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ABSTRACT OF THE DISSERTATION

Software Interface for Multiprocessor Simulation
by

Ali Makoui
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1986
Professor Walter J. Karplus, Chair

The simulation of complex dynamic systems on digital computers is
frequendy a highly computation-intensive activity. The mathematical models to be
implemented on the simulator often contain a large number of simultaneous ordinary
differential equations involving the generation of nonlinear functions of the
independent variable. Networks of microprocessors constitute one promising
approach to obtain sufficient computational speeds, particularly where real-time
operation is required. A principal obstacle to the realization of high-speed
multiprocessor simulations is the absence of effective software. The research
described in this dissertation is directed to the development of a methodology for the
design of software systems to fulfill this objective. This work culminated in the
design of a user-friendly software interface. This software package permits the user
to express the mathematical simulation model in a higher-level simulation language
and to execute it on a network of microprocessors. The partition of the source
program among the processors is accomplished automatically. To this end, the
source code is converted into a data flow graph, analyzed and divided among the
processors in such a way as to minimize the overall execution time in the presence of

interprocessor communication delays.

Xii






In most simulation problems, all program segments are knbwn in advance. It
is, therefore, cxpcéjént to employ a static scheduling scheme. This entails extensive
preprocessing to determine an optimum scheduling strategy and to allocate all
program modules to the individual processing elements prior to execution. Based
upon an extensive investigation of previously proposed scheduling algorithms, a
suitable algorithmic approach has been developed in the present research. This
algorithm analyzes the data flow graph and determines the most appropriate
sequence of the execution of the nodes comprising the graph. A heuristic is
employed to allocate the balanced graph among available processors so as to

minimize communication delays.

The software package permits the user to specify the characteristics of the
multiprocessor network and to determine an optimum number of microprocessors for
a specific problem. The effectiveness of the allocation algorithm is invesugated
using a number of benchmarks. A self contained user manual is provided as an

appendix.
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CHAPTER 1
INTRODUCTION

1.1 High-Speed Simulation

Ever expanding computation requirements have made the construction of
high-speed computer systems a major challenge for both hardware and software
designers. Demands i‘or higher speed and performance continue to exceed the
capabilities of technology. As new fast and inexpensive systems become available,
they are used to solve new problems which were not considered or formulated for
computers before. New VLSI technologies have provided inexpensive
microprocessors, support chips, and custom and semicustom logics(such as gate
arrays and standard cells) which allow us to build networks of microprocessors that
are many times more powerful and yet less expensive than single processor

mainframe systems.

There are many large real-time problems that require high-speed execution.
The simulation of large systems, modeled by a set of nonlinear ordinary differential

equations is one of these applications.

A wide variety of applications exist where an exact solution for a system is

not possible due to cost, complexity, or size. In these cases a model that takes into



account many, but presumably not all, of the features of the system is built. This
model is then analyzed and programmed on a computer and experiments are run for
different initial conditions and parameter values. This is called simulation,
Simulation provides the means for observing the behavior of a system when direct

measurements of the system parameters are inconvenient, hazardous, or expensive,

Real-time simulation consists of obtaining the simulated parameters in the
same time frame that the actual variables evolve in the system being simulated.
Data must be sampled from input signals and incorporated into the numerical
integration algorithm to evaluate the derivatives. Also, the result of the integration
must be available for external use with minimum delay. Therefore, a simulator
working in real time must be fast enough to respond immediately to signals sent
from the physical devices, and generate signals at specific points in time. This

requires computing speeds not attainable with conventional sequential computers.

A variety of approaches has been used to simulate large systems in real time.
Analog and hybrid computers as well as digital computers have been used for this
purpose. A complete and consistent classification of all these systems is rather
difficult. Availabie classifications are loose, overlapping, and subject to debate. One
approach is to use Flynn's widely used framework[FLYN 72], which classifies
digital computers into four broad categories — essentially, all combinations of one

to many control units and one to many sets of data.

(1) "Single-instruction single-data-stream"(SISD) systems that have one

control unit working on one set of data. This organization represents most



conventional one-CPU computers available today.

(2) "Single-instruction multiple-data-stream”(SIMD) systems that consist of
an array of processors executing the same instruction(having one control unit), each
on a different set of data. ILLIAC IV and SOLOMON are examples of this type of

systems.

(3) "Multiple-instruction Single-data-stream"(MISD) systems that consist of
a number of processors each executing a certain instruction on a stream of data that

flows through the system. Pipelines are examples of MISD systems.

(4) "Multiple-instruction multiple-data-stream"(MIMD) systems that consist
of network of processors each executing a different sequence of instructions.

MIMD systems include a wide variety of parallel and distributed systems.

Figure 1.1 shows the different types of computer organizations. Note that
few architectures could be described as pure. Therefore, the classifications shown
here are relatively crude. Some of the most important of these systems are discussed

in the following sections.

1.2 Analog and Hybrid Computers in Simulation

Before the digital computers became popular, analog and hybrid computers
were employed to attain the computing speeds needed for the real-time simulation of
large systems. In analog computers, each operation is done by a separate

computational unit, and all operations are performed in parallel. This means that
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Figure 1.1 Different types of computer organizations

adding to problem complexity requires more operational units, but does not increase
the execution time. In other words, the processing speed is independent of the
problem complexity. This is in contrast to digital computers, where larger problems

are still executed on the same hardware but require more time to solve.

Accuracy in analog computers depends on the accuracy of the components
performing the computations. Nonlinear equations require nonlinear components
that usually have low accuracy. Scale factors are used to represent each dependent
variable by a voltage level and the independent variable by the time variable. Each
operational unit is considered as a black box, capable of generating an output voltage
which is a function of its input voltage. These units are wired together to form the
proper equation. Program storage is more difficult than digital computers. A
separate patch board has to be used for each problem.



Hybrid computers are configured by interconnecting digital and analog
computers in a va;'i_cty of different ways[BEKE 68]. These computers are generally
used to combine the speed of an analog computer with the accuracy and flexibility of
a digital computer. Analog computers can achieve desired speeds for most
simulation problems. However, they have problems including maintaining many
computational units, low accuracy due to nonideal behavior of the computing
elements, difficulty in program and data storage, and realization of nonlinear
components. Hybrid computers have additional problems of requiring the mastering

of both analog and digital techniques as well as A/D and D/A conversion methods.

1.3 Digital Computers in Simulation

Recent advances in digital computer technology have almost completely
phased out the use of analog and hybrid computers and have made it possible to
build simulators using digital computers. In these computers, the same hardware
executes programs of different complexity. The accuracy of results depends on the
number of bits in registers rather than component tolerances. Program and data are
easily stored in storage media. The problem with digital computers is the
sequentiality of the execution. Since a limited number of operational units are used
to carry out the computations, the operations are serialized. Hence, the speed is

decreased as the complexity of the problem increases.

Many methods have been developed to increase the speed of computation in
digital computers. One method is to increase the speed of a uniprocessor by

designing high-speed circuits, reducing the number of logic levels, reducing the



number of cycles per operation, exploiting architectural features such as cache
memory and RIéC(rcduced instruction set computers), and so on. However, the
physical limitation of the circuits will eventually prevent further gains in speed. One
such limitation is the distance between the CPU components. The time that is
needed for electrical signal to flow between components, and hence carry the
information, will eventually become greater than the time needed by these

components to process the information.

Another method is to use fast Coprocessors that work in conjunction with a
host such as a minicomputer or a mainframe, executing complex or repetitive
functions that are off:loadcd from the host. These special-purpose digital devices,
usually referred to as peripheral array processors, attain very high processing speeds
for specialized numerical computations through extensive internal parallelism and

pipelining[KARP 84a].

Yet another method is to introduce parallelism at different levels of the
system hardware and software. The term parallel processing, in a very general
scnse, covers methods that attempt to increase speed by performing computations
simultaneously. All modern computers involve some parallelism. Whether or not a

computer is termed parallel is a matter of degree only.

In hardware, parallelism can be introduced at several levels. At the gare
level, it involves computing all bits of a number simultaneously instead of one bit at
a time. At the register level, it involves computing several words in parallel, instead

of one word at a time. Finally, at the processor level, blocks of information can be



processed simultaneously.

In software, program allocation techniques are used to reduce the number of
data exchanges between modules executed in parallel. Also, adaptable architectures
are developed that are capable of adapting to requirements of the program via

software. Some of the most popular parallel techniques are discussed below.

1.3.1 Look-Ahead Computers

This kind of machine uses several computational units and overlap the
execution of several "instructions. Examples of this type of machine are the
IBM 360/91 and the CDC 6600. Instructions on the CDC 6600 are executed by 10
separate functional units. Up to 32 consecutive instructions are maintained in an
instruction stack. A special control unit called the "scoreboard” is responsible for
the selection of the registers and functional units to be used in the execution of an
instruction. These computers are general purpose computers and have been used for

simulation as well as other applications.

1.3.2 Peripheral Array processors

Although lower in cost than mainframe computers, minicomputers have
limited processing speed for intensive calculations. This has led to the design of the
peripheral array processors which are employed in host-plus-peripheral systems to
enhance the capability of host machines{lKARP 77]. Acting as fast coprocessors,

these machines are able to perform the complex calculations needed in scientific



applications. Array processors have a unique bus structure that allows them to
perform simultaneous fetch, addition, and multiplication operations. The host
provides the overall system control and performs the I/O operations, while the array

processor performs high-speed complex calculations.

One type of array processors, the AD-10, is especially suited for simulation
applications. This array processor has an integration module, fast temporary register
files and fast arithmetic units that employ pipelining techniques. One major
difficulty in using the AD-10 is the lack of a floating point unit, so that it is
necessary to scale all variables to avoid overflow. More recently, however, Applied
Dynamics International has introduced floating point capabilities. This new system

is designated the AD-100.

Host-plus-peripheral systems are widely used in simulation applications that
justify a price range of $100,000 to $500,000; yet they are very inexpensive

compared to mainframes with the same capabilities.

1.3.3 Array Computers

Machines of this type(for example ILLIAC IV)have a single control unit and
several synchronous processing units(SIMD architecture), performing the same
operation on different data streams. In the ILLIAC IV, the processing units(PEs)
form an array in which cach processing unit has a direct data path to four

neighboring units. The control unit broadcasts an instruction to all PEs



simultaneously, w.llgrc each PE executes this instruction on a different data item. An
array organization of this kind is very useful in computations involving the
calculation of a function defined on a mesh or grid of points, where the value of the
function at each point is influenced by the value of its neighbors. This is typical of
systems modeled by partial differential equations. In fact the ILLIACIV was
originally designed to do simulations for such applications as meteorology, heat
transfer, and fluid dynamics. While SIMD machines work well where data is

structured in dense arrays, they are poor general-purpose machines.

1.3.4 Systolic Arrays”

Systolic arrays are network of special-purpose cells designed to execute a
particular algorithm as efficiently as possible. A systolic system consists of a set of
interconnected cells, each capable of performing some simple operation[KUNG 82].
By tailoring the system to a specific problem, a very efficient communication

structure can be achieved.

Systolic arrays can be used in matrix arithmetic, two-dimensional
convolution and correlation, discrete Fourier transform, and any other problem

where repetitive computations are performed on a large set of data.

1.3.5 Pipeline and Vector Computers

Machines of this kind use pipelines to achieve high execution speeds. A

pipeline consists of a sequence of processing segments, through which a data stream



passes. Each segment performs partial processing on data and passes the results to
the next segment. The final result is obtained after the data have passed through the
last segment. When the pipeline is full, each segment is operating on different data,
providing parallelism. Because each processing element works on a different step in
the longer sequence of instructions, a pipeline is usually referred to as an MISD

system.

Vector instructions apply a single pipelined operation to sets of vector
operands. Computers such as the Cray-1, the Burroughs Scientific Processor(BSP),
the CDC Cyber 205, and the Texas Instruments ASC combine array, pipeline, and
specialized hardware techniques. These computers are usually referred to as "vector
supercomputers” and are today’s fastest computers. Supercomputers are used for
number-crunching applications and are very suitable for the simulation of partial
differential equations and are fast enough to perform real-time simulation of
ordinary differential equations. They are, however, too expensive for performing

dedicated scientific simulations.

1.3.6 Multiprocessors

Uniprocessor systems follow the famous von Neumann model of
computation, in which, a single processing element executes instructions of a
program one word at a time, and frequently modifies the contents of a main memory.
Improvements in performance can be achieved by fashioning a system with several
processing units, sharing the same address space, but running independently.

Multiprocessors have been designed with processing elements ranging from
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mainframe computers t0 MiCTOProcessors.

Examples of mainframe multiprocessors are the IBM 3033 MP, consisting of
two IBM 3033, the IBM system/370 model 168 MP, and the Cray X-MP. These
multiprocessor systems generally achieve better performance that their
corresponding uniprocessors. For example, study shows that the performance of the
IBM 3033 MP is between 1.2 to 1.8 times that of the uniprocessor[CONN 79].
Since the cost of mainframe computers is high, minicomputers and microprocessors
have been used in multiprocessor systems. An example of a multi-minicomputer
system is Camnegie-Mellon Cmmp, consisting of several PDP-11 minicomputers

sharing the same address space.

The development of inexpensive microprocessors has made it possiblc to
interconnect a large number of microprocessors to perform high-speed computation.
An example of such a system is Camegie-Mellon Cm* . This system, is a modular
multi-microprocessor in which all processors have immediate access of all memory,
although, the system works faster if most of the code and data references made by a
processor are held locally to that processor. The processing unit, a Computer module
or Cm, is a processor-memory pair. Computer modules are grouped to form 2
cluster. The system can be expanded to arbitrary size by interconnecting clusters via

intercluster busses[SWAN 77, JONE 77].

Multiprocessors are MIMD machines. Scheduling of the tasks and
minimizing the communication delays between processors are key issues in

designing multiprocessors, as the progress of each processor depends on what other
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processors have achieved.

1.3.7 Loosely Coupled Computer Networks

Loosely coupled networks consist of a number of traditional computers that
are linked together. Examples of this type of networks are ARPANET[TANE §1]
and ETHERNET[SHOC 82]. The ARPANET is a so-called long haul network
which connects large computers in many universities and other organizations in the
United States and Europe. This network is mainly used for passing electronic mail

and information among different sites.

The ETHERNET is a local computer network architecture which can be used
to interconnect small personal computers within an organization. This type of
network permits the users to access different resources in the same facility and to
exchange files and messages. While these networks arc ideal for exchanging
information; software and hardware incompatibilities and long communication
delays between physically separate computers does not let them work together

efficiently on the same problem.

1.3.8 Instruction Sequencing Methods

Instruction execution methods in digital computers can be classified into four
broad categories — Control driven , data driven , demand driven, and pattern driven.
Control-driven machines are driven by one or more sequential instruction streams. A

program counter in each stream shows the address of the next instruction to be
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executed. Program and data are stored in a global addressable memory, and program
instructions frequently modify the contents of the memory. Data-driven or data flow
computers, on the other hand, do not have a program counter and are driven by the
availability of data. Any instruction whose data is available is ready for execution.
Demand-driven or reduction machines execute an instruction only when the result it
generates is needed by another already active instruction. Finally, pattern-driven
systems execute their instructions when some enabling pattern or condition is

matched.

Systems discussed so far were all designed based on the popular control-
driven concept. In the following sections, we will discuss the other three possible

methods.

1.3.9 Data Flow Machines

In pure data flow, as defined by Dennis[DENN 80] and many others, a
program is shown by a graph in which all operations are functions without far
reaching side effects. The only sequentiality is the partial order of the operations
required by data dependencies. The computation is performed by sending tokens
down the arcs. A token is a logical entity that contains a value and the address of the
destination node. A node is ready for execution when all input arcs to it have a
token. Since passing large structures from node to node is not efficient, large data
structures such as arrays are implemented by tokens with references to those
structures. Data flow machines have received a lot of attention in recent years, with

a few experimental systems implemented so far.
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1.3.10 Demand-Driven Machines

Demand-driven or reduction machines process the program graph in the
opposite direction from the data-driven machines. In these machines a demand for a
result activates a node which in turn will activate its arguments until constants are
encountered which will then return a value to the demanding node. Functional
languages as suggested by Backus[BACK 78] are suitable for this type of machine.
A functional programming(FP) specifies computation as application of a
combination of functions to a given object[ERCE 84a}. When a functional program
is applied to an input object, it produces an output object. There are no variables, no
states, and consequently no side effects. Mago’s functional programming machine is
an example of this type of machines which executes a purely functional
programming language[MAGO 79a, MAGO 79b]. Reduction machines show great
promise but have certain difficulties — If a machine does not have parallel
computing resources large enough to store all the required data at once, the problem
must be partitioned into computation blocks that fit into machine and then the
partial results must be combined{HAYN 82]. Furthermore, an applicative
programming language may not appeal to programmers without sufficient

mathematical background.

1.3.11 Pattern-Driven Machines

Pattern-driven or associative processors such as STARAN[BATC 74] have
been designed around the concept of an associative memory. The contents of an

associative memory can be accessed when they match the string being sought.
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Associative processors have arithmetic elements as well as data searching circuitry
for each memory word or group of wordsTHAYN 82]. These computers are very
efficient in two-dimensional image processing. They are, however, expensive and

difficult to program.

1.3.12 Adaptable Architectures

Adaptable systems are capable of adjusting to computing requirements via
software. One example of adaptable architectures is the microprogrammable
computer, in which the interconnections between different devices are reconfigured
by software. Another type of adaptable system, the "reconfigurable" system
{VICK 80], is capable of reconfiguring the interconnection between different
functional units. Yet another type of adaptable system, the "dynamic" system,
redistributes resources among programs so as to increase hardware utilization
[VICK 79]. Adaptable architectures are now under development to enhance the
throughput of supersystems{KART 80]. These systems are very useful when the
appropriate structure is not known, or the system must handle 2 wide variety of

programs with unknown structure.

1.4 Simulation of Lumped Parameter Systems

Many physical systems, such as electrical systems and aerospace dynamic
systems, can be modeled by a set of interacting elements in which the behavior of
each element is specified completely in terms of the excitation-response relationship

at its external terminals. These systems are usually referred to as lumped systems
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and are defined by a set of ordinary differential equations.

A differential equation is an equation involving a function and its
derivatives. Ordinary differential equations are differential equations that involve
unknown functions of only one independent variable, where partial differential
equations involve unknown functions of two or more independent variables.

Ordinary differential equations, when expressed mathematically, take the form

f(X, Yo ¥y o ") =0

which specifies a relation between an independent variable, x, a dependent variable,

y, and derivatives of this dependent variable.

In order to build a simulator and connect it to real-world hardware, these
equations need to be integrated in real ime[KARP 82]. Often, engineers rather than
programming specialists are involved in the simulation project, and frequently they
have to change the mathematical model and its computer implementation "on the

spot”. This requires a friendly and easy to use software interface[MAKO 83].

1.5 Continuous System Simulation Languages

Many simulation-oriented languages and software packages have been
designed to implement simulation models on computers. These special-purpose
languages, do not have the programming flexibility and portability of higher-level
languages such as FORTRAN and C. Instead, they offer special functions, data

structures, and other features that facilitate model definition and information
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collection. Using high-level simulation-oriented languages alleviates the need for
extensive programming and simplifies the use of the system. These languages are

designed to model discrete, continuous, or combined systerns.

Discrete system simulation languages are specially designed for simulating
systems whose states change discretely at given points in time. Continuous system
simulation languages(CSSLs), on the other hand, are designed to handle models
described by a set of differential equations. Finally, combined continuous-discrete
languages are well suited for simulation of systems which are not satisfactorily

simulated by either type of languages.

GPSS [GORD 75], SMULA [BIRT 73], and SIMSCRIPT [KIVI 75] are
examples of powerful discrete simulation languages, and GASP [PRIT 74] is a
combined continuous-discrete simulation language. A great deal of difficulty exists
in design of languages for general class of partial differential equations. A few
languages, such as PDEL [CARD 72] and LEANS [SCHI 73], have been designed.
On the other hand, 2 variety of powerful CSSLs for solution of problems modeled
by ordinary differential equations exist{KARP 74]. We are specially interested in the

later group of languages, and we will discuss them in more detail.

