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ABSTRACT OF THE THESIS

Group Branch Coverage Testing of Multi-Version Software
by
Barbara Joan Swain
Master of Science in Computer Science
University of California, Los Angeles, 1987

Professor Algirdas Avizienis, Chair

Multi-version software is an approach to software fault tolerance that uses
several redundant, but independently developed, versions of the software to mask er-
rors in individual versions. Group branch coverage testing is a variant of branch cov-
erage testing designed for testing multi-version software. This thesis introduces group
branch coverage testing and offers an empirical evaluation of its effectiveness based
on nineteen independently developed software versions from the Second Generation

Experiment.
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CHAPTER 1

Introduction

Multi-version software (MVS) systems are gaining acceptance in safety criti-
cal applications, such as the aerospace industry [Hil85, Mar82], and the nuclear power
industry [Bis85, Ram81, Vog85]. The multi-version approach to fault tolerant
software systems requires several redundant, but independently developed versions of
the software. The versions are run in parallel and a decision algorithm determines
final results based on consensus. The multi-version approach does not eliminate the
need for careful and extensive software testing, but it does offer the posstbility of
some new approaches. This thesis shows that Group Branch Coverage Testing, one of
these new testing approaches, tests multiple versions more thoroughly than ordinary

Branch Coverage Testing.

Branch coverage testing is a method of testing software that requires that each
branch be followed at least once [Adr82, Pra83]. This method requires that test cases
be developed to cover branches and run, until all branches are covered. Developing
test cases that test a program well is difficult; branch coverage testing helps by indi-
cating what conditions the next test case should trigger. Group branch coverage test-
ing is a variant of branch coverage testing designed for testing multi-version software.
This method requires that branch coverage testing be performed for each version.
Then each version is tested on all of the test cases developed during branch coverage
testing of all of the versions. If only one version explicitly tests for a special case, for

example x=0, then a test case to test that special case is developed. When all versions



are tested on all of the test cases, this test case is included and all versions are tested

for the special case.
1.1 Branch Coverage Testing

In order to perform branch coverage testing on a program, one must instrument
the program so that it records which branches are followed when it is executed (See
Figure 1a). The source code is instrumented by another program. This instrumenter
modifies each branch so that it writes to an external trace file that it was covered.
Branches are those sequences of statements to which control can be directed depend-
ing upon the evaluation of a condition. For example, in an ordinary if statement, the

then part is one branch and the else part is the other branch.

. Executable
Pro Instrumenter | Instrumented Compiler Instromented
gram g Program Program

Fig. 1a, Producing an Instrumented Program.

T Coverage Coverage
race ' Report
Instrumented Analyzer

Fig. 1b. Using an Instrumented Program.



When the instrumented program is executed, it produces both the usual output
that it produced before it was instrumented and a trace file that records which
branches were executed (See Figure 1b). This trace file is analyzed by a coverage
analyzer (the TCAT™, Test Coverage Analysis Tool, Coverage Reporter program was
used for this research) to produce a coverage report, which summarizes which
branches were and were not covered during the execution of the program. Instrument-
ing the program is almost automatic: after the program has been run through the in-
strumenter, a handful of statements have to be added to the instrumented version
manually (See example in next section). The trace file is analyzed automatically by
the coverage analyzer. Looking at the coverage report and instrumented code, and

developing test cases is done entirely by humans.

The actual testing starts by running some test cases through the instrmented
program. The choice of starting test cases is rather unimportant. The coverage report
shows which branches have not been covered and have to be examined further. Each

of these branches can be categorized as either unreachable, illegal, or coverable (See

Figure 2).

An unreachable branch is a branch whose condition is necessarily false, re-
gardless of the input. For example, the then branch is unreachable in the following
code:

X ¢ abs(x)

ifx<0

then $,

else S,

The function abs always returns a value 2 0. Thus x is always non-negative, and the

TCAT is a trademark of Software Research Associates.



coverable

unreachable illegal

Fig 2. Classification of Branches.

condition x < O can never be true, regardless of the original value of x. An illegal
branch is a branch that can not be covered during the execution of any valid input, but
there is some invalid input whose execution causes the branch to be followed. Valid
input is that which the specification states or implies may possibly occur. Stating how
to respond to an input implies that the input may occur, even if the specification also
states that the input will not occur. For example, if the specification specifies the
proper response to a particular error condition, say a user giving a string that starts
with a digit for his name, then that particular error condition is considered valid test
input. Invalid input is that which the specification states or implies will not or cannot
occur, and to which no response is specified. For example, if the specification states
that an input value comes from a device that only generates values in a fixed range,
e.g. a 16-bit channel, then testing that input with a value out of range is considered in-
valid. All other branches are coverable, i.e. they can be covered during the execution

of some valid input.



Often illegal branches are the result of ambiguities or carelessness in the
specification. The part of the specification that states that the conditions in the illegal
branch will not occur deserves more evaluation. If it is decided that the specification
is wrong in stating that the conditions will not happen, then the specification should be

changed and the branch should become coverable.

For those branches which the coverage report indicates were not covered and
examination shows to be coverable, test cases whose execution covers these branches
are developed manually (See example in next section). The instrumented program is
run on the new test cases, producing new trace files, from which a new cumulative
coverage report is produced. This ¢ycle is repeated until all coverable branches are

covered, completely covering the program.

Branch coverage testing is similar to both statement coverage testing and path
coverage testing. They are all forms of structural coverage testing, with each one re-
quiring different structures, i.e. statements or branches or paths, to be covered [Adr82,
Pra83]. Statement coverage testing requires that each statement be executed at least
once. Statement coverage testing requires that a branch be covered only by requiring
the statements of the branch to be covered. Path coverage testing requires that all
paths be traversed. A path is one of the possible flows of control all of the way
through a program. Path coverage testing requires that branches be covered in all pos-

sible combinations.

The major difference between branch coverage testing and statement coverage
testing is that branch coverage testing requires more test cases. It is possible for a
condition in a conditional statement to take on a value that corresponds to a branch
that is not in the code. For example, it is possible for the condition in an if statement

to be false even if the else branch is not written in the code. Branch coverage testing



requires that these implied branches be covered; the instrumenter puts them in the
code explicitly. Statermnent coverage testing ignores these implied branches. Branch
coverage testing was designed as an improvement to statement coverage testing by

forcing the conditions to take on all of their possible values.

The major difference between branch coverage testing and path coverage test-
ing is that strict path coverage testing often requires an unbounded number of test
cases, while branch coverage testing requires at most a bounded number of test cases;
path coverage testing requires more test cases than branch coverage testing. If the
number of iterations through a loop changes, then a different path has been taken
through the program. For example, the following code has an infinite number of
paths:

repeat

read(x)

untilx >0
The input may have any number of negative numbers, causing any number of itera-
tions through the loop. Even without an infinite number of paths through a loop, path
coverage testing usually requires many more test cases than branch coverage testing.
Consider code with three sequential if statements in it. With branch coverage testing,
it is possible all of the branches will be covered after running two test cases, e.g. one
causes the then branches to be covered and the other causes the else branches to be
covered. However, path coverage testing requires that all possible combinations of
truth values for the conditions be covered; there are 2 possible values for each condi-
tion or 2% paths. Path coverage testing rapidly becomes prohibitably expensive with

the number of branches.



