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" ABSTRACT OF THE DISSERTATION

Response Time and Parallelism in Parallel Processing
Systerns with Certain Synchronization Constaints

by

Abdelfetiah Belghith
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1987
Professor Leonard Kleinrock, Chair

What makes the exact analysis of parallel processing systems so problematic is the internal
parallelism within jobs, namely, a job may need and consequently may hold more than one processor ata”
ume. We view a multiprocessor system as a st of P cooperating processors, and a computer job as a set
of tasks paruaily ordered by some precedence relatonships. For a finite number of processors, we assume
that the total system capacity is shared among the jobs proportionate (0 the number of their ready tasks.
This ts non-egalitarian Processor Sharing, as compared with the usual egalitarian Processor Sharing tech-
nique.

Two fundamental performance measures of concern in a multiprocessor system are the expected
job sojourn ume and the achievable system speedup. We construct models and methodologies (o analyze
these two measures by exploiung the underlying stochastic processes. In those cases where the exact

analysis fails, we provide bounds and/or approximate solutions backed up by simulations of the exact
modeis.

Specifically, we investigate the probability distribution of the number of occupied processors,
the generating function of this distribution and its first two moments. [n panicular, the expected number
of busy processors is found to be dependent only on the average number of tasks per job, the job average
armval rae, and the task average processing requirement. Significant reductions in the expected job
sojourn time can be realized by executing a job on a multprocessor system. This effect is known as the
speedup factor, which typically increases with the number of processors used. Along with an increase in
the speedup factor, comes a decrease in the efficiency of the processors. While a large speedup factor
may appear as a delight to the users, the efficiency of the processors is also extremely important. We first
formulate an accurate and yet simple paramewric approximation of the sojourn time, and then investigate
the madeoff between speedup and processor efficiency.
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A special case of parallel processing systems 1s that in which a job. upon amval, splits it
exactly P tasks, each of which is atiended by a separate processor. The performance measure of interest
in such systems is the expected job sojourn ume, defined as the expected ume spent in the system
between a job amrival ume and the execution completion of all its clones. We extend the already known
results, and investigate the case where a job may feed back into the system according w the prespecifisd
parual ordering among its tasks.
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CHAPTER 1
INTRODUCTION

In the past few years, we have seen a strong movement towards distributed computing
systems. This movement is a natural part of evolution, fueled by technology and driven by real
needs that cannot be satisfied by centralized computing systems. Advances in hardware technoi-
ogy have made it economically feasible two build distributed systems and multi-processor sys-
tems comprising thousands of processors {Hill35].

1.1 Overview of Distributed and Parallel Processing Systems *

In many real time applications such as meteorology, cryptography, image processing
and sonar and radar surveillance, the quality of the answer a processing system retums is pro-
portional to the amount of computation performed (Hayn82a, Hayn82b, Pou83, Rose83]. Such
real time applications need an instruction execution rate of more than one billion floating point
instructions per second (Feng77]. Concurrent processing of data items is considered a proper
approach for significantly increasing processing speed. This direction has already been taken by
the Japanese Fifth Generation Computer Project. Array processing and multiprocessing have
been utilized in attempt o provide such processing concurrency.

State-of-the-art parallel computer systems can be conceptually charactenized into four
structural classes: Pipeline Computers, Array Processors, Multiprocessor Systems, and Data
Flow Compuzers.

Pipeline Computers

A pipeline computer {Grah70, Hall72, Rama77, Chen80) performs overiapped compu-
tations to exploit temporal parallelism. Generally, the four major steps or execution stages
involved in the process of executing an instruction in a digital computer are: instrucrion fetch
from the main memory, instruction decoding identifying the operation to be performed,
operand fetch if needed in the execution, and the execution of the decoded arithmetic logic
operation. A pipeline computer executes successive instructions in an overiapped fashion, as



opposed 10 a nonpipeline computer, where the four execution stages defined above must be
completed before the next instruction can be initiated. The operation of the execution stages is
synchronized under a common clock controf. While a nonpipeline computer necessitates four
pipeline cycles to complete one instruction, a pipeline computer may complete one instruction
per pipeline cycle, provided the pipeline is full. Theoretically, a k-stage linear pipeline com-
puter could be at most k times faster than a nonpipeline processor. However, this ideal speedup
is merely an upper bound due to memory conflicts, data dependency. control instructions. and
interrupts.

In addition to the instruction pipelining described above, some pipeline processors also
partition the execution stage into a multiple stage arithmetic logic pipeline. This is usually done
for some CPU-bound instruction such as sophisticated floating-point instructions. Due to the
overlapping of instruction and arithmetic executions, pipeline processors are obvicusly better
tuned to perform the same operations repeatedly through the pipeline. Pipeline computers are
then very autractive and efficient for vector processing, where component operations are to be
repeated many umes. Exampies of commercially available pipeline processors include the early
vector processors, such as the Control Data Star-100 [Hint72, Corp73] and the Texas Instrument
Advanced Scientific Computer (ASC) [Wats72, Wais74), the attached pipeline processors, such-
as the IBM 3838 ([Corp76], and recent vector processors, such as the CRAY-1 processor
(Bask77, Dorr78, Russ78], the CYBER-205 [Corp80], and the Fujitsu processor VP-200
Miur83).

Array Processors

An array processor uses multiple synchronized Arithmetic Logic Units (ALU) to
achieve spanial parallelism, as opposed to the temporal parallelism achieved by pipeline proces-
sors. A Processing Element (PE) is an ALU along with some registers and a local memory. The
PEs are interconnected by a data-routing network. The PEs are synchronized in a lock-step
fashion to perform the same function at the same time. The PEs, as well as the interconnection
pattern 1o be established for a specific computation, are under the sole control of the Control
Unit (CU). The CU also executes the scalar and control instructions, and broadcasts to the PEs
veCtor instructions w be executed in parallel. The PEs are passive machines without instruction
decoding capabilities.

Different array processors may use different interconnection networks between the PEs.
The Burroughs Scientific Processor (BSP), for exampie, uses a crossbar network [Kuck82]. The
[lliac-IV computer, on the other hand, uses a mesh-structured network [Bam68, Kuck68].



Multiprocessor Systems

A multiprocessor sysiem is a system composed of (wo or more processors of approxi-
mately comparable capabilities. Each processor has its own local memory and perhaps private
devices. Common sets of memory modules, [/O channels, and peripheral devices are also shared
among the processors. The entire system is controlled by a single integrated operating system,
providing interacuons between the processors and their programs at various levels.

The interconnection structure used between the shared common memories and the pro-
cessors (also between the common memories and the /O channeis) defines the multiprocessor
architectural organization. Different interconnections have been practiced, such as the time-
shared common bus, the cross-bar switch network, and the multiport memories. We distinguish
two architectural models: Tightly Coupled and Loosely Coupled multiprocessor systems. Pro-
cessors in a tghtly coupled multiprocessor system communicate through a shared main
memory; consequently, the rate at which data can be exchanged from one processor to the other
is on the order of the bandwidth of the memory. In loosely coupled multiprocessor systems,
however, processors communicate by exchanging messages through a message-transfer system:
hence, the degree of coupling is very loose. The determinant of the degree of coupling is the_
communication topology of the associated message-transfer system. Loosely coupled systems
are usually efficient when the inieraction between parallel processes is minimal: generally they
are referred to as Distributed Systems. Tightly coupled systems, on the other hand, can tolerate a
higher degree of interaction between parallel processes without significant deterioration in per-
formance. They are generally referred to as Parailel Systems.

Examples of muitiprocessor systems include the CRAY-X-MP and the CRAY-2 sys-
tems [Chen83], the HEP system [Kowa85), the c.mmp system developed at Camegie Mellon
University [Saty80), the S-1 multiprocessor system developed at the Laurence Livermore
National Laboratory [Widd80), the IBM system 370/Model-168-MP [Case78}, the Univac
1100/80-MP and 1100/90-MP, and many other multiprocessor systems [Saty80].

Data Flow Computers

To exploit maximal parallelism in a program, data flow computers were suggested in
recent years. The basic concept is to enable the execution of an instuction whenever its
required operands become available. Therefore, no program counters are needed in data-driven
computations, as opposed to the conventional Von Neuman computers, which are control flow
computers. Since instructions are executed upon the data availability, maximal concurrency is
only constrained by the hardware resource availability. To the best of our knowledge. no data
flow computer is commercially available yet. However, some laboratory prototypes are being
investigated {McGr80, Takag3].



Several computer architectural classification schemes exist in the literature. Among
them are: Flynn's classification scheme [Flyn66], which is based on the multiplicity of instruc-
tion streams and data streams in a computer system, Feng's classification scheme (Feng74!,
which is based on senal versus parallel processing, and Handler's classification [Hand77]
which is determined by the degree of parallelism and pipelining at the various subsystem levels.
Following Flynn's classification scheme, array processors are commonly known as Single
Instruction stream-Multiple Data stream (SIMD) computers. Multiprocessing systems, on the
other hand, handle multiple instructions and multiple data streams, and hence are called Muin-
ple instruction stream-Multiple Data stream (MIMD) processors.

Many programming languages provide the user with the ability to write concurrent pro-
grams (Stot82]. Languages such as Ada (Ada81), CSP (Hoar78], and Concurrent Pascal
(Hans75] provide for procedure level and statement level granularity. Granularity refers to the
size of the operations that are executed in parallel. In contrast, some data flow languages
(Acke82, McGr82] provide for operator level concurrency. The program is specified without
reference to concurrency. The compiler breaks a program down into its component operations
often to as small as add or multiply. When the program executes, all operators can be processed
in parallel; an operator can execute as soon as it has received values for all its input operands.
Upon termination, it forwards its result o those operators requiring such a result as their input. ~

1.2 Statement of the Problem and Preliminary Definitions

The problem we will study in this dissertation concems the performance evaluation of
loosely and tightly coupled multiprocessing systems, in which jobs are composed of a collec-
tion of tasks to be performed in a certain prescribed order described by a structural graph.

Task: A task is a well defined set of operations which can be performed on some input
data, and which may generate some output data. Examples of a task include a single
instruction, a library function, and a subroutine. A task may be active or dormant. A dor-
mant task cannot begin execution unil it acquires the ready-for-service status. An active
task, on the other hand, is a task that is being executed. The identity of the tasks, the order
of acquisition of the ready-for-service status, and the acquisition of the ready-for-service
status are specified acconding to a given algorithm, as defined below. The scheduler of the
multiprocessor operating system, on the other hand, handles the passage of the ready-for-
service-tasks to the active state. The task service time (also referred to as the task service
requirement) is the time needed to complete the task execution at a rate of one second per
second. Throughout this dissertation, we shall consider various scheduling schemes and
various task service time distributions.



Algorithm: An aigorithm is a set of predicate dependent rules designed to carrv out a
given finite set of tasks. An algorithm, once performed, will accomplish a well defined
objective in a period of finite time. The set of tasks may be as large as needed, but must be
finite. A computer program is an example of an algorithm.

We disunguish two categories of relations among the set of tasks, namely, the Pre-
cedence Reladonships and the Parailel Relarionships. The precedence relationships
between tasks specify the order of acquisition of the ready-for-service status. The parallel
relationships specify the dynamic interactions that govern the actual execution of the
active tasks. Whereas precedence relationships concem successive tasks (i.e., non-
concurrent tasks), parallel relationships concem parallel tasks (i.e., concurrent tasks).
Examples of parallel reladonships include synchronizations, mutual exclusions, shared
memory and/or communication conflicts, and interruptions (e.g., the ability of a given task
to interrupt, stop, or terminate another parallel active task). In this dissertation, we concen-
trate only on the precedence relationships among the finite set of tasks. Following
(Kana85], we formulate the five following types of precedence relationships. In the foi-
lowing definitions, we use the symbols T, and T, to indicate two distinct tasks, and the

sets {T,} and {T,}to indicate two distinct sets of tasks with perhaps some common .

members.

Sequential Relationship: A Sequential relationship §:T,—T, specifies that task T,
must be completed before task T, can acquire the ready-for-service starus. Upon the
completion of task T,, task T, assumes the ready-for-service status, and consequently
may become active.

If-then-eise Relationship: An If-then-else relationship /F :.T,— {T,-} specifies that
task T, must be compieted before any tasks in {T,}ca.n begin. Upon the completion of
task T,, one and only one task in the set {T,-}acquiru the ready-for-service status.
The selection of such a task is assumed throughout the dissertation to be accom-
plished according to a stochastic selection procedure.

Merge Relationship: A Merge relationship M :{Ti} —T, specifies that only one task
in the s&t {T.-}(i.e.. the task having the ready-for-service status) is actually executed.

and that upon the execution of such a task, task T}, acquires the ready-for-service
status and may thus become active.



Fork Relationship: A Fork relationship F :T,,—n{ Tj}speciﬁes that task T, must be
execuied before the tasks in {Tj}may begin. Upon the completion of T, all the tasks

in the set T,} acquire the ready-for-service status, and consequently may become
active.

Join Relationship: A Join relationship J :{T,} —T, specifics that all the tasks in the
set {T,}must be compieted before task T, may begin. Upon the completion of all the
tasks in {T.- , task T), acquires the ready-for-service status, and consequently may

become actve.

Algorithms may be classified into two categories: acyclic algorithms and cyclic
algorithms. In acyclic algorithms, a task is never executed more than once. For cyclic algo-
rithms, we assume that the number of times a loop of tasks is performed is an independent
stochastic process (in particular, independent of any input data).

Process Graph: A process graph represents a given execution instance of an algorithm.
From the preceding definidon of an algorithm, a process graph is thus an acyclic directed
graph with nodes representing the tasks, and edges representing the precedence relation-
ships among these tasks. The only types of precedence relationships used in a process
graph are the three basic types: sequential, fork, and join relationships. Tasks may be
represented several times in a process graph to undo any loop in the algorithm. Note that
the merge and if-then-else precedence relationships do not appear in the process graph, and
that a given algorithm on a given finite set of tasks may generate several different process
graphs.

Job: A job is an exogenous request to execute a certain algorithm. Consequently, there
exists a one-to-one correspondence between a process graph and a job. Throughout the
dissertation, we consider that jobs are represented by process graphs, and arrive exo-
genously to the system according to a prespecified arrival process. Different types of pro-
cess graphs will be investigated throughout the dissertation. The notion of an algorithm is
only introduced here to define the process graph and shall be ignored in the sequel.

Parallelism in a multiprocessor system is accomplished through both the pipelining of

different jobs to the processors (i.e., Pipelined Processing) and the cooperation of the processors
in executing parallel tasks of a given job (i.e., Concurrent Processing). Pipelined processing
alone can be accomplished by a set of noninteracting and asynchronous computers. We shall
refer to this model as the multicomputer model system. Such a multicomputer model shall serve



as a basis for comparison 10 ascertain the speedup and the gain in the job response tme
achieved by multiprocessing systems.

Since we are considering only precedence relationships among the tasks, we may incor-
porate the communication involved between two consecutive tasks in their corresponding ser-
vice imes. Throughout the dissertation, we shall then assume that the communication between
tasks is accounted for in the task service times and. more importantly, that the queueing delays
emerging from such communications are negligible,

1.3 Previous Work in the Area

In this section, we bricfly review some of the related research in the area of distributed,
multiprocessing and parallel processing performance evaiuations.

K.C. Kung (Kung84] defined 2 common concurrerncy measure which gives a com-
parison of how much parallelism can be achieved in a multiprocessing system. A Job is
represented by a directed acyclic graph of computation where the nodes represent the tasks and
the directed edges represent the dependencies among the tasks. He defined the concurrency
measure as the ratio between the average system time in a P processor system, and the average
system time obtained by just using one of the processors. The speedup factor, which measures
the amount of parallelism within a particular job, is thus defined as the inverse of the con-
Currency measure,

For an infinite number of processors , he gave an exact formula for the concurrency
measure and derived upper and lower bounds for the average system time. Upper bounds are
calculated by synchronizing the execution at each level by forcing all the tasks in the next level
1o wait for the slowest task in the current level to complete before they all start execution. He
called the ime between the synchronization of two neighboring levels the Forced Synchroniza-
tion Time (FST). It follows that by summing up the FSTs at each level of a process graph. an
upper bound for the average time in a system with an infinite number of processors is obtained.
For a lower bound, he found the average ume required to execute the tasks in the longest path
from the initial node to the terminating node in the process graph.

For a finite number of processors, he assumes a specific shape of the process graph.
namely, a diamond shape with a continuum of tasks within the diamond. The service tmes of
tasks are assumed to be constant. The system is assumed to initially contain a fixed number of
jobs to be executed only once. Two task assignments to processors are studied: the Depth First
Assignment, where all available processors are first assigned to the tasks in a job that is closest
to being completed, and the Breadth First Assignment, where all available processors are first



assigned to those jobs that have received the least amount of processing. The ratio of the aver-
age system times of such assignments is investgazed,

Using the Chernoff Bound on the tail probability {Klei75], Kung found that. as the
number of tasks in a randomly chosen process graph increases, the number of levels in such a
process graph approaches half that number of tasks with probability one. Consequently, he
shows for the case of a randomly chosen process graph with a fixed but very large number of

tasks, say N, and an infinite number of processors, that the concurrency measure, say S, is

bounded by: %% £5s %% , where -i- is the average task execution time.

L. Kleinrock [Klei84] considered a distributed processing environment in which a total
processing capacity, say C operations/second, is split into a number of smaller processing units
of the same total capacity, and which collectively process a stream of jobs arriving to the sys-
tem according to a Poisson dismribution with a fixed rate. He studied the performance ratio of
the mean response time, say T, seen by jobs in the distributed environment, and the mean
response time, say Ty, seen by a job when it is processed by a single processor of the same total
capacity. The most general distributed configuration studied is that of a series-parallel topology.
He considered m parallel chains, the kth of which contains #, processors in series, each of capa-”
city C, operations/second. Jobs are assumed to arrive at the kth chain from a Poisson source and
each requires an independent, exponentially distributed number of operations from each proces-
sor in that chain. For equal loading on each series chain, he showed that TL:(%=ZM-

k=|

where p is the system utilization. He also addressed the problem of optimizing such a perfor-
mance ratio. He found the optimal distribution of traffic among the chains; one property of this
solution is that some of the series chains carry zero traffic. Such a property is also studied by A.
Agrawala, E. Coffman, M. Garey, and S. Tripathi [Agra84]. Also, by considering the optimiza-
tion of the performance measure subject to traffic patterns and processor capacities, he found
that %5)—))- = min, {ng}. He concluded that distributed processing never improves such a per-
formance ratio untess some dis-economy of scale in the cost of processing is introduced.

F.A Tobagi and H. Kanakia (Kana85, Toba85] considered a job as a collection of m
tasks defined by a structural graph. Requests to execute the algorithm arrive from some exter-
nal source according o some aggregate Poisson distribution. Their multiprocessing system con-
sists of m processors, the same number as the number of tasks within a job, the ith of which can
only perform the ith task of the algorithm. Each processor runs asynchronously and is modeied
as a single server with infinite capacity room. As in [Klei84], the total system capacity is con-
strained to a fixed value, the same for both the distributed and the centralized systems. Their
model of a centralized system consists of a single processor which can perform all tasks and is
modeled as a single server with infinite waiting room. In the case of single stage service distri-
bution in the centralized system, they postulated that such systems always outperform



distributed systems. This result is merely a generalization and an extension of the result found
by L. Kleinrock in (Klei84]. For the case of multi-stage type service distribution in the centrai-
ized system, they showed that there are cases of algorithms and models of processing systems
where distributed processing outperforms centralized processing.

Queueing networks are important as performance models of computer and communica-
uon systems since the performance of these systems is usually affected by contenton for
resources. Since the original work of Jackson (Jack63], it has been shown that the product form
solution exists for networks with heterogeneous jobs, several imporant scheduling techniques
and state dependent behaviors [Bask75, Chan77, Tows80). However, there are a number of sys-
tem characteristics which preclude a product form solution. Among the most important of these
are priorities and simultaneous resource possession. This unfortunate fact obliges us to sertle for
approximate solutons or to use simulation. Indeed, this direction has been followed by many
researchers to mode! and investigate distributed and multiprocessing system performance.

P. Heidelberger and K.S. Trivedi [Heid82] considered a queueing network model of a
computer system in which a job subdivides into two tasks at some point during its execution.
This is known as the Fork operation. Except for queueing effects, the tasks are supposed to exe-
cute independently of one another and do not require any synchronization. Because of the
inherent parallelism, the model does not have an analytically tractable solution. The workload
of the system consists of a set of statistically identical jobs, where each job consists of primary
tasks and zero or one secondary task. A secondary task is spawned whenever a primary task
enters the specified Fork node. The system is assumed (0 contain a fixed number of primary
tasks at all imes. The network model which they used for the approximate system has two
chains: one closed chain to model the behavior of primary tasks, and one open chain o model
the behavior of secondary tasks with arrival rate equal to the primary task throughput of the
closed chain at the specified Fork node. The exogenous arrivals to the open chain are assumed
10 be Poisson with fixed rate. This approximation is found to be quite accurate, uniess the sys-
tem under consideration is highly unbalanced.

D. Towsley, KM. Chandy and J.C. Browne {Tows78] have studied computer models in
which CPU and [/O (or /O and Y/O) activities can be overlapped. However, their model, in con-
trast with the model studied in (Heid82), requires tight synchronization between the concurrent
1asks in the sense that both the CPU and the /O (or /O and I/O) wasks must be completed before
processing can continue. This is known as the Join operation. They concluded that the perfor-
mance gain due to this type of overlap is greatest for balanced systems and relatively low levels

of multiprogramming.



In [Heid83], P. Heidelberger and K.S. Trivedi extended their work of [Heid82] to con-
tain, in addition to the Fork node, a Join node (the same node as the Fork node) 10 enforce syn-
chronization between primary lasks and their spawned secondary tasks. As in [Heid82), the sys-
tem consists of a finite number of jobs (i.c., primary tasks). Synchronization is achieved by
requiring all siblings to complete execution before the job can contnue processing. Two
approximation techniques are presented. The first technique, called The Decomposition Approx-
imarnion, is based on the observation that if the primary and secondary tasks are relatively long,
in the sense that many processors are visited before the tasks complete, then changes in the
number of pimary and secondary tasks in the system will occur infrequenitly as compared to
changes in the queue lengths of tasks at the processors. In such cases, the authors assumed that
the queue length distributions converge 10 steady state distributions prior to the next change in
the number of primary and secondary tasks in the system. Their second approximation tech-
nique, called The Method of Complementary Delays, consists of iteratively solving a sequence
of mathematically tractable queueing networks. For such a technique, they introduced three
fictitious servers: one server t0 represent the waiting time for a secondary task to be spawned,
one server to represent the waiting dme of a secondary task for the completion of its siblings,
and one server 10 model the waiting time of a primary task for all its spawned secondary tasks
to complete. The ficutious servers are modeled by delay type servers (i.e., Infinite Servers). The
resulting queueing network belongs to the Product-Form class and is hence solved rather easily.”
However, the fictitious servers’ mean delays are to be determined from the solution of the net-
work itself, For that, they applied an iterative procedure.

Other modeling methods for distributed and multiprocessing systems in which jobs
require two or more resources simultaneously before proceeding have been investigated. Such
models include /O channels and disks, memory partitions and busses, and memory partitions
and processors. These types of models are not usually mathematically tractable due to the
inherent simultaneous resource possession phenomenon. Approximate methods with high accu-
racy and low computational cost are therefore needed, and indeed have been developed and
used by several researchers. Virtually all such approximation techniques for such models use an
adjusted aggregate queue-dependent server to represent and model the resources simultaneously
required.

K.M. Chandy, U. Herzog and L. Woo [Chan75a] introduced the so-called Norton's
theorem for queueing networks as an approximate iterative technique for the analysis of com-
piex queueing networks. They showed that Norton's theorem provides an exact analysis when
applied w0 queueing networks which satisfy local balance {Chan77]. However, for queueing
networks which do not satisfy local balance, Norton's theorem provides only an approximaie
solution. In [Chan75b), the same authors extended Norton's theorem to the study of queueing
networks with heterogeneous jobs (several job classes).

10



Norion's theorem for queueing networks can be used to approximately analyze systems
with simuitaneous or overlapping resource possession. As noted in (Jaco83), this approach
works well when the primary resource consists of a number of identical units and a job may use
any availabie unit. C.H. Sauer (Saue81] used such a technique to analyze computer systems in
which a job holds a memory partition and the processor simultaneously.

P.A. Jacobson and E.D. Lazowska [Jaco83] developed a new approach to modeling the
simultaneous or overlapping resource possession. Their method is called "The Method of Surm-
gate Delays”. This approach is applicable to queueing networks in which some resource. called
primary resource, must be obtained and held while some other series of resources, called the
secondary subsystem, is used. The key concept of their method is the iteration berween two
closed queueing network models. In each of these models, the portion of the overall system in
which simultaneous resource possession occurs will be replaced by two components. In the first
model, one component is an explicit representation of the primary resource and the other com-
ponent is a delay server acting as a surrogate queueing delay due to congestion in the secondary
subsystem. In the second model. one component is a flow equivalent server obtained from
analyzing the secondary subsystem in isolation and the other component is a delay server acting
as a surrogate for queueing delays at the primary resource when the secondary subsystem is not,
congested. In (Jaco83], the authors displayed the use of such a technique to model a loosely-
coupled multiprocessor system consisting of P identical processors, each with its own local
memory, M identical shared memories equally likely referenced by each of the P processors,
and B shared busses, ¢ach of which can connect any processor to any shared memory. This sys-
tem is often characterized as the P-M-B system. In the same paper, they also considered the
case of a computer system with an [/O system consisting of D disks sharing a single common
channel. For this system, they assumed that the channel is occupied whenever any of the disks
is either searching for the start of the data or transferring such data.

D. Towsley in [Tows83] used the method of surrogate delays to analyze a P-M-B sys-
tem in which he assumed constant memory access times, arbitrary memory access patterns and
bus contention. He concluded that the throughput predictions from this model are very accurate
and within 1% of those given by simulation.

F. Baccelli and A.M. Makowski [Bacc85a] and the same authors with A. Shwarz
[Bacc85b] considered a K-dimensional Fork-Join queue: a K parallel servers with a synchroni-
zation constraint on the arrivals and the departures of jobs from the system. A job, upon amival
to the system, is split into K subtasks, each of which attends one of the K parailel servers, Syn-
chronization at departures is achieved by parking already serviced subtasks in an auxiliary
infinite queve, where they wait to be reunited to not yet serviced siblings of the same job. The
K parallel servers are assumed to be heterogeneous, and the arrival and service processes to be
of general type distributions. They obtained bounds on the response time of a job, which is
defined to be the delay between the Fork and Join dates. Their upper bound assumes K
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mutually independent GI/G/1 paralle] queueing systems, whereas their lower bound assumes K
mutually independent D/G/! parallel qQueueing sysiems. In [Bacc85b], some numencal exam-
ples are given for the 2-dimensional case; however, the tightmess of the bound is not investi.
gated.

L. Flarto and S. Hahn (Flat84] considered the exact analysis of the 2-dimensional Fork.
Join queue system. Their System consisis of two parallel heterogeneous exponential servers,
each one with its own infinite waiting room, and a Poisson Job ammival process. Each job, upon
arrival, splits into exacdy two subtasks, each of which joins one of the two parallel servers.
They obtained a formula for the doubie generating function of the System occupancy. They also
derived asymptotic formulae for the System occupancy as either one of the queues becomes
congested. Such asymptotic results are employed 10 study the interdependency of the occupan-
Cies of the two queues and to derive Limit laws for the expectation and the distribution of one of
the queue lengths conditioned on the other [Flat85].

R. Nelson and A.N. Tantawi [Nels8S) developed a new technique called The Scaling
Approximation. This technique is based on the observation that, if Py is a performance metric
w0 be evaluated, where lithg_,. P, = e, and if there exist upper and lower bounds that grow at,
rate O(f(K)), then it must be the case that Py also grows at a rate O(f(K)). An approximation of
Py is then of the form Py = G (K—=i+1)P; , where G(K) is a function that grows at a rate O(f(K))
and P; is a known (approximate or exact) evaluation of the statistic Py for the value i, i=1... K-
1. They applied this approximation technique to analyze a multi-dimensional Fork-Join queue
system with homogeneous exponential paraliel servers and Poisson job arrivals. Using results
from [Flat84, Flat85), they derived e€xact, asymptotic and approximate expressions for the mean
response time of a job in such a system for the case KaJ. They then applied the Scaling
Approximation to swudy the K-dimensional case. However, they used simulation to determine
one parameter of the scaling function G(K), and to study the accuracy of such an approxima-
tion. They concluded that the relative error in the approximation is less than 0.05 for K <32.

J. Le Boudec [Boud85] considered a multiclass multiserver queueing system consisting
of B identical exponential servers with constant rate and in which the classes of customers are
soried into M concurrency groups. He assumed an FCFS service discipline but with the restric-
tion that two customers of the same group cannot be served simultaneously. The author derived
closed form expressions for the steady state probabilities and showed that product form is main-
tained when such a system is inserted in 2a BCMP network.

L. Green [Gree80] considered a multiserver System where each customer requests ser-
vice from a random number of identical servers. Customers cammot start service until all
required servers are available. The servers are assumed to be identical and independent. Custo-
mers armive o the system according (0 a Poisson process. The service completion time at any
server is assumed to be exponentially distributed. The author converted such a system 10 a
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single server M/G/1 system. She derived the distribution of waiting times, the average waiting
time and the distribution of busy servers. A.F. Seila (Seil84), by using results from [GreesQ],
derived the second moment of the waiting time in the Queue.

S. Pincus [Pinc84) studied a multiserver queueing system which responsively adjusts
the number of servers based on the number of customers awaiting service (i.c., in the queue).
The arrivals to the system are assumed o be Poisson, and the service times to be exponentially
distributed. Moreover, he considered the case of nondistinguishable servers and distinguishabie
Servers where the same extra servers that are added at a threshold are the ones to be removed
from the system when the queue shortens sufficiently. He analyzed the system by formulating
and solving a two-dimensional Markov chain,

Petri Nets (PN) [Pete81] were designed to model systems with interacting and con-
current components. A PN comprises a set of Places, a set of Transitions, and a set of Directed
Arcs. Places may contain Tokens. The state of a PN is its Marking, defined by the number of
tokens contained in each one of the places. Stochastic Petri Nets (SPN) are introduced by MK.
Molloy [Moli82, Moli81]. SPNs are obtained by associating with each transition in a PN an
exponentiaily distributed firing time. M.K. Molloy has shown that SPNs are isomorphic 1o con-_
tinuous time Markov chains and that the markings in SPNs correspond 1o the states in Markov
chains. SPNs, though a very useful tool for the analysis of computer systems, are limited to the
modeling of very simple and yet small systems. This limitation is mostly due to the fact that
the graphical representation of a system rapidly becomes very difficult when the system size and
complexity increase. Moreover, the number of states of the associated Markov chain grows very
quickly with the dimension of the graphs.

Resource allocation (e.g., task assignment, load sharing, and load balancing) in distri-
buted systems and its relationship to systems performance is also a major issue associated with
the design of distributed systems. A large body of studies in this field appeared in the literature
and several approaches have been suggested. These approaches can be classified into three
major categories, namely, mathematical programming, such as in; (Chu80) graphic-theoretic,
such as in; (Ston78} and heuristic methods, such as in (Efe82]. Y.T. Wang and RJ.T. Morris in
(Wang85] presented a unified approach to this problem, as well as a literature survey and an
extensive list of references on the subject.

1.4 Contribution of this Dissertation

In this section, we outline the main contributions of this dissertation. In Chapter 2, we
analyze the multiprocessing system with an infinite number of processors. The job arrival pro-
cmisconsidcredwbePoissaLdnmkserviceﬁmeisumdwbeconsmu:thesamefor
all the tasks. Jobs are described by an acyclic directed computational graph, namely, a process
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graph with a fixed number of nodes (i.e.. tasks). Three different graph models are investigated.
These are the fixed process graph model. where the topology of the graph is fixed and
prespecified. the semi random process graph model, where the number of levels is fixed but the
repartition of the nodes among the levels may vary from one job to another; and finally, the ran-
dom process graph model where, both the number of levels and the repartition of tasks among
these levels are considered to be random. For each of the three graph models, we derive a closed
form expression for both the probability density function and the Z-transform of the number of
occupied processors. Using the Z-transform, we derive for all three cases the average and the
variance of the number of busy processors in the system. We have found-a rather interesting
result, stating that the expected number of busy processors is only 2 function of the job Poisson
arrival average rate, the task constant service time, and the fixed number of nodes in the process
graph. For all the three process graphs, we therefore obtain the same expected number of busy
processors.

The question naturally arises as to what extent this result can be generalized. In Chapier

3, we address this issue. The goal here is to free the multiprocessing model of the second

chapter from its imposed restrictions. We then consider a very general model with arbitrary pre-

cedence relationships amdng the nodes in the process graph, arbitrary distribution of the number
of 1asks per job, arbitrary conditional distribution of the number of levels in the process graph,
arbitrary repartition of the tasks among the levels, arbitrary task service requirements, perhaps
different requirements for the different tasks, and a general job arrival process. We first pursue
the case of an infinite number of processors, and then investigate the finite number of processors
case, We prove that in the generalized model just described, and for both cases of an infinite and
finite number of processors, the expected number of busy processors remains only a function of
the job arrival average rate, the task average service requirement, and the average number of
tasks per job.

In Chapter 4, we aim for the job average response time in a P processors multiprocessor
system. We distinguish three cases depending on the value of P. For the infinite number of pro-
cessors case, we investigate and find the process graphs, among all possible process graphs,
which provide respectively the upper and lower bounds on the job average response time. For
the finite number of processors case, we introduce a new scheduling strategy, termed the P-
dimensional-Discriminatory-Processor-Sharing-With-Feedback (P-DPS-WF). For the unipro-
cessor case, we first prove that the 1-DPS-WF scheduling policy forms a compiete family of
scheduling strategiesi, in the sense that any response time requirement that can be satisfied at
all, can be achieved by a strategy from the family. Then, we prove a conservation law which
puts a linear equality constraint on the set of average system times of the different stages during
the job execution through the 1-DPS-WF system. For any finite number of processors, we first
analyze the P-DPS-WF system with the same constant concurrency degree for all the execution
stages. We then find the process graphs, among all possible process graphs, which provide
respectively the upper and lower bounds on the job average response time. This enable us to0
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formulate a rather accurate and parametric approximation of the job average response t:me.
Simulations are again used to prove the accuracy of our approximation. We conclude chapter 4
by introducing and studying the achievable parallelism in the P-DPS-WF systems. The
efficiency of the processors and the optimal operating points of the P-DPS-WF parallel process-
ing system are also investigated.

Models of parallel processing systems in which a job, upon arrival, spawns into two or
more tasks, each one to be executed independentiy on a different processor, arise in many prac-
tical situatons and application areas, such as flexible manufacturing and concurrent and distni-
buted processing models. [n the contest of production systems, a customer order may be viewed
as a bulk of suborders, each one to be attended by a separate device or facility. In parallel archj-
tecture computer systems, a bulk job can be viewed as a program composed of several con-
current subroutines, each one to be executed on a dedicated processor. In distributed replicated

data base, update requests arriving to a given site must be performed by all the sites to maintain
the data base integrity.

In Chapter 5, we seek to determine the bulk job average response time through such a
multiprocessing system with synchronization constraints. The job average response time is
defined as the expected delay incurred between the job arrival and its completion times. This™
type of multiprocessing system with synchronized arrivals is regarded as an M/G/1 queueing
system with correiated consecutive service times. The purpose of Chapter § is, in essence, two
fold: to devise an approach to derive an approximate value of the job average response time
through such a multiprocessing system with synchronized arrivals, and to present a unified way
of approximating the average response time in an M/G/1 queueing system with correlated con-
seculive service times and with a coefficient of variation greater than one. We investigate four
different approaches based on the inherent characteristics of such multiprocessing systems. [n
the last section of the chapter, we extend our results to any finite number of processors.

In Chapter 6, we extend the model of multiprocessing systems with synchronized
arrivals studied in Chapeer 5. We now ailow the job to feed back as many times as needed. Two
cases are distinguished depending on the description of the feedback policy: the chain feedback
case, where jobs are allowed to feedback a given number of times, and the tree feedback policy.
where jobe are allowed to feedback according to any given acyclic directed graph description.
Approximate solutions of the job average response time are presented and discussed for both
cases of job feedbacks. Extensive simulations are used to validate and support our approxima-
tion. The job approximate average response time is found to be well within 5% of the real
value.
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The chapters of this dissentation have been written in a self-sufficient manner. o allow
the reader to selectively read portions he finds most interesting without the necessity of reading
all the previous material. This, of course, implies that there is a certain amount of redundancy
and repeated definitions in the text, but it is hoped that these repetitions will serve to clanify the
matenal rather than to bore the reader.

1.5 Multiprocessing Applications

We conclude this first chapter by providing and discussing some representative exam-
ples of the widespread applications of high performance computers, and the ever growing
greediness for more computing speed. Without the use of superpower computers, several
advances in human civilization could barely be accomplished. Fast and efficient multiprocess-
ing systems are in very high demand in many scientific, engineering, energy resource, medical,
military, artificial intelligence, and basic research areas. Large-scale computations are needed
and performed in these application areas.

Obtaining a solution to a large scientific problem generally involves three intenc:ive-
disciplines: theories, experiments, and computations. Theoretical scientists develop mathemati-
cal models which computer engineers solve numerically. The numerical resulis may then sug-
gest new approaches and theories. Experiments provide data and can model processes that are
hard to approach in the laboratory. Indeed, computer simulations are far cheaper and faster than
physical experiments. Computers can solve a much wider range of problems than specific
laboratory experiments are capable of. Computational approaches are only limited by computer
speed and main memory capacity, while physical experiments have several inherent practcal
constraints.

Theoretical and experimental scientists are potential users of large program codes and
large data manipulations in several arcas. Some representative applications are discussed
below.

1.5.1 Predictive Modeling and Simulations
Predictive modeling is performed through extensive computer simulation experiments,

which often involve large scale computations o achieve the desired accuracy and tum-around
time.
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Numerical Weather Forecasting

Weather modeling is necessary for short-range forecasts, as well as long-range hazard
predictions, such as floods and environmentai pollution. Weather and climate researchers are in
pressing need of very fast and efficient computers [Suga80, Whit85, Dick82, Faro83]. Weather
and climate analysts need 10 solve general circulation model equations, which necessitate huge
amounts of data manipulation and very large scale computations. In such models, the atmos-
pheric state is represented by the surface pressure, the wind field, the temperarure, and the water
vapor mixing ratio. These state variables are govemed by the Navier-Stokes fluid dynamics
equations in a spherical coordinate system.