1.5.1 Block Form CSSLs

Two type of CSSLs have been developed, block form and expression based.
Block form languages work as analog or hybrid computer emulators and allow the

model to be programmed in essentially the same way as it is solved on an analog
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computer. A model is defined as a block diagram and is implemented by a set of
MAaCTO instruction-s- that define blocks the same way that they may have been
connected on an analog computer patch board. Today by decreasing popularity of
analog simulation, languages of this type such as, DAS [GASK 63] and
MIDAS [HARN 64], are not widely used any more. |

1.5.2 Expression Based CSSLs

In expression based languages, the problems are programmed from the
differential and algebraic equations which express the model, rather than breaking
them into functional t::lemcnts. Dynamic Models(DYNAMO), Continuous System
Modeling Program, Version II(CSMP-II), Continuous System Simulation
Language, Version IV(CSSL-IV), and Advance Continuous Simulation

Language(ACSL) are some of these languages that will be discussed here.

The DYNAMO language[PUGH 70] uses first-order difference equations to
model continuous systems. This language is suitable for system dynamic studies
were the rate of change of system components are studied to determine their
influence on the stability or growth of the system. The results are usually used to
suggest reorganization or produce early warnings from an undesired direction. In
DYNAMO, the model is defined in terms of varying rates of flow and the

corresponding changes in level of the state variables.

The CSMP-III is a nonprocedural language with many sirmulation functions

and macros. It has several integration algorithms and very good diagnostics and
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debugging facilities. A CSMP-III program has three types of statements: structural
statements, which define the model; data statements, which assign initial values to
variables and define constants; and control statements, which are commands to

exercise the model.

CSSL-IV and ACSL are very similar. Similar to CSMP-III, they are
nonprocedural languages designed in accordance with the CSSL standard[STRA 67]
developed by the Society for Computer Simulation. A model can be defined in
either an explicit or an implicit mode. An explicitly structured program in divided
into three regions: INI:I'IAL, DYNAMIC, and TERMINAL regions which contain
equations for initialization, execution of dynamics, and post-processing respectively.,
These languages provide a wide variety of simulation operators which facilitates the

simulation effort and have enjoyed wide use over a number of years.

1.6 Objectives

Among all the systems mentioned in the previous sections, the network of
microprocessors offers the potentials of tremendous execution power with very low
cost. Other systems, such as supercomputers, array computers, and peripheral array
processors can achieve the desired speeds. However, they all involve higher costs
that can not be justified for many dedicated scientific applications. Furthermore, a
network of tnicroproccssors has several advantages over the other systems,
including the ability to trade off the number of processors against the time required
for simulation and the graceful degradation of the network by retiring failed

processors. Utilization of off-the-shelf components for the network eliminates the
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cost of designing special purpose hardware.

In order to take advantage of the parallelism offered by a network of
microprocessors, programs must be reorganized at the level of the algorithm to
detect any concurrency that enables one to take advantage of parallel architecture.
This means that the programmer must have support tools and techniques to do this.
Design of a proper software interface that facilitates the use of a microprocessor
network is of great importance. Programmers insist on high level, nonprocedural
languages. Making this available to the microprocessor network requires a software
interface between the user and the underlying parallel hardware. This is the vital link

in having effective network simulators.

One objective of the present research is to design a software interface for a
network of microprocessors fashioned to simulate systems modeled by ordinary

differential equations.

Most physical systems modeled by ordinary differential equations are
comprised of loosely coupled components. The simulation of these systems
naturally decomposes into a set of concurrent processes, with each process
simulating a part of the effort completed at each step to find the solution for the next
step. As long as each process needs to interact with others only at the end of each

cycle, the processes can run in parallel on a multiprocessor system.

In order to maximize network utilization, each processor must have a
balanced load with minimum interaction with the others. This means that the

parallelism in the program must be revealed. The traditional von Neumann concept

20



of programming is not suitable for a network of processors.

One promising approach is the data flow method where the execution is
driven by the need for data values that are produced and consumed. Implementation
of a pure data flow machine, however, requires the design of special purpose
hardware. In this project, with the intention of using off-the-shelf microprocessors,
the data flow concept is used only as a parallel sequencing tool and is mixed with
other techniques to get the best of both worlds — Utilizing the concepts of data flow
such as single assignment rule, locality of effect and so on to reveal parallelism; and
implementing them on a network of off-the-shelf von Neumann microprocessors to

lower the cost.

1.6.1 Design Considerations

The goal of the design effort was to provide A Language Interface
(abbreviated to ALI) that is simple to use but fast enough to provide the response
time required for the real-time simulation of complex systems. The system was

designed and analyzed with respect to the following factors:

(1) Fast response time — The system shall be fast enough to perform all

real-time calculations within a given deadline.

(2) Ease of programming — An existing and easy-to-learn programming
language shall be used as the source language, so as to enable a user unskilled in
programming to learn the programming language and to implement the simulation

model in a short time.
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(3) Standard hardware — The system shall be made with off-the-shelf
hardware modules with no need to design special-purpose processors or control

units.

(4) Cost-effectiveness — The system shall be in a lower price range than a

mainframe computer of comparable speed.

(5) Modularity and expandability — The software system shall be capable of
operating with different numbers of processors, and be general enough to be used on

different types of microprocessors.

1.7 System Overview

Figure 1.2 shows the block diagram of ALIL Either CSSL-IV or ACSL can
be used as the high-level language. The model is expressed in one of these two
languages and is translated into a data flow graph through several intermediate steps.
Although CSSL-IV and ACSL compilers are commercially available, they generates
FORTRAN code which is unsuitable for that purpose. Instead, these compilers are

used only for detecting syntax and semantics errors.

The user is also urged to run the program on a sequential machine and debug
the run-time errors and user mistakes before using the data flow systern. Run-time
errors are errors, such as divide by zero and arithmetic overflow or underflow, that
can only be detected during run time. User mistakes are typographical errors and
design mistakes that are syntactically and semantically correct but do not generate

the desired results. Finding these errors is much easier on sequential machines and
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the user can take advantage of the debugging facilities of the source language.
When all errors are detected, the error free CSSL source program is used to generate
the data flow graph. The data flow graph is then analyzed and allocated among the

ProcCessors.

Instead of breaking the graph into single operations and allocating them to
processors, groups of related serial operations are taken together to form packets of
executable code. Each packet needs to interact with the others only at the beginning
and at the end of its execution to exchange the results. Execution of each packet is
assigned to one processor that performs it sequentially. An allocation heuristic is
developed to analyze a data flow graph and to divide it into loosely coupled

executable packets.

Figure 1.3 shows the different software modules of the system. Each module
accepts one or more input files, processes them, and generates one or more output
files. The functions of each of these modules are described in this dissertation. The

source codes and a user manual are included in the appendices.

The software system is suitable for a hardware system which is being
designed in an ongoing project at UCLA[ERCE 84a]. The hardware is organized
into several clusters, each containing one or morc microprocessors, memory
modules, and interface modules[ERCE 84b]. Figure 1.4 shows this configuration.
Intercluster communication is done through a global broadcast multi-bus with one
unidirectional bus dedicated to each cluster[ERCE 84c]. Each result token carries a

unique source tag. Clusters accept or ignore a data token based on a local filter table,
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generated at compile time. An accepted token is transferred to a predetermined

region of local memory. When all arguments of a task are available, the local

scheduler invokes the task.

Cluster 1

Cluster 2 .. Cluster k

(a) Data flow multi-microprocessor organization
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Qutput Queue

(b) Cluster organization

Figure 1.4 Hardware block diagram
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1.8 Structure of the Dissertation
This dissertation is organized into nine chapters and two appendices:

Chapter 2 dealing with ordinary differential equations and high-level
languages emphasizes the role of a suitable source language in facilitating
programming and detection of parallelism. It discusses the class of Continuous
System Simulation Languages(CSSL), especially the languages CSSL-IV and ACSL

that were selected as the source languages for ALL

Chapter 3 explains the reasons that the FORTRAN intermediate code and the
object code gcneratcd. by a commercial CSSL compiler is not easy to use on a
network of microprocessors. It points out the need to design a translator to convert a
CSSL source program into a data flow graph without generating the FORTRAN
intermediate code. It presents the lexical analyzer and the postfix code generator of
this translator. It also describes the sort algorithm that reorders the nonprocedural
part of a CSSL program, such that each variable receives a value before it is used in

any statement.

Chapter 4 presents the concept of data flow. It explains why in this project,
instead of using data flow in its pure sense, it is utilized only as a parallel
sequencing tool. The method of representing a data flow graph is also described.

The chapter concludes with a discussion of the algorithm that generates the data flow

graph,
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Chapter 5 on scheduling is concerned with the strategy to be used to allocate
executable tasks to each processor and the heuristics in defining it. This strategy
must distribute a balanced load to each processor and at the same time must
minimize interprocessor communications. Chapter 5 also shows that the original
data flow graph can be transformed into another graph, whose number of active
nodes at any point of time does not exceed the maximum number of available
processors. It concludes by presenting a method of allocating this new graph among

the processors so as to minimize communication delays.

Chapter 6 describes methods of performing integration, table look up, and
function generation. The proper performance of these operations greatly contributes

to attaining high speed.

Chapter 7 is devoted to the benchmark — the model of a helicopter jet

engine provided by NASA. It also describes the operations of jet engines in general.

Chapter 8 analyzes the results of the benchmark and compares ALIs

performance with different numbers of processors.
Chapter 9 summarizes the results of the research.

Appendix A is the seif-contained user manual providing all necessary

information for using the system.

Appendix B contains all source programs, which are written in PASCAL and

are fully commentized for future modifications and enhancements.
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CHAPTER 2
DIFFERENTIAL EQUATIONS AND HIGH-LEVEL LANGUAGES

2.1 Introduction

The motivation of this research was to provide designers with a software
tool, so as to enable them to simulate systems of ordinary differential equations on a
network of microprocessors. The choice of a programming language can have a
major impact on the effectiveness of constructing programs which are reliable and
reasonably easy to understand, modify, and maintain. A model can be easy or
difficult to program in a given language, depending on how many of the language
constructs match the structures needed to build the model. In addition, a

programming language influences the way that its users think about programming.

The primary purpose of a programming language is to provide the
programmer with the necessary tools to develop reliable and cost effective
programs. Furthermore, a programming language suitable for a multiprocessor
system being used by nonprogrammers must have, among others, two important
properties: On one hand, it must be user friendly, and on the other hand, it must be
able to preserve the natural parallelism of the model, so that it can easily be

translated into machine code and allocated to individual processors.
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In this chapter, the source languages selected for the system are described.
First, ordinary differential equations and the criteria for selecting a suitable language
for solving them are discussed. Then the class of Continuous System Simulation
Languages(CSSL) is introduced, followed by a discussion of the CSSL-IV and

ACSL languages, which are selected as the high-level languages of the system.

2.2 Ordinary Differential Equations in Simulatin

System simulation is a useful tool for designing and studying the behavior of
physical systems. Many properties of these systems are formulated quantitatively by
mathematical relations involving certain functions of space and time and possibly

the derivatives of these functions.

There are at least two aspects to study of physical systems. One of them is to
describe the system in terms of mathematical equations, the other is to find the
solution to those equations. A system is first divided into several subsystems. A
mathematical model is then derived by defining inputs and outputs for each
subsystem and some, but presumably not all, relations between various subsystems.
In order to study the important features of the system, the model must be simplified,
as much as possible, by eliminating unimportant features. This must be done
carefully by considering experimental data and past experience with similar

problems.

Mathematical models can be classified into three broad categories, depending

on the nature of the problem, the amount of insight into the system, and the
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attributes of the system that are being studied: Discrete event, lumped parameter,
and distributed parameter models. These models are defined by algebraic, ordinary

differential, and partial differential equations respectively(Figure 2.1).

MATHEMATICAL MODELS
LUMPED DISCRETE DISTRIBUTED
PARAMETER EVENT PARAMETER

ORDINARY DIFFERENTIAL ALGEBRAIC  PARTIAL DIFFERENTIAL
EQUATIONS EQUATIONS EQUATIONS

Figure 2.1 Different mathematical models for physical systems

An ordinary differential equation is an equation that involves a single
unknown function of a single variable and some of its derivatives. The simulation of
systems modeled by ordinary differential equations is the topic studyed in this
research. The choice of a suitable language plays an important role in designing
powerful simulators. A simulation-oriented language can aid the users in describing
the model and provide useful simulation operators such as integration, hysteresis,

and lead-lag to perform various simulation operations.
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2.3 Choice of a Suitable Language
The main considerations used in selecting a language for ALI were:

(1) Simplicity and power — The language shall be relatively simple and easy
to use. More complex features must be available to the expert, but not a matter of
concem for the novice, Thus, a language is desirable that will permit the novice to
learn a minimum subset and then advance, if he wishes, to the use of a complex and

powerful simulation language.

(2) Transparency — The underlying characteristics of the system shall be
hidden from the users so that they do not have to know about data flow or

multiprocessor systems in order to write their programs.

(3) User friendliness — The language shall provide meaningful error
messages and debugging facilities, and shall enable the user to work with familiar

terms and concepts.

(4) Simulation Features — Basic simulation tools, such as integration,
limited integration, backlash, etc., must be provided for the user. A library of

subroutines to perform trigonometric and logical operations is very desirable.

(5) Data flow convertibility — The language must be easy to convert to a
graph form suitable for data flow and multiprocessor systems, thereby avoiding a

complicated compiler design.
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Several alternatives can be considered for selecting a programming language.
The first option is-tc; use the assembly language of the microprocessors. This option
has all the advantages and disadvantages of writing code in assembly language.
Writing in assembly language eliminates the need for a compiler, and the code will
run faster. But on the other hand, it defies our goal of having a user friendly and
easy to use system. Programmers prefer high-level languages and nonprogrammers
will probably switch their system rather than learning to write in assembly language.

Portability and transparency will be lost and the code will be difficult and expensive

to develop and maintain.

The second op;ion is to use a data flow language. This has the advantage of
helping the user to write concurrent code. But the users usually do not want to learn
a new programming language. The concept of a data flow programming language
may be especially difficult for nonprogrammer users. Furthermore, so far there has

been no data flow language with sufficient simulation tools.

The third option is to choose an existing language and to write a compiler to
generate a data flow graph for it. This provides the maximum transparency for the
end users and puts the burden of dealing with parallel processing totally on the
shoulder of the software system designer. The selection of a suitable language from
a wide variety of available languages is very important and must be addressed

carefully.

General purpose languages such as FORTRAN, PASCAL, or other

procedural languages are not designed to meet the specific requirements of
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simulation problems. Physical systems to be modeled are usually composed of
several loosely c;'n;plcd subsystems running in parallel. Writing the model in a
procedural language does not take into account the parallelism that is inherent in the
system. The user, when expressing the model, has to write the statements in exactly
the order that they are to be executed. Parallel equations cannot be distinguished and
are written sequentially. A complicated optimizing complier is therefore needed to
extract the parallelism. Furthermore, general purpose languages do not provide
useful operators, such as the integration operator, as a part of the language. Such

operators must be defined by the user as functions and put in a user library.

Special purpose simulation languages provide a variety of facilities to help
simulation programmers. A family of languages called the Continuous System
Simulation Languages(CSSL) are specially designed for the simulation of systems
that are described by systems of ordinary differential equations. Continuocus System
Simulation Language - version four(CSSL-IV), Advanced Continuous Simulation
Language(ACSL), and Continuous System Modeling Program - version
three(CSMP-III) are some of these languages. The design of all of these languages is
based upon recommendations of Simulation Council’s Committee on Continuous
System Simulation Language published in SIMULATION[STRA 67]. Either
CSSL-IV or ACSL, which are the most popular ones, can be used in ALI and we

will use the term "CSSL language” to refer to both languages.
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2.4 CSSL-IV and ACSL Languages

The syntax and semantics of ACSL[MITC 75] and CSSL-TV[NILS 76,
NILS 84] are virtually identical and correspond very closely to the requirements of
dynamic systems simulation. Both languages provide the user with a variety of
simulation operators and functions. Of particular significance is the fact that these
languages are nonprocedural, so that the model can be expressed by a series of
equations, not necessarily in the same order that they are to be executed. These

statements are sorted by the language processor.

2.5 Structure of a CSSL Program
A CSSL program has two distinct parts:

Part I: Model Definition
This part contains those statements
concerned with defining the model
or the structure of the system being
simulated.

Part II : Run-Time commands
This part contains the sequence of
commands that exercise the model,
i.e. change parameters, start runs,
control the output, etc.
The model definition part of a program can be written in either an explicit or
an implicit mode. An explicitly structured program is divided into three regions :
INITIAL, DYNAMIC, and TERMINAL regions(Figure 2.2). Each one of these

regions corresponds to a separate phase of the simulation. The INTTIAL region

contains the equations required prior to the execution of the dynamics, the
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— PROGRAM

— INITIAL

— END

— DYNAMIC

— DERIVATIVE

PROCEDURAL

END
— END
— END

TERMINAL

END

— END
Figure 2.2 Structure of a CSSL program
DYNAMIC region contains the dynamics of the system and the TERMINAL region

contains equations that are exercised to do post-processing on the solution.

In the INTTIAL region, arrays and constants are defined, and initial values
are assigned to variables. In the DYNAMIC region the model is exercised. In the
TERMINAL region, calculations nceded after the end of the simulation are
performed. The DYNAMIC region contains one or more DERIVATIVE sections.

Each one of these sections contains a set of differential equations. The
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DERIVATIVE section is nonprocedural. If procedural code such as repetition loops
or conditional statements are required, they are written in a PROCEDURAL block in
which the statements are executed in the same sequence that they are written. An
example of a CSSL-IV program that simulates the ejection of a pilot seat from a jet

fighter is shown in Figure 2.3.

Note that SWIN function acts as a switch. If the first argument is greater than
zero, the output will be equal to the second argument. Otherwise the output will be

equal to the third argument. In fact,

YGE 1 = SWIN(Y1 - Y, 0.0, 1.0)

is equal to:
IF (Y1 -Y >0) THEN
YGEL =0.0
ELSE
YGEl =1.0

The run-time commands part of a CSSL program is a set of commands that
exercise the model. Some of these commands specify, for example, the name of
variables whose values must be stored, or printed, or plotted. Other cornmands
signal the executive to start and stop the execution. These commands are, in fact,
the way a CSSL programmer communicates with the executive. In the example in
Figure 2.3, the run-time commands specify the title of the program to be pilot

ejection and request that both a tabular output and a plot to be printed.
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program pilot ejection
initiat
constant thedeg = 15.0, degrad = 57.3, ...
mass =7.0,cd=1.0,s=10.0,y1 =4.0, ...
g =32.2, ve = 40.0, r0 = 0.00237689, ...
va = 900., xmn = -60.0, ymx = 30.0, ...
tmx = 40.0
cinterval cint = 0.01
the = thedeg/degrad
comment seat initial velocity
vX = va - ve * sin(the)
= ve * cos(the)
vic = sqrt(vx ** 2 + vy ** 2)
thic = atan2({vy, vx)
end initial
dynamic
derivative eject
comment relative positions
x = integ(v * cos(th) - va, 0.0)
y = integ(v * sin(th), 0.0)
comment space velocity and flight path angle
v = integ(yge1 * (-d / mass - g * sin(th)), vic)
th = integ(yge1 * (-g * cos(th) / v), thic)
comment compute drag
d=05"r0*cd*s*v™2
yge1 = swin(y1 - y, 0.0, 1.0)
end derivative
termt(x .le. xmn .or. y .ge. ymx .or. t .ge. tmx)
end dynamic
terminal
end terminal
end program
comment run-time commands
hdr pilot ejection
prepar t,th,v.x,y
start
print t,th,v,x,y
plott, th, v, x,y
stop

Figure 2.3 Pilot ejection program in CSSL-IV
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2.6 Implementation

CSSL languages act as an adjunct to an established procedural language.
The commercially available CSSL compilers translate the source code into
FORTRAN, which then, together with PROCEDURAL blocks and FORTRAN
subroutines, is converted into the machine code of a sequential computer. As
mentioned before, for a multiprocessor system, the FORTRAN language is not
desirable, because it is difficult to divide the code into parallel blocks. Therefore, in
this project, the CSSL and the FORTRAN compilers are only used to detect syntax
and semantics errors. _Once it is ascertained that there are no errors, the object code
is disregarded, and the now error free source code is used to generate code for the
microprocessor system, using the lexical analyzer, the postfix code generator, etc.

which are part of the system.

