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ABSTRACT OF THE DISSERTATION
A Complexity Theory Based On Infinitely Often Conditions
by

José Diaulas Palazzo Rolim
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1986
Professor Sheila A, Greibach, Chair

In this dissertation, we define a new model for complexity theory. By replac-
ing the almost everywhere conditions of traditional complexity theory by infinitely

often conditions, we define the I0-complexity.

We define I0-complexity classes of bound f (n) with density function d (n).
We identify the I0-classes with density 1 to the worst-case classes. We establish the
foundations of the new complexity theory by extending the results of the worst-case

complexity to the IO-complexity.

We study time, space and density hierarchies of languages for deterministic
and non-deterministic IO-complexity classes. These results when stated in terms of
worst-case complexity are strengthenings of previous hierarchy results; they say that
there is a language L computable in time g (1) but every machine for L exceeds time
S (n) on every word of length n for infinitely many n. For space bounds, we show
the existence of a language L computable in space g (n) such that every machine for

L can operate within space f (n) only for a constant number of points.
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We show that there exists positive density function d(n) for which
P (d (n))#NP(d (n)) if and only if P#NP. On the other hand if there exists a positive
density function d (n) for which P (d(n))=NP (d (n)) then E=NE.

We show that a recursive language L is in a I0-complexity class of bound
f (n) with density d(n) if and only if L can be approximated by f(n) bounded

machine agreeing with L on input w with probability at least d (Iw/).

We also show the relationship between the IO-complexity classes and some
non-standard complexity classes. We relate the mean-case, the median-case and the
probabilistic complexity classes to IO-complexity classes with density functions.

Finally, we point out open questions related to the I0-complexity.
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CHAPTER 1
INTRODUCTION

1-1 Motivation and Objectives

In the quotidian life of computing, it is not enough to know that a solution
can or cannot be found; the critical question about the solution, if one exists, is: how
much does the solution cost? The amount of time or space used may be traded off
against the degree of approximation of the particular solution achieved to the ideal

solution.

The achievement of a solution depends partly on our skill in computing and
the sophistication of our computers, but there is also an additional factor which can
be associated with the intrinsic difficulty of the problem itself {Cutl83]. The theory
of computational complexity has been based on such aspects of computability

theory.

The traditional approach in complexity theory deals with asymptotic
definitions of performance measures, for example, the worst running time or max-
imum amount of space used among all possible computations. The worst-case com-
plexity has its limitations, i.e., it is not a very accurate measure in the sense that
some algorithms will be classified in that way as more expensive in theory than they
are in practice. Quicksort is a classical example of an algorithm with a2 poor worst-

case performance that is efficient on the average [Horo78). These drawbacks have



stimulated several attempts at developing an average-case complexity theory.

The study of average-case or expected-case complexity has been developed
from two basic points of view [Yao77]. In the first one, the so called distributional
approach, the input probability must be known and the theory is developed under
these input assumptions [Levi84]. The second one, called the randomized approach,

allows stochastic moves in the computation [Karp76].

In the analysis of performance of solutions it is customary to distinguish
between the worst case and the expected behavior of an algorithm. This indepen-
dence of approaches does not agree with our intuition, which suggests that both the
average and the worst case behavior are so related that they should be governed by
the same general laws. Several attempts have been made toward a more unified

complexity theory [Yao77].

However, all the complexity theories defined until now have been based on
almost everywhere conditions [Knut76] ; for example, running time of algorithms
upper bounded for all inputs, except, perhaps, for a finite number of inputs in which
the algorithm is allowed not to respect the bound. This fact suggests that, perhaps,
we should have a more general complexity theory if, for example, we allow the run-
ning time of the algorithm to exceed the bound infinitely many times as long as it

| respects the bound infinitely often.

The main objective of this dissertation is the definition of a new approach to
computational complexity theory. By defining notions of functions bounded
infinitely often instead of almost everywhere and by defining density functions

related to the number of points at which functions are bounded, we will try to



enlarge the domain of complexity theory. These notions will lead to a new model of

complexity theory, the I0-complexity, defined below.
1-2 Background

A symbol is an abstract entity. A word w is a finite sequence of symbols jux-
taposed. The length of a word w, denoted |wl, is the number of symbols composing

the word. The empty word, e, is the word consisting of zero symbols.

An alphabet X is a finite set of symbols. A language L is a set of words
formed from symbols of an alphabet. The set of all possible words over a fixed
alphabet T is denoted by Z*, The set I* denotes the set £* minus the empty word.
We denote by " the set of words of length a.

There have been many proposals for a precise mathematical characterization
of the intuitive idea of computability. The remarkable result of investigation by
many researchers is that each of the these definitions gives rise to the same class of
functions. Furthermore, by Church’s thesis, this class of functions coincides exactly

with the notion of computable functions [Cuti83].

Today the Turing machine has become the accepted formalization of an
effective procedure in complexity theory and we shall assume it as our formal model
of computation. We will analyze this model from two point of views: the class of

languages it defines and the class of integer functions it computes.

We assume standard models of Turing machines: deterministic and non-
deterministic multitape off-line Turing machines. An off-line Turing machine is a

Turing machine in which the input tape is read-only in two directions and the input



tape head is not allowed to move off the input [Hopc79]. We suppose that the input
is a word w limited by blank symbols and that the machine starts with all working

tapes blank and all heads leftmost.

An instantaneous description (ID) of a Turing machine M is a compact nota-
tion for the state of M and for the input and current contents of the working tapes and
the location of the tape heads of M. A computation a(w,M) is a sequence of IDs for
a Turing machine M on input w, such that the sequence of moves defined by the
sequence of IDs is feasible for machine M when its input tape contains the word w.
Note that the last ID of a(w,M) contains the maximum number of working tape cells

used in the computation.

Any Turing machine has a special set of states called accepting states. When-
ever there exists a computation of a Turing machine M on input w that ends in an
accepting state, we say that M accepts w. The set of all words w accepted by

machine M constitutes the language accepted by M and we denote this set by L (M).

We are concerned with the notion of time and space bounded computations
and thus we use the standard definitions of running time, Ty(w), of a deterministic
Turing machine M on input w as the number of steps M takes before halting and of
the space spent on input w, Sy(w) as the maximum number of working tape cells
used by M for input w in any computation. Obviously, Tyr(w) is undefined if M does

not stop on input w.

We frequently impose a requirement of constructability on bounds. A func-
tion f (r) is time constructible if there is a deterministic Turing machine M such that

for each input w of length a, M halts in exactly f (n) computation steps. The func-



tion f (n) is space constructible if M scans exactly a total of f (n) cells for each input

w of length n on all working tapes.

When we turn to the non-deterministic Turing machine model there are vari-
ous ways we could define time or space bounds. There are different senses in which
a non-deterministic Turing machine could compute within time T (w) or space S (w).
All computations for input w could halt in time T (w). Or there could be some com-
putations for input w which halt in time T'(w). Or all halting computations for input

w could halt in time T (w).

This variety of definitions is due to the fact that for a non-deterministic Tur-
ing machine there are several possible computations for a fixed input w. However
the time for a fixed computation oi(w,M) is uniquely defined- rime{o(w,M)) - as the
number of steps taken in the sequence of actions defined by computation a(w,M).
Analogously, the space- space(o(w,M))- is defined as the number of working tape
cells in the last ID of computation o(w,M). For input w, we select the definition of

time and space bounds as follows.
Definition 1-2-1: Given a non-deterministic Turing machine M we define:

(i)The running time Ty;(w) of M on w as:
Ty (w)=max {time(o(w,M)) | a(w,M) is a computation for w and M }
(ii)The space spent Sy{w) of M on w as:

i
Sy (w)=max {space(a(w,M)) ! o(w,M) is a computation for w and M }



Definition 1-2-1 is usually called operating time or space in contrast to other
definitions that are concerned with acceptance conditions. For deterministic Turing
machine the various possible definitions are essentially the same, since a determinis-
tic machine M defines a unique computation for any word w. Also if T (w) or S(w)
are time or space constructible functions the various possible definitions are

equivalent for non-deterministic Turing machines [Grei84].
1-3 The IQ-complexity Definitions

Let T denote a finite input alphabet, X represent a random variable, w
represent any word of ¥" and n represent the length of word w. We want to relate X,
w and n by some probability of the random variable X being word w, given that the

length of wis n, i.e. |w|=n. This probability will be denoted by P [X=w/n].

We suppose that the probability P [X=w/n] is known and that the probability
distribution is positive, i.e. every word w of length n has a non-null probability of

occurrence.

The definitions of running time and space are concerned with computations
for word w. In complexity theory, it is customary to associate time and space
bounds with the length n of the word instead of the word itself. There can be several
words with the same fixed length n. It is usual to select some particular criterion and
choose time and space bounds which fits best the selected criterion. For instance, in
the worst-case complexity, time for length n is defined as the maximum among the
running times for words of that length. In the average case complexity, it is usual to

take some kind of average over the running times for all words of a particular length.



In the above cases, we map all words of fixed length into a single value. The
price for doing that is always some loss of information. We instead decide to define
our complexity measure not as a single-valued function but as a mapping of words of
fixed length into possible values. In other words, we use an auxiliary probabilistic
quantity for length » that can assume all individual values for words of that length

according to the occurrence probability of the word.

We say that M respects the bound f (Iwl) on input w if all computations of
M on input w halt within f (1w|) steps for time complexity or if no computation of
M on w visits more than f (1w!) working tape cells for space complexity. Thus, for
example, we would like to say that a Turing machine is of IO-time complexity f (n)
with density function d (n) and probability distribution P [X=w/n] if the sum of the
probabilities of all words of length n that respect the bound f (n) is at least d(n).

More formally, we define the IO-complexity measure as follows.

Definition 1-3-1: Let d(n) be a function such that 0<d (n)<1 for all n and d(n)>0

infinitely often. Let M be a non-deterministic Turing machine.

(1) We say that M is a f (n) IO-time bounded Turing machine (or of IO-time com-
plexity f (n) ) with density function d(n) and probability distribution P [X=w/n] if
for all n

d(n) < p P[X=w/n]
lwl=n: Ty w)f (n)

(2) M is a f (n) I0-space bounded Turing machine (or of /O-space complexity f (n))
with density function d(n) and probability distribution P [X =w/n] if for all n



dn) < Y, P X=w/n]
[wl=n; S {w)sf (n)

The sums Y, P[X=w/n] and Y. P[X=w/n]
lwl=n:Ty(w)sf (n) Iwl=n:S{w)<f (n)

represent the probability distribution of time and space bounds for all words of
length n for a Turing machine M. If some particular word w;, of length n is "impor-
tant" in the sense that P[X=w,/n] is "large", then this will be reflected in the com-
plexity measure by making the above sums weigh the values Tyr(w,) and Sy (wp)
with a large probability, namely P{X=w,/n]. Thus, Definition 1-3-1 is a more pre-
cise measure of the complexity of the computation than other measures, like worst
running time or space, that take in account just one particular value, which value can
have a very small occurrence probability. Also expected values of complexity are
limited when compared to Definition 1-3-1, because they do not give the full range
of possible values for the bounds, only being an approximation for the complexity of
the computation. We shall expect, therefore, that a new complexity theory based on
the IO-complexity m;aSures will not only include aspects of the worst-case and
expected complexity, but must also be a more general complexity theory than

theories based on the traditional complexity measures.

Based on the above definition, we can join languages into families of
languages. Definition 1-3-1 is based on a particular probability distribution on the
words of the input alphabet of machine M. However, when we consider languages
over different alphabets we must consider several possible probability distributions.
Thus, in the definition below, we consider a functor @ that assigns to each possible
alphabet a convenient probability distribution. We give some formal notation for

new complexity classes as follows.



Definition 1-3-2: Let P be a functor assigning to each alphabet Z a positive probabil-
ity distribution P [X=w/n] over ', Letd(n) and f (n) be functions in N such that
0<d (n)<1 for all n. Then:

(i) DSPACE(f (n),d (n),®) is the class of languages recognized by deterministic
Turing machines of I0-space complexity f () with density function d (n) and proba-

bility distribution ®(Z) for each alphabet Z.

(ii) NSPACE(f (n),d(n),®) is the class of languages recognized by non-
deterministic Turing machines of 10-space complexity f (n) with density function

d (n) and probability distribution ®(Z) for each alphabet Z.

(iii)y DTIME(f (n),d(n),®) is the class of languages recognized by deterministic
Turing machines of IO-time complexity f (#) with density function d(n) and proba-

bility distribution @(Z) for each alphabet Z.

(iv) NTIME(f (n),d (n),®) is the class of languages recognized by non-deterministic
Turing machines of IQ-time complexity f (n) with density function d(n) and proba-

bility distribution ®(Z) for each alphabet Z.
1-4 Notation

Notice that the pattern of the complexity classes is the same and meant to be
mnemonic:

XBOUND

for the classes of languages accepted by deterministic, if X=D, or by non-
deterministic, if X =N, Turing machines with bounded space, if BOUND =SPACE, or
with bounded time, if BOUND =TIME.



We are going to use XBOUND (f (n),d (n)) to denote the union of the com-
plexity classes XBOUND (f (n),d (n),®) for all functors @ that assign to each input

alphabet I a positive probability distribution. In particular, we denote the uniform

distribution, ie. P[X=w/n]= by U, and thus, for example,

|z

DTIME (f (n),d(n),U) is the class of languages L (M) accepted by deterministic
Turing machine M of IO-time complexity f (r) with density d (n) and uniform distri-

bution for the input alphabet of M.

We use the symbol M to denote Turing machines and L to denote languages.
The language accepted by Turing machine M is denoted by L(M). We use the
letters T and S to denote running time and space of the Turing machine under con-
sideration. If confusiqn can occur, then we use the symbols Ty and Sy to denote the

running time and space of the particular machine M.

We reserve thc! symbols f (1) and g (n) to functions from N to N, with N the
set of natural numbers. We also imply that d (n) denotes density functions, that is,
0<d (n)<1 for all n, d(n)>0 infinitely often. We say that d(n) is positive almost
everywhere if d(n)>0 almost everywhere. The density function d(n) is positive if

d(n)>0 for all n.
1-5 Overview of the Dissertation

The complexity theory developed here is called IO-complexity, since it is
based on conditions that are met infinitely often. This chapter introduced the 10-
complexity model formally. We started by presenting our assumptions about the
computer model chosen and its background. We defined time and space bounds for

deterministic and non-deterministic Turing machines related to the IO-definitions.

10



We also defined the I0-complexity classes denoted by XBOUND (f (n),d(n)).

In chapter 2, we identify the density function d(n)=1 case with the worst-
case complexity. Theorem 2-2-1 says that XBOUND (f (n),1)=XBOUND (f (n)),
therefore, incorporating the worst-case complexity to the IO-complexity. Further-
more, we show that most results of the worst-case complexity can be extended to the
IO-complexity. Theorem 2-2-5 establishes the foundations for a complexity theory
based on IO-conditions, since it can be used as fundamental lemma to translate
results from the worst-case complexity theory to the IO-complexity theory. As a
consequence of this result, we derive properties for the IO-complexity such as speed
up, Corollary 2-2-6; tape compression, Corollary 2-2-7; deterministic simulation of
space bounded non-deterministic machines, Corollary 2-2-8; tape reductions, Corol-
laries 2-3-1 to 2-3-6; and other useful relations related to time and space bounds,
Corollaries 2-2-9 to 2-2-11. Finally, in chapter 2, we study the effect of tape reduc-

tions in machines infinitely often bounded with density function d(n).

In chapter 3, we study the structure of the complexity classes. We develop
hierarchies of languages for the IO-complexity. We investigate time¢ and space
hierarchies for deterministic and non-deterministic IO-classes of languages.
Theorem 3-2-1 shows the existence of languages recognized in time g (n) with den-
sity 1 that cannot be recognized in time f (n) with any density function d(n), such

that d(n) is positive almost everywhere, and functions f (n) and g (n) related by

inf Mm. For space bounds, Theorem 3-3-4 shows the existence of languages
n—e f (1)

accepted within space bound g (n) that cannot be accepted with I0-space bound
f (n) and density function d(n), with d(n) positive infinitely often. Theorems 3-2-1

and 3-3-4 when stated in terms of worst-case complexity are strengthenings of the

11



basic hierarchy results. Theorem 3-2-1 says that for functions f (n) and g (n) related

by mf -f,T-s-mo there is a language L computable in time g (n), but every machine

for L exceeds time f (#) on every word of length » for infinitely many n. Theorem
3-3-4 is even stronger, it asserts the existence of a language L computable in space
g (n) such that every machine for L can only respect space bound f (n) for a constant

number of points.

We also show that for a fixed bound f (n), a decrease in the density function
allows more languages to be recognized; that is there are languages in
XBOUND (f (n),d,(n)) that cannot be in XBOUND (f (n),d(n)) for density func-
tions dy(n) and dz(n) such that the difference between di(n) and d,(n) is at least

max {(P[X=w/n]: lwl=n}.

In chapter 4, we make conjectures about the deterministic and non-
deterministic polynomial time classes, P and NP, and about the deterministic and
non-deterministic exponential time classes, E and NE. We enlarge the definitions of
these classes to embody density d(n). Theorem 4-2-4 shows that there exists a posi-
tive density function d{(n) for which P (d (n))#NP (d(n)) if and only if P#NP. On
the other hand, Theorem 4-3-1 shows that the existence of any positive density func-
tion d(n) for which P-(d (n))=NP (d (n)) implies E=NE. Stll in chapter 4, we point
out the different nature of the density functions and of the oracle computations. We
also enlarge the polynomial space classes by incorporating the concept of density

functions; we denote this class by PSPACE (d (n)).

We also give formal definitions for the notion of finding an approximate

solution for a hard problem. We give an interpretation of the I0-complexity classes

12



in terms of classes of languages that have approximate solutions. We show that the
recursive languages of DBOUND (f (n),d(n)) are those languages L which can be
approximated by f (n) bounded machines agreeing with L on input w with probabil-
ity at least d(Iwl). In section 4-6, we prove that there are problems so hard that

they do not admit even such approximate solutions.

In chapter 5, we discuss the extension of the ideas of IO-complexity to
different types of complexity classes. We define mean and median complexity
classes. We expand the probabilistic polynomial classes R, BPP and PP to include
density functions. We show the inclusion relations among these probabilistic classes
and the classes P (d(n)), NP (d(n)) and PSPACE (d(n)). We point out that this

research area is still being exploited and several questions are unanswered.

We conclude, in chapter 6, by pointing out additional problems deserving
further investigation and we give conjectures on open questions that appear in this

dissertation.

13



CHAPTER 2
THE COMPLEXITY MODEL

2-1 Introduction

In this chapter, we study general properties that are valid for the IO-

complexity model. We use the basic definitions of section 1-3.

We start by analyzing the relationship between the I0-complexity classes
and the classes of the worst-case complexity theory. We identify IO-complexity

classes with density function 1 to the worst-case complexity classes.

In section 2-3, we establish the theoretical foundations for the I0-complexity
model. We show that containments relations of the worst-case complexity classes
translate into equivalent relations among the IO-complexity classes. For example,
we show that if DSPACE(f(n)) is contained in DSPACE(g(n)), then
DSPACE (f (n),d (n)) is contained in DSPACE (g (n),d (n)) for any density function
d(n) and any monotonic increasing space constructible function f (n). We show
similar results for non-deterministic machines and for time and space bounds. We

prove these results using translational techniques [Hopc79].

