,0)0=1, oDPS-WF,2,0)=1.344 and
o(DPS-WF,P,0)=1.3846. for all P23. For p =1, we observe that the speedup factor reaches
the value P, as stated through Theorem 7. Therefore, we may conclude that the speedup factor
for a P-DPS-WF system ranges between its lowest value obtained at p == 0 and which is equal to
the value of the concurrency degree F used, to its highest value P obtained at p = 1. Moreover,
all intermediary values of the speedup factor can be obtained by a proper choice of the value of
the utilization factor. In Figure 8, we also depicted the speedup factor achieved by an infinite
number of processors. This speedup factor forms then, for any value of p, the upper bound on
the achievable parallelism.

Figure 9 shows the achievable parallelism (i.c., speedup factor) as a function of the
number of processors for different values of p. We depict in heavy marks the two limiting cases;
namely the case of p =0 and the case of p =1. When p =0, the lowest curve shows that a sub-
stantial increase in the speedup factor is only obtained when we move from P=1 to P=2 and
then to P=3. For higher values of P, the speedup factor is the same as that achieved by an
infinite number of processors. For p=1 on the other hand, we have the other heavy marked
curve which states that the speedup factor is equal to the number P of processors used. As p

38

VO-OPrT VCOMMUWL SM-V<®

e e O S -
QO = N W & ;v o ~N O w o

N W 2 0 O N OO O

[= T

P=eo

P=18

0.0

0.1

0.2

0.3

04 05 08 07 08

UTILIZATION FACTOR

Figure 8: Achievable Parallelism in a P-DPS-WF Multiprocessor System

39

0.9

1.0

increases from zero to one, we obtain the other curves. In the next section, we shall determine
the optimum operating value of p and then deduce the achievable parallelism obtained at such a
level.

The efficiency per processor in a multiprocessor system with P processors is the ratio

%. As mentioned earlier, it is also of interest to quantify the efficiency of each processor. Fig-

ure 10 depicts the efficiency per processor as a function of the utilization factor p, and for the
process graph of Figure 1, and for P=1,2,3,4,5,16. As expected, we notice that for small values
of p, the efficiency of each processor is very low, and poorer as P gets larger. As the system util-
ization factor grows towards cne, the efficiency per processor grows rather rapidly and atp=1
reaches its maximum value of one.

Recall from our definition of the speedup factor, that we are indeed comparing a P-
individual-noninteracting uniprocessors system architecture to a multiprocessing system archi-
tecture. Figures 8 and 9 show how much gain can be achieved by using our P-DPS-WF system
architecture compared to the P individual noninteracting 1-DPS-WF systems architecture. We
observe from these figures that the parallel processing architecture is superior (achieves a lower
job average response time) to the centralized architecture over all permissible values of p.
Indeed, this superiority approaches its maximum when the utilization factor approaches one.
Nevertheless, at p =1, the job average response time in the P-DPS-WF system, while P times
less than that in the centralized architecture, is too large to be of any use. The question naturally
arises as to which value of the utilization factor should we use for the P-DPS-WF system, and
consequently how much parallelism is achieved at this utilization factor point.

Our interest is the tradeoff between throughput and response time involved in choosing
a particular system operating point. As the input traffic offered to cur multiprocessing system
increases, the job average response time increases; see Figure 7. On the other hand, since we
are operating within the system stability condition; namely p<1, then the throughput of the sys-
tem is equal to its input rate. Hence, the job average response time and the throughput of our
multiprocessing system are both increasing functions of the input traffic. A performance meas-
ure incorporating throughput and delay into a single function is the notion of Power introduced
in [Gies78]. It is simply defined as: '

PW = P
Tp(p)

where p is the system utilization factor and Tp(p) is the job average response time through the
multiprocessing system with P processors. The two contrasting objectives of maximizing
throughput and minimizing delay are combined into this single objective function. Other meas-
ures of power have appeared in the literature [Yosh77, Klei79].