The real-time simulation starts when the code in the DYNAMIC region is
first executed and ends when the DYNAMIC region is terminated. Since the
INITIAL and the TERMINAL regions are executed before and after the DYNAMIC
region respectively, they have no effect on the speed of the real-time simulation.
Therefore, all the effort is made to speed up the execution of the DERIVATIVE

section where the state variables are calculated for each time level.

Each DERIVATIVE section is a parallel process. It has its own unique
name, its own unique independent variable, and its own unique set of integration
control parameters. Statements in the DERIVATIVE section obey the “single

assignment” rule. Each variable can appear at the left hand side of a statement only
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once. There are no far-reaching data dependencies in a CSSL program and, as is
discussed in the f-ol.lowing chapters , a CSSL program can therefore be efficiently

translated into a data flow graph.
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CHAPTER 3
INTERMEDIATE CODE GENERATION

3.1 Introduction

Once a suitable high-level language is selected, the next step is to write a
translator to convert the source programs into machine executable code. As
mentioned in the pi'evious chapter, the commercially available CSSL and
FORTRAN compilers are only used to detect syntax and semantics errors. When all
the errors are corrected, the object code is disregarded, and the error free source code

is used to generate the data flow graph.

Before the CSSL source code is translated into a data flow graph, it is
converted into intermediate code in several steps. First, the source code is converted
into tokens which are easier to store and to analyze. Next, it is converted from infix
notation to postfix notation, which makes the code more suitable for processing by
computer algorithms. Then the nonprocedural part of the code, namely the
statements of the DERIVATIVE section, are sorted. After that the postfix code is
translated into a data flow graph to reveal the parallelism. Finally, this data flow
graph is analyzed and divided into executable packets which are allocated to
processors. In this chapter the lexical analyzer, the postfix code generator, and the

sorter are discussed.
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3.2 Lexical Analyzer

The lexical analyzer converts the long strings of characters into simpler
forms. Each string of characters in the source program that identify a single entity is
converted into a single token. Each token can be either one or two words. Keywords
and operators are shown by single word tokens. Variables, constants, and array
references are shown by double word tokens. The first word shows the entity type,

and the second one shows the entity’s relative position in the symbol table.

Functions are also shown by double word tokens. The first word shows the
function’s unique identification, and the second word shows the number of
arguments(This number is found by the postfix code generator by counting the
number of operands between the two matching parentheses following the function
name). This makes it possible to implement easily functions, such as MAX and
MIN, that have a variable number of arguments. The structure of the symbol table is

shown in Figure 3.1. As example, a part of a symbol table is shown in Figure 3.2.

3.2.1 Symbol Table

Each entity in the symbol table has several words. The first word is the total
length of the entry. The second word is the form of the entity(constant, simple
variable, array, etc.). The third word is the type(integer, real, etc.). The fourth word
is the length of the string of characters that denotes the entity, and the fifth word is a
pointer to the start of the string. Array and table enﬁcs have four more words, a

word to show the number of dimensions(up to three dimensions are allowed), and
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_length of

entity i the entry

form

type

length of the
name string

pointer to the

name string |
entity i+1

string of characters

Figure 3.1 Structure of symbol table

constant
floating point
8
3 _
5
constant
integer
2
12

AVIE|6]3|3|5|.8|7|1|2{5

Figure 3.2 An example of a symbol table
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three words to show the size of each dimension.

The string of characters that denotes a name or a constant is not included in
the symbol table. A separate data structure is used to store those strings. Only the
length and a pointer to the start of the string is embedded in the symbol table. This
saves space(since each name may have different number of characters) and makes

easier to scan the symbol table.

3.2.2 Reserved Word Table

Reserved words are stored in a separate table called the "reserved word
table"(Figure 3.3). A nonzero value in the second entry in the token table means that
a token is not generated upon scanning that reserved word. For example, the
"COMMENT" directive is a reserved word which is recognized by the system, but

no token is generated for it.

In order to speed up the scanner, an index method based on the length of
identifiers is used to search the reserved word table. The names of identifiers are

compared with only those entries in the reserved table that have the same length.

3.2.3 Operator Table

Operators are stored in another table called the "operator table"(Figure 3.4).
All arithmetic, logical, and relational operators used in FORTRAN and CSSL are

supported.



NAME OF RESERVED WORD TOKEN FLAG

TIE{R/M|I|NIA|L 26 0
VIA|R{I|A|B|L|E 715 0
DIE|R|T|{V|A|T|1|V|E 21 0
RESERVED WORD TABLE RESERVED WORD
TOKEN TABLE

Figure 3.3 Tables for reserved words

OPERATOR
SYMBOL TOKEN
+ 109
- 107
* 108

OPERATOR OPERATOR
TABLE TOKEN TABLE

Figure 3.4 Tables for operators
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3.2.4 Scanning Identifiers

The lexical scanner reads characters of the source code one by one and builds
up strings of characters that make a single entity. For example, the string of
characters "DERIVATIVE" is one entity. The first character is an alphabetic
character so the lexical analyzer starts building an identifier. It stores the characters
in a temporary buffer and keeps on reading new characters. As long as new
characters are either alphabetic or numeric, they are added to the buffer, and a
pointer that marks the end of the buffer is incremented. This continues until a
nonalphanumeric character is read. The lexical analyzer assumes that the end of the
identifier string is reached and does not add the new character to the buffer. Instead,
it searches the reserved word table to see if the identifier is a reserved word. If it is

found there, the corresponding token is written in the output file.

If the identifier is not a reserved word, the symbol table is searched to see if it
was previously defined. When searching the symbol table, as in the case of the
reserved word table, only those entities that have the same string length are
considered to match the scanned string. If the lengths are the same, the two strings
are compared to find a match. If a match is found, a two word token is generated.
The first one shows the form, and the second one shows the relative position of the
identifier in the symbol table. If the identifier is not found, it is entered in the symbol
table, the character string is added to the end of the "character string table”, and the

pointers are adjusted accordingly.
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3.2.5 Scanning Operators

If the string starts with a numerical character, i.e., it is a constant such as
6335.871, the lexical analyzer only searches the symbol table to find it. For
numerical values a two word token is generated. The first word shows the form, and

the second word shows the relative position of the constant in the symbol table.

If the string starts with an operator, such as +, * , etc., the operator table is
searched to find the proper token. A string that does not start with an alphanumeric
character and is not found in the operator table is flagged as unrecognizable, and a

diagnostic message is generated.

3.2.6 Generating the Token File

When the lexical analyzer generates a token, it enters it in the output file and
starts examining the next character from the source file. In this way it builds the next
lexical entity. This continues untl all characters in the source file have been
examined. At that point the source code is completely converted to tokens and is
passed to the postfix code generator to be translated to postfix notation. Figure 3.5
shows the calling sequence of the lexical analyzer modules. The symbol table is

saved on the disk to be used by subsequent software modules(Figure 1.3).
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. / lexical analyzer
save function names / \

initialize save symbol table
geta search change ops enter number
lexical entity symbol table to token into symbol table
get an geta get an enter identifier
operator number identifier into symbol table
geta get an finda
fraction alpha char reserved word
|
update
state
get an get an geta
exponent integer digit get next char
erTor report
update output
file
update input
file
UTILITY FILES

Figure 3.5 Lexical analyzer calling sequence



3.3 Postfix Code Generator

The source code is written in infix notaton, in which binary operators are
inserted between their two operands. This notation is well suited for humans.
However, computer algorithms are performed more easily if the code is converted to
postfix notation in which an operator always immediately follows its operands, and
the operands are written in the sequence in which they are to be executed. For
example, in the expression A =B + C*D if multiplication has precedence over
addition(as in FORTRAN), it should be executed as A =B + (C * D). On the other
hand, if addition and multiplication have the same precedence and the statement is
scanned from left to rig-ht, it will be evaluated as A = (B + C) * D. In postfix notation
the first expression is written as ABCD*+=, and the second one is written as
ABC+D*= . In either case there is no confusion, each operator always follows its

immediate operands, and there is no need for parentheses.

The postfix generator uses a stack to store operators, functions and, array
references. Operators are assigned relative precedences that show which operation is
performed first in any expression. The precedences of the operators are given in
Figure 3.6. As can be seen, the arithmetic operators have a higher priority than the

relational operators which in turn have a higher priority than the logical operators.
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operator

ﬁighest - (unary minus)
priority

** (power)

* /

+ -

.GT. .GE. LT. LE. EQ. .NE.

NOT.
AND.
lowest
priority .OR.

Figure 3.6 Precedence of the operators

The source code, that has been converted to tokens, is scanned by the postfix
generator. Operands and reserved words are written into the output file. Whenever a
function or an array reference is scanned, it is pushed onto the stack and is popped
whenever all its arguments have been scanned. The number of arguments that each
function has is found by counting the number of operands between the two matching
parentheses immediately following the function name. This number is written into

the output file after the function token.

Whenever an operator is scanned, its precedence is compared with the
precedence of the operator at top of the stack. If the operator at top of the stack has a
higher precedence, meaning that it is to be executed before the new operator, the
operator at the top of the stack is popped and is written into the output file. The

precedence of the scanned operator is then compared with the precedence of the new
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operator at the top of the stack, and so on. If the stack is empty or the precedence of
the operator at the top is less than the precedence of the scanned operator, the

scanned operator is pushed onto the stack.

Parentheses have a special meaning in arithmetic. Any expression that is
inside the parentheses is performed first. Therefore, a left parenthesis is always
pushed onto the stack. When a right parenthesis is scanned, the stack is popped until
the matching left parenthesis is reached. This assures that the operations inside the
parentheses are performed together. There is no need to copy left and right

parentheses to the output file.

When the end of the statement is reached, all remaining operators in the stack
are popped into the output file. This continues until all statements in the input file
have been translated to postfix notation. The postfix file is then passed to the sorter to

sort the statements of the DERIVATIVE sections.

3.4 Sorter

CSSL languages are nonprocedural, meaning that the user can express the
model of the system without being concerned about the sequence which the program
statements are executed. The statements of the DERIVATIVE section can therefore
be written in arbitrary order. The sorter sorts these statements so that the use of each

variable is preceded by its definition.
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3.5 Sort Algorithm

The sort algorithm [MITC 75] is processed in two passes. In the first pass all
variables on the left hand side of the assignment are marked as undefined. The state
variables are excluded, because for each time level the value of the state variable at
the past time level is used to do the calculations. Therefore, the state variables are
known at the beginning of each time level and are not marked as undefined. Pass one
also generates a list of input variables for all statements(a list of the variables used

on the right hand side of assignment statements).

Pass two examijnes the statements one by one. If any of the variables in the
input list is marked as undefined, the statement is saved, and the next statement is
examined. If none of the variables in the input list is marked as undefined, it is
inferred that all of them have been previously defined. The output variable(the
variable on the left of assignment) is marked as defined, and the entire statement is
written into the output file. Whenever one variable is marked as defined, all
statements that were saved previously are reexamined to see if any of them now
have all their input variables defined. By continuing this procedure, all statements

are eventually sorted, and any algebraic loop of the type

A=B
B=C
C=A

is detected. When an algebraic loop is detected, it is flagged as unsortable and a

diagnostic message is generated.
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The following functions involving memory operators(operators which

require past history) can break algebraic loops:

BCKLSH (backlash or hysteresis) (ASCL only)
CMPXPL (complex pole)

DELAY (delay)

DERIVT {numerical diferentiation)

HSTRSS (backlash or hysteresis) (CSSL-IV only)
IMPL (implicit equation solver)

INTEG (integration)

LEDLAG (lead-lag transfer function)

LIMINT (double limited integration)

LOGIC (flip flop) (CSSL-IV only)

MODINT (moded integrator)

REALPL (first order lag)

ZHOLD (zero hold)

Variables using these functions on the right hand side of their assignment
statements are assumed to have known values at the beginning of each time level.

Consequently they are marked as being defined by the sort algorithm.

3.6 Example

The familiar pilot ejection program[STRA 67] is used as an example.
Figure 3.7 shows the variables of the DERIVATIVE section after pass one of the

sorter is completed.
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SYMBOL | UNDEFINED LIST OF INPUT VARIABLES
FLAG
X OFF Vv TH VA
Y OFF Vv TH
\ OFF YGEL1 D | MASS | G TH VIC
TH OFF YGEl | G TH V | THIC
D ON RO CD S v
YGEI1 ON Y1 Y

Figure 3.7 Sort table at the end of pass one

Note that all variables having the INTEG function on the right hand side of their

assignment statements are marked as defined. Figure 3.8 shows the statements of the

DERIVATIVE section after pass two is compieted.

X = INTEG(V * COS(TH) - VA, 0.0)

Y =INTEG(V * SIN(TH), 0.0)

D=05*RO*CD*S*V**2

YGE1 = SWIN(Y1-Y, 0.0, 1.0)

V = INTEG(YGE1 * (-D/ MASS - G * SIN(TH), VIC)

TH = INTEG(YGE] * (-G * COS(TH) / V), THIC)

Figure 3.8 The DERIVATIVE section after sort is finished

Note that the statements are internally converted to postfix notation before the
sorting begins. Here, they are shown in the infix notation for clarity. After sorting is
completed, the output file is passed to the data flow generator to generate the data

flow graph.
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CHAPTER 4
DATA FLOW

4.1 Introduction

In the past, computer system designers have traditionally assumed the
von Neumann model of computation. In this model, the computer has a main
memory that holds the data and the instructions, and a central processing unit(CPU)
that executes these instructions. Instructions are fetched from the memory and are
executed one at a time. The results, if any, are sent back to the main memory. This
model of execution has an implicit draw back. The sequential access to the main

memory constitutes a "bottle neck”.

To overcome this problem, advances in technology have made possible
radically different computational models. One of these is the data flow model. In
data flow, a program is represented by a directed graph. The nodes of the graph
represent operations, and the arcs represent data paths. Data items appear as tokens
on the arcs. A node can be fired(executed) if all its input arcs have received their
data tokens, and there is no token on the output arcs. Figure 4.1 shows a simple

graph node before and after it is fired.
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() (b)

Figure 4.1 A data flow node (a) before and (b) after firing

In data flow the availability of data determines the sequence of execution. Each
node acts as a function. There are no side effects or far-reaching data dependencies.
A program represented by a data flow graph therefore reveals all its inherent

parallelism.

4.2 Data Flow Machines

As Dennis defines them, data flow machines are, in fact, a form of language-
based architectures, in which the base language is the program graph[DENN 80].
The source program is converted to a graph, and the hardware implements the
formal behavior of the program graph. So far, several data flow languages have been
defined. These include ID, developed at the University of California at
Irvine[ARVI 76, GOST 79]; VAL, developed at MIT[McGR 80); and SIMPLE

designed at the University of ManchesterfGLAU 78].
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The design and implementation of data flow machines has been carried at
several locations. i’t-'obably, the first operating machine based on data flow concepts
was DDM1, designed by Burroughs. DDM1 is a recursively structured data driven
machine in which concurrent tasks are dynamically allocated to available processors.
Another operating data flow machine was developed at Texas Instruments. This is an
experimental multiprocessor system capable of accepting a program written in a
conventional language, compile it, link it and then partition it across any number of
processors[JOHN 80]. The test bed hardware is capable of executing program
graphs. The software consists of a FORTRAN compiler, a link editor, an allocator,
and a loader. Yet another operating data flow machine is the LAU system designed
at CERT, Toulouse, France. In this machine, the source programs are written in a
single assignment language, which is translated to instructions directly executable by

machine circuits{COMT 79].

A data flow machine based on token-labeling has been designed at the
University of Manchester. This machine uses a dynamic tagging model in which
each token carries a label that identifies the context of that particular
token[WATS 82]. In this way more than one token can be active at each arc of the
graph at the same time. This model is very effective in executing iteration loops
where many instructions belonging to different iterations of the loop may be active at
the same time. At MIT, a cell block architecture has been proposed, which has a
large set of instruction cells. These cells are grouped into blocks. Through a
distribution network, cell blocks send operation packets to operational units and

receive the result packets[DENN 80].
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4.3 Data Flow as a Sequencing Tool

In a pure data flow machine, when the program graph is executed, any node
whose ini)ut data have arrived can be executed by any operational unit. In the
simulation of dynamic systems, there are very few iterations or conditional branches.
It is in fact possible to analyze the graph prior to the start of the simulation and to
preallocate it among the processing units. In ALIL, the program graph is divided into
packets of sequential code. Each packet is permanently allocated to a specific
processor and stored there before starting the simulation. The pure concept of data
flow which is based on total asynchrony is, therefore, not followed. Rather, the data
fiow concept is used as- a parallel sequencing tool and is mixed with other methods to

meet the system speed requirements.

4.4 Data Flow Graph Representation

In ALI, the data flow graph is a directed graph whose nodes can have a
variable number of sources and destinations. Each node represents a function that
can be of any complexity; as simple as an addition, or as complex as a two

dimensional table lookup. Each data flow node is internally represented as shown in

Figure 4.2,
number number

operation of $1 | . | Sn of dy | loc; | . { dn | locy
sources dests

Figure 4.2 Representation of a data flow node in ALI
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Nodes can have a variable number of sources and destinations, but the number of
required sources f-01" each operator is known. Nodes of the graph are numbered and
stored sequentially. Therefore , the address of each node is its relative number from
the top of the graph. In Figure 4.2, s; is the ith source and d; is the ith destination.
Since the destination node may have many inputs, loc; indicates the operand number
in the destination node where the result is send to. In Chapter 5, the method of
allocating the graph among different processors is described. There are some items
of information, such as the earliest and the latest execution times of each node and
the new added arcs for introducing artificial dependencies, that are needed for doing

this allocation. This information is stored in separate data structures.

4.5 Data Flow Graph Generation

In a CSSL program, the INITIAL and the TERMINAL regions are executed
only once. Therefore, the main effort to speed up the system is spent in executing the
DYNAMIC region and especially the DERIVATIVE section within the DYNAMIC
region. Consequently, the DERIVATIVE section is converted into a data flow graph,
is extensively analyzed, and is divided among different processors so as to be

executed as rapidly as possible.

In order to generate the data flow graph, a stack is maintained to store the
operands. The postfix code is scanned from left to right. Whenever an operand is
encountered, it is pushed into the stack. Whenever an operator is scanned, a new
node is generated for it, and depending upon the type of the operator(unary, binary,

etc. ), the necessary number of operands is popped from the stack, with the top-most
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operand used as the right-mostly operand of the node. Thé current node number is
then pushed into the stack and is used as an operand for the next operation.
Whenever a node is popped from the stack to be used as an operand for the current
node, the current node is written as the destination for that node. When an
assignment operator is reached, the operand at the top of the stack becomes the
variable that receives the result of that node. Figure 4.3 shows the algorithm. The
result of applying this algorithm to the pilot ejection problem is shown in Figure 4.4.
Note that the graph is internally stored in numerical form. Here, it is shown in

graphical form for clarity.

Another module, "Format Graph," formats this internally stored information
in a printable form. The result is stored in a file called "graphlist" which is in ASCII
form and is printable on any hard copy printers. The graphlist file generated for the
pilot ejection problem is shown in Figure 4.5. For example, the first three lines
indicate that the operation performed at node 1 is a cosine, the input is the identifier
which is called "th" in the source program, and the output is send to node 2 where it
is used as the second operand. The graphlist file and the method of drawing a data
flow graph from the information given in this file is described in detail in

Appendix A.



generation

open the sorted file
containing the sorted
DERIVATIVE section

all tokensin ~ \_

find the destinations of
each node as follows:

sorted file examined? /

find the sources of no

each node as follows:

get next token
push the operand is the token
in the stack yes an operand?
no

end of statement:
current node is
where the left hand
variable is defined

is the token an

Eyes< assignment operator?

no

the token is an operator
or a function:
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pop all operands from
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push new node number
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if node i is used as the

source for node j, then

mark node j as one

of the destinations of
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the number of

destinations of node 1

use the source and
destination information
to generate the

data flow graph

Figure 4.3 Data flow graph generation algorithm

61



Figure 4.4 Data flow graph of the pilot ejection problem
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cos
1 sources ... -

1 destinations ...
mult

2 sources ...