The last section of this chapter deals with tape reductions results, We show
that for I0-time bounds the number of working tapes can be reduced at cost of an
increase of the IO-time bound. For IO-space bounds, we show that the number of

working tapes can be reduced to only one working tape without increasing the 10-

14



space bound.
2-2 Worst-case Complexity
Consider a Turing machine M and let T (w) denote the running time of M on

input w. We can, for the worst-case complexity, define the functions:

T max(n)=max (T (w): |wl=n}

S max(n)=max {S(w): lwl=n}

The family of languages accepted by deterministic (non-deterministic) mﬁlﬁ-
tape off-line Turing machines for which T ax (n)<f(n) is called DTIME(f (n))
(NTIME(f (n))). The family of languages accepted by deterministic (non-
deterministic) multitape off-line Turing machines for which § max ()<f(n) is called

DSPACE(f (n)) (NSPACE(f (n))).
Notice that the pattern of the names of complexity classes is the same and
meant to be mnemonic:
XBOUND(f (n))

for the class of languages accepted by X multitape off-line Turing machines within
BOUND f. Also let R(w) denote T(w) or S(W), Rmax(n) denote Tpe(n) or

S max (), Whether we are talking about time or space, respectively.

We would like to relate the new complexity classes just defined to the tradi-

tional worst-case complexity classes XBOUND (f (n)). The next theorem does that.

15



Theorem 2-2-1:

Le XBOUND (f (n)) if and only if Le XBOUND(f (n),1)

Proof: Suppose Le XBOUND(f (n)). Let Z be the input alphabet and let P [X=w/n]
be any positive probability distribution. Then there is a Turing machine accepting L
for which R .« (n)<f () for all n and therefore R (W)SR max (n)Sf (n) for all we .
Thus:

Y P X=win}= ¥, P[X=w/n]=1
lwl=n: R (w)<f (n) fwl=n

since P [X =w/n] is positive. Therefore Le XBOUND(f (n),1).

Conversely, suppose that Le XBOUND(f (n),1). Then there is a Turing

machine M for which:

1€ Y P X=w/n)<lforalln
Iwl=n: R{w)Sf (n)

Thus Y P X=win]=1.
weIm: R{w)sf (n)

Since P [X =w/n] is positive, every input w of length »n has P [X=w/n] #0. Thus, in
order to get the sum equal to 1, all w must met the condition R (w)Sf (Iwl). Then

R max (n)Sf (n) for M. Thus Le XBOUND(f (n)) O

Corollary 2-2-2: .

DTIME (f (n)) = DTIME(f (n),1)
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Corollary 2-2-3:

NTIME (f (n)) = NTIME(f (n),1)

Corollary 2-2-4:

DSPACE (f (n)) = DSPACE(f (n),1)

Corollary 2-2-5;

NSPACE (f (n)) = NSPACE(f (n),1)

The above corollaries simply say that the worst-case complexity corresponds
to the IO-complexity with density function 1, for any positive probability distribu-
tion. Theorem 2-2-1 does not depend on the particular probability distribution
selected and it allow us to use all the results of traditional complexity theory for the

10-complexity classes with density 1.
2-3 Complexity Results For Density d(n)

Theorem 2-2-1 relates completely 1I0-complexity classes with density 1 to
the worst-case complexity classes, thus extending all results of the worst-case to the
density 1 case. This section deals with the question of which results of traditional

complexity theory can be extended to density functions not necessarily 1.

From a language L recognized by a machine M of IO-complexity f (n) with
some density function d(n), we want to define another language LDT(M.f)
accepted by machine M’ aiways bounded by f (n). Furthermore, we also want that
from language LDT(IEJ, f) we have the capacity of recognizing in bound f (n) the

words w accepted/rejected by machine M that respect the bound f (1wl).
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Given any property of the worst-case complexity theory respected by some
machine accepting language LDT (M, f), we show that there is a machine accepting
language L that respects the same property for those words w for which M respects
the bound f (Iw|). We are going to use a variant of standard padding arguments,
also known as translational techniques [Hopc79]. We start with the case of deter-

ministic time.

Definition 2-3-1: Let f (n) be a monotonic increasing function. Let M be a deter-
ministic Turing machine with input alphabet Z. Let T (w) be the running time of M
on w. For each ae X consider a new symbol new (a)¢ L. Also let ¢ be another sym-

bol different from any a or new (a), a€ L. We define:
LDT(M.f) = {wc' : we L(M) & Tw)Sf (Iwl+i)}
(v

{u.new(a): uaeX’, lal=1 & T(ua)>f (lual)}.

Notice that there is a correspondence between words w accepted by M and
words we® in LDT(M.f). If a word w is accepted by M, then w is padded with as

many symbols ¢ as necessary to achieve T (w)<f (1w!+i).

The second part of LDT (M,f) makes it possible to identify the words
rejected by M for which M respects the bound T (w)<f (Iwl). This set of words is
the set of words ua such that u.new{(a) is not in LDT (M, f). Note that if M does not
respect the bound for the empty word e and if e is not in L (M), then e can never
appear in LDT (M,f) as u.new (a). However, the word e can be treated separately
with the answer of the computation of M on e being stored in the finite control of the

machines defined below.
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The next lemma makes use of LDT (M, f) in order to prove that the results of
complexity theory for deterministic time can be extended to the I0-complexity

theory.

Lemma 2-3-1: Let f (n) be a monotonic increasing time constructible functon such

that inf ‘@m Let g (n) be a function such that inf -g%m
n—yo0 .

n—oc

Then:
DTIME (f (n))cDTIME (g (n))
implies:

DTIME (f (n),d (n))2DTIME (g (n).d (n))

Proof: Let M be a k-tape deterministic machine of I0-time complexity f (n) with
density function d(n). Let T (w) be the running time of w for M. Let Iwi=n. We
build a deterministic machine M ; that accepts LDT (M, f), the language specified in
definition 2-3-1. Let NEW={new(a):aeZ} and I’ denote the set
Tufnew(a).ae L}U{c). Let M| behave on input ye X’ as follows.

() Ifyé ¢ " UZ'NEW, then M| rejects y.

If yzwci, then M ; behaves as follows.
(ii) It counts up to f (Iw|+i) using tapes T}, j2k;, which is possible since f is
time constructible, and simultaneously:
(iii) Simulates M on input w using tapes Ty to T, for up to f (Iw!+i) steps:
-If M accepts w, then M| accepts y.

-If M rejects w or reaches no decision on w within time f (1w 1+i), then M
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rejects y.

If y=u.new(a), ue ¥, then M behaves as follows.
(iv) It counts up to f (1y!) using tapes T; and simultaneously:
(v) Simulates M on u.a for up to f (ly!) steps, accepting y if and only if M does

not halt within time f (ly!).

The language accepted by M, is the set of words accepted by M in step (1ii)
or step (v). The words accepted in (iii) are the words of the form wc*, for which M
accepts w within time f (Iwi+i). The words accepted by M in (v) can be described
as the words of the form wu.new (a) such that M does not halt within time f (lual) on

input ua. Thus:
LM )={wc': weL(M) & Tw)Sf (Iwl+i)}
v

{u.new(a): T (ua)>f (lual)} =LDT(M.,f)

Consider any word y of size m. Step (i) takes at most 2m steps, since we just

need to read the input and check if it is of the form y =wc' or u.new(a) and then back
up to get ready for the next actions. But by hypothesis inf f_i_’_‘lm and thus step
n—ee

(i) is bounded by f (m) almost everywhere for any such y. Steps (ii) and (iv) are
obviously bounded by f (m), since f is time constructible. Also, the presence of the
counter guarantees that the simulation, steps (iii) and (iv), will take at most f (m)
steps. Then LDT (M, f)e DTIME (3f (n)). But by the linear speed-up result for the
worst-case complexity, LDT (M, f Ye DTIME (f (n)) [Hopc79].
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Thus, LDT M., f)e DTIME (g (n)) since by hypothesis
DTIME (f (n))cDTIME (g (n)). Applying again the linear speed-up result for the

worst-case complexity, we get a deterministic machine M” with k tapes that recog-

nizes LDT (M,f) in time -g%)- We build a deterministic machine M, that acts on

input w=ua, we T*, ae X as follows.
(i) Simulate machine M’ on input w.
- If M’ accepts w, then M, accepts w.
(i1) Otherwise, simulate M’ on u.new (a).
- If M’ rejects u.new (a), then M, rejects w.
(iii) Otherwise, simulate M’ on input we!, i=1,2... until M’ reaches a decision on

wec'. M, accepts wif and only if M’ accepts wc'.

The language accepted by M is the set of words accepted in (i) and in (iii).
The words w accepted by M, in (i) are the words w in I that belong to
L(M)=LDT (M.,f). The set of words w accepted in (iii) are the words w, which are

accepted by machine M in more than f (Iw!) time steps. More formally:

{w:weLDTM.f), weZ'}
|

fw:welX', 3 wele LDT (M,f) }

={w:weL(M)and3i T (wW)sf (1wl+i)}

But T(w)<f (1wl +i) for some i for any we L (M), since f is monotonic increasing.

Thus L (M 3)=L{M).
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Consider the original machine M and consider any input w for which M
respects the bound, i.e. T(w)sf ( lwl). If weL (M) and T (w)sf (Iwl), then w will
be in LDT(M,f). But then machine M, will accept w in step (i). This action is

bounded by -S%Q since L (M")e DTIME (-g—gﬁ).

Similarly if w=u.aé L (M) and T (ua)<f (lual) then

wnew (@) LDT (M.f Y=L (M"). So u.new (a) is rejected by M’ in at most &%’Q steps,

since M’ is of worst-case complexity ﬁg"—) Thus w is rejected by M in step (ii).

Therefore M, halts for all w for which M respects the bound before (iii). But
(n)

(1) costs at most -3-3L computation steps. Step (ii) requires the writing of u.new (a)

on some working tape; this action is bounded by MZn, since inf 2 _,

3 n—yes N
implies _&5:_)2" almost everywhere. The simulation on (ii) costs at most —3%
steps. Thus the sum of steps (i) and (ii) is bounded by g (n) computation steps, i.e.

T, (w)<g (1wl) for these words.

Thus all words w that respect the bound T (w)sf (Iwl) for machine M have

To(w)<g (Iwl) for machine M,. So for all n:

Y, P[X=winl2z Y P[X=win]zd(n)
lwl=n:T(w)sg(n) fwl=n:T Ww)<f (n)

But then L (M)e DTIME (g (n),d(n)). O

A variant of the argument used in Lemma 2-3-1 shows the analogous result
for NTIME. It seems impossible to find out if all computations of a non-

deterministic Turing machine M on input w are bounded by f (Iw1), if machine M is

22



not allowed to spend more than time f (Iwl). We avoid this feature, implicit in
definition 2-3-1, by defining a language LTN (M, f) which takes into consideration
the time spent on each computation on input w by machine M instead of running

time of M on input w.

Definition 2-3-2: Let f (n) be a monotonic increasing function. Let M be a non-
deterministic Turing machine with input alphabet £. Let T (w) be the running time
of M on w and o(w,M) denote a computation of M on input w. For each ae Z con-
sider a new symbol new (@)¢ £, Also let ¢ be another symbol different from any a or

new (a), ac X. We define:
LNT M, f) = {wc’ : weL(M) & 3 accepting o(w,M),time (o(w,M)Sf (1w +i)}
U

{unew(a): uacX’, lal=1 & Jo(ua,M),time ((ua, M))>f (1ual)}.

Notice that for deterministic machine M given an input w there is only one

computation a, thus for such a machine LDT (M, f) and LNT (M. ) are equivalent,

Lemma 2-3-2: Let f (n) be a monotonic increasing time constructible function such

that inf fn) =oo, Let g (n) be a function such that inf Mw.
Ay N n—ee N

Then:
NTIME (f (n))cNTIME (g (n))
implies:

NTIME (f (n),d (n))SNTIME (g (n),d (n))
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Proof: The proof is similar to the proof of Lemma 2-3-1, so we follow that notation.

To go from L to LDT (M, f ), we build machine M which behaves as follows.
() If y¢ £* c* UZ* NEW, then M rejects y.

If y=wc'’, then M| behaves as follows.
(ii) It counts up to f (1w |+i) using tapes T;, j2k; and simultaneously:
(iii) It non-deterministically simulates the behavior of M on input w for up to
Sf (Iwl+i) steps using tapes Ty to Ty, .
-If M accepts w, then M| accepts y.
-If M rejects w or reaches no decision on w within dme f (Iw!+i), then M,

rejects y.

If y=u.new(a), us T*, then M, behaves as follows.
(iv) Tt counts up to f (Iy 1) in tapes T; and simultaneously:
(v) It non-deterministically simulates M on u.a for up to f (1y|) steps, accepting y

if and only if M does not halt within time f (Iy!).

Notice that M, is a non-deterministic machine because M is non-
deterministic. The language accepted by M is the set of words accepted in step (iii)
or in step (v). The words accepted in (iii) are the words wc' for which M has at least
one accepting computation on w within time f (Iwl+i). The words accepted in (v)
are the words u.new (a) for which M has at least one computation on u.a with more

than f (lual) steps. Thus:
LM ) ={wc': weL(M) & 3 accepting o(w,M), time (a(w, M)F (Iw1+i)}

)
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{u.new(a) : uae ', lal=1 & Jo(ua,M),time ((ua,M))>f (lua!)j= LNT (M.f)

In the worst case any computation of M, is bounded by 3f (n), the sum of
steps (i) to (iii) for inputs of the form we' or the sum of steps (i), (iv) and (v) for
inputs of the form u.new (a). Thus LNT (M, f)e NTIME (3f (n)). But by the linear
speed-up result of the worst-case complexity LNT (M, f )e NTIME (f (n)) [Hopc79].

Thus, INT (M, f)e NTIME (g (n)) since by hypothesis
NTIME (f (n))cNTIME (g (n)). Applying again the linear speed-up result, we get a

non-deterministic machine M’ with k, tapes that recognizes LNT (M,f) in time
1Y g

)

n . ‘s . .
-gg—. We build a non-deterministic machine M, that acts on input w as follows.

(i) Non-deterministically simulate machine M’ on input w.
- If M’ accepts w, then accept w.
(ii) Otherwise, non-deterministically simulate M” on u.new (@), w=ua.
- If M’ rejects u.new (a), then reject w,
(iii) If M” accepts u.new (a), then simulate M” on input we!, i=1,2... until M’ reaches

a decision on we’. M accepts w if and only if M’ accepts we'.
The language accepted by M is the set of words accepted in (i) or (iii). That
is:
{w:weLNTM,f), weZ }
: U

{w:welX', 3i we'e INT(M,f) }
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= {w:weL (M) and 3i, 3 accepting o(w,M), time (0(w,M)<f (I wl+i)}

But time(o(w,M)Sf (1wl+i) for some i for any we L (M), since f is monotonic

increasing. Thus L(M7)={ w: weL (M) } =L (M).

Furthermore if w is accepted by M with running time T (w)<f (Iw!), then all

computations of M on w must halt within time f (Iw!). Thus we L (M. Thus all
(tw])

computations of M’ on w must end within time 33—, with at least one accepting

computation, since w is in L(M"). Therefore this accepting computation will be
simulated by machine M, and will make M, accept w in step (i). Furthermore the
rejecting computations of M” on w will result in the rejection of w in step (ii). Thus

M 5 accepts w within time bounded by steps (i) and (ii).

Similarly if w=u.a¢ L (M) and T (w)<f (n) then u.new (a) is rejected by M’ in
all computations within time 3—(32)- steps. Thus all computations for u.new(a) are

rejecting and within the bound. Then w is rejected by M5 in step (ii).

Therefore M, halts for all w for which M respects the bound in (i) or (ii).

But (i) costs at most % computation steps. Step (ii) requires the writing of
u.new(a) on some working tape; this action is bounded by %2:1, since

(n) (n)

. n - n . . .
inf £ implies -‘gk—zn almost everywhere. The simulation on (ii) costs at
=y N

most -‘513’5)— steps. Thus the sum of steps (i) and (ii) is bounded by g (n) computation

steps. Therefore all words w for which machine M respects the bound f (Iw) have

the bound g (1w|) respected by machine M. Thus L (M ;)e NTIME (g (n),d(n)). U
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We want to use the same kind of argument for space bounds. Thus we define

language LDS (M, ) as follows.

Definition 2-3-3: Let f (n) be a monotonic increasing function. Let M be a deter-
ministic Turing machine with input alphabet . Let §(w) be the working-tape space
spent on w by M. For each a€ I consider a new symbol new (a)¢ Z. Also let ¢ be

another symbol different from any a or new (a), a€ Z. We define:
LDS(M.f) = {fwc' : weL(M) & S(W)Sf (1wl+)}
U

{unew(a): uacX’, lal=1 & S(ua)>f (lual)}.

There are analogous results to Lemma 2-3-1 and Lemma 2-3-2 for DSPACE
and NSPACE. The afguments are similar, with the difference that we talk about

LDS (M.f) instead of LDT (M,f) and the counters deal with visited cells on the
working tapes instead of steps. Also the requirement of inf Mmo can be

n—ee N

dropped, because the tape compression result of the worst-case complexity does not

require it [Grei84].
Lemma 2-3-3: Let f (n) be a monotonic increasing space constructible function.

Then:
DSPACE (f (n))cDSPACE((g (n))
implies:

DSPACE(f (n),d(n))DSPACE(g (n),d(n})
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Proof: We follow the general technique of the former lemmas. Now, given a
machine M operating in IQ-space complexity f (n) with density d (), we construct a
deterministic machine M, recognizing LDS(M.f) within space bound f. From
LDS(M,f) we build a deterministic machine M, to accept L (M) within JO-space
bound f (n) with density d(n). We start by defining machine M as follows.

() If y¢ "¢ " UL NEW, then M| rejects .

If y=wc’, then M behaves as follows.

(i) Lay off f (1w!+i) cells in tape T¢. This can be done within space f (n) since f
is space constructible.

(iii) Simulate M on input w using tapes T, to Ty, and at most f (Iw|+) working
tape cells. At each new cell visited in tapes T to Ty , the head of T¢ moves right.
The simulation is interrupted if the head of T reaches the rightmost blank symbol of
To. This guarantees that the simulation uses at most f (w1+i) cells in tapes T}, j21.

M accepts y if and only if M accepts w.

If y=u.new(a), ue T’ then M 1 behaves as follows.
(iv) Lay off f (Iwl) cellsin T.
(v) Simulate a computation of M on u.a, checking that the number of cells used
does not exceed f (1y1). Accept yif and only if M tries to use more than f (y) cells.
The language accepted by M is:
fwe' i weL (M) & S W)SS (n+i)}

W
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{unew(a): uek', aeL S (ua)>f (\ual) }=LDS (M, f)

Furthermore M ; uses at most 2f (n) cells, sum of steps (ii) and (iii) for inputs
of the form we’, n=lwc’l, or sum of steps (iv) and (v) for inputs of the form
unew(a), n=lual. Thus LDS(M,f)e DSPACE (2f (n)) and therefore, due to the

tape compression result for the worst-case complexity, LDS (M, f )e DSPACE (f (n)).

