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ABSTRACT OF THE DISSERTATION

An Approach to Compiler Correctness

Using Interpretation Between Theories

by

Beth Helene Levy
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1986

Professor David F. Martin, Chair

An approach to compiler correctness verification i{s proposed and research that
investigates the mathematical framework and applicability of the approach is
presented. This approach is based on interpretation between theories, a concept
developed in mathematical logic which provides a basis for proving that one logical
theory is correctly mapped into another logical theory. To utilize this concept for the
compiler application, it is proposed that the theories include higher-order operators
{operators that accept operators as arguments and/or return operators as results)
and domain equations. Interpretation between theories has previously been defined

for predicate caiculus and DLP (an extension of dynamic logic).

An extension to predicate calculus is proposed which incorporates Scott's theory of
domains. It allows higher-order operators and recursive objects. and can be used to

specify the denotational semantics of a programming language. An interpretation



between our extended theories and criteria the interpretation must meet to be
correct are defined. In the course of developing the definitions, we¢ prove various
theorems that show the criteria are sufficient. The interpretation between theories
can be used as a formal specification of a compiler design. A mathematical proof
that the interpretation is correct constitutes a verification that the compiler design is

correct.

The novel concepts presented by this approach are:

1. Interpretation between theories is defined for theories that allow
higher-order operators and domain equations

2. A compiler design is defined as an interpretation between theories.

Preliminary research indicates that this approach has strong intuitive appeal
because it models the informal design process, results in concise specifications, and

organizes the correctness proof into highly modularized, manageable pieces.



Chapter 1

Introduction

There are several reasons why the application of analytical software verification
techniques to the validatton of compilers! is important to software/hardware
development. First, in many installations compilers are heavily used and typically
have long useful ltves. Thus, errors in compilers will likely be more costly than errors
in less-used programs. Second, an error in a compiler is often difficult to distinguish
from an error in the source language input to the compiler. Programmers using a
compiler should not have to become familiar with the intermal workings of the
compiler or with the target code produced (or integrated circuits produced in the case
of "silicon compilers") to distinguish compiler errors from programming errors. A
third and perhaps more subtle consideration is that any proof that a program written
in a source language is correct is useless if an error exists in the compiler used to
translate that program. Finally, by focusing our attention on the compiler
corTectness problem we will hopefully contribute to the solutions of other difficult

verification problems in software and hardware applications.

It is useful to focus on the compiler problem because the problem is well

understood and motivated, and highly structured. Like the verification of other

!A compiler is a computer program that translates a program written in a language which cannot be
directly executed (called the source language) into another language which can be directly executed (called

the target language).



classes of software, compiler verification involves showing that a computer program
correctly implements a specification. A compiler specification (or compiler design) is
a functional statement of what the compller is supposed to do; it is the relation
between the source program input and the target program output. A compiler
implementation is a computer program that implements the compller design.
Contrary to some other applications, it is also important to verify the design; the
compliler input and output are computer programs and the semantics of any valid
source program input must be shown to be preserved by the target program output.
This means we must have {1) a description of the semantics of both the source and
target languages in addition to the semantics of the programming language in which
the compiler is written, and (2) another layer of proof (Le.. a proof that the compiler

design is correct).

A proof that a compiler design is correct requires a semantic definition method.
The area of semantics is not as well developed as the area of syntax specification.
Backus-Naur form {BNF) or context-free grammars are now widely used for defining
syntax and constructing parsers?2. When first introduced. BNF was considered too
difficult to learn and cumbersome to use to be of practical use. Much of the same
criticism can be heard of various semantics definition methods today. In spite of the
early criticism, formal syntactic methods are now taught to and used by beginning

programmers, and the methods have had a profound effect on the design of

programming languages and compilers.

Currently, there is no standard method for writing semantics. As mentioned

2a process for reading and verifying the proper syntax of tnput



above, the area is not as well developed as syntax specification; semantics features
are much more difficult to define and describe [schmidt 86]. Semantic definition
methods are evolving in response to the various needs of language implementers and

programmers. These include [schmidt 86}:

1. A precise standard for a computer implementation. The semantics of a
source language is independent of any particular computer or compiler.
Different compilers can implement the same source language for
different machines. Such a source language is said to be portable. The
purpose of a standard is to guarantee that the source language Is
implemented in exactly the same manner on all machines.

2. User documentation. Just as a trained programmer can read a formal
syntax definition, a semantic definition can be used as a reference to
answer subtle questions about the behavior or interaction of

programming language constructs.

3. A tool for design and analysis. Analogous to syntax definitions which
can be used as input to parser generator systems, semantic deflnitions
can be input to compiler generator systems or used to suggest efficient,
elegant tmplementations. They can also be used for testing and
analyzing a language. These areas of research are still evolving.

All of this suggests that while the selection of a semantic definition method is
important, there is no one clear choice for all purposes: different definition methods
were developed In response to different, sometimes competing, goals. In this
research, a denotational style semantic definition method was selected. It is an
expressive and convenient method for semantic definitions. The motivation for this
choice is discussed in detail in the dissertation. Briefly, the goals motivating the

selection are:
1. A concise, unambigious semantics specification
2. A method that has been demonstrated with a wide variety of languages

3. A definition method that could be incorporated into the proposed
verification approach which has as goals a correctness proof based on
structural induction on the source language, a correctness proof that
mirrors the informal process of design/verification, and a correctness
proof that breaks down into small, independent, manageable pieces.

At this point some general comments on the problem of verification might be



useful. There is no such thing as absolute correctness: correctness is a relative term.
An Implementation is correct with respect to some spectfication, design, or
requirements. A proof of correctness demonstrates that properties of the
specification are preserved by the implementation. If the language of the specification
does not easily convey the specification’s intent, the specification can in turm be
defined in another language or in a more abstract (less detailed) manner, and these
two specifications can be shown consistent, ad infinitum. Because one person’s
specification may be another person’s implementation in the hierarchy of design, the
distinction between an implementation and a specification blurs, and the distinction
13 only helpful when viewing two levels of design. When considering two levels of a
design, it is desirable that the languages of the implementations and their
specifications, and the proofs of correctness be as formal as possible, leaving little

room for misinterpretation.

A proof in a formal system is a precise, convincing argument that an
implementation is consistent with its specification. Without such a formal proof, one
cannot communicate, document, or reproduce verification results in a uniform
manner. The more rigorous and formal the proof techniques are, the less confusion
there is about the validity of the results and the more amenable the process is to
mechanization, l.e., computer assistance. However, the intent is not to put a
straightjacket on creativity nor mask intuition with formalisms. The proofs invoived
are not particularly difficult, though some are quite long. Many of the proofs are
similar in nature. Mechanization eliminates much of the tedium involved and
reduces the chance of error in a proof. It allows us to tackle larger verification

problems and forces us to be precise.



A formal correctness proof increases one’s confidence in an fmplementation. but
does not guarantee correctness -- it is likely that nothing can. Where can the
verification process break down? First, the proof could be wrong or unsound. Next,
the specification could be wrong; it might not accurately convey one’s mental concept.
So. the question arises whether the additional cost of formally verifying an
implementation or design is worthwhile. We belleve it is for certain classes of

software,

Consider the alternatives to correctness proofs. Testing or code walkthroughs are
currently used to certify the correctness of most software. For critical software,
however, it is not adequate to trust a system on the basis that the code or design has
been examined for some sample input. That sample input is necessarily a small
percentage of the total range allowable. It is the nature of programming that one can
write an executable program without having completely understood the problem.
Hence, it is typical that systems are unreliable for the first few months or years of
operation. For compilers, it means that hundreds or thousands of programmers
encounter costly delays, may themselves produce erroneous programs via an
erroneous compiler, or write code that will avoid errors in the compiler, code that s

hard to understand and maintain.

Testing and code walkthroughs are based on informal or ambiguous
specifications.  Intuitively, the correctness proof can be considered a formal,
systematic code walkthrough in which the full range of possible input is consciously
examined. It provides a permanent written record of this reasoning. The mere act of
formal specification slows down the implementation process, forcing the designer to

carefully consider error conditions, bounds of a range, structuring of code and data,



etc. At the very least, for critical software, certification must include something more
than testing. The sophistication of our software systems Is surpassing our means Lo
certify them, to have confidence in them. Correctness proofs are not intended to

replace the other certification techniques, but rather, to augment them.

It is recognized that the cost of formal verification is very great, and in most
instances, given the current state of technology. the cost is too great to absorb. It is
evident that correctness proofs will never be used to certify "one-shot”, short-lived
programs. The long-lived systems where costs (labor, and equipment) and risks (e.g.,
human life, national defense, loss of money) are great, have the need for tmproved
reliability and can absorb more initial development costs. Systems such as
compilers, operating systems, networks. microcode, etc. are indispensible parts of
long-ltved environments. They are heavily used on a daily basis and must be correct.
More verdification research is required. Perhaps verification methods for particular
types of applications must be developed and the tedious, more mundane parts of the
verification process must be automated. Automation may include processes from
checking the syntax of a specification or checking a proof to finding a proof and/or

implementation.

The work presented in this dissertation was done with some of these problems
and goals in mind. It is hoped that it will provide more insight into the nature of
implementing a specification/requirement and will illustrate the large amount of
reasoning that must be done formally, now done informally in someone’s head, to

justify such an implementation.

This dissertation proposes to apply the mathematical concept of interpretation



between theories to the verification of non-optimizing compilers. A compiler is non-
optimizing if the compilation of each syntactic type is independent of other syntactic
types. The proof of a non-optimizing compiler can be conveniently divided into two
parts. The first part proves that the compiler design is correct; ie., the target
language which is output by the compiler preserves the semantics of the source
language which is input to the compiler. The second part proves that the compiler
implementation is correct: i.e., for each source language syntactic type the compiler
produces a particular sequence of target instructions. In this dissertation we apply
the concept of interpretation between logical theories to the first part of the
correctness proof. Further research will determine whether this formulation of the
problem and proof method can be used in the second part of the correctness proof.

The presentation of the research completed is outlined below.

It is important to note that this report uses several words that have different
meanings in different contexts or references. These words include semantics, syntax,

interpretation, structure and implementation. In this dissertation:

1. semantics refers to the meaning/behavior given to programming
languages

2. syntax refers to the grammatical structure of programming languages
or of a theory's language

3. structure or model refers to the meaning given to a theory {in other
papers this is often referred to as the interpretation or semantics).

4. interpretation refers to the mapping from the language of one theory
into the language of another theory.

5. an implementation is formally specified by an interpretation; for the
compiler problem, it can refer to either a compiler design or an
interpretation from the compiler design to a programming language
(this is referred to as the compiler implementation above).

In [wand 80], it is postulated that a programming language is just a complex

abstract data type where an abstract data type is a set of operations and the



definitions of the relationships between the operations. ﬁe evaluation of a program
is another operation in the data type. The evaluation operation is more commoniy
referred to as the interpreter or operational semantics of the language. The
evaluation operation may be formulated in terms of homomorphisms (denotational or
algebraic semantics). In this dissertation, we also specify programming languages as
abstract data types where the programming language semantics are operations in the
data type. The rules that show how to evaluate or simplify the semantics are

included in the data type.

A systematic, organized specification of an abstract data type is given by a "logical
theory.” A theory for an abstract data type consists of a language for the data type
and a statement of the properties of the data type on which reliance can be placed.
An interpretation between theories is a mapping that defines how one theory (data

type) is implemented by another theory (data type).

In [wand 82a}, Wand extends the concept of interpretation between theories from
predicate calculus to dynamic logic. The extension includes interpretations of
procedures, equality, and tuples of sorts. This extended definition of interpretation
between theories can be applied to the correctness problem of abstract data types
that commonly occur in computer applications, €.g., stacks. For background and
reference material, refer to Appendix A for a description of interpretation between
first-order theories. Refer to Appendix B and Chapter 3 for a description of Wand's
criteria for correct implementation of abstract data types in terms of interpretation

between theories.

Chapter 2 discusses the application of the approach to the compiler verification



problem. In particular, we discuss why it is desirable to define an implementation as

an interpretation between theories.

Chapters 4 and 5 provide the background and motivation for this dissertation’s
proposed extension to interpretations which is presented in Chapter 6. The approach
is extended to accommodate higher order abstract data types {many-sorted theories
with function space types), and thus, it can be applied to complicated abstract data
types such as programming languages. The application of the approach to compiler
design correctness is described and demonstrated with examples in Chapters 7 and
8. In Chapter 9 this approach is compared to other methods that have been applied
to the compiler problem, including the algebraic method. Finally, Chapter 10

proposes future work.

The contributions of this project are that:

1. the application of interpretation between theories to the compiler
correctness problem will be investigated

2. interpretation between theories will be extended to include theories that
have higher order operators and domains, and that

3. the foundation will be laid for a verification system.

The goals of this project are:

1. to define a verification method that models the informal process of
changing a representation and then determining whether the change of
representation is correct, and

2. to define a verification method that is highly modular so that mamny
items in the verification task can be done in parallel and possibly
mechanized. and minor changes to specifications will have little effect
on any existing verification.



Chapter 2

Application of Interpretation Between Theories to
the Compiler Correctness Problem

A broad overview of the verification approach is presented in this chapter. As
mentioned in the Introduction, the proof of a non-optimizing compiler can be divided
into two parts. The first part proves that the target language which is output by the
compiler preserves the semantics of the source language which is input to the
compiler {chirica 86]. Call this proof the compiler design correciness proof. This proof
is necessary because there can be more than one correct output for some particular
input to the compiler, the input can be arbitrarily large, and the preservation of the
source language’s semantics in the output is not obvious. The second part of the
compiler correctness proof proves that for each source language syntactic type the
compiler produces a particular sequence of target instructions [chirica 86). Call this

proof the compiler implementation correctness proof.

The proposed approach for the compiler design correctness proof is to define the
source and target languages as abstract data types. Each abstract data type is
specified as a logical theory. Call the theory for the source language Tgo, e The
language, axioms, and rules of inference of Ty, e are denoted Lygurcer Asource 30d
Ry ureer FeSDectively (similarly for the target language). The nonlogical symbols {n
Loource ar¢ the names of syntactic constructs and semantic operators of the source

language that are implemented in Lm.gct. Thus, a compiler design s an

10



interpretation of the nonlogical symbols of Tgsuree and equality into the language of
the implementing theory ngct. The axloms and rules specify the programming
language properties on which one relies (i.e.. they specify the programming language
semantics). The Interpretation is extended to formulas. and thus, can be used to
translate the axioms and rules. The interpreted axioms specify the implementation of
the source programming language semantics. In Chapter 6 languages for the

theories are discussed and examples are presented in Chapter 8.

Assuming Tyouree aNd Tiarpe are sound, a necessary condition for the compiler
design to be correct is that the interpretation of the axioms and rules in T, .. be
deducible in ’I‘mge . This means the semantics of the source language are preserved
in its implementation. This is one of several correctness criteria. How do we know

the list {s complete -- that the criteria will ensure a correct implementation?

In [wand 82a], Wand defines the properties of a correct interpretation in his
Implementation Theorem. An interpretation is correct if the interpretation of any
source theorem is a target theorem and if a structure for the source theory can be
constructed from a target theory structure. In other words, an interpretation is
correct if the implementation of any deducible source property is deducible in the
implementing environment and if the source behavior can be perceived in the
behavior of the implementation. In terms of the compiler specification, a compiler
specification is correct if any true property about any source program is true in the
implementation and if the behavior of any source program can be perceived in the

behavior of the compiled source program.

By using interpretation between theorles as a formal description of

11



implementation, we have a sound mathematical basis for the concept of correct
implementation without requiring that an implementation be defined as a model or as
a homomorphism. See Appendix B for a detatled discussion. The key point is that a
domain of source objects can be implemented as some subset of a domain of target
objects and a source cbject can have many equivalent representations in the
implementation. The correctness proof is nicely structured into a translation process
and a deducti_on which only uses Ty Furthermore, since we assume the only

L

source formulas are the ones generated by the axdoms and rules in Ty, W€ CaAN

easily determine how any source language phrase is implemented and be assured
that this implementation is correct. The key characteristics of the compliler design

correctness proof are:
1. the proof proceeds by structural induction on the source language:

2. the structural induction argument is implicity handled by using the
interpretation to translate axioms;

3. the implementation of both source programming language syntax and
semantics is treated in a uniform manner;

4, the correctness proof does not require knowledge of a theory's
structure: it can be done at the syntactic level of the formal system:

5. the correctness proof utilizes only the target theory.

Although the compiler implementation correctness problem is not addressed in
this paper, the goal is to develop a method that enables one to use part of the
compiler design as the specification in the compiler implementation correctness
proof. Omne way to think about this is to extract that part of the compiler design that
deals with the implementation of syntactic constructs in the source language and
ignore the implementation of source language semnantics. Then the compiler
implementation is an interpretation from that part of the compiler design concerned
with source syntax to a theory for the programming language in which the compiler is

written. The specification describes the input/output relation the compiler program

12



must satisfy. This is amenable to a Floyd/Hoare verification approach where a
program is proved consistent with an input/output specification, with a precondition
and a postcondition, because it appears that the input/output relations are first-
order expressions and the implementation of source and target syntactic domains

should be relattvely straightforward [chirica 86].

13



Chapter 3

Interpretation Between Theories for a
Many-Sorted Predicate Calculus

3.1. Correctness Proofs Based on Interpretation Between Theories

In[wand 82a] Wand is concermned with the specification and correct
implementation of abstract data types {e.g.. stacks). A specification of an abstract
data type is a set of formulas in some logical language; it is a theory. In fwand
82a] the logical language is DLP (Dynamic Logic of Programs). The operators of the
data type are nonlogical symbols of DLP and appear in the formulas. The formulas
are formal statements of the properties of the abstract data type and are true or false

given a particular structure for the language of the data type.

The implementation of an abstract data type is defined as an interpretation
(mapping or translation} of the language of the theory for the abstract data type into
another theory's language. Wand based his definition of implementation on an
extension of interpretation between theories from predicate calculus to DLP. The
extension allows interpretation of procedure symbols, interpretation of sorts as
tuples, and interpretation of equality symbols. The extension requires that free
variables in the interpreted formulas be restricted to those values that are "legal”
implementations of the variables’ sorts. A formula is introduced to decide whether a

value is a legal representation.

14



Wand defines the criteria which any correct implementation must satisfy. He
proves that if the criterla are met then the "reasonable" properties one expects of a
correct implementation, which he specifies in the Implementation Theorem, are

satisfied.

In the following sections we will stmplify Wand's results. We eliminate procedure
symbols and concentrate on dealing with the interpretation of equality and sort
symbols. Wand presents his results in a semantic or model-theoretic manner. We
briefly review that approach in this chapter. However, in extending Wand's work we

provide the axiomatics and give proof-theoretic versions of the results,

3.2. Syntax and Structure of a Specification Language

The nonlogical symbols of a first-order language are the quantifier symbol,
predicate symbols, function symbols, and constant symbols. DLP, as described by
Wand, extends a first-order language by adding sort symbols and procedure symbols.
We will simplify Wand's discussion by eliminating procedure symbols.3 It follows
that the simplified language discussed here is a many-sorted first-order language. All
operator symbols have a signature, and terms and formuias are constructed in the
usual way (see [wand 82al, [enderton 72], or Appendix A for the grammar and other

detalils).

The semantics of the specification language is given by a structure that assigns
"meanings” to the set of nonlogical symbols. The meanings are extended to apply to
terms and formulas. The structure M is given as a function on each language symbol

as follows:

3At this time we do not anticipate the need for procedure symbols in compiler design correctness proofs.
However, we may reconsider this when the approach is applied to comptler implementation correctness
proofs.

13



1. sort symbol: for each sort symbol ¢, M(a) = U, where U, is a nonempty
set. U, is called the carrier of sort 5. U denotes the union of the sets
U, as ¢ ranges over the sort symbols.

2. function symbol: for each function symbol £ o, X ... X &, = G M
assigns a function fM: U, x... xUs = Us.
n

3. predicate symbol: for each predicate symbol p: ¢, x ... X o, M assigns
a predicate pM on U, x ... x U, . such that for the distinguished

1 n
symbol =, M assigns the equality predicate. Because we eliminate
procedure symbols in this discussion, predicate symbols are treated as
function symbols with the distinguished codomain bool (bool stands for
boolean values).

A state p is a function from the set of individual variable symbols to U. A state is
sort preserving in the sense that if v is an inditvidual variable symbol of sort ¢, then

plv) € Uy,

M is extended to terms by mapping a term to a function where the function maps

states to carriers (1.e., M: terms — states — U). Specifically,
1. if x is an individual variable symbol then M(x}(p) = p(x)

2.1f t,, ... , t, are terms of sorts gy, ... . O, and f is an n-place function
symbol with signature o; x ... x g, — &, then Mlft, ... t;}(p) = MM(t,)(p)
RS (| () R

M is extended to formulas by mapping a formula to a function where the function
maps states to boolean values (i.e., M: formulas — states — bool). Spectfically, if G

and H range over formulas then

1. if pt; . . . t, is an atomic formula then M(pt, ... t.)p) = pMMIt,)(p), ... .
Mt )p)).

. M(G & H)(p} = M(G){p) & M(H)(p)

. MIG V H)(p} = M(G)(p) V M(H)(p)

. M(= G)lp) = = MI(G){p}

. M(G o Hl(p) = M(~ Glp) V M(H(p)

. M{(VV)F){p) = M(F)(p?). for all p’ such that p=p’ except possibly at v (L.e..
pvep'v)

o TS W R R o~
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3.3. Implementation Defined as an Interpretation

The implementation of an abstract data type is defined as an interpretation of the
language of the theory for the abstract data type (e.g.. language of stacks) into
another theory’s language (e.g.. language of array-integer pairs). If L, and L, are
many-sorted first-order languages of theories T, and T,. respectively, then an
interpretation I of L, in Ly is an assignment of phrases of L, to each nonlogical

symbol of L, as follows:
1. to each sort symbol ¢ of L, assign a sort symbol d! of L, and for each
sort symbol @ create a formula is-c with signature ol - bool.

2. to each function symbol f: ¢; x ... x 6, - ¢ assign a term fl in L, in
which variables v,, ..., v, occur free and for 1 <1< n, v;: o.*

3. to each predicate symbol p: @, x ... x @, — bool assign a formula p! in
L, in which variables v}, ... .v, occur free and for1sisn, vgo

4. to each individual variable symbol v with signature ¢ assign an
individual variable symbol vl in L, with signature o',

To extend the interpretation tc terms and formulas, we must first define free
variables, and preambles of formulas. fa is a well-formed formula it has a set FV(a)

of free variables. The set is defined inductively by:
1. FVix) = {x}, where x i3 a variable

2. FV(ht, ... t)) = FVIt,) U ... U FVit,) where h is an n-place function or
predicate symbol

3. FV({vvla) = FV(a) - {v}
The preamble of a 18 a formula pre{a) and is defined by:

pre(a) = 18D, (lix,)) & . . . & is-D(16x,)

where FV(a) = {x,, ... . X} and forl1<1<sn,x: D,

4This differs from [wand 82a) but agrees with [enderton 72}. Furthermore, the notation v ¢, means that
variable v, has signature g,.
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The interpretation of formula « is (pre(a} > I{o)} where | is extended as follows:

1.Ithty, . . .t) = (It} . . . It), where h is an n-place function or
predicate symbol.

2. I((Vpv) F) = ((Vlmll(v))(is-D(I(v)) > I{F))
3. 1(G op H) = (I{G) op I(H)), where op € (&, v, )
4. 1-G) =(=1G)

The interpretation is not a structure because equality is interpreted as any
equivalence relation and free variables in the interpreted axiom are restricted. The
interpretation cannot be used to define a homomorphism from one model to another,

but rather, a homomorphism to a partitioned subset of a model.5

3.4. Correctness Criteria

Let T, be a theory in language L, and T, be a theory in language L,. A correct
implementation of T, in T, is an interpretation I of L, in L, such that the following

formulas are a logical consequence of T,:

1. (Ex){is-o(x)) for each sort ¢ of L,

2. 1s-0,(x, )& ... & 18-6,,(x} > is-o(f'x, ... x)) for each function symbol f with
signature o, x ... x g, —=>acinkL, '

3. Iix =, x) for each sort g of L;
4.1x, =y, &... &X =y, D fx) ... x; =0y, ..yy)for each n-place function

symbol f.
5.1x, =y, & .. &x, =y, 2 (px; ... X, D Py - Yol for each n-place
predicate symbol p

6. I(F) for each axiom F of T, (L.e., T, ~F)
Condition 1 states that the carrier of the interpretation of each sort is nonempty.
Condition 2 is required because sorts have been introduced Into the language. It

states that if the input data satisfy the formula (invariant) of their sort, then the

5In algebraic terminology, the interpretation maps to a quotient of the subalgebra of the implementing
algebra. The operators of the subalgebra are contained in the operators of the implementing algebra and
all operations of the subalgebra are appropriate restrictions of those for the implementing algebra.
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output of the interpreted function satisfies the formula (invariant) of its sort.
Conditions 3 and 5 are necessary because equality must be interpreted as an
equiyalence relation. They state the interpretation of equality is a reflexive relation
and is preserved by the interpretation of predicates. Condition 4 states that
functions are preserved in the interpretation. Condition 6 states that the translation
of the axioms of T, are logical consequences of T,; the properties of the data type on

which one relles are preserved in its implementation.

3.5. The Implementation Theorem

If the six correctness conditions are satisfled then the following theorem, called
the Implementation Theorem, is true: Let I be a correct implementation of T in T,.

Then,

1. if A, is any L,-structure, there i3 an L,-structure A, such that for any
closed formula F of L, by F if and only if =, I(F).

2. for any formula F of L, if T|=F then T,=I(F).
This section discusses Wand's proof of the Implementation Theorem. This proof
justifies the existence of the correctness criteria. It will provide an outline for
reproving the Implementation Theorem for other theories and guide the construction

of correctness criteria.

The Implementation Theorem defines the properties of a correct implementation.
The first part of the theorem gives the "synthetic view” of tmplementation. It states,
given a model A, of T,, that we should be able to construct a model A, of T,: given
the behavior of the implementing objects (e.g., behavior of an array and a pointer) we
should be able to percetve the implemented object (e.g., behavior of a stack). The
second part of the theorem gives the "analytic view" of implementation. It states "if

we reason about the implemented theory T,. we should be able to draw conclusions
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about the implementation.” For example, if we deduce that a stack does not
underflow and a stack is implemented by an array and a pointer, then we should be
able to predict that the pointer has a particular lower bound. These two parts of the
theorem should hold for any "reasonable:. notion of specification language and correct

implementation.”

Wand's notion of specification language and correct implementation supports the
view that "the use of specifications as a tool for information hiding and of
implementation as translation is a naturally occuring phenomenon. Consider a
specification for a GCD (greatest common denominator) module. We tmplement the
specification by writing a GCD program in PASCAL, which is translated by the
PASCAL compiler into P-code, which is translated into machine code, which is
translated by the digital architecture into actions of registers and busses . . . . Each
such translation is typically called an ‘implementation’ of the preceding level. At
every level the implementation forgets what is tnvolved both above and below the
translation.” At every level the implementation should preserve the properties above
in the implementing environment below. This is the informal meaning of the

Implementation Theorem.

The proof of the Implementation Theorem is broken down into a set of proofs.
Eliminating procedure symbols, the following are a list of theorems used to prove the

Implementation Theorem:

1. Theorem 3.1 If states p, and p, agree on FV(G), then MI(G)lp,) i
MI(G)(py).

2. Lemma 4.1. Ifx,, .. .. x, include (perhaps properly) the free variables

of G, and T, | is-0,(I(x))) & . . . & is-0,(l(x)) = I(G), then Ty} pre(G) >
1{G)

3. Lemma 4.2. If [ is an interpretation of T, in T, and t is a term of sort &
in L, then T,yk=pre(t} > 1s-c(1(t)).
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4. Lemma 4.5. Let I be an interpretation of T; in Ty, let A, be any
L,-structure, and ¢ be any sort of L;. Then the Interpretation of =,
induces an equivalence relation on that subset Uy, where is-c is true.

5. Theorem 4.1 Let I be an interpretation of T, in T,. and let A, be an
L,-structure. Then there is an L,-structure A, and a map J from states
of A, to states of A such that for any formula G of L, and state p of A,
such that M(pre{G)p=true, M(G){Jp) iff M(I(G))p.

6. Corollary 4.1. If G is a closed formula, then A;=G iff A, = 1HG).

7. Theorem 4.2 Let I be an interpretation of T, in Ty. If T, logically
implies G. then T, logically implies I(G).

The core of the Implementation Theorem proof is the proof of Theorem 4.1. It is
described in the next section. Theorem 4.1 deals with the construction of the
implemented structure A, from the implementing structure A,. Wand shows how to
handle the interpretation of equality and restriction of variables in the interpreted

formulas. The proofs of the other theorems are described in [wand 82a).

Wand also shows that a theory with tuples can be implemented in a first-order
theory. A first-order theory is extended to include a set of operator symbols and
axioms that specify tuples. In a manner similar to Wand we will extend first-order
theories to include Scott's theory of domains. In addition to products we will add
domain equations, sums, and function spaces. This "augmented" theory will be
referred to as the theory schema or ancestor theory. Both the source and target
theorles will be constructed from the theory schema; both our implemented and
implementing environment have higher order objects. We will not show that the

theory schema can be implemented in a first-order theory.
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3.5.1. Theorem 4.1

Theorem 4.1 states that given an L,-structure A, and an interpretation [ of T} in
T,. we can construct an L,-structure A, and a map J from A,-states to A,-states
such that the following holds. For any formula G of L, and A,-state p. such that
M(pre(G))p=true, we have M(G)(Jp) iff M(I(G))p. This means that given a model for the

implementing data type, a model for the implemented data type can be constructed.

3.5.1.1. Proof

In the proof, superscripts s and t are used in place of A; and A,; sand t stand for
the source (the spectfication or implemented object) and the target (the implementing
object). respectively. U}, denotes the carrier of sort I(G) in A,. Denote the is-o
subset of Ul by Vi By lemma 4.5 I(=/) is an equivalence relation in the target

theory. Let =, denote the equivalence relation I(=;) on Vi

The L,-structure A, is constructed from the L,-structure A, as follows:
1. for each sort g of L,, let Ug = V}(o) /=. This is nonempty by correctness
condition 1 which states that T, ={(3x){is-o(x)).
2. for each function symbol f: oy X ... X 8, = & of L, let £ Uy x ... x Ug

> Uy (@al..lagh-liDta,...a,] where square brackets denote
equivalence classes. The definition is independent of the choice
equivalence class representatives because by correctness condition 4

we have Tykllx,=y, &...8x,=y, 2 x,..x, = fy, AR
3. for each predicate symbol p: 0, X ... X 6, — bool of L,, let p™ Ugl X ... X

US - Ul (y]....la )-lip)a,...a,. The definition is independent of

the chotee of equivalence class representatives because by correctness
condition 5 we have T,kilx;=y; & ... & X,=V, O (PX;...X; O Y. Vy))-

Thus, U is a partitioned subset of Ul The subset 1s defined by {s-o and the
partition by the interpretation of equality as an equivalence relation. There are target
objects that do not represent source objects. Each source object can be represented
by any one of several equivalent target objects. The derived source operations are

restricted to operate on partitioned subsets of target objects.
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Next, the map J from states of A, to states of A is defined. For each sort g of L.
let e, be an arbitrarily chosen element of U3, Define J;: Uy — Ug by Ja=(al if
is-ola) and J a=e, otherwise. Define J: (Var' — U) - (Var® - U?) as Jpv = J4pIv))

where v has sort .

Now we have the definitions of 1, M, and J. Assuming M(pre{(Gllp = true. we
proceed to show that M(G)(Jp) tff M{I(Gllp by structural induction on the formula G;

we prove results for terms, atomic formulas, and then formulas.

We must first show that if t is a term and Mlpre(t)p = true then M(t)(Jp) =

M({I(t))p]. By induction on terms we have

l.ff t = x where x i{s a varlable of sort ¢ and p(Ix)) = a then
MixlJp) = Jpx = Jpllx)) =Ja = [a] = [plx)] = M{I(x))p]. Note that J,a =
[a] because by assumption Iﬁ(pre(t))p = Mlis-o(I(x))p = true.

2.1f t = ,...t, where f is an n-place function symbol, M(I(D)p = 1DS
M(I(t))p = a,..... M(I(t )p = a, then MI&,...t )Jp)

= BM(t,)(Jp)... Mlt,)(Jp), by definition of M
=f*a,] ... [a,]. by induction hypothesis

= [If)*a,...a]. by definition of {*
= [M(I(ft,...t))pl, by definition of M

By lemma 4.2 and the assumption we have M(ft, ... t)){Jp) € Ug.

Next consider atomic formulas. We must show that if M(pre(pt,...t,))p = true then

Mipt, ...t }(Jp) = true ff M(I(pt, ...t ))p = true.
Mi(pt,...t )(Jp)

= p® Mlt,)Jp) ... M(t)(Jp)
= I{p)t MUI(t,))p ... M(I{t))p. by definition of p* and induction hypothesis

= M{I(pt,...t )}p
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Assuming the results hold for terms and atomic formulas, it is easy to show the
result for formulas. We will only consider the case where G is of the form (V VIF. Let
equivip, p’, X) mean that for all w not equal to x., p(w) = p’(w).

M((¥ ;vIF{Jp)

= for all (Jp)’ such that equivi(Jp), ([Jp}.v). M(F)Jp)’

= for all Jp’ such that equiviJp.Jp’.v}. M(F)(Jp)

= for all p’ such that equivip.p’.1(v)), M{I(F))p", by induction hypothesis
= M((Vy¥) IF))p’

= M{I((V ,vIF))p’
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Chapter 4

Domains in Denotational Semantics

One of the goals is to define a theory schema that allows one to specify the
abstract syntax and semantics of a programming language. In particular,
denotational semantics is the style of semantics that we selected. To specify the
denotational semantics of a programming language the theory must allow domains, a
class of "structured" sets; domain operators and domain equations are incorporated
into the language for the theory schema and there are axioms for reasoning about
domains. The basic operators for defining domains are @ (product). © (sum), and —

{(function space). Domains can be defined recursively via domain equations.

Many features of programming languages can be given a denoctational semantics
without bringing in any mathematics other than sets and total functions over them.
However, there are several problems for which it is necessary or convenient to use

sets with structure [wadsworth 78]. These include

1. non-termination: the semantics of non-terminating computations must
be specified. This is handled by allowing partial functions in which the
results of some non-terminating computations may be undefined.

2. higher-order procedures: some programming languages allow higher-
order procedures (arguments and/or results of a procedure may
themselves be procedures). Higher-order functions may be used to
specify the semantics. The semantics of a procedure is the functiont
(argument-value pairs) it computes. The semantics of a procedure s
expressed in terms of the semantics of the arguments and results.
Hence, the use of higher-order functions. This is different from an
operational (or interpreter) semantic description where the semantics of
a procedure is represented by a structured object (sometimes called a
closure) which contains among other things the text of the procedure
body. In operational semantics textual information is operated on and
passed to various functions.
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3. recursive procedures: it may be necessary to define procedures
recursively in programming languages and we would like to specify
their semantics. If the functions involved map between the specially
structured sets called domains, then the recursive definitions can be
treated as equations for which there is guaranteed a solution. Fixed
point methods can be used to solve the equations.

4. recursive data types: there are recursive data types (e.g., lists, trees) in
programming languages. They can also arise in giving the semantics of
a programming language even if the language does not allow recursive
procedures. Analogous to recursive procedures, it is desirable to treat
the recursive definitions as equations. If the data types are modelled as
domains, then the equations are guaranteed a solution.

For the compiler correctness problem, denotational semantics is particularly
useful. In the first place, the semantics for a wide variety of programming languages

have been specified with denotational semantics: These include:
¢ ALGOLSO {henhapl 82, mosses 741,
¢ ALGOL68 [milne 72],
» Pascal [andrews 82, tennent 77],
« LISP {gordon 73, muchnick 82],
+ SNOBOL [tennent 73],
« Ada [bjorner 80, donzeau-gouge 80, kini 82],
» Lucid [ashcroft 82],
» CHILL [branquart 82],
e Scheme [muchnick 82]

Next, a domain can be viewed as a data type for semantics. Its name plus its
operations constitute what is referred to as a semantic algebra in [schmidt 86]. This
is nicely integrated into our approach where a data type Is also specified by a
semantic algebra, which in this context is referred to as a theory, l.e., domain names,

operators, and formulas that describe domain properties.

Finally, denotational semantics is useful for the compiler problem because the

semantics for each syntactic construct is concisely and unambigously stated in a
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formula, independent of the semantics for the other syntactic constructs. Generally
speaking, if the semantics or specification is changed for one syntactic construct, it
can be done independently of the other constructs’ semantics. Thus, for verification.
a small perturbation in a specification will only effect a small change in a correctness
proof. Specifications with higher order operators are concise and "abstract”. All this

makes for a structured correctness proof with short, independent pieces.

It is the pﬁrpose of this paper to show how domains are incorporated into the
theory, define an interpretation between such theories. define correctness criteria for
the interpretation, and prove that satisfaction of the correctness criteria will result {n

a "correct” or "reasonable” implementation.
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Chapter 5

Scott’'s Theory of Domains

The goal is to extend a many-sorted first-order language to include a class of
structured sets called domains. Dana Scott’s theory of domains ensures that every
recursive definition of a function or recursive definition of a set is "good" it
guarantees that all equations, possibly recursive, have a unique solution. Scott
showed in the early 1970's how to deflne a model that will allow both kinds of
recursive objects; ther;.-. 1s a consistent theory for dealing with these recursive objects.
Recursively defined sets are objects called domains and recursive functions are
elements of particular domains called function spaces. These objects are important

for semantic definitions of non-trivial programming languages.

New domains are constructed using various domain constructors.  The
constructors are ® (product), ® (sum), and — (function space}. Others, such as *
(finite sequences), can be defined in terms of these three constructors. Recursive
domains are defined in domain equations. In the following chapters we will add the
three constructors and domain equations to the basic theory schema. We will
consider for each domain construction the operators, axioms, interpretation, and

justification of the correctness criteria for the interpretation.

The structure we use assigns cpo's (complete partially ordered sets) to signatures

generated from domain constructors and sort symbols. The remainder of this section



will briefly review some key properties of cpo's. This was primarily extracted from

[barendregt 811, [chirica 76}, {mosses 75], and [schmidt 86].
Definition 1: A preorder is a reflexive and transitive relation.

Definition 2: A partial order is a preorder which is also antisymmetric.
We use < to denote partial order.

Definition 3: A poset (partial ordered set} P is a nonempty set together
with a partial order on P.

Definition 4: An upper bound (ub) for X ¢ P is any element p € P such

that x < p for all x € X. If for any other upper bound x’ of X, psx' thenpis
said to be the least upper bound of X in P, denoted lub(X).

Definition 5: If the empty set has a lub in P it is called the bottorn
element, denoted 1, or L when there is no danger of confusion. L has the

property that L < p forallpeP.

For completeness’ sake, directed sets, cartesian products, and separated sums
are defined. However, in the course of justifying the proposed verification method.
chains, coalesced products, and coalesced sums suffice. Also, we use comnplete

partial orders - other work on domains has been based on lattices.

Definition 6: A nonempty subset X ¢ P is directed iff (vx, y € X)(3z ¢
X)(x <z and y < 2). In other words, lub{{x, y})) € X.

Definition 7: Asubset X cPisachanin P iff (vx, ye Xixsyory <x.

Definition 8: P is a complete partial order (cpo) iff
1. There is a bottom element in P, and

2. Every directed subset X < P has a lub or every nonempty chain
has a lub (the latter referred to as chain complete).

This is also referred to as a pointed or strict cpo. N.B. a domain is a cpo.

Definition 9: Let P and Q be posets. A function f: P—Q is monotonic iff
(Vp, p’ € Pi(p < p’ implies flp) < f(p')).
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Definition 10: Let P and Q be posets. A function f: P — Q is
contnuous iff for all directed X ¢ P, fllub(X)} = lub(fiX)} where fiX) = (flx} | x
e X}. If X is a nonempty chain then we have f is chain continuous.

Theorem 11: Continuous maps on cpo’s are always monotonic.