1.2 Example of Branch Coverage Testing

To help clarify the procedure of branch coverage testing, the beginning of this
testing is shown for an example program using the tools used in this research. The ex-
ample program determines the amount of the tax refund the user gets back or the
amount of tax still owed. Obviously, this sample program is based on a hypothetical

tax structure. The tax program:



program tax (input, output);
const
taxbracket1 = 10000;
taxbracket2 = 30000;
taxbracket3 = 60000;
var
income, withheld, tax, percentover : real;

procedure Getlnput (var income, withheld : real);
begin
repeat
readln(income, withheld);
until (income - withheld) >= 0;
end;

procedure ComputeTax (income, rate : real; var tax : real);
begin
tax := 0;
if rate > 0
then begin
tax := income * rate / 100;
end;
end;

begin ( Tax }
GetInput(income, withheld);

if income < taxbracketl

then ComputeTax (income, 10.0, tax)
else if income < taxbracket2

then ComputeTax (income, 20.0, tax)
else if income < taxbracket3

then ComputeTax (income, 30.0, tax)
else ComputeTax (income, 40.0, tax);

percentover := (withheld - tax) * 100/ income;
if percentover > (
then writeln(’ Your tax refund is ’, percentover:0:2,
’% of your income’)
else writeln(*You still owe °, -percentover:(:2,
'% of your income in taxes’);

end.

Fig. 3. Sample Program



Figure 4 shows the resuits of instrumenting this program. The instrumenter ig
language dependent and the one used in this example is for Pascal programs. Most of
the instrumentation is done automatically. However, with this instrumenter, the in-
strumented program must be modified manually to include the parts in bold print in
Figure 4. “#include” lines automatically include the named file at that place when the
program is compiled. The file SRA instr contains the procedures EntrMod, SegHit,
and ExtMod. The files SRA.const.i, SRA.type.i, and SRA.var.i hold the constants,
types and variables, respectively, that the code in SRA.instr.i needs. SRA stands for
Software Research Associates who produced these branch coverage testing tools. The

external file TRACE is the file to which the trace file is written,

The procedure EntrMod writes to the trace file that a particular procedure was
entered. The procedure SegHit writes to the trace file that a particular branch was
covered. The branch is identified by the parameter to SegHit and the procedure in
which it is, For example, the branch that includes the call “SegHit(3)” is identified as
branch 3 of the procedure. The procedure ExtMod writes to the trace file that a partic-

ular procedure was completed (exited).



program tax (input, output, TRACE);
const
SRAmodvar = "tax’;
taxbracketl = 10000;
taxbracket2 = 30000;
taxbracket3 = 60000;
#include SRA.const.i

type
#include SRA. type.i
var
income, withheld, tax, percentover : real;
#include SRA.var.i
#include SRA.instr.i
procedure GetInput (var income, withheld : real);
const
SRAmodvar = 'Getlnput’;
begin
EntrMod(2, 8§, SRAmodvar);
SegHit(1);

repeat

SegHit(2);
readln(income, withheld);
until (income — withheld) >= 0;

ExtMod(SRAmodvar, 8)
end;

procedure ComputeTax (income, rate : real; var tax :

const
SRAmodvar = 'ComputeTax’;
begin
EntrMod(3, 10, SRAmodvar);
SegHit(1);

tax :=0;
ifrate >0
then begin
SegHit(2),
begin
tax :=income * rate / 100;
end
end
¢lse SegHit(3);

ExtMod(SRAmodvar, 10)
end;

begin { Tax }
rewrite(TRACE);
EntrMod(9, 3, SRAmodvar);

SegHit(1);

10

real);



Getlnput(income, withheld);

if income < taxbracketl
then begin
SegHit(2);
ComputeTax (income, 10.0, tax)
end
else begin
SegHit(3);
if income < taxbracket2
then begin
SegHit(4);
ComputeTax (income, 20.0, tax)
end
else begin
SegHit(5);
if income < taxbracket3
then begin
SegHit(6);
ComputeTax (income, 30.0, tax)
end
else begin
SegHit(7);
ComputeTax (income, 40.0, tax)
end;
end;
end;

percentover := (withheld — tax) * 100/ income;

if percentover > 0
then begin
SegHit(8);
writeln("Your tax refund is ’, percentover:0:2,
% of your income’)
end
else begin
SegHit(9);
writeln(’You still owe ’, —percentover:0:2,
"% of your income in taxes’)
end;

ExtMod(SRAmodvar, 3)

Fig. 4, Instrumented Program
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The instrumented program is run on the test case “15000, 200", The program

produces the following output:

You still owe 18.67% of your income in taxes

The program also produces a trace file, which is shown in Appendix A. Both the out-
put and the trace file are particular to the test case; a different test case will not neces-
sarily produce either the same output or the same trace file. Since the trace file is al-
ways written to the file named TRACE, TRACE has to be renamed before the next
test case is run through the instrumented program. The instrumented program could
be further modified to read in the name of the file where the trace file should be writ-

ten.

The output is saved to be compared with correct results. The trace file is
analyzed by the coverage analyzer. The coverage analyzer, TCAT Coverage Report-

er, produces a coverage report (See Figure 5).

12



Page 1
TCAT Coverage Analyzer. COVER Version 1.8 (80 Column)®
(c) Copyright 1984 by Software Research Associates

Selected COVER System Option'Settings:
(1 implies "on", 0 implies "off")

Histogram Report -
Not Hit Report -
Cumulative Report --
Log Scale Histogram --
Banner Text: --
Past Report -
Sorted Module Names -—-

QPO

o

Options Read: 3

Page 2
TCAT Coverage Analyzer. COVER Version 1.8 (80 Column)
(c) Copyright 1984 by Software Research Associates

o e e e - +
| | This Test | Cumulative Summary |
+ $o———— - Fommmm— - +
| I No Of | No Of f
|Module Number Qf|No. Of Segments Cl%I|Nc. Of Segments Cl%|
|[Name: Segments:|Invokes Hit Cover|Invokes Hit Cover!
o e +
| ComputeTax 3] 1 2 66.67| 1 2 66.67]|
| Get Input 2] 1 2 100.00] 1 2 100.0C04
ltax 9| 1 4 44 .44 1 4 44.44}
e +
iTotals 14| 3 8 57.14| 3 8 57.14|
e - +

Current test message (saved in archive):

* Output has been modified to fit on page.
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Page 1
TCAT Coverage Analyzer. COVER Version 1.8 (80 Column)®
{c) Copyright 1984 by Software Research Associates

Selected COVER System Option Settings:
{1 implies "on", 0 implies "off")

Histogram Report -
Not Hit Report -
Cumulative Report --

Log Scale Histogram ~--
Banner Text: -
Past Report -
Sorted Module Names --

= O OO

Cptions Read: 3

Page 2
TCAl Coverage Analyzer. COVER Version 1.8 (80 Column)
(c} Copyright 1984 by Software Research Associates

e e D D Rt L LT +
| i This Test | Cumulative Summary |
+ fm— e e ——————— R +
I | No Of | No Of |
|[Module Number Of[No. Of Segments Cl%|No. Of Segments Cl%|
|IName: Segments:|Invokes Hit Cover|Invokes Hit Cover|
Ty S +
| ComputeTax 3 1 2 66.67| 1 2 66.67
|GetInput 2| 1 2 100.00) 1 2 1060.00}
|tax 9| 1 4 44.44¢ 1 | 44,44
e +
|Totals 14 3 8 57.14| 3 8 57.14]
e o i 2 e e o e e T B +

Current test message (saved in archive):

* Output has been modified to fit on page.
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Page 3
TCAT Coverage Analyzer. COVER Versiocn 1.8 (80 Column)
(c) Copyright 1984 by Software Research Associates

Cl Not Hit Report.