Thus, LDS (M,f)e DSPACE (g (n)) since by hypothesis

DSPACE (f (n))cDSPACE (g (n)). Applying the tape compression result, we get a
deterministic machine M” with &, tapes that accepts LDS (M,f) within space L(ZQ

We build a deterministic machine M, that acts on input win X" as follows.
(1) Simulate machine M’ on input w.
- If M’ accepts, w then accept w.
(ii) Otherwise, simulate M’ on u.new (a), w=ua, ac L.
- If M’ rejects u.new (a), then reject w.
(iii) Otherwise, simulate M’ on input wet, i=1,2... until M’ reaches a decision on

we!. M, accepts wif and only if M’ accepts wc'.

The language accepted by M, is the language:

fwe L :welLDSM.f) )}
U

fweZ': i, we'e LDS(M,f) }

= {w:wel (M) and Ji, S(W)Sf (Iwl+)}

But S (w)<f (Iw!+i) for some i for any we L, since fis monotonic increasing. Thus
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L (M2)=L(M).

Consider the original machine M. Let w be a word of length » that respects
the bound f, i.e. SW)Sf (1wl). If weL(M) and S (w)Sf (Iwl), then w will be in
LDS(M,f). But then machine M, will accept w in step (i). This action is bounded

by ﬂ—gﬂ since L (M)eDSPACE (3%). Similarly if w=wadL(M) and

Sua)sf (lual), then u.new (a) is rejected by M’ using at most _&(zn_) steps. Thus w

is rejected by M, in step (ii). So M, simulates M’ only through (ii) for all w for

which M respects the bound. But (i) costs at most LG) working cells. The simula-

(n)

tion on (ii) costs at most %— new working tape cells. Thus the sum of steps (i)

and (ii) is bounded by g (n) working tape cells.

Therefore for all words w for which M respects the bound S(w)<f (Iwl)

have §,(w)<g (Iw!) where S is the space function for machine M.

Y P[X=w/n]z Y P[X=w/n]zd(n)
lwl=n:8,(w)g(n) lwl=n:5(w)sf (n)

But then L (M)e DSPACE (g (n),d(n)). 0

For non-deterministic space bounded machines, we have a more complicated

definition of an auxiliary language LNS (M., f).

Definition 2-3-4: Let f (n) be a monotonic increasing function. Let M be a non-
deterministic Turing machine with input alphabet Z. Let S (w) be the space of M on
w and o(w,M) denote a computation of M on input w. For each a€ X consider a new
symbol new (a)¢ Z. Also let ¢ be another symbol different from any a or new (a),

ae X, We define:
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INSM.f) = {wci s we L (M) & I accepting a(w,M), space(o{w,M)Sf (Iwl+i)}
.

{unew(a): uaeX’,lal=1 & Jo(ua,M), space(a(ua,M))>f (lual)}.

Lemma 2-3-4: Let f (n) be a monotonic increasing space constructible function.

Then:
NSPACE (f (n))CNSPACE(g (n))
implies:

NSPACE(f (n),d (n)GQNSPACE (g (n),d (n))

Proof: We follow the notation of former lemmas. Consider M a non-deterministic
machine of IO-space complexity f(n) with density d(n). We construct a non-

deterministic machine M, to accept LNS (M, f) as follows.
(@) IfyeX'c"UZ NEW, then M rejects y.

If y=wc®, then M ; behaves as follows.

(ii) Deterministically lay off f (1wl+i) cells in tape T'y.

(iii) Non-deterministically simulate the behavior of M on input w using tapes T
to Ty, and at most f (Iwl+i) cells. At each new cell visited in tapes Ty to T, the
head of T moves right. If M tries to use more than f (Iw!+i) cells the simulation

is interrupted. M accepts y if and only if M accepts w within the space bound.

If y=u.new(a), ue E', then M| behaves as follows.
(iv) Deterministically lay off f (Iw!) cells in Ty.

(v) Non-deterministically simulate the behavior of M on u.a, checking that the
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number of cells used does not exceed f (yl). Accepty if and only if M tries to use

more than f (Iyl) cells,

The language accepted by M is composed of the sets of words accepted in
(iii) and in (v). The words accepted in (iii) can be described as the words we' for
which M has an accepting computation on w within space f (1wl+i). The words
accepted in (v) are the words u.new (a) for which M has at least one computation on

ua using more than f (lual) cells. Thus:
L(M{) = {wc': wel (M) & 3 accepting afw,M), space(a(w,M)NSf (Iw+i)}
()

{u.new(a) : uae ' lal=1 & Jo(ua, M), space(o(ua, M))>f (lual)}=LNSM.f)

Machine M| uses at most 2f (n) working tape cells for any word of length n;
f(n) cells on tape Ty and f(n) cells on the other tapes. Thus
LNS (M, f)e NSPACE (2f (n)) and therefore, due to the tape compression result for
the worst-case, LNS (M, f e NSPACE (f (n)).

Thus, LNS (M,f)e NSPACE (g (n)) since by hypothesis
NSPACE (f (n))cNSPACE (g (n)). Applying the tape compression result, we get a

non-deterministic machine M” with k, tapes that accepts LDS (M, f) within space

-g(zi). Thus consider the following definition of non-deterministic machine M,

which behaves as follows on input w.
(i) Simulate a computation of machine M’ on input w.
- If M’ accepts, w then accept w.

(i) Otherwise, simulate a computation of M’ on u.new (a), w=ua.
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- If M’ rejects u.new (a), then reject w.
(iii) Otherwise, simulates a computation of M’ on input wet. My accepts w if and

only if M’ accepts wc'.

The language accepted by M, is the set of words accepted in (i) or (iii). That

is:
{weX':.weNS(M,f)}

v

{weZ": i wc'e LNS(M,f) }

= {(wweL (M) and 3i and accepting a(w,M), space(o{w , M) (Iwl+i)}

But space(o(w,M))sf (Iw|+i) for some i for any we L (M), since f is monotonic

increasing. Thus L (M,)=L (M).

Suppose M respects the bound on input w. Then S (w)<f (Iw!), so all compu-

tations of M on w are within space f (Iw!). First suppose w in L (M). Then w is in

LNS (M, f)=L (M’). Thus all computations of M’ on w must use only ( I2wl ) work-

ing tape cells, with at least one accepting computation. Therefore this accepting
computation will be simulated by machine M, and will make M accept w in step
(). Furthermore the rejecting computations of M’ on w will result in the rejection of

w in step (ii). Thus M, accepts w within space bounded by (i) and (ii).

Similarly if w=u.a¢ L (M) and S (w)<f (n), then w.new (a) is rejected by M
(n)

in all computations using at most _g_2n_ working tape cells. Thus all computations
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for u.new (@) are rejecting and within the bound. Then w is rejected by M, in (ii).

Therefore all words w for which M respects the bound f (Iw|) have compu-
(n)

tations by M, before (iii). But (i) costs at most -37— cells. The simulation on (ii)

costs at most -3-(5@— cells. Thus the sum of steps (i) and (ii) is bounded by g(n)
working tape cells. Therefore all words for which M respect the bound f have space

function for machine M5 bounded by g (n). Thus L (M e NSPACE (g (n).d (n)). O

Still more general results can be obtained even for mixed complexity classes.

We can state the following.

Theorem 2-3-5: Let X, Ye {D,N}, BOUND 1, BOUND 2e {TIME, SPACE}, Let

f(n) be a monotonic increasing BOUND 1 constructible function such that

inf fi )_oo Let g (n) be a function such that mf g( )

n—ee

Then
XBOUND 1(f (n))YBOUND 2(g (n))
implies

XBOUND 1(f (n),d (n))SYBOUND 2(g (n),d(n))

Proof: Lemmas 2-3-1 to 2-3-4 prove the result for the cases X=Y and
BOUND 1=BOUND2. We prove for X=N, BOUNDI=SPACE, Y=D,
BOUND 2=TIME. The other proofs are analogous.
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Consider M a non-deterministic machine of I0-space complexity f (n) with

density d (n). We build machine M to accept LNS (M, f) as follows.
() If y¢ X' c " UL"NEW, then M, rejects y.

If y=wc’, then M, behaves as follows.

(ii) Deterministically lay off f (Iw|+i) cells in tape T.

(iii) Non-deterministically simulate the behavior of M on input w using tapes T
to Ty, and at most f (Iwl+i) working tape cells. M accepts y if and only if M

accepts w within f (1w!|+) space cells.

If y=u.new(a), ue L, then M, behaves as follows.

(iv) Deterministically lay off f (Iw1) cells in T.

(v) Non-deterministically simulate the behavior of M on u.ag, checking the if the
number of cells used does not exceed f (iy!). Accept y if and only if M tries to use

more than f (1y[) cells.

The language accepted by M is composed of the sets of words accepted in
(iii) and (v). The words accepted in (iii) can be described as the words we® for
which M has an accepting computation on w within space f (Iwl|+i). The words
accepted in (v) are the words u.new (a) for which M has at least one computation on

ug using more than f (lual) cells. Thus:
LM,)= {wci : wéL(M) & 3 accepting a(w,M), space(ou(w,M)Sf (Iw+i)}
U

{u.new (@) :uaeZX’, lal=1 & Joua,M): space(c{ua,M))>f (lual)}=LNS (M.f)
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Machine M | uses at most 2f (n) working tape cells for any word of length 2;
f(n) cells on tape Ty and f(n) cells on the other tapes. Thus
LNS (M. f )e NSPACE (2f (n)) and therefore, due to the tape compression result for
the worst-case, LNS (M, f e NSPACE (f (n)).

Thus, LNS (M, )e DTIME (g (n)) since by hypothesis
NSPACE (f (n))cDTIME (g (n)). Applying the linear speed-up result, we get a

machine M’ with k tapes that recognizes LNS (M, f) in time _g_gn_) We build deter-

ministic machine M, that acts on input w as follows.
(i) Simulate a computation of machine M’ on input w.
- If M” accepts w, then accept w.
(ii) Otherwise, simulate a computation of M’ on u.new (a), w=ua.
- If M’ rejects u.new (a), then reject w.
(iii) Otherwise, simulate M’ on input wet. M, accepts w if and only if M’ accepts

we'.

The language accepted by M is the set of words accepted by machine M3 in
(i) or in (iii). We describe the words accepted in (i) and (iii) as the set of words w for
which there exists i such that we' is accepted by M. But word we' is accepted by
M if and only if w is in L(M) and S(w)Sf(Iwl+i), by definition of
LNS(M.f)=L(M"). Then:

L(My)={w:weL(M)and 3i Sw)Sf (1wl+)]

But S (w)<f (Iwl+i) for some i for any we L (M), since f is monotonic increasing.

Thus L (M 3)=L (M).
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Let w be a word of length »n for which M respects the bound, i.e. $(w)sf (n).
If this word w is in L (M), then weL (M )=LNS(M.f), by construction. Thus
we L (M)=LNS (M,f). But then machine M, will accept w in step (1).

Similarly if _w=u.aéL (M) and S(w)Sf(n), then u.new(a)¢L(M,)
=INS(M,f)=L (M’). Thus u.new(a) is rejected by M’, and then w is rejected by M,

in step (ii).

Then M, halts in (i) or (ii) for all inputs w for which M respects the bound.
(n)

But (i) costs at most 33— computation steps. Step (ii) requires the writing of

u.new(a) on some working tape; this action is bounded by L(Bn—)—zn, since

inf £ E:l) =0 implies _&(k"_)zn almost everywhere. The simulation on (ii) costs at
R—3ce

most 3_%!1 steps. Thus the sum of steps (i) and (ii) is bounded by g (n) computation
steps. But then L (M)e DTIME (g (n),d (n)). O
Theorem 2-3-5 has a lot of significant and helpful consequences. These are

some examples:

SPEED-UP:
This result says that any language accepted in worst-case time complexity &f (1), k

constant greater than zero, can be accepted in the worst-case within time f (n).

Corollary 2-3-6: Let f(n) be a monotonic increasing time constructible function

such that inf fn) =oo gand k£ >0,then:
n—oes N
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DTIME (f (n),d (n))=DTIME (kf (n),d(n)}
and

NTIME (f (n),d (n))=NTIME (kf (n),d (n)).

Proof: By the results for the worst-case complexity we
XTIME (f (n))=XTIME(kf (n)). =~ Thus by proposition 2-3-5, we
XTIME (f (n),d (n))=XTIME (kf (n),d(n)). O

TAPE COMPRESSION:

This result is the equivalent of the linear speed-up for space bounds.

get

get

Corollary 2-3-7: Let f (n) be a monotonic increasing space constructible function.

Let & be any constant greater than zero then
DSPACE(f (n),d(n))=DSPACE(kf (n),d(n))
and

NSPACE(f (n),d(n))=NSPACE(kf (n),d(n)).

SAVITCH’S RESULT:

This result describes the simulation of a non-deterministic machine space bounded

by f (n) in deterministic space f (n )2, for the worst-case complexity.

Corollary 2-3-8: Let f (n) be a monotonic increasing space constructible function

such that f (n)2logn.

NSPACE (f (n),d (n))SDSPACE (f (n)*,d (n)).
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OTHER RELATIONS:

Corollary 2-3-9: Let f (n) be a monotonic increasing time constructible function

with inf L(n_)m Then
n—ea N

DTIME (f (n),d (n))@DSPACE (f (n),d(n))
and:

NTIME (f (n),d (n))cNSPACE (f (n).d (n)).

Corollary 2-3-10: Let f (n) be a monotonic increasing time constructible function

with inf M:oo. If Le DSPACE (f (n),d (n)) then there is constant k£ such that

n—ee N

Le DTIME (kf ™ d (n))

Corollary 2-3-11: Let f (n) be a monotonic increasing time constructible function

with inf M:@. If Le NTIME (f (n),d(n)) then there is constant k such that

[ e ]

Le DTIME (k¥ ™ d(n))
2-4 Tape Reductions

In this section we consider the effect of the number of tapes on the complex-
ity classes. We denote by k—TAPE~XBOUND the limitation of the complexity
class, 10 or worst-case, XBOUND to off-line Turing machines with only k working

tapes.

Theorem 2-3-5 extends the results of the worst-case complexity classes to
other classes. However all the machines involved in that theorem were multitape

machines. We want to extend all the tape reduction results of the worst-case
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complexity to the new complexity. We start by considering the effect on running
time of simulating a multitape Turing machine by a machine with only one working

tape.

Corollary 2-4-1: Let f (n) be a monotonic increasing time constructible function

with inf ‘mm Then

n—es N

DTIME (f (n),d (n))c1-TAPE -DTIME (f (r)?,d(n))

Proof: Let M be a deterministic Turing machine of IO-time complexity f (r) with
density d(n) and consider machine M; of Lemma 2-3-1 which recognizes

LDT (M,f) and is of worst-case time complexity 3f (n). But then LDT (M, f) belongs

to DTIME (L;i)-), due to the linear speed up theorem for the worst-case complexity.

Furthermore, we can simulate any deterministic multitape Turing machine of worst-

case time complexity T by a one-tape deterministic machine of worst-case time com-

2
plexity T2 [Hopc79)]. Thus, we get LDT (M,f) in 1-TAPE-DTIME ('"—f (:) )-

2
Let M’ be a one-tape deterministic machine of time complexity %

accepting LDT (M, f). We have to build machine M, that plays the role of machine
M, of Lemma 2-3-1, but has only one working tape. We suppose the input w lim-
ited by blanks is written in tape To. Let w=u.a, ue £’ and ae I. Then we define the

behavior of M’y on w as follows.

(i) It first simulates M’ using input tape Ty and working tape T,. If M" accepts w,

then M’; accepts w.



(ii) Otherwise, M, places its input tape head at the beginning of w on Ty. Let w=ua,

acZX,

(iii) Now M’; has to simulate M on u.new (a) without writing u.new (a) on any addi-
tional working tape nor using another track in tape T, (because of time constraints).
So each time M’; reads a symbol g, it has to check if the next symbol to the right is
blank. If this is the case, i.e. the next symbol is blank, then M’; simulates M” on

symbol new (a). Otherwise, when the next symbol is not blank, it simulates M” on a.
(iv) If M’ rejects u.new(a), then M, rejects w.

(v) Otherwise, M’, uses tape T as a double track tape. In the second track it simu-
lates M’ with input we' written on the first track of Ty, for i=1,2.... until M’ makes a

decision, which is then the decision of M’;.

Notice that M, and M, accept the same language, i.e. L(M). Also, if M

respects the bound for input w, that is T (w)<f (n), then M, halts for w in steps (i) to

2
(iii). Step (i) is bounded by ‘%, since that is the time complexity of M". Step

.. . . n
(ii) costs at most n time steps. But inf f(n)
n—ee N

=eco implies f (n)=4n almost every-

2
where. Thus (ii) is bounded by ﬂ%z%zn almost everywhere. Therefore,

machine M’, can store the answers in its finite control for all inputs w for which

Ff(lwh<d4lwl. Steps (iii) and (iv) spend twice the cost of M’, since for each action
2
of M’, M’; has to check the next symbol, this yields 2% So the total of time

steps for these words is f(n)?, sum of (i) and (). Therefore,

L(M)e 1-TAPE —-DTIME (f (n)*,d (n)). O
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The above simulation allow us to extend other tape reduction results of the
worst-case to I0-complexity classes with density d(n). The proofs for the next

corollaries are similar to the proof of Corollary 2-4-1 and will be omitted.

Corollary 2-4-2: Let f (n) be a monotonic increasing time constructible function

with inf £ o Then

n—yca N

NTIME (f (n),d (n))c1-TAPE -NTIME (f (n)?,d (n)).

Corollary 2-4-3: Let f (n) be a monotonic increasing time constructible function

with inf M:’o Then

n—es N

DTIME (f (n),d (n))S2-TAPE -NTIME (f (n)logn,d (n)).

Corollary 2-4-4: [Book70] Let f (n) be a monotonic increasing time constructible

function with inf mm. Then

n—oeo N

NTIME (f (n),d (n))2-TAPE -NTIME (f (n),d (n)).

For space bounds the one-tape simulation is even easier, since we can use a

multiple track tape without concern for time constraints. Thus, we have:

Corollary 2-4-5: Let f (n) be a monotonic increasing space constructible function.

Then

DSPACE (f (n),d (n)) = 1-TAPE -DSPACE (f (n),d (n)).
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Corollary 2-4-6: Let f (n) be a monotonic increasing space constructible function.

Then

NSPACE (f (n),d(n)) = 1-TAPE-NSPACE (f (n),d(n)). )
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CHAPTER 3
THE STRUCTURE OF XBOUND(f(n),d(n))

3-1 Introduction

It is intuitive that the more you have the more you get- the more resources
allotted the more languages can be accepted. In this chapter, we examine how tight
these hierarchy results can be- how much time or space or density must be added to

guarantee a larger complexity class.