1 destinations ...
sub

2 sources ...

1 destinations ...
integ

2 sources ...

1 destinations ...
var defined ...
sin

1 sources ...

1 destinations ..
mult

2 sources ...

1 destinations ...
integ

2 sources ...
1 destinations ...
var defined ...
muit

2 sources ...

1 destinations ...
muit

2 sources ...

1 destinations ...
[10] mult

2 sources ...
1-gestinations

[1]
(2]
[3]

[4]
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CHAPTER 5
PRESCHEDULER

5.1 Introduction

The use of a network of microprocessors raises two basic problems. First, in
order to take advantag-.? of multiple processors, the execution load of each processor
must be carefully determined and balanced. Second, communication delays between
processors must be minimized. This involves determining data dependencies in the
program and allocating the highly communicating tasks to the same processor which
may create load imbalance. Therefore, the optimal solution for both problems may
be contradictory. Finding the best allocation strategy requires designing an efficient

scheduler.

A scheduler is a program which allocates the resource of processor time.
More specifically, it determines which task a given processor must be executing at

each moment in time,

A significant portion of scheduling concepts was first developed in the field
of operadons research for job-shop or assembly-line applications. These concepts
were later on used and adapted for computer resource scheduling. In the following

sections, different concepts of scheduling theory , as tailored for computer
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applications, are discussed. In each case, the type of problems supported by ALI are

identified. Followed by description of the scheduling algorithm used in ALL

5.2 Scheduling Strategies

Scheduling problems can be studied in two levels of abstraction: user-
management level and resource-management level(Figure 5.1). In the user-
management level, jobs are independent programs submitted by a large population
of independent users. Schedulers dealing with this level are job schedulers designed
to improve the overall system performance. These schedulers are aimed to minimize
the user waiting times,-to maximize resource utilization, and to maximize the system

throughput.

In the resource-management level, tasks which are usually parts of a larger
program compete for resources. Schedulers dealing with this level are task
schedulers which allocate physical resources to tasks. These schedulers are aimed to
execute the tasks within certain execution deadlines, to minimize the execution

length of individual programs, and to maximize resource utilization.

In each level of abstraction, jobs or tasks are represented by a set of
attributes such as arrival times, durations, and dependencies. If these attributes are
known prior to run time, a deterministic model for the problem can be made. If any
one of these attributes are not known, the problem can only be modeled by
stochastic methods. Problem models found by either method are used to find the best

allocation strategy to meet the given performance criteria.



SCHEDULING PROBLEMS
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Figure 5.1 Scheduling problems
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Allocation strategies can be viewed as either static(done prior to run time) or
dynamic(done during rum time). Problems with nondeterministic models can only
be scheduled in run time; while deterministic problems can be schedulea either prior

to or during execution time.

Job schedulers improve the overall system throughput without favoring a
special program. For example, they usually delay longer tasks in favor of smaller
ones to minimize user waiting times. In real-time applications, on the other hand,
meeting deadlines is the most important goal of the system, and the system is
dedicated to the simulation problem on hand. Therefore, a task scheduler that

optimizes execution of a single program is more suitable for these applications.

In ALI, the whole multiprocessing system runs a single simulation problem
at a time; and a task scheduler, called the prescheduler, analyzes the program to find
the best allocation in order to meet real-time deadline requirements. Therefore, job
schedulers are not discussed any further, and the rest of the chapter discusses task

schedulers in more detail.

5.3 Dynamic Allocation

If the nature of the problem is such that any of the model attributes such as
arrival times, execution times, or precedence dependencies are not known in
advance, scheduling must be done during run time. When a processor becomes
idle, it noti'ﬁcs the scheduler to get new work load. The scheduler selects a task that

has received all its inputs and is ready to be executed. However, assigning the first
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task to the first available processor, without analyzing the rest of the program in
detail, may not be the best scheduling strategy, and it may increase the overall delay

time.

To understand this, consider the simple case of two tasks T; and T, T,
becomes ready for execution first. However, it results are not needed in near future.
T; becomes ready for execution just a few moments later, but its results are needed
right away. If the scheduler is smart and can predict that T; will be ready shortly, it

can delay execution of T; and give more priority to T;.

For example, suppose the simple program shown in Figure 5.2(a) is to be
executed on two processors. The allocation is shown in the form of a Gantt
chart{CLAR 52], which consists of a time axis for each processor with intervals
marked off and labeled with the name of the tasks being executed. In Figure 5.2(b),
at time t equal to 3, processor P, becomes available and immediately starts
executing the only ready task, T;. The program is executed in seven time units. In
Figure 5.2(c), however, processor P; is left idle for one time unit to let task T, ,
whose results are needed by Tg, to be executed. As a result the program execution is

done in only six time units.

Moreover, when several tasks are ready for execution, the scheduler must
find the best candidate for execution. The more intelligent a scheduler is, the more
time it needs to analyze the interaction between the tasks to find the best candidate
for execution. However, since dynamic scheduling is done in real time, a lot of

analysis may overshadow the gain of using a multiprocessor system. Therefore,
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dynamic scheduling, although general, is suboptimal,

Dynamic scheduling is best suited for systems that have structures that must
be resolved in run time. These structures, such as iteration loops without a
predetermined number of iterations, make impossible to analyze the program prior

to run time.

5.4 Static Allocation

If all attributes of tasks are known a priori, an extensive analysis can be
performed prior to run time to find the best allocation strategy. In the case that all
tasks belong to a single program, it is desirable to further analyze the program and to

group the tasks into execution packets.

Each packet is a group of closely related tasks with minimum interaction
with other parts of the program; so that when all inputs are ready, it can be executed
to completion without any further inputs from the outside. In this way, the whole
packet can be assigned to one processor. Thereby, minimizing the interprocessor
communication delays. Packets can be sent to each processor before the actual run
begins. At run time, all each processor has to do is to wait for the inputs of each

packet to arrive. The packet is then ready for execution immediately.
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5.5 Classification of Scheduling Problems

A scheduling problem can be described by three attributes: resources, tasks,
and performance criteria. Various classifications for scheduling problems are
possible, depending on what subset of each artribute they cover. In the following

sections, each of these attributes are discussed, identifying features supported by

ALL

5.6 Resources

Each computing system has several resources that the executing tasks
compete for them. Processor time, memory space, and input/output devices are some
of these resources. Processor time is allocated by the scheduler, while memory space
is allocated by the memory management system, and input/output operations are

controlled by I/O handlers.

The main goal of a multiprocessor system is to gain speed. This makes the
resource of processor time the most important of all resources. The availability of
inexpensive memory has led to the assumption that all processors in ALI can keep
their executable code and the related data in memory during execution. Furthermore,
solution of ordinary differential equations is not an I/O bound problem. Therefore,
the allocation of processing time is the only resource allocation problem considered

here.
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5.6.1 Number of Processors

The number of processors determines what kind of actions need to be taken
by the scheduler. In single processor systems, the scheduler acts as a sequencer that
determines what task is to be executed by the processor, and how long the execution
of that task must continue before another task is executed. In multiprocessor
systems, the scheduler is to determine which task is to be executed on each
processor at each moment; problems such as load balancing and minimizing
communication delays must be carefully considered. ALI is designed for
multiprocessor systems. The number of processors is a tunable parameter,

therefore, any number of processors can be used in the system.

5.6.2 Type of Processors

In multiprocessor systems, processors can either be identical(homogeneous)
or different(heterogeneous). Advantage of heterogeneous systems is that they can be
upgraded by new and more powerful processors as they become available. However,
the task of a scheduler will be more difficult if some processors are capable of
performing some operations faster and more efficiently than the others. This is
because the scheduler has to decide which processor is best suited to perform each
task and to decide whether to delay the allocation of a task until the suitable
processor is available, or whether to allocate it to a processor that is available now
but executes the task less efficiently. Only homogeneous systems are handled by

ALL
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5.7 Tasks

The nature of tasks executed on the system, such as their arrival rates,
execution times, interruptibility, and dependencies are very important in selection of
an allocation strategy best suited for each class of applications. Here, a task is
considered to be a unit of computation that can be executed to completion without

any interaction with other tasks.

If all tasks have known attributes before execution starts, the allocation
problem is deterministic and as was discused before, a static scheduling algorithm
can be used for it. If any of these attributes are unknown, the scheduling problem is

nondeterministic and is solved by stochastic approaches.

5.7.1 Arrivals and Durations

When the amrival time and duration of tasks are not known a priori, a
probability distribution function can be used to describe the time between successive
arrivals and duration of tasks. In many scheduling strategies that deal with
scheduling jobs in an operating system, job arrivals are regarded as independent,
random events. In other cases, a worst-case analysis can be made by using the

maximum possible values of task execution times.

In deterministic problems, further restrictions may be enforced. For
example, algorithms are developed that assume all tasks have unit execution
times[HU 61]. Other algorithms, as is the case in ALI, may assume that all

execution times are mutually commensurablefMUNT 69]. This requires that all
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execution times are divisible by a common integer an integral number of times.
This assumption is not very restrictive since general execution times can be

approximated arbitrarily closely by a set of mutually commensurable values.

5.7.2 Dependencies

The individual tasks in a scheduling problem may have constraints on each
other requiring some tasks be completed before others can be started. This is
because of inherent sequentiality of the problem which requires a task to wait for the
result of computation done by another task. This is usually referred to as a partial
order{CONW 67] and is represented by a precedence graph. In a precedence graph,

nodes represent tasks and edges represent precedence relations.

Various degrees of precedences may apply to a given set of tasks. At one
extreme, all tasks may be independent. This is usually the case where all tasks are
different jobs submitted by independent users. In other cases, precedences are

sequentiality constraints among different tasks.

Some algorithms may require further restrictions. For example, they may
only apply to rooted trees where each node has only one successor. ALlI as will be
described in detail, is designed to accept arbitrary precedence graphs with known

dependencies.
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5.7.3 Interruptibility

In some scheduling strategies, once a task is started on a processor, it must
execute to completion. These are nonpreemptive strategies. In preemptive strategies,
on the other hand, execution of tasks can be interrupted to let other tasks execute.
Preempted tasks are resumed later on and are eventually given enough time to
complete. Preemptive strategies involve some overhead for context switching and

will result in better performance only if preemption does not occur frequently.

Nonpreemptive strategies have the virtue of simplicity of implementation
and good utilization -of machinery. The scheduling algorithm used in ALI is

nonpreemptive; once a task is started on a processor, it must execute to compietion.

5.8 Performance Criteria

The goals of using a multiprocessor system are different from system to
system. Hence, a suitable allocation strategy must be selected accordingly. In some
applications, 2 multiprocessor system is used to increase the overall throughput of
the system. In these systems, minimizing the processor idleness and mean flow time

is desirable.

In other applications, such as real-time simulation, a multiprocessor system
is used to meet a certain fixed deadline not achievable by using a single processor in
the same cost range. In these systems, minimizing the execution time to reach the

deadline is desirable. Some of these criteria are discussed in the following sections.
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5.8.1 Meeting Deadlines

In some scheduling problems,such as those controlling or simulating a real-
time process, tasks must be completed before a given deadline. Here, the problem is
not only to minimize the scheduling completion time, but the deadline must be met

in order to interact with external hardware.

5.8.2 Minimizing Completion Time

In many scheduling algorithms, the goal is to minimize the completion time
of programs, although there is not a deadline imposed on the execution. Besides the
obvious reason of finishing a program faster, these schedulers are indirectly

optimizing the processor utilization and system throughput.

If f; denotes the finishing time of task i, then the completion time of a

schedule with n tasks is defined as[COFF 76]:

T = max {fi}
15isn

On the other hand, the processor utilization is defined as the total time that
processors were busy doing execution, divided by the total time they were available.
Therefore, in a system with m processor, the processor utilization is defined

as[COFF 73]:
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Where d, is the duration of task i

As can be seen, reducing the completion time, T, maximizes the processor

utilization.

Furthermore, if T; is the work load on processor i, then the total processor

idleness can be defined as:

I=(T-T)+(T=Ty)+ -+ +(T-T,)

m n
=mT-YT;=mT- Y q
i=1

i=1
Since the total work load on all processors is equal to total program

execution time(which is a fixed value), reducing T minimizes the total processor

idleness.

5.8.3 Minimizing Number of Processors

This goal, through reducing the number of processors, reduces the hardware
costs, indirectly reduces interprocessor communications(because execution is done
on fewer processors), and enables a system with a limited number of processor to

execute a large problem and meet its deadlines.

5.8.4 Minimizing Mean Flow Time

Flow time(or time in system) of a task is its completion time. The mean flow

time of a schedule is defined as(COFF 73]:
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n
X
i=1

n

T =

where f; is the completion time of task i and n is the total number of tasks.

This measure is usually used for operating systems that deal with
independent jobs submitted by independent users. Reducing the mean flow time,
reduces the user waiting times; and at the same time, releases system resources, such

as memory, to be used by other jobs.

5.9 Scheduling Algorithms

Many algorithms have been devised for scheduling a set of tasks with given
precedence relations. Among these algorithms, only those that can result in a
desirable allocation without trying all possible solutions are of practical use. The
execution of the known algorithms for general scheduling problems(problems with a
set of tasks with arbitrary precedences) are not, however, bounded by a polynomial

of the number of the tasks.

Instead, their running times are exponential in the length of their input and as
the number of tasks increases, the time to find the best allocation becomes
intolerable. In fact, it is shown that if there is a solution for the general scheduling
problem in polynomial time, then a large group of other problems, such as the
classic traveling salesman problem(find the shortest route for a salesman who must
visit n cities), can also be solved in polynomial time[COOK 71, KARP 72]. All

these problems are in the class of the so-called NP-complete problems which can be
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solved in polynomial time only by a nondeterministic machine(a machine that can
guess a solution). All NP-complete problems are reducible to each other in the sense
that if at some time in the future one of them is found to have an efficient method of

solution, that method can be modified to apply to all the others.

Presently, there are two approaches to find the best solution for general
scheduling problems: dynamic programming approach and critical-path approach.
The dynamic programming method{RAMA 72] groups tasks into subsets, called
precedence partitions, to indicate the earliest and latest times during which tasks can
be started and still guarantee minimum execution time for the graph. Using these
partitions, algorithms. are developed to determine the minimum number of
processors required to process a graph in the smallest possible time and to determine

the minimum time to execute a graph on a given number of processors.

The critical-path method is used by Barskiy to find the minimum number of
processors to exccute a graph within its critical path[BARS 68]. This method
involves adding additional precedence relations to reduce the number of
simultaneously active nodes to less than or equal to the number of processors. By
doing this, it is guaranteed that there is always enough computing power to execute
all nodes of the graph as soon as they become ready for execution. Fernandez has
enhanced Barskiy’s algorithm to make it more efficient{FERN 72]. Algorithms are
designed that use the critical-path approach for finding the best allocation for a
general graph{BUSS 74, LEVY 73]. These algorithms use heuristics to introduce
additional precedence relations and to do backtracking if the time of the longest path

in the graph is increased.
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The problem with both dynamic programming and the critical path approach
is their time complexity. When the number of nodes in the graph grows, the time
rcéluircd to execute the graph becomes insurmountable. With the worst-case solution
growing exponentially with the number of tasks, the next options are either to

restrict the precedence relations or to use approximate(or suboptimal) solutions.

The extreme case for restricting the precedence relations is to assume that all
tasks are independent. Algorithms exist to find the best allocation for a set of
independent tasks.[MCNA 59]. The next level of complexity is when the precedence
~ graph is a rooted tree(a graph which each node has at most one successor). There are
efficient algorithms to find the shortest execution time of a rooted tree when the task
durations are all the same and preemption is not allowed[HU 61], and when the task
durations are mutually commensurable and preemption is allowedfMUNT 70].
Other special cases involve finding the minimum execution time of a general
precedence graph with mutually commensurable execution times on two processors
for both preemptive schedulesfMUNT 69], and nonpreemptive schedules[FUJT 69,
COFF 72). Suboptimal algorithms are designed for the dynamic programming
approach which use heuristic alternativesfRAMA 72], and for the critical-path
approach[LEVY 73] which does not backtrack if the length of the critical path is

increased.

None of the mentoned algorithms consider the penalty of interprocessor
communication delays due to arbitrary division of the graph among the processors.
In practice, these delays can result in sever degradation of system performance if too

much communication traffic is required.
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5.10 Scheduling Strategy in ALI

In order to be able to analyze a program completely, it is necessary to
estimate the approximate time spent in each part of the program. Study shows thata
large number of subsystems can be modeled without using structures of
unpredictable length. In many simulation problems, all program segments are known
in advance, as is the time required for their execution. Table lookups are exceptions
and require some iteration, The whole table lookup procedure is considered as one

operation, and an average time is used for its execution.

In a simulation’ program written in CSSL-IV or ACSL, most of the execution
time is spent in the DERIVATIVE section, in which, for each time step, the value of
all state variables are calculated independently of each other, and the results are
exchanged at the end of the time step. In order to simulate the system in real-time, a
deadline must be met in completing the execution of each time step. The INITIAL
and the TERMINAL regions are executed once at the beginning and at the end of
each run respectively and do not have a deadline. Therefore, it is sufficient to find a

good scheduling algorithm for the DERIVATIVE section.

One way of analyzing programs to find independent packets is to use a data
flow graph. The "Data Flow Graph Generation" stage in ALI converts the statements
of the DERIVATIVE section into a data flow graph, making it possible to analyze
the program and allocate independent packets to different processors prior to run

time.
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Among all methods mentioned in the previous section, the critical-path
approach is the most practical and straight forward. The algorithm used in ALI is
very similar to the suboptimal algorithm defined by LEVY[LEVY 73]. Although,
many modifications are done to make it faster and more efficient. Several versions of

the algorithm with different heuristics are examined.

5.10.1 Definitions

Before describing the algorithm, a few definitions are introduced. For
simplicity, it can be assumed that each graph has only one entry and one exit node.
This does not reduce the generality, because any arbitrary graph can be converted to

single entry, single exit graph by adding dummy nodes to the top and the bottom of

the graph.

Definition 1: A "basic scheduling” is one that can assign each ready task to
the first available processor, without artificially delaying the processors.
As mentioned before, a basic scheduling may not be the best strategy on an arbitrary
graph. However it is possible to transform a graph to another graph, by adding
artificial precedences, so that basic scheduling on the transformed graph can result in

an optimal schedule on the original graph.

Definition 2: A “critical path” in a graph is the longest path from its entry
node to its exit node.
The time that takes to execute the critical path is denoted by tcp and is the lower

bound on the execution of the total graph. The length of the critical path is
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determined by the sequential precedences of the graph and therefor cannot be

reduced by adding more parallelism.

Definition 3: The "earliest completion time" of a node is the earliest time the

node can be finished without violating the graph precedences. It is defined as:
e = max (t (1)) + ¢ (j=1,2,..,n)

where m, is the kth path the entry node through node j

Definition 4: The "latest completion time" of a node is the latest time by
which the node can be executed without increasing the length of the critical path. It
is defined as: )

I, = min (tep — t (7)) (j=1,2.,n)

where 7, is the kth path the exit node node j

Definition 5: "Activity of a node" is defined as a function whose value is one

in the interval where the node is active and zero otherwise{BARS 68].

1 for te[ G-y, Gl
3G, =70  otherwise

where C; is completion time of node

Definition 6: The "load density function" is defined by :

F(C,t) = ia(c-, t)
i=1

where C is either the earliest or the latest completion time

The value of the load density function in each time step shows how many nodes are

active in that interval[BARS 68]. If there are more active nodes than processors,
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then some of the nodes should be executed at a later time to reduce the active nodes .

Definition 7: The "maximum height of the load density function” is the
maximum number of processors that are required to execute the graph without

increasing the length of the critical path.

o = [ 1 F(C. 0] ]

This is usually higher than the number of processors needed to execute the graph
within its critical path length.By moving the execution of the nodes that are not
needed immediately to other time steps, the height of the load density function can

be reduced, thereby reducing the number of the required processors.