No. Module Name: Segment Coverage Status:
3: ComputeTax 3
2: GetInput All Segments Hit. Cl = 100%
l: tax 2 5 6 7 8
Number of Segments Hit: 8
Total Number of Segments: 14
Cl Coverage Value: 57.14

Fig. 5. Coverage Report

The first page of the coverage report tells which options were chosen, In this
example, it was requested that the output be sorted by procedure (module) name. For
larger programs, this helps a tester find the information for a particular procedure. A
“Not Hit Report” was also requested. The Not Hit Report shows which branches have
not been covered. The branches that have not been covered have to be analyzed

manually, in order to develop test cases whose execution will cover them.

The second page gives a summary. It shows in general how much was done
with the current test case, “This Test”, and with all of the testing so far, “Cumulative
Summary”. The column labeled “Number Of Segments” lists the number of branches
in each procedure, plus one for entering the procedure. The columns labeled “No. Of
Invokes” list how many times the procedure has been called for the current test case
and cumulatively, respectively. The columns labeled “No Of Segments Hit” list how
many of the branches in the procedurc have been covered. The columns labeled
“C1% Cover” list the percentage of branches covered in the procedure. For example,

14



the first line of the table says that procedure “ComputeTax” has three branches, two or
66.67% of which were covered the one time it was called. The cumulative informa-

tion is exactly the same, because there were not any previous test cases.

The third page has the Not Hit Report. This is the page from which the tester
work most of his work. For each procedure, the branches which have not been
covered are listed by number. This number corresponds to the number in the call to
SegHit of that branch. If all of the branches have been covered, the message “All
Segments Hit. C1 = 100%™ appears instead of the list of uncovered branches.

The tester looks at the first row of the coverage report and notes that branch 3
has not been covered. She then looks at a copy of the instrumented program and notes
that branch 3 is the else for the if statement with condition “rate > 0”. The tester then
looks for a way to make the parameter “rate” < 0. Looking for all of the calls to
“ComputeTax”, the tester finds four calls in the main program. Each of the calls
passes in a positive constant for the parameter “rate”. There are no other calls to pro-
cedure “ComputeTax”. The tester then marks branch 3 of “ComputeTax” as unreach-

able, and does not consider it further.

The tester looks at the next row of the coverage report and notes that pro-
cedure “Getlnput” is already completely covered. She does not consider “GetInput

further”.

The tester then looks at the last row of the coverage report and notes that
branches 2, 5, 6, 7, and 8 of program “tax” have not been covered yet. The tester then
looks at the instrumented program and notes that if branch 6 is covered, then branch 5
is necessarily covered, because braﬂch 6 is nested inside of branch 5. Likewise for

branches 8 and 7. Thus, the tester only has to develop three test cases, instead of five.

15



The tester then looks more closely at branch 2 in program “tax”. It is the then
branch with condition “income < taxbracketl”. After noting that taxbracket! is a con-
stant with value 10,000 and that income is an input variable, the tester develops the

test case “5000, 100”. Likewise, the tester develops test cases for branches 6 and 8.

Consider the test case “0, 0”. There is no branch that forces a test case with
“income’” = 0. When the value of “percentover’”’ is computed, the program aborts try-
ing to divide 0 by 0. Branch coverage testing does not necessarily, or even likely, find
all of the faults in a program. But it does require that a reasonably thorough effort be

made in the testing.
1.3 Multi-Version Software

Multi-version software is an approach to software fault tolerance. It involves
the independent development of several versions of the software. The versions are

run in parallel and their results passed to a decision algorithm (See Figure 6).

—»  Versionl [
T )
:
Input : -1 Decision Qutput
P Version 2 : Algorithm A
:
<= -
- Version 3 ,
. H
' |
L _ Recovery _ |

Fig. 6. Three-Version System.
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The decision algorithm collects values from all of the versions and determines the
final result for each variable based on consensus. Variables are passed through an
external call to the decision algorithm, at decision points. The results of the decision
algorithm are either provided as final outputs of the system, or intermediate variables,
which may be used for recovery of faulty versions [Tso86]). The arrows from the deci-
sion algorithm to the versions show the consensus value(s) being returned to the ver-
sions for use in further computations. The only restrictions on decision points are the

order in which they occur and the parameter passing protocol.

“Error” “failure” and “fault” are terms useful in describing software that does
not satisfy requirements and discussing fault tolerance. An error is any incorrect state
that occurs during program execution. Typically, errors are corrupted data. A failure
is an error that manifests itself, i.e. any deviation from the acceptable service of the
system. A fault is the identified or hypothesized cause of an error or failure. A
software fault is the immediate cause of an error or failure that exists in the software.
Often the underlying cause of a software fault is another fault, e.g. in the design

[Avig4].

The basic premise of the multi-version approach is that errors in a version will
be masked in the decision algorithm by the correct results of the other versions in the
system. This premise does not depend on the independence of errors, but just a low
probability of multiple versions having similar errors. Similar results are defined to
be two or more results (good or erroneous) that are within the range of variation al-
lowed by the decision algorithm [Avi84], i.e., two or more values for the same output
variable on the same input that the decision algorithm treats as equivalent. Coincident
errors are defined to be two or mofc errors that occur on the same input [Eck85].

Coincident errors do not necessarily appear equivalent to the decision algorithm, or

17



even necessarily involve the same output variable. Similar errors are both coincident
errors and similar results, i.¢., two or more values for the same output variables on the

same input that are erroneous and that the decision algorithm treats as equivalent,

The premise of low probability of similar errors does not reduce the need for
testing. It increases the need for testing, because the premise is based, in part, on the
assumption that the versions have been thoroughly tested. Consider an acceptance test
for the versions of some MVS system that happens not to test a part of the input
domain that rarely occurs. When the system eventually encounters input from that
part of the domain, each of the versions is more likely to produce an error than when
running on input from a well-tested part of the domain. Since errors are more likely to
occur, it is also more likely that similar errors will occur. Thorough testing is crucial

for MVS systems.

Multi-version software is used for applications that need extremely high relia-
bility. The reliability of the system depends on the reliability of the versions that
compose the system. The software must be thoroughly tested to ensure that it is of the
highest possible quality. MVS systems require more than that each version produce a
correct result. There may be more than one acceptable response to some input, and
the decision algorithm must also be able to determine a correct result from the results
of all versions. Thus, the versions must produce results that the decision algorithm
recognizes as equivalent. Exceptions and special cases are more likely to have more
than one acceptable result. But it is in these unusual cases that it is most important for

the MVS system to work and to be able to obtain a consensus.