Our object is to demonstrate the existence of a language L in
XBOUND (g (n),d1(n)) but not in XBOUND (f (n),d2(n)), using diagonalization
techniques with g (n) and f(n) and dy(n) and d;(n) as close as possible. The
language L is to contain names of Turing machines and be in
XBOUND (g (n),d{(n)). To negate membership in XBOUND (f (n),d,(n)) a coun-
terexample must be found for each language L” in XBOUND (f (n),d,(n)), generally
by showing that there is a machine M’ for L’ whose name is in L if and only if it is
not in L’, We say that a machine M’ is cancelled by witness w in L if we Lewe L.
In these terms, L must cancel every Turing machine which operates in bound f (n)
with density do(n). If dy(n)>0 almost everywhere, it suffices to cancel every
machine that respects the bound f (n) for at least one word of almost every length.
If w is associated to a Turing machine M” which respects the bound for w, then w can

be a witness to cancel M,



A crucial point is that a machine for L must be accepted in 10-bound g (n)
with density d{(n). It must have a finite number of tapes and symbols. This
machine must be able to simulate f~bounded machines with an arbitrary number of
tapes and symbols. Hence we must be able to code multiple tapes into some finite
number of tapes. As far as we know, this always has a cost, as seen in section 2-4.,
This cost depends on whether the bound is time or space. We start by analyzing the

deterministic time hierarchy.
3.2 Deterministic Time Hierarchy

We start by investigating functions f(n) and g(n) such that there are
languages recognized deterministically in time bound g (n), that cannot be accepted
by any deterministic Turing machine of I0-bound f (r) with density d(n), for any

d (n) positive almost everywhere.

Using diagonalization techniques for the deterministic time case introduces a
slow-down, due to the cost of simulating many tapes in one working tape. For
example, in order to show the existence of a language in DTIME (g (n), 1) that cannot
be in DTIME (f (n),d (n)), the next theorem asks the function g (n) to beat the func-

tion f (n)2.

Theorem 3-2-1: Let f (n) and g (n) be monotonic increasing time constructible func-

tions such that inf i(n—;m and g (n)2n. There exists a language L such that for all

n—es f(n)

density function d (n) that are positive almost everywhere:

Le DTIME (g (n),1) and LéDTIME (f (n),d(n)).
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Proof: We are going to prove this theorem using diagonalization arguments over the
class of one working tape deterministic Turing machines with input alphabet I.
Here we must cancel every Turing machine which respects the bound for at least one
word of each length n for almost all n. We suppose that I has at least two symbols.
We assume that we hﬁvc a naming scheme weM,, for giving machines names over
an alphabet Z with two properties [Grei84]. First, the names are arranged so that for
some symbol in E, say 1, if w names M,, so does Vw for all j and also y if w=1/y.
Thus M,, has names of all lengths above some minimal length. Let Y(w) be name w
stripped of the initial 1s; this is the portion that carries the information. Second, if
we have z on the input tape, w on some other tape and the working tape of M,,
encoded on yet another tape, then one step of M,, on z can be simulated in time
k iv(w)!| for some constant k independent of z and M,,; this includes the time for

encoding many symbols into some finite number of symbols.

For any word w in T', let u be the representation of the integer Iw! in base

IZ1. We will show that the following language has the desired properties:

L={we P M, halts and rejects w within &:)ll) steps }.

Notice that the language L consists of words w for which the Turing machine

encoded by u, which is the representation of |w! in base |Z!, halts and rejects w

within !S/z::)II) time steps. The membership of w in L for any word of length n

depends on the behavior of the machine M, and thus M, will be cancelled if M,

respects the bound for any word of length .
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‘The proof consists of two parts. The first part is the definition of a machine
M accepting L within worst-case time g (n). The second part consists in showing
that there is at least one word for which L and any language in DTIME (f (n),d (n))
disagree. We proceed by defining the deterministic machine M which acts on input

w as follows.

(i) It writes u on tape T;. One way of doing this is as follows.
-It writes the unary representation of {w! on T5.
-It writes the unary representation of |Z[ on T 4.

-It divides the number in 75 by the number in T4. It just check how many
times the number in T4 fits the number in T5. This number is the quotient of the

division.
-The quotient will be used again as the next dividend.

_Let 7 be the rest of each division. At the end of each division the r** symbol

of % is written on T'5 on the first available position.

“The divisions continue until dividend O is reached. The contents of tape T3
are the code u of integer Iw| written in base |Z{. Furthermore, Y(i) is the string u

stripped of the initial 1s.

(ii) Machine M must simulate machine M, on input w. Thus, the working tape sym-

bols of M,, are encoded in tape T's with uniform length at most [v(u) .

(iii) It writes Y(«) on tape T'3. This will be used as the program tape of M,.
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(iv) It uses the input tape as the input tape of M.

(v) It records the current state on tape T4 and the working tape on T's.

(vi) 1t counts off (wl) on tape T and simultaneously simulates M, on input w

Iw) |

for at most ]E};:‘v)ll) steps as follows.

- The machine reads the input symbol of w.
- The instruction of M,, is found on T3.
- The state information is found on T'4.

- Each step of M, is simulated on tape T'5 and the input and the states are

updated for the next cycle. Each step of M, decreases the number on T by one.
(vii) If M reaches a halting ID of M,,, then it accepts w if and only if M, rejects w.

Let Iwl=n; each cycle of step (i) is bounded by some constant multiplied by

the length of the dividend. It starts with length n in unary, which is decreased to

n n - . .
and then to and so on. The sum is the sum of a geometric
IZ1 1T)2 Ellmk ®
progression with factor 3] £1. Thus, this sum is bounded by l—ln}ﬁj Thus, the

total cost of (i) is bounded by k’n, k¥* constant, which is no more than k’g (n) by

hypothesis, &” constant. From (ii) to (vii) M simulates at most 8 steps of M,,.

Fy(u) |

But by assumption each step can be simulated in time &£ I'(u)|. Thus, we spend at
most (k+k")g (n) steps. Then, L (M)e DTIME ((k+k")g (n)) and by the tape compres-
sion result it belongs to DTIME (g (n)).
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We still must show that L is not in DTIME(f (n),d(n)). Suppose that this is
not the case. By Corollary 2-4-1, L is accepted by some deterministic Turing
machine M’ with one working tape within I0-time f (n)? with density d(n). We
procceed by showing the existence of at least one word w for which machine M
simulates M’, accepting w if and only if M’ rejects it. We show that for this word w
machine M simulates machine M’ until M” halts; and thus, machine M halts on step
(vii) for this word w, accepting it if and only if M’ rejects it.

Let x=y(x) name M’ in our naming scheme. By hypothesis, inf —&(ﬁ)—m

n f(n)*
which implies g (n)2cf (n)? almost everywhere for any constant ¢. Thus after some

constant n,, g (n)2 17(x) | f (n)?, for all n2n,.

Furthermore, d(n) is positive almost everywhere. Thus after some n,, the
density function d (n) is greater than zero for any n2n,. Thus, for all a2n,, there is
at least one word w of length »n for which M’ completes its computation within time

f (n)?, or otherwise d (n)< ) P[X=win]=0.
lwlzn: T(w)<f (n)?

Ix|

Let m=max { |x|, n,, ny } and y=1™""*'x be a name for machine M".

There is such a y, sincé M’ has infinitely many names. Thus, Y(x)=¥(y), since x and y

name the same machine, But then:

g (m)2 1Y) 1 f (m)?

Let y be the base |Z| representation of n>m. Note that if |wl|=n then membership

of w in L depends on the behavior of machine M,=M,=M".
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But since n2n, there is w, |w|=n, such that M’ completes its computation on

input w within time f (n)*. Therefore M’=M, completes its computation on w in

time %((y"—)) since g ()2 1Y(y) 1 f (n)?. Thus:

weL=L(M") if and only if w¢ L (M,)=L(M’)

This is a contradiction and so L& DTIME (f (n),d (n)). O

Notice that the above result is stronger than the standard hierarchy results
obtained by diagonalization. It says that there is a language that is accepted with
density 1 for function g that cannot be accepted with any positive density d(n) for
function f. Here we have two variables: the time bounds f and g and the densities d
and 1, instead of fixing one variable and varying the other. In terms of worst-case
complexity, it says that there is a language L computable in time g (n) but every

machine for L exceeds bound f (n) on every word of length n for infinitely many n.

We recall Corollary 2-4-3, which says that we can simulate any number of
tapes with two tapes by going from time f to time flogf. Thus the previous argu-
ments go through if we diagonalize over two tape Turing machines and let g beat

flogf almost everywhere. Therefore, we have next proposition.

Theorem 3-2-2: Let f (n) and g (n) be monotonic increasing time constructible func-

f h that inf —258) ——c and g (n)2n. There exists a | L such
ions such tha nt::L Fylogf () and g (n)2n ere exists a language L suc

that for all density function 4 (n) that are positive almost everywhere:

Le DTIME (g(n),1) and L¢DTIME (f (n).d(n)).
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Obviously, since the set DTIME (f (n),)SDTIME (f (n).d(n)), we get a

more symmetric result as follows.

Corollary 3-2-3: Let f (n) and g(n) be monotonic increasing time constructible

functions such that ni_rgfm-%%-(g}—m)—mo and g (n)2n. Let d(n) be positive almost

everywhere. Then:

DTIME (g (n),d (n))-DTIME (f (n),d (n))#J

3-3 Deterministic Space Hierarchy

In order to obtain a result similar to Theorem 3-2-1 for space bounds, we
need to require I0-space bounded machines to halt as well as respect the bound. The

next lemma tell us we can do so without loss of generality.

Lemma 3-3-1: Let f(n) be a monotonic increasing space constructible function.
Given a k-tape Turing machine M accepting a language L in IO-space bound f (n)

with density d(n) there is a k-tape Turing machine M’ accepting L for which

d(n) s > P[X=win] foralln,
lwl=n 8" (wW)Sf (n)&T (w)<oo

where $’(w) is the space spent on input w by M” and T'(w) is the running time of

machine M’ on w.

Proof: The basic idea of the proof is that if a machine M is space bounded on some
input, then after some number of computation steps, if M does not halt, then M
loops. We simulate M by a new machine M’ that rejects the word if M repeats IDs.
Thus M’ halts in finite time for all computations of M on words that use limited

amount of cells.
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Let s and ¢ be the number of states and tape symbols of a f (n) IO-space
bounded machine M accepting L with density d(n). If M uses at most f (n) cells for
a word w of size n then it uses at most (n+2)sf (m)f W< 45t/ @ different IDs. Thus,
if after this number of computation steps M does not halt for w and M does not visit
more than f (n) cells, then M rejects w using at most f (n) cells and looping on w.

We have to avoid this case, by constructing machine M’ that acts on w as follows.
(i) Lay off f (n) cells on each working tape.

(ii) Set a counter of length f (n) in base 4st using a new track of one of the &k working

tapes.
(iii) Simulate M on the delineated space until the count ends.
- if M accepts u;, then accept w.
- if M rejects w or does not halt, then reject w.
(iv) If M leaves the delineated space, then continue simulating M.

Obviously, L (M)=L{(M). Let S (w) denote the space spent on word w by
machine M. Then, for all words with S (w)<f (n), M’ will reach a decision in step
(ii1), Thus for those words the running time T"(w) of M’ on w is finite. Furthermore,
until step (iii) machine M’ visits the same number of cells as M does. Therefore,

S (W)SS (n) implies S'(w)<f (n) cells and T'(w)sf (n).

But machine M is of space complexity f(n) with density d(n). So:

d(n)< 3 P{X=w/n]. But S(w)<f (n) implies S’(w)<f (n) and T'(w)<ee.
lwl=n:5(Ww)<f (n)

Thus:
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d@n)< b P[X=w/n]
lw=n:S(w)Sf (n)&T (w)<e

Finally, notice also that M and M” have the same number of working tapes. [

Notice that Lemma 3-3-1 allow us to replace a machine M that operates in
IO-space bound f(n) with density d(n) by another machine M’ that not only
operates in I0-space bound f (n) with density d(n) but also halts on all words for
which it respects the bound. This feature will be useful in proving next result, which
states the existence of a language in DSPACE(g(n),1) that cannot be in

DSPACE (f (n),d (n)) for appropriate f and g.

Theorem 3-3-2: Let f(n) and g(n) be monotonic increasing space constructible

function with g (n)2n and inf -?—E:—;m There exists a language L such that for all
n—yoo

density functions d (n) that are positive almost everywhere:

Le DSPACE (g (n),1) and L¢ DSPACE (f (n),d(n)).

Proof: By Corollary 2-4-5, any language in DSPACE (f (n),d (n)) can be recognized
by an off-line one working tape Turing machine in IO-space bound f (n) and density
d(n). Let the input alphabet T have at least two symbols. By Lemma 3-3-1, we can
assume that all languziges in DSPACE (f (n),d (n)) are accepted by one tape deter-
ministic Turing machines that operate within IO-space bound f (#) with density d (n)

and halt on all words for which they respect the bound.

We assume that we have a naming scheme weM,, for giving machine
names over T with two properties [Lewi81]. The names of machines are such that
from a name w and an ID [ the next /D under M,, can be computed in space w+I71.

Further, the names are arranged so that for some symbol in Z, say 1, if w names M,,
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so does 1/w for all j, thus M,, has name of all lengths above some minimal length.
For each machine M, let I'(M) be the number of working tape symbols; we can

assume that is easily computable from the name of M.

Let u be the representation of number Iwl in base L. We consider the

language

L={w: M, halts and rejects w without visiting more than g (Iw1)/T(M,) squares }.
Consider the multitape machine M which acts on input w of size n as follows.

(i) It lays out g (I wl) squares on all working tapes.

(ii) It counts number n in base | Z|. The final code is u.

(iii) It divides tape T, in I'(M,,) cells.

(iv) It simulates machine M, acting on input w as follows.

- It uses tape T as the working tape of M,; the head of T, can keep the position
of the working tape head of M,. Each working tape symbol of M, is encoded in
I'(M,,) squares of T,.

- Tt records the current state on T3; we can assume that there are at most |w!

states; so the current state can be recorded in space log [w!.

-Each simulation cycle starts by reading the input symbol of w. Then the
appropriate instruction of M, is found on tape T using T3 for the state information.

Next M simulate this step of M, on T, updating the input and the state on tape T'3.

(v) If any part of this simulation would cause M to leave its delineated space, M halts
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and rejects w,
(vi) If M reaches a halting ID of M,,, it accepts w if and only if M, rejects it.

First, observe that the computation of step (ii) is bounded by n<g (n) squares.
During all the other steps, M uses at most g (n) cells on each working tape. Thus

L=L(M)eDSPACE (g (n),1) since M never goes off the marked cells.

We have to prove that L cannot be in DSPACE (f (n),d(n)) with d(n)#0
almost everywhere. We proceed by contradiction. Suppose L is in
DSPACE(f (n),d(n)). Then we can assume that L=L(M’) for an off-line Turing
machine M’ with one working tape which is IO-space bounded with density d () and
always halts within f (n) cells for at least one word w of size n for all n large

enough, since d(n)#0 almost everywhere. Furthermore, M’ has a name in our
scheme. By hypothesis inf mmo, this implies that for each k>0 g (n)2kf (n)
n-e f (1)

almost everywhere. Also d(n)#0 almost everywhere. Thus, M’ has a name

y=1"""*'x with x the minimal name for M’, such that:

g (n)2I(M,)f (n) & d(n)>0 for all n2n'.
Let n>n" be the integer encoded by y. Then for some input w of this size n, M, will
halt and either accept or reject without visiting more than f (n)s?%;:—) squares.
Hence:

we L (M) if and only if M'=M, rejects w if and only if wg¢ L (M, Y=L (M")

This is a contradiction and so L& DSPACE (f (r),d(n)). O
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Corollary 3-3-3: Let f(n) and g(n) be monotonic increasing space constructible

function with f (n)2n and inf Mw. Let d(n) be positive almost everywhere.

nee f (1)
Then:

DSPACE (g (n),d (n))-DSPACE (f (n),d (n))20

Notice that for space bounds the function g does not need to beat flogf as for
time bounds, since the one tape simulation of a space bounded machine does not

require it.

Theorem 3-3-2 requires that d(n) be positive almost everywhere. However,
better results can be obtained for the deterministic space; the next theorem will

require only the condition that d (n) be positive for infinitely many n.

Theorem 3-3-4: Let f(n) and g(n) be monotonic increasing space constructible

functions with g (n)2n and inf -ﬁ%m‘w. There exists a language L such that for all
n—3os

density function d (n) that are positive for infinitely many n:

Le DSPACE (g (n),1) and L¢ DSPACE (f (n),d(n)).

Proof: We suppose that all languages in DSPACE (f (n),d (n)) are accepted within
the appropriate I0-bounds by one tape off-line Turing machines, due to Corollary 2-
4-5. We follow the notation of Theorem 3-3-2 and we denote the number of states

of machine M by s (M).

Consider the previous naming scheme for Turing machines. Let a(0) be the
empty word. We recursively define af(i), i21, as the first valid name of Turing

machine in canonical order after a(i—1). Thus a(0)<o(l) < a(2) < -+ < ouk)...,
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with < representing the canonical order .

Let h (w, 0) be the empty word. We recursively define 2 (w,i), i =1,2... as fol-

lows. Intuitively h (w,i) gives us candidate inputs for cancelling (i) M q;).

- h(w,i)=z if 3z, A(w,i-1)<z<w, z20(i) such that My visits no more

than _rg& 21)). cells for input z and Yy, h(w,i—1)<y<z, y2a(i), M ;) visits more
i)

iyl) A
than gyl cells for input y;
(M o)) puty

= hwi=hw,i-1) otherwise.

The function Ak (w,i) defines the first word z after h(w,i—1) for which the

machine named by a(i) visits no more than (Iz1) cells on input z, if there exists

T(M oiy)

such z. Language L is formed of all such z that are rejected by machine M ;). Intui-

tively, if Mgy does not respect the bound ?&?% for any word z2o(i) after

h(w,i=1)- the candidate for cancelling M 4;_1y-, then M ;) does not respect the
bound f (n) infinitely often and need not be cancelled. To record that fact, we define
h(w,i)=h(w,i-1). If the first "good" word beyond 4 (w,i—1) is beyond w, then w is
not a candidate for cancelling M 4;;y. Otherwise, we let & (w,i) be the first word

z2a(i) beyond h(w,i-1) (but not beyond w) for which M,y respects the bound

rg(;?i))_) . We use this word to cancel M y;y) in the usnal way- accept if and only if

M o) rejects. We really wish to define h(i)=defaulr if M ;) does not respect the
bound for any z2a(i) beyond the last defined A (i—k) and otherwise the first such z.
However, that would not be computable and so instead h (w,i) gives us all the infor-

mation about £ (i) available without exceeding w: h(w,i —1)=h (w,i) if h(i)=defauit

{
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or h({)>w and h (w,i)=h (i) if h(i)sw. Formally, L can be expressed as follows.

L= {w:3i for which w=h(w,i)#h(w,i-1) and wé L(M y;)) }

Consider a multitape deterministic Turing machine M that acts on input w as

follows.
(1) Mark g (Iwl) squares on each working tape,

(2) LET z=h (w, 0) be the empty word;
LET i=];
LET flag =NO,
LET overflow =NO;
LET accept =YES.

(3) WHILE flag=NO and M does not visit any unmarked cell DO
BEGIN

(3-1) TIF oi)>z THEN overflow=YES;
(3-2) WRITE a{i) on tape T5;

(3-3) 'WRITE z on tape T3; """ M will simulate machine M ;) on
input z by at most 4s(M )T (M g,Y!'?") time steps using at most

meenn

g(1zl)cells.