Definition 12: A poset is strict iff it has a bottom element. ifPand Q
are strict posets then a function f: P — Q is called strict iff f(J.p) =l

Definition 13: A continuous and bijective function f: P — Q between
domains is called a domain isomorphism; in this case P and @ are called
isomorphic domains, written P = Q. This is also called a domain equatton. If
P and Q are strict, then f must be a strict function.

Proposition 14: For any set A, the disjoint union A = A v {1}, with the

partial ordera<b iffa = L ora = b, is a strict domain. Such dornains are
called flat domains.

Proposition 13: Given domains A and B, let A x B be the cartesian
product of domains partially ordered by <a.b> < <a’b>iffasg,a’ and b <y

b’. Then A x B is a domain with for X ¢ A x B, lub(X) = <lub(pr1(X)),
lub(pr2(X))> where the projection functions prl: A x B—A and pr2: Ax BB

are continuous and pri(X)=ix € A | (" € B <x.x> € A x B}. Similarly for
pr2(X). A cartesian product is a domain.

Proposition 16: The coalesced product of A and B, written A @ B, is
defined as {[<a,b>eAxBla=z#l,andb= lgt v {L}. It is partially ordered

by <a,b> < <a’b’> iff cab>=Llor{as, a’ and b <g b). A coalesced product
is a domain.

Proposition 17: The separated sum of A and B, written A + B, i3
defined as {<0Q, a> | a € A} u {<1,b> | b e B} u {1}. Itis partially ordered by
x<x iff

l.x=.1,0r
2.x=<0x>and x =<0xX>and x <, X', or
3.x=<lpandx =<1 x>and x<g x

A separated sum of domains is a domain.

Proposition 18: A coalesced sum of A and B, written A @ B, is defined
as{<0,a> | aeAanda#Ll,jui<lb> I beBandb=lg v (L} Itis

partially ordered by x < x’ iff
l.x=1,o0r
2.x=<0x>and ¥’ = <0.x> and x 5, X', or
3.x=<lxandX =<1x>andx <z x
A coalesced sum is a domain.
Proposition 19: Given domains A and B, let [A—B] be the set of all



continuous functions from A to B with the partial order f < g iff (va € A) fla)
<g gla). [A—Bj is called a function space. A function space is a domain

with (Va € A} (lub{F))a = lubi{fla) | fe F}, and L, 5 =(acA. Lg).

Proposition 20: Let £ A ® B - C. Then f is continuous iff f is
continuous in its arguments separately, that is, iff Aa. fla, b} and Ab. fla’. b)
are continuous for all a’, b’.

Proposition 21: Define application ap: [A —» B ® A —» B by apif, x) =
fix). Then ap is continuous with respect to the partial orders we have
defined.

The theory of least fixed point semantics establishes the meaning of recursively
defined functions. If the domains are modeled as sets, one can construct recursive
definitions that do not uniquely define a function. If the domains are modeled as

cpo’s the theory:
1. guarantees that the recursive definition has at least one function

satisfying it

2. provides a means for choosing a "best" function out of the set of all
functions satisfying the recursive definition. The best function
corresponds to an operational intuition about the definition where the
definition is run as a program on a machine.

Theorem 22: fixed point theorem for cpo's

1. Every { € [A—A] has a fixed point

2 There exists a continuous function Fix € [[A—A]-A] such that for
all f € {A—»A], Fix(f) is the least fixed point of f.

This theorem means that

1. fiFix()) = Fix(f)
2. (Va € A) fla) = a implies Fix{f) < a

Proposition 23: Fix can be defined as Fix(f) = lub(f™{1)), 0 € n < o=,
where fO(1) = 1 and fi*}{x) = fif'(x)), 1> O.

The definition of Fix € [A—A]—A s used to solve equations of the form x = flx) where {

e [A—A].

An induction principle is useful for reasoning about recursively specified

functions. Since the meaning of a recursively defined function is the limit of the
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meanings of its finite subfunctions, if all the subfunctions have a property, then the
least fixed point has it as well. The notion of "property” is formalized as an inclusive
predicate, where a predicate is a {not necessarily continuous) function from any
domain to the distinguished domain of boolean values, denoted bool. The domain

bool is a flat domain with values TRUE, FALSE, and L,

One example of a non-monotonic predicate is program-halts: D — bool. Let
program-haltskx) equal TRUE if x#L and let program-halts(x) equal FALSE if x=L.
Note that L < n, but it is not the case that program-halts{l} < program-halts(n). This
particular predicate cannot be implemented on any computer; it is the halting
problem of computability theory. This is one motivation of why all functions used in
denotational semantics must be monotonic. Another example illustrates the non-
monotonic predicate stong equality, =: D ® D — bool. The predicate = yields the value
TRUE when both arguments are L and FALSE when exactly one argument is L. In
other words, x s y iff x <y & y < x. Note that <L, d> S <d, d>. but it is not the case
that (L = d) < (d = d). This reflects the result that when x and y are computed as the
result of a program, the relation = is the notion of equivalence between programs,
which is updec:ldable in general. The predicate, weak equality, =: D ® D — bool ylelds
the answer L whenever at least one of its arguments is L. It is monotonic, in addition
to continuous, if D is flat. A continuous predicate closely related to equality is 5: D —
bool where 8(x) is TRUE if x # 1L and 5(x) is L if x=1. Define a computable equality eq
as eq(x. y} equals TRUE if §(x)= 8(y)=sTRUE and xs=y. It equals FALSE if 5(x)=8(y)=TRUE

and x#y. And it equals L otherwise.

Definition 24: A predicate p: D — bool is an inclusive predicate (ff for
every chain C ¢ D, f (V¢ e C) P(c) = TRUE, then p(lub(C}} = TRUE.
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Definition 23: The fixed point induction principle is for a cpo D, a
continuous function F: D — D, and an inclusive predicate p: D — bool. if:

1. p(1) holds, and
2. for arbitrary d € D, when p(d) holds, then p(F(d)) holds
then p(Fix(F)} holds.

The really hard problem is determining whether a predicate is inclusive. This is
especially important for the compiler correctness problem. A class of inclusive

predicates is defined in [manna 72] as follows:
Proposition 26: A class <IP> of inclusive predicates can be defined as:

<IP>:= <IP> A <[P> | {VX] <P>

<P>::= <P> v <P> | Q%) | F{ix) £ Glf)(x) where x is a set domain
variables, f is a recursively defined function, Q{x) is a first order predicate,
and tli'éﬂ(x} and Glf)ix) are function expressions using only f and x as free
identifiers.

Thus. an inclusive predicate can be a universally quantified conjunction of
disjunctions. It was shown above that the predicate = is not monotonic. We also
have x =y iff X S y & y < x, which is in the class of inclustve predicates. If ¢ <y where
¢ is in chain C, then lub(C) < y. To show that the expression F(f) < Glf) is inclusive,
where f = T{f) and F and G are continuous functionals (high order functions), we show
F(Fix(T) € G(FI{T) whenever F(1) £ G(1) and (v} (F() < G(f > F{T) < GT).
Assume F and G are strict so that the basis is satisfled. By induction, (Vi) F(T{1)} <
G(T!(L)). Furthermore, G(Ti(1)) S G(Fix(T)). Thus, (Vi) F{T{1)) < G(Fx(T)). This implies

lub(F(T(L) € G(FIx(T)). Because F is continuous, Fub(T{L))= F(Fix(T)) < G{Fix(T)).

A contrbution of this report will be to expand on the concept of inclusive

predicates in order to deflne subdomains and quotients of domains.
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Recursive definitions that specify functions were discussed above. Similarly.
there are recursively defined domains (also called reflextve domains) of the form D =
F(D). A solution to a recursively defined function f was achieved by treating the
definition as an operational definition and recursively unfolding f's definition as
needed. Similarly, the solution to a recursive domain definition is achieved by
bullding a sequence of approximating domains. One particular solution method is
called the tnverse limit construction. We do not use the notions of a universal domain

or a category-theoretic model in this paper.

The main result is that, for the recursive domain specification D = F(D), where F
is an expression built with domain constructors, there is a cpo D, that is isomorphic
to F(D,). Furthermore, D_ is the least cpo. This ts summarized in the following

theorem.

Theorem 27: There exists a unique minimal solution (up to
isomorphism} to any system of equations defining domains recursively by
expressions involving the operators ®, —, @, and *.

Some details of the inverse limit construction are presented below because these

are used later to argue the proposed extension to interpretations.

Definition 28: For cpo’s A and B, a pair of continuous functions <f: A
— B, £: B - A> is a retraction pair iff:

1, gof'—'ldA
2.1°gs1dg

f 18 called an embedding and g is called a projection. The function pair is
also denoted <, g>: A~B. The pair of continuous functions <f, g> is an

isomorphism patr iff:
1.g°f=idA
2.f°g=1d3

Proposition 29: The composition «f, ° |, g, ° g;> of retraction pairs
<f;: A > B, g;: B> A> and <«,: B - C, g;: C - B> s itself a retraction pair.



Proposition 30: An embedding (projection) has a unique corresponding
projection (embedding).

Definition 31: The reversal for <f, g>: A « B is <g. f> and is denoted
<, >R Bo A

The reversal of a retraction pair might not be a retraction pair.
Proposition 32: For: Ao Bandg:Be C:

1. f°gR=gR° R

2. (RR=f
Definition 33: For retraction pairsr = <«f, g>: Co Eands = <f, g>: C
— E’, let:
1.1 ® s denote: <{Alx. y). <flx). ly)>), (Mx, y). <g(x), gF)>)> C@ C’
—~E®FE

2.1 ® s denote: <(Ax. isloodx) o inlgg (floutlx)), isteex) —
inrppdfloutrtx))), (x. islgpx) — inlecdgloutlixd)). isrgpdxt —
Inreo g loutrix)))>: C®C o ESE®

3.ro sdenote: <x. F°x°g. Ay. g’y C->C)«(E-SE)

For D = F(D), the domain expression F determines both a construction for
bullding a new domain F(A) from an argument domain A and a construction for
building a new retraction pair F(r} from an argument retraction pair r. The retraction

pair for flat domain D is (idp, idp), which is denoted idp,,p.
Theorem 34: For any domain expression F and retraction pairs 1 A &
Bands:Be C
1. Flidg,p)= ldpm1nrE)
2.F(s)°Fir)=F(s°1)
3. (FOR = F(D
4. if r is a retraction pair, then so is F(r)

6The notation A — B, C denotes a conditional expression, where A is a boolean expression. If A
simplifics to TRUE then the conditional expression simpiifies to B. If A simplifies to FALSE then the
conditional expression simplifies to C. If A stmplifies to L then the conditional expression simplifies to L.
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Definition 35: A retraction sequence is a pair <{D,, | n 20}, {r,: D, &
D, !'n2 Oj> such that foralin =0, D, is a cpo and each r, is a retraction
pair. Denote eachr pairas<i : D,—» D .1, : Dy = D>

Definition 36: Definet  : D, D as

l.ry°..°rpfmen
2.id ,ifm=n
Dm"”Dn

3.Re o rR

m_1.1fm>n

Definition 37: Denote each t_ as the pair <0, : D, & D, 8, 1 Dy
- D> .

Proposition 38: For any retraction sequence and m, n. k 2 0:
L tyn ° tiom S Y
2.t "t =t fm2zkorma2n
3. t,,, is a retraction pair when m < n

Definition 39: The inverse limit of a retraction sequence <(D, | n 2 0},
{1y, ]p> : D, & D, | n 20> is the set D = (x4, Xy, ... Xy, ..} ) foralln>
0.x, € D, and x_ =), (x,,,}}. D, is partially ordered by the relation : for all
x.yeD_ x<syiff foralln 20 pm(x) SDn praly) where pm((x,, x,, ...)} = x;,
{Le., prn is the generalization of prl and pr2).

Theorem 40: D is a cpo.

Proposition 41: if domain expression F maps a cpo E to a cpo F(E)
then the following pair is a retraction sequence: <{D, | Dy = [l} Dyyy =

F(D,). for n 2 O}, {<i. Jo> : Dy © Dy | ig = Bxudp ). Jo= (. Lp ). <byyy
Jne1> = Fl<ip, 15>), forn 2 0>

The inverse limit D_ exists for the retraction generated by F. Furthermore, D_ is

isomorphic to F(D_) and D, is the lub of the retraction sequence.

Deﬁnition 42: <¢. > D,. L F(D,J 1s defined as 1ubm=0,a (I (tman) °
t )
so{m+1)

Theorem 43:

1. <0, wRe <o, y>21dp . p_
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2. <6, y> ° <. y>R = drp ) & FD)
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Chapter 6

Extending Interpretations to Include Domains
and Domain Equations

8.1. Overview

In this chapter a many-sorted first-order theory is extended to allow products,
sums, function spaces, and domain equations. The theory is augmented with a fixed
set of operator symbols and axioms that specify these items. This is analogous to
what Wand did in [wand 82a] where he extended a DLP theory to include tuples. It is
assumed that both the source theory (implemented theory) and target theory
(implementing theory) are developed from the theory schema that has incorporated

products, sums, function spaces, and domain equations.

A structure is defined that assigns cpo's to sorts and assigns continuous
functions to operator symbols.” In the following discussion the word "domain” will
refer to the syntactic object constructed from sort symbols and domain constructors.

The structure assigns a ¢po, a semantic object, to each domain.

An interpretation is defined for the theory schema and then Theorem 4.1. defined
in a previous chapter, is reconsidered for this particular theory schema and

interpretation. The important questions that are considered include:

7The model of the theory of Scott domains forms a cartesian closed category with cpo's as objects and
continuous maps as arrows. This is a cartesian ciosed category with function spaces (D—D) of the same
cardinality as D.



1. what is the map from target states to source states given that the
carriers are cpo's?

2. does the source structure, derived via the state map, preserve cpo’'s and
continuity?

3. are there any changes to Wand's proof of Theorem 4.17?

4. are the fixed axoms that specify domains satisfied by the derived
source structure?

6.2. Proof-Theoretic Version of Interpretations

In [wand 82a] and [enderton 72| a theory is a set of true formulas in scme
structure. In the extension of Wand's work presented here a theory will be a formal
system consisting of (1) a language (set of symbols and a grammar), (2) adoms, and
{3) rules of inference. If theory T, is interpreted in T,, we require that both T, and T,

be sound and closed under deduction.

The correctness conditions are satisfled by deductions in T,. Because T, is
closed under deduction, if the correctness conditions are satisfled all valid

L,-formulas are correctly implemented. See Appendix A for details.

6.3. Syntax and Structure of the Specification Language

In the following discussion a many-sorted first-order theory is extended to include
domains. No claim is made that the choice of operators/axioms presented here is in
some sense "best" or complete. The selection made is representative of axioms in
current literature (e.g., [dybjer 83] [gordon 79a]). In practice, a set of "useful” and
“efficlent" axioms evolves when particular applications are considered and/or when

software is developed to perform some theorem proving tasks.
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8.3.1. Grammar and Fixed Symbols

Symbols
<sort symbols>
@
®
_)
A
<constant symbols>
<n-place operator symbols>
<variable symbols>
Domains

<domain> ::= <sort symbol> | <domain> ® <domain> |
<domain> @ <domain> | <domain> — <domain>

Domain Equations
<domain equation> ::= <sort symbol> = <domain>
Terms
<term: D,> ::= <variable symbol: Dy> |
applyDl -D, (<term: D; — Dgp> , <term: D,>) |
(<term: D, = D>} (<term: D >)
<term: D, — D,> ::= <operator symbol: D} — Dy> |
A<variable symbol: D> . <term: Do>
Atomic Formulas
<aform> ::= <term: bool>
Formulas

orms = <aform> | -~ <form> | <form> > <form>

The following are the fixed domains for the theory schema:
boot
nat
1

Let D, D,, D,, D3, ... range over domains, I.gt ¢ range over constant symbols, v
range over variable symbols, and h range over n-place operator symbols. The domain

over which the symbol ranges is called the signature of that symbol. If symbol v
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ranges over domain D we write v: D or v € D. Each constant, variable, and operator

symbol has a signature constructed from domains as follows:

c: 1-D
v D
h: D,-D,

It is assumed below that when there are no parentheses to indicate the relative
binding strength of the domain constructors, the constructor @ has higher binding
strength than ®, and ® has higher binding strength than —. The following are the

fixed operator symbols for the theory schema:

—: bool — bool

=: bool @ bool - bool

V: bool @ bool — bool

&: bool ® bool = beol
condp: bool® D@D - D

pairp p : D) - (D, = (D, ® Dy))

prip p,: Dy ® Dy, -+ D,

PrleDz: D,®Dy 5Dy

O“ﬂDID,: D, & Dy-D,

outrp p, - D, ®D, 95D,

1n.lDlD2'. D, -»D,®D,

Inrp p,: D, »D, ® D,

islp p,* D1 ® D, — bool

Istp p,: D, ® D, — bool

idy: DD

applyD‘ D,’ (D, »Dy) @D, 5D,

°D1D:Ds: (D, » Dy) ®(Dy +Dy) = (D > Dy
curtyp 5 p : (D1 ® Dy = Dy) = (D = Dy = Dy
uncuryp p, Da: (D, > Dy —» D3l > (D, ®D,; - Dy
=5: D @ D - bool

TRUE: 1 — beol
FALSE: 1 = bool

Because operator symbols can be passed as parameters, and thus, treated as any
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other variable symbol, the apply operator is used to delimit terms. In the
interpretation defined for predicate calculus [enderton 72], a term was identifled in a
string of symbols by scanning the string from right to left and finding the first
function symbal. Obviously, this does not work for higher order operators. In the
proposed theory schema here, application of an operator is explicitly spectfied with

the apply operator or with parentheses.

In addltioh to delimiting terms, the apply operator can be used in defining the
inverse operator for curry. From [dybjer 83] uncurry,p.@ = applype °
pairep_,5ciaeB-a8 ° Prlap. Pr2,p). Using this definition, uncurrylcunry(f)) = {
where f A®B-»C. Because applyjen.c)A-B-C) (curry,ge-  aPPWme

Pair s @5, BC)(A®B—B) (g ° prl,g. Pr2,p)) = . we also have curry(uncurry(g))=g.

6.3.2. Fixed Axioms

The following notation is used to simplify expressions. First, if the argument
domain of an operator is a product (... A ® B is the argument domain of f where f:
(A ® B) - C). then the pair operator {or more commonly, angle brackets) may be
omitted from a term involving that operator. That is, fipair{a)(b)) may be written as
fl<ca. b>) or fla, b). Furthermore, if all arguments are supplied to a curried operator
the term may be written as if the operator is uncurried. Thus, pair{a)(b) may be
rewritten as pair(a, b). Also, the notation (T denotes a term where all free

occurrences of the variable x in the term T are replaced with a.
pair(prl(x), pra2(x)) = x
prl{pair(x, y)) =x
pr2(pairix, y)) =y
outl{ini{x)) = x
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outr{inr(x)) = x

isl{ini(x)) = TRUE

isr{inr{x)) = TRUE

isrix) iff —dsl(x)

isl{x) o inl(outl(x)) = x

isr{x) o inrfoutr{x)) = x

apply, alldy, x) = x

applylcond. (TRUE, d,, d,)) =d,

apply(cond, (FALSE, d,, dy)) = d,

apply((Ax.T), a) = (Ax. THa) = §T

apply((Ax.T), x) = T if x is not a free variable in T
lsr&F S F

f=p gl &8=pcE28°T=0cF°F
fAsB&gB-C&hCHDoho°g°f=, nhoE°h
fASBofo1d, =f&1dg°f="f

f =4 @ gc &2 curry(f) = currylg)

A=A

A=BoB=A

A=B&B=CoA=C

A =B>538,5 A - B, where 8,5 is bijective
fA-B&gEBoA&gOf=1d, &f°g=1dgoA=DB
A-B-oCl=A®B ()

curry(uncurry(g) = g

uncurry{curry(f)) = {

usual axioms for bool (boolean values) and nat (natural numbers)
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6.3.3. Structure

The semantics for the language of the theory described above is given by a

structure (function} named M. Prior to defining M some other definitions are in order.

Definition 1: A domain is called an atomic domain (also called a ground
domain) ff it is a sort symbol and does not appear on the left hand side of a
domain equation.

Definition 2: A domain is called a dertved domain if it {s not an atornic
domain.

If a dertved domain is the left hand side of a domain equation, it is treated as an

abbreviation for the domain on the right hand side.

M(D) = <UY, <}, where for the cpo assigned to domain D, UY (s the
nonempty set and <¥ s the partial order on UY.

M(D) is flat if D {s an atomic domain.
Otherwise, the ordering is based on the domain
constructors and is described in Chapter 5.
M(v: D)p = p{v] where p: variables —» Up
M(h: D, -D,) = p(h) = hM: Up, =Up,, such that hM is continuous.
M(bool) = <(L;,,, TRUE, FALSE}, M ;>
M{nat) = <{L 4 1. 2, 3....}, sM>
M(1p) = <{1p}, <X
the logical symbols have the usual meanings

If D is an atomic domain then its structure is an ordinary set. The "lifting"
construction which adds the bottom element to a set, is a common tool for converting

a set into a cpo, in this case, a flat cpo.



6.4. The Interpretation

If both the source and target theories are constructed from the theory schema
defined in the previous section, then there is an interpretation from the source theory
to the target theory and correctness criteria for the interpretation such that the
Implementation Theorem holds. In a later chapter, interpretation alternatives that
may make the approach easier to use are discussed. Although the formal notation is
rather tedious and the details can get messy, the concept of an implementation
specification via interpretation between theories is straightforward and the work here
tries to preserve the intent of [wand 82al. Basically, a source object can be
represented as any one of a subset of target objects and a particular source cbject
can have many equally good target representations. It is a bit tricky with domains
where, based on the composition of the source object, we restrict the type of target
object representation. However, the partial order. bottom values, etc. associated
with each domain need not concern the designer; they are used to give the theorles a
structure and are discussed in this paper in order to show that the Implementation
Theorem holds with our extension to interpretation between theories. Define the

interpretation I of L, in L, as follows:
1. for atomic domain s:

a. assign to s a domain D that is constructed from atomic target
domains, the symbol ®, and the symbol @ (i.e.. the domain
constructor — is not allowed). Only domains specified as
function spaces can be implemented as function spaces.? The
interpretation is tdentity for the fixed domains bool, nat, and 1.

b. create a formula named is-s with signature D — bool. This
formula restricts the target domain to those elements that are
legal representatives of domain s. For the distinguished fixed
domains, bool, nat, and 1, is-s(d)=TRUE.

c. assign to =, a formula with signature D ® D — bool. As In
(wand 82a] this formula must specify an equivalence relation.

8There is an obvious exception to this where, under certain assumptions, an atomic domain can be
interpreted as a function space. This is discussed in Chapter 8.
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This formula specifies those target elements that are considered
equivalent at the source level. For the distinguished fixed
domains bool, nat, and 1, equality s interpreted as equality.

2. for derived domain D:
a. if D = A® B and A and B are not derived from D then

L. I(D) = 1{A) ® I(B)

ii. is-D is defined as is-D(x) iff is-(A®B){x) iff is-Alprl{x)) &
is-Blpr2(x)).

iil. I{=p) is defined as I=p)ix, y) iff H=ggp)lx. y) Aff I(=4) (pr1(x).
prl(y)) & l(=g)(pr2(x), pr2(y)).

b. fD = A ® B and A and B are not derived from D then

L D) = (A} & I(B).

ii 1s-D is defined as is-D(x) iff 1s-(A®B)(x) Iff (isl{x) o is-
Aloutl(x))) & {isr(x) o is-Bloutr{x))).

. I(=p) 1s defined as l(=p)(x. y) iff l=pgg)lx, y) iff (1slx) &

islfy) o I(=,)(outlix), outllyl)) & (isrx) & isrly) >
I(=g)loutr{x), outriy)).

c. if D = A — B and A and B are not dertved from D then

L. (D) =1{(A) = I(B)

ii. is-D is defined as is-D(x) iff is-(A—B)(x) ff (is-Ala) > is-
Blapply(x. a))) & (I(=,)(a.a) > I{=g)(applylx. a), applylx,
a))).®

i1, (=) is defined as I(=p)(x, y) iff Il=, ,g)lx. y) #ff I(=,)(a, &)
> I(=g)(applylx. a), applyly. a1).

d. if D is recursively defined, say D = F(A, D) where F(A, D) is a
term constructed from D, atomic domains which are
represented by A, and domain constructors, then

1. {D) = D’ where D’ = F(I(A), D7.

{. 1s-D is defined as is-D{x) iff is-F(A, D}(x). This formula is
defined inductively from the domain construction F(A, D)
using the definitions of is-(A®B), is-(A®B), and {s-(A—B)
above. Therefore, is-D is defined recursively. We prove
that this predicate, defined by the recursive equation,
exists.

iil. If=p) ts defined as Il=p)ix. y) I Il=p, ppkx. y). This
formula is defined inductively from the domain
construction F(A, D) using the definitions of =,¢5. =sep-
and =, _, above. Therefore, I(=p) is defined recursively
and we prove that this predicate exists.

91t 13 assumed that all formulas are closed; the variables a and a’ are untversally quantified.



3. for each constant symbol ¢, Iic: 1-D) = ¢l 1A where A = I(D).
4. for each variable symbol v, I(v: D) = vl: A where A = I(D).

5. for each n-place operator symbol h, I{h: D; — D) = hl: A - B where h!
{s a term in L,, A = [(D,), and B = I(D,).

6. 1 is identity on the logical operators and constants.

7. to each fixed polymorphic operator p, p € {pair. prl, pr2, cond, outl,

outr, inl, inr, isl, isr, id, °, curry, uncurry, apply}l. assign the same
operator in the target theory with the signature of a domain isomorphic
to the interpreted source signature.

Above, thé interpretation of domains is described as a "bottom-up” process: the
interpretation of a non-recursive domain is the interpretation of its isomorphic
construction of atomic domains. We shall prove in the following sections that
because of our formulations of is-D and I(=p), the isomorphisms specified at the
source level are preserved in the implementation. However, it may be more natural
for a designer to specify a domain interpretation irrespective of its underlying
composition; 1.e., it may be more natural to use a “top-down" approach. Then it
would fall upon the designer to show that the domain interpretation preserves the
domain’s underlying composition as specified by the source domain equations. We
will not discuss this here, but rather, discuss this alternative approach to
interpretation in a later section. For now, assume the domain interpretations are

constructed in a bottom-up process.

Terms and formulas are basically interpreted by interpreting each symbol in the
expressions. The preamble is added as in [wand 82a] and serves the purpose of
restricting target elements to those elements that are legal representatives of source

domains.

However, the preamble defined below differs from the preamble in (wand 82a]. In

47



[wand 82a] the preamble of a formula is defined in terms of the set of free variables
in the formula. In the approach proposed here, the constant, variable, and operator
symbols have equal status. A set of "free symbols”, FS, is defined inductively from

the inductive formula definition as follows:
1. FS(x) = [x} where x is a constant, variable or operator symbol
2. FS(apply (t,. t,))= (apply} w FSi(t;) v FS(t,)
3. FS((t,)(t,y))= FS(t) w FS(ty)
4. FS(Av. t)= FS(t) - {v}
5. FS(—f)= FS(f)
6. FS{f, o f,)= FS(f;} U FS(f,)

The preamble of formula a is a formula pre(a) and s defined by:

prefa) = is-D,(1(x,)) & ... & 1s-D (Iix))

where FS(a) = {x,, ..., x } &for 1 s1<n, x;: D,

The interpretation is defined for formula a as (pre{a) 1(e)) where I is defined on

terms and formulas as:
1. I(applylt,. t,)) = llapply)(t)), Iit,)
2. I{(t,)(ty)) = (It )(L,))
3. I(Av. t} = AI(v). (is-D(v) o I(t}), where v: D
4. [0 =1
5. Ilf, o f5) = If,) > Ilfy)

Notice that items 4 and 5 result from the fact that I(—) = -, I(0) = 3, and I(bool)=

bool.



For example, the interpretation of term apply,_glf. x} is (pre o Happly)(I{f), 1(x)
where the preamble pre is defined as is-(A-BiI(H& is-Alllx)) &
is-((A—>B)®A—B)(l(apply, p)).- The preamble can be simplified to is-A(l(x)) after

correctness conditions, discussed in the next section, are satisfled.

At first glance, the typing of interpreted symbols appears overly complicated.
Why not simply let the signature of a source symbol interpretation be the
interpretation of the source symbol's signature? In practice, it may be desirable to
interpret an object in a source domain by referring to a finer composition of a target
domain than fs indicated by the domain interpretation. In effect, this is not really
different than a direct interpretation of a source signature because domain equations
can be treated as domain abbreviation definitions. The retraction pairs that are used
to coerce an object in one domain to an object in an isomorphic domain implcitly
exist in expressions. While the retraction pairs exist at the structure level, they do
not appear in the theories. If an object a is in domain A and A i1s isomorphic to
domain B, then at the theory level a has both types A and B. At the structure level
there exists retraction pairs (which are isomorphisms) between the cpo’s forAand B
such that an object in the cpo for A can be coerced into an object in the cpo for B,
and vice versa.

Further, a curried application operation in the source may be tmplemented by an
uncurried term. Abbreviate applyg ¢ (apPly, @ - ¢y (f. @). b) as apply, g ¢ {f. a. bl.
Now apply, g ¢ (. & b) = apply,ep cluncurry(f), pair(a, b)). This is useful if (A} - I(B)
- I{C) does not exist in the target theory, but I{A) ® I(B) — I(C) does exdst. Similarly,

one can curry or uncurry a lambda term.
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6.5. The Correctness Criteria

The following correctness condlitions are proposed for the interpretation I:

L Tigrget - (@x)(is-Dx)) for each atomic source domain D.

2. Tiarget I is-Alx) o 1s-B{{I(f)(x)) for each source operator symbol f with
signature A-B.1°

3. Trarget F Iix =p X) for each atomic source domain D.

4. Tapger Ik =, ¥ 2 (0) =5 D) for each source operator symbol f with
signature A—B.

5. Tearget pre(F) = I(F) for each source axiom F.

If f is an operator symbol in some source axiom, then conditions 2 and 4 for I{f)
will be stated in the preamble of the interpreted axiom; the conditions are stated
explicitly in the list of assumptions about the formula interpretation. These
conditions require that interpreted operators take source representative arguments
Into source representative resuits and that interpreted operators take equivalent
arguments into equivalent results. The interpreted axioms, which incorporate the
preambles, must be deducible in the target theory. This is in contrast to fwand
82a] where the assumptions about operator symbols are not listed in the preamble.
In this report an operator symbol can be passed as an argument to another operator,

and thus, is treated as any other symbol in a formula.

Furthermore, the correctness conditions above differ from [wand 82a] in that
conditions 1 and 3 are stated in terms of atomic domains, rather than sort symbols.

We show later by induction that those conditions hold for any domain.

10Actually, the expression ia-B((I(B))(x)) should be written 18-B(8yyp (applycp, (), 8,4, (A1) where 1(f):

C—D such that C= [(A} and D= I(B). However, domain equations in some sense denote domain
abbreviations and t is assumed that the appropriate domain coercions take place.



6.6. Discussion About Interpretation

In an attempt to define an implementation as an interpretation, we have lmited
(perhaps severely limited} the kinds of relationship that can hold between source and
target domains. In our proposal, the source and target domains must be very similar
in structure. More general relationships have been described to show (1) that a
denotational and operational semantics of a language are equivalent [stoy 77], and (2)
that a direct semantic definition may be implemented as a continuation semantic
definition [reynolds 74]. Certain predicates, called inclusive, wo-inductive, or directed
complete predicates, describe the general relationships. However, in general, it is
difficult to specify the predicates and show they exist, even for small, scale-downed
problems. Furthermore, such methods do not address the general problem of
changing the representation of a programming language (i.e., translating the source

programming language into a target programming language) for large languages.

We suggest that for clarity of design and practicality of proof, the implementation,
which defilnes a change of representation, (1) be specified as an interpretation
(mapping) and (2) proceed in a sequence of steps, each step specifying a small change
in representation. It is proposed that the predicates defined in the interpretation be
restricted so that the designer does not have to show that the predicates exist.
Presently, in the compiler design problem it appears natural to, for example,
represent a source environment by some target environment and a source
continuation by some target continuation. This is not to minimize the significance of
more general relationships. We are not ignoring the possibility that the source/target
relationships proposed here might be too restrictive for some applications. For the
compiler design problem, it does not seem unreasonable to specify both languages

with denoctational semantics (e.g., as in[polak 80l), and it does not seem
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unreasonable to specify both source and target programming languages with
continuation semantics if one of the languages is specified with continuation
semantics. A considerable amount of progress has been achieved if the compiler

design problem can be dealt with at this level because:

1. the informal process of changing representation via mental translation
and comparison closely corresponds to the formal process of defining
an interpretation.

2. the implementation of the source programming language syntax is
treated In the same way as the implementation of the source

programming language semantics.
3. the correctness proof is based on a structural induction argument.

4. the induction steps required to show that any source program is
correctly implemented are implicitly handled by the interpretation. and
thus, can be mechanized as a translation.

5. the correctness proof is systematically broken down into small
subproofs. In particular, a change in the source programming
language specification will not require a completely new correctriess
proof, but rather, only those subproofs effected by the specification
change will have to be redone.

6. the proofs are done syntactically, as deductions, in the target theory.

Ideally, there should be no restriction on the source and target; in some
circumstances it may be desirable to specify them independently. However, today's
technology does not provide a practical way of organizing and carrying out such
correctness proofs for large problems, independent of the style of semantics used. In
this research, we step back and examine the problem with the goal of mirroring the
design process in a formal way and carrying out the verification in a practical way.
We admit that we cannot adequately deal with those situations with very dissimilar
source and target domains in the specifications. It is a goal that the restrictions

introduced here are ones that designers can live with.
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6.7. Derivation of the Source Structure

Thcdrem 4.1 gives the ‘model construction’ result for interpretations. It states
that the source structure can be derived from the target structure such that the
interpretation of any true source formula is true and any source formula whose
interpretation is true is also true. In other words, the source object behavior can be

perceived by locking at the behavior of its implementation

The interpretation gives a syntactic translation of the source theory language into
target theory language. The interpretation, specification language syntax, axioms
and inference rules give a dangerous illusion of precision. Structures are used to give
the syntactic system an unambiguous meaning. Once it is shown that the syntactic
system behaves In the intended manner via the structure, we can operate totally
within the syntactic system. Even though correctness proofs are done within the
syntactic system, at any time the meaning of a formula can be derived by applying
the structure. It is shown here that the syntactic system we have defined behaves in

the intended manner {i.e., satisfies the Implementation Theorem) via the structure.

‘The map J from target states to source states is defined as in (wand 82a] with the
exception that we do not use the 'undefined value’ e,. Particular values in the target
state that are not legal representations of source values are eliminated from domains
under consideration. In particular, let T be the target structure and S the source
structure. If U-Ir(D) is the carrier for the interpretation of source domain D in the target
structure, let UL, be that subset of Ufp, where all values satisfy the formula is-D.
Further, let = stand for the interpretation of =p,, where the subscript may be omitted
If the context is clear. Then UT = (<x, y> | x, y € UL, 5 & x =], y}, where T and D are

omitted if the context is clear; U, is an equivalence relation on U, . The expression
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U,e.p/U- is used to denote the quotient of Uy, 5. The source carriers are derived from
the target by letting the source carrier for domain D be the quotient, defined by =, of
the is-D subset of the target carrier for I(D). That is, U§ = Uy, p/U. where Uy, 5/U.=
U, U, < U.p & for some deU,p Uy= {d’ | «d, d’> e U_}}. We will show later that
U,.p/U- is a "good" carrier; the carrier together with the partial order specified

defines a cpo.

Define Jp: UL  — U§ as Jpv) = Ivl, and Jp(Lf p) = (1§). Define map J from
target states to source states as Jpx = J,(M((x))(p)) where symbol x has signature o.
Source operations are dertved as before, h%: U§ — U§: [al —» ()T (a)] because we
have is-(A—B)(I(h)) and this implies a = a’ > (I(h))(a) = (I(h))(@). In the discussion
below, issues are addressed that concern the use of cpo’s {n the structure rather than

sets.

Define the partial order for cpo's assigned to the source domains as follows:

2. <_ is defined by the following where x and y are in U, 5, [x] and [y] are

in U,y p/U.. and a € [x] means a is a member of the equivalence class
[x]:
i<yl (Vaclxl Gbefylasb&(vbelylBaeklasb

The first definition follows immediately from the fact that the is-D domain is a
subset of the I(D) domain. The second definition is a weaker partial order than one
usually defined for quotients in which two equivalence classes are ordered if and only
if every class element is ordered with every element of the other class {i.e. x] < Iy] iff x
< y). The weaker partial order defined above models our notion of implementation.
The definition states that two classes are ordered if and only if every element in a

class is ordered with at least one element in the other class; if a source representative



value has a better approximation then an equitvalent value has a better
approximation. A property foilows from the interpretation and this definition. The
property states that all elements in an equivalence class are unordered; they depict
the same “level of approximation.” Any member of an equivalence class is a good
representative for the assoclated source object: any representative approximation is

ordered in "lockstep” with any other equally good representative approximation.

While the'properties correspond to the intuitive concept of implementation, we
still have to show that such an order exists for any domain construction and that this
is a partial order. We will also show that with this partial order definition we can
define the lub of any chain tn a quotient domain. This is discussed in the following

section entitled, “Modelling the Quotient as a ¢po.”

6.7.1. Is the Quotient of a Source Representative Subset a Domain?

The carrier for source domain D is constructed by taking a quotient of the source
representative subset of the carrier for the interpretation of D. The quotients and
subsets are defined by predicates = and is-D, respectively. For atomic source
domains, the predicates are specified by the designer/implementer. For derived
source domains, the predicates are defined in the prescribed manner above and listed

below for convenience:

. 1s-(A®B)(x) iff 1s-Alpr1(x)) & is-B(pr2(x))

. 1s-(A@B)(x) iff (isl{x) > is-Af{outl(x))) & (isr{x) > is-Bloutr{x}})

. 18-{A—B)(x) iff (1s-Afa) D is-Bix{a))) & (a =, &’ > x(a) =g x{a’))

. X =,9n ¥ Iff prifx) =, pri(y) & pr2(x) =g pr2(y)

X =pgn ¥ Iff (1s10d & 1sl{y) o outlx) =, outl(y)) & (isr{x) & isr{y) o outr{x)
=g outrlyl)

6.x =, pyiffa=,a >xfa) =5 x(a)

N o WO N =
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Item 1 means that a target tuple is a source representative if and only if each
projection of the tuple is a source representative. Similarly, in item 4, two tuples are
equivalent if and only if their respective projections are equivalent. In items 2 and 5.
a value in a sum domain is identified as belonging to either the left or right domain,
and then the predicate associated with the identified domain is applied. Items 6 and
3 concern function spaces. Item 6 states that two functions are equivalent if and
only if they take equivalent arguments into equivalent results. Item 3 states that a
target function is a source representative if and only if (1) 1t takes source
representative arguments into source representative results and (2) it takes
equivalent arguments into equivalent results.

There is also the potential for recursive predicates because if source domain D is
isomorphic to F(D), then by definition is-D iff is-F(D), and is-F(D) is defined in terms

of is-D. Also, we have =, iff =pp,) and =gy, is defined in terms of =p,.

The main problem is proving the existence of the recursive predicates -- a
nontrivial problem. First consider nonrecursive predicates. The predicates must be
inclusive if they are used to define cpo's, where predicate p is inclusive if for chain A,
p(A) implies p(lub(A)). Informally, if the predicates are inclusive then the source
representative target domains contain all the values we are interested in; they contain
the limit of any source representative approximation.

If D is an atomic source domain then I(D} is an expression constructed from
atomic target domains, the product constructor, and the sum constructor. In this
case, I{D) is a flat cpo. Any subset or quotient on I{D) wiil also result in a flat cpo; the
subsets and quotients will contain the limits of any subset or quotient chain. In
other words, atomic domains and products and sums of atomic domains are treated

as sets and we can define arbitrary predicates on sets.



From this discussion it is apparent why the interpretation of atomic domains was
restricted. It is not clear how to define inclusive predicates on function spaces. At an
intuitive level, if the source domain is atomic {the specification does not indicate how
the domain is constructed) then it makes sense that the carrier derived from the
interpretation be a flat cpo. It also might make sense that its carrier be "non-flat” if
we could safely define function space predicates; that is, impose a complex structure

on the source domain that is not indicated in the source theory.