Vouk er al. suggest that functional testing may not come close to covering pro-
grams [Vou86]. Branch coverage testing should be done explicitly; complete branch

coverage is unlikely to occur as a by-product of another testing strategy.
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1.4 The Second Generation Experiment in Multi-Version Software

The NASA Langley Research Center has been sponsoring the Second Genera-
tion Experiment in multi-version software since 1984. The emphasis of this experi-
ment is the evaluation of the reliability of MVS systems as compared to their com-
ponents individually. This includes the modeling and analysis of MVS systems.
Another goal of the experiment is further development of a multi-version program-
ming methodology, particularly as related to design and testing. The University of
California, Los Angeles, the University of Illinois at Urbana-Champaign, North Caro-
lina State University, and the University of Virginia, as well as the National Aeronau-
tics and Space Agency, Charles Rivers Analytics and Research Triangle Institute are

involved in the experiment.

During the summer of 1985, 40 computer science graduate students from the
four universities independently developed 20 Pascal program versions from a com-
mon specification. There were five teams of two programmers at each of the universi-
ties. Programmers were not permitted to discuss work-related issues with any
member of another team. Electronic mail was used for all work-related communica-
tion; this communication was restricted to questions and answers between the pro-
grammers and a central project coordinator, who served as a specification arbitrator.
Copies of each question and answer pair were sent to all teams. By the end of the

summer, all of the versions had passed a preliminary acceptance test of 75 test cases.

A Redundant Strapped Down Inertial Measurement Unit (RSDIMU) is used in
avionics to determine vehicle acceleration {CRA85]. An RSDIMU contains eight
linear accelerometers on the four faces of a semioctahedron, a square pyramid whose
faces are equilateral triangles. Each face has two sensors. Each of these sensors

measures the component of acceleration along its axis. The software uses the redun-
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dant measurements of all of the working sensors to estimate the vehicle’s acceleration,
The sensors may fail before or during a flight. A face is considered to be failed if both
of its sensors are failed. The sensors do not necessarily give perfect readings. This is
modeled by considering the sensor’s reading to be made up of the correct value and

noise. A sensor may fail slowly with its readings becoming increasingly noisy.

\ \ : Fault ; \ ; '
¥
Calibration Detection Estimation Display
DISMODE
LINNOISE LINFAILOUT ggj{,EESSTT DISUPPER
LINOFFSET SYSSTATUS st DISLOWER

LINOUT
Fig. 7. Redundant Strapped Down Inertial Measurement Unit

Each version is organized into four modules (See Figure 7). The modules are

defined by the decision points at the end of them.

The first module calibrates the sensors and identifies pre-flight sensor failures,
A list of previously failed sensors is provided as input to the RSDIMU. Before the
flight, a pre-determined number of sensor readings, taken when the vehicle is at rest,
are recorded for each sensor to be used for calibration. A sensor is determined to have
failed due to excessive noise, if the standard deviation of these calibration readings is

too high. Sensor readings are converted from units of volts to meters/secondz.

The second module determines which, if any, additional sensors have failed,

and reports all failed sensors in variable “LINFAILOUT”. A sensor is determined to
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have failed in flight, if its reading is inconsistent with the readings of the other opera-
tional sensors. Two operational faces with all four sensors working are necessary to
check the consistency of the readings of the sensors. Some versions did the con-
sistency check by enumerating each combination of possible sensor failures. Other
versions used a general algorithm to perform the consistency check. For some ver-
sions this part of the code had the most branches, because the different possibilities of
sensor failures were handled separately. If it is not possible to do the consistency

check, the system is declared non-operational as reported in variable “SYSSTATUS”.

The third module estimates the vehicle’s three-dimensional acceleration vector
by finding the least squares fit to the readings from the up to eight operational sensors.
Since this is the most critical computation in the RSDIMU, five redundant channels
are provided for reporting it. The four additional channels carry estimates of the

vehicle’s acceleration based on the readings from the sensors on pairs of faces.

Various information can be displayed on a display panel (See Figure 9) driven
by the RSDIMU. The display mode appears in the upper, left corner, in the mode in-
dicator. The information appears in the two longer rows. The last module displays in-
formation on this display panel. There is a separate output variable driving each of
the rows and the mode indicator. Each bit of the output is devoted to one segment of
the display. This part of the code was not exercised by the preliminary acceptance

test, and, not surprisingly, many faults were found in this part of the code.
1.5 Group Branch Coverage Testing

Although branch coverage testing requires that all of the conditions explicitly
in the code be tested , it usually does not find a special case that is not handled proper-

ly. For example, consider the following code fragments that invert an input value and
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Fig. 8. Display Panel
store the result in y:
Code A Code B
read(x) read(x)
if x=0
then write error message y & 1/x
elsey « 1/x
write(y) write(y)

It is unlikely that ordinary branch coverage testing would reveal the lack of a check on

[ 17 |

the value of “x” in B.
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Group branch coverage testing is a variant of branch coverage testing
designed for testing multiple versions. The versions are tested using branch coverage
testing as usual. However, instead of using test cases only for testing the version for
which they were developed, all versions are tested with all test cases. Because the
versions were developed independently, their branches will not necessarily correspond

exactly — even among versions that handle a special case correctly.

It is reasonable to expect that group branch coverage testing would be more
effective than ordinary branch coverage testing. It takes only one version which expli-
citly handles a rare special case to reveal which, if any, other versions handle that spe-
cial case incorrectly. A version that uses a loop structure to solve a problem is tested
more thoroughly if there is a version that breaks down the problem into cases; the
cases are likely to include extreme valuers and other cases that are more likely to have
been overlooked in the loop structure. In the following example, both fragments are
supposed to search linearly for one of four faces that is not OK and assign it to vari-

able “badface™:

Code A Code B

if not OK[1] ie 1
then badface « 1 badface « -1

else if not OK[2] while (badface < () and (i < 4)
then badface « 2 if not OK[i]

else if not OK[3] then badface « i
then badface « 3 elseie—i+1

else if not OK[4] endwhile
then badface « 4

else badface « —1

It would be easy to cover code B without revealing that it does not check face

4, because the condition of the while loop should be “(badface < 0) and (1 £ 4)™.
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However, the test case whose execution covers the last then in code A reveals the

fault.
1.6 Procedural Details

Of the 20 versions that were produced for the Second Generation Experiment,
one version, UTUC2, was not available for analysis. The remaining 19 versions are

discussed in the rest of the paper.

When the 19 versions of this experiment were instrumented, several other
changes were made to make testing easier. To the versions, the calls to the decision
algorithm look like any other calls to a procedure. Since the decision algorithm is
external to the versions, it was easy to replace it by a substitute decision algorithm that
merely copies the values of its parameters to output. Each version was compiled with
some extra code needed because of the instrumentation, the substitute decision algo-

rithm and a harness.

There are no exact rules for the selection of test cases for group branch cover-
age testing. Seventy-five test cases were developed for the preliminary acceptance
test in the Second Generation Experiment. For convenience, testing started with these

75 test cases.

Because the versions had passed the preliminary acceptance test, the output
values for these test cases were assumed correct without examination. However, only
some of the output variables were checked during the preliminary acceptance test.
Some of the errors found by the later testing, which did check all the output variables,
would have been found during the preliminary acceptance test, if all variables had
been checked then. Many of the faults found through this analysis were not subtle,

but still had not been caught by the preliminary acceptance test. The faults found in
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this analysis are skewed toward obvious faults that are usually found and corrected
early. Table 1 shows how little of the code in the versions was tested by the prelim-
inary acceptance test. The percentage of branches covered is not linear with the
number of test cases needed. The execution of the first few test cases covers dispro-
portionally many branches. The execution of the last few test cases typically covers

only one additional branch per test case.