(3-4) Lay off g(lzl) cells on tape T4. """ Machine M will use tape
T4 as the working tape of M q;y; the head of T4 will keep the position of
the working tape head of M y;y. Each working tape symbol of My, is

encoded in I'(M ;) squares of T4. The current state of machine M ;)
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will be recorded on tape Ts; we can assume that there are at most

lea(i) | <1z| states; so the current state can be recorded in space loglzl.

(3-5) LET count=0;

(3-6) WHILE overflow=NQO and count< greatest number of length
f ( iz |) in base 4s(Ma(,-))I‘(Ma(,-)) DO
BEGIN

(3-6-1) READ the input symbol of z on tape T'3;

(3-6-2) Find the appropriate instruction of My on

tape T3 using T 5 for the state information;

(3-6-3) Simulate the instruction found in (3-6-2) on
tape T4 updating the input and the state on tape T5. IF M
tries to use more than g(lzl) cells on tape T4, THEN

overflow =YES,

(3-6-4) Increment count by one in base
4s (M o0y )T(M o3y
END;

(3-7)  IF overflow=YES and z#w THEN LET the next value of z be

the next word after z in canonical order;

(3-8) IF overflow=YES and z=w or overflow=NO and z#w THEN
z=h(w,i-1), h(w,i)=h(w,i-1) and i=i+1;
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(3-9)  IF overflow=NO and z=w THEN accept=NO IF AND ONLY
IF M oy accepts w; LET flag=YES;
END;

(4) IF accept=YES THEN reject w,

ELSE accept w.

If M tries to use more than g (n) cells on any working tape for any word w of
length n, the variable flag is made true and the simulation is aborted. Thus

LM)e DSPACE(g(n),1).

In order to prove that L (M) cannot be in DSPACE (f (n),d (n)) we need to

establish the following claims.

Claim 1: For all j, there exist a word w; such that & (w, j)=w; for any word w2w;.

The proof proceeds by induction on j.
For j=0, we have & (w, 0)=empty word=e, for all words w.

Now suppose the inductive hypothesis true for j—1, that is h (w, j—1)=w;_;, for any
word w2w;_;. For machine named by o(j)€>M o)) there are only two possibilities:

(i) there are no words z>w;_; with z20(j) such that M) visits no more than

Uz)_ cells on input z. Thus by definition of k(w,)), h(w,j)=h(w,j-1)=w,_1,
I'(M o(y)

for all words w2w;_;. Thus w;=w;_;.

(ii) otherwise, let x be the first word with w;_jy<x and x2a(j) such that M ;) visits

no more than (x1) cells on input x. Then for all words w2x:
I'(M o))

wj_1=h (w,j —1)<h (, j)=x<w, 50 h (w, j)=x. Therefore w;=x.



Thus the claim is valid. The second claim is stated as follows.
Claim 2: For all j: wj2w;_;.
As in Claim 1, for the machine named by a(;) there are only two possibilities:

(i) there are no words z>w;_; with z2a(j) such that M ;) visits no more than

gUzl) cells on input z. In this case, we say that wj=w;_i.

(ii) otherwise, let x>w;_; be the first word with w;_; <x and x20(f) such that My,

visits no more than T (}E{;x ! )) cells on input x. Then A (w, j)=x, for all w2x. There-
alj)

fore wi=x>w;_j.
Therefore the second claim is also valid.

We still have Ito prove that L is not in DSPACE (f (n),d (n)). Suppose that
this is not the case. Let o(i)eM o) be the name of a deterministic Turing machine
accepting L in IO-space complexity f (n) with density d(n). We proceed by show-
ing that there is at least one word w; such that w;eL if and only

if wig LM o)=L (M’); that is, o(i) was cancelled by input w;.

By Claim 1, there are words w; and w;_; for which w;=h(w;,i) and
w;_1=h(w;_1,i=1). Furthermore, w;_i=h(w;_;,i—1)=h(w;,i-1), since by Claim 1
hiw,i—1)=w;_; for 511 w2w;_; and by Claim 2 w;2w;_;. We claim that
w;#h (w;,i—1)=w;_;. Suppose not, that is w;=w;_;. This implies that after word

w;_y there is no word z such that z>a(i) and machine M y;) visits no more than

£UZD_ celis for input 7 or otherwise wi=z#w;-,
T(M o))
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But machine M o) is f (n) 10-space bounded with density d{n), d(n) posi-
tive infinitely often. Thus M o) operates within space f (n) for infinitely many 7.

gn) _
fy

But then, we have infinitely many words z after w;_; for which M ;) visits no more

Also g (n)2I'(M o))f (n) almost everywhere; since, by hypothesis, inf
n—oo

than T (;le!)) cells on input z. This is a contradiction and therefore
a(i)

W,'=h (W,',i)?ﬁh (Wi,i—l).

Hence by definition of L,
W;EL tfand only ifW"éL(Ma(i)):L.

This is a contradiction and so Lg¢ DSPACE (f (n),d (n)). U
i

Notice that if we require the condition d (n) positive almost everywhere the

(n)

above theorem will still be true if we relax the condition inf W) o to

n—)mf(ﬂ)

inf %:{) In this case, we just need g(n)2kf (n) infinitely often instead of
n—yo

almost everywhere.
Corollary 3-3-7: Let f (n) and g(n) be monotonic increasing space constructible

functions with g (n)2n and inf ﬁ%ﬂ There exists a language L such that for all
n—yoo

density function d (n) that are positive almost everywhere:

Le DSPACE (g (n),1) and L¢ DSPACE(f (n),d (n)).

Notice that the simulation of Theorem 3-3-4 is valid for time bounds. How-
ever it requires functions f (n) and g (n) to have a exponential gap, since the simula-

tion requires exponential time.
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3-4 Non-deterministic Hierarchies

The diagonalization argument breaks down for non-deterministic classes. To
determine whether w is in L (M) and contradict the situation, we must simulate all
computation paths on w. But it seems to take exponentially more time or space. So

we would only get exponential results.

However we can do better for non-deterministic space classes using the
extension of Savitch’s result, Corollary 2-3-8, which says that non-deterministic

space fcan be simulated by deterministic space fz. Thus, we have:

Theorem 3-4-1: Let f(n) and g(n) be monotonic increasing space constructible

functions such that inf (")2

=oo and g (n)2n. There exists a language L such that
n—= f (n)

for all density function d (n) that are positive almost everywhere:

LeDSPACE (g (n),1) and L¢ NSPACE (f (n),d (n)).

Proof: By Corollary 2-3-8 NSPACE (f (n),d (n))cDSPACE (f (n)2,d(n)). But by
Corollary 3-3-7 there is a language in DSPACE(g(n),1) not in
DSPACE (f (n)?,d (n)) and thus much less in NSPACE (f (n),d (n)). O

Corollary 34-2: Let f(n) and g(n) be monotonic increasing space constructible

functions such that inf —g—%m and f (n)2n. There exists a language L such that

n—e f (n)

for all density function d(n) that are positive almost everywhere:

Le N.SI’PACE(g (n),1) and L¢ NSPACE (f (n),d (n)).
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For non-deterministic time, however, the results are exponential, that is g has

to beat £ by at least an exponential amount for our proofs to work.

Theorem 3-4-3: Let f (n) and g (n) be monotonic increasing time constructible func-

tions such that inf -g-(i)-zw and g (n)2n. There exists a language L such that for all
n—o fpf (1)

density function d (n) that are positive almost everywhere:

LeDTIME (g (n),1) and L& NTIME (f (n),d (n)).

Proof: Suppose not. Then any L in DTIME (g (n),1) would be in NTIME(f (n),d (n)).
Then by Corollary 2-3-11, there exists a constant k for which
Le DTIME(kf ™ d(n)). But this is a contradiction for the languages of Theorem 3-
2-1.0

Corollary 3-4-4: Let f{(n) and g(n) be monotonic increasing time constructible

functions such that inf £0) and g (n)2n. There exists a language L such that

n—oo ff (M

for all density function d (n) that are positive almost everywhere:

LeNTIME (g (n),1) and L¢ NTIME (f (n),d (n)).

3-5 Density Hierarchies
We also want to see the effect of fixing f and varying the density function 4.
This variation depends on the particular probability distribution assumed. Initially,

we assume uniform probability distribution, i.e. P[X=w/n ]=$, and we denote it

by U. The next proposition says that there are languages L in

DSPACE (f (n),d1(n),U) that cannot be in DSPACE (f (n),d2(n),U), provided that



the difference between d(n) and d,(n) is at least : 1 with LcZ'.

| n

Theorem 3-5-1: Let f (n) be a total recursive function. If d;(n) and d,(n) are den-

sity functions such that for some integer k22:

(i) [d 1 (n)k"-‘ is computable in DSPACE (f (n));

(ii) do(n)>d ;1 (1) + ZI—

then there exists a language L over any k£ symbol alphabet such that

Le DSPACE(f (n),d(n),U) and L¢ DSPACE (f (n),d2(n),U).

Proof: Let T be a alphabet with 1Z122. Let < denote the lexicographical ordering
over words of same length. We assume a naming scheme in Z* for integers such
that if integer m is less or equal to integer / and m and ! have names in ", then the

name of m is less or equal the name of [ in lexicographical order. Let y(n) denote

the name in £" of the integer [I Zl "dl(n)].

Note that for any total recursive function f (n) there exists function f’(n)
such that f(n)Sf’(n) everywhere, f’(n) monotonic and space constructible.
Theorem 3-3-2 asserts the existence of a recursive language H such that for any
deterministic machine M for H, for infinitely many n, the space spent on w by M,

Sps(w), is strictly greater than f“(n) for all w of length n. So let

L=(w:w>y(lwl)and weH }
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Since "w<y (Iw1)" can be tested in space f (n), and any algorithm can be
used for H, clearly Le DSPACE(f (n),d(n),U). Assume L=L (M"), where M’
operates in IO-space f'(n) with density d(n). From M’ we get deterministic Turing
machine M for H which follows M’ for w>y (Iw|) and elsewhere any algorithm for
H. So there exists n for which Sy (w)>f"(n) for all words w of length n. So in par-
ticular M’ cannot obey the bound for any word w of length » with w >y (Iwl). Then

for M’:

Z P[X=w/n]s Z —l—-n—Sdl(n)(dz(n)
lwl=n: S w)<f (n) lwl=n: wsy(lwl) |z

This is a contradiction and so L cannot be in DSPACE (f'(n},d2(n),U), much less in
DSPACE (f (n),d,(n),0). 0O

Analogous to Theorem 3-5-1 we can use the results developed in previous

sections to generalize the density hierarchy for any IO-complexity class as follows.

Theorem 3-5-2: Let X={D,N} and BOUND ={TIME,SPACE}. Let f (n) be a total
recursive function. If d;(n) and d,(n) are density functions such that for some

integer k22:
) [d 1 (n)k"-‘ is computable in DBOUND (f (n));

(i) da(n)>d 1 (n) + 7}—

then there exists a language L over any k symbol alphabet such that

LeXBOUND (f (n),d(n),U) and L¢ XBOUND (f (n),d»(n),U}.



We can generalize the result above to any positive probability distribution.
The proof of Theorem 3-5-1 is based on the uniform distribution; this dependence
was implicit in the definition of y (n). We recall that y () is a cutpoint in the sense
that all words before y (n) are rejected within time f (n) and all words after y (n) fol-
low an algorithm which cannot have time bound f (r) in a very strong sense. For
each particular definition of probability distribution the definition of the value of the

cutpoint varies.

The crucial point in the proof above is to decide whether a word must be an
easy word or a hard one. We need enough easy words to make the language recog-

nizable in IO-space bound f (n) with density 4, but not enough for density d,. For
the uniform distribution this was characterized by the cutpoint y (n)= [I Zi"d(n )].

All words of length n before y (n) were "easy" words and all words after y (n) were
"hard" ones. More generally, we define a cutpoint A with the same function as y (n)
that can be used for any positive probability distribution. Then, consider an alphabet
¥ and let the words of length n be lexicographically ordered; we denote this ordering

by indexing the words, i.e. wo<w < -+ - <w,,. We define A on words of length n by

0 if ¥PgX=w;/n]<d,(n)
2-E(""j)= i=0

1 otherwise

Consider the first word w; for which Ax(w;) is 1. The sum of the probability
of all words less or equal this word is greater or equal to d{(n). We are going to use
this word as a cutpoint; all words before it will follow an easy algorithm, which
guarantees density d,, and all words after it will follow a hard algorithm in order to

avoid density d;. Once we have defined the cutpoint, the dependence on the



particular distribution is expressed by the difference between d; and d;. In other
words, the difference between d; and d, must be large enough to embody at least
one word; otherwise DSPACE (f (n),d{(n),Pz[X=win])=
DSPACE (f (n),d(n),Pg[X=w/n]), tivially. Thus, we define Ax(n)=
max{ Px[X=w/n]:lwl=n}. Then the arguments of Theorem 3-2-4 go through in

order to show that the language:
{w: Aw)=1 and we H}

belongs to DSPACE (f (n),d1(n),Pg[X=win)) and not to
DSPACE (f (n),d2(n),Pg[X=win]) for d,(n)2d,(n)+Ar(n). Thus, we generalize

Theorem 3-5-1 as follows.

Theorem 3-5-3: Let f (n) be a total recursive function. If Z is a alphabet with size at

least two and dy(n) and d,(n) are density functions such that:

(i) O assigns a positive probability distribution P [X=w/n] to 2,

Gi)"dy(n)2 Y, PIX=w/n, lyl=n]?"is decidable in DSPACE(f (n));

lwl=n:wsy .
(iii) do(n)>d | (n)y+max {P [X =w/n]: Iw|=n } infinitely often,
then there exists a language L over alphabet Z such that

LeDSPACE (f (n),d(n),®) and L& DSPACE (f (n),d(n),®).

Proof: Let < denote the lexicographical ordering over words of same length. We
assume a naming scheme in X" for integers such that if integer m is less or equal to
integer [ and m and / have names in ", then the name of m is less or equal the name

of  in lexicographical order. Let A be defined as below.
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0 if $Ps[X=w/nl<d(n)
Ar(wj) = i=0

1 otherwise

Let y (n) be the first w; for which Ax(w;) is 1.

Note that for any total recursive function f (n) there exists function f "(n)
such that f(n)Sf’(n) everywhere, f’(n) monotonic and space constructible.
Theorem 3-3-2 asserts the existence of a recursive language H such that for any
deterministic machine M for H, for infinitely many n, the space spent on w by M,

Syr(w), is strictly greater than f’(n) for all w of length n. So let

L=fw:w>y(lwl)and weH }

Since "dim)2 Y, P[X=w/n, lyl=n]?" is decidable in

Iwl=n: w<y
DSPACE (f (n)), then "w<y (Iwl)" can be tested in space f (n), and any algorithm
can be used for H, clearly Le DSPACE (f (n),d(n), D). A_ssume L=LM"), where
M’ operates in IO-space f’(n) with density d,(n). From M’ we get deterministic
Turing machine M for H which follows M’ for w>y(Iw|) and elsewhere any algo-
rithm for H. So there exists n for which Sy (w)>f"(n) for all words w of length n.
So in particular M’ cannot obey the bound for any word w of length n with

w >y (twl). Then for M":

p) P[X=w/nlsd,(n)<d,(n) infinitely often.
Iwl=n: S (wdf'(n)

This is a contradiction and so L cannot be in DSPACE (f’(n),d;(n),P) much less in
DSPACE (f (n),d2(n),®). 0O
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We can generalize Theorem 3-5-3 to embody any I0-complexity class as fol-

lows.

Theorem 3-5-4: Let X={ D,N } and BOUND ={ TIME,SPACE }. Let f (n) be a total
recursive function. If I is a alphabet with size at least two and d;(n) and d;(n) are

density functions such that:

(i) @ assigns a positive probability distribution P [X=w/n] to %

(i) "dy(n)2 Y P[X=win, lyl=n]?"is decidable in DBOUND (f (n));
lwl=n:wsy

(i) ds(n)>d; (n)+max (P [X =w/n]: lwl=n } infinitely often,

then there exists a language L over alphabet X such that

LeXBOUND (f (n),d(n),®) and L¢ XBOUND (f (n),d(n),®).
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CHAPTER 4
POLYNOMIAL CLASSES AND HARD PROBLEMS

4-1 Introduction

An important problem- considered by many to be the most important open
question in complexity theory or indeed in theoretical computer science- is whether
P =NP or not. In other words "can every problem solvable non-deterministically in
polynomial time actually be solved in polynomial time by a deterministic

machine?"”,

In this chapter, we extend the concept of XTIME (f (n),d (n)) to include poly-
nomial time and we study the structure of deterministic and non-deterministic poly-

nomial time classes. We restrict our attention to the uniform probability distribution.
Definition 4-1-1: Let 0<d (n)<1. We define:

i) Pdn)= UODTIME (n€,d(n),U)= (L :3 deterministic Turing machine M
c>

accepting L in IO-time n¢, with density d(n) and uniform probability distribution for

the input alphabet of M, for some ¢ >0 }

(i) NP (d(n))= UUNT IME(n®,d(n),U)= {L : 3 non-deterministic Turing machine M
c>

accepting L in IO-timq n¢, with density d(n) and uniform probability distribution for

the input alphabet of M, for some ¢ >0 }
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Notice that P(1)=P and NP(1)=NP, since by Theorem 2-2-1
XTIME (n)=XTIME (n°,1).

We want to know the relationship among the classes P, NP, P (d(n)) and
NP (d(n)). We show that there exists a positive density function d(n) for which
P (d(n))=NP (d(n)) if and only if P#NP. On the other hand, we also show that the
existence of a positive density function d(n) for which P (d(n))=NP (d(n)) implies
that E=NE, where E is the deterministic exponential class and NE is the non-

deterministic exponential class of languages.

Using the concept of density function, we give an alternative proof that
NE=E implies NP#P. The implication NE#E implies NP#P was already known.
This was showed using the concept of tally sets by Book [Book74], and using the
concept of sparse sets by Hartmanis [Hart83a]. Furthermore, the existence of sparse
sets in NP —P and the structure of £ and NE has been investigated in [Hart83b] and

expanded to the exponential hierarchy in [Sewe83].

There has been some research concemning whether NP-problems can be
solved "in practice”. Usually, claims about an algorithm’s performance "in practice”
are supported by extensive tests of the algorithm on real instances from the applica-
tion in question [Gare79, John84). However, a really satisfactory theory of "in prac-
tice" complexity is not available yet. In this chapter, we want to apply the IO-
complexity defined in this thesis to the concept of approximate solutions for hard
problems. There are different ways in which hard problems can be dealt with.
Minimally, there should be a polynomial time algorithm that for all sufficiently large
instances, solves the problem with at least some required probability. To solve a

problem in this context means to determine the correct answer and provide a proof
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that it is correct. This kind of solution will be denoted as an APPROXIMATION
solution. Some examples of hard problems for which there are APPROXIMATION
solutions are Hamiltonian circuit [Angl77], satisfiability [Gold82], subset sum
[Laga83], knapsack [Gold84]. The final sections of this chapter are devoted to
another interpretation of the IO-complexity classes in terms of APPROXIMATION

sets.
4-2 Conjectures on P and NP

In this section we show that P=NP if and only if there exists a positive den-

sity function d (n), i.e. d(n)>0 almost everywhere, for which P (d (n))#NP (d(n)).