At a practical level, if the designer decides that a source domain should be
interpreted as a function space then the source domain can be "refined” by specifying
it isomorphic to some source function space. It is not clear at this time whether this
would prohibit the applicability of this approach. It is difficult to think of a compiler
design problem where it would be impossible to define an interpretation if the
semantics for the source and target languages are written in the same style. This

should be investigated in the future.

If D is a non-recursive derived domain constructed from domains A and B, then
is-D and =p are inclustve assuming the predicates for A and B are inclusive.
Consider D = A®B. Let C={<a,, b;>, <a;.by>, ...} be a chain in D. Then C,={a;. a,, .
is a chain in A and Cy={b;, b,. ...} is a chain in B. Assume is-A and is-B are inclustve.
Then we have is-A(C;) > is-A(lub(C,)) and is-B(Cy) > is-B(lub{(C,)}. We also have
lub(C)=<lub(C,), lub(C,)>. This and the definition of is-D gives us is-D(C) > s
D(lub(C)); i.e.. is-D is inclustve. Similarly, if =, and =g are inclusive then =4 is

inclusive.

The argument is similar for the sum and function space construction. Briefly,
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consider the function space construction, D=A—B. Let F=(f;, f5...} be a chain in
D. Let Fla)={fla) | f e F}. We know (Va € Aj(lub(F))(a) = lub(F{a)). By assumption, is-B
and =g are inclusive. We have is-B(F{a)) o is-B(lub(F(a))) and lub{F(a})=({lub(F)){a).
Similarly, Fla) = F(a) = {lub(F))(@) =g {lub(Fl}(a’). This. together with the definition of

is-D, gives us that i1s-D is inclusive.

From the discussion above, we determined that the predicates defined on the
non-recursive source domain interpretations are inclusive where a predicate for a
derived source domain is defined in terms of predicates on its constituent domains.
But, how is the existence of recursive predicates justified where recursive predicates
result from the interpretations of recursive source domains? From Scott’s work, we
can deal with recursive functions and domains. That work depends on properties of

monotonicity and continuity, and generally, both do not apply to predicates.

It is very difficult to come up with a nontrivial equation over predicates which
does not have a solution. The first {llustration of such counterexamples can be found
in {mulmuley 85). The counterexamples involve a subtle use of self-application. So,
even though these predicates are not generally found, they do exst, and an argument
must be made justifying the existence of any predicate. A key point is that the
predicate existence problem is very sensitive to the domain construction and “there
cannot be a rich enough purely syntactic language such that any predicate expressed

in that language exists ([mulmuley 85]."

The approach proposed in this paper is to allow a small set of predicates derived
from the domain construction that are monotonic and inclusive. Thus, the designer

does not have to prove the existence of the predicates defined in the interpretation,



but the designer is restricted in the ways the interpretation can be specified. This

paper proposes a particular set of restrictions -- others may be defined in the future.

6.7.1.1. The Existence of Predicates in the Interpretation

It must be shown that the definitions (possibly recursive) for =g and is-D exist. It
is assumed from the discussion above that the predicates are inclusive for flat or
non-recursive Uy, [reynolds 74] and [milne 76] discuss techniques to prove
predicate existence. These techniques are generalized and made systematic in
{mulmuley 85]. The techniques in [reynolds 74] for proving recursive relations are
modified here for proving recursive predicates. This modification is essentially a

simplification of the technique in {mulmuley 85].

The basic idea is this: given the least domain D satisfying D = T(D), where Tis a
domain constructor, and a predicate P on domain D such that P = w{P). we want to
show that P exists. For the interpretation proposed in this paper, the predicate P will
be either =g or is-D and w is restricted to a predicate transformation based on the

domain D.

The construction of the solution for P = w(P) is based on the inverse limit of the
retraction sequence <(D_ 1 Dy = {1}, D ,, = (D) forn20} <i,.j,> D& Dy, 1 ig=
(Ax. J'D1)' Jo = (Ax. 'LDo)' <Apopr Jne1> = T (ly, §p2) for n 2 O)>. The inverse Umit is the
least fixed point satisfying T. The retraction sequence forms the following chain: 1<
T(L) < TAL) S ... . The technique in this section is to build the following chain of
domain-predicate pairs beginning with <., {1}>, where L denotes the domain of one
value, namely the bottom element, and {1} is the trivial predicate on domain L:

<l, (> € <TW), will> < <T,(1), w2{l}> <.. . First of all, <T°(l), wi{l}> <
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<IP*1(1), w™*1{1}> means that there is a retraction pair <1, j,>: T"(L) & T*!(1) such
that i (w™{Ll}) < wi+l{i} and jn(w“*'l{.L}) = wP{1}. The limit of the chain should be <D _,
P_> where D, is the least solution of D = T(D}, and P_ is a predicate on D such that
it satisfies the equation P = w{P). Both T%(1) and w"{l} must be closed under the lub

operation. That is, the predicate w™{1} must be inclusive.

This is just a sketch of the method and as Mulmuley says in [mulmuley 85]. the
proofs becom;a quite complicated when the details are filled in. Mulmuley proposes
existence proofs that are mechanizable. However, these are complex and once the
existence proofs are done, the correctness problem described in this research still
remains. The more complex the predicates are, the harder it is to do the correctness
proof. This paper proposes an alternative to doing both difficult existence proofs and
a hard correctness proof for each implementation verification by investigating
(relatively) simple predicate transformations that result in correctness proofs based
on implicit structural induction. We basically follow Reynold's scheme where the
existence proofs are simpler, but the methods are more restricted in their
applicability. The methods are more restricted, but the resulting correctness proofs
are understandable and manageable. If the designer follows the interpretation
procedure of this paper, he/she can assume that all the predicates in the

interpretation are good from the results in this section.

First, we show that there exists a P_ for the problem described above. The
predicate P_ is inclusive and is the solution to P = w{P). Then, we show that the
predicate transformations defined in the interpretation satisfy the properties

necessary to ensure a solution.
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First of all, w1} is inclusive by the following induction argument. Let X be a
chain in w?{l}. We claim that for all n. lub(X) € wi(1}. The basis is trivially true
because wO(L} = {1}. The induction hypothesis is: X is a chain in w™{1} implies lub(X)
is in w{l}. The proof proceeds as follows: if X is a chain in wi*1l({} then by the
ordering, j,(X} s a chain in w*{l}. By the induction hypothesis, lub{j_(x)) is in wo{1}.
Because }, is continuous, j,(ub(X)} is in wo{l}. Applying i, 1, ° j,(lubx)) is in
L (w{L}). By the retraction properties, lub(X) is in wh+1{1} and we are finished: for all

n, w1} is inclustve.

We claim that P = {(xy, X;. ...) | for alln >0, x;, e w*{1) and x;, =j )l P is
inclusive if for any chain C = {¢,. €}, ...} In P_ the lub(C) isin P_. Letc = 0. X0 o)
Then ¢, < ¢;,, iff for all n 2 0, X, S Xy q Let Cp = {x;, | 120} Then C_is achainin
wi(l) with lub(C,) also in w?(l). We -also have j,(lub(C.,;) = Wb{,(C,.,\) =
lub{l (K, ) 120} =1lub{x, 120 } = lub(C,). Therefore, (lub(Cy), ub(C)). ..)

belongs to P_, and it is lub(C).

We claim P_ = w(P,). Let <l Jp.> Tl & D.. <D, P> isin the domain-

predicate pair chain because

L. §po0 © Ipee (TP{L)) =T
2. 11 *Jne (D) =D,
3. Jne (P =l - °Ju (Ko Xy, o) | Xy € WO(L) & X, = o, )
= {x, | x, e wi(1)}
=wi(1)
4.1 (WL =1, ° ... ° L (k) §ox, e wR (L)
={x | xeD gcw*l)}
cw™l =P,

Furthermore, there is a retraction pair that is also an isomorphism pair <@, ¥>:
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D_ & TD).. We know ¥(w({P_)) = P_ and @(P,) c w(P,). We conclude w(P_) = @ (P,)
from @ ° (¥ ° w(P_))= ®(P) = (@ ° ¥) ° w{P,) = w(P_). Therefore, <®. ¥>: P_ & w(P_)
and P_ is a solution. Finally, P,, is the least solution for the same reason D is,; they

are created with the same sequence of retractions.

So. now we must show that for all the predicate transformers w defined in the
interpretation and for domain constructors T, <D;, P> < <D,. P,> implies <T(D,),
w(P,)> < <T(Dy). w{P,)>. If this property holds for all the predicate transformers, then
the domain-predicate pair chain can be constructed as in the argument above and

this chain has a limit based on the inverse limit construction.

Define the domain constructors and their corresponding predicate transformers
as follows:
1. Tg(D) = T,{D} ® T,(D)
wglPl = {<x.y> | x2 L&y=2 L &xew,(P) &yewy(P) w i

WoelP) = {<<x. y>», X, y>> | x# L&y*L&X 2L &
Y #1&<x x>ew(P) &<y, y>e w,(P)l (<L, 1>}

2. Tg(D) =T, (D) & Ty(D)
wg(P) = (<0, > | x#L&xew,(P) vikl,xo | x= 1l &xew,(P) ui{l}

WoglP) = (<0, <x, xX>> | <, xX># L& <x. x>ew [P v
<1, <, X'>> | <, x># L & <x, X>e wy(P)} U {l}

3.T,MD) =T, (D) =T, (D)
w_(P) = {f | x e w,(P) > fix) € w,(P)}

wi_ P ={f1 <xx>e¢ w,(P) o
<f1x), x> € w,(P)}

wo (P) = {<f, g> | <x, x> e w,(P) o <flx), gix)> € wo(P)}
4. Ty4(D} =D

w4(P) = P
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Assuming that the predicate transformers satisfy the property above, the

structures for is-D and =p, constructed from any domain D, are given as follows:
1. M(is-Tg(D)) is defined as wg(M(is-D))
2. Ml=r ) is defined as wog(M(=p))
3. M(is-Tg(D)) is defined as wg(Mlis-D))
4. M(=g ) s defined as wyg(M{=p))
5. M(is-T_(D)) is defined as w_,(M(is-D)) n wy _(M(=p))
6. M(=1_,p)) is defined as wy_,(M(=p))

Now. each of the predicate transformers is examined. First consider wg, We
must show that <D;, P,> < <Dy, P,> implies <Tg(D;), Wg(P{)> < <Tg (Dy), wg(Pg)> with
the assumption that for n = 1, 2, <D, P> s <D,, Py> implies <T, (D), w,(Py)> <
<T_{D,). w,(P))>. It is already known that Tg(D;) < TglDy). So, the discussion
focuses on predicate part of the domain-predicate pair. The two-part proof proceeds
as follows, where <lg, jg>: Tg(D)) ¢ Tg(Dj). <1, J;>: T (D) & T,(Dy). <by, jp> T,(Dy)

o T,(Dy), 1g = Mx, y). <1,(x), L(y)>, and Jg = Mxy). <;0d450y)>:

1. jglwg (P3))
=g <. 7> | x2 L y= L. xew (P, y e wy(Pg)} U {lg (L}
={<), (x}, 1> | .} (L)
=(<x, y> | X2 L & yel & x € §,(w,(Py)) &Yy € Jo(W,(Po))} v {1}
=we(Py)

2. 1@(“’9(?1))
=(lg<x, y> | xeL&y# L& xew (P &ye w,(P )} U ig (L)
=(<1,(x), Ly)> | .Jo (1}
={<x, y> | x2L, yaL. X € 1w, (P)) © W (Py) & ¥ € L(w,(P))) < Wy(Pol} U {1}
S Wg (Pg)

Thus, <lg. jg> WelP)) ¢ Wg(Py) and the predicate transformer wg can be used to

construct a recursive predicate.

For wg

1. jo(wg(Py))
={<0,],x)> | x# L &xew(Py}ui<l, 10> | x# L & x € wo(Po)} v (L}
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= w,(P,} ® w,(P,}
=wg (P))
2. iy (wg(P))
={<0,1;x)> 1 x= L&xe€e w, (P} v (<l i,x)>1x2L&xe wy(P v {1}
< w(Py) @ wy(Py)
= Wg(Py)

Forw_:

Lj_(w_(Py))
={j_f) | x e w,(P,) D {lx) € w,(P,}}
=fjp°f°1; | ...}
={p°f°1 | xew (P o §,(fl1, X)) € w,(P,}}
=(F | xew,(P,) o Flx] € w,(P,)}
= W_,(P]l

2.1 (w_(P))
={1_f) | xe w,(P,) > flx) € w,(P )}
=(1,°£°); | x e w,(Py) o L ({0 € Ly (WylP ) € W, ()}
cw_(P,)

If the predicate is defined as a tuple, a chain can be constructed as follows:
<L, (<L, I>p> €. .. S <TO(), whel, 1>> < <T™1), wo*l<l, 1>> <. .. such that <1,
i T & T, <, 1> (Wil 15) = wiel, 1>, and <t 4> (W<l 1) ¢

witlel, 1>, Let o = <. Jn>- Now, consider wyg:

1. Jog (Wye(Po))
=g, Jg><<X. y>.<X'. y'>> | none of the arguments are . & <x. x> €
w,(Py) & <y, ¥'> € W,(Py)} U {<l, 1>}
= (<<, (), o>, <1 (xD, jo¥)>> | . )
= {<<a, b>, <a’, b’>> | none of the arguments is L & <a, a™> € j,(w,{P,)) =
w(P,) & <b, b'> € Jo(wy(Py)} = wo(P) } w {1}
=wye (P}
2. Lg (WyelP))) = {<lg, lg><=x, y><X,y>> | .}
- WQQ(P2)
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There is a similar argument for wpg and w,_,.

Finally, consider w, _:

1.4, (wy(Py)
= U—y(f) | <x, x'> € Wl(Pz) o <flx), flx)> € W2(P2]}

={j2°f°11 i}
=(F | <x,x>ew,(P}> <F(x), Fx)> € w,(P,}}
=wl—>(Pl)
2.4, (w{P))
={_ 01 ..}

= {12 ° f°_]1 ..}
={F | <x, x> GJI (Wltpl)) = WI(PQ) & <F(x), Fix)> e 12(“72(? 1)) o) WQ(PQ)}
o W}_,(Pz)

Thus, the predicate transformers w can be used to construct structures for
predicates, in particular, recursive predicates. The predicate transformers defined in
the interpretation are simple because they are related to the domains in a very
straightforward way. They allow the subsets and quotients of cpo’s, which in turn,

enable the definition of an interpretation for theories with domains.

6.7.2. Modelling the Quotient as a cpo

The quotient on the nonempty set U, for domain A s defined as U,/U. = (Us I Ug
C Uy & for some a € Uy, Ug = {a’ | <a, a’> € U_}}. Thus, the values in the quotiented
carrier are equivalence classes. In Section 6.7 properties of the partial order for
quotients are described. The partial order is derived from the order on the
"unquotiented” domain. Let x, y € U,. Let [x], [y] € Uy/U.. The expression a € [x]
means the value a is a member of the equivalence class [x]. The partial order !s

defined by: [xlslyliff(Vaelx)(@belylasb&(vbelylExelalas<b
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A property of this order is:
x=yvy&x<ylox=y

In the following sections we prove that the property holds and the order for
quotients is a partial order. The least upper bound of a chain of equivalence classes
is defined, and the domain isomorphisms specified In the source theory are

discussed.

6.7.2.1. Partial Order Property 1

Property 1 states that (x = y & x < y) implies x = y. This means that elements in

an equivalence class are unordered.

For flat cpo’s only the bottom value is ordered with the other values. The formula
(L = x and x = 1) can only be true if = is not strict in both its arguments. The
equivalence relation = is constructed from strict functions and the predicates &, V. o,
—, isl, isr, and =. Because coalesced products and sums of flat domains are flat
domains, the predicates take a flat domain into another flat domain, bool. The usual
truth-valued connectives &, v, and > have several monotonic extensions in (bool &
bool — bool). Select the ones that are strict in both their arguments. Similarly,
select the strict extension of —. The predicates isl and isr are defined on (A & B —
bool), and = is defined on (A ® A — bool). If A is flat then there is a continuous test
for equality such that equality is strict in both its arguments. Similarly, tf A and B
are flat then A ® B is flat and deflne isl and isr to be strict in their argument.

Assume any designer-specified functions and predicates are strict.



Thus, = is strict in both its arguments and we have L = x if and only ifx=1;, Lis
not equivalent to any other value in a flat domain. From this, Property 1 is trivially

true, for flat domains.

Now proceed by induction on the domain construction to show that the property
holds in general. First, consider non-recursive domains. Assume the property holds
for <U,, $,> and <Ug, <g>. Consider the product domain A ® B. For property 1 we
show (<a, b> = <c. d> & <a, b> < <¢, d>) D <a, b> = <c, d> as follows:

<a, b> = <¢, d> & <a, b> s <c, d>

ffa=c&b=d&asc&bsd (by definition of = and <}
ca=c&b=d (by induction hypothesis)
iff <a, b> = <c, d>

Consider the sum domain A @ B. For property 1 we have:

a=h&ash
iff (isl(a) & isl(b) > outl(a) = outl(b) & outl(a) s outlh))
& (isr(a) & isr (b) o outr{a) = outr{b) & outr{a) < outr{b))
{by definition of = and <)
S (isl(a) & isl(b) o outl(a) = outl(b)) & (isr(a) & isr{b) o outr{a) = outr{b))

(by induction hypothesis)
iffa=b

Finally, consider the product domain A — B. For property 1 we have:
f=g&fsg
iff (Va)(a = a’ > fla) = g(a’)) & fla) < gla)
> (Va) fla) = g(a) & fla) < gla)
> (Va) fla) = gla) (by induction hypothesis)

of=g

The argument that the property holds for any domain D is similar to the

argument above, but it relies on the inverse limit construction; thus, the notation is
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more tedlous. We want to show that for any domain constructor T, <X, y> € M(=q(y))
o~ M[sm),) implies <x, y> € M(=T{D)). If w is the predicate transformer corresponding to
T then it is equivalent to say, <x. y> € w(M(=p)) N w{M(<p)} implies <x, y> € w{M(=p)).
The basis of the induction argument is for atomic domain D. The property holds
because M(=p) N Mlsp) is {<L, 1>}, Now, for *e (®, ®. -} and T.(D) = T (D) * T,(D), we
must show <x, y> € Wy, (M(=p)) N w,. (M(Sp)) implies <x. y> & wa.(M(=p)), assuming
for n = 1, 2 that <, y> € w_(M(=p)) n w_(M(<p)) implies <x, y> € w_(M(=p)). In the
discussion below, we omit M in the expressions and assume the predicate symbols

are the predicates.

Case 1:
<X, Y> € Wogl=) N Wog(<)

iff <, y>e{<a, b>! a=L &b=Ll&<prlfal, pri(bl> € w (=)
& <pr2fa), pr2(b}> € wy{=)
& <prl(a), pri(b)> € w,(<) & <pr2(a). pr2(b)> € wolS) v (L)

implies <x, y> € W,g(=}, by induction hypothesis

Case 2:
<8, <XY>> € Wog(=) N Wog(<)

ffif<a, <x,y>>ef{<h, <s, >> | s# L &t= 1l
& {a = 0 implies <s, & e w (=) N w, (<) &
(a = 1 implies <s,t> € wy(=) N wyl<)} U {1}

implies <a, <x. y>> € Wyg(=), by induction hypothesis

Case 3:
<, y> € wy_ (=) nwy (<)

iff <x, y> € (<f. g> | (<x, X'> € wy(=) implies <flx), glx)> € w,(=))
& (<x, X'> € w, (<) implies <flx). gx)> € w,(s]}}

iff <x, y> € {<f, g> | <x. x> € w,(=) » w (<} implies <flx), fx)> € w,(=) N wo(sh



implies <x, y> € w,_ (=), by induction hypothesis.

6.7.2.2. Is the Defined Order Reflexive, Antisymmetric, and Transitive?

The order is reflexive because [x] < [x] follows from [x] = [x]. The order is

antisymmetric because:
[x] < [y] & [yl < [x]

iff (vx, e (x)By, e ¥l x, Sy;
& (Vyy € lyll(@x,; € [x]) x5 <y,
& (Vyy e ylEx; e X)) y3 s x4
& (vx, e xl)By e YD) ¥y $x4

#f (V¥ € XNBy, 3y ¥4 SX' <Y,

& (VY € [yDEx)Ex,) X, Sy 'S Xy

if (vX)@y)Eyg) Ya =X =Yy

& (Vy ) 3x,)(3x3) Xy =y = X4 (by property 1)
T (vx){vy) [X] = [¥] {by property 1)
iff [(x} = [yl

The order is transitive because:
xlsiyl &yl < (2]
iff (vx; € X3y, elyl x sy,
& (Vy, e yliEx, elx]) %, sy,
& Ny;; € [yI)ng €lz]) Yy S Zq
& (Vz, €iz])@y eyl yp S 24
iff (vx,)(3z5) Xy S 25
& (V2)(Gx,) %, £ 24
iff [x] < [2]
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6.7.2.3. The Least Upper Bound of a Quotient Chain

In this section we prove that any chain of equivalence classes has a least upper
bound (lub} by constructing the lub from the partial order definition and property 1.
Basically, any chain of equivalence classes involves many chains connecting the
elements of the equivalence classes. For the purposes of this discussion. a chain of
equivalence classes (a chain in Up/U.) is simply referred to as a quotient chain, and
a chain connecting elements of an equivalence class (a chain in Up) is referred to as a
chain in the (.1uot1ent chain. Below we show that the lub of a quotient chain is the

equivalence class of the lub of any chain in the quotient chain.

Let D be a domain. Let A = {[a,], [a ], ...} be a quotient chain in Up/U., such that
[a] < fa,,,] for 12 1. First, we show that there is at least one chain in every quotient

chain.

Lemma 3: For every D/=-chain A there exists a D-chain A’=(a}, a3, ...}
such that a, = a fort > 1.

Proof: By the definition of < we have [a] < [a,,,] iff (Va, € [a))3ay,, €
(a,,]) & s a,, & Vay,, € [a,,)Ca; € [a) a < a;,,. Pick any a, in [a,]
Select an a, in [a,] such that a) S a;. We know this exists from the
definition given above. By the same definition, there exists an aj; In [a,)
such that a| < a; S a;. Proceeding in this manner, we construct a chain A’
= {a}, 2y, ...} such that a; = a,.

Next, we prove that the chain A’ constructed in the previcus lemma is a maximal

chain in A.

Lemma 4: The A’ chain constructed from A in the proof of Lemma 3 Is
a maximal chain in A

Proof: Let A’ = (a},a,. ... @, 4,1, ... } be the constnucted chain. A value
cannot be added to A’ to get a longer chain in A Assume we can add a
value, say a, such that a < a S a,. Because [a] < [a,, ]. we have ay = a, or
a, = a,). If we have a = a, then a, = a,. as a result of property L.
Similarly, if a) = a;,, then a = a,,. Thus, A’ ts a maximal chain in A.
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Any chain in A proceeds in "lockstep” with any other chain in A.
Lemma 5: If A’ = (a], a,, ...} and A" = {a}, a3, ...} are two chains in A,
then for all 1, [a] = [a}] = [a].
Proof: From Lemmas 3 and 4 we have a; = a, and aj = a,. Therefore, a,
= ajand [a] = la] ] = [a,).

Because (1} any chain in A proceeds in lockstep with any other chain in A and (2)
there are no "dangling" chains (i.e., every element in every equivalence class is In at
least one chain in the quotient chain A), the lub of the quotient chain can be

constructed from the lub of any chain in the quotient chain.

Theorem 6: For D/=-chain A, lub(A) = [lub(A)] where A’ is any D-chain
n A

Proof: By Lemmas 3 and 4, there exists a D-chain in A, call it A", and

this chain is maximal. Because D is a domain, there exists lub(A). To
show lub(A) is well defined, assume A" is another maximal D-chain in

A. We have to show [lub(A)] = [lub(A")]. By Lemma 5, we have a, = a; for all
1. Because = is inclusive, we have lub(A) = lub(A”).

6.7.3. Does the Derived Source Structure Model Isomorphisms Specified Among

Source Domains?

If D = F is a domain equation in the source theory then we must show that <Up,
<p> is isomorphic to <Up, <> where the cpo’s are derived from the target theory.

Consider the following three source domain equations:

1. A=D®E
2.B=D®E
3.C=D-E

The carrers for these domains are defined as follows:
1. Uy = (U, | x Cis-(D ® E) & for some <d, e> € Uiy pegy- U, = {<d’, &> |
<d’, &> =pgg <d, e>}}

2. Up ® Ug = {<U,, U> | ycis-D & z ¢ {s-E & for some d & Uy, . Uy=(d" |
d'=pd&forsomeeeU,g U =(e" | e = e}
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3. Ug = {U, | x ¢ is-(D®E} & for some v € Uis.ipor) U=tV | vV =pge Vil
4. Up®Ug=(<0,Up> iycis-D& for some d € Uy, Up=(d" | 4" =p d}}
{«<1,U,> lzgis-E & for some e € U, g, U, = {¢’ | e =gefluil
5. U
6. Up — Ug = (F 1 for some f € U, p_g). F Is a continuous function from
{UY | y < is-D & for some d € Uy . Uy ={d | d=pdito{U, 1 z< is-E
& for some e € flU,, ). U, = (e" | € =g e}

= (U, | x ¢ is-(D—E) & for some { € U n_,g) Ux = {f1f=p g

[

To show that the source domain equations are satisfied, isomorphisms 8,, 8,. 85

are defined such that:
1.8,: U, = (Up ® Ug) &x<, yiff 8),(x) Speg 8, (v
3. 8,: Ug - (Up - Up) & x < y iff 8,5(x) <p_ 83y

The isomorphisms are defined as follows:

1. 8,(i<d’, ¢'> | <&, &> =pgp <d, e>)) = <(d’ | & =p d}, (¢’ | & =g e}>

2. 8,({<0. d> | <0, d> =pgp <0, d>)) = <0, {d’ | d’ = d}>. and similarly for
inr

3. 8,((f | T =g ) = F, where fla)= b 5 F(la}}=bl.

Now, 8, and ©, are obviously isomorphisms (1-1 and onto). O, is discussed
below. Let 8,4([f)=F and 8,([gh=G. The claim that 8, is well-defined is shown in the

following two steps:

1. f=g
o a=a’ o fla}= g(a)
o [a] = [a'] > [fla)] = [g(a)]
> [a] = {a] > F{la}) = G([a))

o F=G
2 8;(lf]) = 8,([g)
2. a=a’
o fla) = fla) (because f € Uiy pg)
> [fla)] = [fla’l

> Filal) = F(ia')
> @,([f)((al) = 8,(I)([a)
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To show ©, is 1-1 we must show [f] # (g] > 5(fl) # 8,(lg]) where [fl={f | I = 0.

We have:

f1 =gl

sof=g
= {3a) ~{fla) = g(a))
o (3a) [fla)] # (g(a)]
> (3[al) F(la}) = Gilal)
2F=2G

To show 8, is onto we must show (VF)(3g) 85(lgl = F. The function F is in
[Uis_D/U=D - f(Uu,'_D]/U=E for some f € U,y ,p)- Let € be that particular f. The

function f is a continuous function such that

1. 1s-Dix) > is-E (fix))
2. x =p X' > fix) =g fix) v

If F{[a]) = [bl then fla) = b. Furthermore, a = a’ > b = f(a). By definition of 83 and f

we have:

8,(If)([a})
= [fla)]
= [b]

Therefore, 8,([f)=F.

The property [<a,b>] <, [<c.d>] if elf[<a, b>]) <pee ©;ll<c. d>]) holds by the
following argument:
[<a. b>] < [<c. d>)

Iff (V<a’, b> e [<a, b>]) B <¢’, d'> e {<c, d>] <a’ . b> <<, d> &
(V<o d'> € [<c, d>]) 3 <a’. b’> € [<a, b>]} <a’, b™> £ <¢’. d">

ff(va’e[al) Be e lca’ <c’
&(Vc'ele) @a elalja’s¢
&Wbeb)Ed ed}b sd
&ivd eld) @ eb)b sd

iff <[a], [bl> < <l[c], (d]>
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The argument for the corresponding property for sums is similar.

The property [f] 5, [g] ¥f €,([f) <p_g B,{[gD holds by the following argument:
f<gl
iff (Vallvf e f)Eg’ e [g) fla) < gla) & (vg' e @B T e [l fla) < g’ (a)
iff (Va) [fla)] < [gla)]
iff (va) 8, ([fH(lal) < & ([gh((al)
iff ©, (If]) < 85 (gD

What all this means is that the domain equations specified in the source theory
are true in the source structure, where the source structure is derived from the target
theory structure and the interpretation. With the interpretation presented in this
paper, the designer does not have to prove that the interpreted domain {somorphisms
hold in the target theory because the domain interpretations are constructed in a

manner that preserves this property.

8.7.4. Deriving Source States

Scott showed in [scott 76] how to model everything in one "universal” domain, the
domain of all subsets of the set of nonnegative integers. If U is a universal domain,
then every domain D is isomorphic to a subdomain of U. In particular, U-U, USU,
and U@U are all isomorphic to subdomains of U. It is possible to view x € U at one
time as a value. at another as an argument to a function, then as an integer, and

later as a function.

Similarly, the derivation of source domain structures can be achieved in different
ways depending on whether it is desirable to view domain values as single

arguments, or as structured arguments. Briefly, the mapping J from target states to
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source states is defined as Jpx = Jp(M{l{x}))(p)), where variable symbol x has signature
D, and source state (Jp) assigns a value to x. If D is an atomic source domain, then x
can only be used as an argument and Jp(MUIxD(p) = IM(I(x))p!; a value in D’s structure
is some equivalence class. If D is a function space., say A—B, then a value in D’s

structure can be viewed

1. as some equivalence class of functions, MIGp] € Uy anp/Us, |
where J,_ g(M(I{x))p) = [M{I(x))p}. or

2. as some function that takes an equivalence class as an argument and
returns an equivalence class as a result, F € (UB,A/U=A -

(M{I(x}p)(Uyg o) /U ) where F(lal) = [(M(x)p)all.

Say g: A — B - C is in the source theory. Then, M(gkd)(Jp) = (M(@Up) (IM{I{xDol)

= [(M(I(g) (p) MIxNp)]. while Mix{a))iJp) = F(IM(Ia)lp]) = [(M(I(x))p) M(I(a))p)].

If D is a product, say A ® B, then a value in D’s structure can be viewed.

1. as one argument, Jagp (M(I(x))p) € Ujg (agg)/ U=, . OF
2. as two arguments (an argument pair), <J,(prl ° M{I(x))p), Jglpr2 °
M(Ix)Ip)> € (Uig.a/ U,A ® Uh_B/U=B)

Note that 8,(J,gp (<a. b>)) = <J, (a}, Jg (b)>. Say, h: A®B - C,d e Uy pop- 2 €
Ug.a. and b € Uy g, Then the meaning of h can be a function that maps [d] to

(M{I())p)(d)], or a function that maps <[a], [bl> to [(M(Ith))p)(<a. b>]].

Finally consider D a sum, say A © B. Then a value in D's structure can be viewed

1. as an argument that is not identifled as belonging to one of the
summands, J,egM(Ix)(p) € Uyy.(aen)/Ua - OF

2. as an argument that is identified as belonging to one of the summands,
<0, Jyfa)> if M(I(x)lp = <0, a> and <1, Jgb)> if M{Ix))p = <1, b>. The

argument is in U,,_ A/Uﬂ & U, g/ U=B.
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Note that 8,(J,gp(<0. @>)) = <0, Jy(a)>. Say ki A8B — C, d € Uy agp), and y:

A. Then, the meaning of k s a function that maps [d] to [(MU(k)p}d}, and the

meaning of k(inl(y)) is (M(I(k))p)(<0, [M{Iy}pl>)l.

6.7.5. Are the Derived Source Operations Continuous?

Let DoE be a source domain. Because both Uy, iy 5/U. and (U p/U. —
flU.p) /UL ) for f € Uy, p_,g) are cpo's, any value in them is a continuous function.
Thus, the function assigned to h: D—E is continuous. Another way to look at it is to
see how h is implemented. Assuming the target operations are continuous it can be
shown that the dertved source structure assigns continuous functions to source
function symbols. Let hS be the operation the source structure assigns to h where
hS: U$ - US: (d] » [(h)T(d)). This follows from the fact that we have is-(D—E)(I(h)).
Therefore, for chain A=(la,}. [agl ...}, hS(A) = ((W)T(a,)l. OMT(@yl. ..}. By the
monotonicity of I)T, if a, < a,,, then I(hT(a) < 1) T(a, ).

Assume a, < a,,, for all i. Let A’={a,, a5, ...}. Then

hS(ub(A)

= hS([lublA]) (by partial order definition for quotients)
= [I(h)TQub(AY)] (definition of h%)
= [lub(I(h)T(AN] (by continuity of I(h)D)
= lub([I() (A (by partial order definition for quotients)
= lub (b3 (A) (definition of hS)

Thus, hS is continuous,
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6.8. Wand's Theorem 4.1 Revisited

Assuming the predicates =p and is-D exist, we show that the correctness

conditions are sufficient. Consider the following propositions:

Proposition 7: If the interpretation I satisfles the correctness criteria
then I(=p) is an equivalence relation for any source domain D.

Proof: By correctness conditions 3 and 4, I{=p) is an equivalence
relation for any atomic source domain D. Denote I(=p) as =p. Assume =,

and =g are equivalence relations. Then =,gg I8 an equivalence relation

because reflexivity, transitivity, and symmetry follow from the definition of

; agpe Similarly, for =pqg. For =, 5, where f, g, and h are in is-(A—B) we
ave

l.la=,a’ofa=gfa)of=, gf
2.f=, pgolas,a’ofa=ggalola =4aoga =gfa)>g =, pf
3.6f=, pe&g=p ghiola=a>fa=ga’=ga=ha)>f=, gh

Note that for recursive domains D, = exists and s inclusive.
Therefore, for chains X and Y in D, if X = Y then lub(X) = lubfY). So, = is
reflexive, transitive and symmetric for chains. It follows that the solution to
any definition for = is an equivalence relation.

Proposition 8: If the interpretation I satisfles the correctness criteria
then Ty, rpee (3x) is-Dix) for any source domain D.

Proof: By correctness condition 1, Ty, pe F (3x) 18-Dix) for any atomic
source domain D. Assume is-A and is-B define nonempty sets in the target.
Then is-(A®B) and is-(A®B) define nonempty sets. Also, the set x = {x |
is-Afa) - is-B(x{a))} is nonempty. Now, does there exist x € X such that a=a’
S xla} = x{a)? Define x such that (va) x(a)=b for some b. Thus, is-(A—-B)
defines a nonempty set.

If D is recursively defined, its solution could be L. In this case the is-D

subset is nonempty because the subset contains L. More generally, is-D
always exists and is inclusive. Therefore, maximal chains, which represent
a sequence of approximations, are in the subset and it is nonempty.

We have by Propositions 7 and 8 that =, can be used to define a quotient domain
and is-D is non-empty. Thus, analogous to [wand 82al, al carrier for a source domain
is the partitioned subset of the carrier for the source domain interpretation.
However. in this research a domain carrier is deflned as a cpo. a set that has

addittional properties.



Because the definition of J is the same (modulo the bottom element) as in {wand
82a] and the introduction of domains does not alter the grammatical structure of
formulas, the proof by structural induction of Theorem 4.1 is basically the same as
that for a many-sorted first-order theory. The differences were accounted for in the
previous sections where we showed that the map J did indeed procduce a source
structure, even though we used cpo's and continuous functions instead of sets and

total functions.

6.9. Simplification of Correctness Proofs

There are several obvious things one can do to eliminate some “cluttef" in
interpreted formulas and to eliminate some of the work needed to verify the
correctness criteria. These simplifications arise when source objects do not change
their representation in the implementation in arny significant manner. For example, a
projection operator for a product domain (e.g., prl) will be represented by a projection
operator. Even though the source product domain is represented by a target product
domain where the constituent domains of the target product may differ from those of
the source, the same axioms will specify the projection operator in both the source
and the target. In this case, the projection operator, say prl. can be removed from
the list of free symbols and thus, is not incorporated into the preamble of a formula
that refers to prl.

Also the interpreted axioms specifying prl are trivially true in the target theory.

Consider the following propositions:

Proposition 9: Indentity Map Theorem If h: D, —» D, is a fixed
operator symbol in the theory schema and I(h) = h, then is-(D;—Dy)h) =
TRUE.

Proof: If h € {—, o. V. &, cond, patr, prl, pr2, outl, outr, inl, inr, isl, isr,
id, °, curry, uncurry, TRUE, FALSE} then I(h) = h. Consider the case where
I{prl: A®B—A) = pri: [(A)J®I(B)-I(A). Denote the projection operator in the
target as prl’. We have
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is-(A ® B—A)(prl’)

iff (is-Afa) & is-B(b) = is-A (prll<a, b>)))
&(a=4a &b=gb >pri<a. b>) =4 prl’ (<a’, b™>)

iff TRUE, because prl‘(<a, b>) = a and prl'<a’, b’>) = a’

For the pair operator,

For outl,

For inl,

For isl,

is-(A—»B—(A®B))(pair)

iff (is-Afa) o (is-B(b} o is-(A®B)(pair{a.b))}
& (a =, a’ > (b =g b’ > pair(a,b) =,gg pair{a’. b))

iff TRUE, because prl(<a, b>) = a, etc.

is-(A@B—A)(outl)

iff (is-(A®B) {c) o is-Aloutlic)))
& (¢ =pgg ¢’ 2 outllc) =, outl(c?)

iff TRUE,
because isr{c) o Mloutl(c)) = 1, M(is-A)(1) = TRUE.,
and M(=,) (4, 1) = TRUE

{s-{A—>A®B)(inl)

iff (1s-Ala) o 1s-(A®B)(inl(a)) & (a =, 2’ > inl{a) =,gg inl{a’)

iff TRUE

is-(A®B-—bool)(isl)
iff (1s-(A®B)(c) > TRUE) & (¢ =,gp ¢’ 2 1sl(c) = isl(c")

Iff {{1s1(c) & isi(c) o outl (c) =, outl(c)) &
(1srfc) & isr(c) D outr(c) =g outr (¢)) o
isl(c) = islc))

iff TRUE, because isl(c) = islic) iff (isl(c) & tsr{c?)
or (isr{c) & 1sl(c))
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For id, i1s-(D—D){id) iff {is-D(d) > is-D(id(d)) and d =p d’ > id(d) =5 1d(d)
which is obviously true because id{d) = d.

For the composition operator °,

i5-{(A—B}®(B—C)—{A-C()

Iff (15-(A—B){D) & 15-(BoC)(@) S 1sA-C)ED) & =45 & &
=A-+Bg'3g°f=A_,cg'°ﬂ

iff ((1s-Ala) o is-B(fla))) & (is-B(b) > 13-Cl(g(b))}
> is-Afa) o 1s-Clg ° fla)))

& ((a = a’ > fla) = fla)) & (b = b’ > gh) = gb)
Sla=a' >g°fla) =g°fal

&((a = a’ o fla) = F(a)) & (b = b’ o gb) = gb))
sfa=a’ og°fla)=g’°flal

iff TRUE, because g ° fla) = g(fla))

For curry,
1s-((A®B—C)—{A-B—-C))(curry)

Iff 1s-(A@B—C)(f) o is-(A—B—C)(currylf))
&sz@B—!C f Dcun'y(ﬂ ZA—QB—PC Cul‘ry’(f']

iff{(is-(A®B)<a,b> > is-Cifl<a.b>)))
S (is-Afa) o is-B(b) o is-C{curry{f){a)(b))
& ((<a,b> = <a’, b’> o fl<a, b>) = f[ca’ b’>))
S (a=a’ ob =b o currylf)(a)b) = curry (f{a)b")
& ((<a, b> = <a’, b’> o fl<a, b>) = f'(<a’, b*>))
. cla=a’>2b=Db>

curry{fi(a}(b) = curry(f){a)(bM)
iff TRUE, because curry{f{a)(b) = f{<a, b>)

The other operators are similar.