There is also a minimum number of processors that is required to execute a

graph within the tcp or any other deadline.

Lemma : The minimum number of processors is found by dividing the total
execution time of the graph by the length of the critical path(or any other deadline).

PR
i=1

mmin'_-?

This is just an estimate, and since the work load is not uniformly divided through the
time, the actual minimum number may be more than this lower bound. There are
other formulas that give sharper bounds[FERN 73]. However, they require more
calculation time . In ALI, the simple bound given above is used, assuming that if the

number were not sharp enough the number of processors will be increased.
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Another question that may arise is: What is the minimum time required to

execute a given program with exactly m processors?

Lemma : A lower bound for the execution time is found by dividing the total
execution time of the program(in data flow, the total execution time of all nodes of
the graph) by the total number of the processors. And since the lower bound can not
be less than the length of the critical path, the lower bound will be:

n
P2
i=1

b = XY oy

Again there are other formulas that give sharper bounds but take more dme to

calculate{FERN 73], [LANG 77].

These definitions will be clarified by an example. The graph in Figure 5.3
has ten nodes. Two dummy nodes are added to make it a single entry, single exit
graph. Node numbers are shown inside each node, and the execution times of the
nodes are written next to them. There are two critical paths in the graph and are

shown with double lines. The length of the critical path is four time units.

Figure 5.4(a) shows the nodes when they are at their earliest completion
time. This is the carliest time that each node can be executed without violating the
given precedences. For example, node 4 can only be executed after node 1 is

executed, and so on.
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Figure 5.3 A sample graph

Figure 5.4(b) shows the nodes when they are at their latest completion time.
This is the latest time that each node must be executed without increasing the length
of the critical path. Comparing Figures 5.4(a) and 5.4(b), it can be seen that the
nodes on the critical path have zero slack time and are started at the same time in
both charts. Nodes that are not on the critical path,however, have some slack time.

For example node 4 can be delayed one time step without increasing the length of
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the critical path.

Figure 5.4(c) shows the load density function for the earliest completion
time, which is different from the load density function for the latest completion time.
The height of this function at each time step is the number of the active nbdes at that
time step. This is the maximum number of processors required if all nodes are to be
executed at their earliest possible time. This upper bound in Figure 5.4(c) is four.
The graph ,however, can be executed with a smaller number of processors without
increasing the length of the critical path. This requires delaying some of the nodes to

later time steps where less than four nodes are active.

This is the main concept of our allocation strategy. By delaying those nodes
that have some slack time, the graph is executed with fewer processors while the
deadline is still met. For example this graph can be executed by three homogeneous
CPU if nodes 2, 6 and 9 are assigned to CPU 1; nodes 1, 4, 5 and 8 are assigned to
CPU 2; and nodes 3, 7, and 10 are assigned to CPU 3.

5.11 Prescheduling Algorithm

Assumptions : The algorithm derived here assumes that all processors are of
the same type, and tables are not very large and can be kept in any processor local
memory. When a packet is being executed, the CPU is noninterruptible and

execution continues to completion.
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The algorithm is very similar to the near optimal algorithm defined in
[LEVY 73]. It uses heuristic methods for finding the best allocation. But it does not
backtrack to check if the length of the critical path is increased. More rigorous
algorithms are defined in [BUSS 74], which are very time-consuming and are not

bounded by a polynomial of the number of the graph nodes.

The first step is to calculate the earliest and the latest completion times of all
nodes and the time of the original critical path. Starting from the top of the graph,
the earliest completion times are calculated first. The time of the critical path is the
largest of the earliest completion times of the nodes in the graph. Starting from the

bottom of the graph, the latest completion times are calculated next.

For each time step for which the number of active nodes ,r , is greater than
the total number of processors,m , r-m dependencies are added between active
nodes. So that r-m nodes are delayed for later time steps, and only m nodes remain
active for this time step to be executed by m processors. It is important to decide

which dependencies to add.

Each dependency corresponds to an arc which is added to the graph. For each
time step a list of all active nodes that can be used as the head of these arcs and a list
of all active nodes that can be used as the tail of these arcs are created. These are
called head and tail lists respectively(LEVY 73]. When a node is selected as the
head of an arc, this node will be delayed until the execution of the node at the tail is
completed. This suggests that it is better to add an arc between a tail node with the

smallest earliest completion time and a head node with the largest latest initiation



time, so that by the time the tail node is completed, there still remains sufficient time
to schedule the head node. For this reason, the nodes in the tail list are sorted in
ascending order of the earliest completion time. Similarly, the nodes in the head list

are sorted in descending order of their latest initiation time.

Bussel, et al.[BUSS 74] and Levy[LEVY 73] do not include nodes which are
on the critical path in the head list, because delaying these nodes will increase the
length of the critical path. For a suboptimal scheduler, however, this is not a good
strategy. A suboptimal scheduler does not backtrack if the length of the critical path
is exceeded. Thcrcfore-, delaying the nodes on the critical path may result in smaller
increases in the execution time than other nodes. This is confirmed by the results of

different benchmark problems given in Chapter 8.

Another difference between the algorithm in ALI and Levy’s algorithm is
treatment of redundant arcs. When a new arc is added, some already existing arcs
may become redundant. For example, in Figure 5.5 after addition of the arc between
node 3 and node 2, the arc between node 1 and node 2 becomes redundant. Levy’s
algorithm deletes redundant arcs by an algorithm that has complexity of O(n?). In
ALI, procedures for calculation of the earliest and latest completion times are
designed in a way that redundant arcs do not effect these calculations. Therefore,

there is no need to make special effort to delete the redundant arcs.

After the head and tail lists are ready, for each time step where there are
more active nodes than m(the number of the processors), enough arcs are added to

reduce the active nodes to m.
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Figure 5.5 A redundant arc

The first nodes from the head and the tail lists are chosen. If both nodes are
the same or if the added arc creates a cycle, that arc is not acceptable and another arc
is tried. The next candidate arc is selected such that the difference between the latest
initiation time of the head and the earliest completion time of the tail is maximum.
When an arc is found; the earliest and latest completion times and the length of the
longest path are updated and another arc is added until the number of active nodes

for this time step is reduced to m. Then the next time step is processed.

Two versions of the algorithm, hereby referred as A and B, are developed.
Algorithm A does not allow processor idle times. Only those nodes which become
active at each time step are used in the head list and therefore be delayed. Other
active nodes which are started in previous time steps are not included in the head

list.

Algorithm B, however, allows processor idle time. Therefore, it includes all
active nodes in the head list. The comparison between the two algorithms and their
performance evaluation are done in Chapter 8. The algorithm is formally defined in

the next section.
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5.12 Formal Defipition of the Algorithm

This algorithm(Figure 5.6) transforms a graph to another graph that could be

allocated to m processors using a basic scheduling method:
1) te0
compute €, 1, and t

2) t=t+1
if t > t., stop. The graph transformation is complete.

3) if F(e,t) =1 <m goto 2

4.1) Build the head list from the active nodes(for
Algorithm A, only include those active nodes
which start at time step t).

Sort the head list according to descending order
of the latest initiation time.

4.2) Build the tail list from the active nodes
Sort the tail list according to ascending
order of the earliest completion time.

5) DOFOR arccount=1tor-m
5.1) choose the first node in the tail list as T.
5.2) choose the first node in the head list as H.
5.3) if T # H and if arc(T, H) does not create
a cycle, go to 5.
5.4) choose the next available node in the tail list
as NEWT.
5.5) choose the next available node in the head list
as NEWH.
5.6) ifch—tH—ch>1cM“tNEWH—ccTthen
choose NEWT as T
else
choose NEWH as H
goto5.3
5.7) add arc(T, H) to the graph,
delete T from the tail list, ,
delete H from the head list, and
update ¢, 1., and find the new critical path
(if it has changed)
arccount ¢ arccount + 1

6) goto2
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start
prescheduler

rewind input files and copy the
data flow graph into memory

¥

calculate the earliest and the latest
completion times of all nodes

v

find the total execution time and the
lower bound for the number of CPUs

find the load density function and the
upper bound for the number of processors

v
(read the number of processors(m))

t;=1 (start from the 1st time step)

< tj < tina? N\ yes

all time steps examined? ¥
M, no find the final
no active nodes more than execution time
‘_< number of processors? > I
v _Yes sort nodes according
create the head list to the earliest
create the tail list execution times
v
add a new arc to the hto
reduce the number o?’aa;:l:ive nodes allocate node to CPUs

v
no number of active nodes
equal to number of CPUs?
X, yes

t; =tj + 1 (g0 to the next time step)
find the new final time

Figure 5.6 The prescheduling algorithm
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5.13 Assigning the Work Load to Processors

By adding the precedences to the graph, the number of active nodes at any
time step is reduced to less than or equal to the number of processors. This
guaranties that, at any time step, there are enough processors to execute all active

nodes.

Therefore, basic scheduling can be applied to the graph to allocate it among
the processors. However, basic scheduling alone does not take into account the
interprocessor communication delays. Interprocessor communication is needed when
a node and one of its successors are executed by two different processors. However,
this does not necessarily introduce a delay. For example, in the simple example in
Figure 5.7, node 2 and its predecessor, node 3, are executed by two different
processor. Node 2 is done at time ¢ equal to 1. Node 3, however, can not be started
before time t equal to 10. A communication delay is, therefore, introduced only if

this delay is grater than 8 time units.

Figure 5.7 Interprocessor communication example
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The basic scheduling strategy with a heuristic that minimizes the
interprocessor communications is applied to the graph to allocate it among the
processors:

1) The longest path of the graph after all
artificial precedences are added is equal
to execution time of the graph. Therefore,
each disjoint critical path is assigned to
one CPU which is dedicated to execution
of that critical path.

2) If a node has only one predecessor which
is ready for execution immediately
after its father node, the predecessor
is assigned to the same CPU.

3) If the predecessor is not available for
execution right away(because it needs
more inputs from other parts of the
graph), the CPU is added to the pool
of the idle processors.

4) If a node has more than one predecessor
which becomes ready for execution
immediately after the father node, one of
the predecessors is assigned to the
same CPU, the rest is assigned to
processors from the idle processor pool.
(Since the number of active nodes was
reduced to less or equal the number of
CPUs by the previous algorithm, it is
guaranteed that there will be enough idle
CPU to execute all available nodes
immediately). This is the only case that
requires interprocessor communication at
the run time,
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CHAPTER 6
JET ENGINE SIMULATION

6.1 Introduction

Real-time simulation is an effective tool for analyzing the behavior and
interaction between components of a jet engine. It is useful in all different phases of

design, test, and evaluation of a jet engine.

Analog computers were previously used for performing real-time simulation.
They, however, suffer from drawbacks such as low accuracy, difficulty in generating

multivariable functions, and large amount of equipment needed.

Hybrid computers divide the simulation task between their digital and analog
portions. While the digital portion performs multivariable function generations, the
analog portion performs other calculations such as integration. This method,
although very effective to operate in real time, is still not totally desirable. Difficulty
in handling analog components and several sources of errors including low accuracy
of analog components and the fact that the digital update time appears as a time
delay to the analog portion and can cause dynamic errors[SZUC 78] make all-digital

simulators an attractive alternative.
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The problem with all digital approaches is the limited speed of the processor.
For real-time simulations that involve hardware-in-the-loop interactions, the frame
time of computer must be short enough to interact with outside world and to be able
to perform all necessary calculations in time. This requires high-speed computing
capabilities. Usually a frequency range of up to 10 Hz is studies. Hence, the frame

time should be less than 100 milliseconds.

With the advent of fast microprocessors, it is now possible to perform the
simulation on a network of microprocessors and achieve high speeds required for
real-time interaction with the outside hardware. A jet engine is usually modeled by
several loosely coupled components. Each component is modeled separately, and

they exchange the computational results at the end of each time frame.

The simulation of a jet engine is selected as the benchmark for ALL In this
chapter, jet engines are studied. Sections 6.2 and 6.3 review the basic concepts of jet
engines. The rest of the chapter discusses the jet engine model provided by the

NASA/LEWIS Research Center which is used as the benchmark.

6.2 Jet Propulsion

The basic principle of jet propulsion is neither new nor complicated. It is, in
effect, the identical elementary force which imparts the energy to a toy balloon when
it escapes one’s fingers and flies off while deflating through its open stem. Jet
engines develop thrust by accelerating a mass of gases produced by burning fuel

with air or some other oxidizer.
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The basic jet propulsion equation is obtained from the second law of motion
stated by Newton in 1680. This law states that "the resultant force acting on a body
is equal to the product of the mass times the acceleration of the body". This is

represented by the following formula:
F = M*a

Where(in appropriate units):
F is force
M is mass
a is acceleration
When this formula is applied to a jet engine, it becomes:
w
F=—%(V;-V,
g )
Where(in appropriate units):
F is force
w is flow rate of air, gas or fuel
V, is initial velocity of a mass of air, gas or fuel
V, is final velocity of a mass of air, gas or fuel
g is gravitational acceleration
The above formula, although simplified to a great extent, defines the main
source of thrust in a jet engine. Another source of thrust is the pressure difference
between the jet nozzle, where the gases are exhausted, and the ambient air. In

practice, many other terms such as rates of air and fuel, leaks in the engine,

temperature and density of air, etc. must also be considered.

6.3 Basic Components of a Jet Engine

A jet engine is like a large stovepipe(Figure 6.1). Huge quantities of air enter

the engine at the air inlet in the front. This incoming air is compressed by a



compressor and is passed to a2 combustion chamber(combustor). The fuel is sprayed
through nozzles inio_ thé front of the combustion chamber. The resulting mixture of
fuel and air is burned to produce hot, expanding gases that enter a turbine. The high
velocity of the gases entering the turbine causes the turbine to rotate. The power the
turbine extracts from the gases is used to drive the compressor which is mounted on
the same shaft. Roughly 75% of the power generated inside a jet engine is used to
drive the compressor. Only what is left over is available to produce the thrust needed
to propel the airplane. Finally, the exhaust gases are carried rearward through a short
duct, called engine tail pipe, and are discharged through the jet nozzle which is the

opening at the rear of this pipe.

COMBUSTION TURBINES
CHAMBER

—~ o

AIR
. ENGINE TAIL PIPE
i / SHAFT AND JET NOZZLE
-.\—————-
COMPRESSOR

Figure 6.1 A simple turbojet engine

The jet engine shown in Figure 6.1 is that of a wrbojet engine. There are
other types of jet engine too. The propjet, or turbopropjet, is a version of the basic
turbojet unit in which a conventional aircraft propeller is mounted on the central
turbine shaft. The turbine actuates the compressor and, in addition, rotates the

propeller blades. This arrangement is an atternpt to combine the desirable features of
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the turbojet power plant and the aircraft propeller(Figure 6.2). In this type of engine,
most of the propulsive thrust comes from the propeller, and only a small portion

comes from the exhaust nozzle.

COMBUSTION

CHAMBER TURBINES
7\ ENGINE TAIL PIPE
¢ / SHAFT AND JET NOZZLE
REDUCTION /
GEAR / - N ~———

. COMPRESSOR

PROPELLER

Figure 6.2 A turboprop engine

A variation of the turboprop engine, known as the turboshaft engine, is a gas
turbine power plant in which all delivered power is in the form of shaft power that is
used, through a transmission system, to operate something other than an aircraft
propeller. Turboshaft engines are currently used to power helicopters and for
various marine and land applications such as generating electricity and pumping
natural gas through cross-country pipelines. The simulation of a turboshaft jet

engine is used as the benchmark for ALL
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6.4 Engine Description

The model is provided by the NASA/LEWIS Research Center. The engine is
a small, lightweight turboshaft helicopter engine of 1500-horsepower
class[HART 84]. The engine has two turbines and one compressor. A gas generator
turbine drives the compressor and a free-spinning power turbine delivers the power
to the engine output shaft. The compressor has two parts. A five-stage axial part and
a single-stage centrifugal part. In the axial part, a series of rotating blades and
stationary vanes compress the air as it flows through the compressor in an axial
direction. In the centrifugal part, the air entering through the center is rotated with an
impeller. The air is carried to the perimeter of the impeller by centrifugal force. The

air pressure is increased in a diffuser and is delivered to the combustor.

6.5 Model Description

The engine model is a sixth-order nonlinear system represented by five 1st-
order ordinary differential equations and one first-order lag. The computational flow
diagram of this engine model is shown in Figure 6.3. Major components of the
engine such as the compressor, combustor, turbines, and rotors are shown. Arrows
show the flow of information from one component to another. Intercomponent
volumes are assumed at locations where gas dynamics are required. In these

volumes, the storage of mass and energy occur.

The CSSL-IV program showing the model is shown in Figure 6.4, Initial

conditions for state variables and other parameters are given as constants in the
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Figure 6.3 Block diagram of small turboshaft engine
INITIAL region. The DERIVATIVE section embedded in the DYNAMIC region
contains the mode! definition statements. The data flow graph for this program is

shown in Figure 6.5.

The compressor, combustor, and turbines are static elements and are
modeled by a combination of algebraic and tabular data. There are seven functions
of one variable and one function of two variables expressed in tabular form. These
tables are build using the manufacturer’s engine performance data developed during

the engine design phase, as well as engine experimental test data.

Rotors and intercomponent volumes are dynamic elements. Six state
variables are associated to dynamic components. Rotor dynamics are represented by
the equations of conservation of angular momentum. There are two rotors: one
between the compressor and the gas generator turbine, and the other between the

power turbine and the load. Two state variables represent the rotational speeds of
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these rotors.

Volume dynamics are represented by the equations of conservation of mass
and energy. Three state variables represent the total stored air mass at the
compressor outlet, the pressure at the combustor outlet, and the interturbine
pressure. The temperature at the compressor outlet is represented by a first-order lag

equation.
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program small turbo-shaft engine simulation

constant igt =.0445, ipt=.417, kv41=6.17, kv45=13.63, kwgtrb=.0876

constant hvf=18300., ra=640.2,t3Ig=.02, v3=658.82, p2=14.620, 12=538.32

constant p49=15.539, torqld=26.26, wiph=200.06, icng=36155., icnp=20000.

constant icp41=81.31, icpd5=21.27,ict3=992.5,icws3=.0898, kdpb=.034

constant effb=.885,chf1=184.3

table ypnge 1, 11, 65.,80.,82.,85.,87.,89.,92.,94.,96.,98.,100.

table xprc 1, 77, 1.0,3.15,3.25,3.40,3.52,3.65,3.75, 1.0,5.61,5.83,...