We start by stating the existence of a language that cannot be accepted in
deterministic polynomial time, except, for a finite number of words. The existence

of such languages was first shown by Blum in abstract complexity theory.

Lemma 4-2-1: [Blum71] There exists a recursive language LcE* such that for any
deterministic Turing machine M accepting L and any ¢ >0, the running time of M on

input w of length n exceeds n¢ for almost all words.

The nest result uses Theorem 2-3-5 in order to show that the existence of a
positive density function d (n) for which P (d(n))#NP(d(n)) implies the separation
of the classes P and NP.

Lemma 4-2-2: If there exists a positive density function d(n) for which

P (d(n))y=NP (d(n)), then P#NP.
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Proof: Suppose that P=NP, so NPCP.

Let d(n) be any positive density function. By Theorem 2-3-5,
NTIME (f (n))SDTIME (f (n)) implies NTIME (f (n),d(n))SDTIME(f (n),d(n)).
Thus  NTIME (n®)c v DTIME(n®) implies

¢>0 e>0

UONT IME(n€,d(n))g UODTIME (n¢,d(n)). Hence, by definition of P (d(n)) and
c> o>
NP (d(n)), NP (d (n))cP (d(n)). Then NP (d(n))=P (d(n)). O

Therefore, if P=NP, then P (d (n))=NP (d(n)) for all density function d(n)

positive almost everywhere. Conversely, we can prove that if P#NP, then there

exists a density function d (r) other than 1 for which P (d (n))=NF (d (n)).

Lemma 4-2-3: If P#NP, then there exists a density function d (n), 0<d (n)<1 for all
n, for which P (d (n))=NP{d (n)).

Proof: Suppose not, that is for all d{(n) for which 0<d(n)<1 almost everywhere,
P (d(n))=NP (d(n)). Let L’'cE’ be the hard language of Lemma 4-2-1 accepted by
some deterministic machine M’. Let LCE' be any language in NP —P and let M be a
machine accepting L in non-deterministic polynomial time. Let 1 denote some sym-

bol of £. We define:

Li=(w:wé1 andweL }u{w:wel" and wel’}
and:

Lo={w:we1" andweL} U {w:w¢1 and wel’ }

Thus, L=L{"E"-1" ) A(L,N1")

={w: wé¢ 1" & wel, or we 1" & weL,}. Intuitively, the language L, is the
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language L, except on words of the form 1" which require long time computations,
since on 1%, L is equal to L’. Conversely, accepting L, will require long time com-
putations for all words except those of the form 1" on which L, agrees with L. The
basic idea of the proof is to contradict the presence of L in NP —P by showing the

existence of a deterministic Turing machine accepting L in polynomial time.

n-—
Furthermore, we claim that LleNP(%n—l—) and L2ENP(T1V;)' For

example, a non-deterministic machine IO-polynomial time bounded with density

1Z1"-1

=1 for L, would switch between M’ and M, machines for L’ and L respec-

tively, depending on whether the input is in 1" or not. The analogous machine for

L, would do the reverse switching.

But we assumed that NP (d (n))=P (d(n)) for any d (n). Then let M, and M,
be deterministic machines accepting L, and L; in IO-time n° with densities

|Z1"-1
an
IZ1" Izi"

, respectively.

We claim that M, cannot halt on infinitely many words of the form 1" in
time n°¢, because, otherwise, we could build a machine for L’ that halts for infinitely
many words in time n€, which would contradict the properties of L’ derived in
Lemma 4-2-1. For example, one such machine for L” would check first whether the
input is of the form 1* or not, and if it is in 1" then it would simulate M. If the input
is not in 17 then it would simulate the regular machine M’ for L’. Since such a
machine cannot exist, M cannot accept/reject in time n° words of the form 1" for
n>kq, for some k;. Therefore, since M, operates in IO-time n® with density

| Z1"~1

I M, must accept/reject words w, wel 17, lwl >k in time n°.
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By similar arguments, M7 accepts/rejects in time n® words w, wel®,
lw|>k,, for some k2. Now, let k=max[k,k3] and consider machine M that acts

on input w as follows.

@) If Iwlk, then M” éccepts w if and only if we L
(ii) If Iwi>k and we 1*, then M” simulates M, on w.
(iii) If Iw|>k and we 1", then M” simulates M, on w.

We claim that the language accepted by M” is L. Consider any word w. If
lwi<k, then w is in L (M") if and only if w is in L, by condition (i). Otherwise, if

lw| >k, there are two cases:

(1) we 1°. Then, by condition (ii), w is in L (M”) if and only if wis in L(M,)=L, if

and only if wisin L.

2) we 1. By condition (iii), w is in L (M”) if and only if wisin L(M4)=L, if and

only if wisin L.
Therefore, in any case w is in L (M”) if and only if w is in L. Thus, L (M')=L.

Furthermore, we claim that machine M” operates in polynomial time. The
information for step (i) can be recorded in the finite state control of M’ since there
are only a constant & of those words. Step (ii) takes at most n® computation steps,
since for words w not in 1°, such that twl>k2k;, M, operates in time n°. Simi-
larly, step (iii) is time bounded by n°, since for inputs w in 1%, such that 1wl >k2k;,
M, operates in time n®. Thus, for any L in NP-P we can build a deterministic

machine accepting L in polynomial time. Then P =NP. But this is a contradiction and
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so there must ex{st a density function d(n), O<d{n)<l, for which

P(d(n))#NP(dn)).0O
Lemmas 4-2-2 and 4-2-3 together imply next result.

Theorem 4-2-4: P#NP if and only if there exists a positive d(n) for which
P{d(n))NP(d(n)).

We know that there are oracles A and B for which PA=NP# and P2xNPZ*
[Bake75]. These contradictory results involving oracles indicate that the existing

complexity methods are probably insufficient to settle whether P =NP or not.

However the results above involving density functions do not have the con-
tradictory aspect of oracles. Any proof of P(d(n))#NP(d(n)) does imply that
P#NP. Therefore, there would appear to be no obvious connection between the role

of oracles and the role of density functions in complexity theory.
Note that we can generalize the proof of Theorem 4-2-4 to show the follow-
ing property.

Let f (n)<g (n) and f (n)2n everywhere. DBOUND (f (n)) is properly contained in
NBOUND (g (n)) if and only if there exists a positive density function d (n) such that
DBOUND (f (n),d (n),U) is properly contained in NBOUND (f (n),d (n),U).

The above property would tie the hierarchy problems and the open trade-off prob-

lems of standard complexity theory to those of I0-complexity theory.

* pA (NPA) is defined as the set of languages accepted in polynomial time by
deterministic (non-deterministic) Turing machines with oracle A
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Another issue to be considered is under what circumstances, we can reverse

the translational lemmas of chapter 2, Lemmas 2-3-1 to 2-3-4, to show that:
XBOUND (f (n),d (n),U)YcXBOUND (g (n),d (n),U)
implies
XBOUND (f (n))cXBOUND (g (n))

We could use similar techniques to the proof of Lemma 4-2-3 to show that this cer-
tainly holds for d (n)=r for all n, r some fixed rational number. For example, for
d (n)=1/2, first note that it suffices to consider L in XBOUND (f (n)) over alphabet
{0,1). Let Lo be {winL: wstarts withO } and L be { win L: w starts with I } and
L’ the hard language of Lemma 4-2-1. Then from LgU{lw:1lwel’} in
XBOUND (f (n),d (n),U)SXBOUND (g (n),d (n),U), we get Lo in XBOUND (g (n))
and similarly L, in XBOUND (g (n)), hence L in XBOUND (g (n)). Note that when
such a result holds, any hierarchy for XBOUND (f (n)) immediately extends to
XBOUND (f (n),d (n),U).

4-3 Conjectures on E and NE

In section 4-3, we showed that the existence of a density function for which
the separation of deterministic and the non-deterministic polynomial classes would
imply that P is properly contained in NP. In this section, we investigate what hap-

pen if there exists d (n) for which P (d (n))=NP (d (n)).

Let E= UODTIME (2°") and NE= UONI' TME (2°™). These are the exponential
c> c>

complexity classes of the worst case complexity. The next result relates any col-
lapse of the type P (d (n))=NP (d (n)) to the collapse E=NE. The implication NP =P
implies NE=E was shown the first time by Book [Book74]. By Theorem 4-2-4,
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NP =P if and only if for all positive density functions d(n), P (d{(n))=NP (d(n)).
Therefore, if for all density functions d(n), P (d (n))=NP (d(n)), then NE=E. How-
ever, the next result shows that the existence of any positive density function d(n)
for which P (d (n))=NP (d (n)) suffices to imply the convergence of the classes £ and
NE.

Theorem 4-3-1: If there exists a positive density function d(n) such that d(n) is

computable in polynomial time and P (d (n))=NP (d (n)), then E=NE.

Proof: Suppose that E#NE. Let L'CY’ be a language in NE-E and let 1€ X. Let

x (w) be the number represented by 1w in base 1Z| and let

T={1"®): wel’}

Let M accept L’ non-deterministically in time 2°". We claim that the
language T is in NP. In T we increase the length of the input exponentially in order
to make our Turing machine M’ for L’ run more quickly relative to the input size on
T. Such a machine My for T, on z=1**’, would translate it to w and simulate M’
acting on w. The translation of 1*™) to w takes at most kx (w) time steps, for some
k1>0, as detailed in Theorem 3-2-1, condition (i), Machine M runs in time piid
for inputs w, machine My has as input z=1*®) of length x (w)2IZ! !, since x (w)
represents 1w in base IZi. Thus My runs in time kjx(w)+2¢/"'<

kylwl

kix(wy+1Zl <kix(whx (w)k’S kax (w)k’, i.e. time polynomial in | zl=x(w).

Consider any positive density function d(n). Let m(n) denote the least posi-

tive integer such that‘d(n)S-—I"%%?— for each n. Let y(n) be the representation of

length n in " of (m(n)-1); since (m(n)-1)<IZ|", y(n) exists. Let < denote the
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canonical order. Consider the language L that follows.
L=Tu {w:wsy(lwl) & w1t} U {w:w>y(lwl) & wel” & w¢ 1%}

where L” is the hard language of Lemma 4-2-1, accepted by some deterministic
machine M”. Thus L is composed of three parts. The set T is the first part of L. The
second set is composed of the words of length n that occur before y () in canonical
order. Also L has a final part which needs long computation time; which are the
words of length n greater than y (n) that belong to L”. Our aim is to show that if

Le P (d(n)), then the set T must be recognized in polynomial time.
Consider a Turing machine M” for L that acts on input z as follows.

(i) If ze 1%, then simulate M’ on w, where z=1*™),

(ii) If z¢ 17, but z<y (1 z1), then accept z.

(iii) Otherwise, simulate M”’ on input z.

We have already seen that step (i) takes at most £ 1 z1 ¥ time steps. Step (ii) is
bounded by some fixed polynomial in |z|, since by hypothesis d(n) is computable
in polynomial time. For each length n, there is one word 1" accepted/rejected in (i)
plus (m (n)—1) words accepted/rejected in (ii). Thus, there is a total of at least m (n)

words accepted/rejected by M” in time n® for some fixed ¢’. Hence M” is of 10-

time complexity n® with density d (n )S%. Therefore, Le NP (d(n)).

But, by hypothesis P (d (n))=NP (d (n)). Thus Le P (d(n)).

80



Let M be a deterministic Turing machine accepting L in 10-time n¢ with
density d(n). Then the running time of machine M must exceed n¢ time steps on
inputs of the type (iii) or Lemma 4-2-1 would not be valid. One machine to contrad-
ict Lemma 4-2-1 would check whether the input is not of the form 1* or if the input
is less or equal y(n) in canonical order over words of length n and then switch
between machines M and M’. Therefore, machine M must have running time on the
inputs w of type 1" and inputs w<y (Iw|) not exceeding |wi <. in order to have den-

sity d (n).
But then the set
| fw: F®eL j={w: *®eT =L’
can be recognized in deterministic exponential time by an algorithm based on M.
For example, one suc}'l machine would read the input w, translate it to x(w) and

simulate M. Machine M spends |x(w)|¢ on inputs 1*™, thus this algorithm spends

121! <2< %! on input w, for some ¢”>0. But then L' E. O

Notice that it is not known whether E=NE would imply the existence of a
density d(n) for which P (d(n))=NP (d(n)); it is known that P=NP implies E=NE
[Book74] and [Hart83a] but not whether E =NE implies P =NP.

4-4 Polynomial Space

We observe that we can expand the methods used here for time bounds to the
space complexity. For example, we can define PSPACE(d(n)) and
NPSPACE (d (n)) as follows.
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Definition 4-4-1: Let 0sd (n)<1. We define:

(i) PSPACE (d(n))= UODSPACE (n®,d (n),U)= (L : 3 deterministic Turing machine
c>
M accepting L in IO-space n¢ with density d(n) and uniform probability distribution
over the input alphabet of M, for some ¢ >0 }
(i) NPSPACE (d(n))= UONSPACE (n€,d(n),U)= {L : 3 non-deterministic Turing
c>

machine M accepting L in IO-space n° with density d(n) and uniform probability

distribution over the input alphabet of M, for some ¢ >0 }

Since is already known that PSPACE=NPSPACE, we can make use of
Theorem 2-3-5 to prove that PSPACE (d (n))=NPSPACE (d (n)).

Theorem 4-4-1: Let d(n) be positive. Then PSPACE (d (n))=NPSPACE (d (n)).

Therefore, analogous to the worst-case complexity where non-determinism
does not add resources in terms of polynomial space, we can say that every problem
solvable non-detcmﬁﬁisﬁcally within polynomial I0-space with density d(n) can be
solved in polynomial IO-space with density d(n) by a deterministic machine for any

positive density d(n).

We also can make use of Theorem 2-4-5 to prove that NP (d (n)) is contained

in PSPACE (d (n)), since NP is contained in PSPACE.

Theorem 4-4-2: Let d (n) be positive. Then NP (d (n))SPSPACE (d(n)).
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4.5 Approximation Languages

We turn to the question of finding approximate solutions to hard problems.
Given a language L, which might require a lot of resource time or space to recog-
nize, maybe we can be satisfied with another language L', which costs less time or
space to recognize. Obviously, we are not satisfied with any language L'. We
require that L’ solves part of the problem that L is supposed to represent. By solve
we mean determine the correct answer, i.e. whether a word w belongs to L or not,

and provide a proof that it is correct [John84].

We say that languages L and L’ agree on word w if w is in L if and only if w
is in L’. Given an off-line deterministic Turing machine M’, we select from the
definition of M” a set of states /. We require that whenever M’ halts for word w in
some state se/ then L'=L (M") and the language L agree in word w, that is, word w

belongs to L if and only if it belongs to L',

We want the language L', which is an approximation for L, to agree a "lot"
with L and to be recognized in a moderate amount of time or space. More formally,

we say:

Definition 4-5-1: Let L be a language over T'. We say that a language L’ is in
APPROXIMATION —-DTIME (L,f (n),d (n)) if there is an off-line multitape deter-
ministic Turing machine M’ accepting L’ with a special set / of states of M" satisfy-

ing the following.

(i) M’ is of worst-case time complexity f (n).
(i) If M halts for input w in some state s/, then L and L’ agree on w.

(iii) d (n)SP{M’ halts on w in a state of I/ |lw|=n]= Y P[X=w/n].

\wl=n:M haltsonwinsel
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Notice that conditions (ii) and (iii) of Definition 4-5-1 imply that L and L’
agree on w with at least  probability d(n), since d(n)<

P[M’ halts onw in a state of I/ \wl=n]= Y P[X=w/n]s
Iwl=n:M'(w)haltsonwinsel

Y Pl X=w/n].
L ard L’ agree onw
Note that for time bounds the requirement of M being of worst-case time
complexity f (n) imply that M’ is an always halting machine. However, a machine
can be of space complexity f () but not halt for all inputs. Thus, for space bounds,

we consider only always halting machines.

Definition 4-5-2: Let L be a language over $*. We say that a language L’ is in
APPROXIMATION —DSPACE (L.f (n),d (n)) if there is an off-line multitape always
halting deterministic Turing machine M’ accepting L’ with a special set / of states of

M’ satisfying the following.

(i) M’ is of worst-case space complexity f (n).
(i) If M’ halts for input w in some state se/, then L and L’ agree on w.

(iii) d (n)<P[M’ halts on w in a state of [/ \lwl=n]= > P[X=w/nl.

\wl=n:M haltsonw insef

Notice that the requirement that M’ be a always halting machine is not a con-
straint, For any language L’ in DSPACE (f (n)) there is an always halting deter-
ministic machine M accepting L’ and operating within space bound f (n), provided

that f (n) is space constructible.

We want to relate the sets APPROXIMATION and the I0-complexity classes.
Suppose that language L is recursive and that we have a language L in

APPROXIMATION —-DBOUND (L.f (n),d(n)), then we can find a I0-complexity
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class to which L belongs as follows.

Lemma 4-5-1: Let d(n) be positivee. ILet L be recursive and
APPROXIMATION -DTIME (L.f (n),d (n)) #3. Then Le DTIME (f (n),d(n)).

Proof: Since L is recursive, let M be a deterministic always halting Turing machine
accepting L. Let L'=L(M") be in APPROXIMATION -DTIME (L.f (n),d(n)} with
machine M’ operating in time f (n) and selected set of states I and consider a deter-

ministic Turing machine M ; which behaves on input w as follows.

(i) Simulate M’ on w.

(ii) If M’ does halt on a state of I, then accept w if and only if M’ accepts w.
(iii) Otherwise, simulate M on w, accepting w if and only if M accepts w.

Consider any word w. If M’ halts in a state of I, then M, accepts w if and
only if M” accepts w. But, whenever M” halts in a state of 7, machine M’ accepts w if
and only if w is in L. Furthermore, if M’ does not halt in a state of I, then machine
M simulates machine M on input w; thus w is in L(M ) if and only if w is in
L (M)=L. Therefore, for any word w, w is in L (M) if and only if wis in L. There-
fore, the language accepted by machine M is L.

Let T1(w) be the running time of M on input w. Conditions (i) to (i1) take
at most f (lwl) computation steps, since M’ is of worst-case complexity f (n).
Then:

Y P X=win)2 X PX=win]=
Iwl=n:T(w)<f (n) lwl=n:M, halts onw in (ii}

¥ PX=w/nl2 d(n), since L'e

\wl=n:M haltsonwinscl
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APPROXIMATION —-DTIME (L.f (n),d(n)).

Therefore, by the  definiion of  IO-complexity  classes,

L=L(M)e DTIME (f (n),d(n)). O

Conversely, suppose that we know that Le DTIME (f (n),d (n)), then we can

find an approximation language L’ for L as follows.
Lemma 4-5-2: Let f (n) be a monotonic increasing time constructible function with
inf m-)-mo, and let d{n) be positive. Then LeDTIME(f (n),d(n)) implies

n— N

APPROXIMATION -DTIME (L,f (n),d (n)) #.