Proposition 10: Preamble Simplification Theorem. If, as described
in the Identity Map Theorem, I(h) = h, then expression is-(D; — D,)(h) can
be eliminated from any preamble.

Proposition 11: Criteria Simplification Theorem The interpretation
of theory schema axioms specifying products and sums are (trivially)
deducible in the target theory.

Of course, the designer may also specify is-D{d) = TRUE for atomic domain
D. This occurs when any value in the target domain I(D) is a legal source

representative.



Chapter 7

Application of Interpretation Between Theories to
the Compiler Design Correctness Problem

7.1. Correctness Criteria - Chapter Overview

This chapter {llustrates how the theories and interpretations are specified for the
compiler design correctness proof and discusses the proof process. The specification
of a programming language as an abstract data type is discussed. Denotational
semantics is selected for specifying programming language semantics and Is
incorporated into the theory specifying the programming language. Assuming the
specification language is based on denotational semantics, a compller design is
defined as an interpretation of Ly, . 10 Liyrpet- The algorithms for translating
axioms in T,,,.. and strategles for deducing the translated axoms In T, are

discussed.

7.2. Defining Programming Languages as Higher Order Abstract Data
Types
An abstract data type is a set of operations and the definitions of the
relationships between the operations. We take the position as in [wand 80] that a
programming language is, semantically, just a complex data type {or conversely. a
data type is just a simple programming language). A programming language

specification can be defined as an abstract data type where there are operations for
1. building program phrases

81



2. assigning meanings to program phrases
The two groups of operations are called the defined language and the defining
language. respectively. This terminology is used In [reynolds 72]. Both languages

constitute the language for the theory that defines a programming language.

The defined language is based on the context free grammar of the programming
language. For example, the following production, written in BNF, defines the

structure of a command:

command -» identifier := expression |
output expression |
if expression then command else command

This is converted to the following three function symbols and their signatures:

:=: identifler ® expression — command

output: expression — command

if: expression ® command ® command — command
The domain symbols in the signatures correspond to the non-terminal symbols in the
BNF rule; they identify the type of a syntactic object. The defined language is actually
the "abstract syntax” of the programming language. The abstract syntax defines the
structure of a phrase in terms of constituent phrases. The syntactic sugaring in the
BNF rule (e.g., then) was removed by converting the programming language to prefix

notation. With abstract syntax it is clear how to construct a syntactic object. but not

how to write it. At this point, parsing is not constdered in the proof.

The defining language contains operations which evaluate the defined language:
Le.. it is the semantics of the programming language. We regard the meaning of a
program phrase to be a mathematical object. The operations in the defining language
are functions which take elements of a defined language sort as arguments and

return elements of a defining language sort. The functions in the defining language
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are a homomorphism from the defined language to lambda calculus {or combinator
calculus). This means the deflning language is a denoctational semantics for the
defined language. The denotational semantics Is specified as a formal system. A
major difference between the language of the formal system here and the languages
described in Appendices A and B is that the language has higher order operations,

domains, and domain equations.

The operators in the deflning language are taken to be the semantic functions
associated with the denotational semantics of the programming language. The
axioms and/or rules of inference specify the semantic equations for the programming
language. Denotational semantics was selected because the method applies to a wide
variety of programming constructs, including most of those in Algol 60, Pascal, and

LISP.

An example of the defining language is the command continuation domain, cont,
specified as cont = state —» answer. There would be a semantic operator, such as C:
command — cont — cont where the meaning of a command, an element of a syntactic
domain, is an element of the function domain (cont — cont), a semantic domain. I
command was specified as above, then there would be three axioms, each specifying

the behavior of a particular command fn terms of the semantic operator C.
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The additional operator symbols in the theory used to define functional
application and abstraction depend on whether terms are written in lambda calculus
or in combinator calculus. Combinator calculus has the same meaning as lambda
calculus; they are two different notations for a functional high-level language. Both
may be considered because they have different effects on the efficiency of the

translation and deduction necessary for the correctness proof.

If lambda calculus is used. there are operators for expressing lambda abstraction
and operators for lambda applications. The combinator calculus also has application
operators. The combinators in combinator calculus are additional constants that are
defined as lambda expressions. Lambda expressions can be translated to combinator
expressions where the translation produces an expression without bound variables.
Some researchers are suggesting that because lambda expressions are easier to read
the specifications should be written in lambda calculus and the combinator calculus
used internally in an automated verification system [turner 79]. However, there is
much work to be done on this issue and future research in this area is proposed. For
purposes of readability, lambda calculus is used in this research. Examples of

Tsource aNA Tyarger are presented n Chapter 8.

7.3. Specifying the Compiler Design as an Interpretation

Because the defined language is used to specify abstract syntax and the defining
language is used to specify semantics, the compiler design is an interpretation that
maps the source defined language into the target defined language (syntactic
domains to syntactic domains) and maps the source defining language to the target
defining language (semantic domains to semantic domains). For example, a source

syntactic domain expression can be interpreted as a target syntactic domain code,



where, in particular, the source expression constant 1 is Interpreted as the machine
instruction [loadn, 1]. Examples for the defining language include interpreting a
memoery domain as a memory domain, or interpreting various source continuations,
such as a command continuation, an expression continuation, or a declaration
continuation, as some machine continuation. At a more detailed level of design,
perhaps numbers are interpreted as bitstrings, and stacks as memory-counter pairs.

Detalled examples are presented in Chapter 8.

However, as it was noted earlier, the source and target semantics must be written
In the same style in order to find an interpretation, as defined in this paper. This
enables one to construct a correctness proof based implicitly on structural induction
on the source language. This is explained in the next section. As we will explain
later, this has the same applicability as the algebraic approach to compiler design
correctness, but results in a different proof organization. Other verification methods
will briefly be discussed. They result in complicated induction arguments and may

be difficult to apply in large-scale problems.

A primary com;ern is that the verification process should mirror the informal
specification and justification that is actually done by a designer. The veriflcation
process should be a natural extension to the design and provide a reasonable
document of the work done. The compiler designer maps each source programming
language construct into some target code and does a mental comparison of the
source construct behavior and the construct translation behavior. This is typically
done independent of the other constructs. Perhaps the designer perceives the source
construct in a certain state in an arbitrary program, and mentally views the relation

between input to and output from the construct, including any possible side effects it
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has. The source construct translation is perceived in the implemented state in an
arbitrary machine program. This has some input/output behavior and side effects.
With assumptions about states and program surroundings, the mental comparison of
behavior is done. With this in mind, it seems fairly natural to apply the approach
proposed in this paper. It does not seem natural that the designer mentally
constructs elaborate machines that interpret each programming language and then

determines how any state in one machine is implemented in the other machine.

Programming language semantics are used in this application to determine the
effect of a representation change, and similarity of source and target semantic styles
enables a straightforward analysis of the representation change. If the programming
language specifications are developed a priori, then it may be impossible to find an
interpretation. However, if this is the case, the source and target specifications may
be rewrlitten so that they have the same semantic style, and other methods used to
show that specifications written in different semantic styles define the same
programming language. This is an easier problem because one would just have to
focus on the change of semantic domain as there would be no representation change
of the programming language syntax. Also, one could refer to publications for
examples of how to rewrite, say. a direct style specification as a continuation style

specification, or a store style as a state style.

Lastly, some work, such as[wand 82b] and [royer 86] along with compiler-
compiler research is being done where, rather than given source and target
specifications independently, the target specification is derived from the source using
semantic preserving manipulations. In this work, the derived target semantics is

similar to the source semantics, but one step closer to an implementation. Hence,



the applicability of the verification approach proposed in this paper to verify the
correctness of the derivations. In fact, it is most likely the proposed verification
approach would succeed for proving derived target semantics correct or for verifying
the compilation of a source language into some "intermediate” language. This
research may help provide a means of certifying a multi-level design. Some

traditional certification methods require refinement to the lowest level.

7.4. Correctness Proof Based on Structural Induction

In proving the correctness of a compiler, it must be shown that the compiler is
correct for any arbitrary input to the compiler. The traditional method of debugging
demonstrates that a compiler will only work for some sample input. "To prove that it
works for arbitrarily complex data it is natural to define data objects inductively. We
then show that it works for the most elementary data, and that it will work for data of
any degree of complexity provided that it works for all data of lesser complexity, We
may then induce that it works for all data [burstall 68]." This method of proof is

called structural induction

The inductive ordering is defined in terms of the relation "constituent”. An object
A is a constituent of object B if A is identical with B or if A is a constituent of a
component of B. A proper constituent is a constituent of an object that is not
identical to the object. The tnduction principle for this ordering is: if for some set of
structures a structure has a certain property whenever all its proper constituents

have that property then all the structures in the set have the property.

If the compiler is not optimized or optimization occurs after the target code is

produced, the compilation of each syntactic type is independent of the compilation of
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other syntactic types. Thus, compiler cotrectness can be stated in terms of the
compilation correctness of each syntactic type. Structural induction is used to prove
more complex source language syntactic cases correct in terms of syntactic objects of

lesser complexity.

The inductively defined data object in the compiler design correctness proof is the
source theory. The abstract syntax of the source language specifles each syntactic
type of the source language in terms of constituent syntactic types. The denotational
semantics of each syntactic type is defined in terms of the semantics of the
constituent syntactic types. All legal program phrases and true properties about
program phrases are deduced from the theory. If all objects in the source theory are
correctly implemented, then any source program is correctly tmplemented. This is
stated formally in the Implementation Theorem; if the interpretation is correct then
the implementation of anything deducible in the source theory is deducible in the

target theory.

The Implementation Theorem was proved by structural induction where the
inductive ordering is on the grammar of the theory. Thus, the structural induction
foundation is established once. and the designer can ignore the details and follow the
recipe given in the correctness criteria. The induction argument is automatically
incorporated into the mapping that occurs when the interpretation is applied. This is
a mechanical process. After the interpretation is applied, the correctness proof
proceeds by deduction in the target theory, again, much of which is a mechanical
process. The proof primarily involves rewriting terms using the semantic equations

in the target theory.



Thus, two possible advantages can be achieved by using the proposed verification
method. One, the induction argument, which in some methods is interleaved
throughout the proof obscuring the argument and making mechanization difficult, is
achieved simply and painlessly as a translation. Two. the proof is done in a relatively
small environment, the target theory -- some other methods require simplification

using both the source and target theories.
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Chapter 8

Examples

8.1. Stacks - Example of Subsets and Quotients in the Interpretation

Wand gives a good example of how stacks are implemented by array-integer pairs
in [wand 82a]. This is reviewed in Appendix B. It 1llustrates how and why the
predicates is-stk and =, are defined. If the integer represents the top of the stack
and the stack contents are represented by array contents from location one to the
positive integer value, then an array-integer pair is a stack representative if the
integer is greater than or equal to zero. Two array-integer pairs are stack equivalent
if their integer parts are equal and when the integer is greater than zero, their array
contents from one to the integer value are equal. One can imagine the usefulness of
subsets and quotients in a computer application because one can imagine specifying
memory components as arrays and situations where it would be desirable to view
different memory configurations as equivalent and certain memory configurations as

llegal.

This example also points out the dangers of overspecification. If the source
theory. the theory of stacks, is overspecified, it may restrict or prevent various
implementations, or lead to inefficient and unnatural implementations. Consider the
following five (incomplete) specifications of a stack. The first three define unbounded

stacks and the last two define stacks with maximum length of 100.

1. (unbounded, atomic stack spec.) atomic domain stk; and axioms, such
as pop(push(s, v]) = s



2. (unbounded, finite length stack spec.) domain equation stk,= val®
whereval*is 1 ®@val® (val @ val) & (val @ (val @ val)) @ ...

3. (finite and infinite length stack spec.) domain equation stk = 1 & (val

® stky)
4. (bounded, atomic stack spec.) atomic domain stk, and axoms, such as
length(s) < 100 > pop (push(s, v)) = s

5. (bounded stack spec.) domain equation stks= 1 & val ® val? @ ... ®
vajloo

Specifications 2 and 5 have the concept that a stack "carries around" its length.
In specification 4, the length can be calculated when necessary. Now, consider four

(incomplete) specifications of an array, two unbounded and two bounded.

1. (unbounded. atomic array spec.} atomic domain arr, and axioms, such
as retrieve(store(a, i, v)) = v

2. (unbounded array spec.) domain equation arr, = location — val

3. (bounded, atomic array spec.) atomic domain arr, and axioms, such as
1 $1< 100 > retrieve(store(a, i, v)) = v

4. (bounded array spec.) domain equation arr, = Ib ® ub @ arr,

Assume val is Interpreted as val. Unbounded stacks can be fmplemented by
unbounded array-integer pairs. For example, stk, can be interpreted as arr, ® Int,
where is-stk(<a, 1>) if 1 2 0, and <a, > = <a’. > E=1 & {1>0>(1 <j<1)
retrieve(a, j) = retrieve(a’, {))). Similarly, it can also be interpreted as arr, @ nt, where
{s-stk(<a, {>) 120, and <a, 1> =y <a’, 1> U= & U>0> (1 <jsaf) = a’{ih.

This assumes =,,, 13 inclusive.

Now, consider stk,. Using the interpretation defined in this paper, stk, is
interpreted as val®. The specification stk, restricted the set of possible
implementations. However, this can be slightly relaxed because if (1) ts-stki<a, i>) iff i

>0and (B <ca. > =<a, 1> ffl=1'"&{l>0>(1sj<1) a(j) = a’()), then val* is
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isomorphic to the quotient of the is-stk subset of arT, ® int. Define the isomorphism

0: Uppe = Ugggtie/ Uz N as 0(<>) = [<a, 0>} and B(<v,, ..., v >} = (<a. n> | (I<] < n) afj) =
»

vj}. . Stmilarly, stk, can be implemented as art, ® int. The domain stky cannot be

implemented as any array-integer pair because stk, allows infinite length stacks and

array-integer pairs represent finite length objects.

The bounded stacks stk, and stkg can be represented as any of the arrays. For
example, stk can be implemented as arr; ® int where is-stki<a, {>) #ff0<1<100 It
can be implemented as arr; ® int where is-stki<a, ) ff 1 2 0. And it can be

implemented as arr, ® int where is-stk((<], u, a>, £>) if 1=0,u=100and 12 0.

8.2. Interpretation Alternatives

The interpretation defined in this paper is a relatively simple extension of the
interpretation defined in (wand 82aj. The designer is allowed considerable freedom in
interpreting atomic domains. However, the interpretation of derived domains is
defined in terms of constituent domain interpretations. This bottom-up method of
domain implementation s described in detail above. This process ensures that the

source domain equations will be satisfled in the implementation.

Some simple interpretation alternatives are discussed in this section.

8.2.1. Interpreting an Atomic Domain as a Function Space

An obvious extension of the interpretation defined in this report is to allow an
atomic domain D to be represented by a function space of atomic dorains in the
target theory where the entire function space contains legal source representattves

(i.e.. is-D(d) = TRUE for all d) and each value in D has one representation In the target
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(lL.e., =p I8 =1(D))~ In this simple extension, is-D and = are inclusive predicates.
Thus, a source structure can be derived from the target structure and the

interpretation.

If the entire target function space does not represent source values, or if
individual target function space values do not represent unique source values, then
the predicates i1s-D and =p are not the trivial cases described above. The designer

would have to prove that the predicates exist and are inclusive.

8.2.2. Top-Down Domain Interpretation

Initially, the designer may wish to ignore the composition of a dertved domain and
define its interpretation irrespective of the interpretation of the constituent domains.
For example, for the compiler problem the designer may know that a source
environment is represented by some target environments and initially ignore the fact
that these environments are highly structured domains. However, the designer must
eventually ensure that this interpretation is consistent with one developed in a
bottom-up manner; the implementation of a dertved domain must be consistent with

the implementation of its constituent domains. Two examples are considered below.

First, take the case where a designer decides that the source domain of
prog_rammlng language environments, call it state, should be implemented by some
target domain of machine language environments, call it mstate. In the source theory
there is the domain equation state = memory ® input @ output. In the target theory
there is the domain equation mstate = stack & memory @ input ® output. The
bottom-up interpretation process ylelds the interpretation of state as {memory @

input ® output). The process is easily relaxed where state can be interpreted as
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mstate. This requires that two mstate values be state-equivalent if and only if their
memory, input, and output projections are equal. The reason is Umcmory ® input ®
output 1S 150mOTPhIC t0 Upgtare /U the bottom-up interpretation is isomorphic to

the top-down interpretation. The top-down interpretation is preferable because the

target operators are specified in terms of mstate.

Consider another compiler application example. Say in the source theory there
are domains for statement continuations, cont, and expression continuations, econt.
The syntactic structure for the programming language specified by the target theory
is simpler than that specified by the source theory. In the target theory there are
only machine instruction continuations, mcont. Using the specifications of state and

mstate in the previous example, the continuation domains are defined by:

1. cont = state — (state @ error)
2. econt = (value — cont)
3. mcont = mstate — (mstate @ error)

Assume the designer decides that the source continuations cont and econt are
implemented by some particular partitioned subsets of mcont. Also assume that

there is no representation change for value; value is interpreted as value.

The domain equations for cont and mcont are similar. There is no problem v:rlth
cont as mcont because the bottom-up interpretation is I(state — (state @ errot])) =
(mstate — (mstate @ error)). Values in mcont are restricted to those that accept or
return source representative values in mstate because is-cont(z) iff is-(state — (state +

error})(z).

The representation of econt in mcont is not as straightforward because the



domain equations differ in syntactic structure. An expression value is an
intermediate result that is passed to the rest of the program. At the target level, an
intermediate result is an environment, mstate, which is passed to the rest of the
program. A bottom-up interpretation of econt is (value — mstate — {mstate ® error)).
This is isomorphic to (value ® mstate — (mstate @ error)). Assuming the stack
component of mstate is isomorphic to value®, then the interpretation of econt is
isomorphic to {(value ® (value* ® memory @ input ® output)) — (mstate & error}).
Call this ecoﬂt‘. The domain econt! is isomorphic to a subdomain of mcont. This is
important because the source operator f: econt — D can be interpreted as a term I{f):
meont — I(D), where I({f}{x)) 1s {(H){1(x)) and I(x) is implicitly coerced to type mcont via

retractions between econt! and mcont.

In the interpretation of cont above, the domain restriction was stated explicitly in
= ont The domain restriction was derived inductively from constituent domains for

the interpretation of cont. The domain restriction for the interpretation of econt was

implicit because the interpretation is a subdomain of an existing target domain.

8.3. Direct/State Tiny - State Interpretations

In this section and the following section, implementations of the programming
language Tiny., as defined in [gordon 79a), are discussed. Tiny has identifiers,
expressions, commands, and programs as programming language constructs. In this
section, the semantics of constructs are defined in terms of state changes. A direct
semantic description means the description does not have continuations. This 1s

addressed in the next section.
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The execution of each command of Tiny results in a state change. The state has

three components:

1. memory: this is a correspondence between identiflers and values. In
the memory each identifler is either bound to some value or to
unbound.

2. input: this consists of a (possibly empty) sequence of values which can
be read using the expression read and is supplied by the programmer
before the program is executed.

3. output this is an initially empty sequence of values which records the
results of the command output.

The meaning of an expression {s a value-state pair, where a value is either a
booleann or a number. Because expressions may contain identifiers, the value
depends on the state. The meaning of a program, given some input, is some output

Qr an erTor.

Refer to the direct/state semantic description of Tiny as DS-Tiny. DS-Tiny 1s
formally specified as a source theory in Appendix C. The direct/state semantic
description of the target theory is also specified. The interpretation is defined and

part of the correctness proof is illustrated.

The target language for DS-Tiny has instructions and sequences of instructions
(code) as programming language constructs. The syntactic hierarchy of the defined
language Is simpler than that of DS-Tiny. Refer to the target language as
DS-Tinytarget. The "execution” of an instruction or code resuilts in a change of the
target (or machine) state, call it mstate. The target state is almost the same as the
source state. It has as an additional component a stack. The stack is used in

evaluating expressions.

In both DS-Tiny and DS-Tinytarget, if any of the constructs produces abnormal

results, the error result must be passed to the program following it. This is what



happens in a direct semantic description. The extra checking involved makes for a
more complicated specification and may be unnatural because intuitively, when an
error occurs the computation cannot be stopped, but must be continued. The
continuation semantics of Tiny in the next section results in a more elegant and

"natural” specification.

In both source and target specifications, the theory of domains, described in
Chapter 6, is assumed and not written as part of the specification. This includes all
domain operators, axioms, equality symbols, and loglcal symbols. However, the
domain constructor * was not specified previously. Operators and axioms for it are
specified in each theory. Also, instead of using operators isl and isr on sum domains,

we use, for example, isnum: (num & bool) — bool for 1Sl 1 poorr €tC.

The interpretation from the language of the theory for DS-Tiny to the language of
the theory for DS-Tinytarget is also specified in Appendix C. The defined language
{abstract syntax) of DS-Tiny is interpreted as the defined language of DS-Tinytarget.
and the deflning language (semantic domains and operators) is interpreted as the
defining language of DS-Tinytarget. For example, the operator symbol + in the source
defined language has signature (exp ® exp — exp). The interpretation, denoted I, of +
is the term (AE, E, . E, » E, « [add]) with signature {ecode ® ecode — ecode) where
Nlexp) = ecode. Thus, the source term +(1,, 1,) is interpreted as (II,) « I(I,) » [add]). An
addition expression with two constituent expressions is implemented by

implementing each of the constituents and then executing the instruction (add].

Another example, is the interpretation of state, a domain in the source defining

language. The domain state is interpreted as mstate. This is described in detall
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above in Section 8.2.2. The semantic operator for commands, € com — (state —
(state @ f{error})), is interpreted as the term ACs.MC(C)(s) with signature (code —
mstate — (mstate @ (error})). The interpretation of the semantic operator for
expressions, E: exp — (state — ({value @ state) ® {error)), is more difficult. It is
interpreted as (AEs.HIE)(s)) with signature {ecode — mstate — ((value @ mstate} @

{error}))), where H is a new operator symbol and H is defined in terms of ME.

Part of the correctness proof is also in Appendix C. Ignoring the preambles (they
are trivially satisfled), the source axioms are translated using the interpretation, and
then the translated axioms are deduced in the target theory. The transiation
essentially involves using the definition of I and f-conversion. The deduction of the
translated axioms in the target theory primarily uses the semantic equations of the
target theory as rewrite rules. Most of this is routine and could be mechanized. The
creative part of the proof arises when the target theory does some checking that is not
evident in the translated axiom. For example, in the target theory, varlous
instructions (e.g., [notl], leq)) operate on the stack. Prior to execution, the stack is
checked to see if it meets certain conditions (e.g., the top of the stack is checked for a
boolean value prior to executing [not]). The axioms at the source level do not refer to
any expression stack. Therefore, it must be proved that those required stack
conditions are always true in the implementation. These conditions are proved by

{explicit) structural induction in a set of lemmas, also in Appendix C.

Axioms (Ela) to (E5) are discussed in the correctness proof in the Appendix. All
the axioms are presented in the proof for the implementation of the

continuation/state description of Tiny. This is reviewed in the next section.



8.4. Continuation/State Tiny - Continuation Interpretations

In the previous section an implementation of Tiny was described where the
semantic description was written in a direct style. In this section the semantic
description of the same programming language is written in a continuation style
(sometimes referred to as standard semantics). With continuations, denotations do
not transform states directly, but rather, transform states indirectly though
continuations. A continuation is a domain that models control. They were Initially
developed to model unrestricted branches (gotos}, but since then, have been useful
for modelling other nonstandard evaluation orderings. The simplification strategies
for function notation are sometimes mistakenly taken for the program sequencing
strategy (the operational evaluation). This is fairly innocuous when the order of
evaluation is not important. But, some programming languages provide the
programmer with the ability to change the order of evaluation. For Tiny,

continuations allow immediate program exits when error conditions are raised.

It should be noted that in [reynolds 74] it was shown that direct semantics are
included in continuation semantics. So, any direct semantic specification can be
rewritten with continuations. Thus, it is reasonable that we require that both the
source and target theories be specifled with the same semantic style. However, some

proofs of congruence between direct and continuation semantics are quite difficult.

Refer to the continuation/state description of Tiny as CS-Tiny. This, along with
the target theory specification, the implementation, and the proof, are in Appendix D.
In CS-Tiny, there are two kinds of continuation domains, one for commands, denoted
cont, and one for expressions, denoted econt. As explained in [gordon 79al, a

continuation is a function from whatever the "rest of the program” expects to be



passed as an intermediate result to the "final answer' of the program. The
continuation represents "the remainder of the program.” A command expects a state
as an intermediate result and the final answer is either a state or an error message.
Thus, cont is defined as (state —» (state @ error)). On the other hand, an expression
expects a value as an intermediate result and this is embedded in a commang.

Hence, econt is defined as (value — cont).

The semantic operator for commands {s C: com — cont — cont. The meaning of a
command is a function of a continuation and a state which yields the final answer of
the program (a state or an error message). The semantic operator for expressions is
E: exp — econt — cont. The meaning of an expression is a function of an expression

continuation and a state which yields the final answer to the program.

Refer to the target theory for CS-Tiny as CS-Tinytarget. CS-Tinytarget is similar
to DS-Tinytarget, except that continuations are used. A continuation in the target
theory, denoted mcont, is a function from the machine state to either a machine state
or an error message. So, mcont = {mstate — mans) = ((stack ® state) = ((stack ®
state) @ error)). The meaning of an instruction or a sequence of instructions is a
function of a machine continuation and machine state which ylelds a machine state

Or an €ITor.

The defined language and the interpretation of the defined language for CS-Tiny
are identical with that for DS-Tiny. The interpretation of the defining language for
CS-Tiny includes interpreting state as mstate (same as for DS-Tiny), cont as mcont,
and econt as a subdomain of mcont. This is described in detail in Section 8.2.2.

Notice in particular the interpretation of k: econt. The domain econt is isomorphic to
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{value — state — (state @ error)). Its interpretation, (value —» mstate — (mstate @
error)), is isomorphic to a subdomain of mcont. The variable k is interpreted as the
term (Avistk, m, 1, 0).z((v ® stk, m. 1, 0))): (value — mstate — (mstate © error}), where z
has signature mcont. The interpretation of k can also be uncurried so that it is (A(v ¢
stk.m, 1, o). z((v * stk. m, 1, 0))). If v « stk is replaced with some other variable, say

stk, then the whole term can be rewritten as z.

The correctness proof proceeds as in the proof for DS-Tiny. It involves deducing

interpreted source axioms in the target theory.

There is also another continuation semantic definition of Tiny where econt is
recursively defined as econt = cont & (value — econt). In this specification the
implicit notion of an expression stack is seen more clearly. Refer to this description
of Tiny as CS-Tiny2. Its specification is in Appendix E. Using the interpretaton
described in this paper, econt cannot be mapped into a subdomain of mecont.
However, if econt is unfolded where econt, = cont and econt,,, = value — econt,,
then we can define an interpretation as above. The terms have ellipses in them and

an appropriate interpretation must be found. For example the axiom:
Effread]|(l) =

Avy ... v, {m, L, o). nulll) - empty-input,
kthd))(v,) ... (v, ) ((m, tU1, o))

would be interpreted as;
ME([read]}(z) = .on:

Mev, .. vp>, m, i, o). nullli) - empty-input,
z{(<hd{f)> » <v, ... v,>. m, tli), o})
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8.5. Continuation/State Small - Declaration and Procedure

Interpretations

In this section an implementation of the programming language Small, as defined
in [gordon 79a}, is discussed. In addition to identifiers, expressions, commands, and
programs, Small has declarations. The declarations allow programmer defined
constants, variables, and, procedures. Small, as defined in {gordon 79a], also has
functions. We eliminated this from the language because it is similar to procedures.
The semantic description in [gordon 79a] {s written in a continuation/store style. The
semantic description in this section is written in a continuation/state style and is a
natural extension of the CS-Tiny specification. It is referred to as CS-Small. The

specification and implementation of CS-Small are in Appendix F.

In CS-Small there are three types of continuations: there are continuations for
commands (cont), for expressions (econt), and for declarations (dcont}. A state

consists of:

1. an environment this binds identifiers to denctable values or to
unbound. The denoctable values are locations, boolean or basic values,
or procedure values.

2. a store: this binds storable values to locations. The storable values are
the input file and boolean or basic values.

3. an answer. this is a sequence of boolean or basic values followed by
either error or stop. This denotes the total output of a program.

The domain dv is the set of denotable values. The continuations are defined as

follows:

1. cont = state — state
2. econt = dv — cont

3. dcont = env - cont

The meaning of a command or an expression is similar to that in CS-Tiny. The
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meaning of a declaration is a function of a declaration continuation and an
environment and yields a state-to-state transformation. The domain for procedure
values, proc, is defined as (cont — (dv — cont)): a procedure value, given a
continuation (the "rest of the program” following the procedure call) and a denotable
value (the actual parameter to the procedure), returns a continuation (the "rest of the

program" with a modified state).

The syntéctic hierarchy of the defined language of the target for CS-Small,
referred to as CS-SmallTarget, is simpler than that of CS-Small. CS-SmallTarget
contains iInstructions and sequences of instructions as programming language
constructs. Consequently, there is only one kind of continuation domain, mcont. As
in CS-TinyTarget, mcont is a function space from mstate to mstate. The mstate for
CS-SmallTarget is a bit more complicated than that for CS-TinyTarget. It has five

components:

1, an environment: this is a stack of local environments (activation
records or association lists). Local environments are distinguished by
begin/end instructions, the environment is altered in bind and
mkproc instructions, and the environment is accessed in the load
Instruction.

. a store: this.is essentially the same as the store for CSSmalil.
. an answer: this is essentially the same as the answer for CSSmall.
. a stack: this i1s a stack of denotable values for evaluating expressions.

.a dump: this is a stack of environments. Environments are pushed
when a procedure is activated and the dump is popped before returning
from a procedure activation.

G b W N

The interpretation and part of the correctness proof are also in Appendix F. It is
similar to the interpretation of CS-Tiny in that different types of continuation
domains at the source level are interpreted as some subset of a continuation domain
at the target level. Also, the source state domain is interpreted as the target state

domain. The concept is the same as that for CS-Tiny with the exception that state =
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(env ® store ® ans), mstate = (menv ® store ® ans @ stack ® dump), and the
interpretation of env is not menv, but, rather, the interpretation of env is isomorphic
to a subdomain of menv. Specifically, the interpretation of env is (id — (mdv &
{unbound})). This is not isomorphic to {id ® mdv)*. However, we would like to
implement the function space as the nonfunctional domain. the conversion
sometimes referred to as defunctionalization. It is easy to see how any function in
the function space can be represented in the nonfunctional space. For example, the
undefined function f {for all 1 in id, f{i) = unbound) is represented by the empty list,
<>. The function f, defined at I, and I, such that flI}) = ¢, and flI;} = e, is represented
by <<I,. €,>, <, €,>>. The nonfunctional domain is larger than the functional one.
An equivalence relation is defined on it in order to map it back to the functional
domain. Intuitively, only one mdv element must be paired with each id element.
Hence, <<I,, e,>. <I;. €,>> is tsomorphic to <I,, e,>, and <I,, e,> Is a representation
for the function f, such that flI;) = e,. The domain (id ® mdv)* is isomorphic to alist,
and alist is isomorphic to alist ® {(<>}. The domain (alist ® (<>}) is isomorphic to a
subdomain of menv. Intuitively, at the source level, the "current” environment {s one
list. At the target level, the “current" environment is a stack of lists. The
concatenation of all these lists into one list does not affect the semantics. In
particular, when evaluating a load instruction the stack of lists is accessed in the
same order as would a list constructed by concatenating the list; the local variable is

closer to the top of the stack or the beginning of the list.
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The interpretation of the defined language s similar to that of CS-Tiny. However,
CS-Small has additional constructs, such as declarations and procedure calls. For
example, the interpretation of the procedure declaration proc(l, I;. C) is the code
[mkproc, (bind I,] » IC) « [ret]] » [bind Il. The interpretation of the procedure call

E(E,) is I[E) » I(E,) « [pcall].

The interpretation of the semantic operators are also similar to that of CS-Tiny.
For operators with econt or deont in the signature, the interpretations are terms in
which the mdv or menv arguments are "absorbed” into mstate by the usual
uncurrying method.

Note that abbreviations are used in the axioms. These are defined following the
axioms. In particular, deref takes an argument of type econt and returns an
argument of type econt. If the denotable value passed to the econt object is not a
location, then the econt object is returned. If the denotable value passed to the econt
object is a location and that location in the store is not unused, then the value in the
store is made the argument to the econt object: the denotable value is dereferenced.

The abbreviations are interpreted. The interpretation for deref is given the name

derefT,

The abbreviation deref is used for the (‘right-hand-side”) meaning of a source
expression and is given by the operator R. The operator R is defined in terms of E
and deref. Thus, the right-hand-side meaning of an expression is a function that
takes either a boolean or basic value. The (7left-hand-side”) meaning of an
expression, given by E, s a function that takes boolean or basic values, in addition to
locations. This is why the interpretation of R is defined in terms of ME and dereiT,

while the interpretation of E is defined in terms of ME.
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Chapter 9

Comparison of Compiler Design
Verification Methods

The compiler correctness problem has been considered an important application
of formal verification from the beginning of verification research. This chapter briefly
reﬁews the progress by characterizing previous research in terms of the semantic
definition method and proof organization used. This may overstmplify previous work,
but, it is beyond the scope of this dissertation to give a detailed comparative analysis.
A comparative analysis of different verification methods and systems of the last
twenty years would in itself be an interesting and useful research topic. The purpose
of this discussion is to gain some perspective on the topic and determine how the

work discussed in this dissertation relates to other research.

The verification methods can be differentiated by the specification languages (or
logics) used and how two specifications are related. For the compliler problem, each
specification contains the syntax and semantics of a programming language. The
choice of specification language effects the types of relationships that can be defined
and the correctness proof organization. Hence, it effects whether the method is
conceptually clear, whether it can be automated, and whether it can be used for real.

large applications.

In this chapter, compiler design verification methods are distinguished by
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whether the specification is based on (1) denotational, algebraic, or axiomatic
semantics or (2) operational semantics. Assume the abstract syntax of the

programming language is specified. The basic idea (s presented in Figure 9-1.

source program target program

J

campiler

source semantics - # target semantics

Figure 9-1: Compiler Design Problem
Assuming a non-optimizing, syntax-directed compiler, the translated source program
results from the translation of each construct’s constituents. This is indicated by the
tree structures in the figure. The semantics of the source program and the translated
source program must be related. For the compiler design to be correct, the diagram
must commute for any source program. Hence, an induction argument must be

made over all source programs.
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If the semantcs is written in a denotational or algebraic language then a
structural induction argument on the source syntax can be made to determine

whether the source and target are related. This is illustrated in Figure 9-2.

source program target program

/

| |
ATTA

source semantics target semantics

compiler
—

Figure 9-2: Compiler Design Problem Based on Denotational Semantics
Figure 9-3 crudely illustrates the problem for operational semantics. An abstract
machine, or interpreter, is defined for each language. It must be shown that any
compiled program when executed, has the same effect as the source program would

have if it could have been directly executed.
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source program target program

@fG - E/:Cj
—>

. l

source interpreter target interpreter
\
?
source answer «f— — target answer

Figure 9-3: Compliler Design Problem Based on Operational Semantics

9.1, Using Denotational, Algebraic, or Axiomatic Semantics

Methods using denotational or algebraic semantics have been based primarily on
the commutative diagram in Figure 9-4. Reports on such research include {milner
721, [morris 73], [chirica 76], [thatcher 79]. [mosses 80], [cohn 81], [polak 80], [dybjer
83], [milne 83|, [orejas 84], [royer 86]. and [despeyroux 86]. Several references
propose that the bottom arrow of the diagram be directed from left to right. This
conflicts with our premise that a source object (meaning) can have two or more

equivalent representations. Reference [orejas 84] also agrees with this requirement.
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compiler specification

source (homomorphism) target
abstract > abstract
syntax syntax

(initial algebra)

source target
samantic semantic
operator operator
(homomorphism} (homomorphism)
source -+ target

(homomorphism)

Figure 9-4: Algebraic Technique

To prove the commutativity of the diagram in Figure 9-4 it is sufficient to prove
that the semantic map is a homomorphism because the compiler specification, the
source semantics, and the target semantics are all defined as homomorphisms. The
commutativity results from the initiality of the algebra specifying the source syntax.
The overall correctness proof is based on structural induction on the source syntax.
The structural induction comes from the inttial algebra property. Other types of

induction may be used to prove some subgoals.

The structural induction argument is used explicitly when one proves the
semantic map is a homomorphism. There is a commutative diagram for every source
syntactic domain, and hence, one for every source construct. Complex syntactic

types are syntactic types that have other syntactic types as proper constituents. The
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semantic maps for complex syntactic types are proved assuming the diagrams for
constituent syntactic types. The proof consists of an interleaving of term

simplification using both source and target properties, and the induction hypotheses.

The semantic algebras can be mapped to other algebras, referred to here as

models or structures and illustrated in Figure 9-5.

source target target
syntax > syntax’ @ syntax
source % target  affmeem target
semantics homomorphism? Semantics’ semantics
source target target
model % model’ modsl

Figure 9-8: Algebraic Technique
A denotational semantics might be mapped to cpo’s and continuous functions. The
models are not relevant to particular correctness proofs, but, should be defined in

general. The {lustration also brings to light both the subsets and quotients inherent

in an implementation.

Related to the algebraic approach is the approach presented in this dissertation.

It is a different paradigm for the compiler problem, where a design or implementation
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is specified as an interpretation. The overall correctness proof is again based on
structural induction on the source language, but it is not justified in terms of initial
algebra arguments. The proof itself is different in that it consists of a translation and
then a simplification using target properties. Instead of proving that a semantic map
is a homomorphism, translated formulas are deduced in the target theory. This is

depicted in Figure 9-6.

source target
syntax source |
target 7, target { SYNtax
# } data ——® data —'l data { ¢
source type type P& * iarget
semantics : i : semantics
source target target

model % model' ““~ modael

Figure 9-8: Interpretation Technique
Again, the models are not relevant in indtvidual correctness proofs, but are used in

this dissertation to show the correctness criteria are compiete.

So. how does the interpretation technique compare with the algebraic technique?
It has been noted in [polak 80] that the concept of homomorphism is hard to
understand and it is difficult to formalize the concept for current verification systems.
The particular proofs involve an interleaving of induction steps. which is difficult to

automate. The concepts of logical theories, mappings, and deduction discussed in
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this dissertation are well-known and in some sense, very intuitive. Many of the

proofs involve fairly easy, but tedious, term rewriting.

Everything considered, the comparison is subjective, especially when one tries to
determine what method is a better way to formally specify and organize mental
thought processes. Informally, a representation is constructed via a mental
comparison of the intended behavior of a concept and the actual behavior of the
hnplementjng‘ environment. An implementation is how the representation is
constructed. An implementation is correct if the representation constructed
preserves the concept behavior. Therefore, to formalize the verification process one

needs formal descriptions of:
1. the abstract concept
2. the implementing environment
3. the implementation
4. the criterta a correct implementation must satisfy

The interpretation method is proposed because these requirements are naturally
expressed. The abstract concept and implementing environment are specified as
abstract data types itheories) and an implementation is perceived as a mapping from
one data type to another. What is particularly important for the compiler problem is
that there is a clear distinction among programming language syntax, programming
language semantics, theory syntax, theory models, and implementations. Wand, in
[wand 82a], notes that the distinction between specifications and modelling is

particularly difficult in an algebraic framework.

A few other references should also be noted in this section. The books [milne

76] and [stoy 77] are standard works on denotational semantics and discuss the
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compiler correctness problem. The correctness proofs are based on explicit
structural induction on the source language and the semantics are related by
inclusive predicates. Their predicates are more general than the ones allowed n this
research, but the correctness proofs are much harder. This was discussed earlier.
As in the algebraic method, the distinction between specifications and modeling is not
sharply defined. However, this research would have been impossible without their

work and the algebraic work.