Computations are carried out on a three-dimensional grid which partitions the atmo-
sphere vertically into [ levels and horizontally into J intervals of longitude and K intervals of
latitude. The number, N, of time steps used in the simulation forms a fourth dimension.
Currendy 24-hour computer forecasts are made on an approximately 270-mile grid, which is
roughly the distance between New York and Washington, D.C. Such a 24-hour forecast would
perform about 100 billion data operations, and consequently would require 100 minutes if exe-
cuted on a 100 megaflop computer such as the CRAY-1 or the CYBER-205. -

This 270-mile grid gives the forecast between New York and Washington, D.C., but not
for Philadelphia, about half way in berween. Increasing the forecast by halving the grid in all
the four dimensions would necessarily increase the computation volume at least 16 times. A
100 megaflop computer such as the CRAY-1 would then take at least 24 hours 1o compiete the
24-hour forecast. Reliable and accurate lo -range forecasts and predictions require a finer grid
and a smaller time step, and hence require a much more powerful computer than the CRAY-1,
the HEP, the CYBER-205, or any existing super computer for that matter.

Oceanography and astrophysics are other potential customers of super power comput-
ers. Oceans store and transfer heat and exchange it with the ammosphere. A better understanding
of our oceans would undoubtly help in areas such as climate prediction analysis, fishery
Management, ocean resource exploration, and coastal dynamics and tides. Oceanographic stu-
dies use a larger scale time variability and a smailer grid size than those used for atmospheric
studies. A complete simulation of the pacific ocean with adequate resolution (1 degree grid) for
50 years would take about 40 days on a CYBER-205 super computer.

Socioeconomics and Government Use

Econometrics, social engineering, govemnment census, and crime control are areas in
great demand of very large computers [Suga83, Rodr80). In the United States, the FBI usas
large computers for crime control; the IRS uses large mainframes for the tax collection and
auditing. Super computers are also used extensively for national census and general public
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opinion polls. It has been estimated that about 60% of the large scale computers manufacrured
in the United States have been used by the U S. government.

The United Nations supported a world economic simulation which suggests how a sys-
tem of intemnational economic relations that features a partial disarmament could narrow the gap
between the rich and the poor. This simulation is based on an input-output model of world
economy proposed by the Nobel Laureate W.W. Leontief (1980).

1.52 Medical and Military Research

Super power computers are needed in medical areas such as computer-assisted tomog-
raphy (CAT), artificial heart design, liver diagnosis, brain damage estimation, and genetic
engineering studies. Super computers are also sorely needed in military and defense areas, such
as weapon design and other electronic warfare.

Computer-Assisted Tomography

The human body can be modeled by computer-assisted tomography scanning [Alex83,
Suga80, [EEE83a). At the Courant Institute of Mathematical Sciences, scientists are seeking an
armay processor for time-sequence, three-dimensional modeling of blood flow in the heart, with
the goal of understanding how best 10 make an artificial heart valve. Similar approaches can be
applied to eventually reveal and understand the secrets of our organs in real-time.

The image reconstruction of human anatomy in present computer-assisted tomography
scanners is two-dimensional, but there is a strong need for three-dimensional scanners. The
Mayo Clinic in Rochester, Minnesota, is developing a research CAT scanner for three-
dimensional, stop-action, cross-action viewing of the heart. This Mayo Clinic scanner is
expected to have 2,000 to 3,000 megafiops speed.

Weapon Research and Defense

To date, the military and defense research agencies have been using the majority of the
existing super computers [Boot83, Fors83, [EEE83b, Kowa85). Defense related military appti-
cations of super power computers involve but are not limited 10 multiwarhead nuclear weapon
design, cartographic data processing for automatic map generation, sea surveillance for antisub-
marine warfare, radar signal processing, and simulation of atomic weapon effects by solving
hydrodynamic and radiation problems. Many types of super computers have been used includ-
ing the CRAY-1, the CYBER-20S, the PEPE, the Staran, and the S-1 multiprocessors systems.
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1.5.3 Energy Resource Exploration

Using computers in the energy area results in lower production costs and higher saferv
measures. Super pgwer computers play an important role in the discovery of 0il ang gas, the
development of workable plasma fusion energy, and molecular reactor safery,

Seismic Exploration

Seismic exploration sets off a sonic wave via explosive or by Jamming a heavy
hydraulic ram into the ground, and vibrating it in computer-assisted pattemns. Echoes are picked
up by using a few thousands phones which are scanered around the designated spot. The echo
data are used w0 depict two-dimensional cross-sections displaying the geometrical underground
strata. The strata types which may bear oil or 8as can be identified using reconstruction tech-
niques. Many oil companies are investing about 10% of their budget in the use of artached
aITay processors or vector super computers for seismic data processing. A typical field record
for the earth response to a sonic input has around 3,000 different time values, each at about 48
different locations, which produces 2 to § million floating-point numbers per kilometer along a
survey line [Sugago0, [EEES84).

Plasma Fusion Power

At the Laurence Livermore National Laboratory and at the Princeton Plasma Physics
Laboratory, nuclear fusion researchers are using vector super computers extensively [Brens3,
Rodr82). The potential for magnetic fusion to provide an alternative source of energy is now
closer to becoming a reality. The United States National Magnetic Fusion Energy Computer
Center is currently using two CRAY-1"s and one CDC-7600 t0 assist in its controlled plasma
experiments. Supercomputers are an indispensable tool in magnetic fusion energy exploration.

Several other engineering design, automation and basic research areas have been in
high demand for super computers. Engineering design problems are in pressing need of large-
scale computing systems in fields such as the finite-element analysis needed for structural
designs and wind tunnel experiments for acrodynamic studies. Arificial intelligence and auto-
mation require hundreds of megafiop computers in fields such as image processing, pattemn
recognition, computer vision, knowledge engineering, speech understanding, expert computer
systems and intelligent robotics. Many other application areas related to basic scientific research
fields demand the use of super power computers such as problems on quantum mechanics, sta-
tistical mechanics, polymer Chemistry, and the study of fAuid and molecular dynamics.
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CHAPTER 2
NUMBER OF OCCUPIED PROCESSORS IN PARALLEL
PROCESSING SYSTEMS

In this chapter, we derive and investigate the distribution, the Z-wransform, the average
and the variance of the number of occupied processors in a paralle) processing system. Many
parameters are in play to characierize the terrain of the parallel processing system under invest;-
gatuon. These are:

1. the job arrival process,
2. the process graph description,
3. the task processing requirement, and -

4, the number of processors involved.

This chapter concerns the Poisson job arrival process, the constant task service time
{which is the same for all tasks), and the infinite number of processors case. The process graph
however, can be fixed, semi random, or random. The chapter is organized into 4 sections. In
Secton 2.1, we define the parallel processing model to be used throughout the chapter: this con-
cemns the description of the process graphs representing the jobs to be processed, and the proces-
sors forming our parallel processing system. In Section 2.2, we shall investigate the case of
fixed process graphs. All jobs have the same process graph with a fixed number of tasks and a
fixed number of levels. The probability density function, the Z-transform, the average and the
variance of the number of occupied processors will be derived. Section 2.3 deals with semi-
random process graphs with two or more levels. The case of just one level, being a fixed process
graph case, has already been treated in Section 2.2. Each job has a process graph with a fixed
number of tasks and a fixed number of levels, the distribution of tasks among the levels, how-
ever, varies from one job to another. In this section, we shall also derive the probability density
function, the Z-transform, the average and the variance of the number of occupied processors.
Section 2.4 will deal with the case of random process graphs. Each job has a random process
graph with a fixed number of tasks but a random number of levels (not exceeding the number of
tasks). The Z-transform, the average, and the variance of the number of occupied processors
will be derived. In the following chapter, we shall generalize our results o random process
graphs with a random number of tasks, general task service times, a general job arrival process,
and a finite number of processors.
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2.1 Model Description

A computer job is a set of tasks partially ordered by some precedence relationtships and
represented by a Process Graph (PG). A node in the process graph represents a given task, and
an edge (i,j) between node i and node j represents the precedence relationship between task i
and task j. Edge (i) is used to prevent the start of task j execution unless task i execution has
been completed. The tasks (i.e., nodes ) in the process graph are therefore distributed into lev-
els. Tasks at level one are said starfing rasks, and tasks at the last level in the process graph are
said terminating tasks. Any two tasks can be executed concurrentdly (i.¢., in parallel) if and only
f every predecessor of one task does not include the other task, and vice versa. Figure 2.1 gives
an example of such a process graph, where the edges are implicitly directed downwards. The
job arrival process is assumed throughout the chapter to be Poisson with aggregate rate A.

The multiprocessor system under consideration consists of an infinite number of homo-
geneous and identical processors. Each processor is capable of executing any task. Let N
denote the total number of tasks in a process graph. Throughout this chapter, we consider that N
has a fixed given value. Let 7 represent the random variable counung the number of levels in a
job, such that 1S7<N, X be the task constant service time, and ¥ denote the random variable
representng the number of occupied processors in the system.

Since cach level in the process graph must have at least one task in it, it follows that the

total number of process graphs having N tasks and r levels is equal to the number of ways to
distribute (N-r) tasks among the r levels. This number of ways is"

[(N"’)"’"] = {N'l] .1
r=1 r=1

* In fact, the ordinary generating function of such a number of ways is :
(x+x2++ - +xk4 - Y ax (1-0)”
since each level can have from 1 to N-r+1 tasks in it, the number of ways to distribute N tasks

among the r leveis such that no level is left empty is the coefficient of x” in the generating
function. By the binomiai theorem (Liu68], we have:
(1-x)" = ¥, [: *‘"] x' and therefore
i}

X (I—Z)-' = i ["ﬁ l] rei o i {r:"l]xn

] Nar
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' Figure 2.1: Example of a Process Graph -
Proposition 2.1

For a fixed number of tasks per job, say N, and a fixed number of levels, say r, and for
15nSN —r+1 and 1Sk<r, the probability of having n tasks at levei k is given by :

L. Ifr=l them: Pn tasks at level 1}m{0 22
1 ifn=N

2. If 722 then:

Proof

The proof of case 1 is trivial since for r=1, all tasks must be at such a level. For N and r fixed

and from equation (2.1), we know that the total number of process graphs that we can have is

given by: [N';l . Consider now level k., we want 10 have n tasks at this level where
P

1Sh<N ~r+1 . Hence it remains (N-n) tasks for the other (r-1) remaining levels. The number of

ways to distribute these (N-n) tasks among the (r-1) levels such that no level is left empty (i.c..

the number of process graphs with (r-1) levels and (N-n) tasks), is given by :
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[(N-n)—(r—-l)] +(r-1)=~1
(r-1)-1

N=n-]
r—2

This number also represents the number of possibilities for level k, 1<k<r 10 have n tasks out of
a total of [N ‘1‘] possibilities. The probability P(n tasks at level k] is therefore the ratio between
r—-
them.
m
Notice that level k can be any level, that is 1Sk<r . The minimum number of tasks any level
can have is one, and therefore the maximum number of tasks any level can have is (N-r+1).

Proposition 22

For a fixed number of tasks per job, say N, the probability that a randomly chosen process graph
has r levels, 1Sr<¥, is given by :

N-1
r=1

" P{process graph has r levels}= o~ .

This conditional probability of having a process graph with r levels given that the number of
tasks is fixed to N, is the binomial distribution b(r-l.N-l.%).

Proof

Since the total number of process graphs with N tasks is readily given by

N _ N=t [pm_
)2 [N 11 =3 N l]az”",andsimeuntoulnumberofpmcessgmphswithrlcvclsand
r=l [F— ra |7

o

N tasks is [N-ll]. it follows that:

N-i
[ r=1 N=r
- r-1 N-1f |1 1
P [process graph has r levels |Ntasksmn]=?_l— = [r-l] [?} [?}

=b(r—i.N—l.%)

Let 7 and 0 denote respectively the mean number of levels and the variance of the number of
levels in a randomly chosen process graph comprising N tasks. From Proposition 2.2, we
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readily have:

same for all jobs, All Jjobs have the same Process graph with a fixed number of tasks, N, and a
fixed number of levels, r. Moreover, if weletJ(n) n,, .. #1,) be the description of the process
graph where 7, is the number of tasks at level i in the process graph, then we require that alj
Jobs have the same process graph description, First, we provide an expression for the probabi!-
ity density function of the number of occupied processors. Then, we derive 3 closed form
expression of the Z-iransform of the distribution of the number of occupied processors. Closed
form expressions for the average and the variance of the number of occupied processors will

2.2.1 Distribution of the Number of Occupied Processors

P{Y=yl=a ¥ P[t;jobsanivedinslot1.....h.jobsarﬁvedinslotr]

i:k.-Sy.Lhenumberofpossibiljties(k,.....k.-,....k,)mchﬂutZk.-u.-=yis

{=] iwl
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Figure 2.2: Analysis of Fixed Process Graphs

at most equal to the number of ways to distribute y objects among r cells. Hence for a small y,
not (00 many computations are invoived in computing P(Y my). If the job ammival rate, ), is
small, only P[f’ =y] for small values of y are of interrest (of any significance). For a large
value of A however, we can see the system as composed of several independent subsystems, say”
j subsystems, each one comprising an infinite number of processors, and having a Poisson job

arrival process with average rate —} Now the probability density function of the number of
occupied processors can be computed using equation (2.2) and the following:

PiFayla I Plfiay

1. i A=y
Al
where f’t. k=1....j represents the number of occupied processors in the kth subsystem.

Now, we proceed to compute the Z-transform of the number of occupied processors in
the system. LetY,, i=l,....r be the andom vaniable counting the number of processors occupied
at time t by the jobs that arrived in slot i of the interval I, we have :

3 11
since

P(f;xx]= ¥ P{¥=x | k; jobs arrived in slot i).P [k, jobs arrived in slot i]
k=0

and,



P(Y,=x | k; jobs arrived in slot i] =
0  otherwise

Y { i iff x=kn,
we obtain:
P1{Y, =k n;] = P [k; jobs amrived in slot i

and since the job arrival process is Poisson with rate A, and the slot width is X (the same as the
task service tume), we obtain:

P -

P [i;i =k nj= Ll:—,)e'u (2.4
Let us define by ,(Z) the Z-transform of ¥ ; that is :
Yi(2) A S PYaj] Z/ i=l,..r

=

From equation (2.4) we get:
- - - ) - X
142y T P1Fkin) 2% = 5 QXL (X 7om
=0 0 I
which amounts to:

Y2 =exp{-2u'r [1 - ,~] } 2.5)

Since the job arrival process is Poisson with parameter A, then the arrivals and the number of
such arrivals in any slot i, i=1, ... .,r are independent random variables, It follows that :

Y@)=]]Y.(2)

im

using (2.5) we obtain :

1 4

z ; 2.6)
Y@ .e-ur e =

Notice from (2.6) that Y (0) = e ™ = P, , where Po =P [ no job arrivals in the interval 1].
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2.2.2 Average Number of Occupied Processors

We now proceed to derive the average number of occupied processors. we have
Y(Z), and using equation (2.6), we get:

Therefore, we have: 2.7

2.2.3 Variance of the Number of Occupied Processors

Now, we proceed to derive the variance of the number of occupied processors, we have

d? - - . .
E—Y (Z) =Y*‘-Y. Using equation (2.6), we obtain:
2=l
d* d | d
7 Y(2Z)= Z [ sz(Z)]

im| {m

- .r 2 diz* - - - ! ; ha
2™ T m; [n.—-l ] e N e eMMOXTAZVNT G e H
and by taking Z=1, we obtain:

r - - - :
;’T—Fae-m [ﬁ Zn,- [ni-l]]eu’+e'u’ [u zni] et

im]

- T - P - - 2
=2X T m [n.--—l] + OXN) = X I a2 = AN +(AXV)
im} jwl
- r - -
Since c‘}=}7f-l'2=é-z-}'(2) +Y—Yz.andusingequaﬁm(2.7).weget:

"
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T
o} = AX L (28)

An upper bound for o} can be found by using the loose inequality ¥ x;2 S [Z x,]z. We get

from equation (2.8):
o} SAXN? orequivalently oSN ¥

Indeed *, this forms a tight upper bound, for it is accomplished by the process graph comprising
only one level (i.c., r=1). On the other hand. the process graph with N levels (i.e., each level has
one task) provides the lower bound for the vanance of the number of occupied processors; that
is 0% = AXN. Hence, we have:

AN Sof SAXN?  orequaivalently Y <o} SN (2.9)

In the above analysis, no restriction was assumed as to the choice of the shape of the PG(N.f).-

Equations (2.7), (2.8), and (2.9) are valid for any given shape of the process graph PG(N.¢). The
only restriction is that ali jobs have the same process graph description J(n, a5, ... .n,).

* Formerly, to obtain an upper bound on 6}, we have to solve the following maximization
problem:
,
maximize { T Al }
i=t
r
subjectio: Y mi=N for 1<SrsN
im} -
For a given value of r, the solution 0 this maximization problem is simply m=N -r+1 , n =1,
=1,...N and jak. It is also easy to see that r=1 gives the upper bound. Likewise, to obtain a
lower bound on we haye to solve the following minimization problem:
1=l
-
subjectto: Y m;=N for 1Sr<N
iml
. s N .
For a given value of r, the solution 10 this minimization problem is simply u,--T forall i=1.....r.
[t is easy to see that r=N gives the lower bound.
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Examples
Let us take the discaete well shaped diamond process graph denoted by PG(r) (as a function of

r ondy); examples of which are depicted in Figure 2.3 and Figure 2.4. Two cascs may be dis-
tinguished depending on the value of r being odd or even.

Case of an odd number of levels

Figure 2.3 gives some exampies of such a process graph. In this case, the number of tasks at
lgvel i, i=1,....r is given by:

¥l
1€is—
i 2
Al 1 +1
r—i+ rz <i<r

and hence, the total number N of tasks in the well shaped process graph with an odd number of
levels is : -

c Cr+l r=1 . L Llr¥lre3 1 or-l
N-Zn,'a[1+2+...r2]+[zr...+2+1] 3 2 2 +2 T

im]

which finally yields: -

2
N= [i;ﬂ-] (2.10)

replacing N in equation (2.7) by the above expression, yields:

7 |+l :
4

Y= 2.1
a(n+1X2n+1

On the other hand, using the known identity ¥ i%= <

1=]

« .2 ’—;L.g et | [rer ][ r rirel
Zn.--221+—2- = ?...1_37

iml il

. we get

Now, by using equation (2.10) we obtain :

2oyt
‘=N 3 3 N

i=]

which along with equation (2.8) gives:
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+3 X
4 L;(r N (2,12,

U = A.XJN
Y 3
Case of an even number of levels

Figure 2.4 gives some examples of such a process graph In this case, the number of
1asks at level i, i=1....,r is given by:

r
155 —
‘_ Sis
n = .
r=i-i é-plsz.o

and hence, the total number N of tasks in the well shaped process graph with an even number of
levels is ;

4 r ro.r
- R - s + — bt § e
N ‘Z-l n [l+2+ 47] [24-( 2 L+ +2+1]
which amounts 1o : -

N= 5’%21 @.13)

replacing N in equation (2.7) by the above expression, yields:

¥a "ﬂ’“ﬂ (2.14)
a{n+1}2n+1)

L]
On the other hand, using the known identity ¥ i’= <

, we get:

Zﬂu 322 e r(r+‘2) r;l

im] im]

now, using equation (2.13) along with equation (2.8), we obtain:

o} = AN IEL 2.15)

or equivalently,

Equations (2.11) and (2.14) provide explicit expressions of the average number of occupied pro-
cessors as a function of the number of levels, for well shaped process graphs having respec-
tively an odd and an even number of levels. Equations (2.12) and (2.15) on the other hand,
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ascertain their vartances. Other examples of interrest are studied in (Belg8s).

2.3 Semi Random Process Graphs with two or more Levels

We now proceed to analyze the case of semi random process graphs. Each job has a
process graph with a fixed number of tasks, N, and a fixed number of levels, r22. However,
jobs do not necessarily have the same process graph description J(n;,44,....n,) where n
i=l.....r denotes the number of tasics at level i in the process graph. We shall first derive closed
form expressions of the probability density function and the Z-transform of the number of occu-
pied processors in the system. Closed form expressions for the average and the variance of the
number of occupied processors will also be derived.

2.3.1 Distribution of the Number of Occupied Processors

Let I define the interval of time [t - Xr.t], ¥; denote the random variable counting the
total number of occupied processors at time t given that k jobs arrived in the interval I.

t-Xr ) t
. |

Y

b [l | ] 1 t 1 [

1 i r

| INTERVAL | —-{

Figure 2.5 Analysis of Semi Random Process Graphs

= TIME AXIS

It is easy to see from Figure 2.5 that all jobs which arrived before time (t-£¥) had finished before
time t. Such jobs will not occupy any processor at time t Those jobs which occupy some pro-
cessors at time ¢, are the jobs that arrive in the interval L Therefore :
P(Y=y)= T P(¥,=y]P[k jobs arrived in I]
x=0

Since, if no job arrived in the interval I, then no processor will be occupied at time t, it follows
that:
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PIT =0]= e =159

On the other hand, if k jobs amived in the interval I, then at least k processors will be occupied
at time t. The number of job arrivals in the interval I and the number of occupied processors at
time t are therefore related by the following double sided inequality:

kSy Sk(N-r+l)
and hence for y21, we have:
- b - -
P(Y=y]=3 P[Yy=y]P[k jobs amivedin]] y2I 2.17

k=]

To explicitly express the probabiligy density function of the number of occupied processors in
the system, we need to evaluate P [Y, =y] for the values 1 S k S y. We have:

P[Y,=y st 1Sksy|= 3 P [job j participates with n, ]
1}
[ A8 ZAI -y
=l
1SASNwr el vjul,.. b

Proposition 2.1 readily gives the probability of having n tasks at a given level k given that we
have N tasks and r levels in such process graph n=1,.. .N-r+1 and k=1,...r. We then obtain:
N-ﬂj'—l
r-2

Phaysuissn=[y] £ T
' N-1 '

j=l
sy amy
=t

1S SN =+l ,vjuml, &k

(2.18)

r-1

Let us define the following quantities: L=y-k, M=N-2, and R=r-2. Since r22, ¥22, and
kSysk(N—r+1), it folows that M20, R20, and OSLS(k—-1XN —r+1). Using these quantities,
equation (2.18) may be rewritten as:

- k [ 3 -
Plly=yst lsks_y]-[ N‘_l ] T o [M ”’]

«l |R
Yy asl =
r=1 =

nZ0 v jel,... .k

where by definition ["] 3 0 whenever n<i. Let the bivariate function ., be defined as:

i
~- & Al

st Y wymi
i=t

which amounts to :
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SN

= R
Y Z st Z Aomi~y s=l
=) Pt
20, =l k-]

Notice that the inner summation is exacly ay.;;.,, and hence we obtain the foUowtng
fecurrence reiation on the bivarnate function ;.

Lo[M—i
Ay = E - P, ZS*.S)I (2.19)
i=0 (R
with the following boundary condition for k=1:
ay = [’: '] ¥{20 (2.20)

since this is the case where only one job arrived in the interval I Finally, using equations
(2.17), (2.19), and (2.20), and the fact that the job arrival process is Poisson with aggregate rate
A, we obtain: ’

- X )
” & [_AXr 1ok & (M=
PlY=y)= [ ]—e‘”" Gio1 g 21 22D
Y E. M+1]|4 k! E‘o R M Y (
R+]

Equation (2.16) and equation (2.21) provide then the probability density function of the number
of occupied processors in the system. In the sequei, we derive the Z-ransform of the number of

occupied processors, denoted hereafter by Y(2). Since by definition ¥ (Z) A I [l-/ =y]Z?, we
=0

y
¢an use equations (2.21) and (2.16) to derive such a Z-transform. In the sequel, however, we

shall take a rather simpler and more elegamt way. Let X, i=l,. k denote the random variable
counting the number of occupied processors at time t, and by the ith job amiving in the interval
I. Since only the jobs that have arrived in the interval 1 will Occupy some processors at time t,
we have:

-k
Yg = Z X.-
iml
and from Proposition 2.1, we already have:
N—ﬂ,'—l
r-2

N-1
r=1

P[i‘"‘.‘]' [ Vv on=l,. N -r+l



Let X,(Z) denote the Z-transform of the random variable X,, and ¥,(2) denote the Z-transform
of the random variable Y,. We therefore have:

N-rs+l] -
X4 3 Pix=j12
/=1

which amounts to:

N=r -
X@=——v 5 [V 20 (2.22)
N-l| =0 [r-2 .
r-1

Since the random variables X;’s, i=1,...k are independent and identically distributed, we may
drop the index i in X,(Z), and we get :

Yi(2Z)= [X(Z) ]*

and since the job arrival process is Poisson with an average rate A, we get
- N -
k=0 :
which amounts to:
Y(Z) = e_;\,x, [l_xm] (223)
Finally, by using the expression of X(Z) as given by equation (2.22) into equation (2.23), we
obtain the following expression for the Z-transform Y(Z) of the number of occupied processors:

r - - .

Nwr ; )
zy [”‘2’ 2] z
- ! r-

Y(Z) = exp4-AXr |l - = [

< (2.28)
-1
r=1

4

2.32 Average Number of Occupied Processors

We now proceed to derive the average number of occupied processors in the case of
semi random process graphs. We have Y= %Y(Z) , where Y(Z) is as given by equation

Iz-a

(2.24). Let (Z) and a be defined as:

3s



and,
AXr
M+
R+1

Therefore. the Z-ransform of the number of occupied processors given by equation (2.24) can
be rewritten as follows:

Y(Z)= exp{-ﬁr + aZb(Z)} (2.27)
from the above equation, the average number of occupied processors is then given by:
Y =ab(l)+a?dz-b(z) (2.28)
| -
Let us first compute b(1) and b/(1) = %b(l)l . From equation (2.25), we get: .
F 2
M-R ;
Y= 3 § [“ “] (229)
0 | R

Now let us compute b(1), from equation (2.25). we get :

- - B o)

which amounts to:

4

M-R -
sy '§ [R-HJ
0 (R
Consider now the function f(x) defined by :

ﬂ(x)=(l+x)‘ +-(I-|-_;)"*'l PR +(l+x)"‘

since the coefficient of x® in (14x)®* s [’; *"] + it follows that the coefficient of x* in B(x) is

exactly b(1). First, let us rewrite the function B(x) as :
< LM — (lax)f
f(x) p

Thus, the coefficient of x*? in B(x) is [:’::J , and therefore we obtain :
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M+

b(ly=
( R+l

(2,30

by replacing M and R'by their respective values, it can easily be seen that X,(Z)’z =1. Now,
x|
by using equations (2.28), (2.29), and (2.30) we get:

b'(1)
d - 1+
—Y () = AXr M+1 2.3
a2 Z=l R+1

Now, let us compute 5'(1), we have:
H-R - -
E(= 3 i [M“} =0 [M]H [M'l]q- e [M"]+ o+ (M-R) [R]
e R R R R R
MR - MR [p.) M-» .
-5 k) [R+¢] - ' [R-H]_ o [R-H]
i R i= (R =0 |R

i=l)

) M-R :
= M-RB()- ¥ i [‘:”‘] -
which by using equation (2.30), amounts to:

(2.32)

M+l| MR py
R+l im)

b’(l)z(M—R)[ - Zile

Now we proceed to derive a closed form expression for the summation in the right hand side of
the above equation. Let us define the following :

=T [R *‘] n20 2.33)
i (R
which then results in the following recurrence relation:
Gy =gy +n + [::-m] nzl (2.34)
with the boundary condition:
(2.35)
do=0

Define the generating function of a, by A(x); that is A(x) 8 ¥ a,x". Thus, equation (2.34)
aw)

yields:
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- - -
Y aux*= 3 a, 1t + Sn

LE ]! LT A=t

x.'l

R+n
R

That is,

A(x)-a0=;,4(x)+x§n [“:'"] 2 A +x %{él {2%} - }

and using equation (A.5) of Appendix (A), yields:

d 1 R+l
Axrag=xA(x)+2x Z{W*I}S M(‘t)+x+—(;)—xw_2

which finally amounts to:

R+1

A(x)= (l—x)"*’
We can rewrite A(X) as :

R+l R+l
(l")"s (l_x)ﬂi-z
Equation (2.36) can be inverted [Klei75] to give :

n+R+2 n+R +1
G = R+D) [R+2 ] R+D) [m-l ]

A(x)= (2.36)

and, by using the well known formula [:] = [:-l] + [: _:] , we get :

A+R+2 - nR+R+1 + n+R +1
R+2 R+2 R+l
hence, we obtain :

(2.37)

Aa+R+1
R+2

d, = (R+1) [

Now, using equation (2.32) and equation (2.37), we get:

= (M=R) [M ”] ~R+1) [M *‘] 2.38)

d
42"(2) R+1 R+2

and using equations (2.31) and (2.38), we obtain :

M+2
R+2

d -
—Y(Z), =AXr
z .
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Finally, since M=N-2 and R=r-2 we obtain :

—_— - b}
T=AXN £2.39

2.3.3 Variance of the Number of Occupied Processors

Now, we proceed (o derive the variance of the number of occupied processors, denoted
by Cy We have:
2

‘Qz Inl ﬂ a Z=

3=4Y@ | oD _[m
’Z-l

Using equation (2.27), we obtain:

2
d l’(22) =2ab'(1) + ab”(1) + [ab(1}+ab’(1)]z (2.40)
a Zal
- 2
To evaluate the above expression, we need to compute b”(1) = _ﬂdéz . From equation-

-
(2.25), we obtain :

-

M-R
(= ¥ iG-1) [M"
im0 R

0.[ ]+o [‘" PP [M']+6. [”']+ e (M=RYM =R -1), m
R R "R R R

P,

M-R R+
}: (M-R~iYM-R—=i-1)
im0 R
which can be rewritten as:

M-R MR
b"(1) = (M-RYM~-R-1) 3, [R*‘} -2M-R) }; i [R*']+ T iG+D) [ ] @2.41)
w0 (R R
MN-R
We then need to compute z i(i+1) [ ] . Let:
o R +i
y= Y i(i+l) [ ] n20 (2.42)
(=0 R

which results into the following recurrence relation :
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n2t i2.43)

R+n
n

Ay =Ap.y +n{R+1) [

with the boundary c&ndition
(2.44)
dg= 0

Let A(x) define the generating function of a,; that is A(x) 2 T a,x". Therefore, equation
LY

(2.43) yields:
ZI Gpx" = Zl Gnoyx” + Zln(nﬂ) [RM] x"
which gives :
A= T a(r+1) [“"] a=l (2.45)

On the other hand, we have:

2 (- 2 . i )
E‘n(nﬂ) [R"'ﬂ] ,.--1=E‘:T {E, [:+ﬂ]xu¢l}- # {z El [IR'\’+ ]x"}

Now, using equation (A.S) of Appendix (A), we obtain:

R+n| .y d° 1 R(1+R)x + 2(1+R)
1 = 1 =
Ex a(n+l) [ ] ] {x [(l-x)‘*" ]} T

hence equation (2.45) becomes:

R(1+R)x? + 2(1+R)x
(1-xyf+

A(x)y=

which can be rewritten as
R(mq 201+R) 4+ SHRY2+R)

A 2.48
(x) f-bz (l_xfi-l (l_x)ﬂﬂ ( )
The above eqtmioncanbeeaslly inverted [Klei75] to obtain:
R+n+l R+n+l
= +RY2+R 21 247
a, = 2(14R) [ R+2 ]+(} W2+R) [R+3 } n {

Let us now retum to the expression of 4”(1) given by equation (2.41). Using equations (2.30).
(2.37), and (2.47), we obtain:



M+l

b’(1) = (M-RYXM-R -1)
R+1

- AM-RYR+1) {M*l]
R+2

M+ M+
R
+ 2(1+R) [R+2]+(1+R)(2+R) [R+3]

which after some algebra yields:

M+1]

v M+1 M +i
b (ly=(M-R}M~-R -1 1+R -
1)y =( X ) [R+1]+2(1+RX +R -M) [R+2 + (1+R)(2+R) [R+3] (2.48)

Now, let us reumn to the computation of 6$; using equation (2.39) and equation (2.40), we
obtain:

2.49
a} = ab(1) + 3ab'(1) + ab™(1) 249
where a is given by equation (2.26), b(1} is given by equation (2.30), b'(1) is given by equation
(2.38), and 5”(1) is given by equation (2.48). Using the facts that

{MH], [M+1]

R+2) MR and R3] _ M-RM-R-1) .
M+1 2+R M+1 (2+RX3+R)
R+l R+1

and after some algebra, we obtain:

2 ¥ 7 1+R I+R
=AXr + AXr(M-R - —(2R-2M -~ —(M~R~
oy r r( ){M R+2+2+R(2R 2M -1} + 3+R(M R 1)}
replacing M and R by their respective values as a function of N and r, we obtain:
o} = A\Xr + AXr(N-r) {N—r-n-z + L:—‘-(zr-w-l) + %(N-r-l) } (2.50)

Equadon (2.50) provides then the variance of the number of occupied processors as a function
of both the total number of tasks, N, and the number of levels, r. Moreover, from the previous
section, we already know that the upper bound and the lower bound on G are obtained respec-
tively by the process graph having just one level, and the process graph having N levels. Figure
2.6 depicts the variance o} for the value N=10, and for AX=1, and as a function of the number
of levels 1<r<10. When r=1, we observe that the variance gets its highest value of 100 as
expected by equation (2.9). For r=10 on the other hand, the variance gets its lowest value of 10.
We purposely joined the points in Figure 2.6 by straight lines to shed light on the slope of the
decrease in the variance when we move from r=t to r=10. We observe that for small value of r,
the decrease in the variance is very substantial, and as r approaches the number of tasks N, the
decrease in the variance (respectively the increase in the slope) gets smaller.
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of Levels; for Semi Random Process Graphs
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2.4 Random Process Graphs

We now proceed to analyze the case of random process graphs. Each job has a random
process graph with a fixed number of tasks, N, and a random number of levels 7 . 1<F<y
Moreover, two jobs having the same number of leveis do not necessarily have the same process
graph description J(ny,...,m;, ..., a,), where n;, i=1.....r denotes the number of tasks at level
i. We shall first derive a closed form expression of the Z-transform of the number of occupied
processors in the system. Closed form expressions for the average and the variance of the
number of occupied processors will then be derived.

2.4.1 Distribution of the Number of Occupied Processors

From Proposition 2.2, we know that the probability of an incoming job to have r levels
follows the Binomial probability distribution given by :

N-1
r-1
=T

Proposition 2.1, on the other hand, gives the probability of having n tasks at a given level k
given that the job has r levels and N tasks, where n=1,.. N-r+1, k=1,...,r and r=1,..N.

P [F=r]= a b(r—l.N-l.%)

From Figure 2.7, we see that any job that had arrived before time (t-NX) would not par-
ticipate (Occupy any processor) at time t. On the other hand. a job amriving in the interval I=(1-
NX,t) will partictpate if and only if it has enough levels. Let us divide the interval [ into N equal
slots of duration X units of time each, equal to the processing time of one task. We number
such slots by 1,2.....N (see Figure 2.7). It follows that a job amriving in slot number i, will
ocCupy some processors at time t if and only if it has at least i levels, where 1<i<N.

Proposition 2.3

The probability of a job arriving in slot i, 1<iSN to occupy some processors at time t is given

by:
i-1 N=1
£
P (job arriving in slot i occupies some processors at time t] = ’T
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Proof

A job arriving in slot i, 1<isN occupies some processors at time ¢ if and only if it has at leagy i
levels. Hence, from Proposition 2.2 we get

-1 .
L ‘ . N ['-lJ L& (vet
P[Joba.mvmgmslonoccupmsomemsorsaumet]=-}:— a3 )

& oM T3RT &
and since (N-I‘J = [N-IJ , we obeain;
N=j j=1
S [M-1] & vy
JE [N-j] JE L'l

Let ¥ denote the random variable counting the total number of occupied processors at time ¢
given that k jobs arrived in the interval 1, ¥, .\ denote the random variabie counting the
total number of occupied processors ar time t given that &; jobs amrived in siot i, i=1,. N, )?,,‘
denote the random variahle counting the number of occupied processors at time t due 1o Jjobs
that armived in slot i and given that k; jobs arrived in slot i, ia1... N, and X;,, denote the random
variable counting the number of occupied processors by the jth job that armived in slot 1,
i=1,...N. From these definitions, we readily have :

g

J=0

- - oant -
PV ayl= L P(Fyny) GEND_ ,oiv @.51)
(L) :



¥ N -5
st Y kmk
- N .

Yo, . =X X, (2.53)

=]

- ko
xl“ = z[ X; Yy, (2.54)

j-

Also, define the following Z-transforms of the above defined random variabies.