Version | Covered | Total Percentage
UIUC1 179 251 71.31%
UIUC3 198 263 75.29%
UIUC4 | 213 306 69.61%
UIUCS 306 352 86.93%
NCSU1 | 353 465 7591%
NCSU2 | 206 307 67.10%
NCSU3 | 269 493 54.56%
NCSU4 | 249 294 84.69%
NCSUS5 | 307 406 75.62%
UVAL 350 530 73.58%
UVA2 335 423 79.20%
UVA3 403 816 49.39%
UVA4 259 316 81.96%
UVAS 430 531 80.98%
UCLA1 | 276 324 85.19%
UCLA2 | 233 329 70.82%
UCLA3 | 268 374 71.66%
UCLA4 | 303 418 72.49%
UCLAS | 186 243 76.54%

Table 1. Percentage of Branches Covered by Initial Acceptance Test.

A cumulative coverage report listing all branches not covered in the prelim-
inary acceptance test was produced for each version. The preliminary acceptance test
provided a base of covered branchés for each version that did not need further

analysis. The process of developing test cases whose execution will cover particular
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branches must be individualized for each version, because it involves looking' at the
source code of each version by hand. The manual analysis of the versions often re-
vealed that the execution of a test case that had already been developed would cover a
branch in a new version. When this occurred, the test data were reused. It took
several iterations of examining uncovered branches, developing test data and running

the new test cases before the versions were completely covered.

A natural way to perform group branch coverage involves covering the ver-
sions sequentially. First, one version is covered. Next, another version is chosen and
it is tested on all of the test cases that the first version needed. Any additional test
cases necessary to cover all of the branches in the second version are developed. Both
versions are then tested with these new test cases. This cycle of testing a new version
on all existing test cases, developing new test cases, and then running the previously
covered versions on the new test cases is repeated until all versions are covered. The
order in which versions are selected for testing is unimportant, because each version is
completely covered and each version is tested on each test case. It is possible that
some of the versions that are tested later will be completely covered by the test cases

that have already been developed, and thus will not need any new test cases.

Because of the large number of versions that needed to be tested, this process
would have been too time consuming. Instead, in this analysis, several versions were
tested in parallel, but each version was still tested separately. An attempt was made to
re-use test cases that had already been developed; after the conditions necessary for
covering a branch were well understood, then available test cases were searched to see
if one of them could be used to cover the branch. This method may have required
developing extra cases, because it wds sometimes difficult to recognize when the exe-

cution of a previously developed test case would cover a branch in a new version.
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The increase in the speed with which testing was accomplished, made up for the cost

of the extra test cases in this case.

The purpose of branch Coverage testing is to develop a coverage set for the
program being tested, i.e., a collection of test cases that, when executed, covers the
program compietely. The coverage set that was found for each version during this
testing will be referred to as the Coverage set for that version. The union of all 19 ver-
sions’ coverage sets obviously covers all of the versions. Group branch coverage test-
ing requires that all versions be tested on this union of the coverage sets. Thus, group
branch coverage testing makes use of information in all versions to test all versions

better.

When comparing the results from the versions, it is reasonable to expect
integer-valued and boolean-valued results to agree exactly. However, correct real-
valued results typically do not agree exactly, For purposes of determining correct
results, real-valued results are grouped into equivalence classes, with results that are
close enough to each other in the same equivalence class. How close is close enough

depends on the application.

The preliminary acceptance test classifies real-valued results as correct when
they are within 0.1 of a reference value. Thus the equivalence class of correct results
can include values that are up to 0.2 from each other, It was observed in the Second
Generation Experiment that when versions agreed with each other to one or two de-
cimal places, they often agreed much further. For consistency with the preliminary
 acceptance test, real-valued results are classified as equivalent when they agree to

within 0.1,
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For convenience, real-valued results are classified as correct when they are
members of the equivalence class with the most members. The correct results are
determined automatically by running all of the versions on the input and determining
the equivalence class with the most members for each output variable. If the size of
the equivalence class with the most members is less than half of the versions, then the
correct result is determined by hand. The automatically generated correct results were
manually checked to ensure that the values for all variables indicated a consistent si-
tuation. There was also a “gold” version available for checking the correctness of

results from the Second Generation Experiment, but this analysis did not use it.
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CHAPTER 2

Analysis

2.1 Unreachable Code

From 94.7% to 99.6% of the branches in each version were covered. 0.0% to
3.58% were illegal branches (See Figure 2), and the remaining 0.0% to 1.96% were
unreachable branches (See Table 2). This section focuses on the unreachable

branches.
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Unreachable Nllegal
Version Branches Branches
UTUC1 0.39% 1.19%
UIUC3 0% 0.38%
UIUC4 1.96% 3.26%
UTUCS 1.42% 0%
NCSU1 1.93% 1.50%
NCSU2 0.65% 0.65%
NCSU3 1.41% 0.40%
NCSU4 0.34% 0%
NCSUS 1.47% 1.47%
UVAL 1.69% 0.18%
UVA2 0.23% 0.23%
UVA3 0.36% 0.73%
UVA4 0.63% 0.94%
UVAS 0.18% 1.50%
UCLA1 1.23% 2.46%
UCLA2 0.30% 2.43%
UCLA3 1.06% 2.40%
UCLA4 1.19% 3.58%
UCLAS 1.23% 0%

Table 2. Percent Unreachable and Illegal Branches

There were three common causes of unreachable branches: general-purpose
modules, defensive programming, and redundantly nested if constructions. A
general-purpose procedure is a proccdﬁrc that solves a problem in greater generality.
A general-purpose procedure often traps a variety of error conditions. However, if
none of the calls to the procedure has one of the error conditions, it is not possible to
cover the branch(es) that trap that error condition, and the branch is unreachable. For
example, some of the versions have a general-purpose procedure to multiply two ma-
trices. In these procedures, there is'a check to see if the dimensions of the matrices

are properly matched for multiplication. These procedures are called only with ma-
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trices with appropriate dimensions. Thus any branches pertaining to this case are un-

reachable.

Defensive programming is a programming style in which a programmer in-
cludes checks for error conditions in the code, instead of assuming that the error con-
ditions will not occur. Many programmers included redundant checks for special con-
ditions. For example, many of the versions check to make sure that the system is
operational, i.e. at least four sensors passed a consistency check, before calling their
procedure to estimate the acceleration. Yet these estimation procedures also check
whether the system is operational. The checks inside the procedure can never find that

the system is not operational.

The third common cause of unreachable code is nested if structures of the fol-

lowing form:

() if Aor B

(2) then if A

3) then §,

(CY else if B

(5) then S,

(6) else UNREACHABLE
€] else S,

The if staterment on lines 4 to 6 is superfluous; the else on line 4 is covered exactly
when B is true and A is false. None of the programmers actually wrote the else’s on
lines 6 and 7, but the test for B on line 4 implies that it is possible for B to be false. It
appears that the programmers did not look at their code hard enough to realize what

they were doing.
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None of these common causes of unreachable code seems to affect correctness.
In fact, the first two tend to improve correctness. It is often easier to find a published
general-purpose algorithm, or one from a library or another program, that is very
trustworthy than to create a reliable algorithm from scratch, even if one can take ad- ‘
vantage of the limitations of the particular application. Of course, it is possible to use
these procedures incomrectly, but they are less likely to contain faults than starting

from scratch.