7.4,7. 58.7,1.0,8.4,8.99.3,
1 0.6,11.0,11.3,11.5, 1

, 1.0,12.8,13.3,13.7,

.
.
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table zw2c¢
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rOOO®mN
NO®O NG

table xpng
table zb1 1,13,.109,
0.0038,0.0,
table xpre1 1, 9,
table ztrc 1, 9, 1
table xw2c, 1, 4, 3.0,8.3,
table zwxqg2 1, 4, .0851,.0846,.0815,.779
table xw2cb 1, 4, 0.0,3.0,4.98,12.0
table zb2 1, 4, .01057, .01057,.0090,.0090
table xprgt 1, 10, .210,.214,.2141,.215,.2195,.224,.23,.25,.28,.35
table zdhgtq 1, 10, 43.,41.,40.8,40.42,39.24,38.52,37.6,35.5,32.3,24.6
table xprpt 1, 10, .30,.35,.40,.45,.50,.55,.60,.65,.70,.80
table zdhptq 1, 10, 34.0,30.3,26.7,23.2,20.0,17.2,14.3,11.3,8.3,2.0
table z|w45c 1,10, .372,.372,.3705,.367,.3625,.357,.351,.340,.325,.285
initia

f1 = funset(40)

del2 = p2/14.696

kdhb = chfl + effb * hvf

rtth2 = sqrt(t2/518.67)

khpt = 30./3.1415926"550.

wi=wfph/3600.

algonthm istart=6, irun=7

cinterval = .20

nisteps nist = 3; nsteps nst = 1000

end initial

O
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=
m-
g
©3

,10.08 4,9.98,9. .80,
.6,80.,81.,82.,83.,84.,85.,86.,87.,88.,88.4,100.
1 05,.031,.0146,...
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2
. 1?., 4.,16.,18.,20.
1

Figure 6.4 CSSL-IV program to simulate a turboshaft jet engine
(continued on the next page)
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dynamic

derivative --
penge = nge / 447.
ps3 = .956 " p3
ps3q2 = ps3/p2
wa2c = mapfun(1, 7, 11, xpre, ypnge, zw2c, ps3q2, pcngc)
wa2 = waz2c * del2 / rtth2
b1 =fun1§2, 13, xpngc, zb1, penge)
b2 = fun1(8, 4, xw2ch, zb2, wa2c)
wb25 = (b1 + 2) * wa2
wa3 = wa2 - wb25
t3g2 = fun1(3, 9, xpreci, ztrc, ps3qg2)
13c =13g2 “ t2
t25q2 = 1.15 + .039 * ps3q2
125 =125q2 * 12
t3 = realpl(ict3, t3lg, t3c)
wxqg2 = funi(4, 4, xw2¢, zwxq2, wazc)
wb3 = (wxg2 + .0025) * wa2
ws3dt = wa3 - wb3 - wa3i
ws3 = integ(icws3, ws3dt)
krwqv3 =ra * ws3/v3
wa31 = sqri(krwqv3 /kdpb * (p3 - p41))
h2 =.239 * t2
h25 = .240 * 125
h3 =.2496 “13 - 8.4
p3 = krwqv3 * 13

comment combustor outlet pressure and temperature
p4idt = kvd1 * t41 * (wa3dl + wf-wd1)
p41 = integ(icp41, p4idt)
far41 = wi/wa31
h41 = (h3 + kdhb * fard41) / (1. + fard1)
t41 = 3.298 * h41 + 308.
comment gas genegrator turbine enthalpy drop and flow

thtadt = 1.8326e-3 * t41 + .0856
pr45g1 = p45/ p41
dhgth4 = fun1(5, 10, xprgt, zdhgtq, pr45q1)
dh41 = dhqth4 * thta41
h44 = h41 - dhé1
w41 = kwgtrb * p41 / sqrt(thtad1)

Figure 6.4 {Continued)
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comment compressor and g.g. turbine torques and speed
torqc = 7429.35/ng * (h3 * wa3 + h25 * wb25 - h2 * waz2)
torq4t = 7429.35 * w41/ ng * dh41
ngdt = 9.5493 / igt * (torq41 - torqc)
ng = integ{icng, ngdt)
ngc = ng / rith2
comment power turbine enthalpy drop and flow
h45 = .9623 * hd44
t45 = 3.537 * h45 + 174.5
thta4s = 1.8326e-3 * t45 + .0856
dhqth5 = fun1(6, 10, xprpt, zdhptqg, pr49q4)
pr49q4 = p49 / P45
dh45 = dhgth5 * thta45
h49 = h45 - dh45
t49 = 3.549 * h49 + 160.1
wdasc = fun1(7, 10, xprpt, zZw45c, prd49q4)
w45 = w45¢ " p45/sqri(thtad5s)
comment inter-turbine pressure
p45dt = kv45 * 145 * (w41 - wab + .7826 * wxq2 * wa2)
p45 = integ(icp45, p45dt)
comment power turbine torque and speed
torqg45 = 7429.35 * wda5/ np * dh45
npdt = 9.5493 /ipt * (torq4s - torqid)
np = integ(icnp, npdt)
hpout = np / khpt * torq4$5
wigps3 = wiph / ps3
end derivative
termt(t .gt. 10.0)
end dynamic
terminal
end terminal

end program
Figure 6.4 (Continued)
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Figure 6.5 Data flow graph of the turboshaft jet engine
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CHAPTER 7

FUNCTION GENERATION

7.1 Introduction

In order for the prescheduler to analyze a program prior to run, the initiation
and duration of all tasks must be known a priori. Determining these values becomes
very difficult if the prc;gram contains iteration loops or conditional branching. There
are methods for unfolding loops with known number of iterations[RUSS 69].
However, if the number of iterations must be resolved at run time or if the program
contains conditional branches of different lengths, it will not be possible to exactly
determine the completion time of the program. To estimate the time, one must assign
probabilities to each branch of a conditional statement[MART 69], as well as to the

number of iterations of a loop.

As mentioned before, ALI does not support stochastic models. Therefore, if
there is a loop or a conditional branch in the program, the user must define a function
to contain them. When the simulation starts, the user is prompted to enter the
estimated time of those functions as well as all other CSSL or user defined functions.
For some functions, however, a default execution time is provided, and the users
have the choice of either using those defaults or use their own estimated values.

These functions are described in the rest of this chapter. The way the users can
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accept the defaults or use their own values is described in the User Manual in

Appendix A.

7.2 Function Generation Methods

There are two widely-used ways in which a function can be generated: the
Taylor series approximations and table lookup methods. In Taylor series
approximations, if a function f(x) possesses continuous derivatives of all orders
around a point xg, then the Taylor series expansion for the function around the point

Xp is expressed by the following power series:

j=eo £ (1)
0= T2 (x= xo)"
n=1 '

The value of the function at a neighboring point,x;, can be found by
substituting the value of x; for x, calculating the first n terms of the Taylor series,
and ignoring all other higher-order terms. These ignored higher-order terms
determine the truncation error. The Taylor series approximations is straightforward
and provides an easy way of controlling the truncation error. However, for all but
very simple functions, calculation of the higher-order derivatives is very difficult and

sometimes impossible.

Besides, in many practical problems, functions can not be expressed by a
formula and only their experimental values are available in tabular forms. Therefore,
table lookup methods are universally used for function generation on digital

computers.

110



In these methods, a function is represented in a tabular form, listing the
values of the function for a range of input values. Whenever the value of the
function is needed for a specific input value, the table is searched and if an exact
match is not found, interpolaton or extrapolation methods are used to find an
approximate value for the function. In simulation problems, most of the execution
time is spent for function generation. Table lookup methods, therefore, play an

important role in the execution of these problems.

7.3 Table Lookup Methods

The functions‘ used in simulation problems are mostly in one- or two-
dimensional forms. In one-dimensional form, for specific values of x, the
corresponding values of f(x) are tabulated. The values of the function can be found

by a simple interpolation(Figure 7.1).

This interpolation can be either linear or of a higher-order schema. The

linear interpolation of f(x) for the interval x; to x;41 is:

f(xi41) - £(xp)

Xiel — Xj

f(x) = f(x;) +

In two-dimensional form, a function is represented by a family of parallel
curves. If the values of the family of curves is expressed for the same set of values of
x, a two-dimensional interpolation can be made in the directions parallel to the

coordination axes(Figure 7.2).
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If the values of the family of curves are expressed for different set of values
of x, a two-dimensional interpolation in directions not parallel to the coordination
axes is required(Figure 7.3). This type of two-dimensional function is frequently
used to represent the component performance data of aeronautical systems such as

jet engines and is referred to as a map function.
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Figure 7.3 Interpolation method for map-type function of two variables

A majority of functions used in simulation can be generated by either one-
dimensional or map-type two-dimensional table lookups. Therefore, default values

for these two type of table lookups are provided in ALL
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7.4 Default Execution Times

ALI is capable of accepting all standard CSSL operators as well as any user
defined functions. However, since the system is designed to work for any
microprocessor, the user must know the execution times of all simple operators and
will be prompted to enter the estimated times of these operators. Furthermore,
execution times of more complex operators and functions, such as integration or
table lookups, depends on the method used to perform them. Therefore, an advanced

user must know the execution times of all simple and complex operators.

However, for the casual user, default execution times of some widely used
operators and functions are provided. The execution times of simple operators are
found from the Motorola MC68000 User’s Manual[MOTO 82)]. Note that even for
the same type of microprocessor, the execution times depend on the external clock
rate. Therefore, execution times are usually given in terms of external clock periods
rather than the actual millisecond figures. Furthermore, the number of clock periods
for each instruction depends on the operand size(byte, word, long) and the
addressing mode(register direct, memory direct, etc.). The execution times used in
ALl are found by averaging the values for different operand sizes and operation

modes.

These execution times are then normalized by dividing all execution times to
the execution time of the addition operation and are rounded to the closest whole
integer. This makes all nodes of the graph mutually commensurable as required by

the prescheduler.
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The algorithms to calculate the default values for more complex operators are
given in the following sections. The actual values used for those defaults are given in

Appendix A.

7.4.1 One-Dimensional Table Lookup

In simulation problems, successive function references are usually made for
consecutive values of the independent variable. An easy way of speeding up the
search is, therefore, to save a pointer to the last entry referenced in the table, so that
the next table lookup can start from that point rather than from the beginning of the
table. Each table is assigned a number and a separate table is used to store the search

pointers for all tables(Figure 7.4).

A new search starts from the scan interval were the previous value was
found. Usually the new value is either in the same interval(no need to search up or
down) or in the next few higher or lower intervals. In AL, it is assumed that table

searches need an average of one interval change(either search up or search down).

The one-dimensional table lookup operator used in ALI is called

FUNI[HART 78)]. This operator is defined as:

FUNI1(tblnum, maxpt, xx, zz, xin)

Where
tblnum is the table number
maxpt is the total number of points
xx and zz are arrays containing x and f(x) values respccuvely
xin is the input value
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Figure 7.4 Index table

Note that in order to support unequally spaced data points, both x and f(x)
values are stored. The algorithm for implementing this operator is shown in
Figure 7.5. The function contains 1 multiplication, 1 division, and some 20 to 25
add/subtract/index operations. The default execution time for this function is given

in Appendix A.

7.4.2 Map-Type Two-Dimensional Table Lookup

Similar to the FUN1 operator, the two-dimensional table lookup operator for
the map-type functions, MAPFUNTHART 78], uses search pointers to speedup the

search. This operator supports unequally spaced data points. Therefore, the values
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Figure 7.5 FUNI algorithm
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for x, y, and f(x,y) are stored. In order to make the search faster, three separate one-

dimensional tables are used to store these data. The MAPFUN operator is defined as:

MAPFUN(tblnum, maxpt, ncrv, xx, yy, 2z, Xin, yin)
Where
tblnum is the table number
maxpt is the total number of points
ncrv is the number of curves
XX, Yy, and zz are arrays containing x, y,
and f(x,y) values respectively
xin and yin are the input values
In order to find the value of the function f(x,y), a search is first made in the y
direction to find the two curves between which the point lies(similar to a one-
dimensional search). Next, the value of the x input is compared with table entries to
find the interval in which the x input liesfHART 78]. Finally, by interpolating along
the sides of the parallelogram made by the two x and y intervals, the value of the

function for the desired point is found(Figure 7.3).

The function includes 2 divisions, 7 multiplications, and some 60 to 75
add/subtract/index operations. The default execution time for this operator is given
in Appendix A.

7.4.3 FORTRAN Library Functions

The default execution times for the following FORTRAN library functions

are provided in ALL
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Function Description

ACOS arc cosine

ALOG natural logarithm
ALOGI10 common logarithm
ASIN arc sine

ATAN arc tangent

COS cosine

EXP exponential

SIN sine

SQRT square root

TAN tangent

TANH hyperbolic tangent

All these functions are implemented by a one-dimensional table lookup.
Therefore, the default execution times for all these functions are the same as the

FUNI operator.

7.4.4 Exponentiation

The exponentiation operator, **, can be implemented by 1 multiplication and
2 one-dimensional table lookups as follows: The equation
y=x"
can be rewritten as
log(y) = log(x") = n log(x)
Therefore,

y = log™ (n log(x))

The default execution time of the exponentiation operator is given in Appendix A.
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7.5 Integration Algorithm

There are several operators, such as integration(INTEG) and first-order
lag(REALPL), that require calculation of the state variables. Each state variable is
defined by an ordinary differential equation(ODE) with given initial conditions. An
integration algorithm is, therefore, required to find the value of the state variable at
each time step. In order to explain the criteria for selecting a suitable integration
algorithm, some background in ODEs and different methods of their solution is

useful.

7.5.1 Basics

An ODE, when expressed mathematically, takes the form
f(x, y, y(l), cee y(ﬂ)) =0

which specifies a relation between an independent variable, x, a dependent variable,

y, and the derivatives of this dependent variable.

In order to find a unique solution to this equation, a set of initial conditions is
also necessary. If the initial conditions are specified at a single point, the problem is
called an initial value problem. On the other hand, if the initial conditions are shared

between two or more points, the problem is referred to as a boundary value problem.

The order of a differential equation is the order of the highest order derivative
entering into the equation. Much work has been done in solving first-order ODEs.

Therefore, it is a common practice to convert a set of higher-order ODEs to a set of

120



first-order ODEs. This conversion can be done by a simple procedure[BEKE 68].

A system of ODEs can either be stiff or nonstff. Stiff systems contain both
rapidly and slowly varying components with eigenvalues differing by at least 2
orders of magnitude. Stiff problems are generally treated differently and are not

considered here.

Furthermore, initial value problems are more popular and widely used.
Therefore, only the solution of a set of first-order nonstff inital value ODEs is

considered in ALL

This type of equation can be expressed as:

y =f(x,y)

y©0) = Yo

Where

x is the independent variable

y is the dependent variable

Y, is the initial conditions

note that y and Y, can be vectors

The solution for this equation can be found either by analytical or by
numerical techniques. Analytical methods are not powerful enough to solve general
ODE problems and their usefulness is limited to very simple cases. Therefore, in

almost al} practical situations, numerical methods are employed to find approximate

solutions to the ODEs.

In these methods, the range of the independent variable is divided into a set

of separate points. Depending on whether the distance between those points is fixed
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or not, the problem is referred to as having a fixed or a variable step size.

The solution at each point is found by using the known values of the function
and. its derivatives at some previous points. If only the known values from the last
point is needed, the algorithm is known as self-starting. On the other hand, if the
results from several previous points are needed, the algorithm is known as non-self-
starting. At the beginning, only the initial conditions are specified. Therefore, non-
self-starting algorithms, as their name imply, require a self-starting method to obtain

the results for the first few steps.

7.5.2 Self-starting Methods

The method of Taylor series expansion is 2 good example of a self-starting
method. In this method, if all higher-order derivatives of y exist at a point x;, the

function y(x) can be approximated near x; by the first few terms of the Taylor series:

y® (x;)

n' (x_xi)(n) + LR

y(x) = y(x;) + y(l)(xi)(x—xi) PR

This method is self-starting and is excellent when feasible. However, since it
requires calculation of the higher-order derivatives of y, it has not benn used as a
general purpose algorithm. Halin[HALI 83} has recently developed a very efficient
Taylor series method using symbolic method for determining the higher derivatives.
In this way the problems of finding numerical differentiation are avoided, and
relatively large step sizes can be used without incurring large truncation errors. The

problem with Halin’s method is its large storage requirements.
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Another self-starting method, known as the Euler’s method, ignores second-
and higher-order terms of the Taylor series. The solution at each step is:

Y1 =¥n +hyn
Where
h is the step size
Yn+1 1S the solution at step n+1
This method is simple but introduces large truncation errors. In order to
reduce the truncation error, the step size must be kept small which, in turn, increases
the computation time and the round-off errors. The Euler’s method is limited to
problems with low accuracy requirements in which the solution can be found with a

few number of steps. -

The most widely used self-starting methods are the Runge-Kutta formulas.
These formulas, instead of evaluating the higher-order derivatives, evaluate the first
derivative of the function at several points in the vicinity of a given point. A
weighted sum of these values is then used to approximate the dependent variable at
that point. Thereby, matching the first few terms of the Taylor series. These methods
have the advantage of being self-starting. On the other hand they do not provide a
simple measure of the truncation error. Furthermore, if the derivative function is

complicated, several evaluation of it can be very time consuming.

7.5.3 Non-self-starting Methods

Non-self-starting methods are based on the fact that any continuous function

can be arbitrarily closely approximated by a polynomial of a sufficiently large
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degree. The value of the independent variable at each step is found by an equation of

the type

Ynel =81 Yo+ 8y Y1+ + 2% Ynel-k

+h(bo Vet +D) Ya+ -+ + by Yne1i)

where
h is the step size
a and b are constants

Note that except for the derivative at step n+1, all values on the right hand
side of the equation are known at step n+1. If the coefficients are selected in a way
that b0 is set to zero, the resulting equation is called an explicit or closed-type
formula. If, on the other hand, b0 is nonzero, the resulting formula is called an
implicit or open-type formula. Since the value of the derivative is not known for step

n+1, implicit formulas require iterative solutions.

In order to determine the values of the coefficients, a finite polynomial with
sufficient degree is embedded in the equation to yield an exact soluton to the
equation. Thereby, exact values for the coefficients are found. In the method of
undetermined coefficients, a lower order polynomial is used such that some of the
coefficients are found and some others are left free or unspecified. These free
coefficients can then be selected in a way to make the calculations easier or to reduce

_ the truncation erTors.
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7.5.4 Noniterative Multistep Methods

One way of selecting the free coefficients is to set
ag= ‘- =a,=0

This results in the widely used Adams formulas. If in addition b0 is set to zero, the
result will be the famous Adams-Bashforth(A-B) equations. Therefore, in A-B

method, the independent variable at step n+1 is defined as:

Ynel =21 Yo +h By Yo+ -+ + by Yneix)

K is usually called the order of the formula.

The A-B formulas of the first- to fifth-order are:

Yo+l =¥n+hyn

Yarl = Yn + 072 3Ya = Yot)

Ya+1 = ¥n +0/12 23y = 16y,1 + Syn-2)

Yne1 = Yn + /24 (55y ~ 59yn1 +37¥p-2 = 9¥n3)

Yol = Va + h/720 (1901y, — 2774y, ; + 2616y, — 1274y, 3 + 251y, 4)
If the coefficients are selected such that

a)=a3="""=3,=0 and a;=0

the result will be the Noystrom formula. The Noystrom formulas for the first- to

fifth-order are given below,
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Yns1 = Yot +2h Ya

Ynel =Yno1 +2h yq

Y+t = Ynt +1/3 Ty = 2Yn1 + Yn2)

Vel = ¥n-1 +1/3 Byn = Syn-1 +4Yn2 — ¥n3)

Vel = Yno1 +h/90 (269y,, — 266y, + 294y, 5 ~ 146y,3 + 29y, 4)

Another widely used family of formulas is the Newton-Cotes open end

formulas. The first- , third- , and fifth-order formulas are given below.

Yo+l =¥n-1 +(2h) y ;1
Yool = Ya3 + (4h/3) Qyq = Y1 + 2¥n-2)

Yol = Yas + (3h/10) (11y, — 14y, | +26y,2 — 14y 3 + 11y;4)

7.5.5 Iterative Multistep Methods
If the coefficient b0 is nonzero, the resulting formula will require an iterative
solution but will be more stable. If
a;=---=a,=0 and by#0

the results will be the Adams-Moulton(A-M) formulas. For example, the third-order

A-M formula is:
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Yol = Y +h/12(5y sy +8Yn = Yne1)

In order to find the value of the independent variable at step n+1, the value of
its derivative for that step must be found first. A variety of predictor-corrector and
predictor-modifier-corrector methods can be employed. Bekey and Karplus discuss
the algorithms for implementing these methods and present the methods for

controlling the truncation error and changing the step size[BEKE 68].

7.5.6 Selection of the Default Algorithm

The selection of a suitable algorithm to solve a given initial value problem
depends, to a large extent, on the nature of the problem. Therefore, it largely
depends on the user to decide which method to choose. Usually a Runge-Kutta

method is selected as the default algorithm.

However, for real-time applications, several calculations of the derivative
function at each step are not desirable. The same argument is true for the implicit
non-self-starting methods, because these methods require iterations. Therefore,

noniterative methods are more appropriate for ALL

Noniterative multistep formulas are very popular and offer reasonably
reliable results. The coefficients of these formulas are integers that grow larger as the
order of the formula increases. Since a large coefficient contributes to the round-off
errors, formulas of larger orders than five is seldom used. Furthermore, formulas of

even-order are not more accurate than the lower odd-order formulas[HILD 56].
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Therefore, the odd-order formulas of fifth order or less are widely used.