Y2) AT P(Y,=y)12?
y

X, @ AT PIX, =x12*

X2 & T P(X =x12"

Since the random variables X; ; 's are independent and identically distributed ¥ j=1...., ,, then
using equation (2.54), we obtain:

&
jol
Let us denote by X.(Z) & X; (Z) since the f.-,,- s are i.i.d. . Thus we get:
L
X\ @= [x@)
and from equation (2.53), we get:

N k
Yar.... @)= 1 [x.-(Z)

im}
and from equation (2.52) we obtain;
k ky &
kol el iy [fxe
"W(Z)= ; TR v a.lN
u..gl,h,-t
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and finally using equation (2.51}, we obuain:
N o,
r@=§ | Z4@) ok’ g,
k=0 k!

which amounts to:

L
= N T X@) (2.55)
Y(Z)=e N , 5

2.42 Average Number of Occupied Processors

We now proceed 10 derive the average number of

occupied processors in the case of
random process graphs. We have ¥ = é—l’ )

» Where the Z-transform Y(Z) of the number
¥ 21
of processors is as given by equation (2.55). Hence, we obtain:

=N | X
=X ‘-§ {_E_’z_l } (2.56)

We need now 10 evaluars the Z-tran.sfon:h X:(2). concentrating on slot i, we have:

~I

- N -
PX,j=x)= p ) P(X.j=x/rar|P(rar)

rajf

where for i22 , we have:

0 ifxe0 1€r<i~]
1 ifx=) 1<rgi-]
- - N-x-]
P[X,-J:x/n:r] = 9 r=2 (257)
ifx2l i<rsN
N-1]
r-1

and for =1, we have:
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0 if xaN  r=l
1 ifx=N r=]
[N—z—l
PXy=t/r=r|= { |r=2
(X1, ] O (2.58)
N-=-1
r—1
.0 otherwise

N-1

rF—

Since we know that P[r=r|= T and by using equation (2.57) and Proposition 2.3, we
obtain for the case of i22:

=1 N-1
ral r-1
NS
N [N-x-l

ramg r-2

™

N (Ve
+3 {z_ [N - l] }zx} i22 2.60)
szl L |7

and for the case of i=1, and by using equation (2.58), we obtain:

PIX.j=x]= { i22 2.59)

Therefore, we obtain:

1 )it (M-l
X (2)= T {Z

ret [Pl

K if x=0
# if x=N
P(X=x]= 1 N-x-l] (2.61)
N |r=2
‘ ’E AT ifxz21

which then yields:

Since we have X;(Z) |z-|=1' we get from equation (2.60):
N

)P

2! ry

:2~-l - ‘f

r=l

N=x=-1
r=2

N-1

1 i22 (2.62)
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Now, using equau'on.; (72.60) and (2.63), we get:

X | X (@) N -x-1 —x-1
X N+
:E{ 74 an} :§2 2N ! z§l {r§ ["_2 }} ZN { zgl {p}-:z [P-Z
Define the quantities A and B by the following expressions:

d N (N=x-]
=S g {E )]

N - e
5 el

Hence equations (2.56) begomes:

F-xf{a+;}—[w+a]} (2.64)

The quantities A and B are evaluated in Appendix (B), where A is given by equaton (B.9); that

is:
1 N=}
N - —_
A= 2+ [2]

and B is given by equation (B.10); that is:

8=2Y - (N+1)
and therefore equation (2.64) becomes:
- - (2.65)
Y=AXN
finally, from equation (2.56) and equation (2.65), we deduce that:
N | &X(2)
=N (2.66)
tE { ‘z Zul }
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2.4 Variance of the Number of Occupied Processors

Now, we proceed to derive a closed form expression for the variance of the number of
occupied processors, denoted by af. We have:
s 4@ =2

Oy = - +Y-Y
dZ Z#l

~l

where ¥ is the average number of occupied processors and is given by equation (2.65). Using
equation (2.55), we obtain:

2
4’y _dv@) d {uzx(z)}-p Y(Z)—{UCZ X.(Z)}

al Z dz (=] 1m]

where X,(Z) is given by equation (2.60) for i22 and by equation (2.63) for i=1. Now, using
equation (2.66), the expression of the variance of the number of occupied processors becomes:;

=7+ E ﬁ {z x(x- 1)5_‘ [’rv_z‘ 1]}+?1"?—{N(N-1)+z T x(x-1)

iw]

d2
=Y+3.Xz X(Z)

and using equations (2.60) and (2.63), we obtain:

N-x=1
r=2

=2 £21 rey x2] red

}

Define the quantities C and D by the following expressions:

N (yexe
- Bz {E [
x2! ray
°- 2"{5 =)
x2! rmz (P2
It follows then that of becomes:

XD MNN=) X X N=x~1
2‘"l 2¥-1 E’;Z"‘l {,E E[r-—l
AX

N IN=x-1
2N-'lzlx{r}-:‘z [""2 }

AXD AXN(N=1 =|N | d&X(D) N
=r+uc+2~, 2}5_, ) u{z{ “}- zN-l}

using equations (2.56) and (2.66), we obtain:

of =Y +AXC +

}
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23k D N2
o =7\X{C Wt ?v?} (2.67)

The quantities C and D are evaluated in Appendix (B), where C is given by equation (B.17):
that is:

N+§
2N-l

C=3¥N~-10+

and D is given by equation (B.18); that is:
D=32Y-N -2 -3

Therefore equadon (2.67) becomes:
- N2
oi-xx{w-u [%] } (2.68)

From the above equation, we observe that for a large value of N (e.g., N>5), the variance of the
number of occupied processors is:

of =37 —4AX for N>>1

and finally for the value N=1, equation (2.68) verifies that 0} = AX as provided by equation
(2.7) of the fixed process graph case.

2.5 Conclusion

In this chapter, we have analyzed three models of process graphs in the infinite number
of processors case. For each model, We have found the distribution and the Z-transform of the
number of occupied processors. From the Z-transforms, we were able to derive both the average
and the variance of the number of occupied processors.

The important observation is that the average number of occupied processors for the
three models is the same, and depends only on the job average artival rate, the number of tasks
in the process graph, and the average service time per task In the following chapter, we shall
extend this result 1o more general environments of muitiprocessor systems and process graph
description. For the variance of the number of occupied processors, on the other hand, we found
rather easy expressions. For the case of fixed and semi random process graphs, we also deter-
mined the process graphs which provide upper and iower bounds on the variance of the number
of occupied processors.
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CHAPTER 3
AVERAGE NUMBER OF OCCUPIED PROCESSORS
THE GENERAL CASE

In the previous chapter, we have considered the case of multiprocessor systems with
infinite number of processors, and have investigated the distribution of the number of occupied
processors for three different process graph models. We have assumed that the task service time
is constant, the same for all the tasks, that the process graphs have a fixed and prescribed totai
number of tasks, and that the job arrival process is Poisson. We have found a rather interresting
result stating that the average number of occupied processors in the system is only a function of
the job average arrival rate, the task constant service time, and the fixed number N of tasks
forming the process graph. The question naturally arises as 10 what extent can this result be”
generalized.. This is the aim of the current chapeer.

Our multiprocessor system can be generalized by relaxing all the assumptions made in
the previous chapter. We shall then consider the infinite and the finite number of processors
cases, an arbitrary distribution of the number of tasks per job, an arbitrary conditional distribu-
tion for the number of levels in the process graph, arbitrary repartitions of the tasks among the
levels, arbitrary task service time distribution, perhaps different service requirements for the
different tasks, and general job arrival process. Under these rather general conditions, we shall
prove that the average number of occupied processors, in both the infinite number of processors
case and the finite number of processors case, remains a function of only the job average amival
rate, the task average service requirements, and the average number of tasks per job.

In Section 3.1, we further pursue the case of an infinite number of processors, where we
first derive a closed form expression of the task arrival process distribution, its mean and vari-
ance, and then investigate the average number of occupied processors under the above men-
tioned generalized conditions. In Section 3.2, we consider the finite number of processors case,
and prove that the average number of processors in the system stays a function of only the job
average arrival rate, the task average service requirements, and the average number of tasks per
job. In Section 3.3, we discuss and provide a pictorial representation of the job average system
time and the average number of occupied processors as a function of the system offered load.
For the finite number of processors case, we assume throughout the chapter that the system is in
equilibrium.
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3.1 Infinite Number of Processors

3.1.1 The Task Interarrival Time Process

Since a job is composed of a set of tasks, the task interarrival process is then differen:
from the job arival process. These two arrivai processes are identica) only in the case where
jobs are composed of only one task. In this section, we derive a closed form expression of the
distribution of the task interarrival time process. Throughout the section, we assume thag the

Ou
number of processors. Let J=(n,n,,. .n,) denote the process 8raph description, where n; is
the number of tasks at leve] i, i=1....r, and thus we have Z". ;= N. jobs may thus be regarded
im]

a5 a vertical string of Super-tasks (ST); where Super-task ST;, i=l,..r comprises n, tasks
fepresenting the set of tasks at jevel 1 in the process Braph. Since the number of processors is
infinite, the n;, i=1,..r tasks forming super-task i are then executed in Parallel. Upon the arriva
of a job to the system, its starting tasks (i.e., the tasks forming its first Super-task) are ready-for-
service and thus starm execution immediately. Upon the compietion of its firse Super-task, the job
feeds back all the tasks forming its second levei (i.e., its second super-task), which immediately
Start their execution. Each X seconds thereafter and unij completion, the job creates ail the
tasks of its next level as shown in Figure 3.1, Figure 3.1:(b) Fepresents a time diagram of the job
arrival process, and the comesponding super-tasks armival Process, the task arrival process, and
the job deparure process. The process graph description used is depicted in Figure 3. 1:(a). Let
us first consider the interarrival time of Super-tasks (o the system.

Proposition 3.1

Provided the task constans service time ¥ js strictly positive, no simultaneous super-task armivals
can occur.
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Figure 3.1: Job Arrival and Task Arrival Time Diagram
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Proof

Super-task arrivals from the same job are separated exactly by X seconds. Since X >0, then no
simultaneous super-task arrivals from the same job can occur. On the other hand, to have simul-
taneous super-task arrivals from 2 different jobs, the arrival of these two jobs must be separated
exactly by iX seconds where 0SiSr~1. But since the job arrival process is Poisson with parame-
ter A, we have:

P [job arrival in [ tt+dt ] and job arrival in [ +iX . :m?m]]
=P [job arrival in [:.:+dr)] P [iob ammival in [t +X . :+a?+d:1]

= (Adr+0 (1)).(Ade +0 (1)) = A2dit + O (1) = O(1)

The above can also be seen by noticing that the probability of having two arrivals separated by
exactly iX seconds is the same as the probability of having simultaneous arrivals.

Proposition 3.1 says that 1o characterize the distribution of the tasks interarrival time process..
we need to find :

L. the distribution of the super-task interarrival times, and then

2. the distribution of the super-task size

First. we proceed to find the distribution of the super-task interarrival times. Recall that jobs are
represented by a process graph with r levels, and thus comprising r super-tasks. Let 7 denote the
random variable measuring the interarrival time between jobs, and i, denote the random vari-
able measuring the interarrival time between super-tasks. Our objective is to find the probabil-
ity distribution of the random variable 7,; that is P [f,<¢). In the sequel, we distinguish two cases
depending on the value of the number of levels (i.e., the number of super-tasks) in the process
graph.

(1): Case r=1

Since each job creates just one super-task and this is exactly upon its arrival w the system, then
the distribution of the interarrival time between super-tasks is the same as the job interarrival
time distribution. We then have ;

(3.0
Pll,st=1~e™ 120
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(2): Caser 22

This is the case of two or more super-tasks per job. Depending on whether the interval of time ¢
is less or equal to the task constant service time X, we distinguish the two following cases.

(2.1): Case where 0Ss <X

TAGGED ST ARRIVAL

AT TIME t,
v T L = ST ARRIVALS
1 ' ' i
' 1 p— | —d' 1
) f l'-""_i—!—'q
1 i ' | +
L ——————— s N S JOB AHFIIVALS
ly I, Iy

Figure 3.2: Super-task Interarrival Time Diagram, case of 0%t <X

Since P (7,St]= 1= P(f,>¢], let us first compute P(7,>1). As depicied in Figure 2.3, let us
place ourselves at the tagged super-tagsk armival time r,, and compute the probability of no
super-task arrivals during the interval of time t The intervals /;, i=1,....r are of the same time
length and are equal o t Therefore, we have:

Plig>t] = P[no ST arrivais during the interval of time t)

’
= P(no job arrivals in the intervals /,,/4,/4,....1,] = n e

iml
which yields:

- 3.2)
PESt)ml - 0t <X (

(22); Case where 12X

Since r2X, we must distinguish whether raX or t>X,

53



(2.2.1): Case where r=X

Let us position ourselves at a super-task arrival instant, say ¢5. From Proposition 3.1, we know
that the next arriving super-task, if any, must belong to the same Jjob as the tagged super-task.
Since =X then:

P(i,%1) = P [,5X)=1-P [}, >X]

on the other hand,

P (i,>X] = Pno ST arrivals in the interval (fo,7o+X) , and no ST arrival at time (rg+X)]
and since both events are disjoint we obtain:

P (7,>X] = P(no ST armivals in the interval (¢9.£o+X]].P [no ST arrivals at time (rg+X)]
Finally, from case (2.1) where 0Ss <X, we get from equation (3.2):

P (no ST arrivals in the interval [g,g+X)] = £ X
and by appiication of Proposition 3.1, we obtain:
P (no ST arrivals at time (to+X)] = P [ST is the last super-task of its job} -

on the other hand, since a job has r super tasks, and each super-task takes X seconds of process-
ing time, it follows that:

P [job is executing its ith super-task | job is in the system)] = —i— i=1,..r

and therefore, we obtain:

e-b.\'

Pli,>X]= t=X (3.3)

(22.2): Case where 1>X

Let us place ourselves at a super-task arrival instant, say rq, as indicated in Figure 3.3. Since the
interval of time t is strictly larger than X, we already know that no job armivals occur in the
interval (tg,2o+X), and that the sysiem becomes empty at time o+X. We therefore have:

P(i,>t]= P [no ST arrivals during r} = P[no ST amivals in (tg+X,to+¢]]

= P [no job armivals during (t—-X))

which amounts to:
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Figure 3.3: Super-task Interarrival Time Diagram, case of :>X

P(i,>t] = ™™D t>X 3.4)
Finally, purting the two cases together, that is for t2X , we get:
Pfyss] =1 =P1,>t]

= |-P [no ST arrivals during ¢)
= 1~P[no ST arrivals during t l no ST arrivals during f] . P[no ST arrivals during X)

~ P[no ST arrivals during t | ST arrivals during X] . P[ST arrivals during X
Since P {no super-task arrivals during t ‘ super-task arrivals during X)=0, then using equation
(3.3) and equanon (3.4), yields:

A (1-r) —
e 2X (3.5)

Plist]=1-%

Equadon (3.2) along with equation (3.5) provide an explicit closed form expression of
the probability distribution function of the super-task interarrival time process.

3.1.1.1 Average Interarrival Time Between Super Tasks
Let 7, denote the average interarrival time between super-tasks. Therefore:

Ts | 1-Ps) @

and using equations (3.2) and (3.5), we get:
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which amounts (o:

rx2

since for the case of r=1, and from equation (3.1) we have 7, = -)l: , therefore, we obtain:

1, = -;7 r2l (3.6)

For any process graph with N tasks and r levels, 1<<¥, and for the case of an infinite
number of processors and constant task service time, X, the average number of jobs occupying
some processors is AzX. This can be seen by noticing that the only jobs which occupy some
Processors at any given time ¢, must have arrived in the interval of time (1-rX.t). On the other
hand, since the expected number of busy processors in such a case is ANX, it follows that the

jobs which occupy some processors at any given time ¢, panticipate on the average by LA tasks, -
r

3.1.1.2 Variance of the Interarrival Time Between Super Tasks
Let 0,2‘ represent the variance of the interarrival times between super-tasks. We have:
2 - 2
ol =E(%, ]-£E[7,]

Using equations (3.2) and (3.5), and after some aigebra, we obtain:

- Ak
of alz2U)e ra1 (38)

)

Notice that in the special case where r=1, equation (3.8) reduces to the variance of the job
arrival process (i.e., the variance of the exponential distribution with parameter A).

In the sequel, we shall find the distribution of the super-task size. Recall that a job is
represented by the process graph description J =(ny,A3, ' - - .n,), where n, is the number of
tasks at level i, i=1,...r. Let S denote the random variable representing the size of a super task,
and §,(i) denote the binary function, which is equal one if i=k and equal zero otherwise.
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Proposition 3.2

the distribution of thg. size of a super-task, given that all jobs have the same fixed process graph
description, is given by :

P[S=k] =% T 8(n) 1SKSN =7 +1
=l

Proof

Consider the arrival process of super-tasks to the system (see Figure 3.1). Take any armmival and
call it the tagged arrival. This tagged arrival belongs to a given job, call such a job the tagged
job. Hence we have:

P[ragged arrival is the jth ST of the tagged job] =
Pltagged job is executing its jth level \ tagged job is in the system] = {-
and therefore:
P (S=k] = } . [number of levels having k mks]
the proof is complete by using the binary function §,(i). The restriction on the value of k is due

10 the fact that the maximum number of tasks at any level cannot exceed N-r+1.

HH

On the other hand, if jobs are described by semi-random process graphs, the distribution of the
super-task size is readily given by Proposition 2.1 of the previous chapter; that is:

re2, 1sksN=-r+1

0 ifkaV
1 ifk=N

r=l
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3.12 Expected Number of Busy Processors

We have shown in the previous chapter that ?=J.NJ-('. where we have assumed for the
most general case studied that the job arrival process 1o the system is Poisson with fixed rate .
that the total number of tasks per job is fixed to N, and that the task average service time is con-
stant equal to X, the same for all the tasks. In this section, we show that such a result still hoids
for the more general case. If we stll assume a Poisson Job arrival process and a constant task
service ime, we can see the multiprocessor system as an M/G/ee queueing system. For this sys-
tem. it is readily shown {Klei75], that the probability of having k jobs in the system in steady

state is given by:
A
MX P
k!

Since each job in the system participates on the average by N tasks, it follows that ¥ = ANY.
rd

We can further genemhzc our multiprocessor system by relaxing the Poisson job arrival process
assumption. Let N denote the > average number of tasks per job, C denote the average con-
currency per job over all jobs, K denote the average number of jobs present in the system, and T-
be the average time a job spends in the system.

Plk]=

Theorem 3.1

The expected number of busy processors ¥ in the case of:
1. an infinite number of processors,

2. random service time per task (possibly different service requirement and distribution for
each task) with an overall average X,

3. random job amival process with average arrival rate A (but independent job arrivals),
and

4. random process graph, that is,
+ N nandom

* rrandom, r=1,.. N

* random repartition of tagsks among levels, and

* random precedence relationships among levels
is given by:

Y =NX



Proof

Since the average number of occupied processors, Y. represents the average concurrency in the
system, it follows that

Y=KC,
Notice that KC, = K C,, due to the fact that P is infinite. By using Little's formula (Lin61], we
have:

K=AT

where the job average sysiem time T can be written as;

It then follows that:

F=arG, = A 2XE, - AR

3.2 Finite Number of Processors
In this section, the number of processors i in the system is ﬁmte. say P. We shall prove

that the average number of occupied processors, Y. is sill given by ¥ = ANX . Throughout this
section, we assume that the multiprocessor system is in equilibrium.

Theorem 3.2

[f the muitiprocessor system is in equilibrium and work-conservative, then the average number
of occupied processors Y for the case of:

1. finite number of processors, say P,
2. random service time per task (possibly different service requirement and distribution for
each task) with overall average X,

3. random job arrival process with average arrival rate A (but independent job amvals),
and

4 random process graph per job, that is for each job:
+ N random
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* rrandom, r=1,..N

* random repartiyon of tasks among levels, and

* random precedence relationships among levels
1s given by:

Y =ANX

Moreover, if the system is overloaded then

Proof

For p=1....P. let 7, denote the average number of tasks per job processed by processor p, Pp
denote the utilization factor of processor p. and p be the system total utilization factor. The

equilibrium condition is then¥ pu1,.. Pp,<landthatp= Z Pp < 1. We have:
pul

- - »
=AM, X and N= pILA
p=l -

- P [ - —_—
Y=3 0, = L ARX = MK
p=i pul
If the system is overloadcd (i.e., the system utilization factor p is greater than one) then it is
easy 1o see that ¥ = = P since all the processors are being used all the time.

3.3 Conclusion

In the previous sections, we have proved that the average number of of occupied _proces-
SOrs in a2 multiprocessor system with P=1.2,3.... processors is given by ¥ = ANX, where N and X
represent respectively the average number of tasks per job and the average service time per task.
[t is interesting to note that the average number of occupied processors does not depend on the
jobs description (e.g., the distribution of the number.of tasks per job, the distribution of the
number of levels in the process graph, the repartition of the tasks among the levels. the pre-
cedence relationships among the levels inside the process graph, the distribution of the task ser-
vice time, the distribution of the job arrival process and the number of processors in the system
given that such multiprocessor system is in equilibrium). More importantly, in the case of finite
number of processors, the average number of occupied processors is independent of any proces-
sor scheduling provided the multiprocessor system is work-conservative.
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Figure 3.4 and Figure 3.5 provide a pictorial profile of the system utilization and the
average number of occupied processors in the system as a function of the total number of pro-
cessors. In Figure 1.4, we have ANX <1, that is the utilization factor of the system, when P=|.
is less than unity. In Figure 3.5, we have ANX 21, that is the udlization factor of the system,

when P=1, is greater than unity. NotiEe that whenever p<1, the expected number of busy pro-
cessors is ¥ = ANX; whereas forp2l, ¥ = P,

2k
W

NUMBER OF PROCESSORS

Figure 3.4: System Utilization and Average Number of Occupied
Processors versus P, ANX <1

Figure 3.6 provides a pictorial profile of the average number of occupied processors ¥
and the average system time T as a function of the job arrival rate A, and for a given number P
of processors. In the region where p<1, we observe that the expected number of busy processors
grows linearly with the number of processors used, and at a constant slope equal to NX. At

7«.==%.mesymmnluﬂﬁuﬁonfmrpmmevﬂueom.wtﬁchmmina.naverage

number of occupied processors equal o ¥ = P, and an infinite job average system time.
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Speedup Factor

One of the major issues in distributed and parallel processing systems is the evaluation
of the concurrency. Concurrency is a measure of the achievable parallelism, and can be thought
of as the number of busy resources which can be utilized simultaneously. The expected number
of busy processors readily ascertain such a measure. The best we can achieve is for the con-
currency (equivalently the speedup factor) o grow linearly with P. Indeed, the two previous
Theorems witness such a behavior, and prove that for any finite number of processors, the
speedup factor is a linear functon in P for any value of the system total utilization factor;
namely Y =pP,

In practice however, the speedup is much less since some processors are idle at a given
time because of conflicts over memory access or communication paths, and inefficient algo-
rithms for properly exploiting the nawral parailelism in the computing problems (Mura7l,
Kuck72, Kuck74, Kuck77, Kuck84).
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Figure 3.6: Average System Time and Average Number of Occupied
Processors versus A

In the early days of parallel processing, Minsky and Papert {Mins71] provided a
depressingly pessimistic form of the speedup factor known as Minsky' s Conjecture; nameiy that
the speedup factor is equal to the base 2 logarithm of the number of processors used.

Although the expected number of busy processors in a multiprocessor system provides
an insight feeling of how much resources can be utilized simultaneously, it does not accurately
ascertain how much faster 2 job can be processed using multiple processors, as opposed t0 using
a single processor. In chapter 6, we shall properly define the speedup measure as a function of
the system utilization factor, the number of processors used, and the scheduling strategy, and
investigate the parallelism achievabie through a parailel processing system and other important
related performance issues.
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CHAPTER 4
AVERAGE RESPONSE TIME Lv PARALLEL
PROCESSING SYSTEMS

In the previous chapters, we studied the number of busy processors in multiprocessor
systems. In particular, we proved that the expected number of busy processors is a function only
of the job average arrival rate, the task average service requirement, and the average mumber of
tasks per job. Although the expected number of busy processors in a multiprocessor system pro-
vides some insights as as to how much resources can be utilized simultaneously, it does not

accurately ascertain the level of parallelism achieved by executing the jobs on a multiprocessor,
system. This is the aim of the current chapter.

First, we introduce and define a new scheduling policy (i.e.. a service discipline) based
on a non-egalitarian sharing of the processors capacity among the jobs present in the system.
Using this scheduling policy, we convert the process graph describing the jobs into an execution
graph which identifies the execution stages assumed by any job throughout its life in the 5Ys-
tem. In Section 4.2, we consider an infinite number of processors, and we formulate an exact
expression, 2 tight upper bound, and a tight lower bound for the job average response time. In
Section 4.3, we consider the uniprocessor case. We first prove that our scheduling policy forms
a compiete family of scheduling strategies, in the sense that any response time requirement that
can be satisfied at all, can be accomplished by a strategy from the family. Then, we prove a con-
servation law that puts a linear equality constraint on the set of expected system times of the job
execution stages. An accurste and yet very simple approximation for the job average response
time is then formulated. In Section 4.4, we study the job average response time through a mul-
tiprocessing system where all execution stages have the same concurrency degree. This will
¢nable us to formulate a parametric approximation of the job average response time in a mul-
tiprocessing system. Simulations are used to validate and prove the excellent accuracy of such
an approximation. We conclude the Chapter by studying the achievable parallelism and the
efficiency per processor, and by identifying the optimal operating points at which one should
operate the multiprocessor system.



4.1 Model Description

We assume that a job may be modeled as a set of N parually ordered tasks, and is
represented by a given process graph, the same for all jobs. The processing time of a task is
assumed throughout this chapter to be an exponentially distributed random variabie. Different
tasks in the process graph have independent and perhaps different mean processing require-
ments. Tasks in the process graph are identified using alphabetical labels. The task identity set,
denoted hereafter by 1, is the set containing the identities of the N tasks. Let X.. A Q,
denote the random variable representing the processing requirement of task A with mean L

Ha
and a probability density function by(x)=se ™" for x20. Jobs armive 1o the multiprocessing

system according to a Poisson process with an aggregate raze A. The job process graph is
assumed throughout the chapter, unless stated otherwise, to possess only one starting task and
only one terminating task. This property of the process graph is required in the design and
analysis of the approximations of the job average response time.

Throughout the chapter, we restrict the nodon of a scheduling strategy. We consider
only strategies which satisfy the following two conditions:

1. They do not explicitly rely on any information about the remaining processing time of
any job in the system, and

2. they do not allow processors to be idle when there are Jobs waiting to be processed (i.e..
work-conserving strategies).

The scheduling strategy (i.e., the service discipline) to be adopted in the case of a finite
number of processors will be defined as stated below. For the uniprocessor case however, we
shall also consider preemptive and nonpreemptive priority scheduling strategies. In such a case,
we consider that the tasks in the process graph are assigned arbitrary but prescribed priority lev-
els. For the infinite number of processors case however, the scheduling strategy vanishes and
plays no role.

Let / denote the random variable representing the total number of ready (i.e., ready-
for-service) tasks from all the jobs present in the system in the steady state. The Discriminazory
Processors Sharing Discipline for our multiprocessing system is defined as follows:

1. If the total number of ready tasks, &, in the system is less than or equal to the number of
processors P, then each ready task is allocated one processor; that is each ready task is
processed at a rate of 1 second per second.

2. If the total number of ready tasks, #, in the system is greater than or equal to the number

of processors P, then each ready task is served at a rate of % seconds per second. The
n
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ready tasks equally share the P processors,

Although at any time the ready tasks share the capacity of the processors in equal pro-
portons, the above defined scheduling discipline divides the total processors capacity in
unequai fractions among the jobs present in the system. This is due to the fact that jobs, a any
given time, may participate with different numbers of ready tasks. The jobs that possess the
largest number of ready tasks will then receive the mOost preferential treatment ar the expense of
the others (i.e., at the €xpense of the jobs having lower numbers of ready tasks). We shall e[a-
borate on this in the sequel. but first let us introduce the noton of an Execution Graph

processors, or a Processor Sharing service discipline among all the ready tasks, it is not difficult
10 see that a process graph can always be convented to an execution graph. Consider the process

graph given in Figure 4.1, and having 7 tasks identified bythe set Q= {A,B,C,D,E,F,G} with

A beingmestaningtaskandGbeingﬂietenninmngmk. Upon the arrival of a job described
by such a process graph, its Startung task A immediately acquires the ready-for-service status,
and thus the execution stage of the job at its arrival instang comprises only the task A. At the
completion time of task A, the job forks into two new tasks: namely task B and task C, which
immediaiely assume the ready-for-service starus, and consequently the job execution stage at
such an instant comprises both tasks Band C. Atthis point, both tasks B and C are executed at
the same rate. If task B finishes first then tasks D and E assume the ready-for-service status, and
the new execution §lage at the completion time of task B comprises the three ready tasks;
namely C,D and E. Otherwise, if tagk C finishes first then task F would acquire the ready-for-
service status, and consequently at the compietion time of task C, the job execution stage
comprises the ready tasks B and F. Proceeding in this way, the process graph given by Figure
4.1 resuits in the execution graph depicted in Figure 4.2, where the stages are represented by

Generaily, a stage in the execution graph represents a specific set of tasks in the job pro-
cess graph that may be executed in parallel. Formally, let L denote the total number of stages in
the execution graph, a(i), i=1,...L identify the set of ready tasks that are executed concurrently
when the job is at execution stage i. and £(i), i=1,...L be the number of tasks in stage i (i.e., f(i)
denotes the cardinality of the set ofi), i=1....,.L) also called hereunder the concurrency of stage i.
The task identity set Q is then defined as a function of the o({), i=1,... L by:
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Figure 4.1: Process Graph with Identity Set Q = {A.B.C.D.E.F.G}

Q= C,a'au)
in]
From each stage, say stage i, in the execution graph, there are f(i) outgoing edges, cach
corresponding to the termination of one of the ready tasks being executed in the set afi). The
stages at the end of these edges comprise the set of tasks in o(f) minus the just completed task.
plus the new ready tasks, if any, that are activated by the completed task (those which acquire
the ready-for-service status upon the completion of the completed task).

To fully describe the job execution graph, we must determine the transition probabili-
ties between the execution stages. Note that the time spent by a job in any given stage is the
time needed to finish one of its ready tasks comprised in such a stage, and that upon the comple-
tion of the execution of the terminating stage, namely stage L, the job depans the system at
once. An execution stage, other than stage L, comprising one ready task, has only one successor
stage and consequently the transition probability is one. For execution stages with more than
one ready task, the situation is a bit more complicated. Consider execution stage pumber 3 in
the execution graph of Figure 4.2. This stage has 3 ready tasks (namely &(3) = 4C.D.E P and
must then have three successor stages, which in fact are stage 5. stage 6, and suge 7 as depicied

in Figure 4.2. The processing times of these tasks are respectively Xc, Xp, and Xg which are

. . 1 1 1
exponentially distributed random variables with respective averages -u: E and ; Let



Figure 4.2: The Execution Graph of the Process Graph of Figure 4.1



P, i=Ll..L, j=1,..L be the transiton probabilities between stage i and stage . Due to the
memoryless property (i.e., the Markovian property) of the exponential service ume dismibution,
a task in any stage, say stage number i, has the same mean service time > regandless of whether it
had being processed earlier in another preceding stage. Moreover, if Xand ¥ are independent

and exponentially distributed random vanables with respective means L and L. then

Hx KWy
P{)Z’sf’] = Hx . Hence:
Hx + Wy
P{ task Z completes first | Z in a(i)] = hz forall i=l..L  (41)
Ha
t.Ltask A is ma(i)
Using the above equation, and for our example we obtain:
P}s = __“'_e___ P” = ————uE—-—— PT’ = _uf_..._
Me +Up + Ug He +Hp + g He + Hp + He

In the case of the same expomnnal service time distribution for all the N tasks, equation (4.1)
becomes:

P[tasksZcompletcsﬁm Zma.(:)]s?-(—) for all i=1,....L

At any ume during its sojoum time in the system, a job is fully described by its current
execution stage. The global stawe of the muitiprocessing system is thus fully described by the
total number of jobs in each stage of the execution graph. It is not difficult to see that the execy-
tion graph is a Markovian state transition diagram. Indeed, in Figure 4.2, we indicated, on each
directed edge, the instantaneous average rate of exit from the execution stage along that edge
for the case of an infinite number of processors. For stage number 3 for exampie, the rate of
exit to stage number 5 is jip, the rate of exit 10 stage number 6 is ug, and the rate of exit to stage

' In fact:

PUR<i = | PiRsy | ysP<yrdyiap Fsy)
yuld

] b

° Hy Gy
= [ pre™dy - (ux+ur)¢ dy
yul) Hx + oy
Hy Hx

Uy + Ky Kx = Wr
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number 7 is L.

Starting from the initial stage in the execution graph, there are many paths a job can
traverse before reaching the erminaung stage. Since we know the transition probabilities
between the stages (i.e., the probability of traversing ¢ach edge in the execution graph), the pro-
babiliry that a specific path is to be taking can be calculated. As an example, take the path

(1.2,3,59,13,16) in the execution graph depicted in Figure 4.2, The probability of taking such a
path is;

) Ha Hp e Ur .
‘Ha+tUc HCo+HD+HE Mc+Ue ME+UF

and in the case where all tasks have the same mean service time, the probability of taking such a

1
path becomes TR

Suppose there are M paths from the initial stage to the terminating stage in the execu-
tion graph, and let P (m}, m=1,....M represent the probability that a newly amiving job takes
path m in the execution graph. Therefore, we may think of our job arrival process as composed
of M Poissonian arrival processes, the mth of which has an average rate A(m)= AP (m)
m=1,. M. Moreover, the number of stages in any given path is equal to the number of tasks, N,
in the process graph, and consequenty a job is a chain of N specific execution stages and is
hereafter regarded as requiring service N times. Upon arrival to the muitiprocessing system, a
job is at its first execution stage. Upon the completion of this first stage, we may consider that
the job immediately and instantaneously feeds back its second execution stage. At the comple-
tion of its Nth stage, the job departs the system at once. The number of ready tasks a job has at
any given time is equal to the concurrency (the number of ready tasks) of the stage the job is in
at such a time. During its sojoum time in the system, a job participates with different con-
currency levels and hence receives different grades of service. It is for this very reason that our
muitiprocessing system is hereafter called a P-dimensional Discriminatory processor sharing
With job Feedbacks and denoted using the P-DPS-WF acronym.

The global state of our P-DPS-WF multiprocessing system is fully described by the
vectorS=(ny,... . m, ..., m) where a;, is]... L represents the number of jobs in the system
which are in stage i of their execution. We can think of our multiprocessing system as a single
node queueing network with L classes *. For a finite number of processors, the total capacity of
the system is allocated to the different classes according to the discriminatory processor sharing
discipline defined earlier. If at any given time, the state of the system is (ny,....n,...."L)
then the capacity proportion allocated to class i is:

* A job is of class i, i=1,....L if it is in its ith execution stage; a;, i=1,...L is also the number of
jobs of class i present in the system in steady state.
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nf ()P

T i=l,..L
max {P. 3y n,f(;q
=l

L

since a class i job possesses f(i) ready tasks, and ¥ n.f (j) is the total number of ready tasks in
1=l

the szrsu:m. The total number of jobs in the system, on the other hand, is readily given by

ﬂ=Zﬂj.

7=l

LetP(ny,....n;. ..., n.} be the steady state probability density function that the sys-
tem is in state (ny,...,n;,...,n). To obtain these probabilities for all the feasible states. one
must find a solution to the global balance equations of the system. From the theory of queueing
networks, we know that P(n,, ..., n, ... n.] has the Product Form and is efficienty comput-
able under the following set of assumptions provided by Baskett, Chandy, Muntz and Palacios
(Bask75], and subsequently by Chandy, Howard and Towsley: [Chan77)

1. Allowable Scheduling Disciplines : the disciplines allowed are; First Come First Served
(FCFS), Processor-Sharing (PS), Last Come First Served Preemptive-Resume (LCES-
PR}, and Infinite Servers (IS).

2. Service Time Distribution : the service times at an FCFS server must be exponentially
distributed with the same mean for all classes. The service times at PS, LCFS-PR, and
IS can have a general distribution, perhaps with different mean service tmes for
different classes.

3. State Dependent Service Rates : the service rate at an FCFS server can depend only on
the total queue length of said server. The service rate for a class at a PS, LCFS-PR, and
IS servers may also depend on the queue length for that class, but not on the queue
length of other classes. Moreover, the overall service rate of a subnetwork may depend
on the total number of customers in the subnetwork.

4, Interarrival dme Distribution: exogenous arrivals for a given class must be Poisson. In
particular no bulk arrivals are permitted

From this set of assumptions, we can see that the third one (and perhaps the fourth one
to0) cannot be satisfied for our multiprocessing system. The third and fourth assumptions are
usually referred to as the Homogeneity Assumption, which states that the service rate at each
server for a particular class does not depend on the state of the system in any way except for the
total queue length and the designated class's queue length at that server. This assumption essen-
tially implies the following:
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a. Single Resource Possession - a Customer may not be present (waiting for service or
being served) at more than one server.

b. No Blocking : the server’s avility 0 render service is not controlled by any other
servers,

c. Independent Customer Behavior : there should not be any synchronization require-
ments. [nteraction among customers is limited to queueing effects,

d. Local Information : the service rate of any server depends solely on local Queue length
and not on the state of the rest of the system,

queue lengths in other classes.

Nevertheless, there are 1wo Cases we can identify where the Play,....m, . .. »n] has
a Product Form solution as given by the following Proposition. -
Proposition 4.1

IfP{ny,....;,... M) is the sweady state probability density funcrion that the P-DPS.WF
multiprocessing system is ag state (»q,... +Ais....n), then for the two following cases
P[n,.....nf.....n,,]hasmeProduchormsolution: '

1. Infinite number of processory, and
2. finite number of processors with f(i)=F, i=l,... L where F is any positive real constant,

Proof

We shall prove that for these two cases, the homogeneity assumption is satisfied. The propor-
tion of the processors capacity, denoted in this proof by C;, received by class i stages for
nf (P
i=l.....Lwhenthemofthesystem is(nl.....n,-.....n;_).iacm JL . For
max {P. znf (Jq

. o
the case of an infinite number of processors, the proportion C; becomes Ci=nf (), i=1....L
which depends only on the number of stages of class i, and consequently assures the homo-
geneity assumption for product Jorm solutions. For the case of constant concurrency degree,
the same for all the Stages, the proportion of the processors capacity, C;, i=l,...L, received by
class i stages fori=1,....I. when the state of the system is (n,, . .. Wiy oong),is:

74



PI;'FP npP

C| = L - P z
max <P, Zi nFr max FZI n,
= s=

the proportion C,, i=l....L depends then only on the number of class i stages and the (otal
number of stages in the system; and hence satisfies the homogeneity assumption for the system
o possess a product form solution.

The notion of an execution graph can be extended in a natural way, so that an execution
stage 1, i=1....L. may have any arbitrary concurrency degree f(i). Two distinguished case are
identified in the following definitions,

Definition 4.1

An Abstracted Execution Chain (AEC) is a chain of N execution stages, cach of which may
have any arbitrary positive real concurrency degree.

Definition 4.2 -

A Restricted Abstracted Execution Chain (RAEC) is a chain of N execution stages, each of
which may have any arbitrary positive and integer concurrency degree. Moreover, the con-
currency degree f(i) of swage i, i=l,.N is less than or equal o N, and such that
N
T FO)S -’%ﬂl An RAEC is said to be feasible if it acrually corresponds 1o a given process
1=l

graph with one starting task and one terminating task.