Proof: If Le DTIME (f (n),d (n)), then by Corollary 2-3-6 there is machine M that

makes LEDTIME(*L(ZQ,d (n)). Consider machine M’ with /={Y,N} and set of

accepting states F={Y} which behaves on input w of size n as follows.

(i) Seta (Zn) counter on a working tape of M". Machine M’ will simulate machine

M for % steps.

(i1) Simulate M on input w. Each step of M increases the count by one.
- if M halts and accepts w,then M’ accepts w halting in state Y.

- if M halts and rejects w,then M’ rejects w halting in state N.

(iii) If M does not halt within I (Zn) steps, then M’ rejects w, halting in a state not in

I
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We have o prove that L'=L(M") €
APPROXIMATION —DTIME (L,f (n),d (n)). We claim that machine M” halts within

f (n) steps. Machine M” spends % time steps for the simulation of M on input w,

plus the additional step of increasing the counter by one at each cycle. There are

%E)- cycles and, thus, M” halts within % time steps.

Machines M’ and M agree on all words accepted/rejected in step (ii) with M’

halting in a state in /. But those are the words accepted or rejected by M within
! (2") steps. But L (M)e DTIME (%,d(n)), s0 we have:

P[M’ halts on w in astate of 1 | lwi=n]= p P[X=w/nl=
\wl=n:M"halts in (ii)

> P[X=w/nl2d(n).
lw|=n:M halts on w within %ﬂl steps

Thus, L'=L (M"Ye APPROXIMATION ~DTIME(L,f (n),d (n)).L]

Lemmas 4-5-1 and 4-5-2 provide a strong relationship between the IO-

complexity classes and the approximation languages as follows.

Theorem 4-5-3: Let f (n) be a monotonic increasing time constructible function with

inf Mn», and let d(n) be positive. Let L be a recursive language. Then Le

n—ee N

DTIME (f (n),d (n)) if and only if APPROXIMATION —-DTIME (L,f (n),d (n)) #<.

Theorem 4-5-3 provides another interpretation for the classes
DTIME (f (n),d (n)) in terms of approximation languages; it says that the recursive

languages of DTIME (f (n),d (n)) are those languages L which can be approximated
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by f (n) bounded machine agreeing with L on w with probability at least d(1wl).
We can apply all the results of the IO-complexity theory to the average complexity
defined by the APPROXIMATION sets.

There are similar results for space bounds. However we must be careful,

since a machine can be space bounded and non-halting.

Theorem 4-5-4. Let f (n) be a monotonic increasing space constructible function and
let d(n) be positive. Then APPROXIMATION —-DSPACE (L.f (n),d (n)) #@ if and
only if Le DSPACE (f (n),d (n)).

Proof: The proof is quite similar to the proof for time bounds, so we follow that
notation. Let L'e APPROXIMATION -DSPACE (L,f (n),d(n)) using machine M’
with special set I of states. Consider deterministic machine M that acts on input w

as follows.
(i) Mark f (n) cells in a working tape.

(ii) Simulate M’ on w using at most f (n) working cells. If M’ does halt in state se/

then accept/reject as M’ does.
(iii) Otherwise, it simulates M on input w.

Whenever machine M’ halts in a state of I for input w, M accepts input w if
and only if M’ accepts w if and only if w is in L. Otherwise, that is whenever M’
does not halt in a state of /, machine M, executes step (iii), since the simulation on
(ii) always halts, because M’ is an always halting machine. But then, also in step
(iif), My accepts input w if and only if w is in L. Therefore, the language accepted by

machine M is L.
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Furthermore, any word of length n accepted/rejected by M’ within less than
f (n) cells is accepted/rejected by M, using less than f (r) working tape cells in step
(il Then M,; is (f(n)) IO-space bounded with density d(n). Thus
LeDSPACE(f (n),d (n)).

Conversely, suppose that Le DSPACE(f (n),d (n)). Thus, by Lemma 3-3-1
there is machine M accepting L within space f (n) and density d (n) that halts for all
words that respects the bound f (n). Then consider machine M, with final set

F={Y} and set I ={Y,N} that acts on input w as follows.
(i) Mark f (n) cells on a working tape.

(ii) Simulate M using the marked cells.
- If M accepts w, then M, accepts w on state Y,

- If M rejects w, then M, rejects w on state V.
(iii) Otherwise, if M tries to use more than f (n) cells, then M ; rejects w.

Let S (w) denote the space spent on input w by machine M. By hypothesis,
machine M operates in IO-space f (n) with density d (n). Whenever S (w)<f (n) for
input w of length n, machine M, halts in step (ii) and accepts w if and only if M
accepts w. Thus it halts on state ¥ or N in J and agrees with M. Therefore, condi-
tions (ii) and (iii) of Definition 4-5-2 are met. For the other words, machine M,
halts and rejects them using space less than f (n), too. Thus the language accepted

by machine M, is in APPROXIMATION -DSPACE (L,f (n),d (n)).0
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4-6 Non-existence of Approximation Languages

As a consequence of the interpretation of the IO-complexity classes as fami-
lies of approximated languages, we get some results related to the existence of solu-
tions for hard problems. For example there are languages so hard that they do not
even have an approximation computable within fixed time and space bounds. Asa
direct consequence of the I0-complexity hierarchy results applied to the APPROXI-

MATION sets, we get results such as the following.

Corollary 4-6-1: Let f(n) and g (n) be monotonic increasing space constructible

functions such that inf jgr%;:». There is a language L in DSPACE (g (n),1) such
n—oo

that for all density function d(n) that are positive infinitely often,

APPROXIMATION -DSPACE (L,f (n),d (n))=2.

Proof: Let f(n) and g(n) be monotonic increasing space constructible functions

such that inf f;—%—;-mo, and let d(n) be positive for infinitely many n. Let L be in
R0

DSPACE (g (n),1). If APPROXIMATION-DSPACE (L,f (n),d(n))*J for some
suitable d (n) as above, then by Theorem 4-5-4, L would be in DSPACE (f (n),d (n)).
By Theorem 3-3-6, there is a language L in DSPACE(g(n),1) and not in
DSPACE (f (n),d(n)), for any d(n) positive infinitely often. Hence the desired

result. O

The deterministic time hierarchy yields similar results, with the density func-

tion d (n) different from zero almost everywhere.
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Corollary 4-6-2: Let f(n) and g(n) be monotonic increasing time constructible

functions such that inf _&ﬁl)z_m and f(n)2n. There is a language L in

n—eo f (n)
DTIME (g (n),1) such that for all density function d(n), that are positive almost
everywhere, APPROXIMATION -DTIME (L.f (n),d (n))=2.

Proof: Let f (n) and g (n) be monotonic increasing time constructible functions such

that inf (n)2 =eoo and f (n)2n, and let d (n) be positive almost everywhere, Let L
n

n—)aef( )

be in DTIME (g (n),1). If APPROXIMATION -DTIME (L,f (n),d (n))#J, for some
suitable d (n) as above, then, by Theorem 4-5-3, L would be in DTIME (f (n),d (n)).
By Theorem 3-2-1, there is a language L in DTIME(g(n),1) and not in
DTIME (f (n),d (rn)). Hence the desired result. U
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CHAPTER 5
FURTHER COMPLEXITY CLASSES

5-1 Introduction

Numerous models and classes of languages have been introduced in the
literature. This chapter presents a few classes of languages, not previously analyzed

in this dissertation, and their relation to the IO-complexity.

We start-by defining average-case complexity classes, in particular complex-
ity measures related to the concept of medians and means of a set of numbers. We
study the connection between these average-case complexity classes and the 10O-
complexity sets. We show an interpretation of the median-case complexity classes

in terms of IO-complexity classes with density 2.

We follow by defining probabilistic computations. Here we introduce a
different model of corﬁputation, the probabilistic Turing machine. We define proba-
bilistic time and space for words and for length of computations. We introduce the
concept of infinitely often complexity to several probabilistic polynomial bounded

classes. We present some open problems related to the probabilistic IO-complexity.

It must be pointed out that the topics analyzed in this chapter are part of a
much larger research area still under study and several questions are unanswered and

unfinished.
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5-2 The Median Case Complexity

Usually when we talk about expected complexity, we require that some kind
of average (mean, median) over all words of length n be bounded by a function of n

in all points. We start with the concept of median complexity.

We recall informally the concept of median. Suppose we have the values
V1,V2, ' * - V¢ each one with given probability P [X =v;] for 1<i<k. The median of

these values denoted by m is the least element v; such that P [X Sv,-]zllz.

Let M be a Turing machine and let w be a word of length n. We define
Tmedian(n, P [X =w/n]) as the median of the running time on words of length n by M
with probability distribution P[X=w/n]. We define S, 4izn(mP[X=w/n]) as the
median of the space spent on words of length » by M with probability distribution
P[X=w/n].

Definition 5-2-1: Let T (w) and S (w) be respectively the running time and the space

spent on w by machine M. Let P [X=w/n} be positive. We define:

1) Thedign(n,P[X=w/n]) 1is the least T(y) such that |yi=n and
Y PX=winl2'
Iwi=n:T(w)<T(y)
(i)  Spedian(m,P[X=w/n]) is the least S(y) such that Iyl=r and
Y  PX=winln
Iwl=n:§w)X<S(y)
Once we have defined the median complexity measures as above, we can

define the median complexity classes as follows.
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Definition 5-2-2: Let ® be a functor assigning to each alphabet Z a positive probabil-

ity distribution P [X=w/n] over =t

(i) MEDIAN —-DTIME (f (n),®) is the family of languages L for which there is a
deterministic Turing machine M accepting L with Tpnegian(n, ®ENSS (n) for all n

and probability distribution ®(Z) for the input alphabet X of M.

(ii) MEDIAN —DSPACE (f (n),®) is the family of languages L for which there is a
deterministic Turing machine M accepting L with S,.4ign (n, ®E))=f (n) for all n and

probability distribution (Z) for the input alphabet X of M.

We use MEDIAN -DBOUND (f (n)) to denote the union of the complexity
classes MEDIAN -DBOUND (f (n),®) for all functors @ that assign to each input
alphabet X a positive probability distribution P [X=w/n]. The next theorems relate

the median complexity classes to the IO-complexity classes.

Theorem 5-2-1;

MEDIAN -DTIME (f (n))=DTIME (f (n),}/2)

Proof: Suppose that L is in MEDIAN —~DTIME (f (n)). Thus, there is a deterministic
Turing machine M accepting L for which T,4izn(n,P [X=w/n])<f (n), for some

positive P [X=w/n]. Let T(w) denote the running time on word w by machine M.

Thus:
Y. P[X=w/nlz Y P[X=w/n],
|wl=n:T (w)sf (n) Iwl=n:T (W)ST ptica (P [X =w/n])
since Tonedian(n)SS (n).
But ) PX=w/n]2'72, since Tpegian(nP[X=w/n]) is the

Yw =T (WIET gian (P [X =win])
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median of the values 7T(w) for words w of length n. Therefore
Y P[X=w/n]2'/2. Butthen L belongs to DTIME(S (n),'/2).
twl=n:T (w)sf (n)
Conversely, suppose that L is in DTIME (f (n),llz). Then there exists a deter-

ministic Turing machine M accepting L for which: Y PX=w/ n]21/2.
twiz=n:T (w)sf (n)

However, the median Tegizn (1, P [X=w/n]) is by definition the least element e (n)

for which Y P{X=w/n] is greater or equal 2. Thus
|wl=n:T (w)<e(n)

F (2T pedian(m, P [X=w/n]) and so L is in MEDIAN -DTIME (f (n)). O

By techniques similar to those in the proof above, we can relate the I0-

complexity to others median complexity classes.

Theorem 5-2-2:

MEDIAN —-DSPACE (f (n))=DSPACE (f (n),'/2)

Notice that the theorems above give a useful interpretation of the median-
complexity classes as [O-complexity classes, since the results of traditional com-
plexity theory hold for the IO-complexity as shown in chapter 2. Therefore, we can
apply the results of the worst-case complexity theory to the median-case complexity

classes.
5-3 The Mean Case Complexity

We turn to the complexity classes related to the concept of mean. Let M be a
Turing machine with running time T (w) and space spent S (w) on word w of length
n. Let P[X=w/n] be a positive probability distribution. We define

Tmean(n, P [X =w/n]) as the mean of the running time of M on words of length n and
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Smean(,P [X=w/n]) as the mean of the space spent by M on words of length » with

probability distribution P [X=w/n].

Definition 5-3-1: Let T (w) and S (w) be the running time and the space spent on w

by machine M, respectively. Let P [X=w/n] be positive. We define:

1) Thean M P[X=w/n])= 3, TW)P[X=w/n].

fwl=n

(i) Spean(mPIX=winl)= T Sw)P[X=w/n].

iwl=n

The complexity classes for the mean case complexity can be defined as fol-

lows.

Definition 5-3-2: Let @ be a functor assigning to each alphabet I a positive probabil-

ity distribution over Z*,

(i) MEAN —DTIME (f (n),®) is the family of languages L for which there is a deter-

ministic Turing machine accepting L with input alphabet Z and T .0, (n, ®(E)SS (n).

(ii) MEAN —DSPACE (f (n),®) is the family of languages L for which there is a
deterministic Turing machine accepting L with input alphabet X and

Smean(nt, DTS (n).

We use MEAN-DBOUND (f (n)) to denote the union of the complexity
classes DBOUND (f (n), D) for all functors & that assigns to each input alphabet £ a
positive probability distdbution P[X=w/n]. The next results show that any
language in a complexity class of the type MEAN ~-DBOUND (f (n)) belongs to a

corresponding IO-complexity class for some density function.
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Theorem 5-3-1: If a language L is in MEAN —-DTIME (f (n)), then there exists a posi-
tive density function d (n) for which L is in DTIME (f (n),d (n)).

Proof: Let L be in MEAN -DTIME (f (n)). Then there exists a deterministic Turing
machine M accepting L for which Tpeun(n, P [X=w/nl)= Y, TW)P [X=w/n]<f (n).

|wl=n

Let

d(n)= > P X=w/nlz Y P[X=w/nl,
lw |=nT (w)<f (n) twil=n:T(W)ET o (NP [X=w/n])

since f (1)2T mean(n, P [X =win1).

But there  exists a word w of length »n for which
T (W)ST poan(n, P [X=w/n])<f (n). So d(n) as defined is strictly greater than zero
everywhere, since P [X=w/n] is positive. Thus, there exists a density function d(n)

positive everywhere for which L is in DTIME (f (n),d (n)). O

Theorem 5-3-2: If a language L is in MEAN-DSPACE (f (n)), then there exists a
positive density function d (n) for which L is in DSPACE (f (n),d (n)).

Notice that the propositions above have been shown in only one direction.
That is given that L is of mean-complexity f (n) then there exists a I0-complexity
class for L. The other way around, i.e. "does L in DBOUND (f (n),d (n)) imply that
L is in MEDIAN —DBOUND (f (n))?" is an open problem. Certainly, it does hold if
d(n)=1 almost everywhere. Another issue here is whether there is any relationship
between MEAN -DBOUND (f (n)) and MEDIAN -DBOUND (f (n)) or not. Actu-
ally, we would not really expect it since there is not necessarily a relationship

between mean and median.
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5-4 Probabilistic Computations

The probabilistic approach has been shown to be efficient to solve a few
problems that cannot be efficiently solved by deterministic methods, for example fast
algorithms for primality testing [Rabi76]. These results suggest that probabilistic

algorithms may be useful for solving other deterministically intractable problems.

We will study a formal model for probabilistic algorithms: the probabilistic
Turing machine and its relationship to the IO-complexity. Informally, we can
describe a probabilistic Turing machine as a computer with the ability to make ran-

dom decisions. We recall some basic concepts [Gill77].

A probabilistic Turing machine M is a deterministic multitape Turing
machine with distinguished states called coin-tossing states. For each coin-tossing
state, the finite control of M specifies two possible next states. The computation of
M is deterministic except that in coin-tossing states M tosses an unbiased coin to
decide between the two possible next states. The tosses are independent of the result
of previous tosses, thus the probability of a computation path is half of the number of

tosses on the path.

The definition of probabilistic Turing machines can be extended by allowing
that unbiased random decisions are made, that is the probability of getting heads can
be different from the probability of getting tails. It can be shown that the resulting

model has the same computational power as the unbiased model [Sant69].

The computation of a probabilistic Turing machine M is determined by its
input and the outcomes of the coin tosses performed by M. The output of machine

M on input w is a random variable representing the possible computations of M on w.
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Thus, we define M (w) as follows.

Definition 54-1: Let M be a probabilistic Turing machine and let w be an input to M.
We define M (w) as a random variable denoting the outputs of possible computations

of M on w.

We denote by Pr (M (w)=y] the probability of the output of the computation
of M on wbe y. In general, a probabilistic Turing machine computes a random func-
tion; for each input w, the machine M produces output y with probability
Pr[M(w)=y]. We say that M converges to y on input w if Pr{M (w)@]>1/2.
Despite the fact that the output of a probabilistic Turing machine is not in general
uniquely determined by the input, we can define the partial function computed by a

probabilistic machine in terms of cutpoint 2 as follows.

Definition 5-4-2: The partial function f computed by a probabilistic Turing machine

M is defined by:

fw)= if there exists y for which M converges on input w
undefined if no such y exisis

We are primarily interested in Turing machines computing the partial charac-
teristic functions of languages (i.e. 0,1-valued functions). A probabilistic Turing
machine computing the partial characteristic function of a language L is said to

recognize L.
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Definition 5-4-3: A probabilistic Turing machine M is said to accept language L and
we denote this by L=LP (M) if for all inputs w, M (w)e {0,1} and Pr[M (w)=11>'/2 if

and only if we L.

A probabilistic Turing machine can accept a language L and have a non-zero
probability of rejecting words that belong to L, for example. Therefore, we should

be capable of expressing these cases by defining error probability as follows.

Definition 5-4-4: The error probability of probabilistic machine M recognizing
language L is the function e defined by:
PriM(w)=0] ifwel

e(w)= Pr[Mw)=1] ifw ¢ L and Pr[M (w)=0]>'2
undefined it w ¢ L and PriM w)=0]<'/2

An useful probabilistic algorithm should have small probability of error. At
the very least, the error probability should be uniformly bounded below 2 for all

inputs.