7.5.7 Implementation

The integration effort at each time step involves the calculation of the
derivative function, the calculation of the state variable at that time step, and the
overhead for saving the results for later steps. In ALI, the calculation of the
derivative function is included in the program graph; al other operations are lumped
together and shown by the INTEG operator. Therefore, the default execution time of
the INTEG operator g-iven in Appendix A does not include the calculaton of the
derivative function which is treated the same as the rest of the graph. Since the
INTEG operator in ALI does not represent the derivative calculation, those user
defined INTEG algorithms are supported that require only one derivative calculation.
When the user is prompted to enter the execution time for the INTEG operator, only
the time to calculate the state variable and the overhead time to store the results must

be entered.

The overhead time for the third order formulas includes calculation of yy,,

at each step which is generally in the form of

Yas1 =Ym +C1 h (Czyn + Cs Y1 +Ca Yn2)

since ¢, to ¢4 are all known parameters, the formula can be simplified as:

Yn+l S¥m +31¥n +32 Y1 +23Yn2

128



Calculation of this formula requires three multiplications, three
addit:ion/subtractic;n_s, and storing and updating past values. In a similar way, the
fifth-order formulas require five multiplications and five addition/subtractions. The
third-order Newton-Cotes formula, however, has an interesting property: The term
inside the parentheses involves two multiplication by two for y; and y, , which
can be implemented by a shift-left operation which is much faster than

multiplication. And y,.; does notinvolve a multiplication.

Therefore, the term inside the parentheses can be found without
multiplications. In this way y can be found by only one multiplication and five
addition/subtraction/shift operations. The third-order Newton-Cotes formula is,

therefore, the fastest formula and is selected as the default algorithm for ALL

The formula requires seven storage locations for saving the results of
previous steps. Saving and updating these results at the end of each time step is
implemented by first moving the results of each step to the next previous one and
then saving the results of the present step(Figure 7.6). The value of the default

execution time for the Newton-Cotes formula is given in Appendix A.

7.5.8 REALPL Operator

The first-order lead-lag, REALPL, is implemented as:
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Figure 7.6 Updating stored values for the integration algorithm

y = REALPL(p, x, ic) = INTEG(—’-‘—EX , ic)

Therefore, its execution time equals to the execution time of one INTEG and one

division operations.

7.6 Iteration Loops and Conditional Branches

ALI does not support stochastic models. Therefore, if there is a loop or a
conditional branch in the program, the user must define a function to contain them.
However, as mentioned in Chapter 2, some CSSL operators, such as SWIN, act as a
conditional branch. If such operators are used in the program, both branches of the

conditional statement are included in the graph and both branches will be executed.
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By the time the SWIN operator is reached, the results of both branches are available
and the results of the selected branch will be send to the destination node. The SWIN
operator, therefore, acts as a simple move operation and its default value is assumed

to be equal to one addition operation.

7.7 User Defined Operators and Functions

User defined integration algorithms that do not require more than one
calculation of the derivative function at each step and any user defined functions are
supported by ALI. However, the users must know the execution time of those
functions and will be prompted to enter them. The way the users can enter these

values is described in the User Manual in Appendix A.
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CHAPTER 8
PERFORMANCE EVALUATION

8.1 Introduction

In order to evaluate the usefulness of ALI, two measures of performance are
considered. First, it is desirable to determine how much time is needed to convert a
CSSL program into a data flow graph and to allocate it among the processors. The
other performance measure is the efficiency of the prescheduling algorithm. It is also
desirable to determine the execution of the program on the multiprocessor system

and compare it with the execution time on a single processor system.

The conversion of the source program into the data flow graph and the
preallocation of the graph are not done in real time. As long as the program and the
execution times of individual operations are not changed, the data flow graph can be
generated only once. Furthermore, the prescheduler, as its name implys, analyzes the

graph prior to actual execution.

In most simulation applications, efficient execution of the program in real
time is of main interest, and is quite tolerable to spend several minutes or even
several hours for preallocation. The time spent for graph generation and

preallocation varies with the program size and number of processors. The fewer the
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number of processors, the more artificial dependencies must be added to the graph
and, therefore, the longer the preallocation time. The jet engine
benchmark(Figure 6.4), a program of 110 lines of code, was converted to a 102
nodes graph in 11 CPU-seconds on a VAX 11/750 host. The prescheduling time
varied from 19 CPU-seconds for a 2-CPU configuration(the worst-case) to less than
1 CPU-second for an 11-CPU configuration. This time is well below the tolerable
threshold for many applications. Therefore, in the rest of this chapter, only the
second performance measure, i.e., the efficiency of the preallocation algorithm and

the real-time execution of the program graph is considered.

In ALI, the execution times of all operations are known a priori, therefore, in
order to evaluate the performance, there is no need to use the actual hardware; once
the graph is preallocated among the processors, it is possible to precisely determine
the graph execution time. Other performance evaluation methods, including the use

of the Network I1.5 [KARP 84], are also possible.

Three benchmarks are used to evaluate the usefulness of the system. These
problems are the turboshaft jet engine(described in Chapter 6), the pilot ejection
problem[STRA 67], and the nuclear power plant model[YEH 86]. The intent was to
investigate whether the preallocation strategy actually provides for increased speed
of the execution, and how much the execution time improves as more processors are
added to the pool. The programs are written in CSSL-IV and the results are
examined for various numbers of processors. The default execution times has been
used for the jet engine and the power plant simulation problems. For the pilot

e¢jection problem a fifth-order A-B integration algorithm with 92 time units and an
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exponentiation algorithm with 200 time units were used.

8.2 Results of the Benchmarks

General information about the benchmarks is shown in Table 8.1. The first
column shows the total number of nodes in the graph. Each node can be as simple as
an addition or as complex as a two-dimensional table lookup. The second column
shows the total execution times of all nodes of each graph, which is the execution
time of the graph when using a single processor. The third column shows the critical
paths of each graph and, therefore, the minimum time to execute them. The fourth
column shows the lower bound for the number of processors below which it is not
possible to execute the graph within the time of its critical path. And the last column
shows the upper bound for the number of processors above which the additional

processors will simply remain idle all the time.

Table 8.1 Benchmarks General Information

number total time of minimum | maximum
of execution | the critical number number
nodes time path of CPUs of CPUs
Jet Eng. 102 2071 465 5 11
Pilot Ejec. 27 998 344 4 8
Power Pl 98 1323 223 6 19
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Each benchmark is executed with different numbers of processors.
Figure 8.1 shows the execution times of each benchmark(y-axis) versus the number
of processors(x-axis). Note that the y-axis shows the normalized execution
times(execution times are normalized by dividing them by the execution time of

addition/subtraction). These curves demonstrate two important points:

1.) The total execution time does not improve beyond a certain threshold for
the number of processors because the sequentiality constraints of each problem does

not allow the execution times faster than the length of the critical path.

2) This threshold for the number of processors is reached by adding only a
few processors and is well below the upper bound given in Table 8.1 which indicates

the efficiency of the allocation algorithm.

As mentioned in Chapter 5, two different versions of the preallocation
algorithm have been developed. Algorithm A does not allow processor idle times
while algorithm B does. The results of the benchmarks show equivalent or better
execution times for algorithm A. Furthermore, the preallocation time for algorithm A
is faster because it does not add any more artificial dependencies on the nodes that
are already active. Therefore, algorithm A is selected as the prescheduling algorithm
for ALI(All curves in Figure 8.1 are algorithm A results). Figure 8.2 shows the
difference between the results of the two algorithms for the jet engine problem. The
results for the other benchmarks were closer to each other and are not repeated

again.
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Among the important performance measures of multiprocessor systems are
the speedup and efficiency of these systems compared to a single processor

system[KUCK 78].

Speedup is defined as:

T,

Sp= TP

where T is the execution time on a single processor

Tp is the execution time on P processors

Efficiency is defined as:
Sp T
Ep = —% = %
N T

The efficiency is in fact the percent of the total time that CPUs perform
useful calculations divided by the total time that they are available. The speedup
curves and the efficiency curves for the benchmarks are shown in Figures 8.3 and 8.4
respectively. The speedup for all benchmarks increases by adding more processors
until the execution time equals the execution time of the critical path. After that the
speedup curves level off. The efficiency remains high as long as the execution time
has not reached the length of the critical path. After that the efficiency decreases
sharply due to the fact that the additional processors can not improve the execution

time anymore and the added processing power is wasted.
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The results of the benchmarks clearly indicate the advantages of using a
multiprocessor sy-st_em over a single processor system. By adding only a few
processors; a graph can be executed within the time of its critical path. Figure 8.3
shows that in all benchmarks, adding 2, 3, or 4 processors results in almost the same
factor of increase in the speed of the execution. The choice of the number of
processors depends on the trade-offs that the user has between the speedup,
efficiency, and hardware costs. The efficiency curves can be viewed as normalized
speedup curves(speedup divided by the number of processors). Therefore, the best
combination of speedup and cost can be selected from these curves. For example,
Figures 8.3 and 8.4 show that for the nuclear power plant problem, a 6-CPU
configuration executes the graph within the time of its critical path and at the same
time has more than 90% efficiency. This configuration, therefore, can be selected as
the optimum configuration. On the other hand, for the jet engine problem, the 6-CPU
configuration is less than 80% efficient and the 4-CPU configuration, which is more
than 90% efficient, executes the graph slower than the time of the critical path. The
user, must, therefore, make a trade-off between the speed of execution and the

efficiency.

8.3 Effects of Communication Delays

As mentioned in Chapter 5, ALI uses a heuristic, which minimizes the effects
of communication delays, in dividing the graph among the processors. ALI is also
capable of analyzing the effects of different values of communication delays on the

total execution time. Figure 8.5 shows the effects of communication delays on the
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jet engine problem. The communication time is normalized by dividing it by the
execution time of-the addition operation{as all other execution times in ALI are).

The following points can be observed.

1) When the ratio of the communication time to the addition time is 1, there

is no effect on the total execution time.

2) When the ratio is 5, the increase in the total execution time is always less

then 4% for all different numbers of processors.

3) In most other multprocessor systems, after the number of processors
reaches a certain threshold, the total execution time, due to excessive interprocessor
communication increases. In ALI, however, if the number of processors is more
than the maximum number needed, the extra processors simply remain idle all the
time. For example, for the jet engine problem, this maximum number is
11(Table 8.1). Therefore, in the 13-CPU configuration, two processors are always
idle and there is no difference in the total execution time of the 13-CPU and 11-CPU

configurations.

The nuclear power plant and the pilot ejection problems are even less
sensitive to comrnunication delays(Figures 8.6 and 8.7). A communication time to
addition time ratio of 75 does not have any effect on the execution time of either
benchmarks with any number of processors. A ratio of 100 only increases the
execution times by a few percents. These results show the effectiveness of the
heuristic used for reducing communication delays. The capability of analyzing the

effects of communication delays allows the user to fine tune the system by selecting
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the most suitable number of processors when the actual value of the interprocessor

communication time is known.
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CHAPTER 9
CONCLUSIONS

9.1 Conclusions

The methodology for designing a user friendly software interface for
multiprocessor simulation has been presented. This software interface is especially
important for the rcal—‘timc simulation of systems modeled by ordinary differential
equations and allows the user to use a multiprocessor system for simulation without
having to partition the source program among the processors. A variety of general-
purpose and simulation-oriented high-level languages has been carefully studied and
two popular simulation languages, CSSL-IV and ACSL, have been selected as the
high-level languages. The software translator accepts a source program written in
either CSSL-IV or ACSL and automatically converts this program into a data flow

graph and preallocates the graph among the processors.

The source code is first converted into tokens by the lexical analyzer. The
token file is then converted from the infix notation into the postfix notation by the
postfix code generator. Since the model definition part of a CSSL program is
nonprocedural, the statements of the model definition part are sorted to ensure that
the usage of a variable is preceded by its definiion. The sorted postfix file is

converted into an internally represented data flow graph. This internally represented
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graph is converted to a printable file.

Provisions have been made for the user to either accept a set of default
execution times based on the MC68000 microprocessor execution times or to enter
user defined execution times and ,thereby, targeting the system on any type of
microprocessor. The user is interactively directed to either accept the default

execution times or to enter new values.

The existing algorithms for the allocation of graphs to multiprocessors have
been extensively studied and the most suitable algorithm has been modified and
enhanced to preallocaté the data flow graph among the network of microprocessors.
This algorithm balances the graph by delaying the execution of some nodes in such a
way that at no time does the number of active nodes exceed the number of available
processors. A heuristic is developed which allocates the balanced graph among the
processors in a way that minimizes the interprocessor communication delays. The
user can analyze the effects of different values of interprocessor communication

time on the total execution time of the graph.

In order to evaluate the usefulness of the software interface, three
benchmarks have been used. The results of the benchmarks demonstrate the
advantages of using a multiprocessor system over a uniprocessor system. These
results show that as long as the time of the critical path of a graph is not reached, an
m-CPU configuration results in an almost m-times speedup over the single processor
configuration. Furthermore, the analysis of the effects of communication delays

show that if the ratio of the communication time to the addition time is not more
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than two orders of magnitude, the total execution time remains close to the ideal

execution time.

Finally, a self-contained user manual with all necessary information for
using the system has been provided. In summary, this dissertation has demonstrated
the feasibility of a user friendly software interface which facilitates the use of
multiprocessor systems for simulation applications and provides the implementation

of such an interface.
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APPENDIX A
USER MANUAL

A-1 Introduction

This appendix is a self-contained user manual providing all necessary
information for using ALI(A Language Interface). In the following sections, an
overview of the system is given. This is followed by instructions to run the system,

to enter the values of the tunable parameters, and to interpret the results.

A-2 System Overview

The user writes the source program in either CSSL-IV or ACSL. Both
languages belong to the class of Continuous System Simulation Languages(CSSL)
and are especially designed for the simulation of systems that are described by

systems of ordinary differential equations.

ALI does not perform syntax analysis on the source code. The user ,therefore,
must use the proper CSSL compiler to find compilation errors. The program should
also be executed on the sequential host machine to find programming errors and
run-time errors, such as divide by zero, etc. ALI converts an error free program into

a graph and divides it among the processors of the parallel target system.
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The software in ALI is organized in seven files(Table A-1). Each major
function except the data flow graph generation is placed in a separate file. The data
flow graph generation, due to its complexity, is placed in three separate files: the
"dataflowgen" file generates the graph in an internal form usable by other modules,
the "getexectimes” file interactively sets the execution times of each operator and
function used in the program, and the "formatgraph” file reformats the internal graph

into a printable form.

Table A-1 Source Files of ALI

File Name Description
scanner.p Lexical Analych
postfixgen.p Postfix Code Generator
sorter.p Sorter

dataflowgen.p Internal Graph Generator
getexectimes.p Get Execution Times
formatgraph.p Format Graph

scheduler.p Prescheduler

The source files are written in Berkeley PASCAL and their names are
appended by ".p" extension. The executable object files have the same name without
any extension for the UNIX operating system or with .EXE extension for the VMS
operating system. These object files can be executed separately or one after the other

using a command file.
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A-3 Command Files

A command file is an executable file that contains one or more commands to
the operating system. If these commands are for executing object files, then

activating the command file will execute each individual object file in turn.

The software written in ALI is operating system independent. Therefore,
depending on the operating system of the host computer, a command file can be
made to run the simulation. As example, command files for UNIX and VMS
operating systems are included(Figures A-1 and A-2). A command file in UNIX is
activated by typing its-name at the terminal. A command file in VMS is activated by

typing character @ followed by the command file name at the terminal.

In UNIX, individual executable object files are executed by typing their
name at the terminal. For example, typing scanner will start the Lexical Analyzer.
Therefore, the command file must contain the name of all executable object files, In
VMS, typing "run” followed by the name of the object file does the same. Therefore,
the command file must contain the "run” command for each executable module.
Both the UNIX command file(Figure A-1) and the VMS command file(Figure A-2)
contain requests for the user to enter the name of the source program and then start

the simulation by executing each module in tumn.
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echo -n ’enter the program name>’
read filename
cp $filename sourceprog
scanner
. postfixgen
sorter
dataflowgen
getexectimes
formatgraph
scheduler

Figure A-1 Command file to run ALI in UNIX

inquire filename "enter the program name>"
$copy ’filename’ sourceprog

run scanner

run postfixgen

run sorter

run dataflowgen

run getexectimes

run formatgraph

run scheduler

Figure A-2 Command file to run ALI in VMS

Note that in order to allocate the same program among different numbers of
processors, there is no need to convert the source code into the data flow graph each
time. When a program is converted into a data flow graph for the first time, the
results are stored in intermediate files. And as long as the source program is not
changed, the same intermediate results can be used for prescheduling. In other
words, all steps except the prescheduler need to be executed only once for each
program(Figure A-3). After that, the prescheduler can be executed as many times as
the user wants(by typing scheduler.obj at the terminal) to examine the program
allocation on different numbers of processors. Normally the user should try to
reduce the ‘number of processors as much as possible, in order to reduce

communication imes.
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G g

user writes the source code in CSSL-1V or ACSL

[

modify the user compiles the source code and
y Prog executes it on the sequential host

2 all errors detected? > main entry point
N\ for ALI

yes

user starts ALI and specifies the
error-free source code as input

lexical analyzer, postfix code generator, sorter, and
data flow graph generator generate the data flow graph

graphlist
contains the
data flow graph

format graph file generates a
printable copy of the graph

!

get execution times file starts

% assigning execution times to nodes
. ) < default execution times? N 0
entry point of ALI if the /
same program ia allocated yes
— di;'r: prr——— { user enters execution times |
of processors
— prescheduler provides the basic information wehedlist file
- user enters the number of processors contains the
— prescheduler automatically allocates the .
graph among the node allocations

effects of communication 1o
delays to be studied?
\/ yes
— user enters the value of communication time

— prescheduler determines the effects of the given EXIT
communication delay

Figure A-3 Different steps in using ALI
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A-4 Interactive Simulation

In order to make the modeling as flexible as possible, some system
parameters are tunable, i.e., the user can change them for each simulation run. These
parameters are the execution times of simple operators,such as addition and
multiplications, which depend on the specific processor; the execution times of
functions and more complex operators,such as integration and table lookup, which
depend on both the specific algorithm to implement them and the execution times of
the simple operators; and the number of processors which must be minimized to

reduce communication delays.

ALl is capable of accepting all standard CSSL operators as well as any user
defined functions. However, since the system is designed to work for any type of
microprocessor, the user must know the execution times of all simple operators, and
therefore the execution times of functions and complex operators, and will be
prompted to enter the estimated times of the operators and functions used in the
program. Use of some CSSL operators, such as IMPL(implicit loop), which involve
iteration loops are discouraged because there are no default values for these

operators and the user must estimate their execution times.

For the casual user, default execution times for simple operators and some
widely used functions are provided. The execution times of simple operators are
found from the MOTOROLA MC68000 User's Manual[MOTO 82]. The execution
times are found by averaging the values for different operand sizes and operation

modes. Since the execution times depend on the external clock rate of the
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microprocessor, the execution times are given in terms of the external clock cycles
rather than the ac.:t{xal microsecond figures(Table A-2). The execution times are
normalized by dividing them by the execution time of the addition operator and
rounding them to the closest integer. The default execution times of more complex
operators are found from the default algorithms explained in Chapter 7 and are
shown in Table A-3.

Table A-2 Default Execution Times of
Simple Operators

function/ execution
operator time
-addition(+) 1
division(/) 26
multiplication(*) 12
negation(-) 1
subtraction(-) 1

Table A-3 Default Execution Times of Functions

function/ | execution | function/ | execution

operator time operator time
acos 63 integ 32
alog 63 mapfun 211
aloglQ 63 realpl 5%
asin 63 sin 63
atan 63 sqrt 63
cos 63 swin 1
exp 63 tan 63
ok 138 tanh 63
funl 63

The user has the choice of using the default execution times given in
Tables A-2 and A-3 or to use any other execution times suitable for each specific

application. When the user is prompted to enter the execution times, a help
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command is available that explains the procedure. After the execution times are

entered, the user can review them and correct them again if necessary.

The simulation is then continued by starting the prescheduler, which analyzes
the graph, provides preliminary information, and prompts the user to enter the
number of processors for this simulation run. When the user enters the number of
processors, the simulation continues and the graph is automatically divided among

the processors.