In the sequel, we shall use abstracted execution chains to show that the discriminatory
processor sharing discipline with feedback forms a complete parameterized family of schedui-
ing strategies. Restricted abstracted executon chains, on the other hand, shall be used to formu-
late upper and lower bounds on the job expected response time , and ascertain the process
graphs that provide such upper and lower bounds.

Note that while an execution graph always corresponds to a given process graph,
abstracted execution chains and restricted abstracted execution chains may not necessarily
correspond to any real process graph description. Let the stages in the AEC and the RAEC be
numbered from | to0 N. Three limiting cases of RAECs may be distinguished from definition
(4.2); these are:
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Definition 4.3

A Breadth First Execution Chain (BFEC) is an RAEC with f(i)=N-i+1 for i=1,...N. A Depth
First Execution Chain (DFEC) }is an RAEC with f(i)=i for i=1... N. An Egalitarian Execution
Chain (EEC) is an RAEC with f(i)=1 for all i=t,....N.

Let p denote the total utilizaton factor of our P-DPS-WE muitiprocessing system. We
can either express p using the process graph description, or its corresponding execution graph
description. Using the process graph description, the utilization factor p may be expressed as
follows:

A 1
P P & T (4.2)

Using the execution graph description, we also obtain the above expression of the system utili-
zation factor, for a job takes a given execution path in the execution graph, and in such a path
every task appears exacly once. From (Klei75] we know that the stability of the system is
maintained as long as p is less than unity.

4.2 The Infinite Number of Processors Case

We consider an infinite number of processors. We shall first develop an expression for
zhe job average response time, where jobs may be represented by any given arbitrary process
graph comprising N tasks. Then, and by the use of restricted abstracted execution chains, we
formulate a tight upper bound and a tight lower bound on the average response time and provide
the process graphs, among all possible process graphs comprising N tasks, which achieve these
upper and lower bounds.

We now proceed to determine the average input (i.e., arrival) rate to each stage in the
Job execuuon graph. Recall that the average arrival rate of jobs to the system is A, that the
number of levels in the execution graph is equal to the number N of tasks in the process graph,
and that the number of stages in the execution graph is L, with L2V. Let A, is1....L represent
the average artival rate of class i jobs (i.e., the average input rate 10 stage i). We readily have
A=A, =}, and using the transition probabilities between the stages yields:
i=1
AM=F P i=2,.L (4.3)
4=l
The sum of the average input rate to all execution stages in any given level of the execution
graph is A. Since there are exactly N levels in the execution graph, we must have:
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(L]
An execution stage may belong o several paths in the éxecution graph. The probability that
stage i is visited during a job execution is then given by —1# . On the other hand, the expected

time a job spends in stage i is given by . Consequently, the average response time,

p

ke a(i)
denoted by T .., of a job with an arbitrary process graph comprising N tasks is given by:

L

(4.4)

For the case of the same average service time, say E for all the N tasks, equation (4.4) reduces
to:

1 & :
T-=—Ei§ 76 (4.5)

Let T yp and T . 1a represent, respectively, the upper bound and the lower bound on
the expected response time of Jobs with an arbitrary process graph comprising N tasks, and in a
System with an infinite number of processors. The following two Theorems provide the exact
values of T, i and Tois. '

Theorem 4.1

The upper bound T ;s on the expected response time of jobs having any given arbitrary pro-
cess graph comprising N tasks is given by:

M=

1
Taua= ™

Proof

From equation (4.4), we obtain the following nonlinear program to solve:
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L
L Y A =N

L A'i =]
Maximize A=Y Subject to: 12 f2l,vi=l,. L
Sl YT 3. AEA
tead) 4 LN

Consider the ith term in the expression of A, Maximizing is the same as maximizing

Y W

ke ali)

A; and minimizing the sum 3 M4 forall i=1...L. The maximum value of A, i=1. L is A
ke a(s)

The minimum of the sum ¥ j,, isl...L is obained when f(i)=1. On the other hand, if
ke afi)
f(i)=1, i=l,...L then LaN. All the four constraints are also satisfied, and A becomes

Ay L
A=AY —.
Ei K

It is rather interesting to note that among all possible process graphs comprising N
tasks, the process graph PG(N,N) is the one that maximizes the expected job response time;
such an average response time is exactly T, us. Also in the special case of the same average
service tme, say -:l- for all the N tasks, we have T 3 = % Although in general it is hard to

infer the total number of stages in an execution graph obtained from an arbitrary process graph,
the next Lemma identifies the process graphs PG(N,r) comprising N tasks and r, r=1.... N levels
which result in the smallest, respectively the largest, number of stages in their corresponding
execution graphs EG(X.N).

Lemma 4.1

l. Among all possible process graphs comprising N tasks (i.e., PGN.f) for r=1....N), the
process graph PG(N,N) gives the execution graph with the smallest number of stages:
this number of stages is equal to N,

2. Among all possible process graphs comprising N tasks (i.e., PG(N.r) for r=1,....N), the

process graph PG(N, 1) gives the execution graph with the largest number of stages; this
number of stages is equal to (2V-1).
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Proof

First, we prove statement one. Since the execution graph obtained from a PG(N.r) has exactly N
levels, and since the minimum number of execution stages per level is one, it follows that the
minimum number of stages in an execution graph is also equal to N. We now proceed to prove
the second statement. It is not difficult to see that the process graph PG(N.1) gives the execu-
uon graph with the largest number of paths; and hence the largest number of stages. On the
other hand, the sets afi), i=1,....L are the Power ser of the set of tasks, without the empty set.
The proof follows since the cardinality of the Power set is 2

n

Theorem 4.2

The lower bound T (5 on the expected response time of jobs having any given arbitrary pro-
cess graph comprising N tasks, and such that the tasks have the same average service time, L1
Vs

is given by:

l--

1 N
u? )
Proof

From equation (4.5), we obtain the following nonlinear program to solve:

3

L
. TA=WN
LA =1
Minimize A= T(T)- Subject to: { 2. fGRl,vi=l,..L
=] 3. A‘g
4. L2N

Since the execution graph has N levels, we can write:

ll.
a-i{z Al

Now, let us proceed to minimize level by level under the stated set of constraints. Since for all

levels j, j=1,...1. we have ¥ A, = A, our minimization problem is equivalent to maximizing
i lavelj
the number of stages per level and for all levels; hence maximizing the total number of stages in

the execution graph. From Lemma 4.1, we already know that the process graph that gives the
execution graph with the largest number of stages is the PG(N,1). On the other hand, the

79



process graph PG(N, 1) is the process graph where a job arrives as a bulk of N concurrent tasks.

The service time of such a bulk of N parallel tasks is max, , g{fg } and consequently:

Teis =£ {1-—(1—«.'%"]4: = Ll- f;l %

4.3 The Uniprocessor Case

In the case of a uniprocessor system, we may consider the nodes in the process graph as
having assigned priority levels. This system can then be studied by means of the M/G/1 queue-
ing system with job feedback as developed in Chapter 6. However, we are mostly interested in
the study of the discriminatory processor sharing service discipline.

Very few studies of the M/G/1 queueing system with the discriminatory processor shar-
ing discipline have appeared in the literature and none to our best knowledge if we also have -
Job feedback. Kleinrock [Klei67] was the first o introduce such a strategy for a single processor
system with M job classes and no feedback, and provided an expression for the steady state
expected response time of a class k job whose required service time is t Under a different set of
assumptions, and using a different analysis method, O'Donovan [O’Do74} obtained the same
expression. More recendy, Fayolle, lasnogorodshi, and Mitrani {Fayo78] presented another
solution to the same problem. Their analysis method follows O'Donovan’s approach in deriving
a system of integro-differential equations for the steady state expected response time of a class k
job whose required service time is t The system of equations was solved, for general distribu-
tions of the required service umes, by the method of Wiener-Hopf. In the case of exponentially
distributed required service times, the authors in (Fayo78) provided a system of linear equations
for the unconditional steady state average response times. In this section, we first prove that the
I-DPS-WF family of scheduling strategies forms a complete family in the sense that any
response time requirement that can be satisfied at all, can be achieved by a strategy from the
family. Then, we proceed to investigate the job average response time in the [-DPS-WF
ayatem, and present an accurate and yet very simple approximation. Finally, we develop and
prove a conservation law that puts a linear equality constraint on the set of expected sysiem
times of the different stages representing the job execution using the discriminatory processor
sharing discipline with feedback.
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4.3.1 Completeness of the 1-DPS-WF family of Scheduling Strategies

we now progeed to prove that the 1-DPS-WF with jobs represented by an AEC forms 3
complete parameterized family of scheduling strategies. A performance requirement stated in
terms of the average system tmes of the different stage types, is said to be achievable tf, given
the loading conditions on the system (i.e.. given the p;, i=1.....N), there exists a scheduling stra-
tegy which satisfies it. A family of scheduling strategies is said to be complete if every achiev-
able performance requirement can be satisfied by a strategy from the family. Let the perfor-
mance of the system, given the p;'s, i=I,..N, be measured by the vector

T= [T, ..... T ... Ty ] If, for a given scheduling strategy S, the value of the performance

vector is T, we say that S achieves T and denote it by S =eT. A given performance vector T is
said to be achievable, if there exists a scheduling strategy S such that S =»7 ( S need not be
unique). Denote the set of all achievable performance vectors by H; we have:

H-{T‘ES:S-T}

It is obvious that not all.performance vectors (e.g.. T=(0,0.....0) ) are achievable. Let © be 2
family of scheduling strategies, and let H ¢ represent the set of all performance vectors that carr
be achieved using straiegies from the set ©. That is

Ho={T |as;smms-r}

We say that the family ® is complete if Ho = H. In other words, the family & is compiete if
any performance vector T which can be achieved at all, can be achieved by a strategy from the
family @. Note that no finite or denumerable family of scheduling strategies can be complete.

Let Py, P, ..., Pyp be the performance vectors of the MP preemptive priority discip-
lines which can be operated with the N stages. These MP vectors are the vertices or "comers”
of the set H. Moreover, the set H is a convex hull defined by these vertices (and is an (N-1)
dimensional set because it lies on the hyperplane defined by the generalized conservation law
defined and stated in Chapter 6). In other words, the boundary of the convex hull H consists of
the performance vectors which correspond to strategies giving one or more stages preemptive
priority over the remaining ones. These comers of the set H represent then the extremes of the
system performance (best for some stages and worst for others).

Returning o our 1-DPS-WF family of strategies, it is rather easy to see that for any
given strategy in such a family (i.e., any given vector ( £(1),....f (), ..., f(N))), multiply-
ing all the f(i), i=1,....N by the same constant does not change the strategy. Therefore one of the
f(i)’s can be arbitrary fixed; let f(N)=1. We have now an (N-1) dimensional parameter set G
defined by:
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Each point in the set G uniquely determines a 1-DPS-WF strategy, and consequently a perfor-
mance vector T. Moreover, it is rather easy 10 see that this correspondence is one-to-one and
continuous. Let ‘¥ denote such a family of strategies. Since the parameter set G is open, it fol-
lows that the set Hy of performance vectors achievable by strategies from the family ¥ is also
open and therefore Hy # H; that is, ‘¥ is not complete. In fact, the performance vector of any
preempuve prionity discipline cannot be achieved by a 1-DPS-WF strategy because the larter
would not allow a stage in the system to be completely deprived of service. However, the fam-
ily \¥ is almost complete in the sense given by the following Theorem:

Theorem 43

The set of performance vectors achievable by strategies from the family ¥, H, is equal to the
set H of all achievable performance vectors without its boundary. If a performance vector T is
an inside point of H, then it can be achieved by a strategy from ‘¥ and if T is on the boundary
of H, then it can be approximated as ctosely as desired by strategies from V.

Proof

Consider the parameter subsets defined by:

Gu= {(f(l)...-.f @ . f(N=1) | LSf()SU ; l-l.....N—l}

where L and U are positive real numbers, and let ‘¥, ;; denote the family of 1-DPS-WF stra-
tegies defined over G ¢r. We then have:

G=lim; o yem GLv and Hyzalim 4 yow Hyy,

The boundary of the set G ; consists of those points (f(1),....f(i).....f(N-1)) for which f(i)=L for
at least one i and/or f(j)=U for at least one j, i=1,.. .N-1 and j=1....N-1. Let B; ;s be the set of
performance vectors which comesponds to these boundary points in G ;. Now, since the set
Gy is compact and there is a one-to-one correspondence between the set G,y and the set
‘¥ v, then the set Hy, , consists of the set 8; ;; and all performance vectors inside it. More-
over, the set By iy is a closed and continuous surface since it is the image of a closed and con-
tinuous surface by a continuous mapping. Let T be any arbitrary performance vector such that it
is an inside point of H. Because B, y is continucus, then there must exist a sufficiently smail L,
and a sufficiently large U such that the performance vector T is an inside point of the set 8, ;.
This means that T belongs w Ay, , and hence T belongs o H'y.
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The above Theorem states the special fact that if a performance vector T is on the boun-
dary of the convex hull H, then it can be approximated as closely as desired by strategies from
the family ‘Y. In particular, the preemptive priority ordering (1>2> - - - >N) can be achieved by
considering the point in the set G defined by f(N)=1, f(i) —ee i=1,..N-1, and such thar

?%%—»- i=1.....N-1. Likewise, the preemptive priority ordering (1<2< - - - <¥) is achieved

by considering the point in the set G defined by f(1)=1, f(i) —e i=2,...N, and such that

Lf“‘(-:‘—)l)—’“' i=1,....N.

4.3.2 The Job Average Response Time

We now proceed to investigate the job average response time in the 1-DPS-WF system.
Jobs are described according to a given process graph with N tasks. The process graph, in the
sequel, is assumed to have only one starting task and only one terminating task; Figure 4.1 is an
example.

We shall first dettrmine, among all possible RAECs with N stages, the RAEC that pro-
vides the lowest job average response time, and the RAEC that results in the highest job aver-
age response time. We then discuss and present a rather accurate approximation of the job aver-
age response time. Simulations are used to back up and validate the accuracy of the approxima-
tion.

Theorem 4.4

Among ail possible RAECs with N stages, the BFEC is the RAEC which provides the largest
job average response time, and the DFEC is the RAEC which provides the lowest job average
response ime,

Proof

Among all the RAECs with N stages, the RAEC which results in the earliest job completions is
the one that implicitly allocates the highest priority to the jobs having the least remaining pro-
cessing time; this is the DFEC. The RAEC which results in the furthest job completions on the
other hand, is the one that implicitly allocates the highest priority to the jobs having the largest
remaining processing time; this is the BFEC. The proof is complete since the unfinished work
in the system, at any time, is independent of the way the server capacity is shared among the
different jobs present in the system (i.e., independent of the RAEC representing the jobs).
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Although the BFEC and the DFEC do not correspond to any given process graph. they
present, by means of Theorem 4.4, respectively upper and lower bounds on the Job average
response ume. Many RAECs, among all possible RAECs with N stages, do not actually
correspond to a given process graph. Indeed for N=3, the only feasible RAEC is the one with
f(1)=f(2)=f(3)=1; for the number of process graphs with N tasks is one. the process graph
represented by a chain of three tasks. There is also a unique process graph for N=2, the one
corresponding to the RAEC with f(1)=f(2)=1. Among all the RAECs with N=4 stages. only {wo
are feasible, for there are only two possible process graphs having N=4 tasks, and each one of
them corresponds to a unique feasible RAEC. These two possible process graphs with N=4 are
depicted in Figure 4.3:(a) and their correspondent RAECS are depicted in Figure 4.3:(b). For
N=3, we obtain 4 possible process graphs, each of which corresponds to a unique RAEC. Figure

4.4:(a) represents these 4 possible process graphs, and Figure 4.4:(b) depicts their corresponding
RAECsS.

From the above, we observe that for any given N, there are only very few feasible
RAECs. Moreover, the feasible RAECs are by no means extreme cases. In fact, if there exists a
stage i, i=1,....L in the execution graph such that f ()22, then the stages immediately before the
last in the execution graph must have a concurrency degree of one. In other words, any path in_
the execution graph has the inheren: property that f(1)=f(L-1)=f(L)=1 for any arbitrary given
process graph comprising N tasks. This inherent property of the execution graph assures that the
job average response time should be much closer to the average response tme given by the
EEC with N stages, then o the average response time obtained by using either the BFEC or the
DFEC with the same number of stages. The average response time resuiting from the EEC may
be considered somehow as a median among the average response times given by any feasibie
RAEC. For large values of N (i.e., N25), the resulting execution graph may have many execu-
tion paths. These paths are obviously feasible RAECs with N stages. Due to the inherent pro-
perty of the execution graph, namely that f(1)=f(L-1)=f(L)=1, we may suggest that the majority
of the RAECs representing the execution paths provide somehow slightly larger values of the
average response time than the one resulting by using the EEC with the same number of stages.
Consequently, the EEC represents an optimistic and good approximation of the average
response tme of jobs having any arbitrary given process graph.

From Proposition 4.1, we know that the steady state probabilities
Plny,....m....ny] that the uniprocessor system is in state (n,,...,nm,...,n.) have a Pro-
duct Form solution when the jobs are represented in the system by their EEC. The uniprocessor
system can be seen as a single node BCMP (Bask75, Chan77) queueing network with N classes.
A job in the system is of class i, i=1,...N if it is at its ith execution stage. Since the service time

of task i, i=1,...,N is assumed to be exponentially distributed with an average -i- and since



(a): Process Graphs (b): Execution Graphs
Figure 4.3: Process Graphs and their Corresponding Execution Graphs for Nud

(a): Process Graphs (b): Execution Graphs
Figure 4.4: Process Graphs and their Corresponding Execution Graphs for N=$
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A, =Afori=1,.. N, it follows that *:
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A y
where p; = e i=1....N. Let n=% n;, and P[n] be the steady state probability that there are

1 (-]

n jobs in the system. From equation (4.5), we obtain:

Pln]=pPl0] p" n20
N N oA N
wherep=3 p,=3 —, andsince ¥ P{n]=1, we get:

v=} 1=l P im]

4.
Pln)=(1-p)" n20 4.8
and conscquently, if we let A denote the average number of jobs in the system in the steady

state, we get from equation (4.6) and using the fact that i = ¥ nP [n]:
1 ml)

R

1-p .

Since xaw-ﬂ-l—-. and using Little's result; namely that & = AT(1), where T(1) denotes the
L

average response time, we have:

N

1
LT
Ty = o 4.7
- 8.

Equation (4.7) represents an approximation (an optimistic approximation) of the job
average response time of jobs having any arbitrary given process graph comprising N tasks. To
validate this approximation, we simulated the 1-DPS-WF system using the process graph
description depicted in Figure 4.1. The method used to estimate the extent of the simulation
transient state is the method of independens replications (Lave83), and the method used 10 esti-
mate the statistic T(1) for the 1-DPS-WF system in the steady state is the method of batch
means [Lave83]. Figure 4.5 depicts the job average response time given by equation (4.7)
along with the simulation results represented by the confidence intervals, The confidence inter-
vals are depicted in Figure 4.5 as verticai bars, are obtained from the simulation output via the
t-distribution, and are at the 50% level.

" For the sake of clarity and since we are working on the EEC, we are using here numbers
instead of leners o identify the different tasks.
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From Figure 4.5, we observe that equation (4.7) represents a Very accuraie approxima-
tion of the job average response time in the 1-DPS-WF system and for jobs having the process
graph depicted in Figure 4.1. Over all permissible ranges of the system uulization factor, the
approximation is well within the 90% confidence intervals. It is also rather interesting to notice
the narrowness of these confidence intervals. The optimistic character of the approximation may
be observed on Figure 4.5 for moderate values of the system utilizaton factor (the average
response time curve intersects the confidence intervals ag their lower parts). For either small or
high values of the utilization factor, such an optimistic behavior is much less noticeabie.

4.33 The Conservation Law

In this section, we develop a conservation law that puts a linear equality constraint on
the set of average system times of the different stages in the abstracted execution chain that
represents the job execution in the uniprocessor system using the discriminatory processor shar-
ing discipline. with feedback. In [Klei76], Kleinrock established the conservation law for the
M/G/1 queueing system and for any non-preemptive work-conserving queueing discipline. In a
similar fashion, we shall use the fact that the unfinished work in the system is invariant o the
sharing of the sever capacity, provided that the sharing discipline does not explicitly rely on
information about the remaining processing time of any job in the system. In Section 6.3.5 of
Chapter 6, we shall provide a generalization of the conservation law for any M/G/1 queueing
system with job feedback. and any non-preemptive work-conserving priority scheduling of the
different stages constituting the job.

Let T,, i=1....N represent the average time spent in the uniprocessor system by stage i
from the time of its armival to the system unil its completion. For stage i, ix1....N, let - be the

stage average processing time, and p; = -:— be the uniprocessor utilization due to stages of type

i. We consider that all jobs have the same AEC, and hence X; = A, i=1,..N, and p;=£—-.

1=1.,....N. Recall that the f(i), i=1,...,.N are arbitrary and contimuious positive real values.

Theorem 4.5 : The 1-DPS-WF Conservation Law
For an exponential work-conserving uniprocessor system using the discriminatory processor

sharing discipline with jobs described by an abstracted execution chain, it must be, for any
choice of the concurrency degrees f(i), i=1,....N, that
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N
wherep=zp, < 1.

(=]

Proof

N TN ~
let us first prove that ¥ [2 p; ] T;=constant Let U denote the average unfinished work in

I L]
the system, and P{ny,...,n; ... ,ny] denote the steady state probability that there are n,,
t=1.....N stages of type i in the system. A stage of type i found in the system participates, in the
unfinished work, by its remaining service time pius the service time of its fed back stages:
namely stages i+1....N. Therefore, if the state of the system is (mye...om oo ny), and by
using the Markovian property of the exponenna.l service time distributions, the unfinished work

in the system, given such a state, is Z n; Z —1- Consequently, the average unfinished work

_ ] iml  jmy P
in the system, U, is given by: -
U= Z X P ] [T T —
n; =0 L) iml e Py
which amounts to:
—_ N _N 1
Ua¥3n 3y —
inl  jui MW

where n, is the average number of )obs in execution stage i in the system in steady state, Using
Lirtle’s result (Lin61], namely that »; = A,T;, i=1,....N and recalling that the unfinished work in
the system is invariant to the sharing discipline of the server capacity among the stages present
in the system, completes our first proof. Now let us take the special case of an EEC chain to
represent the job description. For this case, we have:

- L.
i S A R A i=1,..N
I N

Using these values compietes the proof.

In the sequel, we shall develop an approximation for the job average response time in the P-
DPS-WF multiprocessing system based on the EEC approximation. But first, we shall invest-
gate the P-DPS-WF multiprocessing system where all the stages in the execution graph have
the same concurrency degree. Resuits from such a system will also be used in the P-DPS-WF
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average response ume approximation.

4.4 The P-DPS.WF Multiprocessing System with the Same Concurrency Degree for all
Stages

In this section, we study the P-DPS-WF multiprocessing system where jobs are
represented by a given execution graph with stages having the same concurrency degree,
denoted hereafter by F (i.e., f(i)=F, i=l,...L). A job is therefore described by a chain of N exe-
cution stages with the same concurrency degree F. Let the state of the system be
S=(n1,... ;... ny) where n;, i=1,...N represents the number of jobs which are present in
the system and are at their execution stage number i. We shall refer to n;, i=1,. N as the
number of class i jobs. Let p,, i=1,....N denote the utilization factor of the multiprocessing sys-
tem due to class i jobs, and p denote the total utlization factor of the system. Hence we have
p= i pi- To evaluate the p;’s, i=l,...N, recall [Klei?75] that the utilization factor is in a funda-

i=]
mental sense the ratio of the rate at which work enters the System to the maximum rate (i.e.,
capacity) at which the system can perform this work. The work an amiving customer brings 1o’

the system equals the number of seconds of service he requires. If El- i=1,...N represents the

average service demand of a class i job, we then have p; = % i=1,....N independenty of the

value of F. Therefore, we have:

r 4.8)
]

M=z

A

)
-

Since from Proposition 4.1, we know that the multiprocessing system under investiga-
tion has a product form solution, we can use the M == M conditions [Bask?5, Chan77, Munt73]
to determine the sweady state probabilities P(n,,....n,... +An]. If the system state is

G TR Y thenmcdepmuremeofclassijobc, denoted hereafter by d,, is given by:

,FP

dix——Tr el
max {P. p> n,-F}
jat
. nFP . . . .
since ~ is the proportion of the processors capacity allocated to class i jobs.
max {P. 3 n,F}
/=l

The above equation may be rewritten as:



".Pl»li

d]' = P N i=|....,fV 49
max <=, 2 n
i
Now using the M =s M conditions [Munt73}, we have;
Rl'+l P
Play, ... n+1, ..., ay] ( ) I-I-.N
max {-f:rl +¥ n}
11 =
Plny..... M. . nn) '

for all i=1....,N and for all the feasible states. Let y denote the set of al] the feasible states: that

S =4 (AL ) ]w=1.....N 1,20 }. The above equation yields:

Pl n+1 n ]=i;mu £1+£‘,n‘ Pln n; ny] 4.10
L S TI 1. ) POV 1¥) w P i+l ' !-11. Lrer oo By ..,y “.10)

Vi=l, L Nad¥(ny, ... .8, 00 e p 4

Using equation (4.10) repetitively and starting from P [1.,0.....0], we can express the probability
of any feasible state as a function of the probability P (0,...,0] of the system being empty. We
obtain:

Pl ) n ]"‘P[O 0] u [}.—].‘Lﬁ max £ igﬂ'.‘. (4.11)
L S T F T In] = Toves |I-T| I-I-.P nl.! yal F' ] g .
Y(ny,..., Riv....AN)E X

Now since we have:

N LT P i-1 -E.‘ P
({5 Bt o

N
and by letting # = ¥ n;, equation (4.11) yields:

im]

ﬁmu{%.f} v
PlAr.... M. .. .yl =P[O.....0] 2= [—] L @.12)

M GITRINY, RN ) T 4
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Equaton (4.12) gives the probability of any feasible state a5 a function of the probabjiry
£{0.,...0 of the system being empty. In the sequel, we develop a closed form expression for the

probability P[n] of having a total of n jobs in the system in Steady state. Letm = | ; | denoung

the largest integer less or equal to % We distinguish two cases depending on the value of m.

Case of nsm

Since [T max {-g . ;}- [%] » equation (4.12) gives:

/=l

. LA P L
Play,... ;... .an]1=PI0,....0) P I'I[ ] ol

im}

*’(nl.....n,-.....ny)ez and a<m

Consequently, we have:
< P0...0] ST
P[n] F" ; im} [u. ] ﬂ.!
:J.En‘--
) i_-}_-_ *
F'fl! iml My

N A
since P(0....,0}=P{0], and p> % = Pp, the above equation yields:

2

P(n)apP(0] ——2- v pgm (4.13)

Caseof n>m

. - I 2 P1™ a! . o
Since Hmu{-p—.;} [F] m!.equmon(4.12)y|el¢s.

Plaw....;,....ny] =P(0,..0] [%]"'—'PL.& [%]‘ L

m! ﬂ,'!

MAC TS PRI W ™ X and a>m



Consequently and after some algebra, we obtain:
N [ﬂ]"‘
F N
Plr]=P(0] 0" Ya>m (4.14)

We now proceed to evaluate the steady state probability P{0] of the system being empty. Using
the fact that Z P[n] =1, and equations (4.13) and (4.14), we have:

A=
PIOI = [m]“l‘ + T _[;.]’ "
n =) F n! Amm ] m! P
which after some aigebra yields:
~lrep 1t 1 [%-'g]u 1
-1 o a6 20 IR SRS A P B S
Pl ,,I_:o [ F ] n! m! 1-p @.15)

Equations (4.13), (4.14) and (4.15) provide explicit expressions of the steady state probability
P(n] of having n jobs in the system. Let A denote the steady state average number of jobs in the
system. Using equations (4.13), (4.14), and {4.15), we have:

E=in}’[n}
n=)
P [de
znr{ol[ ] + z nP[0][ ] p*
A+l
which after some algebra, yields:
o 13 2T,
—’—E P 14 P
n 7 + P 0] oy (l-p)’ +P[0] {m— F - (4.16)

Equation (4.16) along with the expression of the probability P{0] given by equation (4.15),
explicitly defines the steady state average number of jobs in the P-DPS-WF system where jobs
are represented by any given execution graph with stages having the same concurrency degree
F. The job average response time, T(P). in such a P-DPS-WF system can then be obtained by

using Little’s result; namely that T(P) = % where A is the aggregate rate of the job Poisson

arrival process. Using equation (4.8) and equation (4.16), we thus have:
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N 1 P - N 1 - N 1
TN N P T
Tpy=iil 4 propifd st B POt By st B 17
F m!  p(l-p)? m! F’P(l-p) '
Example

Let us take the case of F=1; this is the usual Processor Sharing scheduling strategy. We
have m=P, and equation (4.16) becomes:

wl
PRt P O

where, by using equation (4.15), P{0] is given by:

Pl L
P[o]-l = Z (PP') + QP)P 1

.m0 n! P! 1

This is the known solution of the average number of jobs in the M/M/P FCFS queueing system
and the M/G/P Processor Sharing queueing system,

Limiting Behavior of T(P)

It is of interest to determine the limiting values To(F,P) and T\ (F,P) of the job average
response time as the utilization factor p approaches respectively zero and one, for any real posi-
tive value of the concumency degree F. As P approaches zero, the job average response time
approaches the total job average processing time through an empty system. Since the average

max {P.F

—l-. we obtain ;
M

processing ime of execution stage i, i=1,... N is 73

max {P.F} v
TolF.P)= T 3

—_ 4.18)
iml M

On the other hand, the limiting value T (F,P) is specified in the following Theorem.
Theorem 4.6

The limiting value T (F,P) of the job average response time through a P-DPS-WF system with
4 constant concurrency degree F, the same for all the stages, is independent of F and is equal to
the average response time in an M/M/1 queueing system having the same utilization factor p;
that is:



T\(F.Py= L
l-p

|-

Proof

Let us prove that as p approaches one, the average number of jobs in the system as given by
equation (4.16) approaches the average number of Jobs in an M/M/1 queueing system having
the same utilization factor. From equation (4.15), we have:

limp, P 10] = —L—(1-p)

7]

Replacing P{0] by this limiting behavior in the expression for 7 as given by equation (4.16)
yields:

2
L
n

which compiletes the proof. -

Let us now return to equation (4.9) providing the departure rate of class i jobs, i=1.....L
when the system state is (ny, ..., n;,...,n.). We can rewrite equation (4.9) as follows:

P
ni—

d= £
P
mu{;_-.Zn,-

J=l

}Fu‘ i’l...-.N (419)

Werecognizethisasthemeofdcpmnofchuijobsﬁbmapmcusorsharingsystem

-:;. processors, and where the average service demand of class i jobs is -Fl— This

amounts then 10 a decrease in both the number of processors and the average service demand of
class i jobs, i=l,...N when F>1, and 10 an increase in both the number of processors and the
average service time demand of class i jobs, i=1,....N when F<t.

comprising

Figure 4.6 depicts the job average response time given by equation (4.17), as a function
of the system total utilization factor p, and for various values of the constant concurrency
degree F. Assume, for exampie, that we start with P=20 processors, N=1 and p = 0.0S. There-
fore, for F=1, we have the usual processor sharing multiprocessor system whose job average
response tme is depicted by the curve that intersects the y-axis at the value 20. For F=2, we
obtain the curve that intersects the y-axis at the value 10, This is the curve of the job average
response me in a processor sharing system comprising 10 processors and where the job
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average service demand is 0.1. For F=20, we obuin the curve that intersects the y-axis at the
value 1. This is the curve of the job average response time in a processor sharing uniprocessor
sysiem, where the job.average service demand is 1. Consequenty, we may conclude that it is
much better to have a syslem comprising less processors with shorer Jjob service demands than
a sysiem comprising more processors but with larger job service demands.

The other average response time curves in Figure 4.6, are obtained using values of F
smaller than unity. For F = -%- for example, we obtain the curve that intersects the y-axis at the

value 40. This is then the job average response time in a processor sharing system comprising
40 processors, and where the job average service demand is 2.

4.5 Average Response Time in the P-DPS-WF Systemn

We now proceed to investigate the job average response time in a P-DPS-WF multipro-

Cessor system. Jobs are represented by a given arbitrary process graph with N tasks and
comprising only one starting task and one terminating task. We shall present and analyze a
rather accurate approximation for the job average response time. This approximation is based*
on the EEC and the P-DPS-WF systems with constant concurrency degree, the same for all exe-
cudon stages. Simulations are used to validate the approximation. First, we shall deduce the
exact value of the average response time of jobs through an empty P-DPS-WF sysiem (i.e..
p =0), and then we provide a generalization of Theorem 4.4,

4.5.1 Job Average Response Time Through an Empty P-DPS-WF System

The job average response time through an empty system, denoted hereafter by To(P), is
equal o the average processing time needed by a job when it is alone in the system. Since if X
and ¥ are independent exponentiatly distributed random variables with respective means LLL
X

1

and o and if Z is the random variable defined by Z=min(X.Y) then
r .

P(ZSz]=1-¢ #r"® ;50 It follows that the average of the random variable Z is
Z= . Consequently, since whenever the first task among the set a(i) completes ser-

Bx + Hy
vice, execution stage i terminates, then the average service demand brought by stage i to the

system is given by -—l-. i=1,...L. On the other hand, the processing rate (i.e., capacity)
T M

A e afi)
at which this service demand is serviced depends on whether f(i) is greater than P. If f(i) is less
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Figure 4.6: Average Response Time in a P-DPS-WF with Constamt Concurrency Degree
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or equal to P then each task in the set a(i) is processed af a rage of one second per second. If fij,
is greater than P, however, each task in the Set a(i) is processed at a rate of }P— seconds per
(¢)

second. If §q(i) denotes the dverage processing time of stage i in an empty system, we have:

max {P-f (:)}
So(i) = —— L

Y Ha

A s al)
On the other hand, since the probability that stage i is visited during the execution of a job is

given by -1{- i=1,....L. We thus obtain:

=1,....L (4.20)

i

L 3
To(P)a ¥ Py So(D) (4.21)

is|
Equation (4.21) along with equation (4.20), provides the exact value of the total average pro-
cessing time needed to complete a job through an empty P-DPS-WF system. If £ = o, squation
(4.21) reduces 1o equation (4.4). In the case of Ha=puforallA e Q, equation (4.20) reduces to:

max 1P.f (i)

So(i) = P on i=l,..L
and equation (4.21) becomes:
, N max {P.f(i)}
To(P)= =¥

APy ot f@

4.52 Approximation of the Job Average Response Time

We now proceed to determine which RAEC, among all possible RAECs with N stages,
provides the upper (respectively the lower) bound on the job average response time.,

Theorem 4.7

Among all possible RAECs with N execution stages, the DFEC is the RAEC which provides
the lowest job average response time. Moreover, there must exists a value p° of the system utili-
zation factor such that for all p € (0,p°}, the EEC is the RAEC which provides the largest job
average response time, and for p € (p°, 1), the BFEC is the RAEC which provides the largest
job average response time.
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Proof

The proof is based on a sample path representation of the job arrival and departure paterns. For
a given sample of the job arnval process, the RAEC which results in the eariest job departures
s the DFEC, for it implicitly and dynamically allocates the highest priority to the jobs nearest
to completion. This proves the first statement. For p=0, the DFEC and the BFEC provide the
same average response time which is, on the other hand, smaller than the one provided by the
EEC. From Theorem 4.4, we know that the BFEC is the worst RAEC in the 1-DPS-WF sys.
tem. Since for p—+1, the P-DPS-WF system becomes congested and thus behaves as a 1-DPS-
WF system with a total capacity of P seconds per second, it follows that for a sufficienty high
value of the utilization factor, the BFEC results in the largest job average response time.

Tl

Although the BFEC and the DFEC do not actually correspond to any given process
graph, they present, by means of the above Theorem, and for certain ranges of the utilization
factor, respectively upper and lower bounds on the job average response time. Moreover, given
the process graph description, Theorem 4.7 states that there exiss a certain value p° such that
forall p e [0,p"], the job average response time lies between the one given by the EEC and the
one given by the DFEC; and for all p € (p°.1), the job average response time lies between the "
one given by the BFEC and the one given by the DFEC.

Recall that among all possible RAECs with N execution stages, there are only a few
feasible ones. Moreover, the inherent property of the execution graph, namely that f(1)=f(L-
1)=f(L)=1, assures that the job average response time for high values of the system utilization
factor is much closer to the average response time given by the EEC then to the one obtained by
either using the BFEC or the DFEC. The approximation of the average response time in a P-
DPS-WF system must satisfy the following:

1. For p = 0, the approximation should provide the same value as the one given by equa-
tion (4.21). Moreover, for small values of the utilization factor, the approximation
should result in a curve lying between the curves provided respectively by the EEC and
the DFEC.

2. For higher values of the utilization factor (i.e., p>p"), the approximation should result
in a curve that is very close to the curve provided by the EEC.

The above two requirements can be satisfied by using the P-DPS-WF system job aver-
age response time given by equation (4.17) with the proper value for the concurrency degree F.
Therefore, we have a parametric approximation that depends only on the parameter F. For any
given process graph, we start by computing the value of the job average response time 7y(P)
through an empty P-DPS-WF using equation (4.21). Now, since the concurrency degree F is



less or equal [0 P, the number of processors in the system. by equating the just compured valye
of To(P) to To(F.P) given by equation (4.18), gives the value of F:

N
_ Z.u. _ To(1,P)
T ToP) T ToP)

where To(P) is given by equation (4.21). Notice that for P=1, the value of F is one and, hence
our approximation results in the one presented earlier for the uniprocessor case.

We simulated the P-DPS-WF system using the process graph description depicted in
Figure 4.1, and for the values P=2,3,4.5 and 16. The task average service ime is equal to unity
and the same for all the seven tasks. The Merhod of Independent Replicarions (Lave83] is used
to estimate the extent of the simulation transient state, and the Method of Batch means [Lave83|
is used (o esumate the job average response time T(P) in the steady state. Figure 4.7 depicts the
job average response time as given by equation (4.17), along with the simulation results
represented by the confidence intervals. The average response time in an empty system using
equation (4.21) is 5.208333 for P=2 and 5.055555 for 23. From these values, we get F=1.344
for P=2 and F=1.3846 for P23. The confidence intervals are depicted on Figure 4.7 as vertical_
bars, are obtained from the simulation using the t-distribution, and are of 90% level.