It is good practice to write procedures that check that the conditions they re-
quire to perform correctly are true. If everything is put together correctly, the redun-
dant checks are not necessary. However, when the system is first put together and
whenever changes are made to the system, the extra checks are important safeguards.
These checks may also alert the tester to other problems, e.g. an incorrect call of a

procedure.
2.2 Illegal Branches

The specification used in the Second Generation Experiment stated that many
conditions would not occur. Some of these statements were very reasonable and some
were questionable. Nevertheless, inputs causing these conditions are invalid, and the
branches that test for any of the conditions are illegal branches. The illegal branches

were not tested.

The sensors are attached to the faces of the RSDIMU. One of the more rea-
sonable restrictions put on the input was that the angles that measured how much the
orientation of the sensors differed from their ideal orientation would be would be less
than five degrees. It seems reasonable to assume that if these angles are too large, the

RSDIMU will not be used. None of the versions check for an error condition caused
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by these angles being too large, evidently thinking that it is a reasonable restriction on

the input.

The specification also includes restrictions on the input that are more question-
able. For example, the specification stated that if a sensor failed in flight, it would fail
unambiguously, i.e., that its reading would be very inconsistent with the readings from
the working sensors. The algorithm that detects failed sensors uses a redundant set of
consistency checks. A sensor reading may be inconsistent enough to fail some of
these, but not all. The specification does not say how to classify a sensor in this ambi-
guous case, but instead says that the case will not happen. This is especially unrea-
sonable, because it is physically possible for a sensor to “drift” from correct readings.
When a sensor starts “drifting,” it may pass only some of its consistency checks.
Many programmers evidently did not believe the specification, and put in branches

that deal with ambiguous results from the consistency checks.
2.3 Coverage Sets

The size of a coverage set is the number of test cases in the coverage set. The
versions vary widely in the size of their coverage sets (See Figure 8). The execution
of the first test case covers branches that get covered by the execution of almost any
test case. Thus, the number of uncovered branches after the execution of the first test
case is a better indicator of the amount of testing to be done. The preliminary accep-
tance test is treated as the first test case. The size of the coverage set tends to increase
with the number of branches still uncovered after the preliminary acceptance test.
However, there is a lot of variation in this relationship. This variation may be due to
some versions having one or more fairly large sets of branches that can be covered by
the execution of a single test case. This variation may also be due to poor selection of

test cases for some versions: some attempts to develop a test case whose execution
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covers a particular branch fail. The attempt may fail for various reasons. The code
around a branch may be hard to understand; the comments around a branch may be
misleading; slightly wrong meanings may be suggested by variable names; the con-
ditions necessary to enter the procedure in which a branch is found may not be con-

sidered at first.

There is a common pattern in developing coverage sets (See Table 3). It takes
several iterations of examining branches, developing new test cases, and running a
version on the new test cases to cover that version. Usually the first one or two itera-
tions have a lot of test cases. Then the number of test cases in an iteration tapers off,
because there are fewer branches left to cover. The branches covered toward the end
of testing are more difficult either because the conditions necessary to cover them are
hard to understand, or because the test cases whose execution would cover them are
hard to create. Some of the versions, e.g. NCSU3, have a small first iteration before
following the usual pattcrn, because those versions have procedures with many
branches in them that were not called during the preliminary acceptance test. During
the first iteration, test cases are developed whose executions cover a branch that calls
a procedure with many branches. On the next iteration, after some of the branches
have been covered, many test cases are developed whose execution covers the remain-

ing branches.
2.4 Independence of Testing

One person could oversee the ordinary branch coverage testing of all versions,
or each version could be tested by a different person, for example, the programmer.

Both methods have advantages and disadvantages.
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Fig. 8. Size of Coverage Set versus the Number of Uncovered Branches
after Preliminary Acceptance Test

If one person does the testing, he profits from an understanding of the system
as a whole. There is a consistent view of correct results. Inconsistent interpretations
of the specification may be uncovered and therfore corrected earlier than with

different testers. The tester gains insight into the problem and the relative strengths of
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Num Cases in Iteration Size Num
Version | 1 2 3 4 5 6 Cover. Set Iterations
UIUC1 10 8 18 2
UIuC3 20 5 2 1 28 4
UIuC4 3 4 3 6 3 1 20 6
UIUCS 9 3 1 13 3
NCSU1 9 11 1 21 3
NCSU2 2 9 7 3 21 4
NCSU3 5 23 10 5 2 49 6
NCSU4 2 2 5 4 1 14 5
NCSUS 10 12 7 29 3
UVAL 16 8 24 2
UVA2 13 4 1 18 3
UVA3 33 31 7 1 72 4
UVA4 5 2 2 11 20 4
UVAS 11 18 2 31 2
UCLA1 4 4 6 3 3 1 21 6
UCLA2 8 1 6 2 3 20 5
UCLA3 3 2 4 4 13 4
UCLA4 5 1 8 2 21 5
UCLAS 3 8 5 3 1 20 5

Table 3. Number of Test Cases in each Testing Iteration.

each version because he has to understand a large part of each version. This insight
allows the tester to develop test cases that exercise the versions more thoroughly than

with this insight divided among several people.

If each version is tested using ordinary branch coverage testing by a different
person, then there is less chance of a common fault being overlooked during the test-
ing phase. If the programmers test their own versions, then they will have a much
easier time understanding the code and the conditions for covering branches than any-

one else. If the testers are not the programmers, then the testers are less likely to be
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influenced by what they expect the code to do because they did not write it or see
similar code in other versions. However, it is possible for the testers to disagree on
what the correct results are. If this happens, it will be discovered at the next stage,
when all versions are tested on all test cases. There are likely to be branches in
different versions that need the same or nearly the same conditions in order to be
covered. With several different testers developing test cases for these branches, they
will be tested more variously than if one tester were developing all of the test cases.
However, it is not clear that these frequent branches are where the testing effort should

be concentrated.
2.5 Evaluation of Group Branch Coverage Testing
2.5.1 Comparison with Ordinary Branch Coverage Testing

Group branch coverage testing is expected to reveal more faults than ordinary
branch coverage testing. Group branch coverage testings designed to find all of the
faults found by ordinary branch coverage testing by using the union of the versions’
coverage sets. For these versions and the coverage sets developed for them, almost

40% additional faults were found using the test cases developed for the other versions.

The shaded part of the bars in Figure 10 shows the number of faults found for
each version by its coverage set alone. The unshaded part of the bars shows the
number of additional faults found by group branch coverage testing. The column of
numbers to the right of the bars shows the percentage of the faults found by group
branch coverage testing, that were not found by ordinary branch coverage testing.
There is wide variance in how much the group part of the testing helped individual
versions, from 0% for UIUC4 and UVAI to 100% for UCLA1. This variation may be

due to variation in the degree to which the versions were tested by their programmers.
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Fig. 9. Number of Faults Found.