Lastly, nothing has been mentioned about axiomatic semantics. Little has been
done with first-order programming logics to solve the compiler design correctness
problem. It is mentioned in this section because flynn 78] discusses a comptler proof
using Hoare logic. Lynn's proof of a LISP compiler is a formal, mechanized version of
a proof done by London in [london 71]. " London's proof is based on operational
semantics and is mentioned in the next section. The partial correctniess formula of
the form P{A}Q@, where P and Q are predicates and A is a program. is true if and only if
for all states s and &', P is true given s and <s, s> s in the relation assigned to A,
implies Q is true in 8’. The state <s, "> is in the relation if and only if A executed in s
can terminate in §’. However, states are not represented in the partial correctness
formulas. This leads to rather urnmatural semantic definitions. In particular, the
Hoare logic semantics of function routines are hard to understand because other
indirect notation must be introduced to convey the properties of scope and parameter
passing. New variables are introduced to denote a value before execution versus after

execution.

Lynn's approach is related to the interpretation method in that the partial

correctness formulas for the source language are translated into the target language,
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and then the translated source axioms are proved true. However, the LISP example
chosen is very simple. The translation involves changing variable names into
locations and source language constants into their target representation. The
structural induction argument is also very simple because the source language is a

subset of pure LISP and there are no assignments or global variables.

It should be noted that first-order logic verification systems were used to
mechanically check the compiler implementation proofs in [polak 80] and in [lynn 78].
However, [polak 80] initially uses denotational semantics and defines the problem
within the algebraic framework discussed above. Also, [chirica 86] uses an algebraic
framework to present a method for proving the correctness of parse-driven
implementations. It is algebraic in nature, but uses attribute grammars as a means
of obtaining an algebraic specification. Sequences of compiler translation routines
are proved partially correct via the standard inductive assertion method. These
references are noted. but, not reviewed because it is the compiler design problern that

is the primary issue in this dissertation.

9.2. Using Operational Semantics

With operational semantics, the meaning of a program is given by a sequence of
computation states that results from executing the program on an “abstract
machine". Hence, the meaning of a construct may depend on more or something else
than the meaning of its constituent constructs. For example, in operational
semantics the meaning of a procedure may be represented by a structured object,
sometimes called a closure, which contains, among other things, the text of the
procedure body. In contrast to denotational semantics, textual Information is

operated on and passed to various functions.
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This is made clear in [stoy 77] where the following simple example is presented:

1. Domains:
Bas

B

Exp
Id

U= Id - Exp

2. Operations and variables:
B. Bas —» B

E:Exp—->U—->B
p: U

bh: Bas and b: Exp
I: Id and . Exp

A: Id ® Exp ® Exp — Exp

3. Axioms:
E (bl(p) = B(b)

E (N{p) = E (pN)(p)
E (AL EQE)) (p) = E (Eg) (p(E,/ID

At first this appears to be a denotational description. However, upon close
exarmination of the second axom one notices that E is not a homomorphism; the
meaning of the identifler [ does not just depend on constituents because pfl) is not a
subcomponent of I. The meaning of I is defined in terms of the meaning of p{l). which
can denote more text. A typical specification of E as a homomorphism is E(li(p) = p(D)

where the state p returns a semantic value when given an identifier.

So, two questions arise from this example. Is it an operational definition? If so,
how does one use it in a correctness proof? The word "operational” is ambiguous. A
denotational definition can be considered operational when rewriting and
B-conversion rules are used. Sequences of computation states could correspond to
the sequence of rewriting and simplification steps. However, we prefer to draw the

line at whether or not the meaning of a language construct depends solely on the

118



meaning of its constituents. Hence, the example above is an operational definition

and was in fact, derived from an abstract machine definition In [stoy 771

It is important to show that an operational semantics definition is well-defined.
Uniike denotation semantics, it is not trivial to justify a deflnition. If the example
above was changed so that E is a homomorphism and the atormic components are
well-defined, all components are well-defined. Because E is not a homomeorphism in
the example above, structural induction cannot be used to show that E is well
defined. If there is no choice of evaluation (simplification), then one shows the
definition of E is not circular. If there is a choice of evaluation, then one must show
that all evaluations of a term reduce to equivalent terms; it is not well-defined if two
evaluations of the same term return inequivalent results. Furthermore, a correctness
proof that uses operational definitions must be based on induction over the

computation steps, rather than on induction over the source syntax.

As mentioned above, the example was dertved from an abstract machine specified
in {stoy 77). The machine is defined as a process that modifies a state at each step
until a terminal state is reached. If the domain of states is S, then a function step
with signature S — S and a predicate term with signature S — bool are defined where
step specifies the state transition and term specifles terminal states. A function
machine with signature ({(S — S) ® (S — bool)) - (8 — S) is defined such that
machine(step. term) = Fix{Afs. term(s) — s, flstep(s))). To define any particular

machine, definitions of step and term are given.

This is similar to the Information Structure Model (ISM) in [wegner 70j which

abstracts other operational semantic definition methods such as the contour model
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(johnston 71] or the Vienna Definition Language (VDL) [lucas 70]. An ISM is defined
as a triple M=(1, I, F) where I is the set of all possible computation states, I, is the set
of initial states (a subset of I), and F is a transition function on I to subsets of
1. Hence, the only significant difference between ISM'S and Stoy’s definition is that an
ISM allows nondeterminism. However, Stoy's definition can be modified to allow
nondeterminism via power domains (similar to a powersets). Alternatively, an ISM
can be defined deterministically. In the ISM M, a sequence C= <5,, §; ... , S > is

called a computation if and only if:
l1.forall §;inC, S;is alsoinl
2. if C is not the empty sequence, then Sy is in I,
3. for all S, in C such that 1 # 0, S, is in F(S; ;)

4. C is not a proper initial sequence of any other sequence satisfying (1).
(2), and (3) above.

Typically, a computation state includes such information structures as stacks,
counters, pointers, registers, etc., and the transitton function is defined as a

computer program.

Using this paradigm, the compiler design correctness proof is an equivalence
proof of source and target interpreters. This is sometimes referred to as the twin
machine concept [lucas 68, mcgowan 72, wegner 72]. Let M be a deterministic I[SM.
Then M(Sy) is either (1) undefined or (2) some projection of S;, when S, is the final
state in a computational sequence <Sy, Sy, ..., S,>. Two interpreters M and M’ are
equivalent if the corresponding partial functions are equivalent: M and M’ are
equivalent If for all initial states S, (1) the M computation halts on S, if the M’
computation halts on Sy, and {2) if the M computation halts, then M{Sg) = M’ (S). Of
course, this assumes the state components for the two machines are identical which

is unrealistic. Thus, a map or relation between machine states is required. More
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important, the general problem of proving two interpreters equivalent is undecidable.
However, in practice, the problem is tractable because one does not deal with

arbitrary ISM's, but one ISM is intentionally constructed to be equivalent to the other.

As described in [mcgowan 72|, the proof technique, based on observation and
confirmed by experience, is that if M’ is constructed with the intention that it be
equivalent to M, then given input S, it is likely that some of the intermediate
computation steps of M are related to some of the intermediate computation steps of
M’. In practice, the proof becomes tractable by constructing mappings of the two

computations which formally express intermediate relationships. This is {llustrated

in Figure 9-7
S, § .. s, § ., S .., S
0 1 i i+1 k halt
vl ? 7 ?
s, § ., s, 8 .. s .., '
0 1 m me1 n halt

Figure 9-7: Twin Machine Technique

A more realistic fllustration of what goes on in the proof is given in Figure 9-8.

There are two types of mapping. One type relates variables (or data structures) in

one interpreter to variables in the other. The other type of mapping identifles and
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source interpreter target interpreter

data structures data structures

——1
computations

S 8’
0 0

computations

Figure 9-8: Proof Using Operational Semantics

relates intermediate computation steps. What should be apparent from the

fllustration, is that
1. The overall induction argument proceeds over computation steps

2 The semantics of individual programming language constructs must be
abstracted from a large, complex algorithm
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The major practical ramification of this is that if either specification {interpreter}
is modified, it is difficult to determine what parts of a correctness proof must be
redone. It requires a difficult analysis of all computation paths. Furthermore, it is
difficult to decompose the verification process into small tasks that can be done
independently and in parallel. Also, with operational semantics there is a tendency
towards overspecification, Variables used to define an algorithm in one interpreter
may have no counterparts in the other interpreter. The specifications tend to be very
large. On a more subjective level, it has been argued that the proof process does not
mirror the informal verification process which {s based more on syntax-directed
reasoning. Some of the discussion above can be found in {levy 84], [damm 85a]. and

[damm 85b].

On the other hand, there are advantages to using this methodology. Primary
among them is that prototypes of verification systems based on first-order
programming logics can be found, e.g., [stanford 791, [good 75], [marcus 84aj. Any
attempt at a large application is almost impossible without some computer
assistance. Any good verification system requires many person-years of development.
The effort involved may be comparable to perhaps the development of an operating
system or a compller. This is not presented to give the impression that this type of
verification is a solved problem. We are speaking about prototypes and ongoing
research. A second advantage that has been proposed s that an operational
definition is easter to write and anyone famillar with programming languages can
read a definition. A third advantage is that it might be used successfully to verify
implementations where the formal specifications and implementations are
constructed independently, or where verification is done after the implementation.

The other methods tend to require that the verification process be integrated into the
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design process. The last item to be mentioned s again rather subjective. The choice
of semantic definition method may depend on what the source and target
programming languages are. The source language could be rather low-level, e.g.,
assembly language, and thus, its meaning more intuitively corresponds to an
abstract machine. However, higher-level languages are suppose to be "machine
independent” and operational semantics tend to impose machine dependent

properties. An interesting and influential discussion of this appears in [reynolds 72].

The general operational technique is discussed above, and now, some specific
cases are briefly mentioned. Some of the earliest work on compiler correctness can in
found in [mccarthy 67] and [painter 67]. In [mccarthy 67], the source language
consists of expressions, identifiers, and constants where the binary operator + is the
only operator allowed. The source semantics is defined in terms of a state vector.
The target language is defined in terms of a single address machine with an
accumulator. The data structure map associates source identiflers with target
memory locations, and source state vectors with target state vectors. The compiler
design is correct if the outcome of an execution of any source program in any state is
related to the accumulator contents after executing the compiled program. An

argument must be made on which target memory locations are affected.

[painter 67] presents some of the same ideas as [mccarthy 67] with a larger
example, an Algol-like source language. The complexity of the source language is

about the same as the language Tiny which we considered in detail in Chapter 8.

In [london 71}, London proves the correctness of a compiler for a subset of LISP.

London informally states what the target code is for each source syntactic type that is
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input to the compiler, and then proceeds to show that the target code has the same
effect as the source construct by a hand execution scheme. Because the source
language was based on pure LISP (no assignments and no globals), the overall proof
was based on structural induction over source syntax. The hand simulation
technique sufficed for a simple example where the behavior of the source language is

to return a single value.

In [boyer ?7]. a proof similar to that of [mccarthy 67] is done with the aid of a
theorem prover. The paper also discusses the optimization phase of the compller.
The theorem prover deals with the theory of total recursive functions in a domain of
axiomatically specified finitely constructable objects. In particular, it has knowledge
about recursion and induction. The interpreters are written in a LISP-like language.
The proof proceeds by structural induction. We could have as easily referred to this

paper in the previous section, but no restriction was placed on the interpreter.

In {mazaher 81], the issue of compiler correctness is addressed where the
specification languages investigated are VDL, Semanol, and high-level programming
languages. The co'mpiler 1s derived from a deterministic interpreter of the source
language and the derivation process is proved to be semantics preserving. This is
reminiscent of the work we mentioned earlier where the target semantics are dertved
from the source. An interpreter is transformed into a compiler by making the
interpreter output code whenever a statechanging tnstruction is about to be executed.
The objective is not analytic (proving a compiler correct}, but rather, synthetic
(dertving a correct compiler). It {s important to note that the author came to the
conclusion that (1} "interpreters written in a denotational style meet the goal of

compiler generation better”, and (2} “specification languages having facilities for
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defining abstract data types are more suitable for writing operational semantics.”
Both these remarks support the method proposed in this research where the
specification language incorporates the concepts of abstract data types and

denotational semantcs.

In {mazaher 81], the operational semantics are restricted and marked (e.g..
variables are marked as compile-time or run-time) to give it a denotational flavor.
This also corresponds to the remark made earlier that in an operational semantics
description, semantics of individual constructs or compile-time/run-time properties
must be abstracted from a large algorithm. It appears that the semantics preserving
transformation rules are proved correct using the usual Interpreter equivalence

method described earlier. This is a one-time task for each set of rules used.

Finally, even though this dissertation is primarily concemned with higher-order
programming languages at the source level, it is relevant to mention in this section
several papers involving rather low-level source languages. The papers address
microcode correctness where microcode is used to implement a computer instruction
set; computer hardware interprets the computer instruction set by executing
microcode. Thus, the source specifies the computer instruction set and the target
specifies the microcode. The interpreter approach has been more successful at this
level because the source and target interpreters can be quite similar and the
computer languages have simple grammatical specifications (a very flat hierarchy).
Furthermore, at this level, the programmer usually perceives the programming
language semantics in terms of a machine. References include [carter 78]. fcrocker
77}, {dasgupta 84], [damm 84), [damm 85a], and [levy 84]. In particular, some recent

(unpublished) work using the State Delta Verification System (SDVS) based on
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[marcus 84a] and [marcus 84b] has been done where a machine-checked proof of an
implementation of about 120 computer instructions of the BBN C30 computer was
completed. The language was implemented by about 1000 lines of microcode. This is

the largest, real application of this technology known to the author.

9.3. Interfacing Denotational and Operational Semantics?

The opinion has been expressed in some of the literature cited above that (1) all
programming languages must have an operational semantics definition, and/or (2)
the lowest-level target must be specified with an operational semantics definition. Of
course, this conflicts with our goals to have one verification approach for a multi-level
(hterarchical) design, and at the same time have a verification approach that results
in concise specifications, mirrors the informal design process, and results in small,
independent verification tasks. Omne course of action is to employ a verification
method that has the nice properties just mentioned for all levels of the design
hierarchy, and then show that, say, a denotational semantics definition of the lowest
level language can be implemented in the operational semantics definition of the

same language.

The problem of showing that a denoctational definition is complementary to an
operational definition for the same language is discussed in [stoy 77}, [mulmuley 83],
and [schmidt 86]. Inclusive predicates are used. As mentioned earlier, this may
require difficult existence proofs. The results in [mulmuley 85] offer hope that some
of this can be made systematic and mechanized. Furthermore, to prove that a low-
level operational semantics simulates a high-level semantics, the operational
semantics must have properties of faithfulness and termination [schmidt 86]. An

operational semantics is faithful if all evaluations of an expression denote the same
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value: In other words, it is well-defined or sound. It is terminating f you can

guarantee forward progress to an answer; if two expressions denote the same value

then there is a computation from one to the other.
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Chapter 10

Conclusion

The goals of this project were to define a compiler design verification method that:

1. models the informal process of changing a representation and then
determining whether the representation change is correct, and

2. is highly modular so that many verification tasks can be performed in
parallel and can possibly be automated, and minor changes to
specifications will have little affect on any existing verification,

In an attempt to meet these goals, the verification approach presented in this
dissertation combines the concepts of interpretation between theories from
mathematical logic, abstract data types, and denotational semantics. Theories which
formally specify abstract data types are extended to allow higher order operators,
domain constructors, and domain equations. The extended theories can be used to
specify the denotational semantics and the abstract syntax of a programming
language. An interpretation for the extended theories and criteria the interpretation
must satisfy to be correct are defined. The interpretation is used as a formal
specfication of a compller design. A mathematical proof that the interpretation is

correct constitutes a compiler design verification.

The key characteristics of the correctness proof are:

1. the proof proceeds by structural induction on the source language
syntax and the induction argument is implicitly handled by using the
interpretation to translate the source theory.

2. the implementation of the source programming language syntax 1is
treated in the same manner as the implementation of the source
programming language semantics.
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3. a domain of source objects can be implemented as some subset of a
domain of target objects and a source object can have two or more
equivalent representations in the implementation.

4. the proof is systematically broken down into small, independent tasks
that are amenable to automation; the proofs are done as target theory
deductions, primarily using target semantic equations as rewrite rules.

The verification method is demonstrated with a series of examples in Chapter 8.
While these examples contain constructs and dormnains one would typically see in real
applications, the examples are relatively small compared to real applications. To
scale up in size, computer assistance is needed. As mentiocned above, any attempt at
automating the verification tasks requires a significant investment of effort -- several

person-years.

In order to apply the verification method, restrictions are placed on the
interpretations allowed. A detailed discussion of the impact of these restrictions can
be found in Sections 6.6 and 7.3. If the restrictions are not too limiting, then the
method does satisfy the goals. If the restrictions need to be relaxed, then the
verification approach proposed in this dissertation must be modified, if possible, to
allow other types of Interpretations. The latter requires more work in extending the

mathematical framework presented in this dissertation.

This research also contains a review and comparison of other verification
approaches. This Is presented in Chapter 9. Our interpretation approach is most
similar to the algebraic approach, but does result in a different proof organization.
Rather than proving a map is a homomorphism, the proof in the interpretation
approach consists of a translation step and a deduction step using the target theory.
The interpretation approach is different from the twin machine approach in that the

former organizes the proof by structural induction on the source language and the

128



value; in other words, it is well-defined or sound. It is terminating if you can

guarantee forward progress to an answer; if two expressions denote the same valiue

then there is a computation from one to the other.
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former organizes the proof by structural induction on the source language and the
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latter organizes the proof by induction on the computation steps of the machines. On
the basis of the discussion in Chapter 9, it Is the opinion of this author that the
interpretation approach is better suited for dealing with high-level languages and the
twin machine approach is better suited for dealing with low-level languages or for
showing semantic definitions for the same low-level language are complementary.
The algebraic approach has helped unify semantic definition methods and verification
techniques. New research on algebraic semantics may resuit in further verification
improvements. New semantic domains as abstract data types may simplify the

specification and verification processes.

In summary, the original contributions of this research are:

1. interpretation between theories has been defined for theories that have
been extended to have higher order operators, domains, and domain
equations.

2. the application of interpretation between these extended theories to the
compiler design correctness problem has been demonstrated.

This research’'s extension to interpretation between theories can be used for
applications other than the compiler design problem. Other problems that can be
formulated in terms of higher order abstract data types can make use of the
verification method. New programming languages have incorporated the abstract
data type concept (e.d.. Ada), polymorphic data types (e.g.. ML [gordon 79b]), or
polymorphic higher order data types (e.g., HOPE [burstall 80)). Several functional
programming languages (e.g. LISP) use higher order operations. Furthermore, there
is a growing interest in the use of abstract data types to specify other applications
(e.g.. hardware, databases). [parsaye-ghomi 82] contains a good discussion of higher

order abstract data types and some examples.
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Finaily, this research has identified issues for further study. An obvious proposal
is to scale up the examples. What is not so obvious s the amount of effort that would
be required to automate some of the verification tasks in order to tackle the larger
problems. The specifications alone may take a year to write. Existing systems (e.g.,
LCF [gordon 79b]. rewriting systems) should be investigated to see if they can be used

or modified for use.

The issue of multi-level designs should also be addressed. Little work has been

done to verify a compiler design with muitiple levels of abstraction.

Examining larger examples and multi-level designs will identify deficiencies in the
verification method. For example, such an examination will permit us to determine
whether the interpretation restrictions are too limiting. If the present method needs
generalization, it may lead to a redefinition of allowable domain subsets or quotients.
The question of whether subsets and quotients of domains are themselves domains is
basically open and is very hard. Other models for domains should be investigated in

an attempt to solve these problems and, perhaps, simplify the discussion.
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Appendix A

Interpretation Between Theories For
Predicate Calculus

The methodology presented in this dissertation for specifying, implementing and
verifying abstract data types is founded on mathematical logic, in particular,
"Interpretation between theories”. This tﬁethodology is used in the development of
correctness criteria for comptlers. This appendix presents some background material
dealing with mathematical logic. It was primarily extracted and summarized from

[shoenfield 67] and [enderton 72].

In any proof there are mathematical laws, called axioms, that are accepted
without proof. Other mathematical laws, called theorems. are proved from the
axioms. An axiom may be viewed as a sentence (i.e., in terms of {ts syntax) or as the
meaning of a sentence (Le, in terms of its semantics or structure). If the language
used for expressing axioms is well-defined, then the syntax of each axiom will reflect
its meaning. Thus, we can study axioms and the theorems derived from the axioms

by studying the syntax of the sentences expressing them.
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A formal system permits syntactic investigations of axioms and theorems.

Specifically, a formal system consists of:
1. a language
2. axioms

3. rules of inference

These items are defined below.

A symbol is an "atomic object:" no symbol is a sequence of other symbols. An
expression Is any flnite sequence of symbols. A language of a formal system Is

specified by

1. specifying the symbols

2. specifying the formulas which are grammatically correct expressions of
the language '

The axioms are formulas expressed in the language of the formal system. Rules of
inference, the third part of a formal system, provide a means to derive theorems from
the axioms. "Each rule of inference states that under certain conditions, one
formula, called the concluston of the rule, can be tnferred from certain other formulas,
called the hypotheses of the rule” [shoenfleld 67]. If H denotes the hypotheses and C

the conclusion, then the rule of inference is typically written
H

C
The inferred formula is a theorem if the hypotheses are theorems. All axioms in a
formal system are theorems in the formal system. If A is a theorem of a formal
system F, then it is written as | A where the subscript F is omitted if the context is
unambiguous. A proof in a formal system !s the finite sequence of formulas obtained
by applying rules of inference. "If A is the last formulaina proof P, we say that Pis a

proof of A" [shoenfield 67).

A first-order theory (or theory), call it T. s a class of formal systems. The language
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of T is a first-order-language; call it L. L has two types of symbols: logical symbols and

nonlogical symbols {or parameters). The logical symbols are:
1. parentheses: {, )
" 2. sentential connective symbols: =, — (or alternatively, -, v, 3}
3. variables

The nonlogical symbols are:

1. quantifier symbol: ¥

2. n-place predicate symbols wheren 2 1
3. n-place function symbols wheren 2 1
4. constant symbols

The meaning of the logical symbols is fixed, but the nornlogical symbols are gpen to

interpretation.

Formulas in L are defined using terms and atomic formulas. A termis either:

1. a variable, or
2. fu,...u, where u,...u, are terms and f is an n-place functton symbol

An atornic formula is an expression of the form pt,...t;, where p is an n-place predicate

symbol and t,..t, are terms. A well:formed formula {or forrmuld) is one of the

following:
1. an atomic formula
2. —P, P=Q, and ¥v: P, where P and Q are formulas and vis a variable

Depending on the axioms and rules of inference selected for T, T may or may not
have the useful properties of soundness and completeness. We will discuss why
these properties are desirable and why soundness {s necessary for correctness proofs.
Then, we will conclude this section with a discussion about interpretation between
theories where we describe how to show one theory is as powerful as another and

how soundness permits us to tackle this problem.
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Informally, if T is sound then any theorem of T will be in some sense true. ¥ Tis
complete, any true formula expressed in L will be a theorem of T; L.e.. T is powerful
enough to derive all true formulas of the language. To express these properties more

formally we will need some definitions.

A structure, A, for the language L is a function whose domain is the set of
parameters of L such that

1. A assigns to ¥ a nonempty set |Al, called the universe or carrier of A.

2. A assigns to each n-place predicate symbol P an n-ary relation PA ¢
AR PA g a set of n-tuples of members of the universe.

3. A assigns to each constant symbol C a member of C 4 of the universe
1AL

4. A assigns to each n-place function symbol f an n-ary operation f* on
1Al e, A TAIR o 1AL

If @ is a well-formed formula it has a set fv{a) of free variables. This set is defined

inducttvely by:
1. fv{x) = {x}, where x is a variable

2. fvigt,...t) = fvity) v ... v fvt,), where g is an n-place function or
predicate symbol and t,...., t, are terms

3. fv(—a) = fvia)
4. fv(a=p) = fvia) v {B)
5. fv{vv:a) = frla) - {v}

Let o be a well-formed formula, A a structure, and s: V - Al a function from the
set V of all variables into the universe |Al of A. Call s the environment or state. A
satisfles a with s, p=,als], if and only if the translation of o determined by A, where
the variable x is translated s(x) wherever it occurs free, is true. A is.a model of a (or a
is valld in A), j=,a, if and only if A satisfies a with every environment s. This can be

written as

b 50 AT (V'S) (= s xfs])
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o is valid. o, if and only if for every structure A and every envirorunent s. A satisfies

o with s. This can be written
Ea if (VA)(VS) (= als])

Let [ be a set of well-formed formulas and a a well-formed formula. Then [
logically tmplies o (x is a logical consequence of ). Tka, if and only if for every
structure A for L and every environment s such that A satisfles every member of T

with s, A also satisfles a with s. Writing this {n mathematical notation, we have
Cha iff (VA) (VS) (=,Is] ==, 0ls]

Let A be the set of valid formulas called logical axioms for first-order theories
(these are defined in [enderton 72] and [shoenfield 67]) and let I be a set of formulas
called non-logical axdoms. A is a model of theory T if and only if all the formulas in T

are valid in A.

If a is a theorem of T (a is a theorem of a first-order theory assuming formulas '
are also theorems}, then the sequence of formulas that records how a was obtained
from I'UA with the rule(s) of inference for first-order theories is called a deduction or

proofof a from I'. ais a theorem of T is written I't-a.

For first-order theories, the Soundness Theorem states if I'Ha then I'a. For

first-order theories, the Completeness Theorem states if M=a then ['+a.

Recently, new languages and rules for reasoning about computer programs have
been proposed. Several of the proposed formal systems have not been sound and
thus, the correctness proofs have not been based on sound reasoning. "If a formal

system is to provide a satisfactory foundation for actual reasoning, the methods of
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proof should be intuitively correct, not just symbol manipulation tricks that
fortuitously produce true theorems at the end [odonnell 82]." Any theorem proved in
a theory should also be a logical consequence of the theory: the proofs should be
based on sound reasoning. To show soundness, it must be shown that the axoms
are valild and any formulas obtained by the rules of inference are logical
consequences of the hypotheses. However, it is not always possible for many useful
theories to satisy the completeness property (e.g.. number theory). It would be nice to
know we can always find a proof for valid formulas, but we frequently have to be
satisfied knowing that if we did find a proof of formula c. e is a logical consequence of

the theory.

Interpretation between theories is a useful concept in mathematical logic. Glven
two theories, T, and T,. it is possible to show that T, is as powerful {precise) as T). If
T, and T, are in the same language and T,cT, then it s obvious that T, is as
powerful as T,. The interesting problems occur when the theories are in different
languages. If the theorles are in different languages and T, is as powerful as T, then
there must exist a translation from the language of T, to the language of T, (t.¢.. the

image of one theory is contained in another).

Let L, be the language of T, and L, be the language of T,. An interpretation © of

L, into T, is a function on the set of nonlogical symbols of L, such that

1. & assigns to ¥V a formula m, of L, in which at most the variable v,
occurs free, such that

2. & assigns to each n-place predicate symbol P a formula np of L in
which at most the vartables v,.....v , occur free

3. r assigns to each n-place function symbol f a formula g of L, in which
at most v,.....v,,, V1 occur free, such that

(1f) Tzl-'v’vl...an(nv(vﬂ::...:mv(vn)
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=Ix(glx) A Vv vy = v v, =x))

The idea behind (i} is that in any model of T,, the formula m, should define a
nonempty set to be used as the universe of an L-structure. The idea behind (ii} is

that in any model of T,. &, defines a function on the universe defined by .

The interpretation n can be extended to formulas. Any formula o of L, can be

translated to a formula r{a) in the following manner:

1. if a is an atomic formula pt;...t;...t;. 1 € { < n. and none of the t, are
function symbols then =(pt;...t,...tp) = ®ty.. 4.ty

2. f o 1s an atomic formula pt,...t...t,. 1 £1 < n, and t is the rightmost
function symbol then =(pt,...4...t;) = ‘tafy(ﬂ:tl t,1-th = ¥ = nlpty..t ¥

(N.B., pt,...t,...t,, is logically equivalent to ¥y (tt,,,...t, =y = pty...t;_|¥))
3. for nonatomic formulas, m(—a) = -rn(a), nle==f) = =lo)=n(f), and
n(vv: a) = Vv (ny(v)=>n{a)).

If n is an interpretation and B is a model of T, then the following is a simple way

to extract from B a structure B for L,:

the universe of B®, |B* |:
IB® | = the set defined in B by =,

the n-ary relation' p8* assigned to each n-place predicate symbol P:
PP* = the relation defined in B by =y, restricted to |B® |

the n-ary operation f2° assigned to each n-place function symbol f:
% (a,..... a,) = the unique b such that jprda;..... a ) = b.
where a,..... a, are in |B* |

If o is a formula in L, that is true in every structure B” obtainable from a model B
of T, then the translation of a, n{a), {s true in model B with the same environment.
Conversely, if n{a) is true in model B with the environment restricted to |B™ ! then o
is true in the structure B®. This means that the intuitive notion of interpretation of

formulas is deflned correctly. This property is stated in the following lemma.
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Lemma 1: Let x be an (nterpretation of L, into T, and let B be a model
of T,. For any formula o of L, and any map s of the variables into 18" |.
(kgn  als]) if (kg wlais)

Proof: We will use structural induction on a.

Basis: o is an atomic formula pt,.t..t,, 1 <1< n We will use
induction on the number of places at which function symbols occur in the
atornic formula.

If none of the t are function symbols then
kg Tty tolsl T Fge pt,...t,[s] because the variables t, in each formula
are assigned the same values and BT assigns T, to the predicate p.

If t, ts the rightmost function symbol then
1 ST AR |

iff pp Vy(rtt‘t! -ta =Y =x(pt,...t, ;y)}s] (definition of =)
iff g nlpt;...t, 1¥)sb/Y) (where b = the unique b such that
g "g%r--%ls] = b)

iff mge  Dty...t. 1y Is(b/¥)] {induction hypothesis)
ff g Pty..Y. 1f‘tlt1+1-'-tn[51 (substitution lemma: p= oX{s] iff
i afs(s{t)/x)1)

ff mge  Pty...ty...ty (8] (definition of BT

Induction Step: « is a nonatomic formula.

Case 1: if a is —¢ then

=g w(—bls]
Uf gy —nl)ls] (definition of =)
i g e —d[s] (induction hypothesis)

Case 2; If a is ¢p=>y then

=g n(¢p=>vlsl
iff =g n(p)=>n((s] (definition of n)
iff ppe  ¢=>vls] (nduction hypothesis)

Case 3: ff o is Vv: ¢ then
kg #(VV: ¢lls]

ff gy Vv (my(vI==(d))s] {definition of n)
iff jmps WV (rylv)=>¢(s} (induction hypothesis)
i pege VV: $(s] {definition of BY)

An interpretation & of a theory T, into a theory T, Is an interpretation = of the
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language L, of T, into T, such that if o is a valid L -sentence (i.e.. T, o) then n(a) is a

valid L,-sentence (i.e., Ty Frlal).

We can prove that n is an interpretation of T into T, (T, is as powerful as T} if T,
and T, possess certain properties. As described above, f T is sound and & is a
theorem In T (i.e., To) then o is a valid L-sentence (i.e.. Ti=a). If T is complete and o

is a valid L-sentence {i.e., Th0) then a is a theorem {n T (i.e., TFa).

Case 1: Say T, is sound and complete. If x is an interpretation of T, into T, the

translation of every valid L,-sentence is deducible in T, and valid in T,. That s,
Tike 1, cihplete T2F™® 1, s58nd  Tonl0)

Case 2: Say both T, and T, are sound and T, is complete. If = s an
interpretation of T, into T, the translation of every theorem of T, will be valid in Tj.

That is,
T\Fa T, s58nd Til=a T, cothplete Tzf‘“(“} T, s60nd Tabnla}

Case 3: Say both T and T, are sound and complete. If x is an interpretation of
T, into T, every valid L,-sentence will be a theorem of T, and its translation will be

deductble and valid in T,. That is,

TiFG 1 oftnd  TIF® T, clhplete T2FM®) 1,488 ToFmE
and complete

By case 3. ff T, and T, are both sound and complete, & is an interpretation of T,
into T, {f the translation of the axioms and rules of T, are deducible in T,. In
practice, T, and T, may not be complete. If T, is not complete we may not be able to

deduce (o) even if it is true. But, since T, is sound we know that {f we do deduce

146



n{a) {even though T, Is not complete) we know = is an interpretation of T, into T,: we
may not be able to prove some correct interpretations, but we never approve of
incorrect interpretations. On the other hand. if T, is not complete, all the valid
L,-sentences are not necessarily deducible in T,. Therefore, it Is conceivable that
even if the translation of axioms and rules of T, are deducible in T,, the translation of
some valid L -sentences may still not be valid in T,. This means x may not be a
correct interpretation of T, In T,. The situation can be remedied by restricting T,
such that the only L,-sentences allowed in T, are the ones generated by the axioms

and rules of inference in T, (i.e., T, is closed under deduction).
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Appendix B

Wand's Extension to Interpretation Between
Theories and its Application to
Abstract Data Types

B.1. Abstract Data Types

Abstraction is a method used to reduce the amount of detail considered at any.
one time. Software and hardware implementations contain an enormous amount of
detail, more than can be comprehended at any one time. By abstracting (or
separating) attributes of an implementation that are relevant in a given context from
those that are not, the amount of detail that must be handled during the design and

verification of software and hardware becomes tractable [guttag 78].

An abstract data type (or data abstraction) is a mechanism for isolating attributes
or properties of the structural relationship present within data. Computer
programmers use abstract data types for designing software in a structured or top-
down manner. By utilizing abstract data types in the algorithm designed to solve a
problem, the software designer is not forced to use a given set of data types. and
thus. not initially bogged down with implementation details: the problem is solved
more simply or elegantly with data structured to fit the problem domain.
Implementation details can be postponed and different implementations can be tried

until one is found that meets the efficlency and computer constraints. For example,
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a stack is a data abstraction commonly used in software. If a stack is not a data type
in the programming language used it could be implemented with other data types.
such as an array and a pointer or a linked list. There may be many levels of
abstraction between the most abstract level and the lowest implementation level

considered.

The definition of abstract data type evolved from a description of the organization
of data to a specification of operations allowable on objects belonging to the data type.
In the early days of software development, the definition of a data type consisted of a
particular implemented representation of a set of values. As more software was
developed, the advantages of abstracting conceptual properties of data fro:ﬁ
implementation strategies became apparent. This is analogous to an earlier phase of
abstract programming techniques and information hiding in which high level
programming languages and compilers used to translate them were developed to
alleviate the difficulty in writing and venfying assembly language programs

{parsaye-ghomi 82].

Today’s high level programming languages incorporate "basic” data types (e.g.

arrays. Integers, lists) and some languages provide a means for the programmer to
define new data types. In fact, a programming language in its entirety can be

considered an abstract data type. This is discussed in the dissertation.
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B.2. Abstract Data Type Specification

Different languages have been developed to specify the operations of a data type.
In fhoare 72] an abstract data type consists of a set of "abstract” values and some
functions on those abstract values. The specification of an operation is given by two
predicates called the precondition and the postcondition. ~ The truth of the
precondition before the application of an operation tmplles the truth of the
postcondition after such an application, provided the operation terminates. This is
expressed as a formula of the form P{A}Q where P is the precondition. Q is the
postcondition and A is the operation. For example, consider the specification of the
data type stack that can contain at most 100 integers. The stack has three
operations: (1} INIT initializes a new stack and sets its length to zero, (2) PUSH takes
a stack and an integer as arguments and if the length of the stack is less than 100
the integer is stored on top of the stack and the length of the stack is incremented by
one, and (3) POP takes a stack as an argument and if the length of that stack is
greater than zero the top element of the stack is removed and the length of the stack
is decreased by one. The abstract values of the stack are represented by a sequence
of integers enclosed in brackets. The rightmost integer in the sequence represents

the top of the stack. The formulas are as follows:
1. true {(INIT{s}} s = <> & LENGTHI(s} = 0

2. LENGTH(s) < 100 & 8 = <x,...x> & { = LENGTH(s) {PUSH(s.n)} s =
<x;,....%,n> & LENGTH(s) =1 + 1

3.LENGTH(S) > 0 & 8 = <x,.... x> & 1 = LENGTH(s) {POP(s)} s = <X;....xy>
& LENGTH(s) =1-1

Another approach to abstract data type specification is the algebraic approach.
[goguen 76, guttag 78] It further removes one from considering implementation

strategies by eliminating representations for abstract values. The approach is to
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describe something without being committed to a particular representation. For
example, in the theory of programming languages. abstract syntax considers
syntactic structure, independently of whether it is represented by derivation trees,
parenthesized expressions, indented program text. canonical parses, etc. [goguen 76}

Algebraic isomorphism provides a means to define abstraction in this way.

In the algebraic approach, an abstract data type {s defined as a collection of soﬁs.
operators and axiorns. The sorts denote the various types of objects which are
required for the data type. The operands and results of the operators are objects
whose types make up the sorts. The axioms, usually written as algebraic equations,
define the results of various combinations of operators applied to various operands.r
The operands may be variables of a specifled type. The example given above for a

bounded stack of integers of size 100 is specified as an algebraic presentation below:

1. sorts:
stk
int

error
bool

2. operators:

INIT: — stk

PUSH: stk X int — stk U erTor
POP: stk — stk v error
LENGTH: stk — int

+: int x int — int

=: int x int -» bool

3. variables

s: stk
n: int
ERROR: error

4, axioms:

POP (PUSH (s.n)) =8

LENGTH (INTT) =0

LENGTH (PUSH (s.n)) = LENGTH (s} + 1
PUSH (s.n) = ERROR. f LENGTH (s} = 100
POP (INTT) = ERROR, {f LENGTH {s) =0
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Finally, we will consider a third specification language for abstract data types
called a many-sorted first-order Dynamic Logic (DLP) as described in [wand 82al.
DLP is defined as a language of a formal system. This language subsumes the first
two languages discussed in this section; DLP has formulas of the form P{AJQ and it

also has "typed” or "sorted" cperators.

Wand postulates that any specification language for abstract data types can be
reformulated In terms of a language of a formal system and that the methodology for
proving correctness is largely independent of the specification languages used. We
discuss DLP in detail because we wish to summarize the discussion In {wand
82a] which provides a basts for the definition of compiler correctness. We will not use
DLP in the examples of compiler specification correctness proofs, but wiil present

another language suited to that application.

The specification of an abstract data type is a set of sentences or formulas in
some logical language, in this case DLP. The operations of the abstract data type are
nonlogical symbols of the logical language and appear in the formulas. The formulas
are formal statements of the properties of the abstract data type. The formulas are

true or false given a particular structure for the language of the data type.

The nonlogical symbols of a first-order language are:
1. quantifier symbol
2. n-place predicate symbols
3. n-place function symbols
4. constant symbols

DLP extends this language by adding:
1. sort symbols
2. procedure symbols
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Furthermore, all the symbols in DLP have a signature which identifies the "type” of
the symbols. Each n-place function symbol has a signature <o,...., 6,>>¢ where n 2
0 and 9,..... 6,. ¢ are sort symbols. A constant symbol and a quantifier symbol are
treated as a O-place function symbel. Each n-place predicate symbol has a signature
<g;.....0,> where n 2 0, and ¢,,...G, are sort symbols. Each procedure symbol has a
signature <g,,....0,>=<T....T5> where n, m 2 0 and 0,...0,. T, Ty 1€ SOTT
symbols. For each sort symbol g, there are two distinguished procedure symbols:
ASSIGN, with signature <g>—<o>, and FORALL, with signature —<g> (l.e.. FORALL,
is a constant).!'Each individual variable symbol has a sort ¢ where o is a sort

symbol.

Terms and atomic formulas are constructed as in first-order languages with the
additional constraint that the sorts must "agree”. This is described in the following

definitions. A term is either:
1. an individual variable symbol of sort ¢, or

2. ft,...t, where f is an n-place function symbol of signature <o,.....0,>=0
and t,...t, are terms of sorts o,,....0,,.

An atomic formula is an expression of the form pt,...t, where p is an n-place predicate

symbol of signature <g,.....0,> and t, .....t,, are terms of sorts o;.....6,,.