Over all the permissible range of the utilization factor (i.e., p € (0,1)), the approxima-
tion is well within the 90% confidence intervals. It is rather interesting to notice the narrowness
of these confidence intervals even for very high values of 0. The optimistic character on the
other hand, is less noticeable than in the uniprocessor case.

4.53 Achievabie Parailelism in a P-DPS-WF System

Significant reductions in the job average response time can be realized by executing 2
Job, described by a given process graph, on a multiprocessor system. This effect is known as the
Speedup factor (see below), which typically increases with the number of processors composing
the multiprocessing system. Along with an increase in the speedup factor, comes a decrease in
the efficiency of the processors. As more processors are used, the total amount of processors idle
time increases also. While a large speedup factor may appear as a delight for the users. the
efficiency of the processors is also very imponant. It is rather easy to get an efficiency of one,
but this system is extremely slow (e.g., the job average response time is 100 large). This tradeoff
is investigated below by the use of the Power function as defined in [Klei79, Gail83). First, we
shall investigate the achievable parallelism attained by a multiprocessor system with P proces-
sors, and then we shall retum to investigate the above tradeoff.
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Figure 4.7: Average Response Time in 2 P-DPS-WF System
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Customerly, the speedup factor, denoted by a. of a parallel processing system is defined
as the ratio of the job total processing time through an empty uniprocessor system to the job
total processing time through a empty multiprocessor system [Kung84, Hwan84]. This is the
same definition as the concurrency degree used previously. 1t is not difficult to realize that the
speedup factor (in the special case of exponentially and identically distributed task service

requirements) is bounded above by -In_NF [ndeed for the process graph with N concurrent tasks,
and for the case where the service time per task is exponentially distributed with mean L. the
"

same for all tasks, Theorem 4.2 readily gives the lower bound on the average response time
InN+®

using an infinite number of processors. For large N(ie,N>>1), T n = where @

is the Euler’s constant (i.e., © =0.57721...), and the Jjob processing time in a uniprocessor SYs-

. N
tem is —.
m

Although the speedup factor, as defined above, represents a very useful measure in
determining the process graph stucturat paralielism (i.e., the inherent parallelism within the job
process graph), it does not portray the achievabie parallelism obainable by using a multiproces-
sor system, for it does not incorporate any measure of the queueing effects. It is therefore more-
interesting for our purposes to redefine the speedup factor as a function of the number P of pro-
cessors used, the system ytilization factor p, and the scheduling strategy adopted. For a given
scheduling surategy S, we therefore define the speedup factor 1o be:

T((S.p)
TP(SO p)
where T,(5,p) and T»(S, p) represents the job average response times respectively through a

uniprocessor system and a multiprocessor system, for the same scheduling strategy and for the
same utlizatdon factor p.

aS.P.p)= (4.22)

ﬂwqtmﬁonmmuyaﬁmasmwhichcemnudsymwemmfmcompanng
our multiprocessor system. It is not hard to see that indeed we are comparing the multiprocessor
system with P processors, to the centralized system composed of P individual noninteracting
uniprocessor subsystems (i.e., a multicomputer sysiem as defined in Chapter 1), where the aver-

age arrival rae of jobs o each is % This indeed constitutes an interesting comparison, for it

ascernain the gain achieved by interconnecting the P individual processors. Moreover, the super
uniprocessor (i.c., a uniprocessor sysiem having the same capacity as the P-processor system)
system is always superior to the multiprocessing system.
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For our discriminatory processor sharing scheduling strategy, equation (4.22) becomes:

T (DPS -WF.p)

O(DPS-WEF,P,p) = T OFSWF

(423

Using our approximation. we then obtain the speedup function for our process graph of Figure
4.1. Figure 4.8 depicts the P-DPS-WF system speedup as a function of the utilization factor p.
and for various values of the number of processors P. At p=0, we obtain the customary
definition of the speedup factor, that is a(DPS-WF, 1,0) =1, o(DPS-WF,2.0) = 1.344 and
a(DPS-WF,P,0)=1.3846. for all P23. For p = |, we observe that the speedup factor reaches
the value P, as stated through Theorem 4.7. Therefore, we may conclude that the speedup factor
for a P-DPS-WF system ranges between its lowest vaiue obtained at p = 0 and which is equal to
the value of the concurrency degree F used, w its highest value P obtained at p = 1. Moreover,
all intermediary values of the speedup factor can be obtained by a proper choice of the value of
the utilizadon factor. In Figure 4.8, we also depicted the speedup factor achieved by an infinite
number of processors. This speedup factor forms then, for any value of p, the upper bound on
the achievable parailelism.

Figure 4.9 shows the achievable parallelism (i.e., speedup factor) as a function of the,
number of processors for different values of p. We depict in heavy marks the two limiting cases;
namely the case of p = 0 and the case of p = 1. When p =0, the lowest curve shows that a sub-
stantial increase in the speedup factor is only obtained when we move from P=1 to P=2 and
then to P=3. For higher values of 7. the speedup factor is the same as that achieved by an
infinite number of processors. For p = | on the other hand, we have the other heavy marked
curve which states that the speedup factor is equal to the number P of processors used. As p
increases from zero 1o one, we obtain the other curves. In the next section, we shall detsrmine
the optimum operating value of p and then deduce the achievable parallelism obtained at such a
level.

The efficiency per processor in a multiprocessor system with P processors is the ratio
%. As mentioned earlier, it is also of interest to quantify the efficiency of each processor. Fig-

ure 4.10 depicts the eficiency per processor as a function of the utilization factor p, and for the
process graph of Figure 4.1, and for P=1.2,3,4.5.16. As expected, we notice that for small vajues
of p, the efficiency of each processor is very low, and poorer as P gets larger. As the system util-
ization factor grows towards one, the efficiency per processor grows rather rapidly and at p = 1
reaches its maximum value of one.

Recall from our definition of the speedup factor, that we are indeed comparing a P-
individual-noninteracting uniprocessors system architecture to a multiprocessing system archi-
tecture. Figures 4.8 and 4.9 show how much gain can be achieved by using our P-DPS-WF sys-
tem architecture compared to the P individual noninteracting 1-DPS-WF systems architecture.
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We observe from these figures that the parallel processing architecture is supenor (achieves a
lower job average response iime) to the centralized architecture over all permissible values of p.
Indeed. this superiority approaches its maximum when the utilization factor approaches one.
Nevertheless, at p = |, the job average response time in the P-DPS-WF system, while P times
less than that in the centralized architecture, is too large to be of any use. The question naturally
arises as 10 which value of the utilization factor should we use for the P-DPS-WF system, and
consequenty how much parailelism s achieved at this utilization factor point.

Our interest is the tradeof between throughput and response time involved in choosing
a particular system operating point. As the input traffic offered to our multiprocessing system
increases, the job average response time increases; see Figure 4.7. On the other hand, since we
are operating within the system stability condition; namely p<1, then the throughput of the sys-
tem is equal 10 its input rate. Hence, the job average response time and the throughput of our
multiprocessing system are both increasing functions of the input traffic. A performance meas-
ure incorporating throughput and delay into a single function is the notion of Power introduced
in {Gies78]. It is simply defined as:

PW = —£_
Tp(p) -

where p is the system utilization factor and Ta(p) is the job average response time through the
multiprocessing system with P processors. The two contrasting objectives of maximizing
throughput and minimizing delay are combined into this single objective function. Other meas-
ures of power have appeared in the literature (Yosh77, Klei79). -

Note from Figure 4.7 that for small values of p, a significant increase in the traffic input
(i.e.. in the throughput) can be obtained with only a slight increase in the job average response
time, motvating us to increase the input traffic in this region. Conversely, for large values of p,
a large decrease in the job average response time will occur if the input traffic rate is decreased
only slightly, motivating us to decrease the input traffic rate in this region. From Figure 4.7, it is
not difficult to see that an appropriate operating point for our multiprocessing system would be
in the vicinity of the Knee of the average response time versus the utilization factor curve. The
knee is defined as the point on the curve such that a line through the origin 1o this point is
tangent to the curve. Kleinrock {Klei78a] demonstrated the usefulness of this knee criterion by
observing that the value of p which maximizes power occurs exactly at the knee. Kleinrock
further extended the above argument by noting that the job average response time curve need
not be a convex function of p. In the cases where more than one tangent line can be found (i.e..
more than one knee occurs), maximum power will occur for that tangent line which makes the
smallest angle with the horizental axis. Although it is known that the throughput-response time
curves are convex, nON CONvex curves may occur in the case of multiple access protocols which
adapt to increasing load. Such a type of behavior was already observed for the URN scheme of
Yemini and Kleinrock (Klei78b).
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Using the process graph description of Figure 4.1, and our approximation of the job
average response time through a P-DPS-WF system. we obtain the power profile depicted in
Figure 4.11. In this figure, we plot the power of the multiprocessor system as a function of the
utilization factor p for various values of P. Since for any permissible value of p, the minimum
average response time is obtained by using an infinite number of processors, it follows that this
case provides the upper bound of the power measure. This is then represented on Figure 4.11 by

the straight line defined by PW = }L = 5—0—5%5—5- It is rather interesting to notice that the

optimal operating point grows with P. Figure 4.12, depicts the relationship between the number
of processors P, and the optimal corresponding operating point. For a given value of the utiliza-
tion factor p, Figure 4.12 gives the number of processors to be used in the P-DPS-WF mulitipro-
cessor system which behaves optimally at such utilization level. For a given value of P, on the
other hand, Figure 4.12 provides the optimal operating point p. Notice that in the range
p € [0,0.5) there exists no system that behaves optimally (i.e., at its maximum power), and that
for high values of p (i.e., p20.8), a slight increase in p amounts o a large increase in P.

We now contrast our multiprocessing system 1o the centralized architecture system.
Two altemnatives may be considered. First, we compare the P-DPS-WF multiprocessor system _
to the centralized architecture system operating both at their respective optimal operating
points. In this case, the achievable parallelism is represented by the lower curve in Figure 4.13.
The short dashed line represents the asymptotic behavior of the achievable parallelism as P gets
very large. Since the optimal operating point for the centralized architecture is at p = 0.5 which
gives T(1)=14.0 for our process graph of Figure 4.1, and since the average response lime
through an infinite number of processors system is 5.055558, it follows that the asymptotic
value is equal to 2.76923. it is also interesting to notice that the achievable parailelism, as a
function of P. reaches rather quickly its ultimate asymptotic value. This is mainly due to the
fact that after a certain value of P, the P-DPS-WF system behaves as an infinite number of pro-
cessors system. Second, we compare the P-DPS-WF multiprocessing system to the centralized
architecture system operating both at the same value of the utilization factor; the one defined by
the operating point of the multiprocessing system. For this case, we obtain the upper curve of
Figure 4.13. Although the achievable parallelism of the P-DPS-WF system is less than P, it is
monotonically increasing with the number of processors used. This later comparison is more
interesting and practical, for it compares the two architecture under the same load conditions.
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4.6 Conclusion

Significant reductions in the job average response ume can be realized by execuung a
Job. described by a given process graph. on a multiprocessor system. [n this chapter, we intro-
duced a new scheduling stralegy termed the D:‘scrumna:ory Processor Sharing With Jjob Feed-
back, which is proved to fom a compiete family of scheduling strategies in the uniprocessor
Case. The study of the job average response Lime assumed 3 preliminary conversion of the pro-
cess graph into an execution 8raph describing the execution stages of a job during its life in the

In the following chapters, we shall study the performance of models of parallel process-
ing systems in which a job, upon arrival, SPawns into two or more Lasks. each of which must be
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CHAPTER §
PARALLEL PROCESSING WITH CERTAIN
SYNCHRONIZATION CONSTRAINTS

In this chapter, we investigate the performance of models of parallei processing systems
in which a job, upon arrival, SPaWns into two or more tasks, each one to be executed indepen.
dendy on a different processor. The job is considered compieted upon the termination of the

manufacturing and concurrent and distributed processing systems. In the context of production

Sysiems, a customer order can be viewed as a butk of suborders, each one 1 be antended bya

separate facility or device. In computer sysiems with parallel architectures, a bulk job can be

viewed as a program composed of several concurrent subroutines, each one to be processed on a”
different processor. In distributed replicated data bases, write fequests arriving to a given site

must be executed by all the sites to maintain the data base integrity; such 2 write request is con-

sidered to be completed only when all the copies of the data base are updated.

5.1 Introduction and Previous Work

A parallel processing system with P processors in which a customer, upon arrival, sub~
divides into exactly P tasks, the ith of which must be executed by the ith processor, is known as
a P-Dimensional-Fork-Join system. In the context of our previous definition of a process graph,
a job is thus a PG(P,1), namely a graph with P tasks and Just one level (i.e., a bulk of size P),
with the additional constraint that the ith task of a bulk must be executed by the ith processor.
Our main purpose in this chapeer is to devise ways to determine the response time of a bulk job
in such a system,

Flanto and Hahn [Fla84), considered the two dimensional case, namely P=2. Their sys-
tem consists of two heterogencous processors, each having its own infinite queue. The execu-
tion time of a task is exponentially distributed. and the job (i.e.. the bulk job) arrival process is
Poisson. They obtained, under these Markovian assumptions and via uniformization techniques,
a doubie transform of the ystem occupancy, and asympiotic formuias as either one of the
queues becomes very long. Flatto {Flat85] derived limit laws for the distribution and the expec-
lation of the occupancy of either one of the queues conditioned on the other one. [n more
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dimensions {i.e., P 2 3) the problem stull seems 10 be completely open.

A more general model 1s considered by Baccelli and Makowski (Bacc85a} and subse-
quently the same authors with Schwarz (Bacc85b). They considered a P-Dimensional-Fork-
Join sysiem with heterogeneous servers, general armival process and general service procass.
They obtained bounds on the response time of a bulk job in such a system. The key idea they
used 1S (0 construct two queucing systems, that in the sense of some stochastic ordering, bound
the onginal system and that are more tractable analytically than the original one. This approach
1S mouvated by the fact that increased (respectvely, decreased) variability in some of the sto-
chastic components of a queueing system should result in a greater (respectively lower) vana-
bility of the waiting times in such a system (Stoy84, Whit84]. Using sample path representadon
for the quantities of interest (e.g.. interarrival imes, service tmes, waiting times), they obtained
a lower bound that assumes P murually independent D/AGI/1 parallel queueing systems, and an
upper bound that assumes P mutually independent GI/GI/1 parallel queueing systems. However.
to establish their upper bound, they additionally assumed that the arrival process o the original
system has a divisibie distibution. In Section 5.3, we shall prove that such an upper bound still
holds when we relax the divisibility assumption.

Nelson and Tantawi [Nels85] considered a Fork-Join system with homogeneous
exponential parallel servers and a Poisson arrival process. Using results from [Flat84] they
denved exact, asymptotic and approximate expressions for the mean response time of a bulk job
for the case P=2. For the P-dimensional case they provided a fairly accurate approximation of
the mean response time for small P (i.e., P < 32) based on a scaling technique. However, they
also used simulation to determine the scaling function itself.

Other related resuits have appeared in the literature, Towsley, Chandy and Browne
[Tows78] studied computer models in which the CPU and the /O ( or /O and I/O ) activities
can be overlapped. Heidelberger and Trivedi [Heid82) and (Heid83) presented approximation
methods 10 study a closed queueing network representing central server computer models where
a job spawns into two or more tasks at some point during its execution.

5.2 Modet Description

We consider a P-Dimensional-Fork-Join system (denoted hereafter by FI-P-GI/GI/1) 10
be a queueing system operated by P parallel heterogeneous processors (i.e., servers) with syn-
chronization constraints on the arrivals and departures. Each server has its own queue of infinite
capacity and individually operates according to the First Come First Served (FCFS) discipline.
In the next chapter, we generalize this service discipline 0 accommodate prionties. Upon
arrival to the system, a customer (also called hereafter a bulk job), is immediately split into P
tasks, each one is allocated to exactly one server (this is called the Fork operation). As soon as
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all the P tasks consuruting a bulk job have been serviced, the bulk job is immediately i
instantaneously recomposed (this is called the Join operation), and leaves the system at-once
This synchronizatior constraint is accomplished by parking the already serviced tasks «n an
auxiliary waiung area of infinite capacity (this is called hereafter the synchromization box).
where they wait to be reunited to the unserviced tasks (i.e., siblings) of the same bulk job. Fig-
ure 5.1:(a) gives a pictorial representaton of the P-Dimensional-Fork-Join queueing system.
where service 1, i=1,...P, with its queue forms service center i. Figure 5.1:(b) depicts the actyal
process graph PG(P.1) of a bulk job.

For such a system, we are interested in the determination of the bulk job average
response ume, denoted hereafier by T(P), and defined as the average delay incurred between the
Fork and the Join times. First, let us define the following quantities:

JE, : random variable representing the task service time at processor i, i=1,...,P ., with mean X,
and probability density funcuon by, (x).

{ : random variable representing the interarrival time between bulk jobs o the system. with
mean 7 and probability density function a(t). -

p; : the utilization factor of processori , i=l,....P.

X - -
From the above definitions, we have p; = — i=1,...P and for the case where X, = X
;

forall i=l,...P,wehavep,=p= -J-_(- Throughout this chapter, we assume that the random vari-
3

able 7 and the random variables X;, i=1.....P , are mutually independent. Therefore, the queueing
system associated with any processor operates as a standard GI/GI/1 queueing system. How-
ever, the P GI/GI/1 queues constituting our paraliel processing system are not independent since
they all are driven by the same exact input (i.e., they all have identical inputs). It is this very
lack of independence that makes the exact analytical determination of the performance measure
T(P) extremely hard. In lighe of this difficulty, it is natural and relevant o investigate ways of
generating bounds and approximations. The purpose of this chapter is 10 provide easy and vet
accurate approximatons for the statistic T(P).

The stability condition for our parallel processing system can be easily obtained from
standard resuits on GLAGI/1 queues (Klei75). Indeed, the system is stable if and only if each ser-
vice center (see Figure 5.1) in isoladon is Therefore, the P-Dimensional-Fork-Join sys-
temn is stable if and only if p -mulggm is less than unity. Let us now establish an
important result:

115



-
SERVICE CENTER 1 |

-— e m —&—-—-J

r SERVICE CENTER i I

f . _@E___

[
| [
L--------*J

S
i |

l
LSERVICE CENTER P |

------ ﬁ—-J

xOm ZO—-—4PN—-Z0DIOZ<w

(2): The P-Dimensional-Fork-Join System

ONORRRNCNG

(b): The Actual Process Graph in a P-Dimensional-Fork-Join System

Figure 5.1: A Representation of the P-Dimensional-Fork-Join System

116



Proposition $.1

The bulk jobs depart.the system in the same order in which they entered the system.

Proot

Since each bulk job, upon amival to the system, splits into P tasks and since at each server the
Lasks are served in an FCFS order, it follows that, at each server, the tasks depart in an FCFS
order. Therefore, it is impossible for bulk job (n+1) w depart from the system before the nth
bulk job.

]

Let us define the following random variables:

i7*! = random variable counting the number of the (n+1)st bulk job siblings that are still in ser-
vice (i.e., being served) just after the nth bulk job departure from the system.

i%"! = random variable counting the number of the (n+1)st bulk job siblings that are still in the
server queues just after the nth buik job deparnire from the system. B

i3*! = random vanable counting the number of the (n+1)st buik job siblings that are in the syn-
chronization box just after the nth buik job departure.

From Proposition 5.1, we readily obtain :

5.1)
1M +8* <P and 0si* <P-1  a=l2.. (

Proposition §.2

For the P-Dimensional-Fork-Join system, it must be that:

i a0 a=l,2,.

and consequently,
15i%*' <P and 0s8*'sP-1  a=l2,..
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Proof

We use a proof by contradicuon. Without loss of generality, Let the nth bulk job departure be
the first instance where we have i3,”! =0 . Let v denote the set of servers at which the (n+1)st
bulk job siblings are waiting in their respective queucs. Take a server that is in . This server,
having a nonempty queue, must be serving a task, say an mth bulk job sibling. Since this is the
first occurrence, m should satisfy m2na+1. This is a contradiction to Proposition 5.1 and to the

hypothesis that each server serves in an FCFS order.

Let us define the following quantities for the 2-Dimensional-Fork-Join system:

P, , . the probability that there are i tasks in service center 1 and j tasks in service center 2.
P{Z,0] £ 3 P, oZ' the Z-transform of the P, ; conditioned on the fact that service center 2 is

1=}

empty.

P0.Z] & T P, o2’ the Z-uransform of the P, , conditioned on the fact that service center 1 is
/=0

empty. )

For the case of homogeneous servers, we readily have P{Z,0]=P{0,Z] due to the symmetry
between the two servers. With the additional assumption of exponential task service time with

mean & and of a Poisson bulk job amrival process with mean A, Flamo and Hahn [Flai84]

obtained the following closed form expression for this generating function:
3

r
P(Z,0]= —'P—“_l_;z (5.2)

where p=% . From this expression, we can readily obtain :

3
Poo=(1-p)* S

and,
L Pio=l-p (5.4)
i

Equaton (5.4) represents the unconditional probability that the second server center is empty.

Nelson and Tantawi [Nels85), by inverting equation (5.2), obtained an expression for the boun-
dary probabilities, namely:
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Po=(1-p)¢ ap i=0.1,.. (5.5
where ag; is given by < -
1 i=0
a = : 1 )
l-= i=1,2,..

Let g,, k20 be the probability that the number of tasks in the first service center exceeds the
number of tasks in the second service center by exacty k. Thus, we have:

Q=3 Piu, k20
=)

From the balance equations of the system, we get:
e =qe— Py o k20

which may be written as:

k-1

@=qo-2 Pio k21 (5.6)
i

From the stability of the system, we must have lim,_..q, = 0, which results in;

5.7
qo=1-p
substituting ¢o = 1—p into equation (5.6), yields:
k-1
f=(l-p)=- Z P"'o k20 5.8)
]
Using equations (5.5) and (5.8), they obtained the following exact expression for T(2):
- -1
TEm——+2 5 i 1-VI T ap' (5.9)
w=A A i=0

A closed form asymptotic expression for T(2) as p approaches unity is readily obtained, and is
given by :

p—A  4A | Inp 2lnp

In [Nels85] also, a first order (i.c., linear) approximation to T(2) is obtained by examining the
behavior of the ratio % as p either approaches unity or zero, where T(1) is the response time

. 1
of a job in an M/M/1 queueing system and is given by T(1)= I—T As p approaches zero, the
queueing effects may be neglected and hence:

3l
T Qs [9“ ]z [1 3 ] p—1 (5.10)
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lim,_y —) o 2
e 3

As p approaches unity, equauon (5.10) gives:

Their first order approximation to % is then:

which leads o :

T(2)=ﬂ-£1_) (5.11)

5.3 Bounds on the Response Time of a Bulk Job

We now proceed to derive an upper bound for the response time of a bulk job in the”
F1-P-GL/GI/1 parallel processing system. Let us define the following random variables:
T, = random variable representing the response time for the ith bulk job through service center
joj=1..P
T(P.i) = random variable representing the response time for the ith bulk job through the FJ-P-
Gl/Gl/1 system.

; = random variable representing the waiting time of the ith task through service center j,
j=L..P.
X:, = random variable representing the service time of the ith task at service center j, j=1.....P.

7, = random variable representing the interarrival time between the (i-1)st and the ith buik jobs.

We assume that all the above quantities have a limiting behavior, namely for j=1.....P the fol-
lowing limits exist,
T(P) = lim; o T(P.i)

- . -
Wj =].|m,-_..Wj
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and that the random variables ?;, X jo ﬁfj. for j=1.....P are mumally independent random vari-
ables. A folk Theorem of queueing theory [Haje83, Humb82, Rogo66] states that determinism
mirumizes wailing tmes in many queueing systems. [t is thus intuitve that the parallel system
FI-P-D/GU/1 has a lower average response time than the system FJ-P-GI/GI/1. Notice that the
system FJ-P-D/GL/1 is a system of P independent parallel D/GL/! queueing systems. Indeed, in
[Bacc85a) the authors , by gsmg a sample path representation of the system statistics, proved
the above statement. Let T be a random variable representing the responose tme of lhel!gl task
through the jth D/GI/1 service center, and with a limiting distribution 7; = lim;_.. T, . Itis
readily shown [Bacc85a] that:

- ’ -
TP)2 | [1-1'1 PiF; Sx]]dx 5.12)
0

j=l

With the additional assumption on the arrival stream f;, i=1,2,... , namely that the random vari-
ables t; are divisible [FellS7], in the sense that they can be represented as a sum of P muwally
independent renewal sequences with common probability distribution °, we can construct on the
same sample space and family of events of the original system, a new queueing system com-
posed of P parallel GI/GI/1 queues. The key feature of such a new system is that arrivals are no
longer synchronized. Again by using a sample path representation of the system statistics, it is
readily shown in [Bacc85a] that:

j=l

- P -
T®)s | [1-1'[ P sx ]4: (5.13)

where f‘fl is the limiting behavior of the random variable representing the response time of the
ith task through the jth independent GI/GI/1 system.

Now, let us relax the aforementioned additional assumption of divisibility of the ran-
dom variables 7; i=1.2,..., and prove that inequality (5.13) still holds true. Our derivation of this
upper bound uses properties of associated random variables {Bar{75).

" A typical situation where the notion of divisibility holds is given by the class of P-stage
Erlangian renewal processes.
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Definition

Random variables T=(T, T3...T,) are associated if Cov(f(D.g(D)] 2 0 for all pairs of
increasing functions f and £

il

Association of random variables satisfies the following multivariate properties, proofs of which
can be found in (Bari75).

Properties

(P1) Any subset of associated random variables are associazed,

(P2) Increasing functions of associated random variables are associated.

(P3) Independent random variables are associated.

(P4) Iftwo sets of associated random variables are independent of one another, then
their union is a set of associated random variables,

(PS IfTy, T;,...T, are associated random variabies, then -

PIT\Sry,....Tysx,] 2 [P (Ti<x]

=]

We now proceed to show that the random variables representing the response time of
the ith task, namely 7 j=....P are indeed associated, We firsy establish by induction that the
random variables P-V;- J=1....P, representing the waiting times of the ith task through service
center j, are associated.

Basis step:
ror any initial state of the FI-P-GUGU1 sysiem, the random variables W', ja1,.. P are assoc.
ated by (P3).

Inductive step: L.
Assume that W), jal....P are associated for i=1.2,...m. From [Klei75], we have the following
equality

=i+l

Wj = [I'-V;i-(};]* , J=1,..P

where =X, 1, je1....P and [x]* = max(0.x), The set of random vasiables Uj. jal....Pare
associated since they are independent random variables (P3). The two ses W, and U,
j=1,...P are independent of one another, hence these sets are associated (P4). Finally since
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max(0,x) is an increasing function of x, it follows that Pi':,. j=1,....P are also associated ran-
dom vanables (P2).

Now we can procecd in the samc manner to prove that the random vanables T, =tL..P
are associated. In fact, we have T W, +X, » j=1,...,P. The random vanable X, J=l...pare

associated since they are independent (PB) and the union of the sets W and X,' j=l,..., P are
associated by (P4).

Recall that T(P.i) represents the response time of the ith bulk job through the FI-P-GUGL/1
parallel processing sysiem. Hence, we have:

T(P.i) = maxqep {ﬁ} i=1,2,... (5.14)
Therefore,
PIT(. x)m-P[[max.,,g{ Hs:]-P[T‘s: L Thex] vx20 iz

and since the random variables 7, j=1,....P are associated, then using property (PS), we obtain: -

- P
P(TP.D12T]P(T,sx] ¥x20, vi2l (5.15)
=l

Equation (5.15) is valid for any i=1,2,... . This equation is hence valid for the transient state of
the system, and under the condition of stability, we obtain for the steady state:

- r -i
Pllim; . T(P.i)$x) 2 [] Pllim; .. T; <]  ¥x20

=l
which amounts 10
PIT(P)sx] z_ﬁp[f’,s::} vx20
ja
or equivalently,
1-P[T(P)>x] 2 ﬁ P(T,S]  vx20
ja
which finaily gives:
P(T(P)>x] S 1--1:[I P(T,sx] ¥x20 (5.16)
j=

Returning to the computation of the average response time of a bulk job, namely T(P), we have:
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/=1

- - - P -
T(P)=[P(T(P)>x)dx 5 [ [1—1'] P[T,s;;}dx
0 0

which is exactly inequality (5.13).

5.4 Approximate Analysis Using M/G/1 Theory

We now proceed 1o approximate our FJ-P-GI/Gl/1 parallel processing system using an
M/G/1 representation of the System. In the sequel, we shajl restrict our buik job arrival process
10 be Poisson, our servers 1o be homogeneous, and the task service time to be exponentially dis-
tributed. Hence, we shai] be investigating the FI-P-M/M/1 parallet processing system. From the

leaves all not-yet-serviced siblings of the next bulk job, in service. These observations motivate
the analysis of the FJ-P-M/M/] paralle]l processing system as an M/G/1 queueing system.
Indeed. the bulk job arrival process is Poisson, and the service time of a bulk job is the time
Needed to complete the service of its remaining siblings. However, as will be discussed later,
such bulk job service times are correlated. It is because of -his lack of independence that our
MiG./1" is not a pure M/GU] queueing system. In this section, we investigate methods 1o
deal, in an approximate way, with such correlation of subsequent bulk job service times,

Consider the case P=2, namely the paralle] processing system FI.2-M/M/1 represented
in Figure 5.2:(a). Figure 5.2:(b) depicts some service periods of the FJ-2-M/M/1 parallel pro-

shows the fashion in which busy periods alternate with idle periods for service canter 1, service
center 2, and the equivalent M/G./1 system. Observe that the F1-2-M/M/1 system, and conse-
Quently the equivalent M/G,/1 system, is busy as long as at least one of the two servers is busy.
The busy periods for server center 1 and server center 2 are depicted by heavy marks along the
corresponding server time axis. In the M/G./1 sysiem, the departure time of a bulk Jjob
corresponds to the compietion time of the bulk job latest sibling in the FJ-2-MM/1 sysiem,
Define,
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Figure 5.2: The FI-2-M/M/1 Parallel Processing System
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ny = random variable counting the number of tasks in service center 1, in steady state.

n, = random variable counting the number of tasks in service center 2, in steady state.

n, = random variable counting the number of tasks in the synchronization box awaiting for their
siblings completion, with average A,.

X = random variable representing the service time of a task, with average f=& and distribution
by (x)y=pe ™ x20.

{ = random varniable representing the interarrival time between successive bulk jobs, with aver-
age T=% and distribution b,()=Ae ™ 20.

P = the probability, in sieady state, that just after a bulk job departure the random variables ny
and n; are equal.

n = random variable counting the number of bulk jobs in the M/G./1 system in steady state,

X. = random variable representing the service time of a bulk job in the M/G./1 system, with
average X¢ and distribution by, (x).

J?‘: = the ith moment of the random variable i’,,. From the above definitions, we obtain;

Ay = [y |
where ‘ x J represents the absolute value of x. Note that P, »P (#,=0) since P, is the probability
of having n,=0 at bulk job departure times and not for all times, Also, we have:

n =mu{i,,ﬁ,}

We now proceed to characterize the bulk job service time distribution, by, (x), in the
M/Gc/1 sysem. From Figure 5.2:(b), we observe that the bulk job service time, X.. is
exponentally distributed whenever a bulk job departure leaves #,#a, in the system, and distri-
buted as the maximum of two exponentials whenever a bulk job deparure leaves 7 =n,,
namely 7,=0, in the system. Consequently, we may define :

- max(X,.X) with probability P,

X, = _ ' (.17
X with probabilty (1-P,)

where the random variables X; and X, are independent and distributed identically © X.
Nevertheless, consecutive service times are correlated. Consider a service time immediately fol-
lowing a very long bulk job service; this service time is most probably distributed exponentially
(as opposed to a maximum of two exponentials), since the other sibling of the bulk job had a

" The subscript ¢ is to indicate that it is an M/G/1 system with correlated service times
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good chance of already being served. In fact. all points corresponding to bulk job departures
leaving the system with 7,=0 are renewal points in the sense that future service times do not
depend on any history. previous to such points. Another way to observe this correlation among
successive bulk job service tmes, is to realize that a bulk service time depends on the acrual
values of 4 and A, at the beginning of service. On the other hand, the values of 4, and s
depend on the length of the previous bulk job service time (provided that the system has not
gone idle meanwhile). Equation (5.17) is an approximate representation of the actual bulk job
service time. It assumes that the service times are independent and identically distributed, hence
enabling us to use the pure M/GI/1 theory. Equation (5.17) stands for any particular distribu-
tion of the random variable X. Here, X is exponentially distributed and hence, by, (x) is a max-
imum of two exponentials with probability P, and an exponential with probability (1=-P,).
First, we determine the diswribution of the maximum of two independent identically distributed
random variables. L.et Famax(i 1.X2), hence we have:

P(YSy) = P(max(X.X3)Sy)

=P (X15y.X5y)

= P(X, )P (X15y) |
and since we have P (J-(ISy) =P (fzSy) = |- y20, we obtain:

P(Ysy)= [1-(**’ ]2 y20

Therefore, we finally obtain:

b, = [tpere-zuewelp, +ue ™ (18] x20
or,

by, (x)=p [1+P.]¢"" -2uPe™ = x20 (5.18)

Its Laplace transform, denoted by B (s), is :

T} [1+P,] WP,

‘(s)= - 5.19
B.(s) Uts 2u+s (3.19)
_ dBZ() d28.(s)
From the above equation and using X.=- < a.ndffa-—‘z . We get
|l-ﬂ d' |l-l
- 2+P
.= Zu‘ (5.20)
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5.5 Analysis of the Modified MiG./1 System

From the las; section we have seen that the main point in analyzing the M/G,/ | system
is the way to approximate the bulk job service times to render successive service times indepen-
dent and identically distributed. In this sectuon, we proceed in a similar manner, namely 1o
represent the bulk job service time distribution with a4 geometric behavior. Nevertheless, we
wish to decrease the variance of its distribution.

The interpretation of equation (5.27) is that, under heavy traffic load conditons. a bulk
job departure almost always leaves just one sibling of the next bulk job in service (the other
sibling must be at the synchronization box according to Proposition 5.2). This is the well
known Arc Sine Law [Fell66], in which one considers a particle that moves along the positive
direction of the x-axis, and at each unit of tme it jumps upward with probability one haif and
downward with probability one half. This is similar to the FI-P-M/M/1 system where 2 down-
ward jump represents server 1 ﬂnishingiucummkﬁmmdmupwudjumpmpresmn
server 2 finishing its current task first, pmvidedﬂmwehavealamnumberofmksqueuedu
each server (which is the case since p=>1). The Arc Sine Law says that enormously many trials
are usually required before the particle reums to 2 position on the x-axis. From equation (5.27),
one first order (i.e., linear) approximation to the probability P, is:

Pyalw (5.29)
Using the above expression into equation (5.18), we obtain:
bx, (%) = Q-t)ue ™ - 21~tie™ 130 (5.30)

which yields:

=Xt | gu.ln

and since © = AX,, we get:

tm L. (5.31)
2+p
which in tum yields:
- 3
- (5.32)
X H(2+p)
XTm—l P (5.33)
¢® =
BWe(2+p)

Nowletusseeifwehaveameededindecteuingmevaﬂmofmemlkjobservice time dis-
tribution by this approximation. The variance is given by equation (5.22) as a function of the
probability P,. Let o be the variance obtained by using the P, given by equation (5.24), and
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o% be the variance obtain by using the P, given by equation (5.29). After some algebra, we ger:

; p+2(1-p)(l-~n—p>[p—z(l-o)<1-~n—p)]
g1 =

5.34)
wip 034
5+5p—p?
gf =
3 oy (5.35)

2
g

Figure 5.5 portrays the behavior of the ratio é versus p. Notice that in the limiting cases (i.e..

p—>0, p—1), both variances are equal due to the fact that in both cases the probability P,

satisfies the limitng behavior of equation (5.27).

Now we proceed to the determination of the average response time of a bulk job. The

—
average waiting time of a customer in the M/G/1 system is given by W(2) = 3 (l-:c) , hence by
using equations (5.33) and (5.31) we have:
' 3
W)= —2— L .
D% 00 " 39
Notice that ﬁ is just the average waiting time of a job in an M/M/1 queueing system hay-
ing the same utilization factor p. Thus, we may write equation (5.36) as:
3
W(2) = 'EW",“” + -4%
by using T(2)=W 21X, we get:
=3 204
T2)= 3 Tarmn + FRTIoS) (537

where Ty a1 1S the average response time of a job in an M/M/1 queueing system having the
i 11-9)' Finally, by using Little’s result (Lia61},
we get the following expression for the average number of bulk jobs in the M/G./] system:

N = "g"lvmun + %%l
where N1 is the average number of jobs in an M/M/1 queueing system having the same
utilization factor p; namely Nig,ae/1 = TE'E Figure 5.6 depicts the average response times of a

bulk job given respectively by equation (5.9) and equation (5.37), versus the utilization factor p.
These average response times are very close to each other, and show the applicability and the
accuracy of the modified M/G./1 system approximation. In fact, for p € (0,0.7] both average
response times are almost identical, and for higher values of the utilization factor p, the average

same utilization factor p; namely Ty =
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response time given by (5.37) is slightly higher The average relatve ermor between the two
dverage response umes is less than 5% for valyes of P in the range (0.0.55).