The pilot ejection problem is used as an example to show how the system can
be used. The purpose of the pilot ejection problem is to determine the trajectory of a
pilot ejected from a fighter aircraft in order to find out whether he will strike the
vertical stabilizer of the aircraft{STRA 67]. The pilot and seat travel along rails and
are disengaged from the rails at Y = Y}, at velocity Vg, and at an angle 8 backward
from vertical(Figure A-4).
y

=V

o
_/\
y

Figure A-4 Initial conditions for the pilot ejection problem

The initial conditions are given by:



V(0) = \[(Va~VE sinBg ) + (Vg cosbg )

Vg cosBg

_ -1
80) = an” 5 e,

X0)=Y0) =0

Once the pilot and seat are ejected, they follow a ballistic trajectory. Since it
is the relative motion of the pilot with respect to the aircraft that is important, it
makes sense to assume that the coordinate axes are fixed on the aircraft and to
formulate the problem so as to obtain the relative motion of the pilot with respect to

the aircraft directly(Figure A-5)

Ay pilotandseat V Ny

attime T ﬁ-—-—*"""

aircraft at
time 0

aircraft at

Y\__—-/‘\ time T

7

Figure A-5 Trajectory of the pilot after ejection

The goveming equations are:

X = Vcos8-V,

Y = Vsin®

_ 0 if 0<Y<Y,

V=1D g ¥ Y2V
M g
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0 if 0sY<Y,

=1 —(gcos®) if Y2V,
v

D = —pCp SV?

1
2

The CSSL-IV program for this problem is shown in Figure A-6. The real-
time simulation starts when the code in the DYNAMIC region is first executed and
ends when the DYNAMIC region is terminated. The statements defining the model
are contained in the DERIVATIVE section within the DYNAMIC region. In a CSSL
program, the INITIAL and TERMINAL regions are executed only once.
Furthermore, the run-time commands part at the end of the program are commands
to the executive to exercise the model and are not executed during the real-time

execution of the program.

Therefore, the main effort to speed up the system is spent in executing the
DYNAMIC region and especially the DERIVATIVE section within it
Consequently, ALI converts the DERIVATIVE section into a data flow graph,
extensively analyzes it, and divides it among different processors in a way to be
executed as rapidly as possible. Before using ALI, however, the user should compile
this program with a CSSL-IV compiler and should run the object code on the host
computer(not necessarily in real-time) until all compilation errors and run time
errors are detected and the user is satisfied that the program does what it is supposed
to do. At this point the user starts using ALI to allocate this program on a network

of microprocessors.
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program pilot ejection
initial o
constant thedeg = 15.0, degrad = 57.3, ...
mass=7.0,¢d=1.0,s=10.0,y1 =40, ...
g =322, ve = 40.0, r0 = 0.0023769, ...
va = 900., xmn = -60.0, ymx = 30.0, ...
tmx = 40.0
cinterval cint = 0.01
the = thedeg/degrad
comment seat initial velocity
vX = va - ve * sin(the)
vy = ve * cos(the)
vic = sqrt(vx ** 2 + vy ** 2)
thic = atan2(vy, vx)
end initial
dynamic
derivative eject
comment relative positions
x = integ(v * cos(th) - va, 0.0)
y = integ(v * sin(th), 0.0}
comment space velocity and flight path angle
v = integ(ygei * (-d/ mass - g * sin(th)), vic)
th = integ{yge1 * {-g * cos(th) / v), thic)
comment compute drag
d=05"r0"cd"s v 2
ygel = swin{y1 -y, 0.0, 1.0)
end derivative
termt(x .le. xmn .or. y .ge. ymx .or. t .ge. tmx)
end dynamic
terminal
end terminal
end program
comment run-time commands
hdr pilot ejection
prepar t,th,v,x,y
start
print t,th,v,x.y
piott, th, v, X, ¥
stop

Figure A-6 Pilot ejection program in CSSL-IV

An example of a session to do this allocation is given below. For clarity, the
inputs typed by the user are written in boldface. It is assumed that the commands to

run the system are in a UNIX command file called ALL The numbers on the left
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hand side of each line are not a part of the system output and are added here in order

to refer to them in the following discussion.

(1)
2)
3)
4
(5)
(6)
(7
(8
9
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26}

ALI
enter the name of the program > pilotejection
lexical scanner started
postfix code generation started
sorter started
data flow graph generation started
do you want default operation times? y=yes, n=no, h=help>y
prescheduler started
total execution ime  : 696
time of critical path : 222
number of nodes : 27
minimum number of processors needed : 4
maximum number of processors needed : 8
enter number of processors for this run >6
------------ time-step 1
———————————— time step 13
------------ time step 25
------------ time step 27
do you want to analyze the effects of comm. delays? y=yes, n=no, h=help>y
enter the ratio of communication time to addition time>10
do you want to try another value?>y
enter the ratio of communication time to addition time>100
do you want to try another value?>n
file graphlist contains the program graph
file schedlist contains the results of prescheduling
end of simulation

The user starts the system by executing command file ALI which contains the

commands to run the system(line 1). The user is prompted to enter the name of the

program and the user specifies pilotejection as the name of the source

program(line 2). This file is used as the input for the lexical analyzer. The lexical

analyzer and other system modules(postfix code generator, sorter, and data flow

graph generator) are activated by the command file one after the other. Each module

writes a message on the terminal to indicate that it has started(lines 3 to 6). During

the data flow graph generation, the user must decide whether to use the default
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execution times for each graph operation or to enter user defined operation times. In

this example, the l‘JS-Cl' decides to use the default operation times(line 7).

Néxt, the prescheduler is activated(line 8). The prescheduler provides some
essential information that helps the user to decide how many processors to choose.
The total execution time of the graph(line 9) is the total execution power needed to
execute all operations of the graph which is obviously the time needed for a single
processor to execute the graph. The time of the critical path(line 10) is the length of
the longest path through the graph and is, therefore, the minimum time required to
execute the graph with any number of processors. Number of nodes(lihe 11) is an

indication of the size of the graph.

The minimum and maximum number of processors(lines 12 and 13) are
estimates for the lower bound and the upper bound for the number of processors to
execute the graph within the time of its critical path(the fastest possible time). The
minimum number of processors(line 12) is found by dividing the total execution
time of the graph by the length of the critical path. This number, however, is just an
estimate, and since the work load is not uniformly divided through the time, the
actual minimum number may be more than this lower bound. The maximum
number of processors(line 13) is the maximum number of nodes that can be executed
simultaneously without violating the sequentiality constraints of the graph. In fact, if
the user specifies a number larger than this maximum, the additional processors will

simply be left idle at all time.
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After providing the user with essential graph data, the prescheduler prompts
the user to enter the number of processors for this run(line 14). In this example, the
user selects 6 processors for the system. In order to allocate the graph among the
specified number of processors, the prescheduler analyzes the graph and by adding
artificial data dependencies allocates the nodes among different processors.
Whenever a dependency is added, the corresponding time step is written on the
terminal(lines 15 to 18) which is an indication of how much effort is spent in

prescheduling with the given number of processors and also assures the user that the

program is running.

After the prea:llocation is done, the user can study the effects of the
communication delays on the total execution time(line 19). In this example, the user
enters a communication time to addition time ratio of 10(line 20). The user then
enters another value for the ratio(lines 21 and 22) and indicates that no more values

for the communication time is to be studyed(line 23).

The final printable results are stored into two ASCII file: the graphlist file
contains a description of the graph(line 24), and the schedlist file contains the results
of the prescheduling(line 25). These two files are described in more detail in the
following sections. Finally, the end of simulation is indicated by the sound of the

keyboard bell and writing a message at the user terminal(line 26).

In the next example, the user does not want to use the default execution times

and changes them. The use of the help command is also shown in this example.
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ALI

enter the name of the program > pilotejection

lexical scanner started

postfix code generation started

sorter started

data flow graph generation started

do you want default operation times? y=yes, n=no, h=help>h

The default execution times are calculated from the Motorola
MC68000 microprocessor user’s manual. Execution times are
normalized by dividing all execution times by the execution
time of the addition operation.
These are the default operation times :

function/ execution function/ execution
operator time operator time
addition 1 multiplication 12
division 26 subtraction 1
acos . 63 funl 63
alog 63 integ 32
aloglQ 63 mapfun 211
asin 63 realpl 59
atan 63 sin 63
cos 63 sqrt 63
exp 63 tan 63
ke 138 tanh 63
negation 1 swin 1

If you have used any other functions besides those mentioned
above or if you do not want to use the default execution times,
you must enter the execution times manually. Again you have
to normalize everything to make the addition time equal to one.
Example :
If addition takes 6 CPU cycles and multiplication takes 72 CPU
cycles, you have to enter 72/6 = 12 units for multiplication.
All execution times must be rounded to an integer value.
For example, if addition takes 6 CPU cycles and division
takes 159 CPU cycles, you can either enter 26 or 27 time
units for division operation, but not 6.5

do you want default operation times? y=yes, n=no, h=help>n
2

enter the execution time for cos >

enter the execution time for sin > 12
enter the execution time for swin > 5
enter the execution time for integ > 93
enter the execution time for div > 36
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enter the execution time for ** > 193
enter the execution time formult > 1§

do you want to make any corrections? y=yes, n=no, r=review, h=help>r
these are your selected execution times :

function/ execution
_operator __time

cos 12
sin 12
swin 5
integ 93
div 36
ok 193
mult 15
add 1
sub 1
negate 1

do you want to make any corrections? y=yes, n=no, r=review, h=help>n

prescheduler started
total execution time : 845
time of critical path : 354
number of nodes : 27
minimum number of processors needed : 3
maximum number of processors needed : 8
enter number of processors for this run >6
------------ time step 1
------------ time step 3
------------ time step 13
------------ time step 15
------------ time step 16

do you want to analyze the effects of comm. delays? y=yes, n=no, h=help>h
The effects of interprocessor communication delays on the execution
time can be analyzed for different values of communication
time. The value must be normalized by dividing it by the execution
time of the addition operation. For example, if in your system,
addition takes 6 clock cycles and the interprocessor communication
time takes 27 clock cycles, a value of 4 or 5 must be entered for
the communication time to addition time ratio, but not 4.5.
enter the ratio of communication time to addition time>50
do you want to analyze the effects of comm. delays? y=yes, n=no, h=help>y
do you want to try another value?>n
file graphlist contains the program graph
file schedlist contains the results of prescheduling
end of simulation
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Note that the user is prompted to enter the execution times of those operators
that are used in th;: i)rogram(scvcn in this example). Since the execution times must
be normalized by dividing them to the execution time of addition operation,
addition/subtraction/negation operations are assumed to have unit execution times.
The review command, "r", displays the current values of the execution times as

modified by the user.

As mentioned before, in order to allocate the same program among different
numbers of processors, there is no need to convert the source code into the data flow
graph each time. As long as the source program and the execution times are not

changed, the user can run the prescheduler alone. This is shown in the next example.

scheduler
prescheduler started
total execution time : 845
time of critical path : 354
number of nodes : 27
minimum number of processors needed : 3
maximum number of processors needed : 8
enter number of processors for this run >§
------------ time step 1
------------ time step 3
------------ time step 13
------------ time step 15
------------ time step 16
---------—- time step 27
------------ time step 31
do you want to analyze the effects of comm. delays? y=yes, n=no, h=help>n
file graphlist contains the program graph
file schedlist contains the results of prescheduling
end of simulation

In this example, it is assumed that the data flow graph is already generated by
executing ALI, and the user wants to allocate the same graph among a different

number of processors(five processors in this example).
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A-S Interpreting the Results

The output of the system is in the form of an internally represented graph
divided among the processors and two printable files. One of the printable files,
graphlist, contains the data flow graph in a printable form. The graphlist file for the

pilotejection problem is shown in Figure A-7.
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[1] cos

1sources.. th

1 destinations ... node 2 @loc2
[2} muit

2 sources .... v node1

1 destinations ... node 3 @loc1
[3] sub

2 sources ... node2 va

1 destinations ... node 4 @loc1
(4] integ

2 sources ... node3 0.0

1 destinations ... this is an output node

var defined ... X
[5] sin

1 sources ... th

1 destinations ... node 6 @loc2
[6] muit

2 sources ... v node5

1 destinations ... node 7 @loc1
[7] integ

2 sources ... node6 0.0

1 destinations ... this is an output node

var defined... vy
[8] muit

2 sources ... 05

1 destinations ... node 9 @loc1
(9] mult

2 sources ... node8 cd

1 destinations ... node 10 @loc1
{10] mutit

2 sources ... node9 s

1 destinations ... nods 12 @loc
[111 **

2 sources ... v 2

1 destinations ... node 12 @loc2
[12] mult

2 sources ... node 10 node 11

1 destinations ... node 15 @loc1

var defined... d
[13] sub

2 sources ... y1

y
1 destinations ... node 14 @loct

Figure A-7 The graphlist file for the pilot ejection problem
(continued on the next page)
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[14] swin
3 sources ...

2 destinations ...

var defined ...
(15] negate
1 sources ...

1 destinations ..

[16] div
2 sources ...

1 destinations ...

[17] sin
1 sources ...

1 destinations ...

[18] mult
2 sources ...

1 destinations ...

[19] sub

2 sources ...

1 destinations
[20] mult

2 sources ...

1 destinations ...

[21] integ
2 sources ...

1 destinations ...

var defined ...
[22] negate
1 sources ...

1 destinations ...

[23] cos
1 sources ...

1 destinations ...

[24] muk
2 sources ...

1 destinations ...

[25] div
2 sources ...

1 destinations ...

[26] mutt
2 sources ...

1 destinations ...

[27] integ
2 sources ...

1 destinations ...

var defined ...

node 13 0.0
node 20 @loc1

ygel

d
node 16 @loct

node 15 mass
node 19 @loc1

th
node 18 @loc2

g node 17
node 19 @loc2

node 16
ygel node 19
node 21 @loc1
node 20 vic

v

g
node 24 @loc1

th
node 24 @loc2

node 22
node 25 @loc1

node24 v
node 26 @loc2

ygel node 25
ncde 27 @loct
node 26 thic

th

1.0
node 26 @loc

node 18
... nhode 20 @loc2

this is an output node

node 23

this is an output node

Figure A-7 (Continued)
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All nodes of the graph are shown with their node numbers, their operations,
and a list of their -S(;urcc and destination nodes. If the sources of a node are constant
values or variables,they are identified by their values and names respectively. If a
source is the result of an intermediate operation, the node number where that
intermediate result is generated is given. The destinations of each node are
identified by the node numbers where the result is send to and the location of the
input(i.e. whether it is used as the first or nth operand in that node). Nodes whose

results are not used by any other node are identified as the output nodes.

The information in the graphlist file can be used to draw the program graph.
For example, in Figul:e A-7, the first line indicates that the operation in node 1 is
cosine. the second line indicates that the node has one input and that input is called
"th" in the source program. The third line indicates that the result of this operation is
send to node 2 where it is used as the second operand. With this information, the
user can draw the first node of the graph(Figure A-8(a) ). In the same way, the next
three lines in Figure A-7(lines 4 to 6) indicate that node 2 performs a multiplication;
one of the inputs is the identifier called "v" in the source program and the other is the
result of the operation from node 1; and the result is sent to the first input of
node 3(Figure A-8(b) ). The next three lines in Figure A-7(lines 7 to 9) indicate that

node 3 subtracts the identifier "va" from the output of node 2 and sends the result to

the first input of node 4(Figure A-8 (c) ).

The next two lines(Figure A-7 lines 10 and 11) indicate that node 4 performs
an integration; the first input is the results of the operation performed at node 3 and

the second input(the initial condition) is constant 0.0. The next line(line 12) indicates
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that the results of node 4 is an output of the graph, the next line(line 13) indicates
that this output corresponds to the identifier "x" in the source program (Figure A-
8(d) ). In fact, these four nodes correspond to the statement

x = integ(v * cos(th) - va, 0.0)
in the source program(Figure A-7 line 19). Following this method, r.hé user can
easyly draw the program graph. Figure A-9 shows the complete graph drawn from

the information provided by the graphlist file.

th

Figure A-8 Drawing the data flow graph from the graphlist file
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- Figure A-9 Data flow graph of the pilot ejection problem
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The other printable file, schedlist, contains the results of the scheduling
algorithm. Figure A-10 shows the schedlist file for the pilot ejection problem. The
first four lines are general information about the graph. For the example in
Figure A-10, this information indicates that the graph has 27 nodes; the total
execution time of the graph, i.e. the execution time of the graph on one CPU is 696
time units; and the length of the original critical path, i.e. the fastest possible

execution time of the graph is 222 time units.

The next 5 lines are specific information for the allocation. For the example
in Figure A-10, this information indicates that the number of processors selected for
this allocation is 3; the 'lcngth of the final longest path, i.e. the execution time of the
graph on 3 processors is 240 time units; the execution time on 3 processors is 8.11
percent longer than the fastest possible execution time; and in order to do this

allocation, 29 artificial data dependencies are added to the graph.

The next 4 lines show the processor loads in time units and percent of time
that each processor is idle. The schedlist file also contains two lists that show node to
processor assignments. One list is sorted according to the earliest start times of the
nodes, and the other is a list of node assignments of each processor. If the user had
requested to study the effects of the communication delays, the length of the longest
path with the given communication delay(s) and the percent of increase in the total

execution time is given at the end of the schedlist file.
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General graph information:
number of nodes  : 27
total execution time : 696
length of the original critical path : 222

Specific allocation information:
number of processors: 3
length of the final longest path : 240
increase in the length of the longest path : 8.11 percent
to execute the graph with 3 processors 29 data dependencies are added

Processor loads:

cpu 1 total load = 240 percent of idleness = 0.00%
cpu 2 total load = 234 percent of idleness = 2.50%
cpu 3 total load = 222 percent of idleness = 7.50%
Node to processor assignments:
execution earliest earliest latest longest
node cpu time start ime  compl, time  exec. time path
11 1 138 0 138 138 *
17 2 63" 0 63 89
23 3 26 0 26 26 *
1 3 63 26 89 89 *
24 2 63 63 126 152
g 3 12 89 101 101 *
22 3 1 101 102 102 *
2 3 12 102 114 114 *
9 3 12 114 126 126 *
10 3 12 126 138 138 *
13 2 1 126 127 133
5 2 63 127 190 196
3 3 1 138 139 151
12 1 12 138 150 150 *
18 3 12 139 151 195
15 1 1 150 151 151 *
14 1 1 151 152 152 *
16 3 26 151 177 195
25 1 12 152 164 164 *
26 1 12 164 176 176 *
27 1 32 176 208 208 *
19 3 1 177 178 196
20 3 12 178 190 208
6 2 12 190 202 208
21 3 32 190 222 240
7 2 32 202 234 240
4 1 32 208 240 240 *

Figure A-10 The schedlist file for the pilot ejection problem
(continued on the next page)
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Individual CPU allocations:

execution earliest earliest latest longest
node  cpu time start time  compl. time  exec. time path
11 1 138 0 138 138 *
12 1 12 138 150 150 *
15 1 1 150 151 151 *
14 1 1 151 152 152 *
25 1 12 152 164 164 *
26 1 12 164 176 176 *
27 1 32 176 208 208 *
4 1 32 208 240 240 *
17 2 63 0 63 89
24 2 63 63 126 152
13 2 1 126 127 133
5 2 63 127 190 196
6 2 12 190 202 208
7 2 32 202 234 240
23 3 26 0 26 26 *
1 3 63 26 89 89 *
8 3 12 89 101 101 *
22 3 1 101 102 102 *
2 3 12 102 114 114 *
9 3 12 114 126 126 *
10 3 12 126 138 138 *
3 3 1 138 139 151
18 3 12 139 151 195
16 3 26 151 177 195
19 3 1 177 178 196
20 3 12 178 190 208
21 3 32 190 222 240

Effects of communication delays:
communication time to addition time ratio: 10
length of the longest path with communication delays: 240
increase in the length of the longest path : 0.0%

communication time to addition time ratio: 100
length of the longest path with communication delays: 249
increase in the length of the longest path : 3.7%

Figure A-10 (Continued)
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