Definition 54-5: A probabilistic Turing machine M accepts language L with
bounded error probability if there exits a constant k<'/2 such that e (w)<k for every

input w.
5-5 Probabilistic Complexity Classes

It is well known that the ability to make random decisions does not increase
the computational power of Turing machines [Gill77]. However, one question that
is raised often is whether probabilistic machines can compute more efficiently than

deterministic machines, that is using less time or tape. Therefore, it is important to
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have an agreeable definition of bounded computations for probabilistic Turing

machines,

Definition 5-5-1: The Blum run time Tg and the Blum space Sy of probabilistic Tur-

ing machine M on input w are defined by: [Gill72]

Tg(w) = least i such that Pr[ M (w)=y in time i 1>'/2 if M converges onwtoy
B oo otherwise

Sp(w) = least i such that Pr{ M (w)=y in space i 1> it M converges on w toy
B oo otherwise

In terms of acceptance of languages by probabilistic Turing machines,

definition 5-5-1 works as follows.
Definition 5-5-2: Let L be accepted by probabilistic Turing machine M. We define:

leasti: Pr[ M accepts w in time i ]>1/2 ifwe L
Tpr(w) = {leasti: Pr[ M rejects w in time i 12'2  if w ¢ L & Pr[M(w)=0]>'/2
- ifwé L & PriM(w)=0]<'/2

least i: Pr{ M accepts w in space i 1>'2 ifwe L
Spr(w) = <leasti: Pr[ M rejects w in space i 122 ifwe L &Pr M (w)=0]>f2
00 ifwé L & Pr[Mw)=0</2

Gill [Gill77] has shown that the definitions in 5-5-1 have the property of
being Blum complexity measures [Blumé67]. That is, given an arbitrary probabilistic
Turing machine M computing the partial function f, Tg(w) (Sg(w)) is defined if and
only if f (w) is defined. In addition, there exists a recursive predicate of w and { that

is true if Pr (M (w)=f (w) in time (space) i ]>1/2 and false otherwise.
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The complexity classes yielded by languages recognized by probabilistic

Turing machines can be defined as follows.
Definition 5-5-3: Let g (n):N—N be a recursive function. We define:

(i) PRTIME (g(n)) is the class of languages recognized by probabilistic Turing

machines that have Ty (w)<g (Iw!) for all inputs w.

(ii) PRSPACE (g (n)) is the class of languages recognized by probabilistic Turing

machines that have Sp; (w)<g (Iw1) for all inputs w.
We define polynomial bounded probabilistic Turing machine as follows.

Definition 5-5-4: A probabilistic Turing machine M is polynomial time bounded if
there exists a constant ¢ >0 such that every computation on any input w halts within

time lwi°.
Using this definition, we define complexity classes as follows.
Definition 5-5-5: We define:

(i) PP is the class of languages recognized by polynomial bounded probabilistic Tur-

ing machines.

(ii) BPP is the class of languages recognized by polynomial bounded probabilistic

Turing machines with bounded error probability.

(iii) R is the class of languages recognized by polynomial bounded probabilistic Tur-

ing machines which have zero error probability for inputs not in the language.
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Notice that the definitions above do not use the Blum run time to define poly-
nomial bounded machines. For example, we alternatively could say that a proba-
bilistic Turing machine is polynomial bounded if there exists a polynomial p (1w!)
such that Tgr (w)sp (Iwl) for all inputs w. It is an open problem if the definition
above and Definition 5-5-4 converge for every polynomial bounded complexity
class. Obviously, the classes PP are the same under both definitions. It can easily
be shown that the classes R converge under both definitions. However, there is no
trivial proof whether the class BPP does contain the same languages under both

definitions or not.

The polynomial classes mentioned above were shown by Gill to satisfy the

following relations: [Gill77]

NP
P R PP ¢ PSPACE
&« o {BPP o o=

There has been some research about space bounded simulation of probabilis-
tic machines by deterministic ones. It has been shown that
PRSPACE (f (n))cDSPACE(f (n)®) [Hunt79]. For time bounds the results already

known yield only exponential simulations [Ajta85].
5-6 10-Probabilistic Complexity

We say that a machine M respects the time bound g (n) for word w if there is
no computation of M on input w that takes more than f (n) steps. We say that w
respects the space bound g (n) for M if there is no computation of M on w using
more than g(n) working tape cells. Similarly to the non-probabilistic case, we

extend the concept of bounded computation to include sets with density functions as
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follows.

Definition 5-6-1: Let P[X=w/n] be positive. Let M be a probabilistic Turing
machine.

(1) We say that M is a g(n) IO-time bounded Turing machine (or of time 10-
complexity g (n)) with density function d(n) and probability distribution P [X=w/n]
if

d(n)s > P[X=w/n]
w: M respects time bound g (Iw ) forw

(2) We say that M is a g (n) JIO-space-bounded Turing machine (or of space [0-
complexity g (n)) with density function d(n) and probability distribution P [X=w/n]
if

d(n)< ) P{X=w/n].
w: M respects bound g (|w|)forw

We say that machine M is of I0-time(space) complexity g (n) with density
d(n) if there exists a positive probability distribution P [X=w/n] over the input
alphabet of M for which M is of IO-time(space) complexity g (n) with density d(n)
and probability distribution P[X=w/n]. We can define probabilistic complexity

classes as follows.
Definition 5-6-2: Let 0<d (n)<1.

(i) PRSPACE (g(n),d(n)) is the class of languages recognized by g (n) IO-space

bounded probabilistic Turing machines with density function d (n).

(ii) PRTIME (g(n),d(n)) is the class of languages recognized by g(n) IO-time

bounded probabilistic Turing machines with density function d (n).

104



The definitions above were based on whether a machine M halts or not for
every possible computation of M on input w. Definition 5-5-3 was based on the
Blum run time of machine M on input w. However, the next result says that the two

definitions are equivalent for density function 1.

Theorem 5-6-1: Let g (n) be total recursive. Then

PRTIME (g (n))=PRTIME (g (n),1).

Proof: We claim that PRTIME (g(n),1)CPRTIME(g(n)). Let L be in
PRTIME (g (n),1). Then there is a probabilistic Turing machine accepting L that
halts for every input w in bound g (Iw!). Thus the Blum run time of such machine

on every input w is bounded by g (Iw!). Therefore, L is in PRTIME (g (n)).

On the other hand, we also claim that PRTIME (g (n))PRTIME (g (n),1).
Let L be in PRTIME (g(n)). So consider machine M accepting L with Tg;(w)
bounded by g (Iw!) for any input w and k >0. We define a probabilistic machine M’
that simulates machine M on input w by at most g (Iwl) steps. If the computation of
M’ on w exceeds g (Iwl) steps, then M’ rejects w. Otherwise, when M does not

exceed g (1wl) steps, M’ accepts w if and only if M accepts w.

The language accepted by M is L (M), since
Pr(Mw)=1in time g (1wl )]>1/2 for any word w in L, by the definition of Tg; (w).
Similarly, if w is not in L, then M rejects w in time g (Iw ) with probability greater
than /2 and thus, M’ rejects w within time g (!wl). Therefore, M and M’ accept the
same language. Thus, L belongs to PRTIME (g (n), 1), since machine M’ respects the
bound g (Iw]) for any input w. O
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Similarly, for space bounds we can prove that

PRSPACE (g (n))=PRSPACE (g (n),1).

Theorem 5-6-2: Let g (n) be total recursive. Then

PRSPACE (g (n))=PRSPACE (g (n),1).

A probabilistic Turing machine M is said to be IO-polynomial bounded with
density d (n) if there is a polynomial p (r) such that M is of IO-time complexity p (n)

with density d(n). We enlarge the concept of probabilistic classes as follows.
Definition 5-6-3: Let 0<d (n)<1. We define:

G) PP(d(n ))=kk>JOPRTIME (n*,d (n))= (L: there exists probabilistic Turing machine
M accepting L in 10-time n* with density d(n), for some k>0 }.

(ii) BPP (d(n))= (L: there exists probabilistic Turing machine M accepting L with
bounded error probability such that M operates in IO-time n* with density d (n), for

some k >0 }.

(iii) R (d (n))= {L: there exists probabilistic Turing machine M accepting L with zero
error probability for any w, we L, such that M operates in 10-time n* with density

d(n), for some k>0 }.

Obviously, Definitions 5-5-6 and 5-6-3 converge for the IO-complexity

classes with density function 1.
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Theorem 5-6-3:

(i) PP=PP (1);
(i) BPP =BPP (1);
(iii) R =R (1).

The following relations among the classes defined above and the classes

P (d(n)), NP (d(n)) and PSPACE (d (n)) are valid.

Theorem 5-6-4: Let 0<d (n)<1. Then:

PP (d(n))SPSPACE (d(n))

Proof: Let L be in PP (d(n)). Then L is accepted by some probabilistic Turing
machine M with k working tapes, that operates in IO-time n¢ with density d (n), for

some ¢ >0.

Consider a word w that respects the bound n° for machine M. Each compu-
tation path of M on w is deterministic and can be simulated using time n°. Hence,

each path uses at most n° working tape cells, since it is time bounded by n¢.

Consider machine M’ that acts on any input w as follows. M’ on tape T
records the sum of the probability of accepting paths and on tapes T;, 1<i<k, simu-
lates all possible paths of M on w. M’ simulates each computation path of M, one at
a time for at most #° time steps, using always the same cells. If all the computations
paths of M on w halt within n° time steps, then M’ accepts w if and only if the total
probability recorded on Ty is greater than 2. If the word w tespects the bound n°
for M, then the simulation is over. Otherwise, when M does not respect the bound

n® on w, then machine M’ must continue simulating machine M on w until a decision
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is reached. But now M’ simulates one step of each computation at a time, since M
may have a non-halting computation path on input w. M accepts w if and only if M

accepts w.
For words w that respect the bound n° for machine M, the number of cells
used on tapes T;, 1<i<k, is bounded by n°. But each computation path has probabil-

. 1 . .
ity at least —» since n® bounds the longest computation path for these words. But

this number can be recorded using n¢ cells on tape Tg. Therefore M’ is of space
complexity 2n¢, sum of the cells scanned on tapes T;, 0<i<k, with density d(n).

Thus L is in PSPACE(d(n)). O

Theorem 5-6-5: Let 0<d (n)<1. Then:

BPP (d(n))GPP (d(n))

Proof: This is a straightforward consequence of the definitions of BPP (d(n)) and

PP(d(n)).O

Theorem 5-6-6: Let (<d (n)<1. Then:

R(d{(n))CNP (d(n))

Proof: Let L be in R (d(n)). Thus there is a probabilistic machine M recognizing L
such that if w does not belong to L, then M does not have any computation path
accepting w, or otherwise M would have non-zero error probability for some input
not in the language. Hence M when viewed as a non-deterministic machine does not
accept w either, If w is in L, then M has at least one accepting path, which suffices

for the acceptance on the non-deterministic case. Thus, M viewed as a non-
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deterministic machine accepts L.

Furthermore, all words w for which probabilistic machine M respects the
bound #¢, for some ¢ >0, have no computation path exceeding n° time steps. There-
fore, for these words the running time of non-deterministic machine M on w is at

most 2°. So, L belongs to NP (d(n)). O

Theorem 5-6-7: Let 0<d (n)<1. Then:

R{d(n))SBPP (d(n))

Proof: Suppose that L is in R(d(n)). Consider a probabilistic Turing machine M
accepting L with zero error probability for inputs not in L, that operates within 10-

time n* with density d (n).

Notice that if M has an accepting path for w, then w must be in L. This must
happen because machine M does not have accepting computations when w is not in

L, by definition of the complexity class R (d (n)).

Thus consider machine M” accepting L such that on input w of length n, M’
sequentially simulates n times the behavior of machine M on w by at most n* steps
each time. If M has a computation that does not halt within n* steps, then machine
M’ simulates the behavior of M on w without any time bound; M’ accepts w if and
only if M accepts w. If at some point M has an accepting path, then M halts and
accepts w. Otherwise, if all n computations halt and are rejecting computations, then

M rejects w.
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If w is not in L, then w is not in L (M") with zero error probability, since M
has only rejecting paths for w. If w is in L, then M’ must have accepting paths on w
with probability greater than 112, since machine M has such paths. For win L, M’ can
make a mistake only when the » simulations of M on input w yield only rejecting

paths. But machine M rejects inputs w in L with at most probability 2. Thus M’

have a probability of error bounded by —2{—;, since it simulates n machines M. There-

fore, M’ recognizes L with bounded error probability, e (w)$%£%<%, for all n=2

and we ",

Furthermore, for words w that respect the bound n* for machine M, all com-

k+1

putations paths of M’ on w halt computation in time n“"", since M always halts in

time n* for these words. Thus L is in BPP (d (n)). O
Theorem 5-6-8: Let 0<d (n)<1. Then:

Pd(n)QRd ()

Proof: A deterministic machine is a special case of a probabilistic Turing machine
that makes no use of its randomness capacity and that makes no mistakes for any

input. [J

Theorem 5-6-9: Let O<d(n)<1. Then:

NP (d (n))SPP (d(n))
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Proof: Let L be in NP (d(n)). Let M be a non-deterministic machine accepting L
within IO-time bound n* with density d(n), for some k >0. First, note that we can
assume that M has a binary choice at every step and that all computations paths at
least reach the bound n*. Therefore, the computation tree of M on inputs w that

respect the bound n* has 2" leaves.

Consider probabilistic machine M” that proceeds on input w as follows. First,

M’ tosses enough coins to get three computations paths . The first one is an accept-

2 ] The second one is a rejecting com-

ing computation and has probability [l— 8}‘1

putation and has probability The third one has probability —é— and in this path

g’
M’ simulates M but it also incorporates a time counter for n*. If M’ gets an answer
just at n* time steps, it halts with the answer of M with probability %2—}‘];-:4% If

the path does not halt at n¥, M’ simulates deterministically the behavior of M on
input w. Since M may not halt on w, M’ simulates each step of each computation

path of M on w one at a time.

Hence in all cases, if w is in L an accepting path will be added to M’ with at

least probability —4}‘—3 If w is not in L, then there is no accepting path of M on w and

a rejection probability of 112 is added on this computation path. Thus, M” probabilis-

tic recognizes L with at least probability l+ 1

2t >%, for any input w of length n.

Furthermore, all inputs w for which M respects the bound n* have the bound

n* respected by probabilistic machine M’. Thus, Le PP (d(n)). O
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We can summarize the inclusions above as follows.

P@A(m) € REM) < {NP @)

BPP(d(n) < PP(d(n)) < PSPACE (d(n))

It has been conjectured that neither BPP NP nor NP CBPP [Gill77]. Thus
much less BPP (d (n))SNP (d(n)) nor NP (d (n))cBPP (d (n)).
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CHAPTER 6
CONCLUSIONS AND FURTHER RESEARCH

We have made a step toward a more general complexity theory, by establish-
ing the theoretical basis for a complexity theory based on infinitely often conditions.
The new complexity theory includes the worst-case complexity as a special case and
at the same time has as valid most of the worst-case complexity properties, as shown

in chapter 2.

As a direct consequence of the IO-hierarchies herein developed, we demon-
strated the existence of very hard languages. We showed the existence of languages
accepted with worst-case space bound g (n) that cannot be accepted within IO-space

bound f (n) for any density function d (n) that is non-trivial infinitely often, if func-

tion f (n) satisfies inf mm. For deterministic time, we proved a similar rela-
n—yoo f (n)

tion with d (n) non-trivial almost everywhere. Thus these languages cannot have an
approximated solution within any bound less than or equal to f (n). Additional

research could be done toward improving the above requirements; for example, we

e ]

could ask for inf %ﬂ and d(n) non-trivial infinitely often, for space and time

bounds.

The connection between sparse sets [Hart83a] and density functions was only
mentioned but further relationships between them seems worthy of investigation.

Closely related to the concept of sparse sets is the concept of tally sets [Book74]. In
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particular, the association between tally sets and density function % could be use-

ful. There are indications that this connection could be an auxiliary result for the

converse of Theorem 4-3-1, i.e., whether E =NE implies P (d (n))=NP (d (n)) or not.

Another interesting point for research is the relationship between oracles and
density functions. Proposition 4-2-4 and the existence of oracles A and B for which
PA=NP# and PB+NP?® [Bake75] indicate the likelihood that there is no connection
between density functions and relativized computations but does not rule out the

possibility.

We demonstrated the connection between I0-sets and APPROXIMATION
sets. The definitions of APPROXIMATION sets, Definitions 4-5-1 and 4-5-2, require
the existence of a special set P of states. However, we could drop this requirement
in the definition of APPROXIMATION sets. It is not hard to verify that, for example,
Lemma 4-5-2 would still be valid with the new definition, that is L in
DTIME (f (n),d (n)) implies APPROXIMATION —-DTIME (L.f (rn),d (n))%d. How-
gver, the other way around, ie. whether
APPROXIMATION —-DTIME (L.f (n),d (n))#9D implies that L is in
DTIME (f (n),d(n)) or not, does not seem to be a trivial problem. It would be
interesting either to prove the implication or to find a problem that can be approxi-
mately solved within time f (n) with density d(n) which full solution cannot be

accepted within time bound f (n) with density d (n).

Another interesting point is the addition of non-determinism to the sets
APPROXIMATION. At first sight, it seems strange to add the power of non-

determinism only to find an approximate solution. However, from a theoretical
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point of view the association seems to be intellectually challenging.

Several other complexity classes could be analyzed within the scope of the
I0-complexity. In particular, the connection between average complexity and I10-
complexity is worth of additional research. From the probabilistic part it remains
open whether NP (d (n))CPP (d(n)) or not. We conjecture on an affirmative answer
since it is known that NPCPP [Gill77]. On the other hand, the inclusion relations
between the classes BPP (d(n)) and NP (d (n)) do not seem to have any strong evi-

dence. It has been conjectured that neither BPP cNP nor NPCBPP.

Finally, it must be pointed out that we could have followed an alternative
approach for probabilistic computations. We can avoid artificially defining time and
space for a probabilistic machine a deterministic function and consider the time and
space for probabilistic Turing machines as stochastic functions. We call this second
approach as a stochastic one in contrast with the probabilistic one viewed in chapter

5.

From this point of view, we should have defined M as g (n) 10-time bounded
with density d(n) if the sum of the probabilities of every possible computation on
words of length n that halts within time g (n) is at least d (1) for all n. More formally,

we can define it as follows.

Definition 6-1: Let M be a probabilistic Turing machine and g (n) be a function. We
say that M is a g (n) IO-time bounded Turing machine with density function d(n) if

din)ys Y P[Tw)<g(n)IP[X=w/n]

w:liwl=n
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We can define a polynomial time complexity class based on the above

notions as follows.

Definition 6-2: PS (d(n)) is the class of languages L for which there exist a polyno-
mial p (n) and a probabilistic Turing machine M recognizing L such that M p (n) 10-

time bounded with density function d (n).

n—
Notice that any recursive language can be in, for example, PS ( 22nl ).
n—
Theorem 6-1: Let L be a recursive language. Then Le PS( 22n L ).

Proof: Let L be accepted by some machine M. Then consider a probabilistic Turing
machine M’ and any input w of length n. Machine M’ tosses n coins in a row. If the
outcome is n heads, then M’ simulates machine M. Otherwise, it tosses a coin one
more time accepting w if the result of the last toss is head and rejecting w if this

result is tail.

Machine M’ on any input w of length n takes at most n+1 steps on all compu-

tation paths, except one; i.e. except when machine M’ simulates M. But this compu-

tation path has probability only 2%, since there are 2" equiprobable computation

paths when # coins are tossed in a row. Thus for any word w of length n, the compu-

p
2

tation of M’ on w is bounded by n+1 with probability at least 1——217 =

Furthermore, if we do not take in account the last computation path, the
acceptance and the rejection probability of any word w is the same, by the construc-

tion of M’. Then, the final decision is left for the last path, which is a simulation of
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machine M. Thus the languages accepted by M and M’ are the same. Therefore,

2"-1 )0
an

LePS(

Therefore it should be pointed out that the above proposition implies that the

I0-complexity has its limitations when associated with stochastic bounds.
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