5.6 Analysis of the M/G./1 System Using a Load Adjustable Service Time Distribution

In the previous two sections, we analyzed the M/G,/1 system by considering a bulk job
service time distribution having a geometric behavior. [n this section, we proceed to study the
queueing system using a different representation of the bulk job service time distnbution. From
the previous analysis we know that, for very light traffic (i.e., p—0), the service ame of a bulk
Job is distributed as the maximum of two exponentials. Under heavy traffic conditions (i.e.,
p—1). we found that the service time tends to be exponentally distributed. Therefore, we may
consider the service time of a bulk job as a weighted sum of two independent random variables.
Namely, let:

X, = random variable exponentially distributed with mean f and distribution

X2 = random variable distributed as the minimum of two independent exponentially distributed
random variables, namely by, (x) = 2ue "% 130,

Now we represent the service time of buik jobs as a weighted sum of the random variables X '
and X5 :

jg 321 + 0(1)22

To determine the weighting function (1), notice that the limiting behavior of this function
must be :

lim,_pc(7) = | lime_,; (t) = 0
This leads us to consider a first order approximation to a(t), namely:
oty = 1=t
which gives: .
X, a Xy +(1-0)X, (5.38)

Using the definitions off, and)?z. we get:
Callt .96
3 2“ Y ¢ 2“2

where t=AX,, that is :
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e 30

2+p
Notice that the abové expression of the utilization factor is exactly the same as the one given by
equation (5.31) of the previous secuon. This is quite natural, since for the average service time
of a bulk job, X,, P, and a(t) play the same role. Nevertheless, the second and higher moments
of these service imes have different expressions. Using equation (5.39) in the expression for X.
and .?f , yields:

{5.39)

3
X, 2 ——e .
A 34p) (5.40)

Xl D)

c (541
Py )

Now we proceed to find the average response time of a bulk job using this new approxi-

ve
mation. First, let us determine the average waiting time of a bulk job. Using W (2)m M

) 201’
along with equations (5.41) and (5.39), yields:

4
2u1-p) * 252+) G42)
Since T (2)=W (2+X,, we obtain from equations (5.40) and (5.42);
3 2
TQ)=s — 54
@ =35 +00 ) (5.43)

Finally, the average number of bulk jobs in the system is obtained by using Little's formula,
and is given by:

NS.B-E...._E_M
2 1-p 2

Figure 5.7 depicts the average response time of a bulk job given by equation (5.9) along
with the one given by equation (5.43), versus the utilizaton factor p. This figure shows the high
accuracy of the present approximation. For small to moderate values of the utilization factor p
(i.e., p € [0,0.7]), both average response times are almost identical. For higher values of p,
however, the average response time given by equation (5.43) is slightly higher. For the larter
range of the utilization factor p, the average relative error is less than 4%.
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5.7 Analysis of the M/G./1 System Using Independent Start-up and Finishing-up Deiays

In the preceding sections, we investigated ways (o analyze the FJ-2-M/M/1 parallel pro-
cessing system using an M/G./1 representation. [n such an M/G,/ 1 system, successive bulk Job
service umes are correlated. A close look at the system revealed that whenever the synchroniza-
tuon box is empty, the current (if any) bulk job service time is distributed as the maximum of
two independent identically distributed exponentials; otherwise the current bulk job service
time is exponentally distributed. On the other hand, from equation (5.7), we know that the pro-
bability of having an empty synchronization box is (1—-p) which is exactly the probability of
having one of the M/M/1 service centers idle unconditioned on the other one. This rather
important observation leads us (o consider the analysis of the M/G,/1 system as an M/G/1
queucing system obtained from an M/M/1 queueing system in which an additional delay is
added 10 the first customer of each busy period. In Section 5.7.1, we analyze the response time
in such queueing systeras but in a2 more general context; namely the response time of an M/G/1
queueing system obtained from another M/G/! queueing system in which an independent addi-
tional delay is added to each customer starting a busy period. The former M/G/1 system is
hereafier called the modified M/G/1 sysiem with start-up periods.

Secdon 5.7.2 provides a response time analysis for an M/G/1 queueing system with
finishing-up delays. namely a response time analysis of an M/G/1 queueing system obtained
from another MAG/1 system in which an independent additional delay is added whenever a busy
period ends in the latter system. The former queueing system is hereafter called the M/G/! sys-
tem with finishing-up periods.

In Section 5.7.3, we compare the response time of both the M/G/1 system with start-up
periods and the M/G/1 system with finishing-up periods. We then apply the derived results to
obtain a very accurate approximation of the average response time of bulk jobs in the FJ-2-
M/M/1 parallel processing system.

Queueing systems where a special trearment is considered whenever they become idie
have appeared often in the literature. Miller [Mill64] analyzed a queueing system where the
Server goes on a vacation " rest period " of a random length whenever it becomes idle. He also
investigated a queueing system where the first customer arriving to an empXy system is given a
special service time. Scholl (Scho76), and subsequently Scholl and Kleinrock [Scho83]
analyzed a server with " rest periods " using a different approach. These types of queueing sys-
tems were also reported in several other studies inciuding Cooper {Coop70], Heyman
(Heym77], Levy and Yechiali {Levy75], Shanthikumar {Shan80], Avi-ltizhak, Maxwell and
Miller (Avi-65], Van Der Duyn Schouten [Scho78], and Levy (Levy84]. In particular, in
[Levy84) the author considered an M/G/1 system where the system is " mmned off " whenever it
becomes idle. When a customer arrives to an idle system, it cannot be served immediately.:
rather an independent random amount of time, called starter, is required to start the empty "
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cold " system before such a customer can be served. The author also considered the case whare
the " cold start " depends on either the amount of work arriving to the system at the beginnung
of the start-up period, or on the length of the idle period preceding the start-up operation. He
showed that the delay distnbution in such a queueing system with a " starter " is composed of
the direct sum of two independent random variables, namely

1. the delay in the equivalent queueing system without the " starter ", and

2. the additionai delay suffered due to the " staner " presence

This decomposition property of the delay, has also been reponed by Fuhrmann
[Fuhr83), and Doshi {Dosh83]. However, the methods used to derive this property are rather
different,

5.7.1 Analysis of the Modified System with Start-up Periods

As stated earlier, and in contrast to the aforementioned studies of M/G/1 systems with
special treatments whenever they become idie, the emphasis here is on queueing systems where
such a special treatment may, in addition, be needed even though the system is not idle.
Specifically, we are interested in the study of the response time in such a modified M/G/1 sys-
tem (called hereafter the modified M/G/1 system). The modified system is obtained from a pure
M/G/1 queueing system (called hereafter the pure system), but where each customer starting a
busy period in the pure system is given a special treatment in the modified system. Our objec-
tve is to determine the response time distribution of a customer in the modified system. To
proceed let us define, for the pure system |, the following quantities:

U(t) = the unfinished work in the system at time .

C, = the nth customer.

1, = the arrival time of customer C,.

Iy = T,—T,_; = {he interarrival time berween customer C,.; and customer C,,.

x, = the service time of customer C,.

Y; = the length of the ith busy period.

Z; = the length of the ith idle period, with probability distribution function Z;(t) 8 P (Z,<:), pro-
azZ( . c -

bability density function z,(r) & _dz( ) , and Laplace transform Z; (5) & (I, e~z (r)ds,

R, = the response time (i.e., total time spent in the system) of customer C,, with probability dis-

dR, ()
tribution function R,(z) 2 P(R,.%t). probability density function 7,(t) 3 ;:

transform R.(s) A { e™r, (1)dt.

, and Laplace
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Also let us define the following quantities for the modified system:

S. = the start-up delay suffered in the modified system by the first customer of the ith busy
period of the pure systcrn. with probability distribution funcuon 5.ty 2 P(5,s1), probability

density function s,(t) &

i e 5, (8)dt.

D; = the total additional delay suffered in the modified system by the first customer of the ith
busy period of the pure sysiem, with probability distribution function D (1) B P(D<1), proba-
bility density function d,(r) & ‘( ) . and Laplace transform D] (s) A ! e~ "d,(r)dt

B, = the propagated delay fmm the previous busy pericd that the first cusmmer of the ith busy
period of the pure system suffers, with probability distribution function 8,(:) 2 P(B;st), proba-

i(t
bility density function b,(t) & df )

= l "bi(')d‘-
RM, = the response time (i.e.. total time spent in the modified system) of customer C,, with
probability distribution function RM,(¢) AP(RM (£)sr), probability density function

_d‘.".('_) and[..aplace transform RM(s) 2 Ale rm,(8)ds.

rma(t) £

From the above definitions, we observe that the additional delay suffered in the
modified system by the first customer of the ith busy period of the pure system is the sum of the
start-up delay and the propagated delay. In the sequel, we assume the following:

1. the random variables representing the start-up delays, S, i=1,2.... , are independent and
identically distributed, and

2. the sequences §;, i=1.2.... , f,, n=12,.. and x,, n=12,... are mutually independent
sequences

Figure 5.8:(a) depicts the behavior of the unfinished work U(t) in the pure M/G/1 sys-
tem. For the exact same sample of arrivals (i.e., the sequence T, T;,...) and the same sample of
service times (i.e., the sequence x, x3,...), we can induce the behavior of the unfinished work
U(t) in the modified system. Figure 5.8:(b) depicts this U(t), where the dashed line represents
the pure system of Figure 5.8:(a), and the solid line represents the modified system.

From Figure 5.8:(a), we observe that customer C |, arriving to an empty system, suffers
an additional delay equal to a start-up delay D, distributed as §,. Customers C; and C'y suffer
exacdly the same additional delay. Customer C,, arriving to an empty system in both the pure
and the modified systems, suffers the additional delay of a second start-up delay §,, which is
independent and identically distributed as §,. However, customer C¢, amiving to a busy
modified system (see Figure 5.8:(b)), and an empty pure system (see Figure 5.8:(2)). must suffer
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both a start-up delay and the propagated delay ( D2~Z;). Customers C¢ and C 7 suffer the same
additional delay as customer Cs.

We now proceed 10 analyze the modified M/G/! system. The additional delay suffered
by the first customer of busy perfiod i of the pure system, can be recursively calculated from the
foilowing recursion equation:

D=5,

Dol = Siat if D;sZ; (5.4
e D; -2, +S,'¢1 if D22,

The first line in the above recursion equation represents the initial condition. [ndeed
both the pure and the modified systems are assumed to be idle when the first customer arrived.
Thus the additional delay amounts (o a start-up delay period. The second line represents the
case where the arriving customer (i.e., the first customer of busy period i) finds both the pure
system and the modified system idle. Thus only a start-up period is needed. Line 3 of the recur-
sion equation represents the case where the customer finds the modified system busy; thus the
additonat delay for such customer is the sum of the propagated delay from the previous busy
period plus an independent start-up period.

Our main interest is to evaluate the additional delay suffered by an arbitrary customer.
From Figure 5.8, we observe that such a delay has the same distribution as the additional delay
suffered by the first customer of the pure system’s busy period. This is stated in the following
Theorem.

Theorem §5.7.1

Customers belonging to the same busy period in the pure system, suffer the same additional
delay in the modified system with start-up periods.

Also from the recursion equation (5.44), we observe that the additional delay D, is
independent of the length of the ith idle period of the pure system, i=1,2,.... In fact, the random
variables Z; and §; i=1,2,... are mumally independent, and that D; is only a functon of Z,,
Zy,Zicy ad §y, 83,...5.

Now we proceed to show that the response time of a customer in the modified system
possesses the aforementioned decomposition property, in the sense that this response time is the
direct sum of the additional delay suffered in the modified system plus the response ume in the
pure system.
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Theorem 3.7.2

The additional delay suffered by an arbitrary customer in the modified system with start-up
periods is independent of the response time such a customer has in the pure system.

Proof

The response time of an arbitrary customer in the pure system is only a function of the behavior
of the system from the start of the busy period. On the other hand, the additional delay suffered
by such a customer in the modified system is equal W the additional delay of the first customer
starting the same busy period. The proof is thus complete by noticing that the additional delay
of the first customer is only a function of what had happened prior to the busy period.

Similarly, we can show that the additional delay D;, i=1.2.... is independent of the
number of customers served in the ith busy period. Consequently, Theorem 5.7.1 resylts in the
following Corollary.

Corollary 5.1

The limiting distribution of the additional delay suffered by an arbitrary customer in the
modified system with start-up periods is identical to the limiting distribution of D;.

Now we proceed 1o determine the response time of an arbitrary customer in the
modified system. Since the job arrival process is Poisson with parameter A, it follows that the
interarrival times as well as the length of the idle periods are exponentially distributed with
parameter A. Hence we have:

1y e ar (N mle™ 7% a7 () w
Zi(t) = 1=e R IGEEOELY , 2 (8)=2Z,(9 e

where z(¢) and Z°(s) are respectively the limiting behavior of z;(+) and Z;(s) as i approaches
infinity. From the definition of the propagated delay, 8;, we have:

B D, -2 if D;2Z, .

Combining the above equation with the recurrence equation (35.44), we obtain the following
recurrence equation:
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D,,l =Bi+l +S,.| icl
Since the start-up delay §,.; and the propagated delay 8, are independent, we get:
D/w()=5 (). Bluls) izl
and as i approaches the infinity, we get the following limiting behavior:
. . . (5.43)
D (5)=5 (5).B (s5)

From our definitions, the probability density function of the propagated delay is thus given by:

bia®)= I 2(r)di(r+t)dr + l-lo(f)[ I d,(r)dr I z(u)du]
rwl) ")

ral

Using z(r) = Ae™™, and passing to the Laplace Transform of b;,,(r), we get:

Bl.(s)= | e"'[ | AeMdi(r+i)dr }dt
1ul)”

rul)

+ ] e [ [ dir)dr | he™du ]d:
r " re) u

- - )
= | e"'{ [ Ae™di(r+0)dr |dt + DIV
= ral) J

Y

= I Y Pimion) [I e d,(y)dy| dr + D:(A)
red yur J

ey | edoXePP-dy + DIt
Yy

. MDA - D] (5] .

pocy D:(\)
which finally gives:
. sD!(A) = AD} (s) ,
Bi.(s)= Py i2l

this gives us the following limiting behavior :

B"(s)= L2 (11::9@

Using the above equation along with equation (35.45), yields:
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. S (5)D"(0)
D a 2190 (A)
) S=A+AS (5)

Using the fact that D*(s=0) = I, we get :
D (A) = 1-A5
where S is the average start-up delay. Hence we finally obtain:
5 (1=A8)

D (s)=8"(s - 54

) ® s=A+AS"(s) (548
= dD(p) . . X
Therefore, by using D = -T, . the average additional delay is thus given by:

1)
— g2 —
D= AS — +$ (547

2(1=AS)

From the decomposition property, Theorem 5.7.1, the dverage response time of an arbi-
lrary customer in the modified M/G/1 system with start-up periods is then :

RM,' IR,‘+D,' i2]

RM(s)= Ry(s) . D(s) n2l
and as n approaches the infinity, we obtain the following limiting behavior:

RM (5)=R*(5)D"(s) (5.48)

Finally using equation (5.47), the average response time of a customer in the modified
System with start-up periods in the steady state, denoted by RM is given by:

— 7 —
RM =R + AS — 4 S
2(1=-A5)

where R is the average response time of a customer in the pure M/G/1 system in the steady
state,

(5.49
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5.7.2 Analysis of the Modified System with Finishing-up Periods

Consider the- modified M/G/1 queueing system obtained from another pure M/G/1 sys-
tem where an independent additional delay period is added in the modified system whenever a
busy period ends in the pure system. This can be thought of as the server in the modified system
taking a rest period whenever the pure system ends a busy period. In this section, we provide a
response ume analysis for such a modified M/G/1 queueing system. The approach we use is
similar to the one used in the previous section. in particular, we use the same notation as for the
pure system. For the modified system, we define the following quantities:

Fi = the finishing-up delay (i.e., the server rest period) incorporated in the modified system
upon the termination of the ith busy period of the pure system; with probability distribution

dF,‘ t
function Fi(t) £ P(F.Ss), probability density function f(r) 2 df ). and Laplace transform

Fi(s) 2 [ e™"fnar.
0

D; = the total additional delay suffered in the modified system by the first customer of the ith
busy period of the pure system, with probability distribution function D;(r) 2 P (D;<s), proba-

dD(1) T

bility density function d,(s) & , and Laplace transform D; (s) & J e"d,(1)ds.

In the sequel, we assume the following:

1. the random variables representing the finishing-up delay periods, F; i=1,2.... . are
independent and identically distributed, and

2. the sequences F; i=1.2... and 1, n=1,2,.. and x, n=12,.. are mutally independent
sequences.

Figure 5.9:(a) depicts the behavior of the unfinished work U(t) in the pure M/G/1 sys-
tem. For the exact same sample of arrivals (i.., the sequence Ty, 7;....) and the same sample of
service times (i.e., x;, X3,...), we can induce the behavior of the unfinished work U(1) in the
modified system. Figure 5.9:(b) depicts such U(t), where the dashed line represents the pure
system of Figure 5.9:(a), and the solid line represents the modified M/G/1 queueing system.

From Figure 5.9, we observe that upon the termination of the first busy period. an addi-
tional finishing-up delay is added in the modified system. Customer C, arrives 10 an empty sys-
tem in Figure 5.9:(a), and since the additional delay is smaller than the next idle period, it also
finds the modified system empty. At the end of C, service time, the pure system becomes idle
and thus another independent additional finishing-up delay is added in the modified system.
However, customer C s arrives and finds the pure system empty and the modified system busy,

147



Uit

n 72 na

fo— Yy

Uit

R M . t
T4 TS s v

o 2 — o Y o Z, -

(2): Event Time Diagram for the Pure M/G/1 System

e

N

f\ I \\ r\ \
NN F TN
| A MNF N\

N N2 I\ YN

Fy RN N

| b \ i NN
L L | 3 | L N
rn L&) T4 s T8 n”

(b): Event Time Diagram for the Modified M/G/1 System

Figure 5.9: Behavior of the Unfinished Work in the System With

and Without Finishing-up Delays

148



and consequently must wait the propagated delay which is the remaining unfinished work of the
modified system.

We now proceed to analyze the modified M/G/1 sysiem. The total additional delay
suffered by the first customer of the ith busy period of the pure system can be recursively calcu-
lated from the following recursion equation:

01 =0

Do = D‘-+F,'—Zi if D."l‘F,‘ZZ,’ (5.50)
“17 1o if D;+F,SZ

The first line in the above recursion equation represents the initial condition of the Sys-
tem being empty. in the case where D; +F; € Z,, no delay is suffered by the first customer of the
(i+1)st busy period of the pure system since the length of the ith idle period of the pure system
is larger than the accumulated delay D; +F; this is represented in line 3 of the above recursion
equation. Finally, line 2 represents the case where the accumulated delay is larger than the
length of the ith idie peridd of the pure system. Our objective is to evaluate the total additional
delay suffered by an arbitrary customer. From Figure 5.9, we observe that such a delay has the
same distribution as the additional delay suffered by the first customer of the pure system's busy
period. This is stated in the following Theorem.

Theorem §.7.3

Customers beionging to the same busy period in the pure MAG/1 system suffer the same addi-
tional delay in the modified M/G/1 system with finishing-up periods.

From the recursion equation (5.50), we observe that the additional delay D; is indepen-
dent of the length of the ith idle period of the pure system, i=1.2,... . Indeed the random van-
ables Z; and F; i=1.2,... are mutually independent, and the additional delay D; is only a function
of Z, Z3,.... Zi) and Fy, F,.....F;_;. The response time of a customer in the modified system
has the decomposition property in the sense that the response time is the direct sum of the addi-
tional delay suffered in the modified system pius the response time in the pure system.

Theorem 5.7.4
The additional delay suffered by an arbitrary customer in the modified MAG/! system with
finishing-up periods is independent of the response time such a customer has in the pure system.

Ll
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The proof of the above Theorem is similar o the proof of Theorem (5.7.2). Also. since the addi-
tional delay D; i=1,2.... is independent of the number of customers served in the ith busy period.
we obtain the following Corollary.

Corollary 5.2

The limiting distribution of the additonal delay suffered by an arbitrary customer in the
modified M/G/1 system with finishing-up periods is identical to the limiting distribution of D,

A

Now we proceed to determine the response time of an arbitrary customer in the
modified system. Let B; = D; + F; with probability distribution B;(¢) = P (B;S¢), probability den-
dB;(1) "

sity function b;(s) = — —. and Laplace transform 8 (s) = l[e-'b,-(:)dz. From (5.50), we get
the following equivalent recursion equation:

Diut = { B+ f B2z, (21 (5.51)

0 if B;sZ;
Since the finishing-up delay F; and the additional delay D; are independent, we have:
B{(s) =D (5)F}(s) i2l
and as i approaches the infinity, we get the following limiting behavior;
B (s)=D"(s).F'(s)

From our definition, the probability density function of the addidonal delay in the M/G/1 sys-
tem with finishing-up periods is thus given by:

dia()= [ 2(bir+)dr +po(®) | [b,-(r) [ 2(uydu | dr (5.52)
ra0 ral unr

Since the job arrival process is Poisson with parameter A, it follows that the interarrival times as
well as the length of the idle periods are exponentiaily distributed with the same parameter A.
Hence equation (5.52) yields:

gy ra)
+ [ e [No(f)Ibe(r) :(u)dudr]d:
=y rul) ual
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= | e"'[]’ ke'bbi(r+r)dr]dt+8:(l)
IE )il r=)

= [ A [ | ,-vb,.(y)dyJar + B{ (M)
r yw

. A(B;(A) =B (5]

S-l + ‘Bl' (l)
which finally gives:
. sD; NF; (M)
D; ™
# s=A+AF . (5) 2l
this gives us the following limiting behavior:
D(s D (WF Q) :
()= SR AF(3) (5.53)
Using the fact that D" (s=0) = 1, equation (5.53) yields:
D (MF* (W) = 1-AF
where F is the average finishing-up delay. Hence, we finally obtain:
. 1-AF
D (s _S_(._—.L
(5)= S—AF " (5) (5.54)
Therefore, by using D= -%‘ﬂl , the average additional delay is thus given by:
I
-~  AF?
D= — 5.55
2(1-AF) 33

From the decomposition property, Theorem 5.7.3, the average response time of an arbi-
trary customer in the modified M/G/1 system with finishing-up periods is then :

RM,‘ =R; +D,' izl

and since the additional delay suffered by an arbitrary customer in the modified system is
independent of the response time such a customer has in the pure system (Theorem 5.7.4), we
have:

RM,{(s) = R.(s).D:(s) n2l
As n approaches the infinity, we obtain the following limiting behavior:
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RM'(:)=R'(5),D'(5) 15.56)

Finally using equation (5.55), the average response time of a customer in the modified system
with finishing-up periods in the steady state, denoted by &M, is given by:
—_ - 2
RM =R + A =
2(1=AF)

where R is the average response tme of a customer in the pure M/G/1 system in the steady
state.

(557

5.73 Comparison and Application to the Study of the FJ-2-M/M/1 System

Now we proceed to interpret the results obtained in the last two sections, and © provide
an alternative way to derive such results: specificaily equation (5.46) and equation (5.54). Then
we shall apply such results to determine the response time of a bulk job in the FJ-2-M/M/1
parallel processing system.

The Lapiace transform of the additional delay of an arbitrary customer in the modified
M/G/1 system with start-up periods, given by equation (5.46), has exactly the same form as the
Pollaczek-Khinchin (P-K) transform equation [Klei75] of the distribution of the total time (i.c.,
the response time) spent in the M/G/1 queueing system that has for service time distribution the
start-up delay distribution 5(t). Let us retumn to the recursion equation (5.44). Let such a recur-
sion equation represent the functional equation of an M/G/1 system where S; is the service time
of the ith customer, D; the response time of the ith customer, and Z; the interarrival time
between the ith and the (i+1)st customers. Indeed, it is an M/G/] system since the variables Z,
i=1.2,... are assumed to be exponentially distributed. Figure 5.10 represents an event time
diagram of such an M/G/! system. From Figure 5.10:(a), we observe that a customer, say C,.,,
finding the system empty is equivalent to have D; S Z;. In such a case, the response time D,
for customer C,,,; is equal to its service time S;,;. On the other hand, if customer C;.; finds the
system busy, that is D; 2 Z; (see Figure 5.10:(b)), its response time is the sum of its waiting
time, D;~Z,, plus its service ime S, ;.

The Laplace transform of the additional delay of an arbitrary customer in the modified
M/G/1 system with finishing-up periods. given by equation (5.54), has exactly the same form as
the (P-K) transform equation [Klei75] of the distribution of the waiting time in an M/G/1
queueing system having the finishing-up delay distribution as its service time distribution. As in
the previous case, we see the recursion equation of the additional delay in such a modified sys-
tem, equation (5.54), is the functional equation of an M/G/1 system where F; is the service ume
of the ith customer. D; the waiting time of the ith customer, and Z; the interarmival ime between
the ith and the (i+1)st customers. Figure 5.11 represents an event time diagram of such an
M/G/1 system. The waiting time of C; ., is zero if, upon arrival, he finds the system idle, that is
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D +F, 227 (see Figure 5.11:(b)). On the other hand, if upon arival, customer C ., finds the
System busy, that is D, + F; 2 Z, (see Figure 5.11:(a)), then he must wait (D, + F,y - Z,. Nouce
that D, + F, is the response ime of customer C.

M/M/1 parallel Processing system as 7wo queueing systems in Tandem,

Figure 5.12 depicts such a representation. In the sequel, we shall use the term queueing
system 10 refer to system (S1) or System (S2) of Figure 5.12, and the term Service center 1o refer
to service center 1 or service center 2 of Figure 5.2:(a).

From the definition of the FI-2-M/M/1 system, we know that a task leaving one of the
service centers either waits in the synchronization box for its sitling w complete, or finds its
sibling already in the Synchronization box and thus a Join operation is immediately performed
and meconesponhjngbulkjobdepammsystem at once. Let us cail the tasks thar must wait in
the synchronization box the effective tasks. In Figure 5.12, we. are only interested in these
effective tasks.

We now proceed to characterize queueing system (S1) and queueing system(S2) of Fig-
ure 5.12. The armrival process of effective tasks to the Tandem system is Poisson with aggregate

A. The service time of an effective task in (S2) is exponendally distributed with mean & since

the oldest effective task in the synchronization box waits an amount of time equal to the remain-
ing time to compiete the service of its sibling at one of the service centers, To characterize the
service time of effective tasks in (S1), notice that;

a. whenever A,=0 (i.c., /,=it,), the interdeparture time between effective tasks from the

service centers of the FI-2-M/M/1 System are distributed as the minimum of (wo

exponentials with the same mean %

b. whenever 7,#,#0, the interdeparture time between effective tasks from the service
centers of the FJ-2-M/M/1 system is exponentially distributed with mean % since only
task departures from the service center with the lowest occupancy are accounted for.
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Figure 5.12: Representation of the FI-2-M/M/1 System as Two Queues in Tandem

Letfbemenndomvamblemsnﬁngtheurvice time of an effective task at the
queueing system (S1), with probability density function by(x), average X and second moment
X®. From the above, we have:

by (x) = g [l—i P(n =i, A=) - i P(n=0,R;mj) - i P(nymi,nqm)
i=l Jui i

+ 2ue™¥ T P (R mi,Aqmi)
inl)

Using equations (5.3), (5.4), and (5.7) , we obtain;

1 558)
be(a) = e [1=31-p201-p37 ] + 2wy (

From the above expression of the service time distribution of (S1), we get:

3
- F)
X= 3p=3+4(1-p)

2u
3
= up-7+s(31-p)3
W

Using the above equations, the response time of an effective task through the queueing system
(S1), denoted by Ty, is thus given dy:

y3 -
Ty = AX — + X
2(1-X)
3 3
p(llp-mo-g)’g , Sookapy?
= X 2u
2 [2-9(39-344( 1-p)? )]
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The queueing system (S2) is a G/M/1 queueing system. In the sequel, we shall approx:-
mate the response time of this system by an M/M/1 system response time with the same amival
rate. In fact, we may consider the service probability density distribution by(x) to represent the
probability density distribution of the start-up delay in the modified M/G/1 system. Hence an
approximation to the response time of a bulk job through the FJ-2-M/M/1 parallel processing
system may be formulated as:

T(2)= Tg,T +T5y

Finally by replacing Ts; by its value, we obtain:

3
7
T(2)= ll? + —LQ1p=T7+80-;) %) | Sp-3+(l-p)

2u [2-p(5p—3+4(1-o)%)] "

E
)

(5.59)

Figure 5.13 depicts the average response time given by equation (5.9) along with the
average response ume given by equation (5.59), as a function of the utilization factor p. This
figure shows the excellent accuracy of the present approximation. In fact. both curves are
almost superimposed, and the relative error is less than 2% overall the permissible values of the
utilization factor p.

5.8 Approximate Analysis of the FJ-P-M/M/1 System

We now retum to the P processors case, and proceed to provide an approximate solu-
tion for the measure T(P) through the parallel processing system FJ-P-M/M/1 where P2 1. In
Section 5.3, we provided upper and lower bounds for the more general system FI-P-GI/GI/1,
given respectively by inequalities (5.12) and (5.13)._ Since we have identical service centers, we
may define P (T<x)mP (T;<x) jml,....P. Recall that 7, j=1.,...P is the random variable represent-
ing the response time of tasks through service center j. Consequently, inequality (5.13) reduces
to:

T(P)SI [1—[P(isx)1’ ]dx

From [Klei75], we know that P (TSx) = 1= ¥I9% x20 where p-ﬁ—, the utilization factor of a
service center. Therefore, the above inequality gives:
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e s;f [1- [H-ﬂn-on]" ]dx

which amounts to ;

TP)s [ - P]dx
(P)S = g 1<(1-e™%)
this finally gives:
5.60
T(P)STM;“” H(P) P21 ( )
where Ty iy = m Il—p) which is the average response time of an M/M/1 queueing system with

utilization factor p, and H(P)= Y} % the harmonic series. On the other hand, a very simple
iw

lower bound for the FJ-P-M/M/1 parallel processing system may be obtained by neglecting the

queueing effects, that is :

TP i— H(P) P21 (5.61)

From inequalities (5.60) and (5.61), we observe that both bounds grow at the same rate
H(P). The tightness of such bounds is of no concern here. Since limp___T (P)—see, then it must
be the case that T(P) also grows at the same rate. Consequently, knowing the value of

T(D=Trwimn , we may write ~ :

1
u(l-p)
T(P)=Gp(p) Thersn P21 (5.62)

where the function Gp(p) is a scaling factor that grows at the rate H(P). A first order approxi-
mation to Gp(p) may be formulated as:

Gp(P)=a(p) +b(XH(P) P21 (3.63)
From equation (5.62), we have G | (p)=1, which along with equation (5.63) yields:
b{p) = 1-a(p)

Thus substituting b (p) in equation (5.63) yields:
Gp(p)=a(p) [l-—H(P) ] +H(P) P21

To determine the unknown function a(p), we use the expression for T(2) given by equation
(5.11), that is:

(5.64)

* This approximation technique is referred to as the Scaling Approximation [Nels8S).
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33

T(2)= mﬂmm = [a(p) [1-—H(2)]+H(2)] Trrmn
which gives:
=P
a(p) Tiep (5.65)

Substtuung a(p) from equation (5.65) into equations (5.64) and (5.63), leads to the following
approximate expression of the performance measure T(P):

TP)= Tyvrmn P21 (5.66)

H(P)- '1%95 [weer1)

Validation of The Approximation

Figure 5.14 depicts the average response time T(P) through the FJ-P-M/M/1 system for
the values P=4.8,16,32 and 64. To validate our approximation, we simulated the FI-P-M/M/1
system for these values of P. The method used to estimate the extent of the transient state is "
The Method of Independent Replications " [Lave83], and the method used to estimate the statis-
tic T(P) in steady state is ” The Method of Batch Meagns " [Lave83). The confidence intervals,
represented as vertical bars in Figure 5.14, are obtained via the t-distribution, and are of 90%
level.

From Figure 5.14, we observe that for small to moderate values of the utilization factor
p (i.e., p € [0,0.8]}, the approximation is very accurate in the sense that the confidence intervais
are very small. For larger values of p, the widths of the confidence intervals are larger. however
the approximation is still accurate and within the imposed accuracy (i.e., the 90% confidence
level). Nevertheless, it is necessary to realize that for large values of the utilization factor p, the
variability in the queueing measures increases, and thus has a side effect on the width of these
confidence intervais.

For the value P=4 (the bottom curve), the approximation results in very accurate values
of the statistic T(4); indeed the mean relative error (i.e., retative to the middle of the confidence
interval) is less than 3%. As P gets larger, we observe that the width of the confidence intervals
get larger also, thus increasing the mean relative error. For P=64 ( the highest curve in Figure
5.14), the mean relative error is about 5% for p e [0.6,0.95).
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5.9 Conclusion

In this chapter, we construct modeis and methodologies to analyze the Job average
response tme through a Fork-Join parallel processing system. [n Section 5.3, we deait with the
P heterogeneous processors case, where using a folk Theorem in queueing theory, we provided
a lower bound on the job average response ume. and using associated random variables, we
were able to formulate an upper bound on the job average response tme. In Section 5.4, we
started investigating the Fork-Join parallel processing system comprising two identical and
exponental servers. We regarded this parallel processing system as an M/G/1 queueing system
with correlated consecutive job service times. The service time of a bulk job in a such a M/G/!
system is proved to be exponentially distributed whenever the previous bulk job leaves only one
of the next job siblings in service, and distributed as the maximum of two exponentials when-
ever the previous bulk job leaves both siblings of the next job in service. Using the probabilities
of these occurrences, we were able to provide, in Section $.5, a rather accurate approximaton of
the job average response time. In Section 5.6 however, we considered a load adjustable bulk
service time distribution, namely that the bulk job service time depends on the current system
load. Using the load adjustable distribution and the M/G/1 theory, we obtained a very good
approximation of the job average response time. This latter approximation being simple and yet
very accurate, shall be used in the next chapter, where we investigate and analyze more general
Fork-Join paralle} processing systems. |

In Section 5.7, using some inherent properties of the Fork-Join parailel processing sys-
tem, we pursue t0 study some modified M/G/1 queueing systems. In Section 5.7.1, we studied a
modified MAG/1 queueing system obtained from another pure M/G/1 system, in which an addi-
tional start-up period is added whenever a busy periods stants in the pure system. In Section
5.7.2 however, we studied a modified M/G/1 queueing system derived from another pure M/G/1
system, in which an additional finishing-up period is added whenever a busy period ends in the
pure system.

For both the modified M/G/1 system with start-up periods and the modified M/G/1 sys-
tem with finishing-up periods, we proved a decomposition property stating that the job response
time distribution in such queueing systems is composed of the direct sum of the response time
in the pure system and the additional delay suffered in the modified system due either to the
start-up pericds or to the finishing-up periods presence. Results from these modified systems
analysis are then used to construct an excellent approximation of the bulk job average response
time through the Fork-Join parallel processing system comprising two homogeneous and
exponential processors.
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[n Section 5.8, we returned to the more general case of P>2 processors, and provided a
very good approximation of the bulk job average response time. This approximation is based on
a scaling technique stating that the lower bound. the upper bound and the average response time
itself grow, as a function of the number of processors P, at the same rate. Simulations were used
to validate the accuracy of such an approximation.
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CHAPTER 6
PARALLEL PROCESSING WITH SYNCHRONIZATION CONSTRAINTS
AND JOB FEEDBACK

In the previous chapter, we investigated ways to analyze the performance of models of
parallel processing systems with P processors, in which a job, upon arrival, subdivides into
exactly P tasks, the ith of which must be attended by the ith processor. The process graph of
such a bulk job was composed of a bulk arrival of P concurrent (i.., independent) tasks; namely
a PG(P.1). As soon as all'the P tasks constiruting the bulk job were serviced, the bulk job was
immediately and instantaneously recomposed and departed the system at once. In this chapter,
we investigate the performance of the same model of parallel processing systems with P proces-
sors and synchronization constraints, but we allow the bulk jobs to have a more general process
graph. Jobs arrive o the Fork-Join parallel processing system FJ-P-M/M/1 according i a Pois-
son process. Each job consists of a set of M stages which must be performed in a specified
order. A job is thus represented by a Directed Acyclic Graph, called hereafter a stage graph. A
node in the stage graph represents a given stage of the job, an edge (i,j) between node i and
node j denotes the precedence relationship between stage i and stage j, and a stage is composed
of P concurrent tasks, the ith of which must be executed by the ith processor. Edge (i) is used
to prevent the start of stage j execution unless stage i execution has been compieted. Any
number of stages may be executed concurrently if and only if, every predecessor of any one
stage does not include any of the other stage. Moregver, stages have prescribed, but arbitrary,
priority levels. All P tasks forming a given stage are assigned the same priority level, that of
their stage. When a job enters the FJ-P-M/M/1 parallel processing system, its first stage has a
ready for service stams. Upon compietion of any stage, its successor stages (if any) immedi-
ately achieve the ready-for-service status. Among the ready-for-service tasks at any one of the
P processors, next service is provided to the task in the highest priority level in the order in
which they achieved the ready-for-service status. The task service time is assumed 10 be
exponentially distributed. A job is considered completed when all its stages are executed. The
most important performance measure for the FJ-2-M/M/1 parallel processing sysiem with jobs
having an arbitrary stage graph, is the job sojourn time defined as the difference between the
job completion time and the job arrival time to the sysiem.
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The intent in this chapter is to devise ways t0 determine, in an approximate way, the
average sojoum time of a job in the FI-2-M/M/1 system where, at any one of the processors.
service is allocated to the ready-for-service tasks on an FCFS basis. The methodology used.
however, could be extended to investigate more advanced service disciplines.

From the previous chapter, we have seen that the FJ-2-M/M/1 system with jobs having
a PG(2,1) as a process graph, can be analyzed by an M/G./ 1 queueing sysiem representation.
For the current system, we shall provide analogous Propositions to Proposition 4.1 and Proposi-
tion 4.2, and thus our approach is to represent the FJ-2-M/M/1 parallel processing system with
Jobs having an arbitrary stage graph as an M/G,/1 queueing system where the service time of
consecutive stages are correlated. We shall approximate the service time distnbution of a stage
in the same manner we did in the previous chapter in Section 4.6; namely by using a load adju-
stable service time distribution. In the study of the M/G/1 queueing system, we shall allow the
stages 10 have prescribed but arbitrary priority levels. The approach taken to study such an
M/G/1 queueing system with jobs having an arbitrary stage graph draws upon some basic
results from renewal theory and queueing theory. This approach is primarily motivated by the
work of Wolff [Wolf82], in which he proved the long-suspected fact that a Poisson arrival views
the system exactly as a random observer would °, and by the work of Cobham [CobhS4}, in
which he analyzed a particular nonpreemptive priority queueing system with Poisson asrivals
and generai service times. In {Cobh54], the author obtained a system of linear equations for the
mean waiting tme of each priority level that could be solved in closed form. Priority queues
have been extensively studied in the literature. A comprehensive treatment of some of the ear-
lier work in this area, including references to the most important papers, is given in Jaiswal's
book [Jais68]. The survey paper by Kobayashi and Konheim (Koba77] exhaustively reviews
the queueing models that have been used in the design of communication systems. Gay and
Seaman [Gay75] introduced slight modifications and extensions to Cobham’s paper [(CobhS4),
10 allow for preemptive and nonpreemptive priorities. A good discussion of Cobham's tech-
nique and a list of references can be found in Kleinrock's book [Klei76]). In a more recent
work, Daigle and Houstis [Daig81) and Simon [Sim084) provided an average analysis of a task
oriented multipriority queueing system where jobs arrive at the system according to a Poisson
process, and each job consists of a set of tasks to be accomplished in a prescribed order.