DLP also defines an expression called atomic program. This is not in a first-order
language. If A is a procedure symbol of signature <@,,....0,>=3<T ... >, ty..... L, are
terms of sorts g,,....0,, and v;.....v, are individual variable symbols of sorts t;,....Ty

then Alv,....v,: t}.....t;) s an atomic program.

t1The decision to call an operation that returns one or zero arguments a function or a procedure appears
arbitrary at this point. The difference becomes clear when structures for DLP are discussed later in the
section.
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Formulas and programs are expressions defined by a simultaneous induction.
Let G and H range over formulas and « and [ range over programs. A Sformula is one

of the following:
1. atornic formula
2.G&H
3.GvH
4. -G
5. G=H
8. [a]lG

A program is one of the following:
1. atomic program

.aip

aP

a‘

G?

aop e

The DLP specification of the data type bounded stack of integers of size 100 as

presented in [wand 82a] is:
1. nonlogical symbols

a. sort symbois:

stk
int
bool

b. predicate symbols:

< : <int.int>—bool
¢ «int, int>—bool
: <int,int>—bool
stk - <Sti.stl>—bool

c. function symbols:
LENGTH : <stl>—int

d. constant symbols:
false, true : bool
1.2.3.... : int
e. individual variable symbols:
s, : stk
s : stk

i n v
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n:int
t: stk

f. procedure symbols:

INTT: <>—<stk>
PUSH: <stk.int>—«<stle>
POP: <stk>—r<stle

2. formulas

a. Vs {[INTT{s;)] LENGTHI(s)=0)
b. Vs Vs, ¥n (LENGTH(s,)<100=[PUSHI(s: n.s.). POP(s: sl =456
c. Vs ¥t (LENGTH(s}=0={POPIt; s)|false}

d. Vs Vvt (LENGTH(s)>0=><POP(t; s)>true), where <a>G abbreviates
-lal-G

For procedures, arguments to the left of the semi-colon are output parameters and
those to the right are input parameters. A formula of the form [ofalse asserts that
false holds in any final state reached by the program a which is only possible if «
never reaches a final state (i.e., a never halts on any input). A formula of the form

<a>true asserts a halts on all inputs.

The nonlogical symbols and the set of formulas above comprise the spectfication
or theory of bounded stacks of integers of size 100. Other abstract data types (e.g..
arrays, lists) can be specified in the language DLP by specifying another set of
nonlogical symbols and formulas. Another specification language can be defined by

specifying the symbols and the syntax of the formulas in the language.

The reader may have noted that the three specifications of a bounded stack of
integers of size 100 that were presented in this section do not define the same data
type because the specifications differ in thetr treatment of error conditions. This can

be attributed to differences in the specification languages.
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B.3. Abstract Data Type Implementation

The stack example presented above has served to motivate and dermnonstrate the
method for specifying abstract data types. Abstract data types are specified as
theorles. The implementation of an abstract data type is defined as an interpretation
of the language of the theory for the abstract data type into another theory's
language. This definition of implementation is based on an extension of
interpretation between theories from first-order-logic (described in Appendix A) to
DLP. The extension as described in [wand 82a] allows interpretations of procedure
symbols, sorts, tuples of sorts, and equality symbols in addition to the nonlogical
symbols in first-order logic. The extension requires that free variables in the
interpreted programs and formulas be restricted to those values that are "legal”

implementations of the variables’ sort.

If L, and L, are DLP languages of theories T; and T, respectively, then an
interpretation I of L, in L, is an assignment of phrases of L, to each nonlogical

symbol of L, as follows:

1. to each sort symbol ¢ of L,, a sort symbol o' of L, and a formula
Ax.is-o{x) of signature of; I{g)=o!

2. to each function symbol f: <5,....9,>>1 of L, a function symbol f!
<al,....on>—t! of Ly: 1) = ff

3. to each predicate symbel p: <o,....6,> of L,. a formula p'[z,....2,l
with signature <o, l.....a.1> of L,: I(p) = pllz;..... Z]

4. to each Individual varisble symbol v of L, with signature . an
individual variable symbol v! in L, with signature ol I (v) = !

5. for each procedure symbol A: <g;...0,>—<T,...T,> a program
Ally oo Yt Z1oeroZgl Of Ly with signature <o)'..... o o<t Lt > 1A) =
Al ly,...¥n Zj...Z,. In particular, IASSIGNy) = (y:=z)) and
I(FORALL ) = FORALLy(y,): is-oly,). Furthermore, no variable of the
form v! may appear in Al {y;....¥ g 2100024
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The arguments and results of interpretation I can be summarized as follows:
I: sort symbol—ssort symbol
I: function symbol— function symbol
I: predicate symbol—formula
I: procedure symbol—-program
I: individual variable symbol—individual variable symbol

For DLP, a variable is bound If it is guaranteed to be set {assigned a value}. This
can only occur if it is an "output” parameter of a procedure (L.e., {v,.....v } are bound

in procedure A(v,....,v,; t;.....ty)). If a variable is not bound. it is free.

Let G and H range over formulas and o and B over programs. Let preambleg be
the formula (is-o(x,!) & ... & 1s-,{x0)) where x,....x, are the free variables of G and
the free variables have sorts ¢,.....0,, respectively. The interpretation of G s

(preamble; = [(G)) where the interpretation between languages is extended as

follows:
1. for a term ft,...t_, I(ft,...t ) = £ (1t)).... I(t,))
2. for an atomic formula pt,...t,, Ipt;..ty) = [z) = lty); ... 1 25 1= L)l
pliz,.....2)

3, for an atomic program AlV,....Vp: ty.....tm)s AW vty ty)) = 2y 1=
It): ... : 2y 1= Ut AU Yt Zyoeee ) V0I= V15 oo V= Vi)
4. for formulas,
a. I(G & H) = (I(G) & I(H)
b. {G v H} = (I[G) v I{(H))
c. I{(-G) = (UG
d. (G = H} = (I(G) = I(H)
e. {[a|G} = ([I(a)IHG))
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B.4. Abstract Data Type Semantics

A structure for a first-order language is a function that assigns functions and
predicates to the function symbols and predicate symbols of the language.
respectively. A structure for DLP Is also an assignment of "meanings” or semarntics to
the set of non-logical symbols and the meanings are extended to apply to formulas
and programs. A structure M is given as a function on each language symbol as

follows:

1. sort symbol: for each sort symbol a. M(g)=U, where U, is a nonempty
set. U, is called the carrier of sort ¢. U denotes the union of the sets
U, as ¢ ranges over the sort symbols.

2. function symbol: for each function symbol f: <g,.....9,>—0. M assigns
a function M: Uy x ... x U - Ug.

3. predicate symbol: for each predicate symbol p: <@,.....6,>. M assigns
a predicate pM on Uy x ... x Uy, such that for the distinguished

predicate symbol=,, M assigns =4 the equality predicate on U, x Ug

4. procedure symbol: for each procedure symbol
A<Gy,....0,>=<t),...T;>, M assigns a predicate pflon Uy x .. x Uy x
U11 X ... X U‘m'

The arguments and results of the structure M, a function on the language symbols,

can be summarized in the following way:
M: sort symbol — carrier

M: function symbol — function
M: predicate symbol — predicate
M: procedure symbol — predicate

A state p is a function from the set of individual variable symbols to U (i.e.. p:
variables —U).!12 A state is sort-preserving in the sense that if v is an individual

variable symbol of sort ¢, then p(v) € U,. M is extended to terms by mapping a term

12This 13 analogous to the function s, called the environment, for frst order logic described in the
Appendix A. s 13 only concerned with variables of a single sort.
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to a function where the function maps a state to a value in one of the carriers (i.e., M:

terms—states—U). '3 Specifically.

1.
2.

if x is an individual variable symbol then M [x](p) = p(x).
iff t,....t, are terms of sorts ¢,....0, and f is an n-place function symbol

of signature <gy,....0,>—0C, then MIft,...t I(p) =
MM It 2. M It T (p).

Now consider the extension of M to formulas and programs. M is extended to

formulas by mapping formulas to functions that map states to boolean values (i.e., M:

formulas — states — bool). M is extended to programs by mapping programs to

functions that map a state to a set of states (l.e., M: programs—siates— gstates)

Since formulas and programs are defined by mutual recursion, their meanings are

also defined by mutual recursion as follows:

1.

© O N DU e W

if pt;...t, is an atomic formula then
MU pty...t, I{p) = pMM t; 1(p)..... M t,1(p))

A Alv,g.., Voot t,) is an atomic program then

o | PP’V ) V) M Lt () M Tt T (D)
& (Yw)(wevy,..., v} = p(w) = p'(W))}

.MIG&HI](p)=MIG I{p) &M[ H Ilp)
.MIGvHIpI=MIGI(p)vMIH 1)
. MEI-GIpI=-MIG I

MIG=HIlpI=MI-Gp)vMIHIlp

.M [alG 1{p) = (vp) (pP’e ML a 1{p)=MTL G 1(pY)
MIwBap) =" Gp) p'e Ml allp)and p”’e M1 B 1(pM
.MIauBllp)=M( a Jp)wMIB I}

10.
.MIG?lp=(p | MI G 1(p}

M a* 1{p) = the reflexive, transitive closure of M1 a 1(p)

M is a model of the theory if M satisfies every formula of the theory with every

13The notation in this dissertation differs from {wand 82al.
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state p. A model for the specification of a bounded stack of integers of size 100 is the

following:

1. carriers (for each sort symbol):
Mlint) = o, the set of nonnegative integers
M(stk) = *. all finite strings of @
M(bool) = {true, false}

2. predicates (for each predicate symbol).
Mi<) = <M, less than
M(>) = >M, greater than
M(=) = =M, equality of integer arguments
M(=4y) = =21, equality of stack arguments

3. functions (for each function symbol):
M(LENGTH}x) = !xI|. the number of integers in the finite string of
integers, x

4. predicates (for each procedure symbol):
M(INTT) =As.s= A
M(PUSH) = Asns”. 8’ =n, ..m= s = nn;..0,

M(POP)=2Ass’. Gk k21 & s =n;.n, &s=n,. m

B.S5. An Implementation is not a Model

In choosing a model for stacks an "abstract representation” was selected for each
object type (sort symbol}. For exarnple, a stack is represented by a string of integers.
This model is similar to the first stack specification presented in this chapter. [n the
model, each object has a unique abstract representation. The model can be
considered an “implementation” of the spectfication, but in a typical implementation,
there may be many representations for each object in the data type. These

representations are "equivalent” if they represent the same object of an abstract data

type.

For example, consider again the implementation of a stack, but this time the
bounded stack of integers of size 100 is implemented (represented) as a pair of data
types: an array of integers with dimension 1 to 100, and an integer {(used as a

pointer to the array). Let I be this particular implementation of bounded stacks. In
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fwand 82a] [ is an interpretation of the theory of stacks into the theory of array-

integer pairs.

In order to define the implementation I. the theory of array-integer pairs must be
specified, and the interpretation of the language of stacks into the language of array-

integer pairs must be specified. First, the theory of array-integer pairs is defined as:

1. sort symbols:

arr
int
bool
rec

2. predicate symbols:

: <int, {nt>—bool
arp-<artr, arr>—bool

= oo <TEC, TEC>—b0O]

3. function symbols:

pair: <arr, int>—rec
prl: <rec>—arr
pr2: <rec>—int

4, constant symbols:
faise true: bool

1,2,3,..int

5. individual variable symbols:
a.a, a, ar
1, §. n: int
T, T, T}, Ip, Y TEC
r, b arr
R int

6. procedure symbols:

INTTARRAY: <int>—<art>
FETCH: <arr.int>—<int>
UPDATE; <arr.int,int>—<arr>

7. formulas!4:
a. (V) pairtprl (r).pr2 (n)) =

4The set of formulas given here is not compliete. A few formulas are presented to show how some
propertes of array-interger pairs might be specified. The specification of the assignment procedure with
array arguments would require a lengthy discussion of substitution.
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b. (vrY(vrd prl (pair (rl o) = &
c. (vrY(vrR) pr2 (pair (.8 = R

d. (vn)(va)(vi)(vm){0 < i £ m = [IN[TARRAY(a; m); FETCHIn; a.i)](n
=0))

e. (vn)(va )(v1)(Va)[FETCH(n; a,.{); UPDATE(a: a,.L.n)l(@ = a,)

Define the interpretation I of the language of stacks into the theory of array-

*

integer pairs as follows:
1. assign a sort symbol to each sort symbol:

I(stk)=rec
I(int)=int
I{bool)=bool

2. assign a formula to each sort symbol:

is-stk = Ar. pr2(r}2 0

is-int = Al. true

is-bool = Ab. true
(N.B., Tyqine = 31 {pr2{r) 2 O}

3. assign a formula to each quantifier symbol o:

(V) = AX. Vg (is-0(x))
4. assign a function symbol to each function symbol:
I(LENGTH) = pr2
5. assign a formula to each predicate symbol:
I(=4yy) = AT To.(pr2(r )=pr2(r,)) & (v, (1 <1< pr2(r,) =
[FETCH (n,; pri{r,), §); FETCH(ny;: pri(ry).il(n, = ny))
I{op) = Afj. {1 op J), where op € {=,<,>}
6. assign a variable symbol to each variable symbol:

Is)=r1
I{s) =r,
In=n
I(t) = r

7. assign a program to each procedure symbol:
I(INTT) = Ar. [INITTARRAY(a; 100); ASSIGN (r: pair (a.0)]
I(POP) = Ar r’. [pr2(r) > 0?; ASSIGN (r: pair (pri(r), pr2(r-1))|
I(PUSH) = Ar n r. {[pr2(r) < 100?: ASSIGN_(x: prl{r))
UPDATE (x: x. pr2(r) + 1, nk
ASSIGN (r; pair {x, pr2(r) + 1))]
I(ASSIGN,) = ASSIGNy,

I is not a model for the theory of bounded stacks of integers because equality is
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interpreted as an equivalence relation. not as equality in the theory of array-int pairs.
In particular, consider the implementation of =.,,.. The second formula in the theory

of stacks is:
(Vs:stk)(V's,:stk)(Vn:int(LENGTH(s,) < 100 = {PUSHI(s: n.s,); POP(s: slf (8= 5,0 (%)

If equality of stacks, =, was interpreted as equality of records. =q.. formula {*)
would be false in the implementation because the interpretation of the formula would

be:

(¥r: rec)(Vr,: rec)(Vn: int)(pr2(r) 2 0 & pr2(r ) 20 = (pr2(r,) < 100 =

[fpr2(r,) < 100 ?: ASSIGN, (x: prl(r)); UPDATE {x; x.pr2(r, )+ 1.n);
ASSIGN . (r: pair (x, pr2(ry) + 1))I

[pr2(r) > 0 ?; ASSIGN .. (r; pair {pri(r), pr2(r)-11}1]

(=T

This can be easily demonstrated by considering an example (an instance of the
translated formula). Let s, be the empty stack created by INIT. After executing
[PUSH(s: 2, s); POP(s: s)] in the implementation the value of the implementation of s,
r. is <(2.0,0,0,...),0>, but the vahie of the implementation of s,, 1, 13 <(0,0,0.0....), 0>.
So 1 #,, I, and the interpretation of the second formula is false. Thus, equality of
stacks should not be Interpreted as equality in the implementation because there
may be many representations for the same stack. However, in the correct
implementation 1 described above, =,, was interpreted as the formula (pr2(r) =
pr2(r,)) & (viint) (1 $ 1 < pr2(r} = [FETCH(n; pri(r).) ; FETCH(n,: prlir,).4] (n = ).
With this interpretation of =, as an equivalence relation the second formula is true
in the implementation (notice that <(2.0.0,0....}.0> and <(0.0.0.0....).0> are equivalent

with this definition).
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B.6. An Implementation is not a Homomorphism

Let o and B be structures for a language. A homomorphism h of a into Bis a

function h: lal — B! such that

1. for each n-place predicate symbol P and each n-tuple <a,...a,> of
elements of lal, <a,....a,> € P* ff <h(a))....h(a)> € P8

2. for each n-place function symbol f and each n-tuple. h{™a,, ... ay)) =
fthiay). ..., hlay)

These two conditions are usually stated as h preserves the relations and functions.

Consider a first-order language L with variables x,...., x, (k 2 1), n-place function
symbols f}...., ! (n, 1 2 1}, n-place predicate symbols pf..... po (n. m 2 1), and
constant symbols c,.....C, (p 2 1). A Herbrand Universe for L is constructed as

follows:

L. (%), X.Cy.eCp fT.... f]} are elements of the Herbrand Universe. Call
this set H.

2. fort,....t, € H, fift,....t) e Hwheren. 12 1
In other words a Herbrand Universe is composed of the symbols and terms of the
language. The Herbrand Base for L is the set of formulas obtained when variables in

the formulas of L are replaced by elements of H.

Another definition (other than the one given in Appendix A) of a structure for L is
a mapping from the Herbrand Base to the set of boolean values, {true, false}. We can
also define a structure for L as the Herbrand Universe. In this way, the "meaning” of
each language element is the string of symbols denoting the language element. Call
this structure defined as the Herbrand Universe S. There is a unique homomorphism

from S to any other structure of L.!®

'51n algebra, S is called the word algebra or initial algebra. denoted T;. An implementation is often
defined as a homomorphism from $ to another structure (algebral.
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The implementation ! is not a homomorphism from S because in an interpreted
formula, quantification must be restricted to values of the variables in the
irnp}emeﬂtaﬁon language which satisfy the formula of their sort. For example, the
interpretation of a formula may not equal the interpretation of the predicate symbol
applied to the interpretation of the arguments (Le.. Kpla,.....a,)) = Hp)lla,)....I{ay))).

Rather, if a,...a, are variables of sorts ©,...0 respectively, then for

n*

implementation L, I(pla,.....a ) = is-6,{a,)&...& is-a{ay) = Up) I(a,).....Ia,)).

Consider the interpretaton of formula (*) in the stack example. The
quantification of 8 and s, over stk is translated to the quantification of r and r,, over
rec provided r and r, satisfy the formula ts-stk (L.e., pr2(r) 2 0 & pr2{r)) 2 0). Again, 1f
is easy to see the necessity of restricting r and r, by considering an instance of r, that
does not satisfy {s-stk. If r, = <{1,0.....0).-1> we have — is-stk (r,) and PUSH {s; 2, S,
results in r = <{1,2,0....,0),0> where r and r, implement s and s, respectively. If this
procedure is followed with the implementation of procedure POP(s; s} r does not
change because pr2(r) = 0. Thus, the implementation of s =, 8, does not hold after
the tmplementation of [PUSH(s; 2.s,); POP(s: s)]. So, formula (*) does not hold for all

variables of type rec, but only those that "legally" represent variables of type stk.

B.7. An Abstract Data Type may be Implemented by Several Abstract

Data Types

In the interpretation of a DLP language. predicate symbols were interpreted as
formulas, procedure symbols were interpreted as programs. and sort symbols were
interpreted as sort symbols. However, upon closer examination of the stack example
it can be seen that while the interpretation of sort stk is the sort rec, rec is actually

composed from two other sorts. arr and int. In other words. the theory of array-
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integer pairs is composed from the theory of arrays, the theory of integers. and
function symbols and axioms that specify how to create objects of composite sorts
and select components of these objects. The theory of array-integer pairs is called an
extension of the theory of integers and arrays. The extension does not add

information about the theory, but rather, adds definitions for convenience.

We will formaily define an extension of theory T in language L to a theory T in
language L below. In the stack example, T is the theory of integers and arrays and T

is the theory of array-integer palrs.

Let ¢, and o, be sort symbols in L. If we require a composite sort constructed
from the tuple of sorts <g,. ;> then we modify L in the following way and cail it L.16
Call the new sort symbol created from the tuple o. Add to L the new sort symbol ¢
along with a countably inflnite set of variables of sort ¢, and function symbols prl: ¢
- 6y, pr2: ¢ - &,, and pair: <g;, 6> - ©. For each variable x of sort o, designate
two variables x and xR of sorts g, and g,, respectively. Delete any existing variables

of the form x* and x® in L.

The theory T is obtained by adding the following axioms to T:
1. pair (prli{x}, pr2(x)) = x
2. prl(pairix, y)) =x
3. pre(pair(x. y)) = y

Intuitively, we desire the "untupled” verston of any formula that is true in L to be
true in L. That is, T does not contain any more information than T, but merely
defines some useful abbreviations. The "untupled” version of a formula is made more

precise below by defining a translation of formulas of L' to formulas of L.

16This discussion can be generalized for tuples with any number of elements.
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Ift is a term of L of sort other than the new sort symbol o, then a translation R

from terms of L' to terms of L is defined as follows:

.if t 1s pri(x), then R(t) = x*

. if t is pr2(x), then RIt) = xR

. If t is pri(pair{t,.t,)), then R(t) = Rit))

. if t'is pr2(pair{t,.t,)), then R(t) = Rit,)

_if t' Is a variable, then R(t) = t

 Aft =ft ..t andfe(prl, pr2, pai, then R(t) = { RIt,)...R(t)

[« 34 B A &

The translation R is extended to programs and formulas by doing the following

substitutions:
1. t, =4 t, is replaced by (Rlpri(t,}) =5, RIpril(t,)) & R(pr2(t,)) =0, Ripr2(t,)))
2. (Vx} is replaced by V, x™: Vo XX

3. x:=t where x is of sort o is replaced by z,:=R(prl(t}}; z,:=R{pr2(t)): x:=zy;
xR:=z, and z, and z, are variables which appear nowhere else in the
formula

Theory T is an extension by definttions of T iff T is obtained from T by repeatedly

adding new sorts in the manner described above.

Theorem 1: If T is an extension by definitions of T, G s a formula in
the language L and R defines the translation from formulas in L to
formulas of L. then T = G i T = R(G)

The proof of this theorem is in [wand 82a].

This theorem means an implementation can be expressed in terms of several
abstract data types. Extending a theory by adding tuples of sorts does not make the
theory more powerful as long as the new symbols are well defined (i.e., are function

symbols).
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B.8. Correct Implementations

How do we know I is a correct implementation of bounded stacks? Intuitively. for
the stack example any property of bounded stacks should be preserved in the
implementation. Stated more formally. if a formula is true in the theory of bounded

stacks then its interpretation should be true (n the theory of array-integer pairs.

To define the conditions of a correct implementation, we introduce the concept of
interpretation of one theory into another theory. If T, is a theory in language L,, and
T, is a theory in language Lo, then an interpretation of T; in T, is an interpretation [ of

L, in L, such that the following formulas are logical consequences of T:

1. 3x{is-otx)) for each sort ¢ of L,'7

2. is-0,(x,) &.& is-0,(x)) = is-offf x,..x;) for cach function symbol L
<Gy....0>—>adinl,

3. 1s-1,(z) &..& is-T,(z)) = [Al] 1s-g)fy) for each procedure symbol A:
<t....T> = <O).....0,> and interpretation Ally)....¥n: Zy.-:2,], and 1 €
i1sn

. I(x =4 x) for each sort s of L,

xy =y, & & x, =y, = (ELx, = fy,..y 8

Iy =y, &.&x, =y, = (XX, = DYy Yo
. I(G) for each.axdom G of T

N G A

Conditions 1 and 5 correspond to conditions for first-order theories. Conditions 2
and 3 are required because we have introduced sorts into the language. They state
that if the input data satisfy the formula (tnvariant) of their sort. then the output of

the interpreted function or procedure satisfles the formula (invariant) of its sort.

17This corresponds to the condition for first-order theories that Tm3v,r, where &, is the formula
assigned to ¥ by the tnterpretation.

18This corresponds to the condition for first-order theories that T, |- Vv . v, (mylvy) == mylv) = 3x

() & WV | (R ViV, SV ™V = x))) where the interpretation assigns the formula =, of L, t0
function symbol f. Though the formulas are in different in form. they state the same condition: the
interpretation preserves functions.
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[tems 4, 5, and 6 are necessary because equality may be interpreted as an
equivalence relation. They state the interpretation of equality is a reflexive relation
and is preserved by the interpretation of terms and predicates. Item 5 states that the
interpretation of a function symbol is a function. Item 7 states that the translation of

the axioms of T, are logical consequences of T,.

A correct implementation of a theory T, In a theory T, is an interpretation [ of T,
in T, where T, may be an extension by definitions of a theory. The main theorem
proved in [wand 82a] is

Theorem 2: (The Implementation Theorem). Let I be a correct
implementation of T, in T,.

1. If A is any L,-structure, then there is an L,-structure A’ such that
for any closed formula G of L), A'+G iff A = I(G).1°

2. For any formula G of L,, if T, k= G, then T, = 1(G).%°

B.9. Correctness Proofs

In this chapter an example of a correctness proof is presented. However, as
described below the stack example is not used. Let T,, be the theory of bounded
stacks and T, be the theory of array-integer pairs. i I is a correct
implementation of T,y into Ty ... then if a is a valid sentence in Ty, then I{o) is a
valid sentence in T, .. If Ty and T, ., are sound and complete then to prove the
last condition above (condition #7) it is sufficient to show that the interpretation of
the axioms and rules of T, are deducible in T, . U Ty and Ty, are not
complete we prove a more restricted result: the interpretation of any formula

deducible in T, is deductble in T, .. If Ty and T, are sound and the

19This corresponds to Lemma 1 in Appendix A for first-order theories.

20This corresponds to interpretation of one theory into another for first-order theortes.

189



formulas in T,, are restricted to those deducible in T, then this proof will be

sufficient to show that the translation of the valid T, sentences are valid in T, ..

‘A specification of the stack data type. a partial specification of the array-integer
pair data type, and the implementation of stacks using array-integer pairs were
discussed above. In a complete specification of array-integer pairs we would have
axioms specifying the assignment procedures with array argument types. These
axioms are rather complicated to specify and require a lengthy discussion of
substitution. Consequently, we have chosen another example for the purpose of
demonstrating the correctness proof technique. Consider the following simple
implementation of a data type whose only operation is SWITCH. Let Tgpee b the
theory for the abstract data type that we want to {mplement and let Timpl be the
theory in which T, 18 implemented tn. T, I8 implemented in T,y ;. Define Typec

as follows:

1. Language
a. sort symbols:

int
bool

b. predicate symbols:
=:<int.int>
¢. individual variable symbols:
abxyx,y, int
d. procedure symbols:
SWITCH: «<int,int>—<int,.Int>
2. Axdoms

a. (x=x J&ly=y))=[SWITCH(a.b; x.y)l((a=y)&(b=x,))
b. ({x=x,)&ly=y))=ISWITCH(x.y: x.y}llx=y J&(y=x )}
Define Ty, as follows:
1. Language

a. sort symbols:
int
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b. indtvidual variable symbols:

x.t Int
P R.Q: formula
a.p: program

2. Axioms:21
a. Plt/x|=[ASSIGN,,  (x: t)]P
3. Rules:

a. P=[alR, R=>(B]
P=(a: BIQ

Define IMP as an implementation of Ty, INt0 Typyp 38 follows:
IMP{int}=int

IMP(SWITCH(a.b; x.y))=|ASSIGN,(t:x); ASSIGN,_,,(a: y): ASSIGN,(b:t]]

As part of the proof to show that IMP is a correct implementation we must show

that the interpretation of both axioms in Ty, are deducible in T .

interpretation of the first axiom in T, Is
((x=x,)&(y=y ) = [ASSIGN,,(t: X): ASSIGN,,(a: y): ASSIGN,,(b: t)l((a=y,) & (b=x))

The proof of this in Timpl is:

(1) ((a=y )&lt=x,}) = [ASSIGN,(b: t)] {(a-y,) & (b=x,)) (axiom)
(2) (ly=y,) & [t=x_)) = [ASSIGN, (a: )] ((a=y,) & (t=x,)) {axiom)

(3) (ly=y )&(t=x,)) = [ASSIGN,,,(a: y); ASSIGN,,(b: t)]({a=y,)&(b=x,))
((1).(2), and rule)

(4) ((y=y,)&(x=x,)) = [ASSIGN,.(t: x)]((y=y ) &(t=x,)) {axtom)
(8) ((x=x,)&(y=y)) =
(ASSIGN,,,{t: X); ASSIGN,, /(a; y): ASSIGN,,(b; ll((a=y,) & (b=x,))
((3}.(4), and rule)
The interpretation of the second axiom is

((x=x,) & {y=y,) = [ASSIGN,, (t: x); ASSIGN, (x: y}: ASSIGN [y: t(lx=y,) & (y=x,)

The proof of this in T, is simtlar to the proof of the first axiom above.?? Suppose

we had interpreted the procedure SWITCH as IMP(SWITCH(a.b: x.y))=|ASSIGN . (a: v}

11p[t/x] means substitute t for all free cccurrences of x in P.

22These proofs use methods of Floyd, Hoare and Dijkstra.
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ASSIGN,,,(b; x)I. Then the interpretation of the first axiom would be true in T, ;. but
the interpretation of the second axiom would be false. The second axicm asserts a
property of side effects with the input variables (the values of input variables are
altered in the procedure SWITCH), and the correct implementation uses a

"temnporary"’ variable t to preserve the desired property.
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Appendix C

Implementation of DS-Tiny

Theory for Source Language, T, rce

Language for Source Language, Lyou ce

Language Elements Defined Language Defining Language
domains id={1I,1L..} num
exp bool
com value = num @ bool
prog input = value*
output = value*
mem = id — [value @ {unbound}|
state = mem ® input & output
function symbols 0: - exp E: exp — [state —
((value ® state) @ (error}))
1: —» exp C: com — (state —
(state @ (errorl}})
true: - exp P prog — input —
foutput @ {errori]
false: — exp hd: value* — value & [erTor}
read: — exp tl: value®* — value®
LII.} »exp _ e+ __:value ® value* — vajue*
not: exp — exp _+__ num @ num — num

a: exp ® exp = exp
+: exp ® exp - exp
1= {d @ exp — com

output: exp — com

if: exp ® com @ com — com
while: exp @ com — com

:: comn @ com — Ccom

begin; com — prog
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predicate symbols null; value.‘ — bool

individual variable v,V v value, 1 <i<n
symbols m: mem

1: input

o: output

C. C,.Cy com
E E.E, exp
I.I:1d

v*: value*

s: state

P: prog
{m,1,0): state
b: bool

Axioms for Source Language, A urce

(Ela)
(E1b)
(E2a)

(E2b)

{E3)

(E4)

(ED)

(E6}

(E7)

€1

E 1 0] (8) =(value & state) @ ferrorp  <0- >

E [ 11 (8) S(alue ® state) @ ferror) <1 5>
E [ true 1 (S) =(gaiue @ state) @ ferror) <TRUE. 8>

E I fme bl (S] =[[value @ state) @ [error]) <FA,LSE. s>

E [ read ] (<m. { 0>) =(tvalue ® state) ® {crrori)
nulllf} - error, <hd(i), <m, tl{i), o>>

E [ 1] (<m. i, 02) S(epuiye @ state) @ ferror)
m(l) = unbound — error, <m(l), <m, {, 0>>

E [ not E 1 (8) =(uiye @ stawe) @ ferror)
{E [ E ] (s} = <v, 8" >) — [is-bool(v) - <~v, 8’ >, error}, error

E [ E,2E; 1 (3) Z(aiue ® state) @ {error)
(ETE; ] (s)=<vy, 82>
(B T Ey 1 (8)) = <va, $57) = <V} = Vg, Sy>, exror), error

El E:1 + E2 I (s} = (value ® state) @ (errori)

(ETE, 1 (8)=<v).8>) > {(ELE; 1 (s) = <vy, 8> =
[is-numfv,) & is-numivy) — <v, + v,, 89>, error}, error), error

Cil:=ET](s) Z(state & {error})
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(E [ E ] (s} = <v, <, {, 0>>) = <m(v/]], i, o>, error

{C2) CloutputE ] (s} T(state @ (error})
(E [ E 1 (s) = <v, <m, i, 0>>) — <m, 1, 0%v>, €ITor

(C3) CIUE Cl C2 1 (s) =(state & {error})
(ETE T (s)=<v, s> - lis-boollv) -
fv>C€[C;1(s) CICy1 (s, error], error

(C4) € [ while EC ] () =(4tate @ (error})

(ETET(8)=<v, 8> o [is-booliv) 5 (v > ((C [ C 1 (s) = s") —
C [ while E C ] (s"), error), 87, error], error

{Cs} C E Cl : Ctz B (5) =[’mtee {emrﬂ
(CIC,1(s)=error) s error. CTC, I (CLCy1I(s)

(P1) P IbeginP 1 (1) =, ut @ ferror A2 [a = eITOT > 2, hd(ttl(a))]
(CLPI (m,l<>))
where
VI € id. m (I} = unbound
<> = initially empty output

A1) miv/I) =410 @ {unbound} (I Z1a I = v, ml)
{A2a) hd{<>) = error

(A2b) hd(<v>)=vVv

(A2¢c) hd(<voev*}=v

(A2d) tHevsev}=v*

(A2¢e) hdiv*)stliv*) = v*

Theory for Target Language, Ty get
Language for Target Language, L., get

Language Elements Defined Language Defining Language

domains id value = num & bool
instr stack = value*
code = instr* mem = ld — [value & {unbound}]
ecode = instr* input = value*
num output = value*
bool state = mem @ input ® output
pcode = instr* mstate = stack @ state
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function symbols start: — Instr

halt: — instr
loadn: num — instr
loadb: bool — instr

read: - instr

load: id — instr

not: — instr

eq: — Instr

add; — instr

store; id — Instr

output: — instr

cond: code ® code — instr
loop: ecode ® code — instr

MI: instr — (mstate —
(mstate @ (errorl))

MC: code — (mstate —
(mstate @ {error}))

ME; ecode — (mstate —
{mstate @ [error}))

MP- pcode — (mstate -
(mstate & {error}))

hd: value* - value @ {error}

tl: value® — value*

lg: value®* —» num

_ s __: value ® value* — value*

__+__:num @ num — num

predicate symbols

null: value* = bool
<: num & num — bool

individual variable
symbols

stk: stack

m: mem

{: input

o: output
(stle,m,i,0): mstate
ID: d

P. Q: code

T: ecode

[: instr

v: value

Axioms for Target Language, A¢prget

{11)
(12)
(13)

(14)

MT [ (loadn, O] 1 ((stk.m.1.0)) =(maeate ® ferror) (<O>*stk.m.1.0)

MI [ (loadn, 1) 1 ((stk.m.L0) =(raeate @ (errorp) (<1>*StK.m.1.0)

MI [ (loadb, TRUE] 1 ((stk.m.1.0)) Spqrate @ ferror)) (STRUE>estk.m.i.0)

MI [ [loadb, FALSE] 1 ((stk,m.L0)) =(mgare  ferrory (SFALSE>estk.m.i.0)
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(15) MI [ [read] I ((stk.m.i.0)} = gtace @ ferrorh
(null(f} — error. (<hd{i)>estk.m.tl{i}.0}]

{16) MI [ [load.ID] 1 ((stk.m.i,0)} =(pstate @ (error))
[m(ID) = unbound — error, (<m(ID)>estk,m.1,0)}

{177 MI [ [not] I ((stk.m1.0)) =(eeate @ error))

[Ig({stk) < 1 — erroOr,
{is-bool(hd(stk)) — (<~hd(stk)>etl{stk).m.i,0), error)|

(18) MI [ [eq] ] ((stk,m.i.0l =(petate @ ferrorh)
(lg(stk) < 2 — error,
(<hd(tlistk)) = hd(stk)>etl(tl(stk)),m,i.0}]

(19) MI [ [add] T ((stk.m.i.0)) =(mstate @ {error}]

(lg(stk) < 2 — errOr,
(is-num(hdistk)) & !s-num(hd(tl{stk))) -

(<hd(tl{stk)) + hd(stk)>etl{tl(stk)).m.1.0),
error)|

(110) MI [ [store, ID] ] ((stk.m.1.0)) =(;atate @ (errorl)
[lg(stk) < 1 — error, (tl{stk), m(hd{stk)/ID].1.0)]

{Il1) MI [ [outp‘utl 1 ((Stk.m.l.o)] =(matate & {error
[lgistk) < 1 — error, (tl(stk),m,1,0e<hd(stk)>]]

(112} M [ [cond, P. Q] 1 ((stk.m.1,0)) =(pqeate @ ferror)

ilgistk) < 1 — error,
(is-bool{ hd{stk)} —
(hd(stk) »> MC T P ] ((tlistk), m.1,0)), MC 1 Q 1 ((tlstk),m, i.0))).
error)]

(113) MI [ [loop. T. Pl ] (stk.m.L.0) =(pyate @ ferror))

ME [ T 1 (Astk.m.i,0). [is-bool(hd(stk)} -
(hdistk) — (MT [ [loop. T. P 1 {(MC [ P ] ((¢tlstk).m.i,00), ((tlstk).m.L.o)).
errorl)

(114) MI [ [start] J ((stk.m.i.0)) =(prare & ferror)) (<> Mol <>)
(115) MI [ (halt] ] ((stk.m.L.0}) =(peate @ error) (St-M.L0)
(TC1) MC T <> 1 (s} = st @ ferort

(TC2) MC [ <I>*P T (S) =(mstare & error]
MIfIils=crror—error, MCTP] (MITI] s)

(TC3) MC [ P*Q 1 (S) S(retate @ (errorf)
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MC (P ]s=error seror. MC1Q I (MCIP3Is)
(TE1) ME [ <> ] (8] S(mstate @ lerror)) S

(TE2) ME [ <[>eP ] (s) =(mstate B [erTor})
MI[Ils=error—error, METPI(MITI] s))

(TE3) ME [ PeQ 1 (8) = 41ate @ lerror)
ME[PJs=error—error, METQI ME(IP] s))

(TP1) MP [ <> 1 (S) Sinatate @ {errorh) S

(TP2) MP I <i»eP ] (s) =(mstate & (error})
MIT1] s=error—error, MP [ P ] (MITITS)

(TP3) MP [ P+@Q 1] (s) =(mstate & [error})
MP [P ] s=erTor »error, (MP [ Q1 (MPTIPIJ s)

Al mv/I) = e © fnbound) ( T U = v. m(Y)
(A2a) hdi<>) = error

(A2b) hdl<v>) =V

(A2¢) hd(<cv>ev?) =v

(A2d)  tl<cvoev?) = v*

(A2e} hdiv*)etliv*) = v*

Interpretation
Language Elements Defined Language Defining Language
I domain — domain Ilid) = id IInum) = num
Ilexp) = ecode Ibool) = bool
Ilcom) = code Rvalue) = value
Ilprog) = pcode Hinput) = mstate

Iloutput) = mstate
Ilmem) = mem
Ilstate) = mstate
Ilstate ) = mstate,
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I function symbol
— term

1o = [loadn, O}

1) = [loadn, 1]
Rrue) = [loadb, TRUE]

Ifalse} = [loadb, FALSE]
Iread} = [read)
L) ={load L}, 12 1

Mnot) = AE. (E) » [nbt]

Ila) = AE\E,. (E,) » (E;) * [eq]

IE) = AEs. H(E) (s}

where HIC)((stk, m. i. 0}] equals

ME(C)i{stk. m. 1, o)} = erTor —

error,

<hd(pr1(ME(C)((stk. m. i, o}))).
<tlipr L{ME(C)((stk. m. i, o})}].
pr2(ME(Ci((stk. m, i, o)},
pr3(ME(C)((stk, m. i oll).
pr4{ME(C)({stk. m, i, 0)}]>>

IC) = A\Cs. MC (C) (s}

I = \P. MP (P) s,,.

where s, = <<>.m,, 1.<>>

IThd) = As. hd(s)

Iith = As. tl(s)

I+) = AE,E,. (E|) ¢ (E,) * [add]

I:a) = AIE. (E) » {store, ]
Tloutput) = AE. (E) » [output]

Iif) = AEC,C,,. (E) » [cond. C,. C,]

I'while) = AEC. [loop, E. C]

;) = AC,C,. (C)) ¢ (C))

Ibegin) = AC. [start] ¢ (C) « [halt]

predicate symbol
— predicate symbol

n=va.lue] = Svalue

H=4) ==y
Anull) = null

individual variable
symbol —
term
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K(m.i,0): state} =
(stk.m,i,0); mstate
Ils: state) = {stk,m.i,c}; mstate
I{m .1.<>): initial state) =
(<>,m,.1.<>): inttial mstate
Hi:input) = (stk,m.i,0}: mstate
Nhd(tl(tlm, {, o)))): output] =
{stk, m. 1, o}): mstate



new predicates is-state: mstate — bool
is-input: mstate — bool

N.B.. there are other predicates.
All these predicates are trivially

true,

Example Correctness Proof

Axiom (Ela)

Transiate Axiom into L, .,

E107] (s =<0, s>

(translate axiom using interpretation, 1)

AEk. [H (E) (K] (O)) (Ms)) = <MO). Ks)>

H ([loadn, 0)) ((stk, m, i, o)} = <0, <stk, m, 1, o>>

(ME ([loadn, O}) ((stk, m, i, 0}) = error — error,
<hd (prl (ME {(loadn,0]) ((stk, m. i, o}})),
<ti(pr1(ME ([loadn,0)) ({stk. m. i, 0 ).
pr2 (ME ([loadn,0]} ((stk. m, 1, o}}},
pr3 (ME ((loadn,0}) {{stk, m, 1 ,0))).
pr4 (ME ([loadn,0)) ((stk, m, 1, 0))}>>)

= <0, <stk, m, 1, 0>>

(simplify)

(simplify)

Proof in Tyyrgee

(ME ([loadn, 0)) ((stk. m, i, 0)) = error — error,
<hd (prl (ME ([loadn,0)) ((stk. m, 1. 0)))).
<tl(pr1{ME ([loadn,0)) {{stk, m. 1, 0 m.
pr2 (ME ([loadn,0)) ((stk, m, L, 0))).
pr3 (ME ({loadn,0}) {(stk, m. 1 .0))),
pr4 (ME ((loadn,0)) ((stk, m, 1, 0)])>>)
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(axioms TE2, TE1, and I1)

=(<0 » stk, m, i, 0,> = error — error, <0, <stk, m. . 0 >>)

{conditional axiom]

= <0, «<stk, m, i, 0, >>

Axiom (E1h)

Translation and proof are similar to those for Axiom (Ela).