Group Improvement
12.5%
40.0%
0.0%
33.3%
60.0%
50.0%
222%
14.3%
50.0%
0.0%
33.3%
20.0%
16.7%
33.3%
100.0%
25.0%
25.0%
75.0%
40.0%

If the programmers tested their versions at least as thoroughly as branch coverage test-

ing, then another pass of branch coverage testing is unlikely to reveal many more er-

TOTS.

38



2.5.2 Comparison with a New Acceptance Test

A number of fauits were found in the UCLA versions during other testing.
The specification used in the Second Generation Experiment has been corrected. The
five UCLA versions have been modified to adhere to the new specification; [Kel86]
the other versions are being modified at the universities at which they were produced.
As the UCLA versions were modified and they were tested by a new acceptance test,
faults were uncovered in each of them (See Table 4). Many of these faults found had

not been revealed by the group branch coverage testing,

New
Acceptance
Version | Coverage Set | Union Test Total | Overlap
UCLA1 0 1 5 6 0
UCLA2 3 4 2 6 1
UCLA3 6 8 9 17 4
UCLA4 1 4 8 12 1
UCLAS 3 5 3 8 1
Total 13 9 27 49 7

Table 4. Number of Faults Found in UCLA Versions

Two-thirds of the faults found only by the new acceptance test concern either
the proper placement of decision points for recovery, or computational errors whose
effect on real-valued variablies is less than 0.2. Under recovery, the consensus deci-
sion is passed back to the versions from the decision algorithm. The faults related to
the decision points that were found by the new acceptance test were of two sorts: in
some versions the decision algorithin was called after the variable had already been

used in some computation; in others, the changed vaules of returned output variables
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were ignored.

Most of the faults found by group branch coverage testing of the UCLA ver-
sions concern either the display module or the computation of boolean-valued vari-
ables. The new acceptance test did not reveal faults in the computation of boolean-
valued variables, because the definitions of these variables were changed during the

modification of the specification.

The new acceptance test revealed some subtle computational faults that group
branch coverage testing did not, because the new acceptance test used much smaller
equivalence classes to determine correct results. During the group branch coverage
testing, wrong results were considered correct if they differed by the correct results by
less than 0.2. With a better method of determining whether a result is acceptable,
group branch coverage testing would have revealed some of these less obvious com-

putational faults.

It is not surprising that group branch coverage testing did not reveal faults in
the placement of the decision points. The decision points must be executed (See Fig-
ure 6); it is unlikely that they would be placed in a conditional statement. Testing
versions to see whether they call the decision algorithm properly for recovery involves
modifying the decision algorithm so thaf it returns values different than those that
were passed to it, but still consistent with the rest of the variables so that the computa-

tion can continue. Branch coverage testing does not enforce this kind of testing.
2,6 Similar Errors

The multi-version approach to fault-tolerance depends on the low probability
of similar errors in the system. In a three version system, the decision algorithm will

produce an erroneous result in the presence of any similar failures of the versions. An
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estimate of the proportion of faults that lead to similar errors in versions is useful for

evaluating MVS systems.

The faults found by group branch coverage testing can be used to empirically
estimate the proportion of faults that produce similar errors. It is recognized that this
estimate is valid only for these 19 versions of this RSDIMU software. However, it
adds to the meager empirical results from testing MVS systems and their components.
A larger collection of empirical results will allow a more realistic assessment of how

much reliability improvement can be expected from MVS systems.

Fifty-nine faults were found. A fault can be manifested in more than one ver-
sion. The number of versions in which a fault occurs is called the fault’s occurrence
number. A fault with a higher occurrence number is more likely to be in a randomly
selected version and to be in enough versions that the decision algorithm cannot make
the correct decision. The faults’ occurrence numbers varied a lot. Most faults have an
occurrence number of one, but one fault occurred in eight versions. Figure 11 shows

the number of faults with each occurrence number.

The versions themselves were used to classify correct results automatically. If
a fault occurred in ten or more versions, the errors from that fault would have been
classified as correct by the automatic classification. Faults were found manually. The
results from all versions for all output variables of an input case were examined. For a
particular version, all output variables that were classified as incorrect were noted.
For each incorrect output variable, the code of that version dealing with that output
variable was examined until the fault was found. If a correct result was incorrectly
classified as incorrect by the automatic classification procedure, then the mis-
classification would be detected by the supposed fault that produced the correct result.

In this way, the only mis-classification of incorrect results as correct that would not be
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Fig. 10. Occurrence of Faults

detected are those for which no correct result for that output variable was produced for
any of the 19 versions. This mis-classification occurs when a similar error in several
versions is incorrectly classified as correct, and none of the rest of the versions are
correct either; since there is a fault in all of the versions whose outputs are labeled in-
correct, there is no reason to suspect that the result labeled correct is wrong. Thus, it
is reasonable to assume that there were not fauits that occurred in more than ten ver-

sions that were not detected because the versions were used to define correctness.
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It has been shown that the specification may be responsible for some of the
similar faults [Kel86, Avi84]. The distribution of the occurrence numbers of similar
faults that were and were not related to the specification are shown in Figures 11 and
12, respectively. The specification-related faults tend to have high occurrence
numbers. Since all programmers used the same specification, it makes sense that the
faults that derived from the specification occur in many versions. For example, the
fault with the highest occurrence number, 8, is the computation of whether a sensor is
noisy or not, even though the sensor is already known to be failed. The specification,
however, accounts for only a quarter of the similar faults (See Appendix B for a list of

all the similar faults found in this research).

The other faults appear to be attributable to programmer oversight or inability
to consider the entire specification at once. For example, the fault with the second
highest occurrence number, 6, is failure to protect against division by 0. The versions
with this fault abort whenever there are no operational sensors. Another example of a
common fault, occurrence number of 5, is the computation of output variable
“LINOFFSET” for a sensor that is known to be failed at the beginning of the compu-
tation. The specification clearly states that “LINOFFSET" should be set to a default
value when the corresponding sensor is known to be failed. Evidently many program-
mers forgot this detail of the specification. Since the preliminary acceptance test did
not check these basic details of the specification, the detection of these faults was left

to later testing.
2.7 A Detailed Example

The behavior of the versions’ display module on a test case is examined in de-
tail. The test case was selected because of the many faults it reveals in the display

module. It is not typical of the density of faults revealed by one test case. The ver-
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sions are supposed to compute an acceleration of <+9.999992, +10.00499,

+10.00153> and then display the X-component of the acceleration to five significant
digits: “+10.000".

There are three words (integers) used to drive this row of the display panel
(See Figure 6). The first word hold the bits that display the first two digits. The
second word hold the bits that display the next two digits. The last word hold the bits
that display the last digit, the decimal point, and the sign. Each bit in the word con-

trols one segment.

The correct result for each word was separately determined by consensus.
Nine different display patterns were generated by the 19 versions — and four versions
did not generate display patterns because they aborted (See Table 5). In fact, no ver-

sion agreed with the automatically classified “correct” result on all three words! The



automatically classified “correct” display was “+1.0000”. Seven versions, UTUCI,
NCSU1, UCLAS, UVAL, UIUC4, UTUCS, and UVA4, formed the consensus group
with the most members saying the first two digits were “10”. There was almost com-
plete agreement that the next two digits, the second word, were “00”. For the last
word, the consensus group with the most members had seven members, NCSU4,
UVA2, UVA3, UVAS, NCSU2, UCLA4, and UCLALI, saying the last digit was “0”,
the decimal point was after the first digit, and a plus sign should be displayed.