Although a chain is a special case of a stage graph, we distinguish the two cases, and
shall study the case of a chain shaped stage graph first. This study will then serve as a basis for
the analysis of the more general case of an arbitrary stage graph. As mentioned earlier, our
methodology in studying the FJ-2-M/M/1 system with an arbitrary stage graph, is to represent it
as an M/G./1 queueing system. This M/G./1 queueing system is converted to a pure M/G/1

‘ This property is usually called Poisson Arrivals See Time Averages (PASTA). Wolff
[Wolf82] proved this property under a basic lack of anricipation assumption, which says that
the process being observed (e.g.. the state of a queueing system) cannot anticipate the furure
jumps of the Poisson process.
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system by using a load adjustable service time distribution, With respect to the pure M/G/1 sys-
tem, the results of this chapter present a generalization of the work on nonpreemptive M/G/|
queveing systems with prionties as described above, We also present simulations results to valj-
date the model.

6.1 Model Description

We consider an FJ-2-M/M/1 parallel processing system with 2 identical processors and
jobs represenied by an arbitrary stage graph with M nodes (i.e., stages). Let f(i), i=1,... M be the
priority level of stage of type i (i.e., stage number i) in the sense that higher priority leveis are
served first. Without loss of generality, we assume that the Stages are numbered in an increasing
order level by level, such that the nodes on any given level of the graph are numbered in an
increasing order from the left to the right. Let CHILDYi], i=1....,.M, be the binary column vector
identifying the immediate descendents (i.e., the children) of node i in the tree stage graph, such
that:

0 otherwise k=l,...M

Let stage / be a child of stage i (i.e.. CHILD({iJ] = 1 ), we define by LCHILD(i.;) the binary
column vector identifying the children of stage i thar are to the left of stage / in the wee stage
graph. Similarly, let RCHILD[i,/] denote the binary column vector identifying the children of
stage i mmmwdnnmofsmelmdnmmgemqu be the column vector hav-
ing its ith component equal io 1, and all the other components set to zero. From the above
definitions, we readily have:

CHILD (i) = LCHILD [i,l) + RCHILD [i,{] +:: Y1, 5.t CHILD{il}=1

Without loss of generaliry, and in addition to our ordering of the stages, we assume that for all i,
n and ! such that CHIL.D{i.n]=1 and CHILD(i,/]=1, we have:

* if f(n)<f () then >/, and hence upon the compietion of stage i execution, stage !
acquires the ready-for-service stams first

* if f(n)>f (!) then n</, and hence upon the completion of stage i execution, stage n
acquires the ready-for-service status first

o if f(n)=f(l) then n<l if stage n is to acquire the ready-for-service first upon the
completion of stage i execution.

Consequently, upon the compietion of a stage i execution, its children achieve the ready-for-
service statys with the lowest type and the highest priority level first.
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Since the FJ-2-M/M/1 system is converted 10 a single server M/G¢/1 queueing system.
we shall first ransform our stage graph into a tree shaped stage graph. This is stated in the fol-
lowing Proposition; its proof on the other hand states how such a transformation is accom-
plished.

Propesition 6.1

An arbitrary stage graph, with nodes numbered in the manner described above, can always be

converied into an equivalent tree shaped stage graph with the same precedence reiationships
among the stages.

Proof

Take any node in the stage graph. say node i, that has two or more incoming edges. Let Y,
denote the set of the source nodes of these edges. That is:

¥, = {j ] 1Sj<i-1 and (j.i) ismedgeinﬂumgegﬂph}
Let & be the highest number in the set ‘¥;. Eliminate all edges (j,i) from the stage graph, where

je ¥~ {k} Once this is done for all stages having two or more incoming edges in the stage

graph, we obtain a tree shaped stage graph. Moreover, this resulting tree shaped stage graph
assumes the same precedence relationships among the stages, in the sense that the stages
acquire the ready-for-service status in the same exact order as they did in the original stage
graph.

In the sequel, we consider that a preliminary transformation of the stage graph into a
tree shaped stage graph is already performed. Jobs arrive 10 the system according to a Poisson
process with aggregate rate A, and the service time of a task at any one of the processors is

exponenually distributed with average -'i- Let A; ,i=1,...M denote the average input rate of
stages of type i 0 the system; hence A, = for i=1,.. M. Let p;, i=l,....M denote the utilization
factor of a processor due to stages of type i, namely p; = -r-"- for i=1,....M. The stability of our
parallel processing system is majintained as long as each one of the processors composing it is
stable. Letp, = }‘5 P = —A'—:— denote the total utilization factor of a processor. The stability con-

i=]
dition of any one of the processors, and consequently of the whole system, is then p,<i. The
node (i.e., stages) of the stage graph are numbered in an increasing order, level by level, such
that the nodes on any given level are numbered in an increasing order from the left to the right.
Figure 6.1:(2) depicts a chain shaped stage graph with Ma$ and Figures 6.1:(b) and 6.1:(c)
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depict two samples of tree shaped stage graphs with M=5. The circles represent the stages, and
the integers to their sides denote their type numbers. Each circle is composed of two tasks, each
of which is to be allocated to a different processor.

Although a chain is a special case of a tree, we shall distinguish the two cases and study
the chain shaped stage graph case first. Let T, i=!....M denote the expected total amount of
time a stage of type i spends in the FJ-2-M/M/1-sysiem:; namely the time from when 1t enters
the queues until it completes service. We shall then find T;, i=1...M , and then deduce the

expected sojoumn time T(2) of a job in the system (i.e., the expected total time spent in the sys-
tem).

A chain shaped stage graph with M stages is hereafter regarded as a job that requires
service M tumes. Upon arrival of such a job to the system, its first stage is ready-for-service and
thus is immediately split into two tasks each of which is allocated to a different processor.
Upon the join of these tasks (i.e., at the time both tasks are completed), the stage is immediately
and instantaneously recomposed and fed back to the queues. This stage is then immediately
split into two tasks again each of which must be served by a different processor. In this manner,
we can consider the job as feeding back (M-1) times before compietion. The time of the ith
feedback of a given job is the time at which its (i+1)st stage achieves the ready-for-service
status. [t follows that when a chain shaped stage graph job arrives to the sysiem, its priority
level is f(1), the priority of its first stage, and when it feeds back the ith time, its priority is
f(i+1), the priority of its (i+1)st stage. The service discipline at any one of the processors is a
nonpreemptive priority discipline in the sense that the next service is given 1o the task in the
highest priority group in the order in which they achieved the ready-for-service status (ie.,
entered the queue).

Au'eeslupedstagegmphwitthtagescanalsoberegudedasajobmm requires ser-
vice M times. Upon arrival of such a job to the system, its first stage (i.c., the root of its tree) is
ready-for-service and thus immediately and instantaneously splits into two tasks, each of which
is allocated to a different processor. Upon the compietion of both tasks, the stage is immediately
recomposed and fed back to the queues as several new stages, each with a possibly different
priority level. In order to avoid the confusing situation where a stage feeds back several stages
of the same priority level, we have assumed that the lowest numbered stage is scheduled for ser-
vice first. This is the case where in Figure 6.1:(b), stage number 2 and stage number 3 have the
same assigned priority level, that is f(2)=f(3). In this case, we assume that stage number 2 will
be scheduled for service before stage number 3 at both processors. If, for such a tee shaped
stage graph, we prefer that stage number 3 is to be scheduled first (i.e., achieves the ready-for-
service status first), then we represent the graph as depicted in Figure 6.1:(c).
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Figure 6.1: Exampies of Chain and Tree Shaped Stage Graphs
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Throughout this chapter, we assume that a stage feedback is instantaneous and per-
formed before the start of the service of the next stage to be served. Al stage feedback instants
(i.e., ammival instants of stages of type j, j=2....M) the state of the system is thus fully described
by the number of stages of each type present in the queue. On the other hand, the state of the
system at type 1 stage arrivals has a distbution which is the same as the steady state distribu-
tion since such armvals are Poisson.

Let To(2) denote the expected sojoum time of a job in an empty FJ-2-M/M/1 system. In
the case of a chain shaped stage graph, it is easy to see that T(2) = -:;—A:— since each one of the

M siages takes an average service time of % The case of an arbitrary tree shaped stage graph

is 2 bit more complicated. Figure 6.2 skeiches the computation of To(2) for the tree shaped
stage graph of Figure 6.1:(b), assuming the same priority level for all stages. Upon the amival
of a job, its first stage (i.c., stage number 1) is ready-for-service and thus immediately and
instantaneously splits into two tasks, each of which is allocated to a different processor. This

first stage takes an average service time equal to -23; and then feeds back stage number 2 and
stage number 3. After an average amount of time equal to L. one of the tasks composing

u
stage number 2 completes service, and after another average amount of time equal o ﬁ
another task finishes. At this point, if stage number 2 is completed (which happens with proba-

bility -;-). it feeds back stage number 4 and stage number 5, otherwise the just completed task

belongs to stage number 3 and hence we must wait another average amount of time equal to —::

to complete stage number 2. This scenario continues in the same manner untl the whole job is
completed. Figure 6.3 represents a similar sketch for the computation of T(2) for the case of
the ree shaped stage graph depicted in Figure 6.1:(c), assuming the same priority level for all
the stages. In Figures 6.2 and 6.3, we represent the state of the system by dots which represent
the number of tasks queued at each processor, without depicting on which processor these tasks
will be processed. The number to the side of the system states denotes the average amount of
time that we spend in such a state. For states with two outgoing edges, the probability of follow-
ing a given edge is %4 From Figure 6.2, we observe that for the tree shaped stage graph of Fig-
ure 6.1:(b), we have To(2)=6.625 and from Figure 6.3, we observe that for the tree shaped
stage graph of Figure 6.1:(c), we obtain To(2) = 7. Notice that the two tree shaped stage graphs
differ only in the way in which the stages achieve the ready-for-service status. The tree shaped
stage graph of Figure 6.1:(c) gives a larger T((2) since in that graph, stage number 2 achieves
the ready-for-service status before stage number 3 does, and stage number 2 possesses (wo des-
cendents.
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Proposition 62

For any given priority assignment (0 the M stages, jobs depart the system in the same order in
which they armived.

Proposition 63

A stage departure from the system leaves all unserviced siblings (i.e., one or the two siblings) of
the next stage to be served (if any) in service,

L

The proofs of the above Propositions are omitted due to their similarity to the proofs of Proposi-
tion 5.1 and Proposition 5.2 of the previous chapter. Propositions 6.2 and 6.3 motivate the
analysis of the FJ-2-M/M/1 parallel processing system with jobs having an arbitrary stage graph
as an M/G./1 system with job feedback. In fact, the job arrival process is Poisson, and the ser-
vice time of a stage is the needed time 0 complete the service of its remaining siblings. How-
ever, as stated in the previous chapter, the service time of consecutive serviced stages are corre-
lated. We shall use our approximation technique developed in Section 4.6 of the previous
chapter to approximately analyze the parallel processing system at hand. The study of the
equivalent M/G,/1 system is accomplished in two steps. The first step is the study of the M/G/1
queueing system with feedbacks dictated by an arbitrary stage graph, and the second step is the
characterization of the stage service time.,

The analysis of the MAG/1 system with tree feedback is based upon the following facts:

1. A Poisson arrival views the system exactly as a random observer would; this is the
PASTA property [ Wolf32],
2. There is a simple relationship between average queue sizes and average waiting times

in the steady state, namely Little's Theorem (Lin61],

L) The expected number of stages of each type at the points in time where some stage
feeds back to the system can be obtained by a linear transformation of the steady state
expected number of stages of each type, and

4, The expected total time spent in the system by a stage entering the system exogenously

(i.e., a stage of type 1) or endogenously (i.e., stage of type i, i=2.....M) is linear in the
number of stages of each rype present in the system.

We, therefore, shall obtain a system of linear equations to solve for the steady state expected
stages population and system times, and consequently we will obtain virtually anything of
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interrest by various linear transformations,

6.2 Chain Shaped Stage Graphs

We consider an FI-2-M/M/1 parallel processing system and Jobs having chain shaped
stage graphs with M stages. Jobs are regarded as requining service M times by feeding back to
the system (M-1) times before completion. The time of the ith feedback of a given job is thus
the time at which its (i+1)st stage achieves the ready-for-service stats. Recall that T, \i=1,. M
is the expected total amount of time stage i spends in the FI-2-M/M/1 system, namely the time
from when it enters the queues (i.e., it achieves the ready-for-service status) unril it completes
service. The expected sojoumn time (e.g.. the expected tota] time spent in the system) of a job
denoted hereafter by T(2), will be:

M
TQ=3T, (6.1)

im]

Let X; be the average service time of 2 stage of type i in the M/G./1 queueing system,
and ¢; be the expected time the server wil] remain serving a type i §lage as seen by a Poisson
armival in steady state. Let D,(i) be the expected tota.ldelaythatatypeimgefoundinme
queue causes our entering type j stage. If £ (i)<f (), the Type i stage does not delay our type j
stage. If £ (i)2f (), our type j stage will not only have to wait for i's service, but also for (i+1)'s
service if £ (i+1)>f()), et. It follows that the functions D;(i) , j=1....M , i=1....M are most
easily computed recursively as follows:

0 if f)<f ()
D= {_ =1, M, i=l,..M (6.2
/W {X£+Dj(i+l)/f(i¢l)>f(j) it faRFG) ! I (
where
] Dii+]) iffE+D>f (D)
D, 1)/ ivl)> = / = [ = -
JG+D ey {0 if £ +1)$f () J=l.. M, i=l, M-
and the boundary condition

(6.3)
DiM+l)=0  j=ui,.M

Suppose that there are exactly v; stages of type i in the system upon the amival of a
stage of type j, j=1,....M. The system state vector (v1.va, - - - ,vy) does not include the entering
stage. Let Ty(vy_ - --,vy), j=1....M be the expected amount of time a job will spend in the Sys-
lem as a type j suse:mmelydnexpectedamoumofﬁmeamgaoftwej spends in the system.
Taking into account the previously mentioned facts on which our analysis is based, we write
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T,(vy,...,vy)forj=2,..M as a sum of three terms:

1. The total expected ime waiting for higher and equal priority stages already in the SYs-
tem upon our type j stage armival or feedback, denoted by T!(v,, ..., vy)

2, The total expected time spent waiting for higher priority stages that artive while our
type j stage waits, denoted by TZ(v,,...,vy), and

3. Our type j stage expected service time, namely X s

Since an arbitrary type 1 stage finds the server in the middle of serving some stage
(unless the system is empty), the computation of T;(vq, .. ., vs) must, in addition to the above
three terms, account for the waiting time incurred by the stage that is being served.

Let Q=(Q1, - ~.Qi,....Qu)" be the column vector describing the expected system
state " as seen by a Poisson arrival; namely as seen by an exogenous stage arrival (ie., a stage
of type 1), where Q;, i=1.....M denotes the steady state average number of stages of type i in the
system. Letp=(py,... .Pi.....Pu)" be a column vector where p;, i=1.....M denotes the utili-
zation factor of a processor due to stages of type i Consequently, the column vector Q-
describes the queue steady state average occupancy. In the sequel, we shall first derive the
expected total time spent in the system by a stage conditioned on the state of the system found
upon its arrival. Then, we shall derive the average occupancy of the system found by a type i
stage, i=1,....M, and consequently uncondition o derive the system times in steady state.

6.2.1 Conditional Expected Total Time Spent in the System for Endogenous Stages

In this section, we derive the expected total time spent in the system by a stage that has
just fed back (i.e., a stage of type j, j=2.....M), conditioned on the the state of the system found
at such a point in time. Recall that at feedback times, the state of the system is fully described
by the number of stages of each type in the queue. Suppose there are exactly v; stages of type i
in the system (i.e., queued up) when a stage of type j enters. As mentioned earlier, the state of
the system at such feedback times does not include our entering type j stage. Using equation
(6.2) and equation (6.3), we obtain:

T'vi....m0= 5 vDi(D j=2,...M (6.4)

FAQ 4T
To compute Tf(v;. .. .. vx), the total expected time spent in the system by the tagged j stage
waiting for higher priority stages that arrive while it is waiting, we need 1o know the expected
number of exogenous stages (i.c., type 1 stages or simply jobs) that arrive during our tagged

* By abuse of notations, we hereunder refer to the expected system state as the system state.
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type ) stage total waiting time, and consequently their expected contributions o j's warling
time, as a function of the system state (vy,. .. » V) found by the tagged type j stage upon enter-
ing the system. We-claim that the expected number of stages of type | that amve duning 5's

waitng ame is A |T¢y,, vu) = X,| where Tvi....ov)=X,| is j's expected toray

waiting time given that the system is found at state (Vi,...,vy). In the same manner, we claim
that the expected total delay these type 1 stages cause our Yype | stage is

A [T!(vl ..... vu)-fj O,(1)/ ¢ (1y>¢(jy - Appendix (C) provides a proof of the above claims.
Therefore, we can write

T}t ..oy =A [7',(”, Ce V) —E,] Di(V/ r iy iy =M (65
Using equations (6.4) and (6.5), we ger:

oL . ..ovd= T vDi)+A [T,(v;, . ,v“)-fj] DD yaypy +X,  j=2,..M
F@Ry ()

whose solution is:

Titvy. ..., Vag) [1‘-w,(1>/,m,,w]- p2 VfD;(i)-lf,Djfl)/frl>>fU)*f:'
£GRE G
equivalently:
Z V,‘Dj(l')
T,(vy, ... vy = LGRSO X, j=2.M (6.6)

+X;
V=2D,(rqyepgy 4

It is interresting to notice that the expected total time Spent in the system by a type j
stage, j=2,...M , is linear in the v;’s. Thus Tiviv....v) depends only on their means. There-
fore, by a state of the System at stage feedback instnts, we shall mean a column vector
S=st,.u8is. .. ,5y)7 where s;, im1,... M is the expected number of stages of type i found in the
queue. Such a vector is indeed a sufficient specification of the system state for our purposes as
indicated by equation (6.6).

Let S;=(sf.....5f,....5{)7 be a column vector where s/ i=1,...M, is the expected
numberofmguoftypeifoundmmesystamwhcnmgejmtersudisﬁnguished from Q
which is the column vector describing the expected system state as seen by a Poisson arrival.
From equation (6.6), we can write:

. (6.7)
T(S)=F;.S; +r j=2...M

where F, is the row vector whose components are:
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D, (i)
1=AD, (D) payap iy

fURfG)
F (i) =

0 otherwise

“

and the quanuty #, is defined by the following expression: 6.9

ri=X, j=2...M

6.22 Conditional Expected Total Time in System for Exogenous Stages

[n this section, we derive the expected total time spent in the system by a stage of type
1, conditioned on the state of the system seen upon such armival. An arriving type 1 stage sees
the server in the middle of serving some stage unless the system is empty. We can then decom-
pose the expected total time spent in the system by a stage of type I into two parts.

T1S)=T S ) +TiSy)

where T1;(51) is the expected time spent waiting for the stage that is being served when our
type 1 stage enters, and T 5(S ) is the expected value of the rest of its expected total time given
the system stare §;. Since p;, i=1.....M is the steady state probability that the server is serving a
stage of type i, we have:

")
TuS)=3 p: [‘i +Dl(l'+l)/;(s+|)>f(n] (6.10)
is]

where 7; is the service residual life of stage i that is being served. On the other hand, and since
the type 1 stages arrive (0 the system according to a Poisson process with aggregate rate A, the
state of the system seen upon such an armival is thus the steady state average number of stages of
each type; namely S| = Q. Therefore, we obtain:

TuS)= T QD) +X, (6.11)
Fars )

Using Litle's formula {Litt61], namely that @ = AT, where A is the (MxM) diagonal matrix
with A = A;, for i=1,...M and T is the column vector (T'y, ....T;, ..., Ty We get:

TiS)=Tu)+ T MT(SID ) - 3 piD() + X,
FURS() JRs(1)

which ¢an be written in a vector notation as.
T/{§)=F, . (S;-9)+n,
where F, is the row vector defined by :

(6.12)
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D) fl2fy
F(iiat, = (6.13)

0 otherwise
and the quantity r, is defined by the following expression;

(6.14)
ri=X, +T11(5))

6.23 Conditionaj System States a¢ Stage Feedback Times

if a type j stage, which is already in the System
1 J when a stage with priority & enters the queue,
') = 4 Wi]]beatypez’sugewhenmeprioritykmge
f completes service
0 otherwise
which is equivalent to:
[l if i=f and £ (i)<k
i>f and _
5y m | if {£ U2k and M ©.15)
ll U)' l lf f(‘.)ﬁ m j-l|-.o|M
vj<n<i, f(R)>k
0 otherwise

and the indicator function
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If a stage of type 1 which enters the system after
|1 a priority & stage, will be a type i stage when the
1*(0) = < priority k stage completes its service
0 otherwise

“

which is equivalent to:

! if {f )<k and
Vnoi
1%(0) = 4 n<i, f(n)y>k (6.16)
i=2,. . .M
0 otherwise
and for the special case of i=1, we have:
1 fQ)sk
1) = (6.17)
0 S (>k

Sayastageoftypej.j-l .M , enters the queue and sees the system in state
S;=6{..... - 547, where s, i=1..\M, is the average number of stages of type i found
mthcsystembysuchatypejstage Whnwxllmedrsymmm}’=(y{ . . y'L,)
when its service completes, where y{, i=1,... M is the average number of stages of typc ileftin
the queué when this type j stage finishes its service. We shall distinguish two cases; namely the
case of exogenous stages (i.¢., j=1) and the case of endogenous stages (i.e., j=2....M).

6.23.1 Conditional System States at Completion Times of Endogenous Stages

In this section, we proceed t0 evaluate the system state at the completion time of an
endogenous stage, that is at the compietion time of a stage of type j, j=2.....M, conditioned on
the state of the system found when this stage type entered the queue (i.e., fed back into the
queue). Using the above defined indicator functions, we can express y{ , i=1,...M in terms of
the vector §; as:

yi= T HOU+2, [r,(s - ;?,] HOQ + MKl iml,. M (6.18)
kml|

Here, the first part of the right hand side represents the tracking of all those stages found in the
system (when our type j stage entered) which will be stages of type i when our type j stage
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completes its service. The second part of the right hand side represents the tracking of the new
€xogenous amivals while our type j stage waits, and which will be type i stages when our type ;
stage completes service. Finally, the third pant of the right hand side of the above equation
represents the number of type 1 stages that arrive o the System while our type ) stage is being
served. This third part is non null only for i=1, that is

lln\-',r/in.n = { hX; i=l
0 otherwise
Using equation (6.7), equation (6.18) yields:
i . ) . -
A=Y HO%)f + ME; S; HDQ) + X, 74,20 i=l,..M

k=]

Now, since #{ V)(k)=0 for the values k=i+l,...M, we may write the system state vector ¥ , using
vector and matrix notation as:

Yj =Aj.Sj +Bj j=2,...M (6.19)

where 4; is an (MxM) matrix defined by:

HO®) + A F (k) 90y if £ (DSf ()

@@n={
0 otherwise

and since for £ (i)>£ (j), we have P (k) = H(0) = 0 for a j=2,..M, i=1....M and k=1.,.. M,
we get:

j=2,. .M
A, (i k) = H Oy + A F (k)i 9 0) i=l....M (6.20)
k=1,...M
B; is the column vector with its ith component defined by:
Ayr; if { =]
Biiy=4 "1 : 6.21
0 { 0 if i=2, ..M =20 M ©2D

6.23.2 Conditional System States at Completion Times of Exogenous Stages

Since the job arrival process is Poisson, it follows that § =Q = AT, and that with pro-
bability p; such an exogenous arrival finds the server in the middle of serving a stage of type i,
i=l.. M. Let ¥, =(y{,...,yl)" e the state of the system upon our type 1 stage service com-
pletion, conditioned on the system state S 1- The evaluation of the column vector ¥ 1 follows the
same steps of the previous section with the additional term for the tracking of the stage being
served at the time of our type | stage arrival. Thus we have:
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yi= 8 HOUsip + Ay [Tl(sl)—ft]l{m(m*llilfm'-l (6.20)
k|

-
+2 PIJ{(”U‘H)’{umn-.»f(t)]a[m-.' mdf(mw(m} i=l,..M
k=l

The fourth term of the right hand side of the above equation represents the tracking of the stage
being served upon our exogenous stage arrival, and can be rewritten as:

i1
kzl pg{l{m(k+1)/i:f(hn>f(1) + Ui kotei and £ (k1387 (1) }

Now, by using equation (6.17), we may write equaton (6.22) as:

= 3 HORKsk-p0) + MTS OEDO)
km]

i1
+ tzl Pt{f{(')(kﬂ)fwuu»ﬂl) + Vigasrai uf(mw(n} i=l,..M

which, by using equation (6.12) yields:

yi = T HOUXskp+ MF1SIHD O + M KOO

k=]

i~1 .
+ Zl P {I'f“)(k"'l)fuf(un:f(l) + it hotm uf(uns,'m} i=l,..M
km

Finally, since §; = Q and /{ (k) = 0 for k=i+1,....M, and since for all i=1....M and k=1,..M,
we have H V)= £ D) =0 if £(i)>f (1), we can write the column vector ¥, using vector
and matrix notation as:

(6.23)

Yy =A,.(Q-p)+ 8, +B]

where A, is an (MxM) matrix defined by:
i=l,..M

Ar(ii) = O + M F 13 D0 ksl,.. M (6:29)

and B, is a column vector with its ith component defined by:
By=q M if {=1 (6.25)

0 ifi=2, M

and B! is a column vector with its ith component defined by:
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i1

1 .

B{ = z pl{l{( )(k+1)/|.ff(h-l)>f(l) + ”th-l-n Iﬂdf(l*l)sf(l)} i=l,..M (6.26)
k=)

6.2.4 System States at Service Completion Times

Equations (6.19) and (6.23) provide explicit expressions for the state of the system at
service completion times of a stage of type j, j=1,...M, conditioned on the state of the system
found by such a type j stage upon its entering the queue. Equation (6.23) says that when a type
| stage feeds back to the queue as a type 2 stage, the state of the system is:

Y, =A(Q~p)+ 8, +B}

This is then the state of the queue found by an entering type 2 stage, that is S; = Y. When such
a type 2 stage completes service, and then feeds back as a type 3 stage, the state of the system is
obtained using equation (6.19); namely:

Yi=mAY +8,

This is then the state of the queue found by an entering type 3 stage; thatis Sy = Y. In the same
manner, we have for any {22 ;

Sy = [ﬁAa](Q-pH [ﬁ A.]B{ +l}-_': L'ﬁ A,-]B. i=l,..M (6.27)
im| imd j

kw] [jmksl

where the matrix product is taken by definition to be :

n Ay - Ay a2k
1A A4y k=n+l
ink 0 k2n+2

where [ is the identity matrix. The state of the system found by an entering type /, /=2,...M is
Si =Y, and §| = Q the steady state average number of stages of each type in the system.

6.2.5 Steady State Equations for the Expected Total Time in System

In Sections 6.2.1 and 6.2.2, we formulated explicit expressions for the expected total
time spent in the system respectively by endogenous stages (i.e., stages of type j, j=2.....M) and
exogenous stages (i.e., stages of type 1) conditioned on the state of the system found upon
arrival. We now proceed to uncondition and evaiuate the expected system times in steady state.
Since in the steady state we have Q = AT, then using equations (6.7) and (6.12) along with
equation (6.27) and the fact that S; = ¥,_, for/=2,... .M and §, = (, we get the following system
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of linear equations for the expected total time spent in the system by each stage type j, j=1... .M.

j-1
AT -F, {1‘[ A,

1=

1=l

I A,-JB. +7, (6.28)
imk el

=1
1
Bl +sz

kw|

i=1
T4

1=

T]=Fj

1=
p+Fj [HA"

md

Equaton (6.28) gives M linear equations for the expected total time spent in the system by each
stage type T1.T3, . ... Ty. After solving this linear system, we compute the expected sojoumn
time of a job in the parallel processing system F1-2-M/M/1 with jobs havmg a chain shaped
stage graph by using equation (6.1), and the appropriate expressions for X; and L=l M
defined in the following secton. The following are cxamples 10 demonstrate the use of the
above established formulae for the computation of the expected total time spent in a single
server system,

Example 1

Consider an M/G/1 queueing system with jobs having a single stage process graph; that is M=1.
From equation (6.28),we get:

Tl =F|lTl "Flp +r
which gives:

ry=Fip

=737,

From equation (6.8), we get F =D (1)=X, and from equation (6.15), we gei
_ S 1

ry =X+t =x+1—’;—. Putting all the terms together, we obtain:

AN

T\ = +f

1

The first term of the right hand side of the above expression denotes the average waiting time,
and is the well known (P-K) formula for the mean waiting time in an M/G/1 queueing system
[Klei75].

Example 2

Consider an M/G/1 system with jobs having a stage graph composed of a chain of two consecu-
tive stages with the first stage (i.e., the stage of type 1) having a priority level f(1) lower than
that of the second stage (i.c., the stage of type 2); that is £ (1)<f (2). Jobs arrive to the system

according to a Poisson process with aggregate rate A, and the service time of a stage indepen-

= = 1
dent of its type, is exponentially distributed with mean &; namely X, =X2=—u-. and
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PL=py = % LUuang our system of linear equaunons given by (6.28), we get:

Ty=F\AT-Fp+r,
Ty =F2A)AT - F141p +F18) +F,8, +r (6.29)

A0 AoA T 2 1 1
A= (= =) T=(I,, T, ,Fi=(& L) fp . , —
[OlJ p m I-l) (T,,Ty) l(u Ll) z(Ou)

2A A T
S I IR T P S P YT L S . Bl =(0.0)
18 18 18 13 1
0 0
Solving (6.29) yields:

= =Ll
I MO0 and T, m

Finaily, using equation (6.1) yields:

T2 = 2=
@ W(p=-22)

Notice that this queueing system is equivalent 10 an M/G/1 queue where the service time dis;ri-
bution is the convolution of two exponentials; namely a two stage Erang distribution with

mean ﬁ- and second moment —62- Using the known (P-K) formula for the mean waiting time in
T
an M/G/1 queueing system [Klei7$], yields the exact same result.

Example 3

Consider an M/G/1 system with jobs having a stage graph composed of a chain of two consecu-
tive stages with the first stage (i.c., the stage of type 1) having a priority level f(1) higher than
that of the second stage (i.c., the stage of type 2); that is £(1)>£(2). Asin the previous exam-
ple. jobs arrive to the system according to a Poisson process with aggregate rate A and the ser-

vice time of a stage independently of its type is exponentially distributed with mean &: namely
X, af; = % andpy=py = % Using our system of linear equations given by (6.28), we get:

Tl -FIAT-Flp-I-rl

6.30
T2=F3A\AT = F1A1p +F18) +F18, +r, (6:30)

where
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A AT 1 1
A= cp=(=.=) . T=(T,.T3) . Fy=(=.0), Fy=——
0 A p (u m (T,.Ty) 1 (I-l 0) 2 u—k“'“
L L, 2\ 1 U AT
Ay=|p cr==(+==) , rp=—, By=(=(1+=),0) , 8l =(0, %)
A H TRNTS

Solving (6.30) yields:
2
. RV (LY
W(u—A) H—ANU-2ZA)
Finally, using equadon (6.1) yields:

2 B=20)2p-0) + 30
T = A28

LI}

6.2.6 Job Average Socjourn Time

Our main objective is to analyze the FJ-2-M/M/1 system with f(i)=f(1) for all i=1,.. M.
Tasks at any one of the processors are then scheduled for service on an FCFS basis. We
represent the service time distribytion of a stage in the equivalent M/G, /1 queueing system as a
load adjustable distribution. Namely, let:
Z, = random variable exponentially distributed with mean &
z » = random variable exponentially distributed with mean 3!;:'
i’c = random variable representing the service time of a stage in the M/G./1 system, with mean
fa and second moment ﬂ.
T = the utilization factor of the M/G,/1 system,
X = the average service time in the M/G. /1 system of a stage of type i, i=1,... M, and
t; = the expected amount of time the server will remain serving a type i, i=1,...M, stage as seen
by a Poisson arrival in the steady state.

For our case of f(i)=f(1) for isl.._...M. we represent the service time of a stage as a weighted sum
of the random variables Z, and Z, :

X, =2, +a(t)Z,
Here a(t) is a weighting function that depends on the utilization factor, t, of the system. To

determine this weighting function, we note that under very light traffic conditions (i.e., p,—0 or
equivalently t—0), the service time of a stage, X, is distributed as the maximum of two

independent exponentials of the same mean -:r and thus we must have lim a,.(t) = 1. Under
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a(t) = -1, We obtain:
ie = 2] + (l-’f)j;
Using the definitions of 7 1 and z 2. we get:

f‘.=3—-‘:‘- and E:M

2u 2u?
and since ﬁthf,_.. that is :
3p,
T = ——
" 24,
we get:
X. = and  X:=-% 4 —Pr)
¢ K(2+p,) ¢ ® “2 ﬂz(z"‘p:)z
and finally, for our System with f(i)mf(1), inl,... M, we have:
v _z 3 ) y
i=X = 12+ i=1,. . .M (6.31)
-~
Xe 5""9:
Lz — =1, . M 6.32
X, - Ry (€32

Validation of the Approximation

Figure 6.4 depicts the expected sojoum tme of the chain shaped stage graph
represented in Figure 6.1:(a), as a function of the utilization factor p,. The expected times in
System T\, T3, T3, Ty, and Ts of the S stages composing the chain graph are obtaineq by solv-
ing the system of linear equations given by (6.28), where the stage average service times, X,,
i=1....M is given by (6.31), and the average residual life of a stage i service time, i=1...M are
given by (6.32). The expected sojoum time of a job is thus obtained using equation (6.1).

the t-distribution, and are represented in Figure 6.4 as vertical bars.
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Figure 6.4: Expected Sojourn Time of the Chain Shaped Stage Graph of Figure 6.1:(a)
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From Figure 6.4, we observe that the load adjustable distribution pproximation is very
accurate; indeed as depicted in the figure, and for Py € (0.0.7), the confidence interval widihs
are very small indicating the rather good accuracy of the approximation for this range of the
uulization factor. For higher values of Ps» while the confidence inwerval width is somewhat
larger, the approximation is still within the prescribed accuracy. Recall that high values of p,

6.3 Tree Shaped Stage Graph

We now proceed 10 determine the average sojoumn time of a Jjob having a tree shaped
stage graph (indeed an arbitrary stage graph as stated through Proposition 6.1) through the FJ-
2-M/M/1 parallel processing system. Jobs are regarded as requiring service M umes. Upon a
Job amival w the system, its first stage is ready-for-service and thys immediately split into two
tasks, each of which is directed to a different processor. Upon the completion of both tasks, the

As in the case of the chain shaped suge graph, and due w Proposition 6.1, Proposition
6.2 and Proposition 6.3, we shall approximate the FJ-2-M/M/1 parallel processing system with

the stage service time. As before, let T.'s, i=1... M, denote the expected total amount of time a
stage of type i spends in the system from when it achieves the ready-for-service starus umri] it
completes service, and T(2) denote the expected sojoum time of a job through the FJ-2-M/M/1
system. Unlikcmecaseoft.hechainsmpedsngemphwtmeT(Z) is the sum of all the T,'s as
given by equation (6.1), the expected sojourn time is now the sum of only some of the T,'s.
Assuming the same priority level for all the stages, the average sojourn timte of a job having the
tree shaped stage graph of Figure 6.1:(b) is given by:

T(2)=Tl +T2 +T3

and the expected sojourn time of a job having the tree shaped stage graph of Figure 6.1:(c) is
given by:

(6.33)

(6.34)
TQ)=2T,+T,4 +Ty
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Let X;, i=1...M be the average service time of a stage of type i in the equivalent
MiG./1 queueing system, and D,(i), i=1.... M, j=1....M be the expected total delay thar a type !
stage found in the queue causes an entering type j stage. Note that if f (i)<f (/). then the type :
stage does not delay the entering type j stage. On the other hand, if f (i)2f (), the entering type
J stage will not only have to wait for i’s service, but also for the service of i's children that have
a priority level greater than f(j). As in the case of the chain shaped stage graph, the functions
D,()'s. i=1...M, j=1....M are most easily computed recursively as follows:

L if £ (O<f )
Di=1% + )y D, ruppy I FURFU) (6.35)
k, 11 CHILD (i k=1
and the boundary conditions (6.36)
D;(M+1)=0 j=t..M

6.3.1 Conditional Expected Total Time in System

Let S;=(s{.....5%,..., s4¢)7 be the column vector representing the state of the sys-
tem, such that 5/, i=1,...,M is the expected number of stages of type i found in the system when
stage ) enters, j=1,...M. The expected total time spent in the system by an endogenous stage
that has just fed back, conditioned on the state of the sysiem found at this feedback instant. is
derived in the same manner as in Section 6.2.1, where the functions D,(i)’s are now replaced by
the ones given in equation (6.35). Namely, the T;(S;), j=1....M are readily given by equations
(6.7), (6.8) and (6.9) where the D,(i)'s are defined by equation (6.35). For exogenous stages, an
armiving type 1 stage sees the server in the middle of serving some stage unless the system is
empty. Similar to the case of the chain shaped stage graph. we decompose the expected total
time spent in the system by a stage of type 1 into two parts:

Ti(S)=T\(S1)+T\3(5))

where T;(S) is the expected amount of time spent waiting for the stage that is being served
when our type 1 stage enters, and T'1,(S ) is the expected value of the rest of its expected total
time given that the system is in the state §,. Since the exogenous stages arrive to the system
according to a Poisson process, the state of the system seen upon such arrivals is thus the steady
state average number of stages of each type; namely §, = Q. Consequently, T3(S,) is readily
given by equation (6.11) where the functions D;(i)'s are now given by equation (6.35). On the
other hand, and since p;, i=1.....M is the steady state probability that the server is serving a stage
of type i, we have:
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M
= L+ D (k)
TuS=3p [ ‘2 CHED[;'.H-I ! f“‘”f“)] (6.37)

1=l

Here ¢, i=1,....M is the service residual life of stage i that is being served upon the exogenous
stage amval. The conditional expected total time spent in the system by an €X0genous stage is
therefore readily given by equations (6.12), (6.13) and (6.14) where the functions D (i),
i=1.....M are now given by equation (6.35) and the function T'y1(5y) is given by equation (6.37).