DO-OPTM VCOMMIUDY T MHAV<W

20
19
18

S
o = N W & 0 o0 =

N W a2 N O O

=10 .
(> p=099
p=0.98
p=0.97
p=0.96
£=0.95

p=0.9
p=08
p=0.7
p=06

7

g

 e—
a 7# ﬁf 7

10 20 30 40 50 60 70 80 90

NUMBER OF PROCESSORS

Figure 9: Achievabie Parallelism versus the Number of Processors

41

100

VONMOMOOITTV IMU <OZM=-0-—"Tm

1.0

o
[

o o
n ~

e
A

o
Y

llllIllllllllllllllllllllllllllllllilllllIlIlllljlllllllllllJJljlllllllllllllllilllllllllllllilllll

0.0

P=1

P=

P=4

=5

P=16

llIIII|||II[]]'IIIIIIIITTTTFT'IlllllllIIIIlllllllllllllllllll]‘lli]l]lifi¥l|lllllllllllllllllllllll

o0 01 02 03 04 05 086 07 08 08 1.0

UTILIZATION FACTOR

Figure 10: Efficiency per Processor in a P-DPS-WF Multiprocessor System

42

Note from Figure 7 that for small values of p, a significant increase in the traffic input
(i.e., in the throughput) can be obtained with only a slight increase in the job average response
time, motivating us to increase the input traffic in this region. Conversely, for large values of p,
a large decrease in the job average response time will occur if the input traffic rate is decreased
only slightly, motivating us to decrease the input traffic rate in this region. From Figure 7, it is
not difficult to see that an appropriate operating point for our multiprocessing system would be
in the vicinity of the Knee of the average response time versus the utilization factor curve. The
knee is defined as the point on the curve such that a line through the origin to this point is
tangent to the curve. Kleinrock [Klei78a] demonstrated the usefulness of this knee criterion by
observing that the value of p which maximizes power occurs exactly at the knee. Kleinrock
further extended the above argument by noting that the job average response time curve need
not be a convex function of p. In the cases where more than one tangent line can be found (i.e.,
more than one knee occurs), maximum power will occur for that tangent line which makes the
smallest angle with the horizental axis. Although it is known that the throughput-response time
curves are CONvex, non coNvex curves may occur in the case of multiple access protocols which
adapt to increasing load. Such a type of behavior was already observed for the URN scheme of
Yemini and Kleinrock [Klei78b).

Using the process graph description of Figure 1, and our approximation of the job aver-
age response time through a P-DPS-WF system, we obtain the power profile depicted in Figure
11. In this figure, we plot the power of the multiprocessor system as a function of the utilization
factor p for various values of P. Since for any permissible value of p, the minimum average
response time is obtained by using an infinite number of processors, it follows that this case
provides the upper bound of the power measure. This is then represented on Figure 11 by the

ioht 1 fin P _ p ' . 3 . .
straight line defined by PW T. = 5.055555 It is rather interesting to notice that the

optimal operating point grows with P. Figure 12, depicts the relationship between the number
of processors P, and the optimal corresponding operating point. For a given value of the utiliza-
tion factor p, Figure 12 gives the number of processors to be used in the P-DPS-WF multipro-
cessor system which behaves optimally at such utilization level. For a given value of P, on the
other hand, Figure 12 provides the optimal operating point p. Notice that in the range
p € [0,0.5) there exists no system that behaves optimally (i.e., at its maximum power), and that
for high values of p (i.e., p20.8), a slight increase in p amounts to a large increase in P.

We now contrast our multiprocessing system to the centralized architecture System.
Two alternatives may be considered. First, we compare the P-DPS-WF multiprocessor system
to the centralized architecture system operating both at their respective optimal operating
points, In this case, the achievable parallelism is represented by the lower curve in Figure 13,
The short dashed line represents the asymptotic behavior of the achievable parallelism as P gets
very large. Since the optimal operating point for the centralized architecture is at p = 0.5 which
gives T(1)=14.0 for our process graph of Figure 1, and since the average response time through

43

0.2
0.19
0.18 P=50
0.17 p=
0.16
0.15
0.14
0.13
0.12

p 0.11
W 0.1
Ro.09
0.08
0.07
0.06
0.05
0.04

ASYMPTOTIC BEHAVIOR

0.03
0.02
0.01

0.0
00 01 02 03 04 05 08 07 08 09 1.0

UTILIZATION FACTOR

Figure 11: Power Function in a P-DPS-WF Multiprocessor System

WDIOWVLMOODIT MO IMWZCZ

100

w [+, [1] -~ o] w0
o g o o Q (= (=
g IlilllIlllllllllllllllllll]lllllllll]llllllllllllllllllllilll