Axiom (E2a)

Translation and proof are similar to those for Axiom (Ela}.

Axiom (E2b)

Translation and proof are similar to those for Axiom (E1la).

Axiom (E3)

Translate Axiom into L., ...

E [ read 1 (<m, i, o>) = null{i) — error,
<(hd(1)), (m,tl(t),0)>

(translate axiom using interpretation, I

AEK. [H (E) (k)] T Nlread) T Il<m., {, 0>) = I [null(i} — error,
<(hd(1)), (m,tl(1),0)>)}

(simplify)

H ([read]) (<stk, m, 1, 0>) = (null{i) — error, <hd (i) » stk, m, tlll), o>)

(simplify)

(ME ([read]) ({stk, m, i, 0,)} = error -» error,
<hd (prl{ME (fread]) ((stk. m, i, o),
<tl (pr1(ME {[read)) ((stk, m, i, 0)))).
pr2 (ME ([read]) ((stk, m. 1, o})}.
pr3 (ME ([read]) ((stk, m, 1, o))},
pr4 (ME ([read]) ({stk, m, {, 0)))>>}

= (null(f) —» error, <hd (i) « stk, m. tl(i), o)}
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Proof in T, ...

{ME ([read)) ([stk, m, i, 0,)) = error — error,
<hd (pr1(ME ([read]) {{stk, m, 1, o}}}},
<tl (pr1{ME {[read]) ({stk, m. 1, o))},
pr2 (ME ([read]} ((stk, m. i, 0))),

pr3 (ME {[read]) ((stk, m, L, 0})),
pr4 (ME ([read]) ((stk, m, i, 0))}>>)

(axtoms TE2, TE1. and I5)

= (null{t) - error, <hd (i) ¢ stk, m, tl(1), 0>)

Axiom (E4)

Translation and proof are similar to those for Axiom (E3).

Axiom (ES5)

Translate Axiom into L, ..,

ElnotE] (s)=
(ETE]s=<v, 5>) > [is-bool(v) = <~v, ">, error}, error

(translate axiom using interpretation, I)

AEK. [H(E) (k)] [ AinotE) ] Ks) =
(AEk. [HE)X)] [ I(E) 1 I(s) = <v. I(s)>) =
[is-boollv) — <~v, I{s)>, error], error

(simplify)
H (IE) » [not]) (<stk, m. i, 0>) =
(H [ I(E)] {<stk, m, 1, 0>) =<v, <sth/, m’, {', 0>>) > lis-bool (v} —
<~v, <stl’, m’, ', o’>>, error], error
{(simplify)
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F (I(E) « [not})
= (FUI (E)) = <v, <stk’, m’, i, o’>> ) = [is-bool(v) —
<~v, <stk’, m’, I’, 0’>>, error]. error
where F(x) is
(ME (x) ((stk, m., {, 0)) = error — error,
<hd (prl (ME (x) ((stk, m, i, o}})),
<tl (prl (ME (x) ((stk, m, i, o}))),
pr2 (ME (x) ((stk, m. i, 0))),
pr3 (ME (x) ({stk, m, i, o))},
pr4 (ME {x) ((stk. m, i, 0>>}))>>)

(simplify)
F (M[E) » [not])
=(ME (I (E)) ((stk m, 1, 0}) = error ) — erTor,

let ME (I (E)) ((stk, m, 1, 0)) = <vestk, m, 1, o> in
[is-boal (v] = <~v, <stk, m, i, 0>>, error]

Proof in Ty, g,

F (ME) « {not}}

(definition of F)

= (G = error — error, <hd (pr1(G)), <tl (prl(G)), pr2(G). pr3(G) pr4(G)>>)
where G is ME (I(E) ¢ [not]) ((stk, m, 1, o))

(axioms TE3, TE2, TE1, and I17)

= (G = erTor — error, <hd (pr1{G)), <tl (pr1{G)), pr2(G), pr3(G) pr4(G)>>)
where G is
ME (I(E)) ((stk, m, i, 0)) = error — error,
let ME (I (E)) {(stk, m, 1, 0)) = (stk’, m’, i, 07 in
[1g (stk) <1 — error,
(is-bool(hd (stk?)) — (~hd(stk) ¢ £l (stk) m’' {’, 0,). error}]

(STACK-HAS-ONE lemmal

= (G = error — error, <hd (pr1(G)), <tl (prl(Q). pr2(Gl, pr3(G) pr4(Gl>>)
where G is
ME (I{E) {(stk, m., i, 0)) = erTor — erTor,

let ME (I (E)) ({stk, m, 1, 0)) = (stk’, m", I, o)) in

(is-bool(hd (stk)) — (~hd{stk} » tl {stk) m’{’, 0"}, error)
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(simplify)

=(ME (I (E)) ((stk m, 1, 0}) = erTor ) — error,
let ME {I (E)) ((stk, m. 1, 0}) = (stk’, m’. i, 07) in
lis-bool{hd(stk)) — <~hd(stk), <tl(stk), m’, i, o">>, error]

Lemmas

STACK-NOT-EMPTY Lemma

ME(IE))((stk. m, i, o)) = error, or <v » stk, m, 1, 0>

Proof
E € {0, 1, true, false, read, [, not E;,. E, = Ey, E, + Ej}
where E|: exp and E,: exp
Basis
E € {0, 1, true, false, read, 1}

-, IE} € {[loadn, 0], {loadn, 1), [loadb, TRUE], (loadb, FALSE],
[read], (load. L]}

.. ME [IE)) (<stk, m. 1, o>}

=MI (KE)) <stk. m, {, o>
(definition of MI)
=erTOr, Or <v * stk, m, {, o>

where v € {0, 1, tt, ff, hd(i), m(I}}

and i’ = ti(i), if [E)=[read]
i, otherwise

Induction step, assume property true for all expression constituents of the
expression

Ee {not El' El = Ez' E1 + Eg}

|

|

I

|

|

|

1

[

|

[

1

i

I

i

|

I

1

|

. |

(TE2 and TE1 axioms) |
|

|

!

f

|

[

I

|

|
|

|
|

I

|
]

I
ME(IE,) * [not]) {<stk, m, 1, o>) I
|
|

{TE3 and TE1 axioms)
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= MI{not])(ME{I(E,))(<stk, m, 1, 0>)), or error
(assumption)
= MI{[not]) (<v> e stk,m,i’,0), or error
(definition of MI)

= («~v> o stk,m,i’,0), or error

ME(IE} » IE,;) leq)) (<stk, m, {, 0>)

(TE3 and TE1 axioms)

MIl[eq)) (ME(I(E,) « IIE,})(<stk, m, 1, 0>)), or error

(assumption)

MI({eq)} ((<v,> ¢ <v,> » stk,m.{".0}), or error
(definition of MI)

= {<v,=v,> e stk,m.1,0), or error

ME(KE,) » I[E,) * [add]) (<stk, m, i, 0>)
{TE3 and TE1 axioms)
= MI([add]) (ME(RE,) » IlE,) (<stk, m, 1, 0>)), or error
(assumption)
= MIl(add]) ((<v,> ¢ <v,> ¢ stk,m,1’,0)), or erTor
(definition of Ml

= («v,+v,> @ stk.m.{’,0), or error

185



STACK-HAS-ONE Lemma

ME (I (E)) ((stk, m, 1, 0)) = erTOT — €I7TOr,
[lgipr1(MEREN((stk. m. i, o)) )) < 1 — A, Bj

where E: exp and A, B: (mstate © {error})
can be rewritten as

ME (I (E)) ({stk, m, . 0)) = error — error, B

Proof

ME (I (E)) ({stk, m, i, o)) = error — error,
[lglpr 1 (MEE)((stk, m, i, 0)) )) < 1 = A, Bl

(STACK-NOT-EMPTY lemmal)

ME (I (E)) {{stk. m, i, 0)) = error — error, [Ig (vestk) < 1 — A, B|

ME (I (E)) ((stk. m, i, o)} = error — error, B

(conditional simplification}
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Appendix D

Implementation of CS-Tiny

Theory for Source Language, T urce

Language for Source Language, Lo, c.

Language Elements Defined Language Defining Language
domains id = {I. I, I,...} num
exp bool
com value = num @ bool
pProg input = value*

187

output = value*

mem = id — [value @ {unbound}]

state = mem ® input @ output

error = [empty-input,
unbound-var,
non-bool-value,
non-num-value
empty-stk-error}

ans = state @ error

cont = state — ans

econt = value — cont



function symbols

Q: 5 exp
1; -2 exp
true: - exp

false: — exp

read. — exp

{L.1;,L;...): > exp

not: exp — exp

=: exp ® exp - exXp

+: exp ® exp — exp

=1 id ® exp — com
output: exp — com

if: exp ® com ® com — com
while: exp ® com — com
;: com @ com — Com
begin: com — prog

E: exp — econt — cont
C. com — cont = cont
P. prog — input -
loutput @ error]
hd: value* — value @ error
tl: value* — value*
__e __: value ® value* — value*

__4_:num ® num — num

predicate symbols

null: value* — bool
€ error: ans — bool

individual variable

symbols

k: econt

v, Vv, v value, 1l €i<n
m: mem

i: input

o: output
C.GC,. C,: com
E.E; E, exp
Cq C: cOMt

a), a;: ans
II"id

v*: value*

s: state

P: prog

(m.1,0): state
b: bool

Axioms for Source Language, Ay urce

{(E1la)

(E1b)

E 10T (&) =qcon KIO)
E 013 00 =con ki)
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(E2a)

E [ true ] (k) =,con; KTRUE)

(E2b) E [ false ] (k) =qcon KIFALSE)

(E3}

(E4)

(EB)

(E6)

(E7}

(C1)
(C2)

(C3)

(C4)

(C5)

(P1)

(Al)

(A2a)
(A2Db)
(AZ2c)
(A2d)
(A2¢}

E [ read ] (k) = .on MmLi,0). (nullli) - empty-input,
k(hd() (m. tl(1),0)}}

E [ 1] (K =,yn Mm.i0). [m() = unbound — unbound-var,
k(m(D)v,)...tv ) ((m.1,01]

E(notE I (K) =, E I E D (Avs. [is-boollv) - k{~vl(s),
non-bool-value])

ELE,=E, ] (= E[E, 1. ETE;T (M. [Klvzyy, )

EQTE,+E; 1 K=ot ETE; I (W.ETE,D{ Av. [is-num(v) & is-num(v) —

kv+v),
non-num-value]))

CI1:=E 1 (c) =y E [E 1 (Avim.to). ke(miv/1.L00)

C [ outputE ] (c) =, E [ E 1 (Av(m.1,0). [c((m,L.0e<v>))]}

CIIfEC, Cy D (c) =nt
ETET] (v [is-boolv) »(v>C[I[C;1(c).CT C, 1 (e, non-bool-value)}

C [ while EC 1 (¢) =¢op¢

ETET (. [is-booli) 5 (v> C[C1(CLwhileECT] (ch. c).
non-bool-value])

CUC[:CyD 0=y CIC, T1(CTC,1T(d))

PbeginP 1 () =, @ error A2- [a € erTOT > A, hd(tl{tl(a))
(CIPI (c) (myi<>))
where ¢, =As.s

V1 € id. m,(l) = unbound
<> = initially empty output

m(v/I0) =.jue @ funbound; T =g ' = V. mE)
hd(<>) =, .or @ value CMPLY-stk-error
hd(<v>) =¢ror @ value V

hd(<v>ev*) =error @ value ¥

tl{cvoev*) = v*

hd(v*)etlivt) = v*
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Language for Target Language, Ly, ot

Language Elements Defined Language

Theory for Target Language, Ti; et

Defining Language

domains id value = num & bool
instr stack = value*
code = instr* mem = id — [value ® {unbound}]
ecode = Instr* input = value*
num output = value*
bool state = mem @ input & output
pcode = instr* mstate = stack ® state
mans = mstate @ error
mcont = mstate — mans
error = {empty-input,
unbhound-var,
non-bool-value,
non-num-value
empty-stk-error,
stack-underflow)
function symbols start: — instr MI: instr - mcont — mcont
halt: — instr MC: code —» mcont — mcont
loadn: num — instr ME: ecode — mcont —» mcont
loadb: hool — instr MP. pcode — mcont — mcont
read: - instr hd: value* — value & error
load: id — instr tl: value* — value*
not: - instr Ig: value* - num
eq: — instr __+ __:value ® value* — value*
add: - instr __+__:num ® num — num
store: id — instr
output: — instr
cond: code ® code — instr
loop: ecode @ code — instr
predicate symbols null: value* — bool
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individual variabie z: mcont
symbols stk: stack

m: mem
i; input

o: output
(stk.m.i,0): mstate
ID: id

P, Q: code

T: ecode

[ instr

v: value

Axioms for Target Language, Ajgrget

(11)
(12)
(13)
(14}

(15)

(16)

(17)

{18)

(19)

MI [ (loadn, O] I (2) ((stk.m.i,0)) =,  Z{(<O>estk,m.1.0))

MI [ (loadn, 1] T (2} (stk.m 1,0)) = z((<1>estk.m.i,0))

MI [ [loadb, TRUE] 1 (2) ((stk.m.1.0)) = s Z((<TRUE>estk,m.i,0))
MI [ {loadb, FALSE] 1 (2) ((stk,m.i,0)) =, , Z{<FALSE>estk.m.i,0l)

MI [ [read] 1 (2) ((stkm.i.ol) =, ¢

[null{i) —» empty-input,
z((«hd{l)>estk.m. tl{1},0))]

MI [ (load.ID] 1 (2) ((stk.m,i,0)) =, .0
[m(ID) =), unbound — unbound-var,
' z{{<m(ID)>estk,m,1,0)}]

MI 1 [not] 1 (2) ((stk,m.1,0)) =51

[lg(stk) < 1 — stack-underflow,
(is-bool(hd(stk)) — z((<~hd(stk}>etl(stk),m.{,0)), non-bool-value)|

MI [ [eq] 1 (2) ((stk.m.i.0)} = .1\g
[lg(stk) < 2 — stack-underflow,
z((<hd{tl(stk)) = hd(stk)>stl{¢tl(stk)).m,i.0))]

MI [ [add] 1 (2) ((stkem.i,0)) = .0
(lgistk) < 2 — stack-underflow,
(is-num(hd(stk)) & is-num(hd{tl(stk})) —

z{(<hd(tl(stk)) + hd(stk)>etl{tl(stk)}.m.1,0}),
non-num-value)]
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(110) MI [ [store, ID] 1 (2) ((stkm.iol}=__

[lg(stk) < 1 — stack-underflow,
z{(tl{stk), m{hd{stk)/ID}.1,0)]]

(111) MI [ [output] I (2) ((stk.m,1.0)) =500

(Ig(stk) < 1 — stack-underflow.
z{(tl(stlk),m,i,0e<hd(stk}>)]]

(112) M [ [cond, P, Q] J (2) {(stk.m.1,0)) = .4

[lg(stk) < 1 — stack-underflow.
{is-bool(hd(stk}) —
(hd(stk) - MC [ P 1 (z) ((tl{stk},m.i,0)),
MC [ Q T (2) ((tlstk).m.i,0))).
non-bool-value)|

(113) M [ [loop, T, P] ] (2) (stk.m.1,0) =,

ME [ T 3 (Alstk.m.i.0). [is-bool{hd(stk)) —
(hd{stk) -
MC [ P ] (MI[ (loop. T, Pl 1 (2) {(tstk).m.i,0)),
z((tl(stk).m.1,0)}),
non-bool-value])
(I14) M [ [start] 1 (2) ((stk.m,L0)) =, 4 2l(<>.m,.1.<>)
(115) MI [ [halt] ] (2) ((stk,m.i.0)) =, .., (stk.m.i,0)
(TCl) MC <1 (2)=

mecont z

(TC2) MCI<I>P ] (2=, MIL[I] (MCLPI ()
(TC3) MCIPeQ (2=, MCIP]MCIQI(2)
(TE1) ME [ <> 1 {2) =p00nt Z

(TE2) ME [ <I>eP 1 (2) =0 MI [ 1] (ME [ P ] (2))
(TE3) ME [ PeQ 1 (&) =0y MEIP T (ME[ QT (2))
(TP1) MP [ <> ] (2) =pnom 2

{TP2) MP [ <I>eP ] (2= MILI] (MPIPI] ()
(TP3) MP [ PeQ 1 {2) =0, MPIP ] (MP [ Q1] (2))
(A1) mv/I1) =e @ unbound) I =g I' = v. m(I)
(A2a) hd(<>) =10 @ vaiue CTPLY-stk-error

(A2b)  Ad(<V>) =¢rgr @ value ¥

(A2¢) hd(<v>ev?) Zerror ® value ¥
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{A2d) tllcvsevt} = v*

(A2e) hd{v*)etllv*) =v*

Interpretation
Language Elements Defined Language Defining Language
I domain — domain HKid) = id Iinum) = num
TNexp) = ecode ITbool) = bool
Ilcom) = code Ilvalue) = value
I(prog) = pcode Ilinput) = mstate

Noutput) = mstate

Ilmem) = mem

I(state) = mstate

Ilstate ) = mstate,,

Ians) = mans

Ilcont) = mcont

Hecont) = value — mstate - mans
Herror) = error

I function symbol
— term

I0) = [loadn, 0] IIE) = AEk. H[E) (k)
where HIC)(Avistk, m, i, 0]. F)
equals ME(C}(A(stk, m, 1, o).
F{hd(stk){(tlstk), m, i, o))
I1) = [loadn, 1] Q) = ACc. MC(C) (c]
Iltrue) = [loadb, TRUE] P =\P. MP(P) z,,
where z, = Astk,m.,1,0). (stk,m.i.0)
Ifalse) = [loadb, FALSE] Ihd) = As. hd(s)
Ilread) = (read] Ith = ks. ti(s)
II) ={load, L], 12 1
Inot) = AE. (E) « {not]
Il=) = AE |E,. (E|) » (E;) » [eq]
L+) = mlEgo (El) °(Ey)e {add]
I:=) = AIE. (E) « [store, ]]
Routput) = AE. (E) « {output]
Iif) = AEC,C,. (E) » [cond, C,, C,]
Ilwhile) = AEC. {loop. E, C]
I;) = AC,C,. (Cy) « {Cy)
Ibegin) = AC. [start] » (C) * [hait]
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predicate symbol
— predicate symbol

I{:econt) = Tmcont
‘“=ans) = mans
=va.lue) = Zvalue

Mnull) = null

indtvidual variable

symbol —
term

Ik: econt) = Av(stk, m, 1, o).
(2)((v » stk, m. i, o}}:
{value —» mstate — mans)
N(m.1,0); state) =
{stk,m.i.0): mstate
Ils: state) = (stk,m,i,0); mstate
Ic: cont) = z: mcont
Iiim,.1.<>): initial state) =
(«>.m,.i,<>): initial mstate
Kc,: cont) = z,: mecont
Ili: input) = (stk.m.1,0): mstate
IThd(tl(tlm, 1, 0))}): output) =
{stk, m, 1, 0): mstate

new predicates

184

{s-econt: {value — mstate —
mans) — bool

is-cont: mecont — bool

ts-ans: mans — bool

is-state: mstate — bool

is-input: mcont — bool

N.B., there are other predicates.
They are all trivially true.



Example Correctness Proof

Axiom (Ela)

Translate Axiom into L, ..,

E 10171 (k) =pgont KO
(translate axiom using interpretation, 1)

AEk. [H (E) (0] (HO) (k) = eone THHIO)

(simplify)
H ([loadn, 0)]) ( Av(stk, m. i, 0). z((vestk, m, i, 0}} ) = cone
(Av(stk, m, 1, o). z((vestk, m, i, o)) }(O)
(stmplify)
ME ([loadn, 0)) (2) =, Mstk.m,L0). [z((0 ¢ stk.m.1,0}}]
Proof in T, e
ME ({loadn, 0)) (z)
(axdom TE2)}
=MI [ [loadn, O ] (ME [ <> 1 (2)
{axdom TE1)
=MI{{loadn, 0]}z
(axiom 11)

=A(stk.m.1,0). [z{{<0>estk,m.1,0))]
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Axiom (E1b)

Translation and proof are similar to those for Adom (Ela).

Axiom (E2a)

Translation and proof are similar to those for Axiom (Ela).

Axiom (E2b)

Translation and proof are similar to those for Axiom (Ela).

Axiom (E3)

Translate Axiom into L, ..

E { read ] (k) =, Mm.Jo0). [nullll) - empty-input,

k(hd{))((m.tX1),0))]
(translate axiom using interpretation, 1)

AEk. {H (E) (k)] [ Hread) ] Ik) =__ . FA(m.1,0). {nuli(t) - empty-input,
k(hd(i))((m. t41).0)]

(simplify)
ME ([read]) {z) =, Astk. m,. { o). [null(l) - empty-input,
z((hd(i)estk, m, ti(i). o))]
Proof in Ty, g
ME ([read)) (z)
(axdom TEZ2)
=MI[ [read] ] (ME [ <> ] (2))
(axiom TE1)
=MI[ read] ] z
(axiomn I5)
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= AMstk.m.1,0). [null(i} - empty-input,
z{(<hd(i}>estk,m,tl(1),0))]

Axiom (E4)

Translation and proof are similar to those for Axtom (E3).

Axiom (E5)

Translate Axiom into L, ..

EfnotE] k)=, ELE] (Avs. [is-bool(v) -
k(~v)(s),
non-bool-valuej)
(translate axiom using interpretation, 1

AEK. [H (E) ()] [ Inot E) 1 k) =__ ., AEk. [H(E) (K] { IE) I  (Avs. [is-boollv) —

ﬁ(t;-:‘zrl{:st):'ol-valuel)l
(simplify)
ME (IE) » {not]) (2) = o ME (E)) (M<v>estlk,m.1.0). fis-boollv) =
z{{<~v>estk,m.4,0)),
non-bool-value))
Proofin T, 0
ME (KE} « {not}) (z)
| (axdom TE3)
=ME [ IE) 1 (ME [ [not] T (2)
{axiom TE2)
=ME [IE} ] (MI([not] ] (ME[ <> 1 (z])
{axiom TE1)

=ME [ IE) ] (MI [ [not] T {z))

197



{axiom 17)

= ME [ IE) T {Mstk.m.i,0). [Ig{stk] < 1 — stack-underflow,
(is-bool(hd{stk])) —
z((<~hd(stk)>+tl{stk).m.l.0}),
non-bool-valuej])

(STACK-HAS-ONE lemma)
= ME (IlE)) (A{stk,m,i,0). [is-bool(hd(stk)) —

z({{<~hd{stk)> = tl{stk},m.i,o0)),
non-hool-value))
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Axiom (E8)

Translate Axiom into L, .,

E{E =E; 1 (K= ELE T (v ETE;T (Avys. KV =, a1ueV2) (8D
(translate axiom using interpretation, 1)

AEK. [H (E) ()] [ IE, = Ey) 1 1K) =_ o, AEk. [H(E) (k)] T [E) T
(fAv,. E [ E5 [ (Avgs. klv) = v,)(s])

(simplify)

ME (IE,)  IE,) * {eq]) (2) =, o, HUE)Av,. HIE,)
(Av,(stk. m, 1, o). z((<v) = v,>estk, m, 1, o))

(simplify)

ME (IE ) » IE,) » {eq]) (2} =, o ME (E,)) (A(stK, m’, i, o). MENE,))
Alstk.m,i,0). [zl((<hd(stk)=,; hd(stk)>  t{stk) m 100D ((tlstk),m’.i".0))

(STACK-NOT-EMPTY lemma)

ME (I(E,} « I[E,) » leq)) (2) =,y ME (HE,)} (Alstk’, m’, I, 0.
(A(stk,m.1,0). {z((<hd{sti)=,,  hdlstk)> e tlstk),m.10))])((v,etlstk).m".{",0)
where ME(IE,)(2)(tl(stk), m', I', 07} = z{v,etlstk), m’. {', o)

(simplify)

ME (IE,) ¢ IE,) ¢ [eq)) (2) =p0n ME (IE,)) (Mstl, m', ', 0.
z(<hd(stk)=, Vo> ¢ tistk).m".i",07))
where ME(IE,}(z)(tl{stk), m’, 1, 0} = z{v,etllstk), m’, 1, 0

(STACK-NOT-EMPTY lemma)

ME (IE,) » E,) + {eq]) (2) = o MstK', m', 1, 0.
Z{{<v = a1ue¥o> © tlistk),m’ {07}

where MEU(E,)(z)(tlstk), m’, {', 07 = z{vystlistk], m’". {', o)

and ME{IE ,)(z})(stk’, m’, ', 0) = zlv, estK’, m’, I, o)
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Proof in Ttarget

ME {I{Ell . I{E2) . [CQ.]) {z)

{(axiom TE3)
=ME [ IE,) 1 (ME [ IE,)  [eq] 1 (z))

(axiom TE3)
=ME [ IE,) ] (ME [ IE,) ] (ME [ [eq] I (2)}}

(axiom TE2)
=ME[IE) ] (ME [ [E,} J (MI'[ {eq] J (ME [ <> (2)}})

(axdom TE1)
=ME [ IE,) ] (ME [ IIE)) ] (MI [ [eq] 1 (2)}}

(axiom 18)

=ME [ IE,) ] (ME [ IE,) 1 (AMstk.m.i.0). {Iglstk) < 2 — stack-underflow,
z((<hd(tl{stk)) =, hd(stk}>etl(tlstk)).m.i,0))})

(STACK-HAS-TWO lemma)

=ME [ IE,) 1 (ME [ RE,) I
(Mstk,m,i,0). [z{(<hd(tlstk)) =, hd(stk)> o tl¢lstk)).m.i.0)]])

(STACK-NOT-EMPTY lemma)

= Astl, mr', 1, 0). 2({<v =, Vo> @ thstk).m’.1",0)
where ME(IE,)(z)(tlstk), m’, 1", 07 = z{v,ystl(stk), m', 1, 0)
and ME(IE )(z)(stk’, ', 1", 0) = z{v,estk’, m", i, )

Axiom (E7)

Translation and proof are similar to those for Axiom (E6}.
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Axiom (C1)

Translate Axiom into L., ..,

CIlI:=E1Ilc)= E [ E ] (Av(m,i,0). [c{(m[v/I].1,0D])

“cont

(translate axiom using interpretation. I)

ACe. IMC(C) (c)] I RI:=E) ] Iic) =
AEk. (H (E) (k)] [ KE) ] {I [?w(m i,0). [cltmiv/1i.i.0l))

(translate axiom using interpretation, I

MC (IE) » [store, I}) (2) = .on
HE)){(Av{stk,m,1, o) [z{{stk,m[v/I],L.0)})

(simplify)

MC (IE) » {store. 1) () =
ME (IE)) (Mstkm 1 ,0). [z((tl{stk) m[hd{stk)/I].1.0)})
Proof in 'l‘m_g|=t

MC (IE) » [store, 1]) (z)

(axiom TC3)
=MC ([ IE) ] (MC [ [store, ] ] (z))

{axiom TC2)
= MC(RE)} (MI [ [store, 1] ] (MC [ <> 1 (2)))

{axiom TC1}
= MC(IE)) (MI({store, I})z)

(axdiom [10)

= MCIE)) {A(stk.m.1.0). [lg{stk) < 1 — stack-underflow,
z((tl(stk).m[h_d(stk)/ﬂ.1.o)]l)

(MC-equals-ME lermmma])
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= ME(I(E)) (AMstk.m.1.0). [lg{stk) < 1 - stack-underflow,
z{(tl(stk), m{hd(stk)/I].i,0)}])

{STACK-HAS-ONE lemmal)

= ME (E)) (A{stk.m.1,0). [z((tl(stk). m[hd(stk])/I].1,0))])

Axiom (C2)

Translation and proof are similar to those for Axdom (C1).

Axiom (C3)

Translate Axiom into L, .,

ETE] (v [is-boolfv) » (v > C L C; 1 {c),C1C, T {c)

CIHEC,Cy1 (0=
non-bool-value)

cont

(translate axiom using interpretation, )

ACc. IMC(C) (o)l T MEEC, Cy) 1 C) =peont
AEk. [H(E) (K] 1 IE) ]
(I {Av{m,1,0). [is-boollv) 2 (v » C [ C; 1 {c) (mJ.0)}, C T C; 1 (¢) (m.i,0)),

non-bool-value}))
(simplify}
MC (IE) » [cond, NC,), RC)y)l) (2) =pont
H(IE))
(Av(stk,m.i,0). [is-boollv} = (v - MC [ I'C,) 1 (2] ((stk.m.1,0)),
MC T IC,) 1 (2) ((stk.m.i,0)).
non-bool-value))
(simplify)

MC (IIE) » [cond. I[C 1)0 I(Cz]]) (Z] =mcont
ME (IE)) (A(stk.m,1,0).
is-bool(hd(stk)) — (hd(stk) -» MC [ IC,) I {z) ((tl(stk).m.10)),
MC [ IC,) 1 (2) ((¢l(stk).m,1,0))),
non-bool-value)
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Proof in Ty, .,

MC (IE) » [cond. I(C,), IC,)D (2)

(axiom TC3}
= MC [ KE) ] (MC [ [cond, AC,). ICy)] 1 (2))
{(axiom TC2}
= MC ([E)) (MI T [cond, I(C,), IC,)] 1 (MC [ <> 1 {z}}
{axiom TC1)
= MC (IE)) {(MI ([cond, IIC}), KC,)]) 2)
(axiom 12}

= MC (IIE)) (A(stk.m.1,0). {Ig{stk) < 1 — stack-underflow,
{is-bool(hd(stk})) —
(hd(stk) - MC [ IC,) 1 (2) ((tl{stk).m.i0)).
MC [ IIC,) 1 () ((ti(stk).m.L.0))).
non-bool-value)])

(MC-equals-ME lemma)

= ME (IE)} (M(stk,m.1,0). {Ig(stk) < 1 — stack-underflow,
{is-bool(hd(stk)) —
(hd(stk) —» MC { IC,) 1 (2) ((tl(stk).m.1,0)),
MC [ I(C,) 1 (2) ((tlstk).m.Lo}}),
non-bool-value)))

(STACK-HAS-ONE lemma)

= ME (IlE)} (A(stk.m.i,0).
is-bool(hd(stk)) — (hd(stk) > MC [ IC,) 1 (z) ({tlstk),m.i,0)).
MC [ [C,) 1 (2) ((tl(stk).m.L0))),
non-bool-value)
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Axiom (C4)

Translate Axiom into L, .,

CiwhileECT] (c} =

“cont
ETE 1 (Av. [is-boollv) o (v—>CIC1(CtwhileECT (c)),cl,
non-bool-value))

{translate axiom using interpretation. I}

ACc. {MC (C) (¢)] [ Hwhile E C) T Ic) = ,ont
AEk. [H(E) (k)] [ HE) 1
(IAvim.i,0). [is-bool{v) =
(w—>C[ICTI(C [ while EC ] (c) {(m.L.0), ¢ ((m.,i0)).
non-bool-valuel))

(simplify)

MC (loop, HE), IC))) (2) = ,ont
HIE))
{Av(stk.m.l.0). [is-bool{v) —
(v » MC [ KC) 1 (MC [ leop IE) IC) 1 (2)) ([stk.m.i,0)), z ((stk,m.i,0}}},
non-bool-valuej)

(stmplify)

MC ([loop, IE), IIC))) (2) =pc0nt
ME (IE) {
A{stk.m,1,0). is-bool(hd(stk)} -
(hd(stk) - MC [ IC) T (MC [ loop IE} KC) T (z)) {tlstk).m.i,0}},

z {(tl{stk),m.1,0)}),
non-bool-value)

Proof in Tearget

MC ([loop. IE), IIC))) (2)

{axiom TC2)

= MI [ {loop, IIE), AC)] ] (MC [ <> T (2))

(axiom TC1)

= MI ({loop, RE), KC)]) z
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(axiom 113)

= AMstk.m.i.0). ME [ KE) 1 (AMstk.m,io). (is-bool(hd(stk)) —

(hd(stk) —
MC [ 1IC) 1 (MT [ {loop. IE), AO)] 1 (2)) {(tlf{stkl.m.i.0)).
z((tl{stk),m.1,0))).

non-bool-value])

(MI-equals-MC lemmal)
(AMstk.m.i.0}. ME(X)z = ME(X)z)

= ME (KE)) (
Astk.m.1,0). is-bool(hd{stk)) —
{hd(stk} —» MC [ IIC) 1 (MC 1 leop RE) IIC) T (z}) {{tl(stk),m.i,0)),
z ({tlistk),m.L.0)}),
non-bool-value)
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Axiom (C5)

Translate Axiom into L, gt

CHCI;C2E(C)=contCECII](C[[CQ,]](C))

(translate axiom using interpretation. Ij
(reduce i-expressions)

MC (IC, : Cp)) Hle)) =pcne MCMC, ) (MC [ Co 1 ()
| (translate axiom using interpretation, I)

MC (IIC )oI(C,)) (2) =, come  MC (ICy ) | MC (NC,)) (Xch)

{translate axiom using interpretation, I

MC (I(C )eT(Cy)) (2) = ncon: MC (KC; ) ( MC (RC,)) (2)

Proof In Ty, get

MC (IC,)*I(Cy)) ()
(axtom TC3)

= MC (IC, )) ( MC (IC,)) (2)
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Axiom (P1)

Translate Axiom into Ly, ..

P [ begin P 1 (1) =m0 @ error Aa. [a € error — a. hd(tl(ti(a)))]
(CIPI (c) (myi<>)
where c, = As.s

VI € id, m,(} = unbound
<> = initial empty output

(translate axiom using interpretation. I

AP. [MP (P} z_| [ Ibegin P) J (M) = Xa. [a € error — a, al
(ACc. [MC (C) (©)] 1 KP) T Ny} ({(<>.my.1,<>))

{reduce A-expressions)

MP (Ilbegin P)) z, = .,
Alstl,m,1,0). (Mc (I(P)) e )} ((<>.m,.1.<>))

(translate axiom using interpretation, I

MP [ [start] » IIP) o [halt] 1 2z, =_
Alstk,m,1,0). (MC (I(P)) (z,) ([<> m, 1<>]))

Proof in Turget

MP [ [start] « IIP) « [halt] 1 z,

(axdoms TC1. TC2 and TC3)

= MI [ [start] ] (MP [ KP) I (MT [ (halt] 1 z.))

(axdom [14)

= A(stk.m.i,0). (MP [ KP) 1 (MT T (halt] 1 z.)) (<>.m,.1.<>))

{axiom [15)
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= A{stk,m.i,0). MP [ IP) 1 z, ((<>mL<>))

(MP-equals-MC lemma)

= AMstk.m.i,0). MC [ IlF} 1 z, ((<>.rno.i,<>])

Lemmas

STACK-NOT-EMPTY Lemma

ME(IE))z = err, or
Alstk.m.i,0). z {{<v> ¢ stk.m.t’,0))
where erT: error, E: exp

Proof

E € {0, 1, true, false, read, I, notE|. E, =Ey, E; + Ej}
where E|: exp and E,: exp

Basis
E € {0, 1, true, false, read, [}

. IE) € {{loadn, 0], [loadn, 1|, (loadb,tt], [loadb, ff], {read], [load, 1]}

- ME (IE)) (2)
=MI (IE)) z
{definition of MD
=eIT, OT

Alstlk,m.1,0). z ((v » stk.m.i’,0))
where v € {0, 1, tt, ff, hd{l), m(L)}

and I’ = tl{{), if E)={read]
i, otherwise

Induction step, assume property true for all expression censtituents of the
expression

|
!
|
|
!
|
|
I
|
|
[
!
I
|
!
|
[
|
I
|
|
[
|
|
|
I
!
I
|
I
|
|
|
!
1

|
|
I
[
|
|
!
]
}
|
|
|
|
|
|
I
|
I
| (TE2 and TE1 axioms)
I
|
|
|
|
|
]
|
I
|
|
]
I
|
!
|
[

MEUE)) « [not]} 2
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(TE3 and TE1 axioms)
= ME(IIE ) (MI([not]) z)
(assumption)
= A(stk.m.i,0). (MI{{not]) z) ((<v> » stk.m.i".0))
(definition of MI)

= A{stk,m.1,0). z [(<~v> ¢ stk,m.i’,0)), or €IT

ME(IE,) « KE,) + leq)) z
(TE3 and TE1 axioms)
= ME(IE ) » IE,)) (MI([eq]) z)
(assumption)
- Astk.m.Lo). (MIlleq)) 2) ((<v,> » <v> » stk.m.’0))
(definition of M)

= Alstk,m.i,0). z ((<v;=v,> * stk.m.{’,0)), or err

ME(E,) » IE,;) » [add]) z
(TE3 and TE1 axioms)
= MEUIE,) » IE,)) (MX(add]) ]
(assumption)
= Mstk,m.L0). (MA[add]) 2) ((<v,> ® <vp> » stkm.{',0)
(definition of MI

= Alstk,m,1,0). z ((<v,+v,> ¢ stk.m,1".0)}. or erT
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STACK-HAS-ONE Lemma

ME (IE)) {A(stk.m.i,0). Ig(stkl < 1 - A, B)
= ME [ IE) 1 (A(stk,m,i,0). B)
where A: mans. B: mans and E: exp

(STACK-NOT-EMPTY lemma)

Alstk,m.i.0). (A(stk.m.i,0}. lg(stk) < 1 = A, B)
{{(<v> = stk,m,{’,0))

(Iglstk) = 1)

= erT, Or
Alstk,m,1,0). (Mstk.m.1,0). B) ((<v> * stk,m.i’",0))

|

|

|

}

1

|

|

|

}

|

|

1 = err, or
|

|

|

|

}

|

|

|

| = ME {IE)} {(A(stk.m.i,0). B)
|
I
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STACK-HAS-TWO Lemma

ME 1 IE ) I (ME [ IE,) 1 (Astkom.i.0). lg(stk) <2 —» A, Bj)
=ME [ FE) 1 (ME [ IE;) 1 {A(stkm.i.0]. B))
where A: mans, B: mans, E|: exp, and E,: exp

ME [ IE,) ] (ME [ IE,) 1 (Mstk.m,io). lglstk) <2 - A. B))
(STACK-NOT-EMPTY lemma}

= eiT, or
Mstk.m,i,0). ME [ IE,) 1 (AMstk.m.t.0). lg(stk) <2 = A. Bl)

|
|
|
|
i
|
|
|
|
|
|
|
|
{{<v> o stk,m.i,0) :
(STACK-NOT-EMPTY lemma) |

[

f

I

I

I

I

|

I

|

|

|

I

!