6.3.2 Conditional System States at Stage Feedback Times

We now proceed 10 determine the states of the system ar feedback instants. For exo-
genous stages, the state of the system is simply the steady state S, = Q. For endogenous stages,
this is no longer true. For any given two stages, say i and j, i=1,...M, =M, we define the
row vector denoted by PATH[k]{ij], k=0.....PATH[O](ij], where PATH[0](ij] denotes the
number of stages in .the path (i,j) including stage i and stage j. PATH(k]i ],
k=0,....PATH[O][i,] is thus the kth stage type on the path (i,j) in the tree stage graph. Let also
define by DESCj), j=1.....M the row binary vector identifying the descendents of stage j, such
that: .

1 if stage i is a descendent of stage j

DESCj.i]= .
L] {0 otherwise i=l,..M

[n particular. note that DESC (i,i 1. Now, we redefine the indicator functions /*(j) and /4(0) as
follows:

1 ifi=jand f()<f (k)

ri>j

DE-SCU'” =1 i=l,..M
;gg:‘: jol.m (639
¥ satisfying { n#j , n=i and

hsmo ,such that PATH[m|[i,j]=n }, f (n)>k

HGy= 41 if+

0 otherwise

-
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’”

i>1 and
f(Hsk and

1 if <
140y = 4 ¥n such that ( n= and I m=0 (6.39)
f such that PATH[m|(1.i]=n }, f (k)>n )

b ifi=land f(1)Sk i=1,..M

0 otherwise

Say a stage of type j, j=1...M enters the queue and sees the system at state
S, =(s{..... sl si)T, where sf, i=1,...M is the average number of stages of type i found
in the system by this type j stage. What will be the system state ¥, = (.. ... yhoovio
when its service completes, where y/, i=1,.. .M is the average number of stages of type i left in
the queue when such type j stage finishes its service. We shall find the system states at stage
compietion instants conditioned on the state of the system found upon arrival to the queue. Far
endogenous stages, these conditional system states are readily given by equations (6.19), (6.20)
and (6.21) where now the-indicator functions are defined by equations (6.38) and (6.39) and the
functions D,(i)’s are defined by equation (6.35). For the exogenous stages, the additional term
for the tracking of the stage being served at the time of the type 1 stage arrival is a bit more
complicated. '

i - -
y} = Z I{(‘)(k)(sl—p.} +A [Tl(S,)—Xl]l."(O)+ MX\/igii
k=]
i-1
HOGM riara ; : 4
+k§l pt{ [j. £4. CHILD [k, j =1 PRI |+ Vo it wa f sy (©40

i=l,...M
and since i#1 we have #{ {(0) = 0, and using equation (6.12), equation (6.40), we get:

yi = T HO®stp0 + MF 1511 D) + Mrdf V)

k=]
-1 T{OTT,
+ ) EXV WD rgmro |+ 11 : :
El Pt{ L o1, CHILD 1k Jm1 CHILD [k.ij=! and f (iYSf (1)

i=l,..M

where r, is defined by equation (6.14) with T, given by equation (6.37). Finally, since S| =@
and HMk)=0 for k=i+1,..M, and since for all i=1,...M and k=1..M, we have
H O = D0y =0if £(i)>f (1), the system state column vector ¥, can be written using vec-
tor and matrix notation as given by equation (6.23) where A is an (MxM) matrix defined by
equation (6.24), 8, is the column vector defined by equation (6.25), and 81 is the column vec-
tor with its ith component defined by:
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6.33 System States at Service Completion Times

So far, we have formulated explicit expressions for the state of the system at service
completion times of a stage of type j, j=1,.. M, conditioned of the state of the System found by
such a type j stage upon its arrival to the Queue. Upon the arrival of an éxogenous stage, the
state of the sysiem is the steady state average number of ¢ach stage type in the system, and thys
the state of the queue seen by such an amival is (51-p) = (Q-p). When an €xogenous stage
completes its service, the state of the queue is given by equation (6.23); namely:

Yi=A(Q-p)+8, +8!

where A, is defined by equation (6.24), 8, is defined by equation (6.25), and B} is defined by
equation (6.41). Sucha type | stage may feedback severa Stages possibly of different priority
levels. Let L, be the number of stages fed back by a type 1 stage; namely:

M
Ly =3 CHILD1,i]

According to our assumed ordering scheme, type | stage children are then numbered in an
increasing order (i.e., from 2 to L,+1) and decreasing priority leve! from the left to the right in
the job tree structure. Consequently, the state of the System seen by a type 2 stage 1s ¥ : namely
S2=Y,, and forany { , 2<I<L | +1, we have:

St=Y+LCHILD(1,) 28isL  +1

On the other hand, the state of the System upon the departure of a type 2 stage is then obtained
from equation (6.19);

Y, S(Azsz +Bz) +RCHILD[1.2]

The second term of the right hand side of the above equation accounts for the rest of stage 1|
children that are not counted in § 2. In the same manner, we have for any child of an exogenous
stage:

Y, = (A;S; + B)) + RCHILD (1.7] U<l | +1
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For endogenous stages, when a stage of type k, k=2,...M completes its service, the state
of the queue left at such a point in time is given by:

" Ye=AeSy+ By + RCHILD [i k] k=2,..M

where the type i stage is the parent of stage k; namely CHILD(i.k]=1. Furthermore, for any
type { stage such that CHILD(k/]=1, we have:

Si =Yy + LCHILD (k.1]

Y, mAS + By + RCRILD [k,1)

Consequently.to evaluate the state of the system found by a type / stage upon its arrival to the
queue, namely §;, and the state of the queue left upon the completion of its service, namely Y,
we need to know the state of the queue at the service completion time of the stage | parent.
namety Y, such that CHILD(k./]=1. Knowing the state of the system upon the arrival of an exo-
genous stage, we can then deduce in the manner described above all §;, i=1,...M. We therefore
obtain the following expression for the state of the queue found upon the arrival of 2 stage of
type {, I=1,.. M

PATHON1./}-1
ArAm_mu.n AQ-p)+ Il Arammunn | BY (6.42)

im3

S[=

im]

[PATH[O][I.I Fi

PATH [O1[1.11-1 [PATH[OHI.I}-I
+

ApaTHiil14] ]

kw] jukel

- [BPAm{tm,n + LCHILD [PATH[k][l.!] » PATH[k+1][1.1] ] }

+

PATH [QW[L./}=L |PATH (O}[1.i}-1
k=l

ApATH L) ]
jukal

.RCHILD [PATH{k-—l][I.l] , PATH[k][l.l]]

where again, the matrix product is taken by definition 1o be :

AgAg-; e A,‘ a2k
I k=n+l1
0 k2n+2

L[

fIAi

ik
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6.3.4 Steady State Equations for the Expected Total Time in System

In Section 6:3:1, we provided explicit expressions for the expecied total time spent in
the system respectively by endogenous and €xogenous stages, conditioned on the System states
found upon the ammivals of sych Stages. We now proceed 10 uncondition and evaluate these

[mrmom.jl-a
=5y

l ApaTH ij 1 J AT (6.43)
i=

PAm[Ol[l.;]-l
~-F, Apatriiing) (. p

im]

PATH{O][IJ]—I
+F, Aratnifny |. 8

+F

PATH0]{1,/}-1 [mmmm.jl-l
j .

Apatuin, ) J

™ I 28]

. [a,,.m,,,m +LCHILD [PATH[&][I.;‘J + PATH[k+1][1, ] ”

+FI

PATRION L /1 PATR[O][!J}-I
1ok ]

ApaTHI i J
k=2

- RCHILD [PATH (k-1){1./1, PATH[&]“J]]

+fj

Equation (6.43) gives M linear equations for the expected total time spent in the system by each
stage type, namely T\, T3,...,Ty. The expected sojoumn time of 3 job having a tree shaped
stage graph through the FJ-2-M/M/1 parallel processing system May now be computed using
the proper formutation of T(2) and the appropniate expressions for X; and 4, 1=1,.. M defined in
the following section. The following example demonstrates the use of the above established for.
mulae for the computation of the expected total time spent in the System by each stage type in
the tree shaped stage graph, in the case of 2 single server M/G/1 system.
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Example

Consider an M/G/1 queueing system with jobs having a tree shaped stage graph composed of
three stages. The root (i.¢., the stage of type 1) has a priority levet f(1)=1, and two children
numbered 2 and 3. The type 2 stage is the left child and has a priority level f(2)=3, and the type
3 stage is the right child and has a priority level f(3)=2. Jobs arrive to the system according to a
Poisson process with aggregate rate A, and the service time of a stage independently of its type

is exponentially distributed with mean i namely X, =X; =X, = & and py =py =py = .
Using our system of linear equations given by (6.43), we get:
Tl =F|AT—Flp +r

Ty=F2A AT —-F1A,p +F38} +F, [B, +LCHILD(1,2] | + 7, (6.44)

T, =F3A;A.T—F3A|p+F38% +F3 [‘Bl +LCH[LD[1.3]]+P3

where

»00 A A AT 1 1
A=10A0 | .p=(<, =)  Tx(T\.Ty, Ty, Fi=—(3,L1) . F;=(0,—.0)
00X B BB ] H

1 saz AT
W ol

B1=(0,0,0)" . LCHILD(1,2}=(0,0,007 , LCHILD(1,3]=(0,1,0) , A=

oo*l:lg
o o ¥l
o o Fl»

Solving (6.44) yields:

a2 r.lodrad
M m

W(u—-3A)

The expected sojourn time of the defined tree shaped stage graph is given by T(1)=T, + T3,
which vields :

=S
T =2

Noticemazrza-::sinoeatypeste. having a priority level greater than that of the type |

stage, does not undergo any waiting time. 7 = % since a type 3 stage must wait for its sibling
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type 2 stage service time. On the other hand. this queueing system is equivaient to an M/G/1
queue where the service ume distnibution is the convolution of three exponentials; namely a

three stage Erlang distribution with mean % and second moment —l% Using the known (P-K)
u

formula of the mean waiting ume in an M/G/1 queueing system {Klei76), yields the same exact
result.

6.3.5 Generalized Conservation Law

We now proceed to develop a conservation law that puts a linear equality constraint on
the set T, i=1....M of the expected sojourn times of the different stages of the siage graph. in
{Klei76], Kleinrock established the conservation law for the M/G/1 queueing system and for
any non-preemptve work-conserving queueing discipline. Note that Kleinrock's conservation
law also holds true for any M/M/1 queueing system and any preemptive priority work-
conserving queueing discipline. In a similar fashion, we use the fact that the unfinished work in
the system is invanant to the order of service provided that the discipline does not explicitly
rely on any information about the remaining processing time of any stage and/or job in the sys-
tem. :

Recall that J-f;-, i=1,....M denotes the random variable representing stage i service time in
the M/G/1 system with average X;, and that T;, i=1... M is the expected amount of time stage i
spends in the system from the time of its acquisition of the ready-for-service status until its ser-
vice completion. Let W, i=1.....M be the expected amount of time stage i spends in the system
from the time of its acquisition of the ready-for-service starus until the start of its execution;

- - M
thatis W; =T, - X,, i=1,..M. Let ¥ = 3 X; denote the random variable representing the total
im]

service requirement per job, with average Y and second moment ¥2. The following Theorem
siates a generalized version of the conservation law.

Theorem 6.1: The M/G/1 with feedback Conservation Law

For any M/G/1 queueing system with jobs represented by a given stage graph and stages having
prescribed priorities, and for any non-preemptive work-conserving service scheduling of the
stages, it must be that:

M v MM _
o (M 0 _ZIX,- +§§X;Xj
PRy i imlf
En {z_;. DESC {i. IX;}W,-a ip 3
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Proof

Let (ny,. ..., ... my) be the state of the system where n,, i=1,....M represents the number of
stages of type i in the system in steady state, and let U(n,,...,n, ... .My} denote the
unfinished work in the system given the state (n,....n, ..., ay), with average [/. Therefore
M M -
the unfinished work in the system, given such a state, is 3 mY DESCli,j 1X, plus the remain-
LT ™
ing service time needed by the stage being executed. Let 7, i=1,...M represent the remaining
vi
X

service ume of the stage being served as seen by a Poisson arrival, with average 7, = ——. The

probability that the service is serving a stage of type i, i=1,..M is simply p; Let

Plry,....n...ny] denote the sweady state probability that the system is in state
(1. .8 . ... ny). Consequently, the average unfinished work in the system, U, is given by:
- ™ - - M M - M -

U= Z Z 2 Play,....m, .. ..nM][zn,-zDESC[i.j]X,-] + z pit:

n =0 n;=0) Aywd imp g i=l]

which amounts to:
- M M M -
Usa3pl + LAY DESCIijIX;
twi iml jmi
Using Little's formula: namely that A; = AW,, i=1,....M we therefore obtain:
M M -
2 W.3 DESCIi,j1X; = constant (6.45)
iwf =~

to compute the value of the constant, we consider * the special tree shaped stage graph compris-
ing M stages and such that for all i=1....M-1, we have f (i+1)2f (i). For such a tree, we can see
our queueing system as an M/G/1 system where jobs have a continuous service given by the
random variable Y. Using the Pollaczek-Khinchin mean waiting time formula (Klei75], we
have:

ar?
Wia—2— and W;=0 i=2..M
i-p
M P -
sinceZDESC[l.j]al.andsimeY is given by:

J=t

* It is not difficult to see that any tree with an arbitrary numl;ering and priority assignment of
stages, corresponds a tree shaped stage graph with the required ordering of stages and their
priority levels.
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—= M MM __
r=3x/=3Yv XX
1=| =l
then using these values of W,, i=1,...M and Y? into equation (6.45) completes the proof of our
conservation law.
1

from this conservaton law, we see that any attempt to modify the stages service scheduling so
as to reduce one of the W; wili amount to an increase in some of the other W.. however, this

need not to be an even trade since in general the weighting factors for the different W.'s are
different.

6.3.6 Job Average Sojourn Time

Recall that our stated objective is to analyze the FJ-2-M/M/1 system with f(i)=f(1) for
all i=1,.. M. Tasks at any one of the processors are then scheduled for service on an FCFS
basis. The use of 3 load adjustable distribution in the equivalent queueing system is based on
the fact that in an F1-2-M/M/1, the more Queued-up stages the closer is the stage average service

time to Ilf Under light traffic conditions, we have seen that the sojoum time of a job having the

tree shaped stage graph of Figure 6.1:(b) and Figure 6.1:(c) gives a lower T5(2) than the one
having the chain shaped stage graph of Figure 6.1:(a). Indeed. it is always true that a tree shaped
stage graph gives a lower Ty(2) than a chain stage graph having the same number of stages.
This statement is due to the inherent property of the FJ-2-M/M/1 parallel processing system in
which the more queued-up stages, the faster is the stage service time. On the other hand, under
very heavy traffic conditions, the number of queued-up stages is high whether the job has a tree
shaped stage graph or a chain shaped stage graph. Consequently, the stage service time of a job
having a tree shaped stage graph approaches from below the service time of a stage in a chain
shaped stage graph. Let B denote the ratio of To(2) given by the tree shaped stage graph, and
To(2) given by the chain shaped stage graph having the same number of stages. Define the load
adjustable weighting function ¥(t) by :

W)= (1-fye+p

where 1 is the uiilization factor of our M/G./1 system, Let J-{r represent the service time of a
stage of the tree stage graph, with mean .fr and second moment )—(; Hence, we ha\ie T = AMXr.
We define the random variable i’r as a weighted function of the random variable X represent-
ing the service timie of a stage in the chain stage graph and defined in Section 6.2.5.

Xr = WoXc
The weighting function ¥(t) satisfies lime_o¥(7) = B.and lime. 1 W(T)= 1. From the above

definitions, we readily obtain Xr = Y1)z, Using the expression for Xc given by equation
(6.31), we get:

(6.46)
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3p,B
te —— 1 (6.47)
2(1-p,) +3p,B

Notice that the utilization factor 1t satisfies lim,,oT=0 and lim, ;= 1. From equation
(6.47), and since t= J\M)?T =4p, Xy, we have :

Xr= 3B
b [200, + 30,

] (6.48)

Also from equation (6.46), we have ﬂ:y(t)zl?c-. and finally for our system with f(i)=f(1),
i=1,....M, we obtain:

X;=Xr= 38 i=l,..M (6.49)
M [2<1~p,) + 39,3]

. X3 _ 20,24p.) + 6(1~p,)p,
C W awfa-p)+ 38

i=l,...M (6.50)

Validation of the Approximation

Figure 6.5 depicts the expected sojourn time of the tree shaped stage graph represented
in Figure 6.1:(b), as a function of the utilization factor p,. The expected system times 7, T,
T3, T4, and T of the 5 stages composing the tree graph are obtained by solving the system of
linear equations given by (6.43), where the stage average service times, X, i=1,....M are given
by (6.49), and the stage service time residual life ¢,,i=1....M is given by (6.50). The expected
sojourn time of such a job is obtained using equation (6.33).

Figure 6.6 depicts the expected sojourn time of a job having the tree shaped stage graph
represented in Figure 6.1:(c), as a function of the utilization factor p,. Ty, T3, T4, T4, and T
for the graph are obtained by solving the system of linear equations given by (6.43), where the
X;, and the ¢;, i=1,...M are given respectively by (6.49) and (6.50). The expected sojourn time
of such a job is obtained using equation (6.34).

To validate our approximation, we simulated the FJ-2-M/M/1 parallel processing sys-
tem for the given tree shaped stage graphs. Again, the extent of the transient state is esimated
using short independent replications, and the method used to estimate the statistic T(2) in the
steady state is the Method of Baich Means. All confidence intervals are set o 2 90% level, and
are generated via the t-distribution.
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From both figures, we observe that the approximation results in very accurate values of
the expected sojourn time. The confidence interval widths are very small aimost over ail the
permissible range of the utilization factor p,. The mean relative error is in the order of 1.5%
over the full range of p,. Relative to the case of the chain shaped stage graph whose expected
sojoumn time is depicted on Figure 6.4, we observe that the approximation is somewhat more
accurate in the sense that it results in smaller confidence intervals. Figure 6.7 depicts the
expected sojourn time of a job having respectively the chain shaped graph of Figure 6.1:(a), the
tree shaped stage graph of Figure 6.1:(b), and the tree shaped stage graph of Figure 6.1:(c). The
lowest curve represents the T(2) of Figure 6.1:(b), and the highest curve represents the T(2) of
Figure 6.1:(a).

6.4 Conclusion

In this chapter. we have investigated ways t0 analyze the performance of models of
parallel processing systems, in which jobs are represented by a given arbitrary directed acyclic
stage graph. Each stage is composed of two tasks which must be aended by different proces-
sors. Our methodology consisted of representing the parallel processing system as an M/G¢/1
queueing system with correlated consecutive stage service times. It hag been shown that such a
methodology results in excellent approximations of the job expected sojourn time through the
parallel processing sysiem.
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CHAPTER 7
CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

In the previous chapters, we have seen that the main difficulty in accurately analyzing
parallel processing systems is the intemal and yet inherent parallelism within jobs. At any given
time, a job may need and consequently may hold more than one processor. Unforwunately, this
system characteristic of simultaneous resource possession precludes a Product Form solution
for the model. Coupled, dependent sysiems like these are very difficult to analyze and exact
numerical solution is usually not feasible. Our methodology undertook, in some fashion, a
means to understand and then control the underiying interdependencies. Hence, based on the
underiying stochastic processes of interest, we devised accurate and yet very simple approxi-
mate solutions whenever exact analysis failed.

In Chapter 2, we essentially ignored the dependency by assuming an infinite number of
processors and a constant service time per task. We derived the probability distribution of the
number of occupied processors, the generating function of this distribution and its first two
moments, for different job structures. The study of this simple model resulted in two fundamen-
tal facts. The first concems the large body of algebra involved in determining the distribution of
the number of occupied processors and its first two moments. The second fact is that the aver-
age number of busy processors is independent of the different job stuctures studied. and
depends only on the job average arrival rate, the average number of tasks per job, and the task
average service requirement. The question naturally arises as o what extent can this lanter result
be generalized. Chapter 3 is devoted to answering such a question. The generalizagion was
stated through Theorem 3.1 for the infinite number of processors case, and through Theorem 3.2
for the finite number of processors case. Although the expected number of busy processors in a
multiprocessing system sheds light on how much of the resources can (on the average) be utii-
ized simultaneously, it does not accurately ascertain the degree of parallelism achieved by exe-
cuting the jobs on a multiprocessor system (the achievabie gain in the average response time).
We introduced a new service scheduling swrategy based on a non-egalitarian processor sharing
among the jobs present in the system. We formulated upper and lower bounds on the job aver-
age response time, and devised a rather accurate and yet very simple parametric approximation
based on the speedup achieved by executing a job through an empty multiprocessor system.
Using this approximation, we proceeded to evaluate the achievable parallelism, the efficiency of
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the processors, and consequenty the optimal operating points at which one should operate the
multiprocessor system. Chapter 5 and Chapter 6 are devoted to the analysis of dedicated proces-
sors, in which a job, upon amval, splits into several clones, each of which is attended by a
separate dedicated processor. In Chapter 5, we proved an upper and a lower bound on the job
expected sojourn time, defined as the expected time spent in the system between a job amival
time and the execudon completion of all its clones. Based on the underlying stochastic
processes of interest, our approach undertook a means o control the interdependencies by con-
verting the system into an M/G/! queueing system with correlated consecutive service times.
We presented ways and methodologies to deal in an approximate way with these correlations. In
Chapter 6, we pursued the same model of a multiprocessing system with synchronized arrivals.
and we further permitted jobs 10 feed back into the system according 1o any prespecified acyclic
feedback structure. We first extended the results on MAG/1 queueing systems with priorities and
job feedback, and then used results from Chapter § to analyze the job expected sojoum time in
such multiprocessing systems with synchronized arrivals and job feedback.

The potential for extensions and generalizations of this dissertation is present in almost
every chapter. We believe, however, that the most valuable and urgently needed extensions
would be the study of the communication delays incurred when exchanging data between the
different processes and processors, a refinement of the parallel processing system analysis, and
the analysis of the run time behavior of concurrent programs.

Communication Coit

Throughout the dissertation, we have assumed that the cost of exchanging data between
processors is free and is achieved instantaneously. In reality, there is always some delay
incurred when communicating between processors. The communication delays are rather cry-
cial components which must be considered in conjunction with the processing delays to better
ascertain the parallelism achieved by multiprocessor systems, and to properly compare mul-
tiprocessor systems to multicomputer systems. A simple model to account for such commurni-
cation delays would incorporate, in the job process graph, some communication nodes
representing both the communication times involved between parallel tasks, and the data
transfers required between consecutive tasks.

A New Class of Queueing Systems

We have seen that a job may need and consequently may hold more than one processor
at a ime. Consider the process graph of Figure 4.1. Let us assume that no more than one pro-
cessor may work on a given task. When task A is being processed, the job can proceed at a
maximurn rate of 1 second per second. When task A is completed, tasks B and C may begin,
and the job can proceed at a maximum rate of 2 seconds per second, assuming a multiprocessor
system comprising two Of more processors, etc. Consequently, the maximum rate at which a
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job can absorb work depends upon where it is in its processing cycle (i.e.. which tasks are
ready). and on the number of processors composing the multiprocessor system. This forms 2
new class of queueing systems where the maximum rate at which a job can proceed vanes with
elapsed time, as compared t0 the classic queueing model, which assumes that the maximum rate
at which a job can absorb work is constant. In Chapter 6, we adopted the discriminatory proces-
sor sharing of the processors’ total capacity among the jobs present in the system, and thus we
soived (exactly in the infinite number of processors case, and approximately in the finite proces-
sors case) for the job average response time in such a system. Further research is undoubted!y
needed in this directdon.

Concurrent Programs Run-time Behavior

In Chapter 1, we distinguished two categories of relationships among the set of tasks
composing a given job. The precedence relationships (type 1) between tasks specify the order
of acquisidon of the ready-for-service-status. The parallel relationships (type 2) specify the
dynamic interactions that govem the actual execution of the active tasks within a job, In this
dissertation, we represented jobs by process graphs comprising thus only relationships of type 1.
The study of parallel reiationships among active tasks is also crucial in understanding the ran-
time behavior of parallel and distributed algorithms. Moreover, a third type of relationship must
also be considered: this concems the intercommunications and synchronizations required
between active tasks of different concurrent jobs. Further research in this direction is necessary
1o better understand the dynamics of paraliel programs during their execution. it is the author’s
opinion that altermate modeling techniques are needed to invesgtigate and understand the run-
time behavior of programs incorporating both type 2 and typs 3 parallel relationships. Most of
the relevant mathematics used 10 analyze dependent systems of interacting processes, such as
queueing theory, stochastic processes and probability theory, are only tractable for systems in
which the random variables are assumed to be independent. A fairly new approach consists of
using a Geometric Concurrency Model similar to Dijkstra’s Process Graph for the characteriza-
tion of deadlocks in multiprocessing systems. The Geometric Model has been studied by H.T.
Kung, W. Lipski, C.H. Papadimitriou, and M. Yannakakis (Yann79, Lips81, Papa83]. The
model was later used by Carson {Cars84] to prove liveness properties of concurrent programs
and by M. Abrams [Abra86] to ascertain the exact run-time behavior of two interacting
processes executed asynchronously on separaie processors.
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APPENDIX A

Derivation of 3° [ﬂ +k] x"
L))

Let the bivariate function a.(n-) be defined as:
ay(n) = [:""‘]x" ¥k20, n20 (A1)

where the absolute value (;f x is less than unity. From the above equation, we obtain the follow-
ing recurrence relation on the bivariate function a,(n):

ay(n) = %a,_.(n) k21 (A.2)
with the following boundary condition for k=0:
ag(n) = x* n20 (A3

Define the normal generating function of a(n) by Ax(2) .~ k20; that is A,(2) A }:_ a(n)Z".
L]
Thus equation (A.2) yields:

Ag(m-%é—A.-l(Z)+A.-, @ k21 (A4)

Now, we proceed to show, by induction on the index k, that A,(Z) = [Ao(z)]“'.

Basis step
From equation (A.2), we have ay(n) = x”, and consequently its generating function A (Z)
is given by: Ag(Z) = Tz On the other hand, for the value of k=1, we have
a,(n) =(n+1)x", and hence its generating function A(Z) is given by: A,(Z) =
Therefore we readily have: A,(2) = [A 0(2)]2.

1
(1=xZ)*
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Inductive Step
Now, suppose that we have:

42)= (402!

1$/<k ~1
and let us show it for the value k. We have:

L 4@ =zk{40(z>]*
thus,

Finally, since Ag(2) = ]—_IE and putting Z=1, we obtain:

ELEE
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APPENDIX B

Derivationof A = g .2%2 x {i N-zx—l]}
T

1m2 2l

To evaluate the quantity A, notice that for any given value of i, i=2,....N correspond a range of
values for x, and a range of values for r. For i=j for example, we have r=j,j+1,...N, and
x=1,2.....N-j+1. This value of i accounts with the following in the expression of the quantity A:

1{[722 }z{[‘:': [ﬁs } (N,n{[j;]}

In the above expression, we purposely factored out the values of x. Let A, denote the participa-
tion of the value x in the quantity A. Therefore, for any value of x, x=1,....N-1, we obtain:

N-x-1 N-x-1
a=x{ +3
* [o [2

N=2
N-2

N=x=1
1

+2 + 0+ (i+])

}

N=x-~1
i

N wx=-1

+ - +(N=x)
-x-1

Which amounts to:

Nl N-~x-1

A;=x ¥ (i+]) | x=l,..N (B.1)
iwl ¢

since x varies from 1 to N-1, it follows that:

N-1 ’
A=Y A,

xm]

and hence by using equation (B.1), we obtain:

N-l N-x-l _—
Aa?}T T ¥ (i+1)[‘7" 1] ®2
x=l in)

on the other hand, we have:
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N -x-1 N-z-1 N-z-

. N=x-=1 - - z-1 - -

Z i+ . x = Z N %=1 + Z § N x =1
=0 g a0 |4 \ =0 i

and since by using the binomial theorem {Liu68}, we have:

Ne=z=1 —_—r— N-r-1 —_—r e
e e

1= 1=l

= (N=x=1)2¥-5=2

therefore equation (B.2) becomes:

N-l
A= —27,,-1:,- ¥ x (N-x+1)2V2 (B.3)

z=]

Now, define the quantities Al and A2 by:

Al .Nil X [%]x-l

xm]

A2 a~£ D) [%]3-2

x=]

Therefore equation (B.3) becomes:
A=g {zmu - Al} B4)
now, we proceed to evaluate the expressions of Al and A2. Lety = %; we have:

N N-l N1
which amounts then to:
[I-Ny”"](l-)') +y-y¥
(-yy

Aly) = (B.S)

replacing the dummy variable y by its value -12- we obtain:

N=2
Al =4 - (N+1) [—é—] (B.6)

Now let us evaluate A2; we have:

N-l 1 N-1

d
A2(y) = Dy ta=—=< 3
$)) xgl x(x=-1)y d)'z x§I

which amounts then to:
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NO-LyTE 2 Al(y) (B.7

A2(y) =
) o =

replacing the dumm:;f variable y by its value % we obtain:

| N-3
A2=16- [~2 +N+2] [EJ (B.8)
Finally, by using equations (B.4), (B.6) and (B.8), we obtain:
. N-l
A=N=2+ [-2-} (B.%)

1%l

21 rul r=2

Evaluationof 8= x {% [N -l ]}

As before, let A, denote the total panicipation of the value x, x=1,....N-1 in the expression of
the quantity B. For the value x=i for example, we have: .

A= N=i=1{ . IN=i=1 PR N-i-1 o j2N=i=1
0 1 N—-i-1
it follows then that the expression of B becomes:
N-1 N-1 1y 151
B= ¥ xV=-l=0Nt ¢ x[—z-] =22 Aly)
xm] z=]

and by using equation (B.6) and replacing the dummy variable y by its value % we get:

B =2 (N+D) (B.10)

N N
Derivationof C= 3 2,,,1_, T i {2‘.
iwd 2l 7y

N=x~1

r-2

From the evaluation of the quantity A earlier in this Appendix, and by following the same exact
steps, it is not hard to see that the quantity C may be written as:
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1

N-1
Y=g x2 (N=x+1) 2V-s2 (B 11

=]

C=

Now, define the quaritities A3 and A4 by:

A3 =~£ 2 [_l-]x-l

1wl

N-1 1 x=]
m=3 (3]

Im)

Therefore equation (B.11) becomes:
- {2(N+1)A3-A4} (B.12)

Now, we proceed to evaluate the expressions of A3 and A4. To evaluate A4, we need first to
evaluate the following expression:

AS N=-1 ( 5 [l ]I—J
= x(x=1Xx=2)1—
z 2

Lety=%.thcquamityA5cant.hcnbewrinenas:

N-=1 o3 d3 N=i . d
A5()’)=xz_:l x(x=1Xx=2)y*™> = rFel E:y = aAZ(y)

using the expression of A2(y) as given by equation (B.7), we obtain:

N-2
MO),L{N(N-ID . =2 Al(y)}

dy y=-1 1-y

where the expression of the quantity Al(y) is given by equation (B.5). Define the quantities
A6(y) and A7(y) by:

Asm:..‘!.{M}
dy y-1

M@):i{m}

dy | l-y
Therefore the quantity A5(y) can be rewritten as: (B.13)
AS(y) = AG(Y) + AT®) |

. . 1
After derivation and some aigebra and by replacing the dummy variable y by its value X we

obtain:
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N—4
A6=-N(N-1)2[ﬂ (B.14)

Now, we proceed to evaluate the quantity A7(y); we have:

d | 2A1() 2 d 2
W=7 { Iy } Ll )2 Ally)

Since from the definitions of the quantities A1(y) and A2(y), we have %AI@) = A2(y), and

after some algebra and replacing the dummy variable y by its value % we obtain:

N -5
A7 =96—N2+2N+3) [%] (B.15)

Retumning now to the expression of the quantity AS, and using equations (B.13), (B.14), and
(B.15), we obtain:

N=4
AS =96-(N3+SN+6)[%] (B.16)

Let us now return to the evaluation of the quantity C. Since:
N-l 1 z=3 N=-1 1 23
A4=AS+3Y x? —-] -23 x[—]
x=i 2 xml 2

using equations (B.12), (B.13), (B.14), (B.15) and (B.16), and after some algebra, we obtain;

Im} =l

cotfarn Ereold] - wEafs]" - )

= %{Z(N-Z)AZ +4NAl - A.S}

and therefore by using the expressions of the quantities Al, A2, and AS, which are given
respectively by equations (B.6), (B.8), and (B.16), we obtain:

C=iN-10+ S (B.17)

-1

213



, 2w [Nzt
Evaluationof D=3 x“{ X

2! ra2 r '-2

From the evaluaton of the quantity B earlier in this Appendix, and by following the same exact
steps. it is not hard to see that the quantity D may be written as:
N=1 N-1 l x-Z
D= T #2' = 23§ 1]

x=] Im]

N-1 x-2 N-l z-1
= N3 -l L
- o8 e[ 1[4}

£l x=]

= V-3 {AZ + 2A1}

and therefore using the expressions of the quantities A1 and A2 given respectively by equations
(B.6) and (B.8), and after some algebra, we obtain:

18
D=3 N2 IN-3 ®19
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APPENDIX C

Expected Number of Exogenous Arrivals During a Stage Waiting Time

We solve for the expected number of exogenous stages (i.e., jobs) that arrive during a
type j. j=1....M stage total waiting time, and consequently their expected contribution to j's
total waiting time, as a function of the system state S; found upon such a type j stage arrival to
the system. Since the waiting time process is not independent of the arrival and the service
processes, Wald's Lemma cannot be applied in a straight forward manner.

Let $;=(s{.....s{,....5) be the vector representing the state of the system such
that s/, i=1,....M is the expected number of stages of type i found in the system when stage j
enters. Recall that T}(S;) is the total expected time the type j stage spends waiting for higher
and equal priority stages already in the system upon its arrival, and is given by (6.4). Let Wi(S)
be the total expected time, the type | stage spends waiting for higher priority stages that arrive
during the time W}™'(S)), i=12.... with W(S)=T!(S,). Let g, i=1,2... be the expected
number of exogenous arrivals occurring during the time W}“(S,—). Since the arrival process is
Poisson with aggregate rate A, we have:

; (C.1)
a =AW;(S)) i=1,2,...

Lemma

Thereexists ani 2 1 such that fork 2 i, we have g, =0

Proof

The proof follows directly from the definition of the g;, i=1,2,... and the stability of the system.
The total expected number of exogenous arrivals during the total expected waiting time of the

type j stage is: ¥ a; . On the other hand, if for k , k21, we have a, =0 then W}(S;) = 0 and all
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the subsequent a; and W'(S,). {>«, are equal to zero.

The total expected waiting time of the type j stage is :

W,=% Wj
¢ =}
Using (C. 1), yields:
z a = lWl
im0
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., we, [z-P,]
VAR(X,)=X? - (X,) =—Tu'2—— (522)

We define the utilization of the system MIG,/1, denoted hereafter by <, to be t=1;fc. and
hence by using equation (5.20), we get:

2+P,

T=p

Now we proceed to find the probability P,. Since the probability of the System being empry
muyst be the same for both the FJ-2-M/M/1 and the M/G./1 systems, namely :
3
P (R=0) = P (3 20,7 ,%0) = (1~p) 2
and since for an M/GY/1 system P (na0) = 1—, we get:

P, = 2;15_02 [ - W] (5.24)
Using the above expression in equation (5.23), yields:

3
= 1_(1_p)2 5.2%

Recall that the stability condition of the F1-2-M/M/1 system is ps1. On the other hand,
the stability condition for the M/G./1 system is t<l. Since the ™wo ‘conditions must be
equivalent, we must then have t<] for all the permissible values of P. Indeed, equation (5.25)
gives:

h.mM =0 i oml (5.26)
and equation (5.24) gives:
lime_oP,=1 tin,_,, P, =0 (327

The above equation stresses the fact that under very light raffic conditions, the service time of 3
bulk job is distributed as the maximum of two exponentials, whereas under very heavy traffic
conditions, this service time is exponentially distributed.

We now proceed to determine the dverage response time of a bulk job. Let W(2) denote

the average waiting time of a bulk job in the M/G./1 sysiem. From M/GI/1 theory [Klei75], we
W A .
have W (2) = -l—_% where Wo = <. therefore we obtain:
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and since T (=W (2)+X,, we get:
3

d )
r=—el, 109
2u(1-p) 2

Let N(2) denote the average number of bulk jobs in the M/ G./1 system; using Little's resuit
(Litt61], we obtain:

3
2

(5.28)

3

Sl

N@) =1<1-)? + 1-(1-91)‘
21-p)?

Interpretation of the Results .

For the M/G./1 system, the formulae that involve only the average service time of a
bulk job are exact, such as the utilization of the system given by (5.25) and the probability P, of
having ny,=0 just after a2 bulk job departure from the system, given by formula (5.24). What
make the previous analysis an approximation are the second and higher moments of the bulk
job service time distribution that assumes a geometric behavior with parameter P,, as indicated
by (5.17). Unformnately, the average waiting time of a bulk job, and consequently the bulk job
response time and the average number of bulk jobs in the system, depend on the second
moment of the bulk job service time diswribution. In the real system, as depicted in Figure
5.2:(b), the positive correlation between consecutive bulk job service times tends to decrease
the variance of such service times (or equivalently the second moment since the average bulk
job service time is the same in both systems). Consequently, we expect the approximation to
give a higher bulk job response time. Figure 5.3 depicts the average response time of a bulk job
given by the approximation, namely formula (5.28), and that of the exact value given by for-
mula (5.9), as a function of the utilization factor p. As we expected, the average response time
given by formula (5.28) is higher than the one given by formula (5.9). It is interesting to notice
that this discrepancy increases with p. Figure 5.4, depicts the discrepancy versus p: namely it
plots the ratio of the average response time given by (5.9) to the average response time given by
(5.28), as a function of the utilization factor p. We observe that for small values of p, the two
formulae give close values, and as p approaches unity, the ratio approaches zero. This figure
represents how much correlation (information) we lose by representing the bulk job service
times as independent identically distributed random variables as given by equation (5.17).
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