Display Versions Displaying It
+10.000 UIUC1, NCSU1, UCLAS
+A.0000 NCSU4,UVA2, UVA3, UVAS
+0.0000 NCSU2, UCLA4
+00.000 NCSUS5
10.000 UVAL
+.1.00.0.0. | UIUC4
+9.0000 UCLA1
+10.005 UIUCS
+10.274 UVA4
abortl NCSU3, UCLA2
abort2 UIUC3, UCLA3

+1.0000 correct result, determined automatically

Table §. Displays of Acceleration +9.999992.

The problem in displaying a real number is breaking the number down into di-
gits so that the appropriate bit pattern to display the digits can be determined. Be-
cause the number is rounded before displaying, some of the digits may be different
than the digits in the original number. The general approach to this display module
involves first finding the magnitude of the number, i.e. where the most significant digit
is relative to the decimal point. Once the magnitude of the number is determined, the
number can be rounded to five signiﬁcant digits. After rounding and determining the

magnitude, the digits can be isolated easily, using integer division and mod (the

45



“remainder” function). Rounding +9.999992 to five digits changes the location of the

most significant digit from the one’s place to the ten’s place.

Two of the versions, UIUC5 and UVA4, compute different accelerations
whose x-components are both larger than 10. They both correctly display the ac-
celeration they compute, but do not encounter the problem the other versions do in
rounding the acceleration. Only the remaining 17 versions are considered in the rest

of this discussion.

Only six of the versions account for the change in the position of the most
significant digit after +9.999992 is rounded. Of these, two, UVA1 and UTUC4, had
other problems with the display: UVA1l does not display the plus sign; UIUC4
displays the decimal points it means not to display and does not display the decimal
point it does mean to cisplay. Another, NCSUS, displayed the digiw in the one’s
place to the 0.0001’s place as the five most significant digits, instead of the digits from
the 10’s place to the 0.001°s place. Thus, only three versions correctly computed the

display.

“+A.0000” was the most common display. It is produced by treating the in-
teger part of the number, 10, as the first digit and displaying it. It is sometimes re-
quired of the versions to display hexadecimal numbers (numbers in base 16). In the
hexadecimal system, the digit ten is represented by “A”. Thus the “digit” 10 was
display as “A”.

abortl was caused when two versions treated the integer part of the number,
10, as a digit. This first “digit” was assigned to a variable that can hold only decimal

digits, i.e., 0 to 9. Thus these two versions aborted.



“+0.0000” was produced by versions NCSU2 and UCLA4. 1t is produced by
noticing that the most significant digit, before rounding, is in the one’s place. These
versions continued to treat the one’s place as the most significant place, even after

rounding. Thus they displayed “+0.0000”, ignoring the 1 in the ten’s place.

One additional version, UCLA1, found the first digit as it was finding the mag-
nitude. It did not recalculate the first digit after rounding. It displayed “+9.0000”.

UIUC3 and UCLA3 both aborted on this input, abort2. Both of these versions
found the five most significant digits to be displayed, by multiplying the number by 10
until there were five digits to the left of the decimal point. The variable that held
these five digits could not hold more than five digits. When rounding took place, six

digits, i.e. 100000, were assigned to the variable. Thus the versions aborted.
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CHAPTER 3

Conclusions

Group branch coverage testing found 40% more faults on the average than or-
dinary branch coverage testing. These additional faults tended to be more subtle than
those revealed by ordinary branch coverage testing. More research is needed to deter-

mine how many more faults are detected for systems involving fewer versions.

Three-version software systems tolerate errors in one version, but they cannot
tolerate similar errors. Therefore it is much more important to detect similar faults
than distinct faults. Some of the fauits detected by ordinary branch coverage testing
were found to exist in other versions as well. Group branch coverage testing found
these similar faults, as well as those for which no occurrence was detected by ordinary

branch coverage testing.

This research verifies that similar faults may be related to the specification.
However, more than half the similar faults were not related to the specification. If the
preliminary acceptance test had used better criteria for comrectness, i.e. had used
smaller equivalence classes for correct values and had checked that all output vari-
ables be correct, then many of the similar faults would have been revealed during it.
Better correctness criteria would have revealed subtle computational faults. It is like-
ly that inclusion of these subtle computational faults would affect the proportion of

similar fault in the faults found, but it is difficult to predict how.
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Up to 5% of the code in some versions was uncoverable. Testers should not be
surprised when they find uncoverable code. The most common causes of branches be-
ing unreachable were general-purpose procedures and defensive programming. A
thorough understanding of the code is necessary in order to be sure that a branch real-
ly is unreachable. The most common cause of illegal branches was programmers dis-
trusting the specification enough to test for conditions that the specification stated
would not occur. Illegal branches point up concerns that the specification addressed
inadequately, or not at all. Looking at the conditions in the illegal branches helps to
validate the specification.

There are advantages to both having one person test all versions and having all
versions tested independently before they are tested on the union of their coverage
sets. Further research is needed to show the affects of multiple testers. One tester
gains deeper insight from his familiarity with all the versions. A consistent definition
of correct is provided by one tester. The main advantages of multiple testers are that
more test cases are developed and there is less chance of introducing a common fault

through testing.
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Appendix A

This is the trace file produced when the sample tax program is run on the sam-
ple input. It is intended to be analyzed by a coverage analyzer, not for a human being
toread. The “N™’s indicate that a procedure has been entered. The first number on an
N line is the number of letters in the name of the procedure. The second number is the
number of branches in the procedure. The lines that are indented one space, give the

names of procedures. The “U’’s probably indicate that a branch has been covered.

N39
tax
Ul 1l
N8 2
Getlnpu
t

Ul 1
Ul 2
R 8
Getlnpu
t

Ul 3
ul 4
N10 3
Compute
Tax

Uul1
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uil 2
R 10
Compute
Tax
Ul 9
R 3

tax
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Appendix B

Occurence

Similar Errors Number
Does not set all sensors to failed when RSDIMU not operationat 4
Does not set all sensors to failed when RSDIMU becomes non- 5
operational in-flight
Shows 1’s place for nums with Inuml < 1 2
The sensors’ readings are recorded in 16-bit words and the highest 4 5
bits should be ignored. High bits not ignored for display purposes
High bits not ignored in computations 5
Divides by 0 when all sensors are failed 6
Integer variable is supposed to hold 5 most sigificant digits. Number 2
is multplied by 10 untl there are 5 digits to left of decimal point.
The type of the variable prevents 5 digit numbers starting with 7, 8, or
9 from being assigned to it.
Value of “LINOUTT{i]” is set to special value whenever sensor i is 4
noisy. Should only be done for sensors previously failed
Tests previously failed sensors for noise
Threshold for determining whether a sensor without an operational
partner has failed is too low
Previously failed sensors always labeled noisy 2
Displays “+0.0000” for acceleration component = +9.999992 2
Multiplies acceleration component by 100,000, causing an “Integer 2
overflow” abort when the acceleration component is too big
Aborts when +9.999992 is rounded in display; attempts to treat ten as 2
a digit
Displays “+A.0000” when acceleration component is +9.999992 4
Computes value for variable “LINOFFFSET[i]”, even when sensor i 5

is known to be failed

Similar Errors Found During Group Branch Coverage Testing
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