I

I

|

I

I = err, Or

! Alstk.m.i,0). [Astk’.m’,1",0). {A(stk”.m” 1".0"). lg(stk”) <2 — A, B)
I ((<u> » stid.m’.1.07)] ((<v> » stk,m,1.0})

i
1 (reduce A-expression)
|
| = err, or

|
i
I
|
I
I
1
|
J
I
[
|

I
|

I

|

I

|

|

!

Mstk.m..0). (AMstk”.m” 1.0, lg{stk”) <2 - A, B) |
((<u> ® <v> o stk,m.1,0)) :
|

|

:

I

|

|

|
:

|

(Igistk) = 2)

= e1r, Or
Alstk,m.i,0). (A(stk”,m".1",0"). B)
{(«u> ® <v> ¢ stk,m.i,0))

= ME [ IE,) 1 (ME [ IE,) ] (\(stk.m,i0). B)
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MC-equals-ME Lemma

MC(IIE)) = ME(IE)}, where E: exp

Proof

MC: code — mcont — mcont

ME: ecode — mcont —» mcont
code = insir* = ecode
IE): ecode

MC(IE)) = ME(I[E))

MP-equals-MC Lemma

MP(IP)) = MC(IIP)), where P: com

Proof

MC: code - mcont — mcont
MP. pcode — mcont - mcont
code = instr* = pcode

IP): code

MP(IF)) = MCI(P))

MI-equals-MC Lemma

MC(X) = MIX), where X: instr

Proof

MC: code — mcont — mcont
MT: instr — mcont — mcont
code = instr*

by axioms TC1 and TC2,
MCX) = MIX)
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Appendix E

Specification of CS-Tiny2

Theory for Source Language, Ty, ,ce

Language for Source Language, Lo, .ce

Language Elements Defined Language Defining Language
domains id = {I, I, L.} num
exp bool
com value = num @ bool
prog input = value®

213

output = value*

mem = id — [value @ {unbound}]

state = mem ® input & cutput

error = (empty-input.
unbound-var,
non-bool-value,
non-num-value
empty-stk-error}

ans = state @ error

cont = state —» ans

econt = value — cont

econt, = cont

econt_,, = value — econt,



function symbols 0: - exp E: exp — econt — econt

1; 5 exp C: com — cont — cont
true: — exp P prog — input —

[output & error]
false: — exp hd: value* — value © error
read: — exp tl: value* — value*
L I;.15...) > exp __e __:value ® value* — value*
not: exp — exp __+__num & rnum — num

=: exp ® exp — exp

+: exp ® exp — €Xp

1= id € exp — com

output: exp — com

if: exp ® com ® com —» com
while: exp ® com — com

1 com @ com — com

begin: com — prog

predicate symbols nuil: value® - bool
€ error: ans — bool

individual variable k: econt
symbols v,V,vivalue, 1€i<n
m: mem
i; input
o: output
C. C,.C,: com
E,E{, Ey exp
C,. €2 cont
a,., a,. ans
I.Inid
v*: value*
s: state
P: prog
(m.i,0): state
b: bool

Axioms for Source Language, Agqyrce
(Ela) E [ 01 (K =¢eon KIO)
(Elb) E 0171 () =gon k(1)

214



(E2a)

(E2b}

(E3)

(E4)

(EB)

(EB)

{E7)

(C1)
(€2)

(C3)

(C4}

(C5)

{(P1)

{al)
{A2a)
(A2b)

(A2c)

E [ true T (k) = .o, K(tt)

E [ false J (k) =,on; K

E [ read ] (K} =.0nt

Avy..vy(m,io). (null(i) — empty-input,
k(hd(D)(v,)...(v ) ((m, tl1).o}]

E 111 X =cont
Av,..v (m.t.0). [m() = unbound — unbound-var,
km(D}{v))...(v ) {{m.1,0)}}

E I notE 1 (K =gon

E [ E T (Avv,...vs. lis-bool{v) — k(~v){v ]...[v,)(s),
non-bool-value])

ETE =E,1 W= ETE, 1 (ETE;] (Avv [kiv= = vatueV )}

EL E1+E2 1 (W “econt

EIE, J(ETE; ] { Av'v. [is-num(v) & is-num(v) — k{v+v],
non-num-value]))

C(1:=E ] (&) 5o E T E T (Avlm.1,0). [ellmlv/I}.1.0)}

“cont

C [ output E 1 (¢) =, E [ E 1 {Avim.1,0). [cl{m.L.oe<v>))])

“cont

COIEC,Cyl (0 2gp,

ECEJ (w. lis-booly) 5 (v=>CIC;J(c),C1C,1 ()
non-bool-valuej)

C 1 while EC ] (¢) =gnt

ETE ] (Av. [is-hoolv) 5 (v->C[C](CIwhileEC] (c). .
non-bool-value]

CIC,:iCal )= CIC;T(CIC,1(0)

P [ begin P 1 (i) =,y M. [a & erTor — a, hd(tltla))]
(CEPI () (myl<>)
where ¢, = As.s

v1 € id, m_(I) = unbound
<> = initially empty output

mliv/II) =5pue @ {unbound]} I=gq ' > m(I)}
hdi<>) =, or @ value CMPty-stk-error

hd(<v>) =

“error @ value v

hd(<v>ev?) =error @ value v
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(a2d)  tll<voevt) = v*
(A2e) hd{v*)etliv*) = v*
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Language for Source Language, Lo, ce

Language Elements Defined Language

Appendix F

Implementation of CS-Small

Theory for Source Language, Tg,yrce

Defining Language

domains

id = (I I}, Iz...}
exp

com

prog

decl

bas

opr

num

bool

loc = {input, i}, ... . 1}

bv

rv = bool & bv

dv = loc & v @ proc

sv = file & rv

file = rv'

env = id = {dv @ {unbound})
store = loc = (sv @ {unused})
state = env @ store ® ans
ans = [error, stop} @ (rv ® ans)
cont = state — state

econt = dv — cont

dcont = env — cont

proc = cont — econt



function symbols B: — bas E: exp — econt — cont

0: = opr C. com — cont — cornt

true: — exp P prog — [file - ans]

false: — exp hd: rv* - v @ {error}

read: — exp Ll vt > vt

{LI,,I;.} —>exp e _TVv®TIVt > V"

B: exp __4__:num ® num — num
_[_) exp®exp—>exp R: exp — econt —» cont

O: exp ® exp — eXp D: decl — dcont — cont

1= exp @ exp — com B:; bas - bv

output: exp — com O opr = (rv ® v} — econt — cont

if: exp ® com ® com — com
while: exp ® com — com

:: com & com — com

begin: decl ® com - com
program: com — PIrog
const: id ® exp — decl

var: id ® exp — decl

proc: id ® id ® com — decl
,: decl @ decl — decl

predicate symbols null: rv* - bool

individual variable k: econt
symbols C.C,. Cy: com

E,E,. Ey exp

c,. C: cont

P: prog

b: bool

n: num

I: loc

e: bv

D, D,. D,: decl

d: dv

V. sV

e rv

i: file

I env

s: store

u: decont

p: proc

a: ans
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Axioms for Source Language, Aggurce

El) EIBI (K=, k(BIBI)
(E2a) E [ true ] (K =, K(TRUE)
(E2b) E [ false I (k) =, k(FALSE)

“cont

(E3) E [ read ] (k) =, AMr.s.a). [null{s{input)) — <r, s. <a, error>>,
k (hd(s(input))) (<r, s[tl(s{input))/input]. a>}]

(E4) E {17 (k) = Mr.s.a). [r(D) = unbound — <r, S, <a. e1T0r>>,
k(r(D)((r.s.a))}

(E7) E(E,OE,1 (K=, RIE, IR RIE;] (2 [0OIOT {e, e) (KI)
(Cl) CIE,:=E;1 (c) =g E [ E; I (loc? (Al R [ E, T (update(Bch)

(C2) CloutputE ] (¢) =, R [ E 1 (Aelr.s.a). [ellr, s, <a, e>})])

(C3) CIE|E,y 1 (c)=gon: ELE,; I (proc? Ap. E [ E; 1 (plc)))

(C4) CLIfEC,CyI Q) =g, RIET {bool? (Re.e > (C T C, T (c),
CICy1 e

(C5) CIwhileECT (c} =

(C6) CIbeginDCI (¢} =
. Alr,s,a. DD O. CTC1 ()], s a)(r. s, a)

(C7) CIC,:Col M= CEC,1(CIC,T ()]

(P} Pl program C ] (1) =,
C 1 C 1 (Mr. s, a). <1, s, <a, stop>>}(<ry, spli/inputl, a5>)

where V1 € loc, s4(l) = unused

¥1 e id, r (l) = unbound
ag = injtially empty output

(R) RIET] (&=, E [ETI (deref {rv? (k}))
(D1) DIconstlET] (u) =, RIE]I (Ae ule/I})
(D2) DrvarlE ] (u) =,pn R LE 1 (ref (M. uli/I])

(D3) DiIproclil;CI (u)=yn
Alr, s. a). ullice(r. s’ a). CCO)cl<rle/1,]. s’ a’>))/Il(<r, s, a>)

(D5) DID;.Dy I (u=cpn
AMr.s.a). DI D, 1 (r;. D [ Dy T (Ar,. ujr,[rol) (rlry). s. &) (<1, s, a>)
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(Al} rle/IN17 =dv @ (unbound} {I =d I' > e, )

(A2a) hd(<>) = o €TTOr

error} &
(A2b) hd(<e>) = onew €
(A2¢) hdi<e>ee*) = @€
(A2d) tli<e>ee*) =e*

(A2e) hdle*)etl(e*) = e*

Abbreviations

loc?: econt — econt
loc? = Ake. isloc(e) — kie), (AMr. s. a). <T, s, <&, erTor>>)

proc?; econt — econt
proc? = Ake. isproc(e) — k(e), (Alr, s, a}. <1, s, <a, error>>)

v?: econt — econt
v? = Ake. isrvie) — kle), (Alr, s. a). <r, S, <a, erTor>>)

bool?: econt — econt
bool? = Ake. isrvie) — (isboolle) — k(e). (Alr, s, a). <r, 8, <a, error>>)},
(M, s, a). <I, S, <a, error>>)

update: loc — cont - econt
update = Alce(r, s, a). issv(e) - cl<r, s[e/]], a>), <T. s, <a, erTor>>

new: store — (loc @ {erTor})
new = As. s(l,} = unused - 1,, ..., sll) = unused — L, erTor

ref: econt — econt
ref = Ake{r. s, a). new(s) = error - <r, S, <a, error>>,
update (new(s)) (k{new(s))) (e (<r, s, a>)

deref: econt — econt

deref = Ake(r. s, a). isloc(e} — (s(e) = unused - <r, s, <a, error>>, kisle)){<r, s, a»)).
kie)(<r, s, a>)
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Theory for Target Language, Tiarge¢

Language for Target Language, Ly, qe¢

Language Elements Defined Language

Defilning Language

domains

id

instr loc = {input, 1, ... . 1}
code = instr* bv

ecode = instr* rv = bool @ bv

num
bool
pcode = instr*

ocode = instr*
dcode = instr*
bas

mdv = loc @ v & mproc
sv = file @ rv
file = rv’
alist = (id ® mdv)’
menv = {<>} © (alist ® menv)
store = loc — (sv @ {unused})
mstate =
menv ® store ® ans ®
stack ® dump
ans = (error, stop} @ (rv ® ans)
mproc = mcont — meont
meont = mstate — mstate
stack = mdv’
dump = menv’

function symbols

start: — instr
halt: — Instr

loadv: bas — instr
loadb: bool - instr

MT: instr — mcont — mcont
MC. code - mcont — mcont
ME: ecode — mcont — mcont
MP: pcode — mcont — mcont

- read: — instr hd: D* - D @ [erTor}

where D is either mdv, menv,
or {id ® mdv)

load: id — instr tl D* - D"

pcall: — instr lg: D* -5 num

mkproc: deode —» instr _e_:D@D*->D*

ret: — instr __+__ hum & num — num

store: — instr Q. ocode — mcont — mcont

output: — instr B: bas — bv

cond: code ® code — instr MD: dcode —» mcont — mcont
loop: ecode ® code — Instr

init: - instr

bind: id — instr

begin: — instr

end: — instr

deref. — instr

op: — Instr

start: — instr
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predicate symbols null: D* — bool

< num ® num — bool

individual variable Z: mcort
symbols stk; stack

(r, s, a, stk, d): mstate
ID: id

P, Q: code

T: ecode

I instr

Axioms for Target Language, Aarget

(11)
{(I3a)
{13b)

(15)

(16)

(18)

(110)

MI [ [loadv, B] ] (z) ((r. 5, a. stk, d)} = ¢ 2((T. 5. @, <B(B) ¢ sti>, d))
MT [ [loadb, TRUE] ] (2 ((r. s, a, stk, d)} =5 are 2((T. S, 2, <TRUE @ stlk>, d))

MI [ (loadb, FALSE] ] {2) {(r. s, a, stk. d)) =, Z((T. 5, 8, <FALSE ¢ stk>. d))

MI [ (read] T (2) ((r, s, a. stk, d)} = 5ate

[null(s(input)) — <r, s, <a, error>, stk, d>,
z((r, s[tls{input))/input], a. <hd(s(input)} ¢ stk>, d))]

MI [ [load.ID] T (2) ((r. s, a, stk, d)} = 50
[dv?(ID)(r} = unbound — <r, 8, <a, error>, stk, d>,
z{(r, s. a, <dv?{ID){r) » stk>, d))]
where dv?(ID}(r) = (nuil(r) - unbound,
let v = search(ID}(hd(r)) in (v = unbound — dv?{ID)(tlr)}, v})
and search(ID)(r) = (null(r) —» unbound,
prl(hd(r) = ID - pr2(hdir)). search(ID}(¢l{r]})

MI [ {op] 3 () ((r. s, &, stk. d)) = 4aee

(lg(stk) < 2 — <, s, <a, error>, stk, d>,
z((r, s. a. <O(op)(hd(stk), hd(tl(stk))(z) ¢ tl(tlstk))> d))]

MI [ {store] ] (2) {(r, s, a, stk. d)) = 4¢are
Igistk) < 1 — <r, 8, <a, erTor>, stk, d>,
isloc(hd{tl(stk))) —
lissv(hd(stk)} — z(<r,s[hd(stk)/ hd(tl(stk))], a. tl{tl(stk)), d>).
<r, 8, <a, error>, stk, d>},
<r, s, <a, error>, stk, d>»
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(Iil)

{112)

(I113)

(I14)

{118)

(118)

{(117)
(118)
(119}

(120)

(I121)

MI [ Ioutput] 1 (z) ((r. s, a. stk, d}) “mstate

(lg{stk) < 1 — <r, s, <a, error>, stk, d>,
z((r, s. <a. hd(stk)>, tl(stk), d}]

MI T [cond.P. Q] ] () ((r. s. a. stk, d}) “mstate

{lgistk) < 1 — <r, s, <a. ertor>, stk, d>,
(is-bool(hd(stk)) —
{(hd(stk) > MC [ P T (2) ((r. s, a. tl(stk), 4],
MC [ Q1 (2 (r s, a, tlstk), d)}}.
<r, s. <a, error>, stk, d>)|

MI ¢ [loop. T.P] 1 {2) ((r, s, a, stk, d)) =,5tate
ME [ T J (Alr, s, a, stk, d). {is-bool(hd(stk])) —
(hd(stk) -
MC[ P11 (MIC [loop. T. Pl I () (r, s, a, tlistk), d)}.
z{(r, s, a. tlstk], d)}),
<r, s, <a, error>, stk, d>|}(r, s. a, stk, d))

MI { [start] T (2) ((r, s, &, stk, d)) =_ 20 2{<>.8,, @ <>, <))

MI [ [halt] 1 (2) ((r, s. a. stk, d)] = ... (T. S, <&, Stop>, stk. d)

MI T [deref] 1 (2) ((r, s. &, stk, d)) = giate

isloc(hd{stk})) —
[s(hd(stk)} = unused — (r, s, <a, error>, stk, d).
(istv(s(hd(stk))) — z(<r.s,a.<s{hd{stk])) ¢ tl(stk)>.d>),
<r, 8, <a, error>, stk, d>l].
[isrvihd(stk)) — z{<r,s,a.stk.d>), <r, s, <a, erTor>, stk, d>]

MI [ [begin] T (2) (1, s. &, stk, d)) =_ .0 Z(€<<>, >, 8, 8, stk, d>)
MI [ [end] 1 (2 ([r, 5. a, stk, d}} =_ .. ZI<tUr), 5. a, stk, d>)

MI [ bind ID) ] (2) ((r, s, a. stk d) = 1c

lglstk) < 1 — «<r, 8, <a. error>, stk, d>,
z(<<<ID, hd(stk)>  pri(r), pr2(r}>, s, a, tl(stk), d>)

MI [ [init] ] (2} ((r. s, a. stk, d)) = a0
isloc(new(s)) — z(<r, s{hd(stk)/new(s)], a, <new(s) o tlistk}>, d>),
<r, s, <a, error>, stk, d>

MI [ [mkproc P] J (2) ((r. s, a. stk, d)) =_51ae
z(<rT, s, a, <(Az'(r'.s".a",stk’,d). MP(P)(2)(r.s".a’,stk’,.<r’.d">]) * stle>, d»)
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(122)

(123)

(TC1)
{TC2)
{TC3)
(TE1)
(TE2)
(TE3)
(TP1)
(TP2)
(TP3)
(A1)

(A2a)
(A2D)
(A2¢)
(A2d)

(A2e)

MI [ (peall] ] (2) ((r. s, a. stk. d)} =g
Ig(stk) < 2 — <r, s, <a, error>, stk, d>,
isproc(hd(tl{stk))) —

{(hd(tl{stk)) (z) (<r. s, a, <hd(stk) » ti{tlstk))>, d>),
<r, s, <a, error>, stk, d>

MI [ [ret] T (2) ((r. s, &, stk, d)) = q4a¢e Z{<hd(d), s. a. stk, tl{d)>)

MC[[<>] (2)=

“mcont z

MC [ <[>eP T (z} = MITI](MC(IP]({z)

meont

MC 1 PeQ 1 (2) = MCIPIMCTIQT (2)

“mcont
ME[<>] (2= = neont £
ME [ <I>P 1 (&) =0, M I[1] (ME[PI(2)
ME [ PQI (2 =0, MELP ] (ME[ QT (2))
MP [ <> 1 (2) =qcont Z
MP [ <I>P] (2= o MILIT (MPTPI](2)

MP [ PeQ] (2} = MPIPT MPIQT (z)

“mcont
siv/I) =gy & runused; { F1oc I' = V. )
hd(<>) =gy @ p SITOT

hd{<v>) = terrori @D V

hd(<v>ev*) =

lerror}® D v
tl{cvoov*) = v*

hd(v*)etl[v*} = v*
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Interpretation

Language Elements Deflned Language

Defining Language

I domain — domain Ilid) = id
Ilexp) = eccde
Ilcom) = code
Hprog) = pcode
Hdecl) = dcode
Ilbas) = bas
Ilopr) = ocode

223

IInum) = num
fibool) = bool

Iloc) = loc
Ibv) = bv
Iv) =1v

Iidv) = loc ® v @ Ilproc)

Hsv) = sv

Ilfile) = file

Nenv) = alist ® (<>}

I(store) = store

Ilstate) = env) @ store ®
ans ® stack ® dump

Ilans) = ans

Icont) = mcont

Idcont) = Henv) — mcont

Iecont) = {dv) = mcont

Hproc) = meont — Iecont)



I function symbol
— term

I'B) = [loadv, B] IE) = AEk. H(E) (k)
where HIC){xe(r. s. a, stk, d}. F)
equals ME{(C}(A(r, s. a. stk. d}.
Flhd(stk))((r, s. a. tl(stk), d))
IC) = ,.Cec. MC (C) ()

Iitrue) = [loadb, TRUE] AP =)\P. MP (P) z_.
where z, = A(r.s,a.stk.d}.
{r.s,a,stk.d)
Ifalse) = [loadb, FALSE] Ihd) = As. hd(s)
Ilread) = (read] Iith = As. tl(s)
Iy = {load. L} i2 1 IR) = AEk. H (E) (derefT (rv?T (k)
n_( )= m1E2- (E]_} . (Eg} D) = ADu. G (D) (1)
* [pcall]

where G(D)(Ar(r, s, &, stk, d). F)
equals MD(D)(Mr, s, a, stk. d}.
Fiprl(r){(pr2(n), s. a, stk, d)})
IO) = AE|E,. (E) » IB = \B. B(B)
([deref] o (E,} ¢
[deref] ¢ [ocode]
I:=) = AE|E,. ([E|) ¢ (Ej) * I0) = ho. O (o)
{deref] » [store|
Iloutput) = AE. (E) ¢ [deref] « [output]
Iif) = AEC,C,. (E) ¢ [deref] « {cond, C,. C,]
Il'while) = AEC. [loop, E. C]
;) = ACC,. (C)) # (Cy)
Ibegin) = ADC. [begin] ¢ (D) ¢ (C} * [end]
Iiprogram) = AC. {start] ¢ (C) ¢ [hait]
Iiconst) = AIE. (E) « [deref] « [bind I]

_ Ilvar) = AIE. (E) « [deref] ¢ [init] « [bind I}

Iiproc) = AlI,C. (mkproc (bind I} » C » {ret]} « bind 1]
I(-] = mlDz. Dl ® D2

predicate symbol
— predicate symbol

I=ccond = =Recont)
I=,.¢ = =ans
Il=y) = =

id
Inull} = null

etc.
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individual variable Ik: econt) = ke(r, s, a. stk. d).
symbol — term (z)((r, s. a. e » stk, d]):
(value — mstate — ans)
Il(r.s,a): state) =
(r,s,a,stk.d): mstate
Ilc: cont} = z: mcont
I(<>, s, a,): initial state) =
(«>.5,, 8y, <>, <>»): initial
mstate
Hc,: cont) = z,: mcont
Iu: deont) = Ar'(r, s, a, stk. d).
{zM{<<r’, prlir}>, pr2(r)>,
s, a, stk, d))
Ilp: proc) = Az(r. s, a, stk, d).
XtAlr. s, a, stk. d)).
z((hd(d), s, a. stk, tl(d) )))
{{r, s, a, stk, red))
where x: mproc and z: mcont

new predicates is-econt: {value — mstate — ans)
— bool
is-cont: mcont — bool

etc.

Abbreviations

loc?: econt — econt
loc? = Ake. islocle) — k{e), (A(r. s, a). <r, s, <a, error>>)

Hloc?) = lze(r.s:r.a.stk,d). islocle) = z((r,s.a.<esstk>.d}), <. s, <@, €ITOr>, stk, d>
= loc?

proc?: econt — econt

proc? = Ake, isproc(e) — kfe], (Alr. s. al. <r, 5. <a, error>>)

Ilproc?) = lze(r.s.all_.stk.d). isprocte) — z((r.s.a.<eestk>,d)), <r, s, <a, error>. stk. d>
= proc?

v?: econt — econt

m? = Ake. isrvie) — kle). (A(r. s, a). <r, S, <a, erTor>>}

nrv?) = lze(r.jga.stk.d). isrvie) — z{(r.s,a.<eestk>.d}). <r.s, <a, error>, stk, d>
= 1v?

bool?: econt — econt
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bool? = Ake. isrvie] — (ishool(e} — ke, {Mr, s. a). <r, s. <a, erTor>>)),
(A[r. s. a). <T, S, <@, Error>>)
Ilbool?) = Azelr.s.a,.stk,d). isrv(e] — (isbool(e) — z{(r.s,a.<esstlk>.d)).
<T, §, <a, error>, stk, d>J,
<r. s, <a, error>, stk, d>
= bool?T

update: loc = cont — econt
update = Alce(r, s, a). issv{e) — cl<r, sje/1], a»). <r. 8, <a, error>>

Nlupdate} = Alze(r, s. a. stk, d). issv(e) — zl(<r, sle/ 1], a, stk. d>).
<r, s, <&, error>, stk. d>

= 1_1pdateT

new: store — (loc @ {erTor}))
new = As. s(1,) = unused — I,. ... . s{l) = unused > 1. error
Inew) = new

ref: econt — econt
ref = \kel(r, s, a). new(s) = error — <I, S, <a. eITOI>>,
update (new(s)) (k(newl(s))) (e) (<r. s, a>)

Iiref) = hzelr, s, a. stk, d). new(s) = error — <r, 8, <a, €ITOr>, stk, d>,
}ledate (new(s)) (AMr. s. a, stk, d). z((r, s, a. newls) » stk, d)) {<r. s, a, stk, d>)
= re

deref: econt — econt
deref = Ake(r, s. a). isloc(e) - (s(e) = unused — <r, s, <a, eITOr>>, kis(e)l(<r, s, a>)),
klel(<r, s, a>)
Ilderef) = Aze(r, s, a. stk. d). isloc(e) — (s(e) = unused — <r, s, <a, error>, stk, d>,
z(<r. 8, a, s(e) » stk, d>)), z(<r, s, a, & * stk, d>)
= derefT
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Example Correctness Proof

Axiom (E1)

Translate Axiom into Lt“g“

EIB] k= k(B1BTI)

“cont
(translate axiom using interpretation. I}

AEK. [H (E) (k)] (TB)) (W) = ncon JKEB [ B 1))

(simplify)
H ([loadn, BJ} { Ae(r. s, a, stk, d). z{(r, s, a, eestlk, d)) } = cont
(Aelr, s, a. stk, d). z{(r, s, a, esstk, d}) J(B T B 1)
(simplify)
ME ([loadn, B} (z} =__ . Mr.s.a.stk.d). [z(rs.aB[B]e stl,d))]
Proof in Ty, yee
ME ([loadn, B} (z)
[a:ciom TE2)
= MI [ [loadn, B] J (ME { <> ] (z))
{axiom TE1)
=MT{{loadn, Bl)z
(axiom [1)

=)\{r,s.a,stk.d). [z{{r,5.a.<B [ B 1>estk.d))]
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Axiom (E2a)

Translation and proof are similar to those for Axiom (Ela).

Axiom (E2b)

Translation and proof are similar to those for Axiom (Ela).

Axiom (E3)

Translate Axiom into L, ...

E [ read T (k) =, Mr.s.a). [null(s(input)} — <r. s, <a, error>>,

k(hd(s(input)))({r, s[tl(s(input})/input}, a))}
{translate axiom using interpretation, I

AEk. [H (E} (K)] [ Ilread) 1 Ik) = f(Mr.s.2). [null(s(input)) — <r, s, <a, error>>,
k(hd(s(tnput)){(r. s[tl{s(input))/input], a))])

(simplify)

ME (fread]) (z) =, AL s. a, stk, d). [null(s(input)) — <r. s, <a, error>>, stk, d>,
z((r, s(tl{s{input))/input], a. hd{s{input))estk, d))]

Proof in T, ¢
ME ([read]) (z)
(axdom TE2)
=MI[[read] J (ME [ <> ] (2))
{axiom TE1)
=MI[ [read] ] z
{axiom I5)

= A{r.s,a.stk,d). [null(s(input)) — <r.s,<a.error>,stk,d>,
z((r.s[tl(s{input))/input].a,<hd(s(input))>estk, d))]
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Axiom (E4)

Not showr.

Axiom (E7)

Not showm.

Axiom (C1)

Not shown.

Axiom (C2)

Not shown.

Axiom (C3)

Translate Axiom into L, ...

CIE|E) 1(c) =g ETE, T (proc? Ap. E T E; ] (plehh
(translate axiom using interpretation. I)

MC [ IE,) » IIE,) » [peall] T (2) =,
ME [ IE,) 1 (proc?T (A\p. ME [ IE,) 1 (p(2))

(expand abbreviation)

MC [ IE)) « [(E,}  {peall] T (2) =y
ME [ IE;) T (Aelr, s, a, stk, d).
iproc(e) —
ME [ IlE,) 1 (ef2)) ((r, s, a, ee stk, d)},
(r. s, <a, error>, stk, d)}

Proof In Ty, ppet

MC [ IE,) » I[E;) » [peall] T (z)

(axioms TC1, TC2, TC3}
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=ME [ IIE,) 1 (ME [ IIE,} I (MX T [pcall] 1 (2}))

(ME [ IIE)) ] (ME [ [E,) 1 (2)) =
AMr. s, a, stk,d). ME [ IE,) ] (2 (r. s. a, v estk. d} =
Mr, s, a.stk,d).z(r.s.a, vyev, e stk, d))

= Alr, s. a. stk. d). MI T [peall] [ {z) ([r. s, a, v, ¢ v, *stk, d))
(axiom [22)

= Alr, s, a, stk, d). Ig(vyev,estk) < 2 — <r, 8, <a, erTOr>, Voov estk. d>,
isproc(v,) —
v, (2} (<1, s, a. <v, ¢ stk>, d>),
<I, S, <@, erTor>, vyov estk, d> )

(v, (2) (<1, 5, &, <V, @ stk>, d>) =
ME (IE,) (v,(2)) ((r, s, a, stk. d))

(stack has 2 values)

= Mr, s, a, stk, d).
isproc{v,) =
ME (IE,) (v,(2)) ((r, s, a, stk, d)),

<T, S, <&, EITOr>, VooV estk, d> ))

= Alr. s, a, stk, d). {AMlr, s, &', stk’, d.
isproc(hd(sti’)) —»
ME (ME,) (hd(stk){z)) (r", s’, &', stk’, d')).

<r', §', <a’, error>, vyestk’, d'> ))
Hi(r, s, a, v estk, d)}

=ME [ IE)) I (Mr, s, &', stk’, d).
isproc(hd(stk’)) —
ME (IE,) (hd(stk)(2)) ((r', s', a', stk’. d)).
<r', s, <a’, error>, vyestk’, d'> )

}

(<r’, s, <a’, error>, v,yestk’, d> =state
<r, s, <a’, error>, stk’, d'>)

=ME [ IIE,) ] (A(r. s, a’, stk’, d).
isproc(hd(stk’)) —
ME (I'E,) (hd{stk)(z)} ((r", s, a". stk’, d}}
<r', s, <a’, ertor>, stk’. d> ))

}
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Axiom (C4)

Not shown.

Axiom (C5)

Not shown.

Axiom (C6)

Not showm.

Axiom (C7)

Not shown.

Axiom (P1)

Translate Axiom Into L,,,...

P [ program C ] (i) =
C [ C 1 (Al s, a). <. s, <a. stop>>) (r,, S, li/input], a,)

(translate axiom using interpretation. )

AP. [MP (P} z,] [ Iprogram C) [ (Ki)) =
ACc. [MC (C) ()] T HC)} 1 KA(r. s, a). <r. S, <a, stop>>} ((<>.5,.2,,<>.<>))

{translate axiom using interpretation, )

MP [ [start] » IC) ¢ [halt] ] Alr. s, a, stk, d). (r, s, <a, stop>, stk, d) ((r, s, a, stk, d})) =
MC (IIC) (Alr, s, a. stk, d). (r, s, <a, stop>, stk, d)) ((<>.5,.2,.<>,<>))

Proof in Ty rget

MP [ [start] « [(C) » [halt] 1 Alr, s, a. stk, d). {r. s, <a. stop>, stk, d) {(r, s, a. stk. d))

(axioms TC1, TC2 and TC3)

=MI T [start] 1 (MP [ IIC) 1
(MT [ [halt] 7 Alr. s, a, stk, d). (r, s, <a. stop>, stk. d ((r, s. a, stk, d)
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(axiom 114)

= (MP 1 IIC) T (MT [ [halt] 1 Alr. s. a. stk. d). (r, s, <a. stop>, stk. d)}} {(<>.5,.8,.<>.<>])
(axiom [15)
=MP [ IIC) ] Ar, s, a, stk, d). (r, s. <&, stop>, stk. d) ((<>.8,.8,.<><>])

{(MP-equals-MC lemmal)

= MC [ IIC) T Mr. s, a, stk, d). (r, s, <a. stop>, stk. d) ({<>.5,,a,,<>.<>))

Axiom (D1)

Translate Axiom into L, ...

DlconstlE] (u)= R [ E 1 (Ae. ule/1}

“cont

(translate axiom using interpretation, D)

MD [ IE)  [deref] » (bind I] ] (2} = ont
ME [ IE) 1 (derefT (rv?T (delr, s, a, stk. d}. z((<<I, e>, r>. s, a, stk, d)))))

Proof in Ty, e

MD [ IE) « [deref] « (bind I} ] (2)

(axdoms TD1, TD2 and TD3)

=ME [ [IE) T (MI { [deref] 1 (MI [ [bind 1] ] (2))
{axdom 119)

=ME [ IE} 1 (MI  [deref] ] (
Mr, s, a. stk, d). lgistk) < 1 = <r. s, <a, error>, stk, d>,
z(<<<<l, hd(stk)>, prl(r)>, pr2(r)>. s, a. tl(stk), d>)))

(axdom [16)
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=ME [ IE) T (
Ar, s, a, stk, d). isloc(hd(stk)) —
[s(hd(stk)} = unused — (r, s, <a, error>, stk, d),
lisrv{s(hd(stk))) — z'(<r.s.a,<s{hd(stk])  ti(stk}>.d>].
<I. 5. <a, error>, stk, d>},

lisrv{hd{stk)) — z'(<r.s,a.s5tk,d>), <1, 8, <a, erTor>, stk, d>})

where z’ = Alr, s, a. stk, d). lg{stk) < 1 — <1, s, <a, error>, stk, d>,
z{<<<<l, hd(stk)>, prl(r)>, pr2(r)>. s, a. tl{stk). d>)

{abbreviations)
= ME [ IE) T (derefT {rv?T (2)
(STACK-HAS-ONE lemma)

ME [ IE) 1 (derefT (rv?T (Re(r, s, a, stk, d). z((<<I, e>, r>. s, a. stk. di}}})

Axiom (D2)

Translate Axiom into I..t.uet

DIvarlEJ (u) =4, RIET (ref(ke ule/I)
(translate axiom using interpretation, I

MD [ KE) « [deref] ¢ [init] « bind I] 1 (2) = .,
ME [ IE) 1 (derefT (rv?T (refT (Aelr, s, a, stk. d}. z{(<<I. e>, >, s, a. stk, d)}}))

Proof in Ty, et

MD [ IE) o [deref] o [init] ¢ [bind I} ] (z)
(axioms TD2, TD2 and TD3)
=ME [ IE) [ (MI [ [deref] 1 (MI [ [init] I (MI [ [bind 1] T (2))))
{aadom 119)

=ME [ IIE} T (MI [ [deref] J (MI [ [init] D (
AL, s. a, stk, d). lg(stk} < 1 — <r, s, <a, error>, stk, d>,
z(<<<<l, hd{stk)>, prl(r)>, pr2(r)>, s, a. ti(stk). d>))})
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(axiom [20)

=ME [ IE) T (MI T [deref] D (
Alr. s. a, stk, d). isloc(new(s)) — z”{<r, s[hd(stk)/new(s)], a. <new(s) « tl(stk)>, d>),
<r, 8, <a, error>, stk, d>

where z” = Alr, s, a. stk, d). lg(stk) < 1 - <r, s, <a, error>, stk, d>,
z(<<<<l, hd(stk)>, pri(r)>. pr2(r)>, s. a. tl(stk}, d>)))

{axiom [16)

=ME [ IE) T (
Alr, s. a, stk, d). isloc(hd(stk)] —
[s(hd(stk)) = unused — (r, s, <a, error>, stk. d).
(isrv{s(hd(stk))) — 2'(<r.s,a,<s(hd(stk)) ¢ tl(stk])>.d>),
<r. s, <a, error>, stk, d»]i,

lisrv(hd(stk)) — z'(<r,s.a.stk.d>), <r, 8, <&, error>, stk, d>])

where 2’ = A, s, a, stk, d). lg(stk) < 1 — <r, s, <a, error>, stk, d>,
z"(<<<<], hd(stk)>, prl(r)>, pr2(r]>, s, a, tl(stk), d>)

(abbreviations)

= ME [ RE) 1 (derefT (rv?T (refT (M)
(STACK-HAS-ONE lemmal)

ME [ IE) 7 (deref? (rv?T (refT {(Aef(r, s, a. stk. d). z{(<<I, e>, r>. s. a. stk, d))}}

Axiom (D3)

Translate Axiom into L, ..,

D [ proc 11, C J (u) =, Mr.s.a). ulfice(r’.s".a). C(Clcllerle/I].s".a">))/Il<r.5.2>)
{translate axiom using interpretation, )

MD [ [mkproc (bind [,] ¢ IC) e [ret] ] ¢ [bind 1] T (2) =,
Alr. s, a, stk, d).
(Ar’(r, s, a, stk, d). z{(<<r, prl{r)>, pra2(r)>, s, a. stk, d)) )
<I, Az(r”, s”, a”, stk”, 4").
(Aze(r, s’, &', stk d"). MC [ IC) 1 (2) {<<<I|, e>, pri(r}>, pr2(r)>, ', a’, stk’. d)

(A(r. s, a, stk, d). z(hd(d), s. a, stk, ti(d)))

(T, 87, a”, stk”, r"+d")} >
((r, s, a, stk, d))

(simplify)
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MD [ [(mkproce {bind 11] o IIC) o [ret] | « [bind 1] ] (2) Zmmcont
Ar. s. a, stk, 4d).
(Ar'(r, s, a. stk, d). z{{<<r’, prl{)>. pr2(r)>, s, a. stk. d)))
<[, Azlr”. 8", a”. stk”, d”). MC [ NC) 1
(Alr, s, a, stk, d). z(Rd{d}. s. a. stk, ¢l{d)} )
(<<<I|, hd(stk™)>. pri(r)>, pr2(r)>, s”, a”, tlstk”). ’ed”)
{{r, s, a, stk, d))

{(simplify}

MD [ {(mkproc (bind I,] » I(C)  [ret] ] o (bind I] ] (2} = .,
Alr, s, a. stk. d).
z((<<<l, Az(r”, 87, a”. stk”,. d”). MC [ AC) 1
{AMr, s, a, stk. d). z(hd(d). s, a. stk, ¢l(d)})
(<<<I,, hd(stk)>, prl(r)>, pr2(r)>, s”, a”, tl(stk”). r’ed”)>, pri(r)>, pr2(r)>,
s, a, stk, d})

Proof in Tm,‘et

MD ([ [mkproc [bind I,] ¢ IIC) « [ret] | » [bind 117 (2
(axioms TD3, TD2 and TD3)
= MI [ [mkproc [bind ;] IC) » [ret] | ] (MI [ [bind 1] T (2))
(axdom 119)

= MI [ (mkproc [bind I;] « NIC) « [ret] | ] (2")

where z’ = A(r, s, a, stk, d). lgistk} < 1 — <1, 8, <a, error>, stk, d>.
z{{<<<l, hd(stk)>, pri(r)>, pr2(r)>, s, a, tlstk}. di)

(axiom [21)

= Alr, 8, a, stk, d). z'(<r, s. a,
<Az(r’.s’,a’.stk’.d). MP({|bind ]« IC) « [ret] z)(r.s'.a" stk <. d">)> » stk, d>)

(axioms TP1, TP2, TP3, 119, 123)

= Afr. s, a, stk, d). z'(<r. s. a.
<iz(r'.s’,a’,stk’.d). lglstk) <1 — (I8, <a’, error>, stk’. d7,
MC (IC)) (Alr. s. a, stk, d). z{(hd(d), s. a. stk, tl(d)))
((<<<l,, hd(stk)>, prl(r)>, pr2ir)>, s’ a’, tl(stk), r'+d7) >

» stk, d>)
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(simplify)

= Afr, s. a, stk, d). z{(<<<],
<hzlr',s’.a’.stk’.d). lg(stk) < 1 — (r.s’", <a’, error>, stk’, d’}.
MC (IC)) (AMr, s. a, stk, d). z{(hd(d), s. a. stk, ti(d)}))
((<<<I,. hd(stk)>, prl{r)>, pr2(r>, s’ a’, ti{stk’), red’)) >, prlir}>, pr2(r)>.
s, a, stk, d))

(lg{stk) = 1 because a procedure is
always called with an actual
parameter or else an erTor is returned.)

= Alr, s, &, stk, d). zil<<<l,
<az(r,g.a'.stk'.d).
MC (IC)) (AMr, s, a. stk, d). z{(hd(d), s, a, stk, tl{d))
{(<<<l{, hd(stk)>, prlir)>, pr2(r)>, s’, a". tllstk’, rsd)} >, pri(r>, pr2(r)>,
s, a, stk, di)
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