N
o

s
o

-t

0.1 02 03 04 05 06 07 08

UTILIZATION FACTOR

Figure 12: Maximum Power in a P-DPS-WF Multiprocessor System

45

0.9

1.0

an infinite number of processors system is 5.0555585, it follows that the asymptotic value is
equal to 2.76923. It is also interesting to notice that the achievable parallelism, as a function of
P, reaches rather quickly its ultimate asymptotic value. This is mainly due to the fact that after
a certain value of P, the P-DPS-WF system behaves as an infinite number of processors system.
Second, we compare the P-DPS-WF multiprocessing system to the centralized architecture sys-
tem operating both at the same value of the utilization factor; the one defined by the operating
point of the multiprocessing system. For this case, we obtain the upper curve of Figure 13.
Although the achievable parallelism of the P-DPS-WF system is less than P, it is monotonically
increasing with the number of processors used. This later comparison is more interesting and
practical, for it compares the two architecture under the same load conditions.

6 Conclusion

Significant reductions in the job average response time can be realized by executing a
job, described by a given process graph, on a multiprocessor system. In this Report, we intro-
duced a new scheduling strategy termed the Discriminatory Processor Sharing With job Feed-
back, which is proved to form a complete family of scheduling strategies in the uniprocessor
case. The study of the job average response time assumed a preliminary conversion of the pro-
cess graph into an execution graph describing the execution stages of a job during its life in the
system. By exploiting the execution graph properties, we formulated and proved upper and
lower bounds on the job average response time. Accurate and yet very simple approximation for
the job average response time are developed and used to quantify the achievable parallelism
attained by multiprocessor systems. To poriray the level of parallelism achieved, we defined the
speed up factor as a function of both the scheduling strategy and the utilization factor of the sys-
tem.

In this Report, we have assumed that the cost of exchanging data between processors is
free and is achieved instantaneously. In reality, there is always some delay incurred when com-
municating between processors. The communication delays are rather crucial components
which must be considered in conjunction with the processing delays to better ascertain the
parallelism achieved by multiprocessor systems, and to properly compare multiprocessor sys-
tems to multicomputer systems. A simple model to account for such communication delays
would incorporate, in the job process graph, some communication nodes representing both the
communication times involved between parallel tasks, and the data transfers required between
consecutive tasks. Investigations of this communication issue are being considered.

46

DO-HOPTM TVWCUMMUTY T MAV<Y

E S e N L S S O % 1
O = N W & O N D O w O

N W e N O WO

O =k

10 20 30 40 50 60 70 80

NUMBER OF PROCESSORS

Figure 13: Achievable Parallelism at Optimal Operating Points

47

90

100

We have seen that a job may need and consequently may hold more than one processor
at a time. Consider the process graph of Figure 1. Let us assume that no more than one proces-
sor may work on a given task. When task A is being processed, the job can proceed at a max-
imum rate of 1 second per second. When task A is completed, tasks B and C may begin, and the
job can proceed at a maximum rate of 2 seconds per second, assuming a multiprocessor system
comprising two or more processors, etc. Consequently, the maximum rate at which a job can
absorb work depends upon where it is in its processing cycle (i.e., which tasks are ready), and
on the number of processors composing the multiprocessor system. This forms a new class of
queueing systems where the maximum rate at which a job can proceed varies with elapsed time,
as compared to the classic queueing model, which assumes that the maximum rate at which a
job can absorb work is constant. In this Report, we adopted the discriminatory processor shar-
ing of the processors’ total capacity among the jobs present in the system, and thus we solved
(exactly in the infinite number of processors case, and approximately in the finite processors
case) for the job average response time in such a system. Further research is also undoubtedly
needed in this direction.

48

[Bask75]

[Belg85]

[Belg86]

[Chan77]

[Fayo78]

[Gail83]

[Gies78]

[(Hwan84]

References

F. Baskett, K.M. Chandy, R.R. Muntz, and F. Palacios-Gomez, ‘‘Open,
Closed, and Mixed Networks of Queues with Different Classes of Custo-
mers,”" JACM, Vol. 22, No. 2, April 1975.

A. Belghith and L. Kleinrock, ‘*Analysis of the Number of Occupied Pro-
cessors in a Multiprocessing system,”’ Technical Report No. UCLA-CSD-
850027, School of Engineering and Applied Science, Computer Science
department, University of California, Los Angeles, August, 1985,

A. Belghith, ‘‘Response Time and Parallelism in Multiprocessing Systems
with Certain Synchronization Constraints,”” Ph.D. Dissertation, School of
Engineering and Applied Science, Computer Science Department, Univer-
sity of California, Los Angeles, December 1986.

K.M. Chandy, J.H. Howard, and D.F. Towsley, ‘‘Product Form and Local
Balance in Queueing Networks,'’ JACM , Vol. 24, No. 2, April 1977, pp.
250-263.

G. Fayolle, I. Iasnogorodski, and I Mitrani, ‘‘On the Sharing of a Processor
Among Many Job Classes,”” IRIA-Laboria, Domaine de Voluceau, 78150
Le Chesnay, France, 1978.

R. Gail, ‘““On the Optimization of Computer Network Power,”” Ph.D.
Dissertation, School of Engineering and Applied Science, Computer Sci-
ence Department, University of California, Los Angeles, September 1983.

A. Giessler, J. Hanle, A. Konig, and E. Pade, ‘‘Free Buffer Allocation - An
Investigation by Simulation,”” Computer Networks, Vol. 1 (3), July 1978,
pp- 191-204.

K. Hwang and F.A. Briggs, Computer Architecture and Parallel Process-
ing: McGraw Hill (Series in Computer Organization and Architecture),
1984,

49

[Klei67]

[Klei75}

[Klei76]

[Klei78a]

[Klei78b]

[Klei79]

[Kungg4]

[Lave83]

[Litt61]

[Munt73]

[O’Do74]

[Yosh77]

L. Kleinrock, ‘‘Time-Shared Systems : A Theoretical Treatment,”’ Journal
of the Association of Computer Machinery (JACM), Vol. 14, 1967, pp.
242-261.

L. Kleinrock, Queueing Systems, Vol 1: Theory, New York: Wiley-
Interscience, 1975.

L. Kleinrock, Queueing Systems, Vol 2: Computer Applications, New York:
Wiley-Interscience, 1976.

L. Kleinrock, ‘‘On Flow Control in Computer Networks,”” Conference

Records, International Conference on Communications, Vol. 2, June 1978,
pp- 27.2.1-27.25.

L. Kleinrock and Y. Yemini, ‘*On Optimal Adaptive Scheme for Multiple
Access Broadcast Communication,’’ Conference Records, International
Conference on Communications, June 1978, pp. 7.2.1-7.2.5.

L. Kleinrock, ‘‘Power and Deterministic Rules of Thumb for Probabilistic
Problems in Computer Communications,’” Conference Record, Interna-
tional Conference on Communications, June 1979, pp. 43.1.1-43.1.10.

K.C. Kung, *‘Concurrency in Parallel Processing Systems,”” Ph.D. Disser-
tation, School of Engineering and Applied Science, Computer Science
Department, University of California, Los Angeles, 1984.

S.S. Lavenberg, Computer Performance Modeling Handbook, New York:
Academic Press, 1983,

J. Little, ““A Proof of the Queueing Formula L =AW, Operations
Research, Vol. 9, No. 2, March 1961, pp. 383-387.

R.R. Muntz, “‘Poisson Departure Processes and Queueing Networks,”
Proceedings of the 7th Annual Princeton Conference on Information Sci-
ence, Princeton University, 1973, pp. 435-440.

T.M. O’Donovan, ‘*Direct Solutions of M/G/1 Processor-Sharing Models,”
Operations Research, Vol. 22, 1974, pp. 570-575.

Y. Yoshioka, T. Nakamura, and R. Sato, ‘*An Optimum Solution of the
Queueing System,’’ Electronics and Communications in Japan, Vol. 60
(B8), August 1977, pp. 590-591.

50

